WO2018066106A1 - Soldering device - Google Patents

Soldering device Download PDF

Info

Publication number
WO2018066106A1
WO2018066106A1 PCT/JP2016/079780 JP2016079780W WO2018066106A1 WO 2018066106 A1 WO2018066106 A1 WO 2018066106A1 JP 2016079780 W JP2016079780 W JP 2016079780W WO 2018066106 A1 WO2018066106 A1 WO 2018066106A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
jet
molten solder
temperature sensor
solder
Prior art date
Application number
PCT/JP2016/079780
Other languages
French (fr)
Japanese (ja)
Inventor
和也 出蔵
覚 大坪
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2016/079780 priority Critical patent/WO2018066106A1/en
Priority to JP2018543540A priority patent/JP6759350B2/en
Publication of WO2018066106A1 publication Critical patent/WO2018066106A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the jet portion is relatively small, and it is difficult to secure a space for arranging the temperature sensor.
  • a temperature sensor is arranged inside the jet part, it is easily deteriorated because it is always immersed in molten solder having a very high temperature. For this reason, it is necessary to employ
  • the measurement part with a large wire diameter has poor thermal conductivity, it is difficult to follow the temperature change and it is difficult to measure the temperature with good sensing.
  • a soldering apparatus includes a storage unit that stores molten solder, a jet unit that includes a jet unit that jets molten solder pumped up from the storage unit, and the jet unit.
  • a temperature sensor disposed outside the device; a moving device that moves at least one of the jet device and the temperature sensor; and a control device, wherein the control device jets from the jet section of the jet device. It has a measuring part which controls operation of the above-mentioned movement device so that the above-mentioned temperature sensor contacts with the molten solder and measures the temperature of the molten solder jetted from the jet part.
  • the soldering apparatus described in the present invention it is possible to overcome various problems caused by the conventional soldering apparatus and to suitably measure the temperature of the molten solder jetted from the jet section. .
  • the apparatus main body 20 includes a frame portion 40 and a beam portion 42 that is overlaid on the frame portion 40.
  • the substrate conveyance holding device 22 is disposed in the center of the frame portion 40 in the front-rear direction, and includes a conveyance device 50 and a clamp device 52.
  • the conveyance device 50 is a device that conveys the circuit substrate 12
  • the clamp device 52 is a device that holds the circuit substrate 12.
  • the base material transport and holding device 22 transports the circuit base material 12 and holds the circuit base material 12 fixedly at a predetermined position.
  • the conveyance direction of the circuit substrate 12 is referred to as an X direction
  • a horizontal direction perpendicular to the direction is referred to as a Y direction
  • a vertical direction is referred to as a Z direction. That is, the width direction of the component mounting machine 10 is the X direction, and the front-rear direction is the Y direction.
  • the component mounting device 24 is disposed in the beam portion 42 and includes two work heads 60 and 62 and a work head moving device 64. As shown in FIG. 2, a suction nozzle 66 is provided at the lower end surface of each work head 60, 62, and the parts are sucked and held by the suction nozzle 66.
  • the work head moving device 64 includes an X direction moving device 68, a Y direction moving device 70, and a Z direction moving device 72. Then, the two working heads 60 and 62 are integrally moved to arbitrary positions on the frame portion 40 by the X-direction moving device 68 and the Y-direction moving device 70.
  • the mark camera 26 is attached to the slider 74 so as to face downward, and is moved together with the work head 60 in the X direction, the Y direction, and the Z direction. As a result, the mark camera 26 images an arbitrary position on the frame unit 40. As shown in FIG. 1, the parts camera 28 is disposed between the base material conveyance holding device 22 and the component supply device 30 on the frame portion 40 so as to face upward. Thereby, the parts camera 28 images the parts gripped by the suction nozzles 66 of the work heads 60 and 62.
  • the component supply device 30 is disposed at one end of the frame portion 40 in the front-rear direction.
  • the component supply device 30 includes a tray-type component supply device 78 and a feeder-type component supply device (see FIG. 6) 80.
  • the tray-type component supply device 78 is a device that supplies components placed on the tray.
  • the feeder-type component supply device 80 is a device that supplies components by a tape feeder or a stick feeder (not shown).
  • the bulk component supply device 32 is disposed at the other end portion of the frame portion 40 in the front-rear direction.
  • the separated component supply device 32 is a device for aligning a plurality of components scattered in a separated state and supplying the components in an aligned state. That is, it is an apparatus that aligns a plurality of components in an arbitrary posture into a predetermined posture and supplies the components in a predetermined posture.
  • a display device 34 is disposed at the end of the bulk component supply device 32. The display device 34 displays information related to the component mounting operation by the component mounter 10.
  • the soldering device 36 is disposed below the conveying device 50, and includes a jet device 100 and a jet device moving device 102 as shown in FIG.
  • the jet device 100 includes a soldering iron 106 and a solder jet part 108.
  • the solder iron 106 has a generally rectangular parallelepiped shape and stores molten solder therein, and includes a heater (see FIG. 6) 110 and a first temperature sensor 112.
  • the heater 110 is for heating the molten solder stored in the soldering iron 106 to an arbitrary temperature.
  • the first temperature sensor 112 is inserted into the soldering iron 106 and measures the temperature of the molten solder stored in the soldering iron 106.
  • the solder jet part 108 is disposed on the upper surface of the soldering iron 106, and includes a cover 114, a partition cylinder 116, and a jet nozzle 118 as shown in FIG.
  • the cover 114 has a generally cylindrical shape, and the upper end of the cover 114 is tapered so that the diameter decreases toward the top. Further, the outer diameter of the partition tube 116 is smaller than the inner diameter of the cover 114 and is erected inside the cover 114. Note that the upper end of the partition tube 116 is positioned below the upper end of the cover 114. Further, the outer diameter of the jet nozzle 118 is made smaller than the inner diameter of the partition tube 116 and is erected inside the partition tube 116. The upper end of the jet nozzle 118 is positioned above the upper end of the cover 114 and is exposed from the upper end of the cover 114.
  • the jet device 100 has a gas supply device (see FIG. 6) 122, and nitrogen is supplied between the inner peripheral surface of the cover 114 and the outer peripheral surface of the partition tube 116 by the gas supply device 122.
  • the jet device moving device 102 includes a slider 130, an X direction moving device 132, a Y direction moving device 134, and a Z direction moving device 136.
  • the slider 130 is generally plate-shaped, and the jet device 100 is disposed on the upper surface of the slider 130.
  • the X-direction moving device 132 moves the slider 130 in the conveying direction of the circuit substrate 12 by the conveying device 50, that is, the X direction
  • the Y-direction moving device 134 moves the slider 130 in the Y direction.
  • the Z direction moving device 136 moves the slider 130 in the Z direction, that is, in the up and down direction. Accordingly, the jet device 100 moves to an arbitrary position below the transport device 50 by the operation of the jet device moving device 102.
  • the jet device moving device 102 moves the jet device 100 between a work area for performing a soldering operation and a supply area for supplying molten solder to the soldering iron 106.
  • solder extends downward from the lower end of the solder introduction tube 154.
  • a supply hole 156 is formed on the upper surface of the solder rod 106, and solder extending from the lower end of the solder introduction tube 154 is inserted into the supply hole 156.
  • maintenance part is sent out by the action
  • solder is inserted into the solder rod 106 from the solder introduction tube 154 through the supply hole 156.
  • the molten solder is supplied to the solder rod 106 by melting the solder inside the solder rod 106.
  • a second temperature sensor 162 is also disposed on the bracket 150.
  • the second temperature sensor 162 is fixed to the bracket 150 so as to extend in the vertical direction with the linear measurement unit 166 facing downward.
  • the second temperature sensor 162 is located above the jet nozzle 118 of the solder jet section 108 when the jet device 100 is located in the replenishment area.
  • the lower end part of the 2nd temperature sensor 162 contacts the molten solder jetted from the front-end
  • the wire diameter of the measuring unit 166 of the second temperature sensor 162 is relatively small, and in this embodiment, the wire diameter is about 1 mm. For this reason, the second temperature sensor 162 has good thermal conductivity and can measure temperature with good sensing.
  • the control device 38 includes a controller 170, a plurality of drive circuits 172, an image processing device 176, and a control circuit 178.
  • the plurality of drive circuits 172 include the transport device 50, the clamp device 52, the work heads 60 and 62, the work head moving device 64, the tray-type component supply device 78, the feeder-type component supply device 80, the bulk component supply device 32, and the heater 110
  • the pump 120, the gas supply device 122, and the jet device moving device 102 are connected.
  • the controller 170 includes a CPU, a ROM, a RAM, and the like, mainly a computer, and is connected to a plurality of drive circuits 172.
  • the component mounting operation is performed on the circuit substrate 12 held by the substrate conveyance holding device 22 with the above-described configuration.
  • various components can be mounted on the circuit substrate 12, but a component having a lead (hereinafter, may be abbreviated as “lead component”) is used as the circuit substrate 12. The case of mounting will be described below.
  • the circuit substrate 12 is transported to the working position, and is fixedly held by the clamp device 52 at that position.
  • the mark camera 26 moves above the circuit substrate 12 and images the circuit substrate 12.
  • the component supply device 30 or the bulk component supply device 32 supplies lead components at a predetermined supply position.
  • one of the work heads 60 and 62 moves above the component supply position, and holds the component by the suction nozzle 66.
  • the lead component 180 includes a component main body 182 and two leads 184 extending from the bottom surface of the component main body 182. The lead component 180 is sucked and held on the surface opposite to the bottom surface of the component main body 182 by the suction nozzle 66.
  • molten solder jetted from jet nozzle As described above, in the component mounting machine 10, the molten solder is jetted by the jet device 100, so that the solder is applied to the leads 144 and the lead components 140 are soldered to the circuit substrate 12. At this time, in the jet device 100, temperature management of the molten solder is performed. Specifically, for example, in the jet device 100, the temperature of the molten solder stored in the soldering iron 106 is heated by the heater 110 so as to be a first set heating temperature, for example, 250 ° C. The temperature of the molten solder stored in the soldering iron 106 is measured by the first temperature sensor 112, and the operation of the heater 110 is controlled based on the measured temperature.
  • a first set heating temperature for example, 250 ° C.
  • the temperature of the molten solder stored in the soldering iron 106 is a predetermined temperature, that is, 250 ° C.
  • the temperature of the molten solder jetted from the jet nozzle 118 is applied to the soldering iron 106. It tends to be higher than the temperature of the molten solder stored. This is because the capacity of the jet nozzle 118 is considerably smaller than that of the solder iron 106, and the heat capacity of the molten solder in the jet nozzle 118 is smaller than the heat capacity of the molten solder in the solder iron 106.
  • an arbitrary jet nozzle 118 among a plurality of jet nozzles 118 having different nozzle diameters can be mounted. For this reason, the temperature of the molten solder jetted from the jet nozzle 118 varies depending on the nozzle diameter of the jet nozzle 118 to be mounted. This is because the plurality of jet nozzles 118 having different nozzle diameters have different capacities for each jet nozzle 118, and the heat capacities of the molten solder for each jet nozzle 118 are different.
  • the temperature of the molten solder stored in the soldering iron 106 is different from the temperature of the molten solder jetted from the jet nozzle 118. Further, the temperature of the molten solder jetted from the jet nozzle 118 varies depending on the nozzle diameter of the jet nozzle 118 attached to the solder jet section 108. However, since the molten solder jetted from the jet nozzle 118 is applied to the lead 144, it is necessary to appropriately control the temperature of the molten solder jetted from the jet nozzle 118.
  • the jet device 100 is moved to the replenishment area at a predetermined timing. Then, molten solder is jetted from the jet nozzle 118, and the jet device 100 is raised in this state. Thereby, the molten solder jetted from the jet nozzle 118 contacts the measuring unit 166 of the second temperature sensor 162, and the temperature of the molten solder jetted from the jet nozzle 118 is measured by the second temperature sensor 162.
  • the predetermined timing include, for example, before the start of production of the circuit base 12, every time a set number of circuit bases 12 are produced, every set time, and the like. The temperature of the molten solder jetted from the nozzle 118 is measured.
  • the controller 170 stores a set temperature, and whether the temperature of the molten solder measured by the second temperature sensor 162 (hereinafter sometimes referred to as “jet solder measurement temperature”) is lower than the set temperature. The controller 170 determines whether or not. And when jet solder measurement temperature is more than preset temperature, since suitable soldering can be ensured, jet device 100 is moved to a work area, and soldering work is performed. On the other hand, when the jet solder measurement temperature is lower than the set temperature, there is a possibility that the molten solder applied to the lead 144 may extend in the shape of an ice column, so that suitable soldering cannot be ensured.
  • the jet solder measurement temperature may be lower than the set temperature.
  • the heating temperature by the heater 110 is raised to the second set heating temperature and the jet solder measurement temperature becomes equal to or higher than the set temperature, the soldering operation is performed, and then the first soldering is performed again at a predetermined timing.
  • the measured temperature that is, the jet solder measurement temperature may be lower than the set temperature.
  • the reason why the jet solder measurement temperature is lower than the set temperature is that there are many impurities such as flux in the jet apparatus 100, particularly in the inner wall of the solder layer. It is considered that the heating efficiency by the heater 110 is reduced due to adhesion. For this reason, when the jet solder measurement temperature when the heating temperature by the heater 110 is the second set heating temperature is lower than the set temperature, a screen prompting the cleaning of the soldering iron 106 is displayed on the display device 34. The Then, according to the notification on the display screen, the worker cleans the jet device 100 and removes impurities adhering to the inside of the jet device 100, whereby the heating efficiency of the heater 110 is restored.
  • the heating temperature by the heater 110 is changed to the first set heating temperature, and the measurement temperature of the molten solder by the second temperature sensor 162, that is, the jet solder measurement temperature is equal to or higher than the set temperature. It is assumed that Thereby, it becomes possible to perform subsequent soldering work appropriately.
  • the second temperature sensor 162 is disposed outside the jet device 100, and the temperature of the molten solder is measured by the second temperature sensor 162. It is conceivable that a temperature sensor is disposed inside 118 and the temperature of the molten solder is measured by the temperature sensor. However, the jet nozzle 118 is relatively small, and it is difficult to secure a space for installing the temperature sensor. In addition, when a temperature sensor is disposed inside the jet nozzle 118, it is likely to deteriorate because it is always immersed in molten solder having a very high temperature.
  • the temperature sensor which has a measurement part with a big wire diameter, specifically, a measurement part with a wire diameter of 3 mm or more.
  • the measurement part with a large wire diameter has poor thermal conductivity, it is difficult to follow the temperature change and it is difficult to measure the temperature with good sensing.
  • a temperature sensor having a measuring portion with a large wire diameter it is necessary to replace it in about one year because it deteriorates due to high-temperature molten solder.
  • the second temperature sensor 162 is disposed outside the jet device 100, and is immersed in the molten solder only when the temperature of the molten solder is measured. For this reason, it is possible to easily secure an installation space for the temperature sensor. Further, the degree of deterioration due to the high-temperature molten solder is very low when compared with a temperature sensor that is disposed inside the jet nozzle 118 and is always immersed in the high-temperature molten solder. For this reason, it becomes possible to employ a temperature sensor having a measuring part with a small wire diameter, and it becomes possible to measure temperature with good sensing. Also, the replacement frequency of the temperature sensor is reduced.
  • the controller 170 of the control apparatus 38 has the measurement part 190, the heating temperature change part 192, and the notification part 194 as shown in FIG.
  • the measuring unit 190 is a functional unit for measuring the temperature of the molten solder jetted from the jet nozzle 118 by the second temperature sensor 162.
  • the heating temperature changing unit 192 sets the heating temperature by the heater 110 to the second set heating temperature when the jet solder measurement temperature when the heating temperature by the heater 110 is set to the first set heating temperature is lower than the set temperature. It is a functional part for changing.
  • the notification unit 194 causes the display device 34 to display a screen for prompting cleaning of the jet device 100 when the jet solder measurement temperature when the heating temperature by the heater 110 is the second preset heating temperature is lower than the set temperature. It is a functional part for.
  • the soldering device 36 is an example of a soldering device.
  • the control device 38 is an example of a control device.
  • the jet device 100 is an example of a jet device.
  • the jet device moving device 102 is an example of a moving device.
  • the soldering iron 106 is an example of a storage part.
  • the heater 110 is an example of a heater.
  • the jet nozzle 118 is an example of a jet part.
  • the second temperature sensor 162 is an example of a temperature sensor.
  • the measurement unit 190 is an example of a measurement unit.
  • the heating temperature changing unit 192 is an example of a heating temperature changing unit.
  • the notification unit 194 is an example of a notification unit.
  • this invention is not limited to the said Example, It is possible to implement in the various aspect which gave various change and improvement based on the knowledge of those skilled in the art. Specifically, for example, when the jet solder measurement temperature when the heating temperature by the heater 110 is the first set heating temperature is lower than the set temperature, a screen for prompting cleaning of the jet device 100 is displayed on the display device 34. It may be displayed. In other words, when the jet solder measurement temperature is lower than the set temperature, cleaning of the jet device 100 may be promoted without increasing the heating temperature by the heater 110.
  • the cleaning of the jet device 100 is notified by displaying a screen.
  • the cleaning of the jet device 100 may be notified by sound, lighting of a lamp, or the like.
  • the molten solder spouted from the jet nozzle 118 is made to contact the 2nd temperature sensor 162 by moving the jet apparatus 100, by moving the 2nd temperature sensor 162, The molten solder jetted from the jet nozzle 118 may be brought into contact with the second temperature sensor 162. Moreover, the molten solder jetted from the jet nozzle 118 may be brought into contact with the second temperature sensor 162 by moving both the jet device 100 and the second temperature sensor 162.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Molten Solder (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

In this soldering device, a second temperature sensor 162 is arranged outside a jetting device 100. Further, the jetting device is moved in such a way that the second temperature sensor comes into contact with molten solder being jetted from a jet nozzle 118, and the temperature of the molten solder being jetted from the jet nozzle is measured. By this means it is possible for an arrangement space for the temperature sensor to be easily secured. Further, the extent of degradation of the temperature sensor resulting from high-temperature molten solder is much lower than with a temperature sensor that is arranged inside the jet nozzle and is constantly immersed in high-temperature molten solder. It is thus possible to adopt a temperature sensor including a measuring portion having a small wire diameter, and it is possible for the temperature to be measured with satisfactory sensing. Further, the frequency with which the temperature sensor is replaced can also be reduced.

Description

はんだ付け装置Soldering equipment
 本発明は、溶融はんだを噴流する噴流部を有する噴流装置によって、はんだ付けを行うはんだ付け装置に関するものである。 The present invention relates to a soldering apparatus for performing soldering by a jet apparatus having a jet part for jetting molten solder.
 はんだ付け装置には、溶融はんだを噴流する噴流部を有する噴流装置によってはんだ付けを行う装置がある。このような装置では、好適なはんだ付けを担保するべく、噴流部から噴流される溶融はんだの温度管理を行うことが好ましい。下記特許文献には、噴流部の内部に温度センサを配設し、噴流部から噴流される溶融はんだの温度を測定する技術が記載されている。 There are soldering apparatuses that perform soldering using a jet apparatus having a jet section for jetting molten solder. In such an apparatus, it is preferable to control the temperature of the molten solder jetted from the jet section in order to ensure suitable soldering. The following patent document describes a technique in which a temperature sensor is disposed inside a jet part and the temperature of molten solder jetted from the jet part is measured.
特開平11-123540号公報Japanese Patent Laid-Open No. 11-123540
 上記特許文献に記載の技術によれば、噴流部から噴流される溶融はんだの温度を測定することが可能となる。しかしながら、噴流部は比較的小さく、温度センサの配設スペースを確保することは困難である。また、噴流部の内部に温度センサが配設された場合には、非常に温度の高い溶融はんだに、常時、浸されるため、劣化し易い。このため、線径の大きい測定部を有する温度センサを採用する必要がある。ただし、線径の大きい測定部は、熱伝導率が悪いため、温度変化に追従し難く、センシング良く温度を測定することが困難である。さらに言えば、線径の大きい測定部を有する温度センサを採用した場合であっても、高温の溶融はんだにより劣化するため、1年程度で交換する必要がある。このように、噴流部から噴流される溶融はんだの温度を測定する技術には、種々の問題が存在する。このため、それら種々の問題を克服することで、噴流部から噴流される溶融はんだの温度を好適に測定することが可能となる。本発明は、そのような実情に鑑みてなされたものであり、本発明の課題は、噴流部から噴流される溶融はんだの温度を好適に測定することである。 According to the technique described in the above-mentioned patent document, it is possible to measure the temperature of the molten solder jetted from the jet part. However, the jet portion is relatively small, and it is difficult to secure a space for arranging the temperature sensor. Further, when a temperature sensor is arranged inside the jet part, it is easily deteriorated because it is always immersed in molten solder having a very high temperature. For this reason, it is necessary to employ | adopt the temperature sensor which has a measurement part with a big wire diameter. However, since the measurement part with a large wire diameter has poor thermal conductivity, it is difficult to follow the temperature change and it is difficult to measure the temperature with good sensing. Furthermore, even when a temperature sensor having a measuring portion with a large wire diameter is employed, it is necessary to replace it in about one year because it deteriorates due to high-temperature molten solder. As described above, there are various problems in the technique for measuring the temperature of the molten solder jetted from the jet part. For this reason, it becomes possible to measure suitably the temperature of the molten solder jetted from a jet part by overcoming these various problems. This invention is made | formed in view of such a situation, and the subject of this invention is measuring the temperature of the molten solder jetted from a jet part suitably.
 上記課題を解決するために、本発明に記載のはんだ付け装置は、溶融はんだを貯留する貯留部と、前記貯留部から汲み上げられた溶融はんだを噴流する噴流部とを有する噴流装置と、前記噴流装置の外部に配設された温度センサと、前記噴流装置と前記温度センサとの少なくとも一方を移動させる移動装置と、制御装置とを備え、前記制御装置が、前記噴流装置の前記噴流部から噴流される溶融はんだに前記温度センサが接触するように、前記移動装置の作動を制御し、前記噴流部から噴流される溶融はんだの温度を測定する測定部を有することを特徴とする。 In order to solve the above-described problems, a soldering apparatus according to the present invention includes a storage unit that stores molten solder, a jet unit that includes a jet unit that jets molten solder pumped up from the storage unit, and the jet unit. A temperature sensor disposed outside the device; a moving device that moves at least one of the jet device and the temperature sensor; and a control device, wherein the control device jets from the jet section of the jet device. It has a measuring part which controls operation of the above-mentioned movement device so that the above-mentioned temperature sensor contacts with the molten solder and measures the temperature of the molten solder jetted from the jet part.
 本発明に記載のはんだ付け装置では、温度センサが噴流装置の外部に配設されている。そして、噴流部から噴流される溶融はんだに温度センサが接触するように、噴流装置と温度センサとの少なくとも一方が移動され、噴流部から噴流される溶融はんだの温度が測定される。これにより、温度センサの配設スペースを容易に確保することが可能となる。また、高温の溶融はんだによる温度センサの劣化の程度は、噴流部の内部に配設され、高温の溶融はんだに常時、浸される温度センサと比較すれば、非常に低い。このため、線径の小さな測定部を有する温度センサを採用することが可能となり、センシング良く温度を測定することが可能となる。また、温度センサの交換頻度も少なくすることが可能となる。このように、本発明に記載のはんだ付け装置によれば、従来のはんだ付け装置による種々の問題点を克服し、噴流部から噴流される溶融はんだの温度を好適に測定することが可能となる。 In the soldering apparatus according to the present invention, the temperature sensor is disposed outside the jet apparatus. Then, at least one of the jet device and the temperature sensor is moved so that the temperature sensor contacts the molten solder jetted from the jet part, and the temperature of the molten solder jetted from the jet part is measured. Thereby, it is possible to easily secure a space for arranging the temperature sensor. Further, the degree of deterioration of the temperature sensor due to the high-temperature molten solder is very low as compared with a temperature sensor that is disposed inside the jet part and is always immersed in the high-temperature molten solder. For this reason, it becomes possible to employ a temperature sensor having a measuring part with a small wire diameter, and it becomes possible to measure temperature with good sensing. Further, the replacement frequency of the temperature sensor can be reduced. As described above, according to the soldering apparatus described in the present invention, it is possible to overcome various problems caused by the conventional soldering apparatus and to suitably measure the temperature of the molten solder jetted from the jet section. .
部品実装機を示す斜視図である。It is a perspective view which shows a component mounting machine. 部品装着装置を示す斜視図である。It is a perspective view which shows a component mounting apparatus. はんだ付け装置を示す斜視図である。It is a perspective view which shows a soldering apparatus. はんだ噴流部を示す斜視図である。It is a perspective view which shows a solder jet part. 補給エリアに移動した噴流装置100を示す斜視図である。It is a perspective view which shows the jet apparatus 100 which moved to the replenishment area. 制御装置を示すブロック図である。It is a block diagram which shows a control apparatus. 回路基材の貫通穴に挿入されているリードに向かって溶融はんだが噴流されている状態を示す概略図である。It is the schematic which shows the state by which the molten solder is jetted toward the lead inserted in the through-hole of a circuit base material.
 以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as modes for carrying out the present invention.
 <部品実装機の構成>
 図1に、部品実装機10を示す。部品実装機10は、回路基材12に対する部品の実装作業を実行するための装置である。部品実装機10は、装置本体20、基材搬送保持装置22、部品装着装置24、マークカメラ26、パーツカメラ28、部品供給装置30、ばら部品供給装置32、表示装置34、はんだ付け装置(図3参照)36、制御装置(図6参照)38を備えている。なお、回路基材12として、回路基板、三次元構造の基材等が挙げられ、回路基板として、プリント配線板、プリント回路板等が挙げられる。
<Configuration of component mounter>
FIG. 1 shows a component mounter 10. The component mounter 10 is a device for performing a component mounting operation on the circuit substrate 12. The component mounting machine 10 includes an apparatus main body 20, a substrate conveyance holding device 22, a component mounting device 24, a mark camera 26, a parts camera 28, a component supply device 30, a loose component supply device 32, a display device 34, a soldering device (FIG. 3) 36 and a control device (see FIG. 6) 38. The circuit substrate 12 includes a circuit board, a three-dimensional structure substrate, and the like, and the circuit board includes a printed wiring board and a printed circuit board.
 装置本体20は、フレーム部40と、そのフレーム部40に上架されたビーム部42とによって構成されている。基材搬送保持装置22は、フレーム部40の前後方向の中央に配設されており、搬送装置50とクランプ装置52とを有している。搬送装置50は、回路基材12を搬送する装置であり、クランプ装置52は、回路基材12を保持する装置である。これにより、基材搬送保持装置22は、回路基材12を搬送するとともに、所定の位置において、回路基材12を固定的に保持する。なお、以下の説明において、回路基材12の搬送方向をX方向と称し、その方向に直角な水平の方向をY方向と称し、鉛直方向をZ方向と称する。つまり、部品実装機10の幅方向は、X方向であり、前後方向は、Y方向である。 The apparatus main body 20 includes a frame portion 40 and a beam portion 42 that is overlaid on the frame portion 40. The substrate conveyance holding device 22 is disposed in the center of the frame portion 40 in the front-rear direction, and includes a conveyance device 50 and a clamp device 52. The conveyance device 50 is a device that conveys the circuit substrate 12, and the clamp device 52 is a device that holds the circuit substrate 12. Thereby, the base material transport and holding device 22 transports the circuit base material 12 and holds the circuit base material 12 fixedly at a predetermined position. In the following description, the conveyance direction of the circuit substrate 12 is referred to as an X direction, a horizontal direction perpendicular to the direction is referred to as a Y direction, and a vertical direction is referred to as a Z direction. That is, the width direction of the component mounting machine 10 is the X direction, and the front-rear direction is the Y direction.
 部品装着装置24は、ビーム部42に配設されており、2台の作業ヘッド60,62と作業ヘッド移動装置64とを有している。各作業ヘッド60,62の下端面には、図2に示すように、吸着ノズル66が設けられており、その吸着ノズル66によって部品を吸着保持する。また、作業ヘッド移動装置64は、X方向移動装置68とY方向移動装置70とZ方向移動装置72とを有している。そして、X方向移動装置68とY方向移動装置70とによって、2台の作業ヘッド60,62は、一体的にフレーム部40上の任意の位置に移動させられる。また、各作業ヘッド60,62は、スライダ74,76に着脱可能に装着されており、Z方向移動装置72は、スライダ74,76を個別に上下方向に移動させる。つまり、作業ヘッド60,62は、Z方向移動装置72によって、個別に上下方向に移動させられる。 The component mounting device 24 is disposed in the beam portion 42 and includes two work heads 60 and 62 and a work head moving device 64. As shown in FIG. 2, a suction nozzle 66 is provided at the lower end surface of each work head 60, 62, and the parts are sucked and held by the suction nozzle 66. The work head moving device 64 includes an X direction moving device 68, a Y direction moving device 70, and a Z direction moving device 72. Then, the two working heads 60 and 62 are integrally moved to arbitrary positions on the frame portion 40 by the X-direction moving device 68 and the Y-direction moving device 70. The work heads 60 and 62 are detachably attached to the sliders 74 and 76, and the Z-direction moving device 72 individually moves the sliders 74 and 76 in the vertical direction. That is, the work heads 60 and 62 are individually moved in the vertical direction by the Z-direction moving device 72.
 マークカメラ26は、下方を向いた状態でスライダ74に取り付けられており、作業ヘッド60とともに、X方向,Y方向およびZ方向に移動させられる。これにより、マークカメラ26は、フレーム部40上の任意の位置を撮像する。パーツカメラ28は、図1に示すように、フレーム部40上の基材搬送保持装置22と部品供給装置30との間に、上を向いた状態で配設されている。これにより、パーツカメラ28は、作業ヘッド60,62の吸着ノズル66に把持された部品を撮像する。 The mark camera 26 is attached to the slider 74 so as to face downward, and is moved together with the work head 60 in the X direction, the Y direction, and the Z direction. As a result, the mark camera 26 images an arbitrary position on the frame unit 40. As shown in FIG. 1, the parts camera 28 is disposed between the base material conveyance holding device 22 and the component supply device 30 on the frame portion 40 so as to face upward. Thereby, the parts camera 28 images the parts gripped by the suction nozzles 66 of the work heads 60 and 62.
 部品供給装置30は、フレーム部40の前後方向での一方側の端部に配設されている。部品供給装置30は、トレイ型部品供給装置78とフィーダ型部品供給装置(図6参照)80とを有している。トレイ型部品供給装置78は、トレイ上に載置された状態の部品を供給する装置である。フィーダ型部品供給装置80は、テープフィーダ、スティックフィーダ(図示省略)によって部品を供給する装置である。 The component supply device 30 is disposed at one end of the frame portion 40 in the front-rear direction. The component supply device 30 includes a tray-type component supply device 78 and a feeder-type component supply device (see FIG. 6) 80. The tray-type component supply device 78 is a device that supplies components placed on the tray. The feeder-type component supply device 80 is a device that supplies components by a tape feeder or a stick feeder (not shown).
 ばら部品供給装置32は、フレーム部40の前後方向での他方側の端部に配設されている。ばら部品供給装置32は、ばらばらに散在された状態の複数の部品を整列させて、整列させた状態で部品を供給する装置である。つまり、任意の姿勢の複数の部品を、所定の姿勢に整列させて、所定の姿勢の部品を供給する装置である。また、ばら部品供給装置32の端部には、表示装置34が配設されている。表示装置34には、部品実装機10による部品の装着作業等に関する情報が表示される。 The bulk component supply device 32 is disposed at the other end portion of the frame portion 40 in the front-rear direction. The separated component supply device 32 is a device for aligning a plurality of components scattered in a separated state and supplying the components in an aligned state. That is, it is an apparatus that aligns a plurality of components in an arbitrary posture into a predetermined posture and supplies the components in a predetermined posture. A display device 34 is disposed at the end of the bulk component supply device 32. The display device 34 displays information related to the component mounting operation by the component mounter 10.
 なお、部品供給装置30および、ばら部品供給装置32によって供給される部品として、電子回路部品,パワーモジュールの構成部品等が挙げられる。また、電子回路部品には、リードを有する部品,リードを有さない部品等が有る。 In addition, examples of components supplied by the component supply device 30 and the bulk component supply device 32 include electronic circuit components and power module components. Electronic circuit components include components having leads and components not having leads.
 はんだ付け装置36は、搬送装置50の下方に配設されており、図3に示すように、噴流装置100と噴流装置移動装置102とを有している。噴流装置100は、はんだ漕106と、はんだ噴流部108とを含む。はんだ漕106は、概して直方体形状をなし、内部に溶融はんだを貯留するものであり、ヒーター(図6参照)110と第1温度センサ112とを有している。ヒーター110は、はんだ漕106に貯留された溶融はんだを任意の温度に加熱するためのものである。第1温度センサ112は、はんだ漕106の内部に挿入されており、はんだ漕106に貯留されている溶融はんだの温度を測定する。 The soldering device 36 is disposed below the conveying device 50, and includes a jet device 100 and a jet device moving device 102 as shown in FIG. The jet device 100 includes a soldering iron 106 and a solder jet part 108. The solder iron 106 has a generally rectangular parallelepiped shape and stores molten solder therein, and includes a heater (see FIG. 6) 110 and a first temperature sensor 112. The heater 110 is for heating the molten solder stored in the soldering iron 106 to an arbitrary temperature. The first temperature sensor 112 is inserted into the soldering iron 106 and measures the temperature of the molten solder stored in the soldering iron 106.
 はんだ噴流部108は、はんだ漕106の上面に配設されており、図4に示すように、カバー114と、区画筒116と、噴流ノズル118とにより構成されている。カバー114は、概して円筒状をなし、それの上端部は、上方に向かうほど径が小さくなるようなテーパ状とされている。また、区画筒116の外径は、カバー114の内径より小さくされており、カバー114の内部に立設されている。なお、区画筒116の上端は、カバー114の上端より下方に位置している。また、噴流ノズル118の外径は、区画筒116の内径より小さくされており、区画筒116の内部に立設されている。なお、噴流ノズル118の上端は、カバー114の上端より上方に位置しており、カバー114の上端から露出している。 The solder jet part 108 is disposed on the upper surface of the soldering iron 106, and includes a cover 114, a partition cylinder 116, and a jet nozzle 118 as shown in FIG. The cover 114 has a generally cylindrical shape, and the upper end of the cover 114 is tapered so that the diameter decreases toward the top. Further, the outer diameter of the partition tube 116 is smaller than the inner diameter of the cover 114 and is erected inside the cover 114. Note that the upper end of the partition tube 116 is positioned below the upper end of the cover 114. Further, the outer diameter of the jet nozzle 118 is made smaller than the inner diameter of the partition tube 116 and is erected inside the partition tube 116. The upper end of the jet nozzle 118 is positioned above the upper end of the cover 114 and is exposed from the upper end of the cover 114.
 このような構造により、噴流装置100では、ポンプ(図6参照)120の作動により、はんだ漕106から溶融はんだが汲み上げられることで、噴流ノズル118の上端部から上方に向かって、溶融はんだが噴流する。そして、噴流ノズル118の上端部から噴流された溶融はんだが、噴流ノズル118の外周面と区画筒116の内周面との間を通って、はんだ漕106の内部に還流する。なお、噴流ノズル118ははんだ噴流部108に着脱可能とされており、ノズル径の異なる複数の噴流ノズル118の用意されている。これにより、任意のノズル径の噴流ノズル118に交換することが可能とされている。 With such a structure, in the jet device 100, the molten solder is pumped upward from the upper end portion of the jet nozzle 118 by pumping up the molten solder from the solder iron 106 by the operation of the pump (see FIG. 6) 120. To do. Then, the molten solder jetted from the upper end portion of the jet nozzle 118 passes between the outer peripheral surface of the jet nozzle 118 and the inner peripheral surface of the partition cylinder 116 and returns to the inside of the solder rod 106. The jet nozzle 118 is detachably attached to the solder jet section 108, and a plurality of jet nozzles 118 having different nozzle diameters are prepared. Thereby, it is possible to replace the jet nozzle 118 with an arbitrary nozzle diameter.
 また、噴流装置100は、ガス供給装置(図6参照)122を有しており、ガス供給装置122により、カバー114の内周面と区画筒116の外周面との間に、窒素が供給される。これにより、噴流ノズル118の上端から噴流する溶融はんだに向かって、カバー114の上端と区画筒116の上端との間から、窒素が噴出されることで、噴流する溶融はんだの酸化が防止される。 The jet device 100 has a gas supply device (see FIG. 6) 122, and nitrogen is supplied between the inner peripheral surface of the cover 114 and the outer peripheral surface of the partition tube 116 by the gas supply device 122. The As a result, nitrogen is jetted from between the upper end of the cover 114 and the upper end of the partition tube 116 toward the molten solder jetted from the upper end of the jet nozzle 118, thereby preventing the jetted molten solder from being oxidized. .
 噴流装置移動装置102は、図3に示すように、スライダ130と、X方向移動装置132と、Y方向移動装置134と、Z方向移動装置136とを有している。スライダ130は、概して板状をなし、スライダ130の上面には、噴流装置100が配設されている。また、X方向移動装置132は、搬送装置50による回路基材12の搬送方向、つまり、X方向に、スライダ130を移動させ、Y方向移動装置134は、スライダ130をY方向に移動させる。さらに、Z方向移動装置136は、スライダ130を、Z方向、つまり、上下方向に移動させる。これにより、噴流装置100は、搬送装置50の下方において、噴流装置移動装置102の作動により、任意の位置に移動する。なお、噴流装置移動装置102は、はんだ付け作業を行うための作業エリアと、はんだ漕106への溶融はんだの補給などを行うための補給エリアとの間において、噴流装置100を移動させる。 As shown in FIG. 3, the jet device moving device 102 includes a slider 130, an X direction moving device 132, a Y direction moving device 134, and a Z direction moving device 136. The slider 130 is generally plate-shaped, and the jet device 100 is disposed on the upper surface of the slider 130. The X-direction moving device 132 moves the slider 130 in the conveying direction of the circuit substrate 12 by the conveying device 50, that is, the X direction, and the Y-direction moving device 134 moves the slider 130 in the Y direction. Further, the Z direction moving device 136 moves the slider 130 in the Z direction, that is, in the up and down direction. Accordingly, the jet device 100 moves to an arbitrary position below the transport device 50 by the operation of the jet device moving device 102. The jet device moving device 102 moves the jet device 100 between a work area for performing a soldering operation and a supply area for supplying molten solder to the soldering iron 106.
 また、補給エリアには、ブラケット150が配設されており、噴流装置100が噴流装置移動装置102によって補給エリアに移動した場合に、図5に示すように、噴流装置100は、ブラケット150の下方に位置する。ブラケット150には、はんだ補給装置152が配設されている。はんだ補給装置152は、はんだリール保持部(図示省略)とはんだ導入管154とを含む。はんだリールは、線状のはんだが巻回されたものであり、はんだリール保持部において保持されている。はんだ導入管154は、上下方向に延びるように配設されており、はんだ導入管154の上端から、はんだリール保持部に保持されたはんだの端部が挿入されている。そして、はんだ導入管154の下端から、はんだが下方に向かって延び出す。また、はんだ漕106の上面に補給穴156が形成されており、はんだ導入管154の下端から延び出すはんだが補給穴156に挿入される。そして、はんだリール保持部において保持されたはんだが電磁モータ(図示省略)の作動により、送り出される。これにより、はんだ導入管154から、補給穴156を介して、はんだ漕106の内部にはんだが挿入される。この際、はんだ漕106の内部において、はんだが溶融することで、はんだ漕106に溶融はんだが補給される。 In addition, a bracket 150 is disposed in the replenishment area, and when the jet device 100 is moved to the replenishment area by the jet device moving device 102, the jet device 100 is located below the bracket 150 as shown in FIG. Located in. The bracket 150 is provided with a solder replenishing device 152. The solder replenishing device 152 includes a solder reel holding part (not shown) and a solder introduction tube 154. The solder reel is wound with linear solder and is held by a solder reel holding portion. The solder introduction tube 154 is disposed so as to extend in the vertical direction, and an end portion of the solder held by the solder reel holding portion is inserted from the upper end of the solder introduction tube 154. Then, the solder extends downward from the lower end of the solder introduction tube 154. In addition, a supply hole 156 is formed on the upper surface of the solder rod 106, and solder extending from the lower end of the solder introduction tube 154 is inserted into the supply hole 156. And the solder hold | maintained in the solder reel holding | maintenance part is sent out by the action | operation of an electromagnetic motor (illustration omitted). As a result, solder is inserted into the solder rod 106 from the solder introduction tube 154 through the supply hole 156. At this time, the molten solder is supplied to the solder rod 106 by melting the solder inside the solder rod 106.
 また、ブラケット150には、検出センサ158が配設されている。検出センサ158は、はんだ漕106の上面に設けられているフロート160との距離を検出するものである。フロート160は、はんだ漕106の内部に延び出しており、フロート160の下端部に設けられたフロート部(図示省略)が、はんだ漕106に貯留された溶融はんだに浮かべられている。これにより、検出センサ158によって検出されたフロート160との距離に基づいて、はんだ漕106に貯留されている溶融はんだの量が演算される。 The bracket 150 is provided with a detection sensor 158. The detection sensor 158 detects the distance from the float 160 provided on the upper surface of the soldering iron 106. The float 160 extends into the solder rod 106, and a float portion (not shown) provided at the lower end of the float 160 is floated on the molten solder stored in the solder rod 106. Thus, the amount of molten solder stored in the soldering iron 106 is calculated based on the distance from the float 160 detected by the detection sensor 158.
 さらに、ブラケット150には、第2温度センサ162も配設されている。第2温度センサ162は、線状の測定部166を下方に向けた状態で上下方向に延びるようにブラケット150に固定されている。また、第2温度センサ162は、補給エリアに噴流装置100が位置している際に、はんだ噴流部108の噴流ノズル118の上方に位置する。そして、噴流装置100が上昇することで、第2温度センサ162の下端部が、噴流ノズル118の先端部から噴流する溶融はんだに接触する。これにより、第2温度センサ162によって、噴流ノズル118の先端部から噴流する溶融はんだの温度が測定される。なお、第2温度センサ162の測定部166の線径は比較的小さくされており、本実施例では、線径が1mm程度のものを採用している。このため、第2温度センサ162は、熱伝導率が良く、センシング良く温度を測定することが可能となっている。 Furthermore, a second temperature sensor 162 is also disposed on the bracket 150. The second temperature sensor 162 is fixed to the bracket 150 so as to extend in the vertical direction with the linear measurement unit 166 facing downward. The second temperature sensor 162 is located above the jet nozzle 118 of the solder jet section 108 when the jet device 100 is located in the replenishment area. And the lower end part of the 2nd temperature sensor 162 contacts the molten solder jetted from the front-end | tip part of the jet nozzle 118 because the jet apparatus 100 raises. Thereby, the temperature of the molten solder jetted from the tip of the jet nozzle 118 is measured by the second temperature sensor 162. Note that the wire diameter of the measuring unit 166 of the second temperature sensor 162 is relatively small, and in this embodiment, the wire diameter is about 1 mm. For this reason, the second temperature sensor 162 has good thermal conductivity and can measure temperature with good sensing.
 また、制御装置38は、図6に示すように、コントローラ170、複数の駆動回路172、画像処理装置176、制御回路178を備えている。複数の駆動回路172は、上記搬送装置50、クランプ装置52、作業ヘッド60,62、作業ヘッド移動装置64、トレイ型部品供給装置78、フィーダ型部品供給装置80、ばら部品供給装置32、ヒーター110、ポンプ120、ガス供給装置122、噴流装置移動装置102に接続されている。コントローラ170は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路172に接続されている。これにより、基材搬送保持装置22、部品装着装置24等の作動が、コントローラ170によって制御される。また、コントローラ170は、画像処理装置176にも接続されている。画像処理装置176は、マークカメラ26およびパーツカメラ28によって得られた画像データを処理するものであり、コントローラ170は、画像データから各種情報を取得する。さらに、コントローラ170は、制御回路178を介して、表示装置34に接続されており、コントローラ170によって、表示装置34に所定の画像が表示される。また、コントローラ170には、第1温度センサ112及び第2温度センサ162も接続されており、第1温度センサ112及び第2温度センサ162による検出温度がコントローラ170に入力される。 Further, as shown in FIG. 6, the control device 38 includes a controller 170, a plurality of drive circuits 172, an image processing device 176, and a control circuit 178. The plurality of drive circuits 172 include the transport device 50, the clamp device 52, the work heads 60 and 62, the work head moving device 64, the tray-type component supply device 78, the feeder-type component supply device 80, the bulk component supply device 32, and the heater 110 The pump 120, the gas supply device 122, and the jet device moving device 102 are connected. The controller 170 includes a CPU, a ROM, a RAM, and the like, mainly a computer, and is connected to a plurality of drive circuits 172. Thereby, the operations of the substrate conveyance holding device 22, the component mounting device 24, and the like are controlled by the controller 170. The controller 170 is also connected to the image processing device 176. The image processing device 176 processes image data obtained by the mark camera 26 and the part camera 28, and the controller 170 acquires various types of information from the image data. Further, the controller 170 is connected to the display device 34 via the control circuit 178, and a predetermined image is displayed on the display device 34 by the controller 170. The controller 170 is also connected with a first temperature sensor 112 and a second temperature sensor 162, and temperatures detected by the first temperature sensor 112 and the second temperature sensor 162 are input to the controller 170.
 <部品実装機の作動>
 部品実装機10では、上述した構成によって、基材搬送保持装置22に保持された回路基材12に対して部品の装着作業が行われる。部品実装機10では、種々の部品を回路基材12に装着することが可能であるが、リードを有する部品(以下、「リード部品」と略して記載する場合がある)を回路基材12に装着する場合について、以下に説明する。
<Operation of component mounter>
In the component mounter 10, the component mounting operation is performed on the circuit substrate 12 held by the substrate conveyance holding device 22 with the above-described configuration. In the component mounting machine 10, various components can be mounted on the circuit substrate 12, but a component having a lead (hereinafter, may be abbreviated as “lead component”) is used as the circuit substrate 12. The case of mounting will be described below.
 具体的には、回路基材12が、作業位置まで搬送され、その位置において、クランプ装置52によって固定的に保持される。次に、マークカメラ26が、回路基材12の上方に移動し、回路基材12を撮像する。これにより、回路基材12の保持位置等に関する情報が得られる。また、部品供給装置30若しくは、ばら部品供給装置32が、所定の供給位置において、リード部品を供給する。そして、作業ヘッド60,62の何れかが、部品の供給位置の上方に移動し、吸着ノズル66によって部品を保持する。なお、リード部品180は、図7に示すように、部品本体部182と、部品本体部182の底面から延び出す2本のリード184とによって構成されている。そして、リード部品180は、吸着ノズル66によって部品本体部182の底面と反対側の面において吸着保持される。 Specifically, the circuit substrate 12 is transported to the working position, and is fixedly held by the clamp device 52 at that position. Next, the mark camera 26 moves above the circuit substrate 12 and images the circuit substrate 12. Thereby, the information regarding the holding position etc. of the circuit base material 12 is obtained. Further, the component supply device 30 or the bulk component supply device 32 supplies lead components at a predetermined supply position. Then, one of the work heads 60 and 62 moves above the component supply position, and holds the component by the suction nozzle 66. As shown in FIG. 7, the lead component 180 includes a component main body 182 and two leads 184 extending from the bottom surface of the component main body 182. The lead component 180 is sucked and held on the surface opposite to the bottom surface of the component main body 182 by the suction nozzle 66.
 続いて、リード部品180を保持した作業ヘッド60,62が、パーツカメラ28の上方に移動し、パーツカメラ28によって、吸着ノズル66に保持されたリード部品180が撮像される。これにより、部品の保持位置等に関する情報が得られる。続いて、リード部品180を保持した作業ヘッド60,62が、回路基材12の上方に移動し、回路基材12の保持位置の誤差,部品の保持位置の誤差等を補正する。そして、吸着ノズル66により吸着保持されたリード部品180のリード184が、回路基材12に形成された貫通穴188に挿入される。この際、貫通穴188の下方に、噴流装置100が移動している。そして、貫通穴188に挿入されたリード184に向かって、溶融はんだが、噴流装置100によって噴流される。これにより、貫通穴188にリード184を挿入した状態のリード部品180が、回路基材12にはんだ付けされる。 Subsequently, the work heads 60 and 62 holding the lead component 180 are moved above the parts camera 28, and the lead component 180 held by the suction nozzle 66 is imaged by the parts camera 28. As a result, information on the holding position of the component is obtained. Subsequently, the work heads 60 and 62 holding the lead component 180 move above the circuit substrate 12 to correct an error in the holding position of the circuit substrate 12, an error in the holding position of the component, and the like. Then, the lead 184 of the lead component 180 sucked and held by the suction nozzle 66 is inserted into the through hole 188 formed in the circuit substrate 12. At this time, the jet device 100 is moved below the through hole 188. Then, the molten solder is jetted by the jet device 100 toward the lead 184 inserted into the through hole 188. As a result, the lead component 180 with the lead 184 inserted into the through hole 188 is soldered to the circuit substrate 12.
 <噴流ノズルから噴流される溶融はんだの温度測定>
 上述したように、部品実装機10では、噴流装置100によって溶融はんだが噴流されることで、リード144にはんだが塗布され、リード部品140が回路基材12にはんだ付けされる。この際、噴流装置100では、溶融はんだの温度管理が行われる。具体的には、例えば、噴流装置100では、はんだ漕106に貯留されている溶融はんだの温度が第1の設定加熱温度、例えば、250℃となるように、ヒーター110によって加熱される。なお、はんだ漕106に貯留されている溶融はんだの温度は、第1温度センサ112により測定されており、その測定温度に基づいて、ヒーター110の作動が制御される。
<Temperature measurement of molten solder jetted from jet nozzle>
As described above, in the component mounting machine 10, the molten solder is jetted by the jet device 100, so that the solder is applied to the leads 144 and the lead components 140 are soldered to the circuit substrate 12. At this time, in the jet device 100, temperature management of the molten solder is performed. Specifically, for example, in the jet device 100, the temperature of the molten solder stored in the soldering iron 106 is heated by the heater 110 so as to be a first set heating temperature, for example, 250 ° C. The temperature of the molten solder stored in the soldering iron 106 is measured by the first temperature sensor 112, and the operation of the heater 110 is controlled based on the measured temperature.
 ただし、はんだ漕106に貯留されている溶融はんだの温度が所定の温度、つまり、250℃とされている場合であっても、噴流ノズル118から噴流される溶融はんだの温度は、はんだ漕106に貯留されている溶融はんだの温度より高くなる傾向にある。これは、噴流ノズル118の容量が、はんだ漕106と比較して、相当少なく、噴流ノズル118における溶融はんだの熱容量が、はんだ漕106における溶融はんだの熱容量より少ないためである。また、噴流装置100では、上述したように、ノズル径の異なる複数の噴流ノズル118のうちの任意の噴流ノズル118を装着することが可能とされている。このため、装着される噴流ノズル118のノズル径に応じて、噴流ノズル118から噴流される溶融はんだの温度は異なる。これは、ノズル径の異なる複数の噴流ノズル118では、噴流ノズル118毎に容量が異なり、噴流ノズル118毎の溶融はんだの熱容量が異なるためである。 However, even if the temperature of the molten solder stored in the soldering iron 106 is a predetermined temperature, that is, 250 ° C., the temperature of the molten solder jetted from the jet nozzle 118 is applied to the soldering iron 106. It tends to be higher than the temperature of the molten solder stored. This is because the capacity of the jet nozzle 118 is considerably smaller than that of the solder iron 106, and the heat capacity of the molten solder in the jet nozzle 118 is smaller than the heat capacity of the molten solder in the solder iron 106. Moreover, in the jet apparatus 100, as described above, an arbitrary jet nozzle 118 among a plurality of jet nozzles 118 having different nozzle diameters can be mounted. For this reason, the temperature of the molten solder jetted from the jet nozzle 118 varies depending on the nozzle diameter of the jet nozzle 118 to be mounted. This is because the plurality of jet nozzles 118 having different nozzle diameters have different capacities for each jet nozzle 118, and the heat capacities of the molten solder for each jet nozzle 118 are different.
 このように、はんだ漕106に貯留されている溶融はんだの温度は、噴流ノズル118から噴流される溶融はんだの温度と異なる。また、噴流ノズル118から噴流される溶融はんだの温度は、はんだ噴流部108に装着される噴流ノズル118のノズル径毎に異なる。しかしながら、噴流ノズル118から噴流される溶融はんだは、リード144に塗布されることから、噴流ノズル118から噴流される溶融はんだの温度を適切に管理する必要がある。これは、例えば、リード144に塗布される溶融はんだの温度が低い場合には、リード144の塗布された溶融はんだが氷柱状に延びることで、適切なはんだ付けを行うことができないためである。このようなことに鑑みて、はんだ付け装置36では、補給エリアに第2温度センサ162を設けられており、所定のタイミングにおいて、第2温度センサ162によって噴流ノズル118から噴流される溶融はんだの温度が測定される。 Thus, the temperature of the molten solder stored in the soldering iron 106 is different from the temperature of the molten solder jetted from the jet nozzle 118. Further, the temperature of the molten solder jetted from the jet nozzle 118 varies depending on the nozzle diameter of the jet nozzle 118 attached to the solder jet section 108. However, since the molten solder jetted from the jet nozzle 118 is applied to the lead 144, it is necessary to appropriately control the temperature of the molten solder jetted from the jet nozzle 118. This is because, for example, when the temperature of the molten solder applied to the lead 144 is low, the molten solder applied to the lead 144 extends in an ice column shape, so that appropriate soldering cannot be performed. In view of the above, in the soldering device 36, the second temperature sensor 162 is provided in the replenishment area, and the temperature of the molten solder jetted from the jet nozzle 118 by the second temperature sensor 162 at a predetermined timing. Is measured.
 具体的には、まず、所定のタイミングにおいて、噴流装置100が補給エリアに移動される。そして、噴流ノズル118から溶融はんだが噴流され、その状態で噴流装置100が上昇される。これにより、噴流ノズル118から噴流される溶融はんだが第2温度センサ162の測定部166に接触し、噴流ノズル118から噴流される溶融はんだの温度が第2温度センサ162によって測定される。なお、所定のタイミングとしては、具体的に、例えば、回路基材12の生産開始前,設定枚数の回路基材12が生産される毎,設定時間毎などが挙げられ、種々のタイミングで、噴流ノズル118から噴流される溶融はんだの温度が測定される。 Specifically, first, the jet device 100 is moved to the replenishment area at a predetermined timing. Then, molten solder is jetted from the jet nozzle 118, and the jet device 100 is raised in this state. Thereby, the molten solder jetted from the jet nozzle 118 contacts the measuring unit 166 of the second temperature sensor 162, and the temperature of the molten solder jetted from the jet nozzle 118 is measured by the second temperature sensor 162. Specific examples of the predetermined timing include, for example, before the start of production of the circuit base 12, every time a set number of circuit bases 12 are produced, every set time, and the like. The temperature of the molten solder jetted from the nozzle 118 is measured.
 また、コントローラ170には、設定温度が記憶されており、第2温度センサ162により測定された溶融はんだの温度(以下、「噴流はんだ測定温度」と記載する場合がある)が設定温度より低いか否かが、コントローラ170によって判断される。そして、噴流はんだ測定温度が設定温度以上である場合には、好適なはんだ付けを担保することができるため、噴流装置100は、作業エリアに移動され、はんだ付け作業が実行される。一方、噴流はんだ測定温度が設定温度より低い場合には、リード144に塗布された溶融はんだが氷柱状に延びる虞があり、好適なはんだ付けを担保することができない。このため、噴流はんだ測定温度が設定温度より低い場合には、ヒーター110による加熱温度が、第1の設定加熱温度から、その第1の設定加熱温度より高い第2の設定加熱温度、例えば、270℃に変更される。これにより、はんだ漕106に貯留されている溶融はんだの温度が上昇し、噴流ノズル118から噴流される溶融はんだの温度も上昇する。そして、第2温度センサ162によって、再度、噴流ノズル118から噴流される溶融はんだの温度が測定され、その測定された温度、つまり、噴流はんだ測定温度が設定温度以上である場合に、噴流装置100は、作業エリアに移動され、はんだ付け作業が実行される。 In addition, the controller 170 stores a set temperature, and whether the temperature of the molten solder measured by the second temperature sensor 162 (hereinafter sometimes referred to as “jet solder measurement temperature”) is lower than the set temperature. The controller 170 determines whether or not. And when jet solder measurement temperature is more than preset temperature, since suitable soldering can be ensured, jet device 100 is moved to a work area, and soldering work is performed. On the other hand, when the jet solder measurement temperature is lower than the set temperature, there is a possibility that the molten solder applied to the lead 144 may extend in the shape of an ice column, so that suitable soldering cannot be ensured. For this reason, when the jet solder measurement temperature is lower than the set temperature, the heating temperature by the heater 110 is higher than the first set heating temperature from the first set heating temperature, for example, 270, for example. Changed to ° C. Thereby, the temperature of the molten solder stored in the soldering iron 106 increases, and the temperature of the molten solder jetted from the jet nozzle 118 also increases. Then, the temperature of the molten solder jetted from the jet nozzle 118 is measured again by the second temperature sensor 162, and when the measured temperature, that is, the jet solder measured temperature is equal to or higher than the set temperature, the jet device 100. Is moved to the work area and a soldering operation is performed.
 また、ヒーター110による加熱温度が第2の設定加熱温度に上昇されても、噴流はんだ測定温度が設定温度より低い場合がある。また、ヒーター110による加熱温度が第2の設定加熱温度に上昇され、噴流はんだ測定温度が設定温度以上となった場合において、はんだ付け作業が実行され、その後に、再度、所定のタイミングで、第2温度センサ162によって溶融はんだの温度が測定されると、その測定された温度、つまり、噴流はんだ測定温度が設定温度より低い場合がある。 Also, even if the heating temperature by the heater 110 is raised to the second set heating temperature, the jet solder measurement temperature may be lower than the set temperature. In addition, when the heating temperature by the heater 110 is raised to the second set heating temperature and the jet solder measurement temperature becomes equal to or higher than the set temperature, the soldering operation is performed, and then the first soldering is performed again at a predetermined timing. When the temperature of the molten solder is measured by the two-temperature sensor 162, the measured temperature, that is, the jet solder measurement temperature may be lower than the set temperature.
 このように、ヒーター110による加熱温度が上昇されているにも関わらず、噴流はんだ測定温度が設定温度より低い理由として、噴流装置100の内部、特に、はんだ層の内壁にフラックスなどの不純物が多く付着し、ヒーター110による加熱効率が低下していることが考えられる。このため、ヒーター110による加熱温度が第2の設定加熱温度とされている際の噴流はんだ測定温度が設定温度より低い場合には、はんだ漕106の清掃を促す画面が、表示装置34に表示される。そして、作業者が、表示画面による告知に従って、噴流装置100を清掃し、噴流装置100内部に付着した不純物を除去することで、ヒーター110による加熱効率が回復する。このため、噴流装置100が清掃された後に、ヒーター110による加熱温度は第1の設定加熱温度に変更され、第2温度センサ162による溶融はんだの測定温度、つまり、噴流はんだ測定温度は設定温度以上になると想定される。これにより、以降のはんだ付け作業を適切に行うことが可能となる。 Thus, although the heating temperature by the heater 110 is increased, the reason why the jet solder measurement temperature is lower than the set temperature is that there are many impurities such as flux in the jet apparatus 100, particularly in the inner wall of the solder layer. It is considered that the heating efficiency by the heater 110 is reduced due to adhesion. For this reason, when the jet solder measurement temperature when the heating temperature by the heater 110 is the second set heating temperature is lower than the set temperature, a screen prompting the cleaning of the soldering iron 106 is displayed on the display device 34. The Then, according to the notification on the display screen, the worker cleans the jet device 100 and removes impurities adhering to the inside of the jet device 100, whereby the heating efficiency of the heater 110 is restored. For this reason, after the jet apparatus 100 is cleaned, the heating temperature by the heater 110 is changed to the first set heating temperature, and the measurement temperature of the molten solder by the second temperature sensor 162, that is, the jet solder measurement temperature is equal to or higher than the set temperature. It is assumed that Thereby, it becomes possible to perform subsequent soldering work appropriately.
 また、はんだ付け装置36では、上述したように、噴流装置100の外部に第2温度センサ162が配設されており、その第2温度センサ162によって溶融はんだの温度が測定されるが、噴流ノズル118の内部に温度センサを配設し、その温度センサにより溶融はんだの温度を測定することが考えられる。しかしながら、噴流ノズル118は比較的小さく、温度センサの配設スペースを確保することは困難である。また、噴流ノズル118の内部に温度センサが配設された場合に、非常に温度の高い溶融はんだに、常時、浸されるため、劣化し易い。このため、線径の大きい測定部、具体的には、線径が3mm以上の測定部を有する温度センサを採用する必要がある。ただし、線径の大きい測定部は、熱伝導率が悪いため、温度変化に追従し難く、センシング良く温度を測定することが困難である。さらに言えば、線径の大きい測定部を有する温度センサを採用した場合であっても、高温の溶融はんだにより劣化するため、1年程度で交換する必要がある。 In the soldering device 36, as described above, the second temperature sensor 162 is disposed outside the jet device 100, and the temperature of the molten solder is measured by the second temperature sensor 162. It is conceivable that a temperature sensor is disposed inside 118 and the temperature of the molten solder is measured by the temperature sensor. However, the jet nozzle 118 is relatively small, and it is difficult to secure a space for installing the temperature sensor. In addition, when a temperature sensor is disposed inside the jet nozzle 118, it is likely to deteriorate because it is always immersed in molten solder having a very high temperature. For this reason, it is necessary to employ | adopt the temperature sensor which has a measurement part with a big wire diameter, specifically, a measurement part with a wire diameter of 3 mm or more. However, since the measurement part with a large wire diameter has poor thermal conductivity, it is difficult to follow the temperature change and it is difficult to measure the temperature with good sensing. Furthermore, even when a temperature sensor having a measuring portion with a large wire diameter is employed, it is necessary to replace it in about one year because it deteriorates due to high-temperature molten solder.
 一方、はんだ付け装置36では、第2温度センサ162は、噴流装置100の外部に配設されており、溶融はんだの温度測定時にのみ、溶融はんだに浸される。このため、温度センサの配設スペースを容易に確保することが可能である。また、高温の溶融はんだによる劣化の程度は、噴流ノズル118の内部に配設され、高温の溶融はんだに常時、浸される温度センサと比較した場合に、非常に低い。このため、線径の小さな測定部を有する温度センサを採用することが可能となり、センシング良く温度を測定することが可能となる。また、温度センサの交換頻度も少なくなる。 On the other hand, in the soldering device 36, the second temperature sensor 162 is disposed outside the jet device 100, and is immersed in the molten solder only when the temperature of the molten solder is measured. For this reason, it is possible to easily secure an installation space for the temperature sensor. Further, the degree of deterioration due to the high-temperature molten solder is very low when compared with a temperature sensor that is disposed inside the jet nozzle 118 and is always immersed in the high-temperature molten solder. For this reason, it becomes possible to employ a temperature sensor having a measuring part with a small wire diameter, and it becomes possible to measure temperature with good sensing. Also, the replacement frequency of the temperature sensor is reduced.
 なお、制御装置38のコントローラ170は、図6に示すように、測定部190と加熱温度変更部192と告知部194とを有している。測定部190は、噴流ノズル118から噴流される溶融はんだの温度を第2温度センサ162によって測定するための機能部である。加熱温度変更部192は、ヒーター110による加熱温度が第1の設定加熱温度とされている際の噴流はんだ測定温度が設定温度より低い場合に、ヒーター110による加熱温度を第2の設定加熱温度に変更するための機能部である。告知部194は、ヒーター110による加熱温度が第2の設定加熱温度とされている際の噴流はんだ測定温度が設定温度より低い場合に、噴流装置100の清掃を促す画面を表示装置34に表示させるための機能部である。 In addition, the controller 170 of the control apparatus 38 has the measurement part 190, the heating temperature change part 192, and the notification part 194 as shown in FIG. The measuring unit 190 is a functional unit for measuring the temperature of the molten solder jetted from the jet nozzle 118 by the second temperature sensor 162. The heating temperature changing unit 192 sets the heating temperature by the heater 110 to the second set heating temperature when the jet solder measurement temperature when the heating temperature by the heater 110 is set to the first set heating temperature is lower than the set temperature. It is a functional part for changing. The notification unit 194 causes the display device 34 to display a screen for prompting cleaning of the jet device 100 when the jet solder measurement temperature when the heating temperature by the heater 110 is the second preset heating temperature is lower than the set temperature. It is a functional part for.
 ちなみに、はんだ付け装置36は、はんだ付け装置の一例である。制御装置38は、制御装置の一例である。噴流装置100は、噴流装置の一例である。噴流装置移動装置102は、移動装置の一例である。はんだ漕106は、貯留部の一例である。ヒーター110は、ヒーターの一例である。噴流ノズル118は、噴流部の一例である。第2温度センサ162は、温度センサの一例である。測定部190は、測定部の一例である。加熱温度変更部192は、加熱温度変更部の一例である。告知部194は、告知部の一例である。 Incidentally, the soldering device 36 is an example of a soldering device. The control device 38 is an example of a control device. The jet device 100 is an example of a jet device. The jet device moving device 102 is an example of a moving device. The soldering iron 106 is an example of a storage part. The heater 110 is an example of a heater. The jet nozzle 118 is an example of a jet part. The second temperature sensor 162 is an example of a temperature sensor. The measurement unit 190 is an example of a measurement unit. The heating temperature changing unit 192 is an example of a heating temperature changing unit. The notification unit 194 is an example of a notification unit.
 なお、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、ヒーター110による加熱温度が第1の設定加熱温度とされている際の噴流はんだ測定温度が設定温度より低い場合に、噴流装置100の清掃を促す画面を表示装置34に表示させてもよい。つまり、噴流はんだ測定温度が設定温度より低い場合に、ヒーター110による加熱温度を上昇させることなく、噴流装置100の清掃を促してもよい。 In addition, this invention is not limited to the said Example, It is possible to implement in the various aspect which gave various change and improvement based on the knowledge of those skilled in the art. Specifically, for example, when the jet solder measurement temperature when the heating temperature by the heater 110 is the first set heating temperature is lower than the set temperature, a screen for prompting cleaning of the jet device 100 is displayed on the display device 34. It may be displayed. In other words, when the jet solder measurement temperature is lower than the set temperature, cleaning of the jet device 100 may be promoted without increasing the heating temperature by the heater 110.
 また、上記実施例では、画面を表示することで、噴流装置100の清掃の告知をしているが、音声,ランプの点灯などによって、噴流装置100の清掃の告知をしてもよい。 In the above embodiment, the cleaning of the jet device 100 is notified by displaying a screen. However, the cleaning of the jet device 100 may be notified by sound, lighting of a lamp, or the like.
 また、上記実施例では、噴流装置100を移動させることで、第2温度センサ162に、噴流ノズル118から噴流される溶融はんだを接触させているが、第2温度センサ162を移動させることで、第2温度センサ162に、噴流ノズル118から噴流される溶融はんだを接触させてもよい。また、噴流装置100と第2温度センサ162との両方を移動させることで、第2温度センサ162に、噴流ノズル118から噴流される溶融はんだを接触させてもよい。 Moreover, in the said Example, although the molten solder spouted from the jet nozzle 118 is made to contact the 2nd temperature sensor 162 by moving the jet apparatus 100, by moving the 2nd temperature sensor 162, The molten solder jetted from the jet nozzle 118 may be brought into contact with the second temperature sensor 162. Moreover, the molten solder jetted from the jet nozzle 118 may be brought into contact with the second temperature sensor 162 by moving both the jet device 100 and the second temperature sensor 162.
 36:はんだ付け装置  38:制御装置  100:噴流装置  102:噴流装置移動装置(移動装置)  106:はんだ漕(貯留部)  110:ヒーター  118:噴流ノズル(噴流部)  162:第2温度センサ(温度センサ)  190:測定部  192:加熱温度変更部  194:告知部 36: Soldering device 38: Control device 100: Jet device 102: Jet device moving device (moving device) 106: Solder trough (storage unit) 110: Heater 118: Jet nozzle (jet unit) 162: Second temperature sensor (temperature) Sensor) 190: Measurement unit 192: Heating temperature change unit 194: Notification unit

Claims (4)

  1.  溶融はんだを貯留する貯留部と、前記貯留部から汲み上げられた溶融はんだを噴流する噴流部とを有する噴流装置と、
     前記噴流装置の外部に配設された温度センサと、
     前記噴流装置と前記温度センサとの少なくとも一方を移動させる移動装置と、
     制御装置と
     を備え、
     前記制御装置が、
     前記噴流装置の前記噴流部から噴流される溶融はんだに前記温度センサが接触するように、前記移動装置の作動を制御し、前記噴流部から噴流される溶融はんだの温度を測定する測定部を有するはんだ付け装置。
    A jet apparatus having a storage section for storing molten solder, and a jet section for jetting molten solder pumped from the storage section;
    A temperature sensor disposed outside the jet device;
    A moving device for moving at least one of the jet device and the temperature sensor;
    A control device, and
    The control device is
    A measuring unit that controls the operation of the moving device and measures the temperature of the molten solder jetted from the jet unit so that the temperature sensor contacts the molten solder jetted from the jet unit of the jet unit; Soldering device.
  2.  前記制御装置が、
     測定部により測定された溶融はんだの温度が設定温度より低い場合に、前記噴流装置の清掃を告知する告知部を有する請求項1に記載のはんだ付け装置。
    The control device is
    The soldering apparatus according to claim 1, further comprising a notification unit that notifies the cleaning of the jet device when the temperature of the molten solder measured by the measurement unit is lower than a set temperature.
  3.  前記噴流装置が、
     前記貯留部に貯留されている溶融はんだを任意の温度に加熱するヒーターを有し、
     前記測定部が、
     前記ヒーターによる加熱温度が第1設定加熱温度とされている際に、前記噴流部から噴流される溶融はんだの温度を測定し、
     前記制御装置が、
     前記ヒーターによる加熱温度が前記第1設定加熱温度とされている際に測定された溶融はんだの温度が設定温度より低い場合に、前記ヒーターによる加熱温度を、前記第1設定加熱温度から、前記第1設定加熱温度より高い第2設定加熱温度に変更する加熱温度変更部と
     を有する請求項1に記載のはんだ付け装置。
    The jet device is
    A heater for heating the molten solder stored in the storage unit to an arbitrary temperature;
    The measurement unit is
    When the heating temperature by the heater is the first set heating temperature, the temperature of the molten solder jetted from the jet part is measured,
    The control device is
    When the temperature of the molten solder measured when the heating temperature by the heater is the first preset heating temperature is lower than the preset temperature, the heating temperature by the heater is changed from the first preset heating temperature to the first preset heating temperature. The soldering apparatus according to claim 1, further comprising: a heating temperature changing unit that changes to a second setting heating temperature that is higher than the first setting heating temperature.
  4.  前記測定部が、
     前記ヒーターによる加熱温度が前記第2設定加熱温度とされている際に、前記噴流部から噴流される溶融はんだの温度を測定し、
     前記制御装置が、
     前記ヒーターによる加熱温度が前記第2設定加熱温度とされている際に測定部により測定された溶融はんだの温度が設定温度より低い場合に、前記噴流装置の清掃を告知する告知部を有する請求項3に記載のはんだ付け装置。
    The measurement unit is
    When the heating temperature by the heater is the second set heating temperature, the temperature of the molten solder jetted from the jet part is measured,
    The control device is
    A notification unit for notifying cleaning of the jet flow device when the temperature of the molten solder measured by the measurement unit is lower than the set temperature when the heating temperature by the heater is the second set heating temperature. 3. The soldering apparatus according to 3.
PCT/JP2016/079780 2016-10-06 2016-10-06 Soldering device WO2018066106A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/079780 WO2018066106A1 (en) 2016-10-06 2016-10-06 Soldering device
JP2018543540A JP6759350B2 (en) 2016-10-06 2016-10-06 Soldering equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079780 WO2018066106A1 (en) 2016-10-06 2016-10-06 Soldering device

Publications (1)

Publication Number Publication Date
WO2018066106A1 true WO2018066106A1 (en) 2018-04-12

Family

ID=61831654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079780 WO2018066106A1 (en) 2016-10-06 2016-10-06 Soldering device

Country Status (2)

Country Link
JP (1) JP6759350B2 (en)
WO (1) WO2018066106A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123540A (en) * 1997-10-21 1999-05-11 Tamura Seisakusho Co Ltd Local soldering device
JP2000005868A (en) * 1998-06-25 2000-01-11 Sumitomo Wiring Syst Ltd Jet width measuring method in jet type soldering device
WO2013168198A1 (en) * 2012-05-10 2013-11-14 三菱電機株式会社 Spray nozzle cleaning device, soldering device, and spray nozzle cleaning method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123540A (en) * 1997-10-21 1999-05-11 Tamura Seisakusho Co Ltd Local soldering device
JP2000005868A (en) * 1998-06-25 2000-01-11 Sumitomo Wiring Syst Ltd Jet width measuring method in jet type soldering device
WO2013168198A1 (en) * 2012-05-10 2013-11-14 三菱電機株式会社 Spray nozzle cleaning device, soldering device, and spray nozzle cleaning method

Also Published As

Publication number Publication date
JP6759350B2 (en) 2020-09-23
JPWO2018066106A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP4793187B2 (en) Electronic component mounting system and electronic component mounting method
CN109565938B (en) Soldering device
JP2015115427A (en) Soldering device and method
JP6219838B2 (en) Component mounter
JPWO2018061207A1 (en) Board-to-board work machine and insertion method
JP6467045B2 (en) Estimator
WO2018066106A1 (en) Soldering device
JP2013021074A (en) Method for preventing rise of electronic circuit component and electronic circuit manufacturing system
JP2006318994A (en) Conductive ball arrangement device
JP6518323B2 (en) Work machine
JP6896943B2 (en) Information processing equipment, work system, and decision method
JP6838073B2 (en) Jet device
JP7332492B2 (en) Component mounting equipment and component mounting system
JP4743059B2 (en) Electronic component mounting system and electronic component mounting method
JP6587871B2 (en) Component mounting apparatus and component mounting system
JP7441144B2 (en) Component mounting system and component mounting system group determination method
JP2006186097A (en) Viscous fluid coating method and program
JP6800817B2 (en) Information providing equipment, information providing method and component mounting equipment
JP6714730B2 (en) Working machine and soldering method
JP6732122B2 (en) Board-to-board working machine
JP2008072036A (en) Electronic component mounting apparatus and mounting method thereof
JP6655441B2 (en) Mounting device, lead component raising method and program
JPWO2016056045A1 (en) Anti-substrate working machine and mounting method
JP5372863B2 (en) Soldering apparatus and soldering method
JPH05327204A (en) Flow soldering apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918302

Country of ref document: EP

Kind code of ref document: A1