WO2018066231A9 - 回転切削刃用素材及びその製造方法 - Google Patents

回転切削刃用素材及びその製造方法 Download PDF

Info

Publication number
WO2018066231A9
WO2018066231A9 PCT/JP2017/029101 JP2017029101W WO2018066231A9 WO 2018066231 A9 WO2018066231 A9 WO 2018066231A9 JP 2017029101 W JP2017029101 W JP 2017029101W WO 2018066231 A9 WO2018066231 A9 WO 2018066231A9
Authority
WO
WIPO (PCT)
Prior art keywords
rotary cutting
cutting blade
structure forming
core
attachment structure
Prior art date
Application number
PCT/JP2017/029101
Other languages
English (en)
French (fr)
Other versions
WO2018066231A1 (ja
Inventor
泰助 東
久木野 暁
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to JP2018506631A priority Critical patent/JP6614541B2/ja
Priority to CN201780004086.7A priority patent/CN108472750B/zh
Priority to EP17858071.8A priority patent/EP3363571B1/en
Priority to US15/776,138 priority patent/US10702926B2/en
Priority to KR1020187014211A priority patent/KR102094093B1/ko
Publication of WO2018066231A1 publication Critical patent/WO2018066231A1/ja
Publication of WO2018066231A9 publication Critical patent/WO2018066231A9/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/18Milling-cutters characterised by physical features other than shape with permanently-fixed cutter-bits or teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/205Cubic boron nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • B23B2226/315Diamond polycrystalline [PCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2240/00Details of connections of tools or workpieces
    • B23B2240/08Brazed connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/124Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/12Boron nitride
    • B23C2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/31Diamond
    • B23C2226/315Diamond polycrystalline [PCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2240/00Details of connections of tools or workpieces
    • B23C2240/08Brazed connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2240/00Details of connections of tools or workpieces
    • B23C2240/24Connections using screws
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/003Cubic boron nitrides only

Definitions

  • the present invention relates to a rotary cutting blade material and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2016-199278 filed on October 7, 2016, which is a Japanese patent application. All the contents described in the Japanese Patent Application are hereby incorporated by reference. It is used in the book.
  • Patent Document 1 JP-T-2015-520661 (Patent Document 1) describes that a structure having an ultra-hard structure to be processed into a cutting blade of a rotary cutting tool is attached to a tool carrier. Specifically, the structure can be attached to the tool carrier by brazing the structure and the tool carrier, or providing the structure with attachment means such as a screw groove.
  • a material for a rotary cutting blade is a material for a rotary cutting blade for a rotary cutting blade that is used by being attached to a shank, and the material for the rotary cutting blade is attached to the shank.
  • the hard material has a Young's modulus of 350 GPa or less, the core portion includes a cemented carbide material, the surface portion includes PCD (polycrystalline diamond) or CBN (cubic boron nitride), The hard component is W (t Gusuten), WC (tungsten carbide), TiC (titanium carbide),
  • the manufacturing method of the raw material for rotary cutting blades includes a first precursor for forming the attachment structure forming portion, a second precursor for forming the core portion, An assembly step of assembling the precursor of the rotary cutting blade material using a third precursor for forming the surface portion; and a sintering step of sintering the precursor of the rotary cutting blade material.
  • FIG. 1A is a perspective view of a rotary cutting blade material showing one embodiment of the present embodiment.
  • 1B is a cross-sectional view taken along the line AA in FIG. 1A.
  • FIG. 2A is a cross-sectional view of a rotary cutting blade material showing another embodiment of the present embodiment.
  • FIG. 2B is a cross-sectional view of a rotary cutting blade material showing still another embodiment of the present embodiment.
  • FIG. 2C is a cross-sectional view of a rotary cutting blade material showing still another embodiment of the present embodiment.
  • FIG. 3 is a sectional view of a rotary cutting blade material showing still another embodiment of the present embodiment.
  • FIG. 4 is a perspective view of a rotary cutting blade material showing still another embodiment of the present embodiment.
  • FIG. 5 is a perspective view of a rotary cutting blade obtained from the rotary cutting blade material of the present embodiment.
  • Rotating cutting tools such as drills and end mills use up cutting blades as they are used, so at least when the cutting performance deteriorates or after a specified period of use has elapsed, the cutting head that contains at least the cutting blade is a new cutting head. Will be replaced.
  • the carbide shank has not reached the end of its useful life, so even if it is not necessary to replace it, the timing for replacing the cutting blade At the same time, the carbide shank must be changed together.
  • Such replacement of the carbide shank is not preferable from the viewpoint of cost because the carbide shank is relatively expensive. Therefore, it is conceivable to detachably attach the cutting head to the carbide shank so that only the cutting head can be replaced when the cutting blade is consumed.
  • Patent Document 1 has room for further improvement in the formation and brazing of attachment means for attachment to the tool carrier.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a material for a rotary cutting blade excellent in attachment to a shank and a method for manufacturing the same.
  • a material for a rotary cutting blade is a material for a rotary cutting blade for a rotary cutting blade that is used by being attached to a shank, wherein the material for the rotary cutting blade is the shank.
  • An attachment structure forming portion serving as an attachment portion, a cutting structure forming portion serving as a cutting blade, and a joining portion, and the cutting structure forming portion is provided in the attachment structure forming portion via the joining portion.
  • a core part and a surface part, wherein the surface part covers at least a part of the surface of the core part, and the attachment structure forming part comprises a hard component and one or more of iron group elements.
  • the hard material has a Young's modulus of 350 GPa or less, the core portion includes a cemented carbide material, and the surface portion includes PCD (polycrystalline diamond) or CBN (cubic boron nitride).
  • the hard component is W (tungsten), WC (tungsten carbide), TiC (titanium carbide), TiCN (titanium carbonitride), Al 2 O 3 (alumina), and CBN (cubic boron nitride) and diamond, and W and WC It is at least one selected from the group consisting of a combination with at least one.
  • the surface portion covers the core portion so that the core portion is not exposed to the outside.
  • At least a part of the joint includes one or more of iron group elements.
  • the core portion has a hollow portion therein, and the attachment structure forming portion has an inner core portion disposed in the hollow portion.
  • the hard material has an elongation of 5% or less.
  • the rotary cutting blade material is a rotary cutting blade material for a rotary cutting blade that is used by being attached to a shank, and the rotary cutting blade material serves as an attachment portion to the shank.
  • the cutting structure formation portion includes a core portion and a surface portion provided in the attachment structure formation portion via the joint portion.
  • the surface portion covers at least a part of the surface of the core portion
  • the attachment structure forming portion includes a hard material containing W (tungsten), iron and nickel, and the hard material is a Young
  • the core portion includes a cemented carbide material
  • the surface portion includes CBN (cubic boron nitride)
  • the attachment structure forming portion of the joint portion is formed with a rate of less than 300 GPa and an elongation of less than 5%.
  • the surface portion and Junction between are those which are materials comprising one or more iron group element.
  • a method for manufacturing a rotary cutting blade material includes a first precursor for forming the attachment structure forming portion, and a second precursor for forming the core portion, An assembly step of assembling the precursor of the rotary cutting blade material using a third precursor for forming the surface portion, and a sintering step of sintering the precursor of the rotary cutting blade material.
  • FIG. 1A is a perspective view of a material for a rotary cutting blade showing an embodiment of the present embodiment
  • FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1A
  • FIG. 2 is a cross-sectional view of a rotary cutting blade material showing another embodiment of the present embodiment
  • FIG. 3 is a sectional view of a rotary cutting blade material showing still another embodiment of the present embodiment
  • FIG. 4 is a perspective view of a rotary cutting blade material showing still another embodiment of the present embodiment.
  • FIG. 5 is a perspective view of a rotary cutting blade obtained from the rotary cutting blade material of the present embodiment.
  • the height of the mounting structure forming portion 20 (the length in the vertical direction with respect to the joint surface with the cutting structure forming portion 30) is high enough to perform cutting and grinding to form a structure for mechanical fastening. There is no particular limitation as long as it has a height capable of brazing and has a height at which the vibration damping effect is exhibited in the mounting portion 2 obtained by processing the mounting structure forming portion 20.
  • the diameter of the joint surface may be 5 mm to 30 mm and the height may be 1 mm to 20 mm.
  • the hard material preferably contains W (tungsten) among the hard components, and preferably contains at least one of iron and nickel among the iron group elements.
  • the hard material may contain other components such as copper as a component other than the hard component and the iron group element.
  • the content of the hard component contained in the hard material is preferably 50% by mass or more, more preferably 80% by mass or more, and 90% by mass or more, based on the total mass of the hard material. Further preferred.
  • the total content of iron, nickel, and cobalt contained in the hard material is preferably 50% by mass or less, more preferably 20% by mass or less, and more preferably 10% by mass or less, based on the total mass of the hard material. More preferably.
  • a hard component of the mounting structure forming portion 20 W (tungsten), WC (tungsten carbide), TiC (titanium carbide), TiCN (titanium carbonitride), Al 2 O 3 (alumina), and CBN (cubic boron nitride)
  • W tungsten
  • WC tungsten carbide
  • TiC titanium carbide
  • TiCN titanium carbonitride
  • Al 2 O 3 alumina
  • CBN cubic boron nitride
  • the mounting structure forming portion 20 for screw fastening, pinning, or other engagement.
  • W tungsten
  • the inventors of the present invention use the mounting portion 2 formed from the mounting structure forming portion 20 by attaching the rotary cutting blade 10 to the shank 5 because the mounting structure forming portion 20 includes a hard material having specific physical properties.
  • the present inventors have newly found that it is possible to improve the service life of the rotary cutting blade 10 by providing a vibration damping effect that suppresses chatter and breakage when the rotary cutting blade 10 is used.
  • the mounting structure forming portion 20 has a smaller rigidity than the core portion 31 including a cemented carbide material and the surface portion 32 including PCD or CBN. can do.
  • the attachment portion 2 to the shank 5 formed from the attachment structure forming portion 20 is also easily elastically deformed. Therefore, since the load concerning the said attachment part 2 can be reduced when using the rotary cutting blade 10 as a rotary cutting tool, breakage of the rotary cutting blade 10 can be suppressed.
  • the mounting portion 2 of the rotary cutting blade 10 is easily affected by vibration when used as a rotary cutting tool, but absorbs vibration if the mounting portion 2 is formed of a material that is easily deformed as described above. Since it becomes easy, the rotary cutting tool excellent in the vibration-proofing property (vibration-proofing property) which suppressed chatter can be provided.
  • a hard material having a Young's modulus at a temperature of 25 ° C. of less than 500 GPa, more preferably less than 400 GPa, and 350 GPa or less. Is more preferred, and most preferred is less than 300 GPa.
  • the Young's modulus is a value measured according to a tensile test.
  • the attachment structure forming portion 20 and the core portion 31 and the surface portion 32 forming the cutting structure forming portion 30 are integrated by sintering.
  • the mounting structure forming portion 20 including a hard material, the core portion 31 including a cemented carbide material, and the surface portion 32 including PCD or CBN are used, the inventors attach the mounting structure during the integration by the sintering. It has been found that the bondability during sintering between the structure forming part 20 and the core part 31 and the surface part 32 may deteriorate.
  • the present inventors have found that by adjusting the elongation of the hard material, it is possible to suppress a decrease in bondability during sintering.
  • the elongation of the hard material is preferably 5% or less, more preferably 1% or less, and further preferably 0.5% or less.
  • the plastic deformability of the mounting structure forming portion 20 formed of the hard material can be reduced.
  • the deformation of the attachment structure forming portion 20 due to the temperature change during sintering is reduced, so that the deformation of the attachment structure forming portion 20 and the core portion 31 and the surface portion 32 of the cutting structure forming portion 30 during sintering.
  • the difference can be reduced.
  • the attachment structure forming portion 20 of the present embodiment includes a hard component and an iron group element, and is formed using a hard material having specific physical properties, so that it can be attached to the shank 5. It is possible to easily perform cutting or grinding for mechanical fastening or brazing for attachment to the shank 5. Moreover, the vibration damping effect which suppresses chatter and breakage when the rotary cutting blade 10 is attached to the shank 5 and used can be obtained. Then, by adjusting the elongation of the hard material, it is possible to achieve excellent bonding properties with the core portion 31 and the surface portion 32 of the cutting structure forming portion 30 during sintering.
  • the cutting structure forming unit 30 is processed so as to form a cutting unit 3 having a cutting blade in the rotary cutting blade 10 obtained by processing the raw material 1 for a rotary cutting blade (FIG. 5).
  • the cutting structure forming unit 30 of the present embodiment has a cylindrical shape as shown in FIG. 1A.
  • size of the bottom face of the cylinder which comprises the cutting structure formation part 30, and the height of a cylinder will not be specifically limited if the cutting part 3 which has a cutting blade can be formed by cutting or grinding.
  • the bottom diameter may be 5 mm to 30 mm and the height may be 5 mm to 30 mm.
  • the cutting structure forming part 30 of the present embodiment has a core part 31 and a surface part 32 provided in the attachment structure forming part 20 via a joint part 40.
  • the surface portion 32 covers a part of the surface of the core portion.
  • the core portion 31 is provided so as to cover at least a part of the surface other than the surface in contact with the joint portion 40.
  • the core part 31 and the surface part 32 are the states joined by sintering mentioned later.
  • the size of the core portion 31 and the surface portion 32 may be selected so that a desired cutting blade can be cut or ground.
  • the size and shape of the cutting blade to be formed, and the connection with the attachment structure forming portion 20 The diameter and height of the bottom surfaces of the core portion 31 and the surface portion 32 may be selected in consideration of the size required for the above.
  • the diameter of the bottom surface of the core part 31 may be 3 mm to 27 mm, and the height of the core part 31 may be 5 mm to 30 mm.
  • the outer diameter of the bottom surface of the surface portion 32 may be 5 mm to 30 mm, and the height of the surface portion 32 may be 5 mm to 30 mm.
  • the hollow part formed in the core part 31 penetrates from the surface of the core part 31 on the side joining the attachment structure forming part 20 to the surface of the core part 31 opposite to the side joining the attachment structure forming part 20.
  • the shape may be sufficient, the shape which penetrates only in any one surface among these may be sufficient, and the shape which does not penetrate in any surface may be sufficient.
  • a screw is attached to the tip of the inner core portion 33 on the attachment structure forming portion 20 side so that the inner core portion 33 and the attachment structure forming portion 20 are fixed by a fixture such as a screw or a pin. You may make it make it a pin shape which provides a groove
  • the inner core portion 33 made of the same material as the hard material forming the attachment structure forming portion 20 is disposed in the hollow portion of the core portion 31, it is provided in the hollow portion of the core portion 31 as shown in FIG. Assemble the mounting structure forming portion 20 and the cutting structure forming portion 30 so that the inner core portion 33 and the mounting structure forming portion 20 are integrally formed, and the inner core portion 33 is disposed in the hollow portion of the core portion 31. Also good. As described above, when the inner core portion 33 is formed integrally with the attachment structure forming portion 20 from the same material as the hard material forming the attachment structure forming portion 20, the vibration damping performance of the obtained rotary cutting blade 10 is further improved. can do.
  • the longitudinal section of the core portion 31 and the inner core portion 33 (a section perpendicular to the joint surface with the mounting structure forming portion 20, corresponding to the section AA in FIG. 1A). ) are both rectangular, but they may be the same shape or different shapes, and the shape may be any shape such as a trapezoid or a triangle. .
  • the core portion 31 when the molded body of the core portion 31 and the molded body of the surface portion 32 are assembled and sintered as will be described later, the core portion 31 and the PCD or CBN are bonded. It is possible to obtain a good bonding state with the surface portion 32 that is included.
  • the content ratio of tungsten carbide and cobalt contained in the cemented carbide material forming the core portion 31 is not particularly limited, but the content of tungsten carbide is 75% by mass or more with respect to the total mass of tungsten carbide and cobalt. It is preferable that the content is 85% by mass or more. Moreover, it is preferable that content of tungsten carbide is 98 mass% or less with respect to the total mass of tungsten carbide and cobalt, and it is more preferable that it is 95 mass% or less.
  • the strength of the core portion can be ensured. Moreover, it can join favorably with the surface part 32 by content of tungsten carbide being 98 mass% or less with respect to the total mass of tungsten carbide and cobalt.
  • the cemented carbide material may contain other components other than tungsten carbide and cobalt.
  • other components include one or more of TiC, TaC, Ni, and the like.
  • the other components are preferably 10% by mass or less, and more preferably 5% by mass or less, based on the total mass of the cemented carbide material.
  • the surface portion 32 of the present embodiment has a cylindrical shape having a hollow portion that accommodates the core portion 31 at the center. Then, as shown in FIG. 1B, the surface portion 32 is joined to the attachment structure forming portion 20 and is provided concentrically on the outer periphery of the side surface of the cylindrical core portion 31. The cutting structure forming part 30 is formed. The surface portion 32 is joined to the core portion 31 by sintering, which will be described later, at a portion covering the core portion 31.
  • the surface portion 32 has a joint surface that joins the attachment structure forming portion, and is provided so as to cover at least a part of the surface of the core portion 31.
  • the surface portion 32 may be provided only on the side surface portion of the surface of the core portion 31 as shown in FIGS. 1B and 2A to 2C. As shown in FIG. May be provided on the side surface and the top surface of the core portion 31 so as not to be exposed to the outside. Thereby, the rotary cutting blade 10 which has the cutting blade formed in the surface part 32 also at the front-end
  • the shape and size of the surface portion 32 are not particularly limited as long as they can be joined to the core portion 31 and the cutting structure forming portion 30 can be cut or ground to form a cutting blade. Accordingly, the surface portion 32 is formed to have an outer shape different from that of the core portion 31, and the outer shape of the cutting structure forming portion 30 is an elliptical column shape, a polygonal column shape such as a triangular column shape or a quadrangular column shape, a conical shape, You may make it form in arbitrary shapes, such as a polygonal pyramid shape.
  • the cutting process or grinding process performed to form the cutting blade may be performed only on the surface part 32 or may be performed on both the surface part 32 and the core part 31. Good.
  • the surface portion 32 is formed of a material containing PCD (polycrystalline diamond) or CBN (cubic boron nitride). By forming the surface portion 32 of a material containing PCD or CBN, a rotary cutting tool having excellent wear resistance and breakage resistance can be formed.
  • the surface portion 32 is preferably formed of a material containing CBN.
  • the joint portion 40 is formed on the joint surface between the attachment structure forming portion 20 and the cutting structure forming portion 30.
  • the joint portion 40 includes at least a first joint portion that joins the joint surface of the attachment structure forming portion 20 and the core portion 31 of the cutting structure formation portion 30, a joint surface of the attachment structure formation portion 20, and a surface of the cutting structure formation portion 30. And a second joint portion that joins the portion 32.
  • the thickness of the bonding portion 40 is not particularly limited as long as a required bonding strength is obtained, but may be, for example, 5 ⁇ m to 200 ⁇ m.
  • the attachment structure forming portion 20 and the cutting structure forming portion 30 can be firmly joined.
  • the attachment formed from the cutting portion 3 formed from the cutting structure forming portion 30 and the attachment structure forming portion 20 While being able to prevent the part 2 from separating, it is possible to prevent the cutting part 3 and the attachment part 2 from being cracked, and to ensure the strength when used as the rotary cutting blade 10.
  • the intensity measured by the shear test of bonding portion 40 is preferably at 25 kgf / mm 2 or more, preferably 30 kgf / mm 2 or more .
  • the joint part 40 is formed of a material containing one or more of iron group elements composed of cobalt, iron, and nickel. May be.
  • the second joint portion that joins the attachment structure forming portion 20 and the surface portion 32 is a joint portion made of a material containing one or more of iron group elements. Bondability with the surface portion 32 of the cutting structure forming portion 30 can be improved.
  • the joint portion 40 may be formed by sintering the attachment structure forming portion 20 and the cutting structure forming portion 30. Specifically, the attachment structure forming portion 20 and the core portion 31 of the cutting structure forming portion 30 are joined during sintering by an iron group element contained in the attachment structure forming portion 20 and a small amount of cobalt component contained in the core portion 31. The portion 40 can be formed. Further, even when PCD is used as the surface portion 32 of the cutting structure forming portion 30, the joint portion 40 can be formed between the mounting structure forming portion 20 and the surface portion 32 during sintering. However, when CBN having a low cobalt component content is used as the surface portion 32, deterioration in bondability is likely to be a problem.
  • the bonding portion 40 including the iron group element is used. It is preferable to provide it. Thereby, the surface part 32 containing CBN and the attachment structure forming part 20 can be joined with a joining strength of 30 kgf / mm 2 or more.
  • the joint 40 may include both a joint of a material containing one or more of the iron group elements and a joint formed by sintering, and includes only one of them. May be.
  • the 1st junction part which joins the attachment structure formation part 20 and the core part 31 is formed by sintering
  • the 2nd junction part which joins the attachment structure formation part 20 and the surface part 32 is 1 type of an iron group element Or you may form with the material containing 2 or more types.
  • the precursor of the core portion 31 is fitted into the hollow portion of the precursor of the surface portion 32 obtained in this way by pressing to form a precursor that becomes the cutting structure forming portion 30.
  • the precursor to be the cutting structure forming part 30 is assembled in a state where the precursor of the core part 31 and the precursor of the surface part 32 are in contact with the precursor of the mounting structure forming part 20, and for the rotary cutting blade A precursor of the material is obtained and the precursor is sintered.
  • the core portion 31 and the surface portion 32 are joined, and the joint portion 40 containing cobalt is formed between the core portion 31 and the attachment structure forming portion 20.
  • a joint 40 containing cobalt is formed between the surface portion 32 and the attachment structure forming portion 20.
  • the precursor of the core portion 31 is formed on the precursor of the mounting structure forming portion 20 via a material containing one or more of iron group elements composed of nickel, iron, and cobalt.
  • the sintering is performed by arranging the precursor of the surface portion 32, the joint portion 40 containing the iron group element is formed.
  • the material containing an iron group element may be arranged in a powder form or a foil form between the precursors.
  • the sintering process may be performed under conditions known in the art, but in the present embodiment, different materials are used for the attachment structure forming portion 20, the core portion 31, and the surface portion 32, respectively. Degree of deformation is different. Due to this difference in deformation, there is a possibility that cracks may occur at the portions where the molded bodies forming the attachment structure forming portion 20, the core portion 31, and the surface portion 32 are in contact with each other. Therefore, in the sintering process, after sintering under conditions of pressure 4.5 GPa to 7.5 GPa and temperature 1200 to 1700 ° C., the pressure is reduced to 3 GPa to 4 GPa while maintaining the temperature, and the core portion 31 is compressed. , Release the pressure to normal pressure, and bring the temperature to room temperature. Thereby, it is possible to obtain good jointability at the portion where the respective molded bodies are in contact with each other without causing cracks at the portions where the respective molded bodies are in contact with each other.
  • the material for a rotary cutting blade of the present disclosure can be suitably used as the rotary cutting blade 10 of a rotary cutting tool such as a drill or an end mill.
  • test piece As a test piece, a strip shape having a length of 30 mm and a width of 5 mm is prepared, and the test piece is subjected to a tensile test at a tensile speed of 0.1 mm / min using an autograph (manufactured by Shimadzu Corporation), and a strain gauge method is used. Young's modulus and elongation were measured.
  • A The value measured with a vibrometer was small (less than 1.5 m / s 2 ), and the vibration damping property when using a rotary cutting tool was very excellent.
  • Example 1 First, in order to form the cylindrical mounting structure forming portion 20, the cylindrical core portion 31, and the hollow cylindrical surface portion 32 shown in FIGS. 1A and 1B by sintering, using the following powder materials, It was press-molded with a mold to obtain a molded body for an attachment structure forming portion, a molded body for a core portion, and a molded body for a surface portion.
  • -Molded body for mounting structure forming part Material Hard material containing 90% by mass of tungsten and 10% by mass of metal binder containing iron, nickel and copper (Young's modulus: 280 GPa, elongation 0.4%)
  • -Molded body for core material Powder of cemented carbide containing 94% by mass of tungsten carbide and 6% by mass of cobalt Pressure during press molding: 100MPa to 200MPa
  • Powder material Powder of material containing CBN and inevitable impurities Pressure during press molding: 100 MPa to 200 MPa
  • the core part molded body was fitted into the hollow part of the surface part molded body obtained as described above by pressing to obtain a cutting structure forming part molded body.
  • a nickel 100% by mass thin plate is disposed on the joint surface of the mounting structure forming portion molded body to form the joint portion 40, and the core portion molded body and the surface portion molded body are disposed on the thin plate. And each said molded object was assembled.
  • the molded body assembled as described above was sintered under conditions of a temperature of 1400 ° C. and a pressure of 5 GPa to obtain a rotary cutting blade material 1.
  • the obtained rotary cutting blade material 1 has a diameter of 8 mm and a height of 20 mm, a height of the mounting structure forming portion 20 of 12 mm, a diameter of the core portion 31 of 5 mm, and a circumferential direction of the surface portion 32.
  • the thickness was 1.5 mm, and the height of the core portion 31 and the surface portion 32 was 5 mm.
  • the cutting structure forming portion 30 of the obtained rotary cutting blade material 1 is formed with a cutting blade having four blades (twisting angle 45 °), a thread groove is formed in the mounting structure forming portion 20, and the diameter is 7.5 mm.
  • a rotary cutting tool was obtained by fastening with a screw of a cemented carbide shank 5 having a length of 75 mm. The obtained rotary cutting tool was evaluated for vibration and breakage during the rotary cutting operation. The results are shown in Table 1.
  • Example 1 Example except that the cemented carbide material (Young's modulus: 620 GPa, elongation 0.5%) used as the material for the core part compact in Example 1 was used as the material for the mounting structure forming part compact. In the same manner as in No. 1, a rotary cutting blade material and a rotary cutting tool were obtained.
  • the obtained rotary cutting tool was evaluated for vibration and breakage during the rotary cutting operation. The results are shown in Table 1.
  • Example 1 From a comparison between Example 1 and Comparative Example 1, it was found that by forming the attachment structure forming portion with a hard material, the vibration damping performance during the rotary cutting operation was excellent and breakage could be suppressed.
  • Example 2 As a material for the mounting structure forming portion molded body, a rotating cutting blade material and a rotating cutting tool were obtained in the same manner as in Example 1 except that the following materials were used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

回転切削刃用素材は、シャンクへの取付け部となる取付け構造形成部と、切削刃となる切削構造形成部と、接合部とを有する。切削構造形成部は、接合部を介して取付け構造形成部に設けられるコア部及び表面部を有し、表面部は、コア部の表面の少なくとも一部を被覆する。取付け構造形成部は、硬質成分と鉄族元素の1種又は2種以上とを含む硬質材料を含むとともに、硬質材料はヤング率が350GPa以下であり、コア部は超硬合金材料を含み、表面部はPCD又はCBNを含む。硬質成分は、W(タングステン)、WC(炭化タングステン)、TiC(炭化チタン)、TiCN(炭窒化チタン)、Al(アルミナ)、並びに、CBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より選択される少なくとも1つである。

Description

回転切削刃用素材及びその製造方法
 本発明は、回転切削刃用素材及びその製造方法に関する。本出願は、2016年10月7日に出願した日本特許出願である特願2016-199278号に基づく優先権を主張し、当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用するものである。
 特表2015-520661号公報(特許文献1)には、回転切削工具の切削刃に加工される超硬質構造の構造物を工具担体に取付けることが記載されている。具体的には、上記構造物と工具担体とをろう付けする、上記構造物にねじ溝等の取付け手段を設ける等により、工具担体への取り付けを可能にしている。
特表2015-520661号公報
 本開示の一態様に係る回転切削刃用素材は、シャンクに取付けられて使用される回転切削刃のための回転切削刃用素材であって、前記回転切削刃用素材は、前記シャンクへの取付け部となる取付け構造形成部と、切削刃となる切削構造形成部と、接合部とを有し、前記切削構造形成部は、前記接合部を介して前記取付け構造形成部に設けられるコア部及び表面部を有し、前記表面部は、前記コア部の表面の少なくとも一部を被覆し、前記取付け構造形成部は、硬質成分と、鉄族元素の1種又は2種以上とを含む硬質材料を含むとともに、前記硬質材料は、ヤング率が350GPa以下であり、前記コア部は、超硬合金材料を含み、前記表面部は、PCD(多結晶ダイヤモンド)又はCBN(立方窒化ホウ素)を含み、前記硬質成分は、W(タングステン)、WC(炭化タングステン)、TiC(炭化チタン)、TiCN(炭窒化チタン)、Al(アルミナ)、並びに、CBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より選択される少なくとも1つであるものである。
 また、本開示の他の態様に係る回転切削刃用素材の製造方法は、前記取付け構造形成部を形成するための第1前駆体と、前記コア部を形成するための第2前駆体と、前記表面部を形成するための第3前駆体とを用いて前記回転切削刃用素材の前駆体を組立てる組立て工程と、前記回転切削刃用素材の前駆体を焼結する焼結工程とを有する。
図1Aは、本実施の形態の一形態を示す回転切削刃用素材の斜視図である。 図1Bは、図1AのA-A断面図である。 図2Aは、本実施の形態の他の一形態を示す回転切削刃用素材の断面図である。 図2Bは、本実施の形態のさらに他の一形態を示す回転切削刃用素材の断面図である。 図2Cは、本実施の形態のさらに他の一形態を示す回転切削刃用素材の断面図である。 図3は、本実施の形態のさらに他の一形態を示す回転切削刃用素材の断面図である。 図4は、本実施の形態のさらに他の一形態を示す回転切削刃用素材の斜視図である。 図5は、本実施の形態の回転切削刃用素材から得られる回転切削刃の斜視図である。
 [本開示が解決しようとする課題]
 ドリルやエンドミルなどの回転切削工具は、その使用に伴って切削刃が消耗するため、切削性能が低下したり所定の使用期間が経過した後などに、少なくとも切削刃を含む切削ヘッドが新しい切削ヘッドに交換される。このとき、切削ヘッドが超硬シャンクに取り外し不可能に取り付けられていると、超硬シャンクは耐用寿命に達していないために交換する必要がない場合であっても、切削刃の交換のタイミングに合わせて超硬シャンクも一緒に交換しなければならない。このような超硬シャンクの交換は、超硬シャンクが比較的高価であるためコスト面から好ましくない。そこで、切削刃が消耗したときに切削ヘッドのみを交換できるように、切削ヘッドを超硬シャンクに取り外し可能に取り付けることが考えられる。
 しかしながら、特許文献1に記載の構造物は、工具担体に取付けるための取付け手段の形成やろう付けに際してさらなる改良の余地がある。
 本開示は、上記実情に鑑みてなされたものであって、シャンクへの取付け性に優れた回転切削刃用素材及びその製造方法を提供することを目的とする。
 [本開示の効果]
 本開示によれば、シャンクへの取付け性に優れた回転切削刃用素材及びその製造方法を提供することができる。
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 [1] 本発明の一態様に係る回転切削刃用素材は、シャンクに取付けられて使用される回転切削刃のための回転切削刃用素材であって、前記回転切削刃用素材は、前記シャンクへの取付け部となる取付け構造形成部と、切削刃となる切削構造形成部と、接合部とを有し、前記切削構造形成部は、前記接合部を介して前記取付け構造形成部に設けられるコア部及び表面部を有し、前記表面部は、前記コア部の表面の少なくとも一部を被覆し、前記取付け構造形成部は、硬質成分と、鉄族元素の1種又は2種以上とを含む硬質材料を含むとともに、前記硬質材料は、ヤング率が350GPa以下であり、前記コア部は、超硬合金材料を含み、前記表面部は、PCD(多結晶ダイヤモンド)又はCBN(立方窒化ホウ素)を含み、前記硬質成分は、W(タングステン)、WC(炭化タングステン)、TiC(炭化チタン)、TiCN(炭窒化チタン)、Al(アルミナ)、並びに、CBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より選択される少なくとも1つであるものである。
 [2] 前記表面部は、前記コア部が外部に露出しないように前記コア部を被覆しているものである。
 [3] 前記回転切削刃用素材は、前記接合部の少なくとも一部は、鉄族元素の1種又は2種以上を含むものである。
 [4] 前記回転切削刃用素材は、前記接合部のうち前記取付け構造形成部と前記表面部との間の接合部は、鉄族元素の1種又は2種以上を含むものである。
 [5] 前記回転切削刃用素材は、前記コア部は、その内部に中空部を有し、前記取付け構造形成部は、前記中空部に配置される内側コア部を有するものである。
 [6] 前記回転切削刃用素材は、前記硬質材料は、ヤング率が300GPa未満であるものである。
 [7] 前記回転切削刃用素材は、前記硬質材料は、伸びが5%以下であるものである。
 [8] 前記回転切削刃用素材は、シャンクに取付けられて使用される回転切削刃のための回転切削刃用素材であって、前記回転切削刃用素材は、前記シャンクへの取付け部となる取付け構造形成部と、切削刃となる切削構造形成部と、接合部とを有し、前記切削構造形成部は、前記接合部を介して前記取付け構造形成部に設けられるコア部及び表面部を有し、前記表面部は、前記コア部の表面の少なくとも一部を被覆し、前記取付け構造形成部は、W(タングステン)、鉄及びニッケルを含む硬質材料を含むとともに、前記硬質材料は、ヤング率が300GPa未満、伸びが5%未満であり、前記コア部は、超硬合金材料を含み、前記表面部は、CBN(立方窒化ホウ素)を含み、前記接合部のうち前記取付け構造形成部と前記表面部との間の接合部は、鉄族元素の1種又は2種以上を含む材料であるものである。
 [9] 本発明の他の態様に係る回転切削刃用素材の製造方法は、前記取付け構造形成部を形成するための第1前駆体と、前記コア部を形成するための第2前駆体と、前記表面部を形成するための第3前駆体とを用いて前記回転切削刃用素材の前駆体を組立てる組立て工程と、前記回転切削刃用素材の前駆体を焼結する焼結工程とを有する。
 [10] 前記回転切削刃用素材の製造方法は、上記組立て工程において、第1前駆体上に、鉄族元素の1種又は2種以上を含む材料を介して、第2前駆体及び第3前駆体を配置するものである。
 [本発明の実施形態の詳細]
 本実施の形態に係る回転切削刃用素材及びその製造方法の具体例を図面に基づいて以下に説明する。図1Aは本実施の形態の一形態を示す回転切削刃用素材の斜視図であり、図1Bは図1AのA-A断面図である。図2は、本実施の形態の他の一形態を示す回転切削刃用素材の断面図である。図3は、本実施の形態のさらに他の一形態を示す回転切削刃用素材の断面図である。図4は、本実施の形態のさらに他の一形態を示す回転切削刃用素材の斜視図である。図5は、本実施の形態の回転切削刃用素材から得られる回転切削刃の斜視図である。
 〔回転切削刃用素材の構造〕
 本実施の形態の回転切削刃用素材1は、シャンク5に取付けられて使用される回転切削刃のための素材であって、図1A及び図1Bに示すように、シャンク5への取付け部2となる取付け構造形成部20と、切削刃となる切削構造形成部30と、接合部40とを有する。そして、図5に示すように、取付け構造形成部20から取付け部2を得、切削構造形成部30から切削部3を得ることにより、回転切削刃用素材1から、切削部3及び取付け部2を有し、取付け部2でシャンク5に取付けられて使用される回転切削刃(切削ヘッド)10を得る。
 (取付け構造形成部)
 取付け構造形成部20は、上記回転切削刃用素材1を加工して得られる回転切削刃10においてシャンク5に取付けるための取付け部2となる(図5)。シャンク5への回転切削刃10の取付けがねじ締結、ピン止め、その他の係合、圧入などの機械的締結で行われる場合は、取付け構造形成部20には、切削加工又は研削加工が施されてねじ溝やピン孔等の所定の形状に加工された取付け部2が形成される。また、シャンク5への回転切削刃10の取付けがろう付けで行われる場合には、取付け構造形成部20をそのまま取付け部2としてもよく、必要に応じて所定の形状に加工して取付け部2としてもよい。
 取付け構造形成部20は、ねじ締結、ピン止め、その他の係合、圧入などの機械的締結のための構造を形成する切削加工や研削加工を施すことができるように、また、シャンク5へのろう付けが行えるように、形状及び大きさが選択される。
 本実施の形態の取付け構造形成部20は、図1Aに示すように、切削構造形成部30との接合面が、切削構造形成部30の取付け構造形成部20との接合面と同形状の円形状である円柱形状を有する。
 なお、図1Aでは円形状の接合面を有する円柱形状の取付け構造形成部20を示したが、円柱形状に限らず、楕円柱形状、三角柱形状や四角柱形状等の多角形柱形状、円錐形状や多角錐形状等の任意の形状であってもよい。図1Bでは、取付け構造形成部20の縦断面(切削構造形成部30との接合面に対して鉛直方向の断面であり、図1AのA-A断面に相当)の形状が四角形であるものを示したが、これに限らず、台形、三角形等の任意の形状であってもよい。また、取付け構造形成部20の接合面についても、図1Bに示すように切削構造形成部30の接合面と同じ形状・サイズであってもよく、例えば図4に示すように切削構造形成部30の接合面と異なる形状・サイズであってもよい。
[規則91に基づく訂正 06.02.2018] 
 取付け構造形成部20の高さ(切削構造形成部30との接合面に対して鉛直方向の長さ)は、機械的締結のための構造を形成する切削加工や研削加工を施すことができる高さ、ろう付けが行える高さを有し、取付け構造形成部20を加工して得られる取付け部2において減振効果が発揮される高さを有していれば特に限定されない。例えば、図1Aに示す形状の取付け構造形成部20では、接合面の直径を5mm~30mm、高さを1mm~20mmとしてもよい。
 取付け構造形成部20は、硬質成分と、鉄族元素から選択される少なくとも1つの元素とを含む硬質材料で形成されている。硬質成分は、W(タングステン)、WC(炭化タングステン)、TiC(炭化チタン)、TiCN(炭窒化チタン)、Al(アルミナ)、並びに、CBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より選択される少なくとも1つである。鉄族元素とは、コバルト、鉄、ニッケルのいずれかである。鉄族元素は、硬質成分を焼結体とするための焼結助剤として働く。
 硬質材料は、上記硬質成分のうちW(タングステン)を含むことが好ましく、上記鉄族元素のうち鉄及びニッケルのうち少なくとも一方を含むことが好ましい。
 硬質材料は、上記硬質成分及び上記鉄族元素以外の成分として、銅などの他の成分を含んでいてもよい。
[規則91に基づく訂正 06.02.2018] 
 硬質材料に含まれる硬質成分の含有量は、硬質材料の総質量に対して、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。硬質材料に含まれる鉄、ニッケル、コバルトの総含有量は、硬質材料の総質量に対して、50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 取付け構造形成部20の硬質成分として、W(タングステン)、WC(炭化タングステン)、TiC(炭化チタン)、TiCN(炭窒化チタン)、Al(アルミナ)、並びに、CBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より選択される少なくとも1つの硬質成分を用いた場合には、超硬合金材料を含むコア部31やPCD(多結晶ダイヤモンド)又はCBN(立方窒化ホウ素)を含む表面部32に比較して、取付け構造形成部20の硬度を小さくすることができるため、取付け構造形成部20に優れた快削性を付与することができる。これにより、ねじ締結、ピン止め、その他の係合のために取付け構造形成部20に施される切削加工または研削加工を行いやすくすることができる。また、上記硬質成分として、金属材料であるW(タングステン)を用いた場合、取付け構造形成部20を取付け部2に加工してシャンク5とろう付けする際に、取付け部2のろう付け濡れ性を向上することができる。
 本発明者らは、取付け構造形成部20が特定の物性を有する硬質材料を含むことにより、取付け構造形成部20から形成される取付け部2が、回転切削刃10がシャンク5に取付けられて使用されるときのビビリや折損を抑制する減振効果をもたらし、回転切削刃10の耐用寿命を向上できることを新たに見出した。
 この理由は次のように推測される。取付け構造形成部20が特定の物性を有する硬質材料を含むことにより、超硬合金材料を含むコア部31やPCD又はCBNを含む表面部32に比較して、取付け構造形成部20の剛性を小さくすることができる。これにより、本実施の形態の回転切削刃用素材を用いて回転切削刃10を得た際に、取付け構造形成部20から形成されるシャンク5への取付け部2も弾性変形しやすくなる。したがって、回転切削刃10を回転切削工具として使用する際に上記取付け部2にかかる負荷を低減することができるため、回転切削刃10の折損を抑制することができる。
 また、回転切削刃10の取付け部2は、回転切削工具として使用する際の振動の影響を受けやすいが、上記のように取付け部2が変形しやすい材料で形成されていると振動を吸収しやすくなるため、ビビリを抑制した減振性(防振性)に優れた回転切削工具を提供することができる。
 このような取付け構造形成部20を形成するためには、硬質材料として、温度25℃におけるヤング率が500GPa未満のものを用いることが好ましく、400GPa未満であることがより好ましく、350GPa以下であることがさらに好ましく、300GPa未満であることが最も好ましい。上記ヤング率は、引張試験にしたがって測定された値である。
 また、後述するように、取付け構造形成部20と切削構造形成部30をなすコア部31及び表面部32とは焼結によって一体化される。本発明者らは、硬質材料を含む取付け構造形成部20、超硬合金材料を含むコア部31、PCD又はCBNを含む表面部32を用いた場合、上記焼結による一体化の際に、取付け構造形成部20とコア部31及び表面部32との間の焼結時の接合性が低下する場合があることを見出した。
 この原因は次のように推測される。すなわち、焼結時の温度変化に伴って取付け構造形成部20、コア部31、表面部32にはそれぞれ変形(熱膨張)が生じる。取付け構造形成部20、コア部31、表面部32の変形の程度は、各部をなす材料の違いに起因して異なり、取付け構造形成部20をなす硬質材料は、コア部31をなす超硬合金材料や表面部32をなすPCD又はCBNを含む材料に比較して変形しやすい。このような焼結における変形の違いは、取付け構造形成部20とコア部31及び表面部32との間の焼結時の接合性の低下を引き起こしやすくなる。
 本発明者らは、上記硬質材料の伸びを調整することにより、焼結時の接合性の低下を抑制することができることを見出した。具体的には、上記硬質材料の伸びは、5%以下であることが好ましく、1%以下であることがより好ましく、0.5%以下であることがさらに好ましい。硬質材料の伸びが5%以下であると、上記硬質材料で形成された取付け構造形成部20の塑性変形能を小さくすることができる。その結果、焼結時の温度変化に伴う取付け構造形成部20の変形が小さくなることにより、焼結時の取付け構造形成部20と切削構造形成部30のコア部31及び表面部32との変形差を小さくすることができる。これにより、取付け構造形成部20と切削構造形成部30との変形差に起因して生じる取付け構造形成部20と表面部32との接合性の低下を抑制することができる。上記伸びは、引張試験にしたがって測定された値である。
 このように、本実施の形態の取付け構造形成部20が、硬質成分と鉄族元素とを含み、特定の物性を有する硬質材料を用いて形成されることにより、シャンク5への取付けのための機械的締結のための切削加工又は研削加工や、シャンク5への取付けのためのろう付けを行いやすいものとすることができる。また、回転切削刃10がシャンク5に取付けられて使用されるときのビビリや折損を抑制する減振効果を得ることができる。そして、硬質材料の伸びを調整することで、焼結時の切削構造形成部30のコア部31及び表面部32との接合性に優れたものとすることもできる。
 硬質材料のヤング率及び伸びは、硬質材料中の硬質成分及び鉄族元素の種類及び含有量によって調整することができる。
 (切削構造形成部)
 切削構造形成部30は、回転切削刃用素材1を加工して得られる回転切削刃10において、切削刃を有する切削部3を形成するように加工される(図5)。本実施の形態の切削構造形成部30は、図1Aに示すように円柱形状を有する。切削構造形成部30をなす円柱の底面の大きさ及び円柱の高さは、切削加工又は研削加工によって切削刃を有する切削部3を形成することができれば特に限定されない。例えば、図1Aに示す形状の切削構造形成部30では、底面の直径を5mm~30mm、高さを5mm~30mmとしてもよい。
 なお、図1Aでは円柱形状の切削構造形成部30を示したが、円柱形状に限らず、楕円柱形状、三角柱形状や四角柱形状等の多角形柱形状、円錐形状や多角錐形状等の任意の形状であってもよい。図1Bでは、切削構造形成部30の縦断面(取付け構造形成部20との接合面に対して鉛直方向の断面であり、図1AのA-A断面に相当)の形状が四角形であるものを示したが、これに限らず、台形、三角形等の任意の形状であってもよい。また、切削構造形成部30の取付け構造形成部20との接合面についても、取付け構造形成部20の接合面と同じ形状・サイズであってもよく、異なる形状・サイズであってもよい。
 本実施の形態の切削構造形成部30は、接合部40を介して取付け構造形成部20に設けられるコア部31及び表面部32を有する。表面部32は、コア部の表面の一部を被覆している。具体的には、図1Bに示すように、コア部31の表面のうち接合部40と接する表面以外の表面の少なくとも一部を覆うように設けられる。そして、表面部32がコア部31を被覆する部分において、後述する焼結によってコア部31と表面部32とは接合された状態となっている。コア部31及び表面部32の大きさは、所望の切削刃を切削加工又は研削加工することができるように選択すればよく、形成する切削刃の大きさや形状、取付け構造形成部20との接合に必要となる大きさを考慮して、コア部31及び表面部32の底面の直径や高さを選択すればよい。例えば、図1Bに示す形状の切削構造形成部30では、コア部31の底面の直径を3mm~27mm、コア部31の高さを5mm~30mmとしてもよい。また、表面部32の底面の外径を5mm~30mm、表面部32の高さを5mm~30mmとしてもよい。
 (コア部)
 本実施の形態のコア部31は、図1A及び図1Bに示すように、切削構造形成部30の中心部に設けられ、中実の円柱形状である。なお、図1A及び図1Bでは中実の円柱状のコア部31を示したが、円柱形状に限らず、楕円柱形状、三角柱形状や四角柱形状等の多角形柱形状、円錐形状、多角錐形状等の任意の形状であってもよく、中実形状であってもよく中空形状であってもよい。
 コア部31に形成される中空部は、コア部31の取付け構造形成部20と接合する側の面から、コア部31の取付け構造形成部20と接合する側とは反対側の面に貫通する形状であってもよく、これらのうちいずれか一方の面のみに貫通する形状であってもよく、いずれの面にも貫通しない形状であってもよい。
 コア部31が中空形状である場合には、図2Aに示すように、コア部31の中空部に取付け構造形成部20をなす硬質材料、コア部31や取付け構造形成部20をなす材料とは異なる鋼等の任意の材料で形成された内側コア部33が設けられていてもよい。内側コア部33の設け方は特に限定されない。例えば、内側コア部33は、図2Aに示すように、コア部31の中空部の形状と同形状のものを上記中空部に、捩じ込み、焼嵌め、ろう付けで固定してもよい。あるいは、図2Bに示すように、内側コア部33と取付け構造形成部20とがねじやピン等の固定具によって固定されるように、内側コア部33の取付け構造形成部20側の先端にねじ溝を設ける、ピン形状とするようにしてもよい。この場合、内側コア部33の他方の先端は、ねじやピンの頭部形状に形成する。
 また、コア部31の中空部に取付け構造形成部20をなす硬質材料と同じ材料の内側コア部33が配置される場合には、図2Cに示すように、コア部31の中空部に設けられる内側コア部33と取付け構造形成部20とを一体的に形成し、内側コア部33をコア部31の中空部に配置するように、取付け構造形成部20と切削構造形成部30とを組立ててもよい。このように、取付け構造形成部20をなす硬質材料と同じ材料で取付け構造形成部20に一体的に内側コア部33が形成されると、得られる回転切削刃10の減振性をより一層向上することができる。
 図1B及び図2A~図2Cでは、コア部31及び内側コア部33の縦断面(取付け構造形成部20との接合面に対して鉛直方向の断面であり、図1AのA-A断面に相当)の形状がどちらも四角形であるものを示したが、両者は同じ形状であっても、異なる形状であってもよく、また、その形状も台形、三角形等の任意の形状であってもよい。
 コア部31は超硬合金材料で形成される。超硬合金材料は、例えば炭化タングステン及びコバルトを含む材料である。コア部31に超硬合金材料を用いることにより、PCD又はCBNで形成された表面部32よりもコア部31の硬度を小さくすることができる。これにより、上記コア部31を有する切削構造形成部30は、全体をPCD又はCBNのみで形成した場合に比較して硬度を小さくすることができるため、切削刃を形成するための切削加工及び研削加工が行いやすくなり、切削刃の加工性に優れた切削構造形成部30を提供することができる。
 また、コア部31として超硬合金材料を用いることにより、後述するようにコア部31の成形体と表面部32の成形体とを組立てて焼結したときに、コア部31とPCD又はCBNを含む表面部32との良好な接合状態を得ることができる。
 コア部31をなす超硬合金材料に含まれる炭化タングステンとコバルトとの含有比率は、特に限定されないが、炭化タングステンとコバルトとの総質量に対して、炭化タングステンの含有量が75質量%以上であることが好ましく、85質量%以上であることがより好ましい。また、炭化タングステンとコバルトとの総質量に対して、炭化タングステンの含有量が98質量%以下であることが好ましく、95質量%以下であることがより好ましい。炭化タングステンとコバルトとの総質量に対して、炭化タングステンの含有量を75質量%以上とすることにより、コア部の強度を確保することができる。また、炭化タングステンとコバルトとの総質量に対して、炭化タングステンの含有量を98質量%以下とすることにより、表面部32と良好に接合することができる。
 また、超硬合金材料には、炭化タングステン及びコバルト以外のその他の成分が含まれていてもよい。その他の成分としては例えばTiC、TaC、Ni等のうちの1種または2種以上を挙げることができる。その他の成分は、超硬合金材料の総質量に対して10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 (表面部)
 本実施の形態の表面部32は、図1A及び図1Bに示すように、中心に前記コア部31を収容する中空部を有する円柱形状を有している。そして、表面部32は、図1Bに示すように、取付け構造形成部20に接合し、円柱形状のコア部31の側面の外周に同心円状に設けられて、コア部31とともに全体として円柱形状の切削構造形成部30を形成している。表面部32はコア部31を被覆する部分において後述する焼結によりコア部31に接合している。
[規則91に基づく訂正 06.02.2018] 
 表面部32は、取付け構造形成部に接合する接合面を有し、コア部31の表面の少なくとも一部を被覆するように設けられる。具体的には、表面部32は、図1B及び図2A~2Cに示すように、コア部31の表面のうち側面部分にのみ設けてもよく、図3に示すように、コア部31の表面が外部に露出しないように、コア部31の側面及び頂面に設けられてもよい。これにより、切削部3の先端部にも表面部32に形成された切削刃を有する回転切削刃10を製造することができる。
 また、表面部32の形状や大きさは、コア部31に接合され、切削構造形成部30を切削加工又は研削加工して切削刃を形成することができれば特に限定されない。したがって、表面部32は、コア部31とは異なる外形をなすように形成して、切削構造形成部30の外形を楕円柱形状、三角柱形状や四角柱形状等の多角形柱形状、円錐形状、多角錐形状等の任意の形状に形成するようにしてもよい。切削刃を形成するために施される切削加工又は研削加工は、表面部32のみに施されるものであっても、表面部32とコア部31との両方に施されるものであってもよい。
 表面部32は、PCD(多結晶ダイヤモンド)又はCBN(立方窒化ホウ素)を含む材料によって形成される。表面部32をPCD又はCBNを含む材料によって形成することにより、耐摩耗性や耐折損性に優れた回転切削工具を形成することができる。表面部32はCBNを含む材料で形成されることが好ましい。
 (接合部)
 接合部40は、取付け構造形成部20と切削構造形成部30との接合面に形成される。接合部40は、少なくとも、取付け構造形成部20の接合面と切削構造形成部30のコア部31と接合する第1接合部と、取付け構造形成部20の接合面と切削構造形成部30の表面部32とを接合する第2接合部とを有する。接合部40の厚さは、必要な接合強度が得られれば特に限定されないが、例えば5μm~200μmとすればよい。
 接合部40を設けることにより、取付け構造形成部20と切削構造形成部30とを強固に接合することができる。これにより、本実施の形態の回転切削刃用素材を回転切削刃10に加工して使用したときに、切削構造形成部30から形成される切削部3と取付け構造形成部20から形成される取付け部2とが分離することを防止できるとともに、切削部3や取付け部2にクラックが生じることを防止し、回転切削刃10として使用するときの強度を確保することができる。回転切削刃10として好適に使用できるようにするためには、接合部40のせん断試験で測定された強度が、25kgf/mm以上であることが好ましく、30kgf/mm以上であることが好ましい。
 接合部40は、取付け構造形成部20と切削構造形成部30とを接合するために、コバルト、鉄、ニッケルからなる鉄族元素の1種又は2種以上を含む材料で形成されるものであってもよい。接合部のうち取付け構造形成部20と表面部32とを接合する第2接合部が鉄族元素の1種又は2種以上を含む材料からなる接合部であることにより、取付け構造形成部20と切削構造形成部30の表面部32との接合性を改善することができる。
 接合部40は、取付け構造形成部20と切削構造形成部30とを焼結することによって形成されるものであってもよい。具体的には、取付け構造形成部20と切削構造形成部30のコア部31とは、取付け構造形成部20に含まれる鉄族元素及びコア部31に含まれる微量のコバルト成分によって焼結時に接合部40を形成することができる。また、切削構造形成部30の表面部32としてPCDを用いた場合にも、焼結時に取付け構造形成部20と表面部32との間に接合部40を形成することができる。ただし、表面部32としてコバルト成分の含有量が少ないCBNを用いた場合に接合性の低下が問題となりやすいため、表面部32がCBNを含む場合には、上記鉄族元素を含む接合部40を設けることが好ましい。これにより、CBNを含む表面部32と取付け構造形成部20とを接合強度30kgf/mm以上で接合することができる。
 接合部40は、鉄族元素の1種又は2種以上を含む材料の接合部及び焼結によって形成される接合部の両者を含むものであってもよく、いずれか一方のみを含むものであってもよい。例えば、取付け構造形成部20とコア部31とを接合する第1接合部を焼結によって形成し、取付け構造形成部20と表面部32とを接合する第2接合部を鉄族元素の1種又は2種以上を含む材料で形成してもよい。
 〔回転切削刃用素材の製造方法〕
 本実施の形態の回転切削刃用素材は、取付け構造形成部20となる第1前駆体、コア部31となる第2前駆体、表面部32となる第3前駆体を形成し、これら第1~第3前駆体を組立てる組立て工程と、組立て工程によって組立てられた回転切削刃用素材の前駆体を焼結する焼結工程を経て製造される。取付け構造形成部20、コア部31及び表面部32の各前駆体は、従来公知の方法にしたがって製造することができ、例えば原料粉末を金型に投入しプレス成形した成形体や、各材料のブランク材等から切削加工や研削加工によって所定の形状にされたブランク加工体を用いることができる。なお、前駆体は焼結により収縮するため、成形体を形成するための金型及びブランク加工体は、前駆体の収縮の程度を考慮した大きさのものを準備することが好ましい。
 このようにして得られた表面部32の前駆体の中空部にコア部31の前駆体を押し込みにより嵌め込んで、切削構造形成部30となる前駆体を形成する。次いで、切削構造形成部30となる前駆体を、コア部31の前駆体及び表面部32の前駆体が取付け構造形成部20の前駆体に接するように配置した状態に組立てて、回転切削刃用素材の前駆体を得、この前駆体を焼結する。この焼結工程により、コア部31と表面部32とが接合した状態となり、コア部31と取付け構造形成部20との間にコバルトを含む接合部40が形成される。また、表面部32をPCDで形成した場合は、表面部32と取付け構造形成部20との間にコバルトを含む接合部40が形成される。
 一方、上記前駆体の組立てに際して、取付け構造形成部20の前駆体上に、ニッケル、鉄、コバルトからなる鉄族元素の1種又は2種以上を含む材料を介して、コア部31の前駆体及び表面部32の前駆体とを配置して焼結を行った場合には、上記鉄族元素を含む接合部40が形成される。鉄族元素を含む材料は、各前駆体間に粉末状で配置しても箔状で配置してもよい。
 焼結工程の条件は、従来公知の条件で行えばよいが、本実施の形態では、取付け構造形成部20、コア部31、表面部32にそれぞれ異なる材料を用いているため、焼結時の変形の程度が異なる。この変形の違いに起因して、取付け構造形成部20、コア部31、表面部32をなす各成形体が互いに接する部分で亀裂が生じる可能性がある。そのため、焼結工程は、圧力4.5GPa~7.5GPa、温度1200~1700℃の条件下で焼結を行った後、温度を維持したまま圧力を3GPa~4GPaまで下げてコア部31の圧縮を解放し、圧力を常圧に、温度を常温にする。これにより、各成形体が互いに接する部分で亀裂が生じることなく各成形体が互いに接する部分で良好な接合性を得ることができる。
 〔用途〕
 本開示の回転切削刃用素材は、図5に示すように、ドリルやエンドミル等の回転切削工具の回転切削刃10として好適に用いることができる。
 以下の実施例及び比較例では、次のように測定及び評価を行った。
 [ヤング率及び伸び]
 試験片として、長さ30mm、幅5mmの短冊形状を用意し、この試験片について、オートグラフ(島津製作所社製)を用い、引張速度0.1mm/minで引張試験を行い、ひずみゲージ法により、ヤング率及び伸びを測定した。
 [振動評価]
 実施例及び比較例で得た回転切削工具について、振動計(KEYENCE社製)を用い、切削速度Vを600m/min、送り量fzを0.1mm、切り込み量Aeを0.2mm、Apを2.5mmとして、ダイス鋼の切削を行い、振動の評価を行った。
 A:振動計で測定した値が小さく(1.5m/s未満)、回転切削工具使用時の減振性が非常に優れていた。
 B:振動計で測定した値が中程度であり(1.5m/s以上3.0m/s未満)、回転切削工具使用時の減振性に優れていた。
 C:振動計で測定した値が大きく(3.0m/s以上)、回転切削工具使用時の減振性が十分ではなかった。
 [折損評価]
 実施例及び比較例で得た回転切削工具を用いて、切削速度Vを600m/min、送り量fzを0.3mm、切り込み量Aeを0.2mm、Apを2.5mmとして、ダイス鋼の切削を行い、回転切削刃(切削ヘッド)の折損の有無を評価した。
[規則91に基づく訂正 06.02.2018] 
 〔実施例1〕
 まず、図1A及び図1Bに示す円柱形状の取付け構造形成部20、円柱形状のコア部31、中空円柱形状の表面部32をそれぞれ焼結によって形成するために、下記の粉末材料を用いて、金型でプレス成形し、取付け構造形成部用成形体、コア部用成形体、表面部用成形体を得た。
・取付け構造形成部用成形体
 材料:タングステンを90質量%、鉄、ニッケル、銅を含む金属結合材を10質量%含む硬質材料(ヤング率:280GPa、伸び0.4%)
・コア部用成形体
 材料:炭化タングステンを94質量%、コバルトを6質量%含む超硬合金材料の粉末
 プレス成形時の圧力:100MPa~200MPa
・表面部用成形体
 粉末材料:CBNと不可避不純物とを含む材料の粉末
 プレス成形時の圧力:100MPa~200MPa
 次に、上記のようにして得られた表面部用成形体の中空部に、コア部用成形体を押し込みにより嵌め込んで、切削構造形成部用成形体を得た。次いで、取付け構造形成部用成形体の接合面に、接合部40を形成するためにニッケル100質量%の薄板を配置し、この薄板上に、コア部用成形体及び表面部用成形体を配置して、上記の各成形体を組立てた。
[規則91に基づく訂正 06.02.2018] 
 上記のようにして組立てられた成形体を、温度1400℃、圧力5GPaの条件下で焼結し、回転切削刃用素材1を得た。得られた回転切削刃用素材1の大きさは直径が8mm、高さが20mmであり、取付け構造形成部20の高さが12mm、コア部31の直径が5mm、表面部32の周方向の厚さが1.5mm、コア部31及び表面部32の高さが5mmであった。
 得られた回転切削刃用素材1の切削構造形成部30に、4枚刃(ネジレ角45°)の切削刃を形成し、取付け構造形成部20にねじ溝を形成し、直径7.5mm、長さ75mmの超硬シャンク5のねじと締結して、回転切削工具を得た。得られた回転切削工具について、回転切削動作時の振動及び折損を評価した。その結果を表1に示す。
[規則91に基づく訂正 06.02.2018] 
 〔比較例1〕
 取付け構造形成部用成形体の材料として、実施例1でコア部成形体用の材料として用いた超硬合金材料(ヤング率:620GPa、伸び0.5%)を用いたこと以外は、実施例1と同様に回転切削刃用素材及び回転切削工具を得た。
 得られた回転切削工具について、回転切削動作時の振動及び折損を評価した。その結果を表1に示す。
 実施例1と比較例1との比較より、取付け構造形成部を硬質材料で形成することにより、回転切削動作時の減振性に優れ、折損を抑制できることがわかった。
[規則91に基づく訂正 06.02.2018] 
 〔実施例2~3〕
 取付け構造形成部用成形体の材料として、下記の材料を用いたこと以外は、実施例1と同様に回転切削刃用素材及び回転切削工具を得た。
・取付け構造形成部用成形体
 (実施例2の材料)
 タングステンを95質量%、鉄、ニッケル、銅を含む金属結合材5質量%含む硬質材料(ヤング率:300GPa、伸び5%)
 (実施例3の材料)
 タングステンを95質量%、鉄、ニッケル、銅を含む金属結合材5質量%含む硬質材料(ヤング率:350GPa、伸び25%)
 得られた回転切削工具について、回転切削動作時の振動及び折損を評価した。その結果を表1に示す。
[規則91に基づく訂正 06.02.2018] 
 実施例1~実施例3の比較より、取付け構造形成部のヤング率が小さいほど、得られる回転切削工具の減振性に優れ、折損を防止できることがわかった。
Figure JPOXMLDOC01-appb-T000001
 以上のように本発明の実施形態および実施例について説明を行ったが、上述の各実施形態および各実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 回転切削刃用素材、2 取付け部、3 切削部、5 シャンク、10 回転切削刃、20 取付け構造形成部、30 切削構造形成部、31 コア部、32 表面部、33 内側コア部、40 接合部。

Claims (10)

  1.  シャンクに取付けられて使用される回転切削刃のための回転切削刃用素材であって、
     前記回転切削刃用素材は、前記シャンクへの取付け部となる取付け構造形成部と、切削刃となる切削構造形成部と、接合部とを有し、
     前記切削構造形成部は、前記接合部を介して前記取付け構造形成部に設けられるコア部及び表面部を有し、
     前記表面部は、前記コア部の表面の少なくとも一部を被覆し、
     前記取付け構造形成部は、硬質成分と、鉄族元素の1種又は2種以上とを含む硬質材料を含むとともに、前記硬質材料は、ヤング率が350GPa以下であり、
     前記コア部は、超硬合金材料を含み、
     前記表面部は、PCD(多結晶ダイヤモンド)又はCBN(立方窒化ホウ素)を含み、
     前記硬質成分は、W(タングステン)、WC(炭化タングステン)、TiC(炭化チタン)、TiCN(炭窒化チタン)、Al(アルミナ)、並びに、CBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より選択される少なくとも1つである、回転切削刃用素材。
  2.  前記表面部は、前記コア部が外部に露出しないように前記コア部を被覆している、請求項1に記載の回転切削刃用素材。
  3.  前記接合部の少なくとも一部は、鉄族元素の1種又は2種以上を含む材料である、請求項1又は請求項2に記載の回転切削刃用素材。
  4.  前記接合部のうち前記取付け構造形成部と前記表面部との間の接合部は、鉄族元素の1種又は2種以上を含む、請求項1~請求項3のいずれか1項に記載の回転切削刃用素材。
  5.  前記コア部は、その内部に中空部を有し、
     前記取付け構造形成部は、前記中空部に配置される内側コア部を有する、請求項1~請求項4のいずれか1項に記載の回転切削刃用素材。
  6.  前記硬質材料は、ヤング率が300GPa未満である、請求項1~請求項5のいずれか1項に記載の回転切削刃用素材。
  7.  前記硬質材料は、伸びが5%以下である、請求項1~請求項6のいずれか1項に記載の回転切削刃用素材。
  8.  シャンクに取付けられて使用される回転切削刃のための回転切削刃用素材であって、
     前記回転切削刃用素材は、前記シャンクへの取付け部となる取付け構造形成部と、切削刃となる切削構造形成部と、接合部とを有し、
     前記切削構造形成部は、前記接合部を介して前記取付け構造形成部に設けられるコア部及び表面部を有し、
     前記表面部は、前記コア部の表面の少なくとも一部を被覆し、
     前記取付け構造形成部は、W(タングステン)、鉄及びニッケルを含む硬質材料を含むとともに、前記硬質材料は、ヤング率が300GPa未満、伸びが5%未満であり、
     前記コア部は、超硬合金材料を含み、
     前記表面部は、CBN(立方窒化ホウ素)を含み、
     前記接合部のうち前記取付け構造形成部と前記表面部との間の接合部は、鉄族元素の1種又は2種以上を含む材料である回転切削刃用素材。
  9.  請求項1~請求項8のいずれか1項に記載の回転切削刃用素材の製造方法であって、
     前記取付け構造形成部を形成するための第1前駆体と、前記コア部を形成するための第2前駆体と、前記表面部を形成するための第3前駆体とを用いて前記回転切削刃用素材の前駆体を組立てる組立て工程と、
     前記回転切削刃用素材の前駆体を焼結する焼結工程とを有する回転切削刃用素材の製造方法。
  10.  上記組立て工程において、第1前駆体上に、鉄族元素の1種又は2種以上を含む材料を介して、第2前駆体及び第3前駆体を配置する、請求項9に記載の回転切削刃用素材の製造方法。
PCT/JP2017/029101 2016-10-07 2017-08-10 回転切削刃用素材及びその製造方法 WO2018066231A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018506631A JP6614541B2 (ja) 2016-10-07 2017-08-10 回転切削刃用素材及びその製造方法
CN201780004086.7A CN108472750B (zh) 2016-10-07 2017-08-10 旋转切削刃材料及其制造方法
EP17858071.8A EP3363571B1 (en) 2016-10-07 2017-08-10 Rotary cutting blade material and method for manufacturing the same
US15/776,138 US10702926B2 (en) 2016-10-07 2017-08-10 Rotary cutting blade material and method for manufacturing the same
KR1020187014211A KR102094093B1 (ko) 2016-10-07 2017-08-10 회전 절삭날용 소재 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016199278 2016-10-07
JP2016-199278 2016-10-07

Publications (2)

Publication Number Publication Date
WO2018066231A1 WO2018066231A1 (ja) 2018-04-12
WO2018066231A9 true WO2018066231A9 (ja) 2018-07-05

Family

ID=61830869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029101 WO2018066231A1 (ja) 2016-10-07 2017-08-10 回転切削刃用素材及びその製造方法

Country Status (6)

Country Link
US (1) US10702926B2 (ja)
EP (1) EP3363571B1 (ja)
JP (1) JP6614541B2 (ja)
KR (1) KR102094093B1 (ja)
CN (1) CN108472750B (ja)
WO (1) WO2018066231A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3542934B1 (en) * 2016-11-15 2024-04-24 Sumitomo Electric Hardmetal Corp. Reamer
JP7313599B2 (ja) * 2019-03-27 2023-07-25 三菱マテリアル株式会社 硬質焼結体用の基材、硬質焼結体および切削工具
CN111485155A (zh) * 2020-06-09 2020-08-04 齐鲁工业大学 添加氧化铝包覆立方氮化硼复合粉体的(Ti,W)C基金属陶瓷刀具材料及其制备方法
EP3984698A1 (fr) * 2020-10-15 2022-04-20 ETA SA Manufacture Horlogère Suisse Outil de coupe

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3085453A (en) * 1960-05-27 1963-04-16 Carl W Mossberg Method of preforming a coolant type drill
CA1216158A (en) * 1981-11-09 1987-01-06 Akio Hara Composite compact component and a process for the production of the same
US4627503A (en) * 1983-08-12 1986-12-09 Megadiamond Industries, Inc. Multiple layer polycrystalline diamond compact
DE3575092D1 (de) 1984-06-12 1990-02-08 Sumitomo Electric Industries Stab aus verbundmaterialien und verfahren zu seiner herstellung.
CA1313762C (en) * 1985-11-19 1993-02-23 Sumitomo Electric Industries, Ltd. Hard sintered compact for a tool
US5020780A (en) * 1990-04-04 1991-06-04 Woodings Industrial Corporation Quick connect-disconnect coupling for blast furnace tap hole drill bit
US5070748A (en) * 1990-05-24 1991-12-10 Smith International, Inc. Diamond fluted end mill
US5443337A (en) * 1993-07-02 1995-08-22 Katayama; Ichiro Sintered diamond drill bits and method of making
US5685671A (en) * 1993-11-01 1997-11-11 Smith International, Inc. Diamond or CBN fluted center cutting end mill
SE509207C2 (sv) * 1995-05-04 1998-12-14 Seco Tools Ab Verktyg för skärande bearbetning
SE511429C2 (sv) 1996-09-13 1999-09-27 Seco Tools Ab Verktyg, skärdel, verktygskropp för skärande bearbetning samt metod för montering av skärdel till verktygskropp
SE509931C2 (sv) * 1996-09-27 1999-03-22 Seco Tools Ab Pinnfräs, pinnfräshuvud samt metod för montering av ett lösbart pinnfräshuvud på ett skaft till en pinnfräs
SE9903685L (sv) * 1999-10-14 2001-04-15 Seco Tools Ab Verktyg för roterande skärande bearbetning, verktygsspets samt metod för tillverkning av verktygsspetsen
US6511265B1 (en) * 1999-12-14 2003-01-28 Ati Properties, Inc. Composite rotary tool and tool fabrication method
JP4084070B2 (ja) * 2002-04-09 2008-04-30 株式会社リード 多層構造ブレードの製造方法
US20050133277A1 (en) * 2003-08-28 2005-06-23 Diamicron, Inc. Superhard mill cutters and related methods
DE202005021817U1 (de) * 2005-10-04 2010-11-04 Gühring Ohg Spanabtragendes Werkzeug
DE102006000251A1 (de) * 2006-05-30 2007-12-06 Hilti Ag Hartstoffkopf und Drehschlagbohrer
US8272816B2 (en) * 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
GB201010061D0 (en) 2010-06-16 2010-07-21 Element Six Ltd Rotary machine tools
CN102390087A (zh) * 2011-07-12 2012-03-28 山东日能超硬材料有限公司 具有高表面耐磨性的超硬材料刀头及其制造方法
GB201206965D0 (en) 2012-04-20 2012-06-06 Element Six Abrasives Sa Super-hard constructions and mathod for making same
CN202741801U (zh) * 2012-09-04 2013-02-20 许文焕 一种数控机床的切削刀具
GB2539746A (en) 2015-02-28 2016-12-28 Element Six (Uk) Ltd Superhard constructions & methods of making same

Also Published As

Publication number Publication date
US20180345380A1 (en) 2018-12-06
KR20180071335A (ko) 2018-06-27
JPWO2018066231A1 (ja) 2018-10-04
US10702926B2 (en) 2020-07-07
WO2018066231A1 (ja) 2018-04-12
JP6614541B2 (ja) 2019-12-04
EP3363571A1 (en) 2018-08-22
EP3363571A4 (en) 2019-09-11
EP3363571B1 (en) 2021-07-21
CN108472750B (zh) 2020-09-22
KR102094093B1 (ko) 2020-03-26
CN108472750A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
WO2018092187A1 (ja) 切削工具
JP6614541B2 (ja) 回転切削刃用素材及びその製造方法
US9393629B2 (en) Cutter elements, rotary machine tools comprising same and method for making same
US7407348B2 (en) Indexable cutting inserts and methods for producing the same
US9975185B2 (en) Twist drill tips, precursor constructions for use in making same, and methods for making and using same
US8667866B2 (en) Machining tool blank and method of forming
KR102188626B1 (ko) 절삭 공구
JP4270515B2 (ja) 伸線ダイス用素材及び伸線ダイス
JP5656076B2 (ja) cBNインサート
JP2004268202A (ja) 小径エンドミル
US9421611B2 (en) Composite cutting insert and method of making same
JP4960126B2 (ja) ロウ付けcBN工具
JP5743868B2 (ja) 切削工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018506631

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187014211

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE