WO2018062422A1 - Diamine and use thereof - Google Patents

Diamine and use thereof Download PDF

Info

Publication number
WO2018062422A1
WO2018062422A1 PCT/JP2017/035322 JP2017035322W WO2018062422A1 WO 2018062422 A1 WO2018062422 A1 WO 2018062422A1 JP 2017035322 W JP2017035322 W JP 2017035322W WO 2018062422 A1 WO2018062422 A1 WO 2018062422A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
diamine
carbon atoms
group
polyimide
Prior art date
Application number
PCT/JP2017/035322
Other languages
French (fr)
Japanese (ja)
Inventor
鎮嘉 葉
近藤 光正
邦慶 何
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2018542879A priority Critical patent/JP7037122B2/en
Publication of WO2018062422A1 publication Critical patent/WO2018062422A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/40Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a diamine and use thereof.
  • retardation is the product of birefringence (difference between two orthogonal refractive indexes) and film thickness, and this numerical value, particularly retardation in the thickness direction, is important because it affects viewing angle characteristics. Since it is a numerical value and a large retardation value may cause a decrease in display quality of the display (see, for example, Patent Document 3), these flexible display substrates have these in addition to high flexibility (flexibility). These characteristics are also required.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a diamine that not only is excellent in flexibility and transparency, but also has a characteristic of low retardation.
  • a polyimide that is soluble in an organic solvent can be obtained by copolymerizing with a fluorine-containing aromatic diamine and an alicyclic tetracarboxylic dianhydride such as tetracyclobutanoic dianhydride, and the polyimide can be used as an organic solvent. It was found that a thin film having not only excellent flexibility and transparency but also low retardation can be obtained from the composition obtained by dissolving in the present invention.
  • the present invention relates to a diamine represented by the formula (1-1) as a first aspect.
  • R 1 , R 2 , R 3 , R 4 and R 5 each independently represents a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms
  • R 6 and R 7 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms
  • a, b, d and e each independently represents an integer of 0 to 4
  • c represents an integer of 0 to 2.
  • the present invention relates to the diamine according to the first aspect, which is a diamine represented by the formula (1-2).
  • a third aspect relates to the diamine according to the second aspect, which is a diamine represented by formula (1-3) or formula (1-4).
  • a 4th viewpoint it is related with the polyamic acid which is a reaction product of the diamine component containing the diamine as described in any one of a 1st viewpoint thru
  • the said diamine component is related with the polyamic acid as described in a 4th viewpoint which further contains the diamine represented by a formula (A1).
  • B 2 represents a divalent group selected from the group consisting of formulas (Y-1) to (Y-34)).
  • * represents a bond.
  • the said acid dianhydride component is related with the polyamic acid as described in a 4th viewpoint or a 5th viewpoint containing the acid dianhydride represented by Formula (C1).
  • B 1 represents a tetravalent group selected from the group consisting of formulas (X-1) to (X-12).
  • the present invention relates to a polyimide obtained by imidizing the polyamic acid according to any one of the fourth aspect to the sixth aspect.
  • the present invention relates to a film-forming composition comprising the polyimide according to the seventh aspect and an organic solvent.
  • a 9th viewpoint it is related with the thin film formed from the composition for film formation as described in an 8th viewpoint.
  • a 10th viewpoint it is related with the board
  • the present invention relates to a dinitro compound characterized by being represented by the formula (2-1).
  • R 1 , R 2 , R 3 , R 4 and R 5 each independently represents a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms
  • R 6 and R 7 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms
  • a, b, d and e each independently represents an integer of 0 to 4
  • c represents an integer of 0 to 2.
  • the present invention relates to the dinitro compound according to the eleventh aspect, which is a dinitro compound represented by the formula (2-2).
  • a thirteenth aspect relates to the dinitro compound according to the twelfth aspect, which is a dinitro compound represented by formula (2-3) or formula (2-4).
  • a method for producing a diamine represented by formula (1-1), (Wherein R 1 , R 2 , R 3 , R 4 and R 5 each independently represents a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, R 6 and R 7 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, a, b, d and e each independently represents an integer of 0 to 4, and c represents an integer of 0 to 2.
  • the present invention relates to a production method including a step of obtaining a diamine represented by formula (1-1) by reducing a nitro group of a dinitro compound represented by formula (2-1).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d and e represent the same meaning as described above.
  • the novel diamine compound of the present invention can obtain a polyimide soluble in an organic solvent by copolymerizing with a alicyclic tetracarboxylic dianhydride together with a conventionally known fluorine-containing aromatic diamine.
  • the polyimide obtained from the diamine compound of the present invention is excellent in flexibility and transparency, and can form a thin film that can realize a lower retardation.
  • the resin film is also a flexible device, In particular, it can be suitably used as a substrate for a flexible display.
  • membrane formed using the polyimide of this invention shows high transparency (high light transmittance, low yellowness) and low retardation, it can be used suitably as a board
  • the diamine according to the present invention is a diamine represented by the formula (1-1), and particularly preferred is a diamine represented by the formula (1-2). Among them, a thin film having excellent flexibility and transparency and low retardation. Considering that the above can be obtained with good reproducibility, a diamine represented by formula (1-3) or formula (1-4) is preferable.
  • R 1 , R 2 , R 3 , R 4 and R 5 are each independently a halogen atom, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms.
  • R 6 and R 7 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, and a, b, d and e each independently represents an integer of 0 to 4, and c represents an integer of 0 to 2.
  • halogen atom examples include a fluorine atom, a chlorine atom, and a bromine atom.
  • alkyl group having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, and n-pentyl group. , Isoamyl group, neopentyl group, tert-amyl group, sec-isoamyl group, cyclopentyl group, n-hexyl group and the like.
  • alkoxy group having 1 to 5 carbon atoms examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, and n-pentoxy group. , Isopentoxy group, neopentoxy group, tert-pentoxy group and the like.
  • the diamines represented by the above formulas (1-1) to (1-4) of the present invention are obtained by reducing the nitro groups of dinitro compounds represented by the following formulas (2-1) to (2-4), respectively. Obtainable. (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d and e represent the same meaning as described above.)
  • the diamine represented by the formula (1-1) is 9,10- [1,2] benzenoanthracene-1,4-in an organic solvent as shown in the following scheme as an example.
  • a diamino compound hereinafter also referred to as a benzenoanthracene diamino compound
  • a nitrobenzoyl halide compound are reacted in the presence of a base catalyst to obtain an intermediate (9,10- [1,2] benzenoanthracene-1,4 -Diyl bis (nitrobenzamide) compound) (compound represented by formula (2-1)) can be obtained (first stage), and the nitro group of this intermediate can be reduced (second stage). .
  • the dinitro compounds represented by the above formulas (2-1) to (2-4) which are intermediates are also the object of the present invention.
  • X represents a halogen atom
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d and e have the same meaning as described above.
  • the charging ratio of the benzenoanthracene diamino compound to the nitrobenzoyl halide compound is preferably 2 to 4 mol of the nitrobenzoyl halide compound with respect to 1 mol of the benzenoanthracene diamino compound. Also, since the nitrobenzoyl halide compound has low stability in the reaction solution, when adding the benzeneanthracenediamine compound to the solution of the nitrobenzhalide compound, the necessary amount is not added all at once, but several times. It is preferable to add in portions.
  • Base catalysts include trimethylamine, triethylamine, diisopropylamine, diisopropylethylamine, N-methylpiperidine, 2,2,6,6-tetramethyl-N-methylpiperidine, pyridine, 4-dimethylaminopyridine, N-methylmorpholine, etc.
  • Organic bases such as organic amines are preferably used.
  • the amount of the base catalyst used is not particularly limited as long as it is 2 mol or more with respect to 1 mol of the benzenoanthracene diamino compound, but it is usually about 2 to 10 mol.
  • an acid absorbent may be used to neutralize an acid such as hydrochloric acid by-produced in the reaction.
  • the acid absorbent examples include epoxides such as propylene oxide.
  • the amount of the acid absorbent used is not particularly limited as long as it is 2 mol or more with respect to 1 mol of the benzenoanthracenediamino compound, but it is usually about 2 to 10 mol.
  • the organic solvent is not particularly limited as long as it does not affect the reaction, but is an aromatic hydrocarbon such as benzene, toluene, xylene; N, N-dimethylformamide (hereinafter referred to as DMF), Amides such as N, N-dimethylacetamide (hereinafter referred to as DMAc) and N-methyl-2-pyrrolidone (hereinafter referred to as NMP); diethyl ether, tetrahydrofuran (hereinafter referred to as THF), 1,4-dioxane, 1, Ethers such as 2-dimethoxyethane and cyclopentylmethyl ether, ketones such as 2-butanone and 4-methyl-2-pentanone, nitriles such as acetonitrile, dimethyl sulfoxide (hereinafter referred to as DMSO) and the like can be used.
  • DMF N, N-dimethylformamide
  • NMP N-methyl-2-pyrrolidon
  • the reaction temperature can be about 0 to 200 ° C., preferably 20 to 150 ° C.
  • the solvent is distilled off, and the crude product is used in the next step as it is or after purification.
  • the purification method is arbitrary and may be appropriately selected from known methods such as recrystallization, distillation, silica gel column chromatography.
  • the method for reducing the nitro group of the intermediate to an amino group may be a known method and is not particularly limited.
  • palladium-carbon, platinum oxide, Raney nickel, platinum- There is a method in which carbon, rhodium-alumina, platinum carbon sulfide, reduced iron, iron chloride, tin, tin chloride, zinc or the like is used as a catalyst, and hydrogen gas, hydrazine, hydrogen chloride, ammonium chloride or the like is used.
  • catalytic hydrogenation is preferred because side reactions due to the ester sites of the intermediate are unlikely to occur and the desired product can be easily obtained.
  • Examples of the hydrogen atom source for catalytic hydrogenation include hydrogen gas, hydrazine, hydrogen chloride, ammonium chloride, and ammonium formate.
  • Examples of the catalyst used for the catalytic hydrogenation include powders of metals such as platinum, palladium, ruthenium, rhodium, nickel, iron, zinc, tin and the like, and the metal powder may be supported on an active material.
  • the type of the catalyst is appropriately determined according to the type of the hydrogen source and the reaction conditions, and is not particularly limited, but may be any catalyst that can reduce only the nitro group, preferably palladium-carbon, platinum oxide, Raney nickel, Examples include platinum-carbon, rhodium-alumina, and platinum sulfide carbon.
  • the amount of the catalyst used is not particularly limited because it is appropriately determined according to the type of hydrogen source and the reaction conditions, but is usually 0.01 mol% in terms of metal with respect to the raw dinitro compound (intermediate). 50 mol%, preferably 0.1 mol% to 20 mol%.
  • the reaction solvent a solvent that does not affect the reaction can be used.
  • ester solvents such as ethyl acetate and methyl acetate
  • aromatic hydrocarbon solvents such as toluene and xylene
  • aliphatic hydrocarbon solvents such as n-hexane, n-heptane and cyclohexane, 1,2-dimethoxyethane, tetrahydrofuran
  • Ether solvents such as dioxane
  • alcohol solvents such as methanol and ethanol
  • ketone solvents such as 2-butanone and 4-methyl-2-pentanone
  • Examples include aprotic polar solvents such as -2-pyrrolidone and dimethyl sulfoxide, and water.
  • the reaction can be carried out at a temperature at which the reaction proceeds efficiently as long as it is not higher than the boiling point of the solvent used without decomposition of the raw materials and products.
  • a temperature from ⁇ 78 ° C. to the boiling point of the solvent is preferable, and from the viewpoint of ease of synthesis, a temperature from 0 ° C. to the boiling point of the solvent is more preferable, more preferably from 0 to 100 ° C., and even more preferable.
  • the catalytic hydrogenation may be performed under pressure conditions such as using an autoclave.
  • the target diamine After the reaction, after distilling off the solvent, the target diamine can be obtained by purification using a known method such as recrystallization, distillation, silica gel column chromatography or the like. If the solvent contains a large amount of oxygen, the produced diamine compound may be colored. Therefore, the solvent used for the reaction and purification is preferably degassed before use. Moreover, in order to prevent coloring more, it is preferable to deaerate also the reaction liquid after the solvent distillation after the reaction.
  • the benzenoanthracenediamino compound used in the present invention can be obtained according to a known method, for example, as shown in the following scheme as an example. Specifically, first, an anthracene compound and a 1,4-benzoquinone compound are subjected to a Diels-Alder reaction in an organic solvent, and 9,10- [1,2] benzenoanthracene-13,16 (9H, 10H) -Dione compound (I) is obtained, and this is treated under heating conditions in the presence of 47% hydrogen bromide in an acetic acid solvent to obtain benzenoanthracenediol compound (II).
  • the quinone compound (III) is obtained by heating in an acetic acid solvent in the presence of potassium bromate to obtain a quinone compound (III), which is heated in an alcohol solvent together with hydroxylamine hydrochloride to form a dioxime.
  • the benzenoanthracene diamino compound (IV) can be obtained by treatment under heating conditions in the presence of stannous chloride and hydrochloric acid.
  • the diamine of the present invention described above can be converted to a polyamic acid by a polycondensation reaction with an acid dianhydride, and then converted into a corresponding polyimide by a dehydration ring-closing reaction using heat or a catalyst.
  • the polyamic acid and polyimide that is, a polyamic acid (diamine component and acid dianhydride) obtained by reacting a diamine component containing the diamine represented by the above formula (1-1) of the present invention with an acid dianhydride component. Reaction products with physical components), and polyimide which is an imidized product of the polyamic acid are also objects of the present invention.
  • the diamine component used in the production of the polyamic acid of the present invention is not only excellent in flexibility and transparency, but also from the viewpoint of obtaining a polyamic acid and a polyimide that give a thin film having a characteristic of low retardation with good reproducibility.
  • a fluorine-containing aromatic diamine is preferably contained, and a diamine represented by the following formula (A1) is more preferably contained.
  • B 2 represents a divalent group selected from the group consisting of formulas (Y-1) to (Y-34)).
  • * represents a bond.
  • B 2 in the formula is the formula (Y-12), (Y-13), (Y-14), (Y-15), (Y-18)
  • a diamine represented by (Y-27), (Y-28), (Y-30), (Y-33) is preferred, and the B 2 is represented by the formula (Y-12), (Y-13), Diamines represented by (Y-14), (Y-15), and (Y-33) are particularly preferred.
  • the diamine component other diamine compounds other than the diamine represented by the above formula (1-1) and the diamine represented by the above formula (A1) are used. May be.
  • the diamine represented by the formula (1-1) of the present invention when the fluorine-containing aromatic diamine is used together with the diamine represented by the formula (1-1) of the present invention, the diamine represented by the formula (1-1) and the fluorine-containing atom aromatic
  • the acid dianhydride component used in the production of the polyamic acid of the present invention is not only excellent in flexibility and transparency, but also has a reproducibility of polyamic acid and polyimide that give a thin film having a characteristic of low retardation.
  • alicyclic tetracarboxylic dianhydride more preferably acid dianhydride represented by the following formula (C1).
  • B 1 represents a tetravalent group selected from the group consisting of formulas (X-1) to (X-12).
  • a plurality of R's independently represent a hydrogen atom or a methyl group, and * represents a bond.
  • B 1 in the formula is represented by the formula (X-1), (X-2), (X-4), (X-5), (X -6), (X-7), (X-8), (X-9), (X-11), and (X-12) are preferred acid dianhydrides, wherein B 1 represents the above formula Acid dianhydrides represented by (X-1), (X-2), (X-6), (X-7), (X-11), and (X-12) are particularly preferred.
  • the alicyclic tetracarboxylic acid dicarboxylic acid in the acid dianhydride component used in the production of the polyamic acid of the present invention is used.
  • the anhydride content is preferably 50 mol% or more, more preferably 60 mol% or more, even more preferably 70 mol% or more, still more preferably 80 mol% or more, still more preferably 90 mol% or more, and most preferably 100 mol%. Mol%.
  • the diamine represented by the above formula (1-1) and the diamine represented by the above formula (A1) are used as the diamine component, and the acid dianhydride component represented by the above (C1) is used as the acid dianhydride component.
  • the polyamic acid has a monomer unit represented by the following formula (4-1) and a monomer unit represented by the following formula (4-2).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d, e, B 1 and B 2 represent the same meaning as described above.
  • the method for obtaining the polyamic acid of the present invention is not particularly limited, and the aforementioned acid dianhydride component and diamine component may be reacted and polymerized by a known method.
  • Examples of the solvent used for polyamic acid synthesis include m-cresol, N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), and N-methyl.
  • Examples include caprolactam, dimethyl sulfoxide (DMSO), tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl phosphoramide, and ⁇ -butyrolactone. These may be used alone or in combination. Furthermore, even if it is a solvent which does not melt
  • the temperature of the polycondensation reaction can be selected from -20 to 150 ° C, preferably -5 to 100 ° C.
  • the polyamic acid-containing solution obtained by the polymerization reaction of the polyamic acid described above can be used as a film-forming composition for forming a polyimide film, which will be described later, as it is, or after dilution or concentration.
  • a poor solvent such as methanol or ethanol is added to the polyamic acid-containing solution to precipitate the polyimide to isolate the polyamic acid, and the isolated polyamic acid is redissolved in an appropriate solvent to form a film which will be described later. It can also be used as a composition.
  • the solvent for diluting the polyamic acid-containing solution and the solvent for re-dissolving the isolated polyamic acid are not particularly limited as long as the obtained polyamic acid can be dissolved.
  • the solvent alone does not dissolve the polyamic acid, it can be used in addition to the above solvent as long as the polyamic acid does not precipitate.
  • Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and 1-butoxy-2-propanol.
  • the polyimide of the present invention can be obtained by subjecting the above-mentioned polyamic acid to dehydration ring closure (thermal imidization) by heating, or chemically ring closure using a known dehydration ring closure catalyst. That is, the polyimide of the present invention is an imidized product of the polyamic acid.
  • the method by heating can be performed at an arbitrary temperature of 100 to 300 ° C., preferably 120 to 250 ° C.
  • the chemical ring closure method can be carried out, for example, in the presence of pyridine, triethylamine, 1-ethylpiperidine, etc., and acetic anhydride, and the temperature at this time is an arbitrary temperature of ⁇ 20 to 200 ° C. You can choose.
  • the polyimide obtained from the polyamic acid having the monomer unit represented by the above formula (4-1) and the monomer unit represented by the above formula (4-2) thus obtained is represented by the following formula (5-1). And a monomer unit represented by the following formula (5-2).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d, e, B 1 and B 2 represent the same meaning as described above.
  • the polyimide solution (also referred to as a polyimide-containing solution) obtained by the above-described ring closing reaction of polyamic acid can be used as it is, or after diluting or concentrating, as a film-forming composition described later.
  • a poor solvent such as methanol or ethanol is added to the polyimide solution to precipitate the polyimide, and the polyimide is isolated.
  • the isolated polyimide is redissolved in an appropriate solvent, and this is used as a film forming composition to be described later. Can be used.
  • the solvent for re-dissolution is not particularly limited as long as it can dissolve the obtained polyimide.
  • the solvent alone does not dissolve the polyimide, it can be used in addition to the above solvent as long as the polyimide does not precipitate.
  • Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and 1-butoxy-2-propanol.
  • the number average molecular weight of the polyamic acid (polyimide) is preferably 5,000 or more, more preferably 10,000 or more, and still more preferably from the viewpoint of improving the flexibility, strength, etc. of the thin film obtained. 15,000 or more, more preferably 20,000 or more, and preferably 200,000 or less, more preferably 100,000 or less, and still more preferably 50,000 or more from the viewpoint of ensuring the solubility of the resulting polyimide. 000 or less.
  • the number average molecular weight is a value measured by a GPC (gel permeation chromatography) apparatus and calculated as a polystyrene equivalent value.
  • composition for film formation The film forming composition containing the polyimide of the present invention and an organic solvent is also an object of the present invention.
  • the organic solvent used for the film-forming composition is not particularly limited, and examples thereof include the same examples as the specific examples of the reaction solvent used when preparing the polyamic acid and the polyimide. More specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-ethyl-2-pyrrolidone, ⁇ - Examples include butyrolactone.
  • an organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and ⁇ -butyrolactone are preferable in view of obtaining a thin film with high flatness with good reproducibility.
  • the film-forming composition of the present invention is uniform and phase separation is not observed.
  • the blending amount of the solid content in the film-forming composition of the present invention is usually about 0.5 to 30% by mass, preferably about 5 to 25% by mass.
  • the solid content concentration is less than 0.5% by mass, the film-forming efficiency is lowered in producing a thin film, and the viscosity of the film-forming composition is lowered, so that it is difficult to obtain a coating film having a uniform surface.
  • the solid content concentration exceeds 30% by mass, the viscosity of the film-forming composition becomes too high, and there is a possibility that the film forming efficiency is deteriorated and the surface uniformity of the coating film is lacking.
  • solid content here means the total mass of components other than an organic solvent, and even if it is a liquid monomer etc., it shall be included in a weight as solid content.
  • the viscosity of the film-forming composition is appropriately set in consideration of the thickness of the thin film to be produced, etc. However, in particular, when the purpose is to obtain a thin film having a thickness of about 5 to 50 ⁇ m with good reproducibility, It is about 500 to 50,000 mPa ⁇ s at 25 ° C., preferably about 1,000 to 20,000 mPa ⁇ s.
  • various organic or inorganic low-molecular or high-molecular compounds may be added to the film-forming composition of the present invention in order to impart processing characteristics and various functionalities.
  • a catalyst, an antifoaming agent, a leveling agent, a surfactant, a dye, a plasticizer, fine particles, a coupling agent, a sensitizer, and the like can be used.
  • the proportion of the polyimide in the solid content of the film-forming composition of the present invention, including the case where other components are included, can be 70 to 100% by mass.
  • the film-forming composition of the present invention can be obtained by dissolving the polyimide obtained by the above-described method in the above-mentioned organic solvent, and further adding the above-mentioned organic solvent to the reaction solution after preparation of the polyimide as desired. It may be a thing.
  • the organic solvent is removed by applying the film forming composition of the present invention described above to a substrate, drying and heating, high heat resistance, high transparency, appropriate flexibility, and appropriate linear expansion. And a thin film having a small retardation. And the said thin film, ie, the thin film (thin film which consists of solid content of the composition for film formation) containing the said polyimide is also the object of this invention.
  • the base material used for the production of the thin film examples include plastics (polycarbonate, polymethacrylate, polystyrene, polyester, polyolefin, epoxy, melamine, triacetyl cellulose, ABS, AS, norbornene resin, etc.), metal, stainless steel (SUS). Wood, paper, glass, silicon wafer, slate and the like.
  • the base material to be applied is glass or a silicon wafer from the viewpoint that existing equipment can be used, and the obtained thin film has good peelability. Of these, glass is more preferable.
  • the linear expansion coefficient of the substrate to be applied is preferably 35 ppm / ° C.
  • the coating method of the film-forming composition on the substrate is not particularly limited.
  • cast coating method spin coating method, blade coating method, dip coating method, roll coating method, bar coating method, die coating method.
  • Method ink jet method, printing method (letter plate, intaglio plate, planographic plate, screen printing, etc.) and the like, and these can be appropriately used according to the purpose.
  • the heating temperature is preferably 300 ° C. or lower. If it exceeds 300 ° C., the resulting thin film becomes brittle, and a thin film particularly suitable for display substrate use may not be obtained.
  • the heating temperature is increased stepwise as it is, Finally, it is desirable to heat at over 175 ° C. to 280 ° C. for 30 minutes to 2 hours.
  • the low thermal expansion characteristic can be expressed by heating at a temperature of two or more stages of drying the solvent and promoting molecular orientation.
  • the applied film-forming composition is heated at 40 ° C. to 100 ° C.
  • Heating for ⁇ 2 hours is preferred.
  • the appliance used for heating include a hot plate and an oven.
  • the heating atmosphere may be under air or under an inert gas such as nitrogen, and may be under normal pressure or under reduced pressure, and different pressures are applied at each stage of heating. May be.
  • the thickness of the thin film is usually about 1 to 60 ⁇ m, preferably about 5 to 50 ⁇ m.
  • a thin film having a desired thickness can be obtained by adjusting the thickness of the coating before heating. Form.
  • there is no limitation in particular as a method of peeling the thin film formed in this way from a base material The thin film is cooled with the base material, the thin film is cut and peeled, and a tension is applied through a roll to separate. And the like.
  • the polyamic acid-containing solution and the polyimide-containing solution can be suitably used as a film-forming composition for forming a polyimide film. That is, the polyamic acid-containing solution applied on the substrate is heated to cause an imidization reaction while evaporating the solvent, or the polyimide-containing solution applied on the substrate is heated to evaporate the solvent. Thereby, the film
  • the heating temperature is usually about 40 to 500 ° C., and for example, it may be heated stepwise in the range of 40 to 150 ° C., 180 to 350 ° C., and further 380 to 450 ° C.
  • a known additive such as a coupling agent may be added to the polyamic acid-containing solution or the polyimide solution.
  • a film-forming composition comprising the above polyamic acid-containing solution or polyimide solution and a film formed using the composition are also objects of the present invention.
  • DAT Diaminotriptycene DATDNB: Diaminotriptycene dinitrobenzamide DATDAB: Diaminotriptycene diaminobenzamide
  • THF tetrahydrofuran
  • DMF dimethyl sulfoxide
  • GBL ⁇ -butyrolactone
  • TFMB 2,2′-di (trifluoromethyl) benzidine
  • TCA 2,3,5-tricarboxycyclopentylacetic acid-1,4: 2,3-dianhydride
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • DATDAB crude product 28.5 g
  • the crude DATDAB (28.5 g) was added to ethyl acetate (1140 g), stirred under reflux conditions (77 ° C.) for 1 hour, and then cooled to room temperature.
  • the precipitate was filtered, washed twice with ethyl acetate (285 g), and the filtered product (35.0 g) was dried under reduced pressure at 70 ° C. to obtain a DATDAB ethyl acetate repulp product (28.0 g).
  • This DATDAB recrystallized product (23.9 g) was added to hexane (717 g), stirred under reflux conditions (68 ° C.) for 1 hour, and then cooled to room temperature.
  • the heat resistance and optical characteristics of the resin thin film (evaluation sample) produced by the above procedure that is, the linear thermal expansion coefficient (CTE) at 50 ° C. to 200 ° C. and 200 ° C. to 250 ° C., and the light transmittance (T 400 nm , T 550 nm ), 5% weight loss temperature (Td 5% ), CIE b * value (yellow evaluation), retardation (R th , R 0 ) and birefringence ( ⁇ n) were evaluated according to the following procedures.
  • the number average molecular weight and weight average molecular weight of the polyimide were also measured according to the following procedure. The results are shown in Table 1.
  • CIE b value CIE b *
  • the CIE b value (CIE b * ) was measured using a SA4000 spectrometer manufactured by Nippon Denshoku Industries Co., Ltd., at room temperature, using air as a reference.
  • Light transmittance (transparency) T400nm , T550nm
  • Light transmittances at wavelengths of 400 nm and 550 nm were measured using Shimadzu Corporation UV-Visible Spectrophotometer UV-Visible 3600 at room temperature with reference air. .
  • Mn Number average molecular weight
  • Mw weight average molecular weight
  • the polyimide film produced using the novel diamine having the above triptycene structure according to the present invention has a thickness direction retardation R th of less than 800 nm and an in-plane retardation R 0 of less than 5.
  • the result has a low value.
  • the transmittance at a wavelength of 400 nm (T 400 nm ), the transmittance at a wavelength of 550 nm (T 550 nm ), the CTE value at 50 ° C.-200 ° C., and the CTE value at 200 ° C.-250 ° C. were different from each other. And it was confirmed that it has high heat resistance as shown in the Td 5% value.
  • the novel diamine is believed to have a unique orientation due to the bulky structure that breaks the conjugated system and provides a larger free volume for light transmission, and that in the polyimide membrane is the transmittance and retardation. It is thought that it provides excellent performance in (phase difference).
  • the polyimide film produced using the novel acid dianhydride of the present invention has the characteristics of high transparency (high light transmittance), heat resistance, and low retardation, that is, the base of the flexible display substrate. It can be expected that the film satisfies the necessary requirements as a film and can be particularly suitably used as a base film of a flexible display substrate.

Abstract

[Problem] To provide a novel diamine for imparting a thin film that has not only exceptional flexibility and transparency, but also low retardation. [Solution] Provided are: a diamine characterized by being represented by formula (1-1); a polyamic acid and a polyimide obtained from said diamine; a composition for forming a film, the composition containing said polyimide and silicon dioxide particles; and a thin film formed therefrom. (In the formula, R1 to R5 each independently represent a halogen atom, an alkyl group, or an alkoxy group; R6 and R7 each independently represent a hydrogen atom, a halogen atom, an alkyl group, or an alkoxy group; a, b, d, and e each independently represent an integer of 0-4; and c represents an integer of 0-2.)

Description

ジアミンおよびその利用Diamine and its use
 本発明は、ジアミンおよびその利用に関する。 The present invention relates to a diamine and use thereof.
 近年、液晶ディスプレイや有機エレクトロルミネッセンスディスプレイ等のエレクトロニクスの急速な進歩に伴い、デバイスの薄型化や軽量化、更には、フレキシブル化が要求されるようになってきた。
 これらのデバイスにおいては、ガラス基板上に様々な電子素子、例えば、薄膜トランジスタや透明電極等が形成されているが、このガラス材料を柔軟かつ軽量な樹脂材料に替えることで、デバイス自体の薄型化や軽量化、フレキシブル化が期待される。
 そして、そのような樹脂材料の候補としてはポリイミドが注目を集めており、ポリイミドフィルムに関する種々の報告が従来よりなされている(例えば特許文献1,2参照)。
In recent years, with rapid advances in electronics such as liquid crystal displays and organic electroluminescence displays, it has become necessary to make devices thinner and lighter, and more flexible.
In these devices, various electronic elements such as thin film transistors and transparent electrodes are formed on a glass substrate. By replacing this glass material with a flexible and lightweight resin material, the device itself can be made thinner or thinner. Light weight and flexibility are expected.
And as a candidate of such a resin material, polyimide attracts attention, and various reports regarding a polyimide film have been made conventionally (see, for example, Patent Documents 1 and 2).
特開昭60-188427号公報JP-A-60-188427 特開昭58-208322号公報JP 58-208322 A 国際公開2011/149018号パンフレットInternational Publication 2011/149018 Pamphlet
 ところで、ポリイミド樹脂材料をディスプレイの基板として用いるとき、その樹脂材料が透明性に優れるだけでなく、要求性能の一つとしてリタデーション(Retardation)が低い材料であることが望ましい。
 すなわち、リタデーション(位相差)とは、複屈折(直交する2つの屈折率の差)と膜厚との積をいうが、この数値、特に厚さ方向のリタデーションは視野角特性に影響する重要な数値であり、大きなリタデーション値は、ディスプレイの表示品質の低下を招く原因となり得ることから(例えば特許文献3参照)、フレキシブルディスプレイ基板にあっても、高い柔軟性(可撓性)以外に、これらの特性も求められている。
By the way, when a polyimide resin material is used as a display substrate, it is desirable that the resin material is not only excellent in transparency but also has a low retardation as one of the required performances.
That is, retardation (phase difference) is the product of birefringence (difference between two orthogonal refractive indexes) and film thickness, and this numerical value, particularly retardation in the thickness direction, is important because it affects viewing angle characteristics. Since it is a numerical value and a large retardation value may cause a decrease in display quality of the display (see, for example, Patent Document 3), these flexible display substrates have these in addition to high flexibility (flexibility). These characteristics are also required.
 本発明は、このような事情に鑑みてなされたものであって、柔軟性及び透明性に優れるだけでなく、リタデーションが低いという特徴をも有する薄膜を与えるジアミンを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a diamine that not only is excellent in flexibility and transparency, but also has a characteristic of low retardation.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、下記式(1-1)で表されるジアミン化合物を、特に2,2’-ジ(トリフルオロメチル)ベンジジン等の含フッ素原子芳香族ジアミンとともに、テトラシクロブタン酸二無水物等の脂環式テトラカルボン酸二無水物と共重合させることで、有機溶媒に可溶なポリイミドが得られること、及び当該ポリイミドを有機溶媒に溶解させることで得られる組成物から、柔軟性及び透明性に優れるだけでなく、リタデーションが低いという特徴をも有する薄膜が得られることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have determined that diamine compounds represented by the following formula (1-1), particularly 2,2′-di (trifluoromethyl) benzidine, etc. A polyimide that is soluble in an organic solvent can be obtained by copolymerizing with a fluorine-containing aromatic diamine and an alicyclic tetracarboxylic dianhydride such as tetracyclobutanoic dianhydride, and the polyimide can be used as an organic solvent. It was found that a thin film having not only excellent flexibility and transparency but also low retardation can be obtained from the composition obtained by dissolving in the present invention.
 すなわち、本発明は、第1観点として、式(1-1)で表されることを特徴とするジアミンに関する。
Figure JPOXMLDOC01-appb-C000017
(式中、R1、R2、R3、R4及びR5は、それぞれ独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
6及びR7は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
a、b、d及びeは、それぞれ独立して、0~4の整数を表し、そして
cは0~2の整数を表す。)
 第2観点として、式(1-2)で表されるジアミンである、第1観点に記載のジアミンに関する。
Figure JPOXMLDOC01-appb-C000018
 第3観点として、式(1-3)又は式(1-4)で表されるジアミンである、第2観点に記載のジアミンに関する。
Figure JPOXMLDOC01-appb-C000019
 第4観点として、第1観点乃至第3観点のうちいずれか一項に記載のジアミンを含むジアミン成分と、酸二無水物成分との反応生成物であるポリアミック酸に関する。
 第5観点として、前記ジアミン成分が、式(A1)で表されるジアミンをさらに含む、第4観点に記載のポリアミック酸に関する。
Figure JPOXMLDOC01-appb-C000020
(式中、B2は、式(Y-1)~(Y-34)からなる群から選ばれる2価の基を表す。)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
(式中、*は結合手を表す。)
 第6観点として、前記酸二無水物成分が、式(C1)で表される酸二無水物を含む、第4観点又は第5観点に記載のポリアミック酸に関する。
Figure JPOXMLDOC01-appb-C000026
〔式中、B1は、式(X-1)~(X-12)からなる群から選ばれる4価の基を表す。
Figure JPOXMLDOC01-appb-C000027
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
 第7観点として、第4観点乃至第6観点のうちいずれか一項に記載のポリアミック酸をイミド化して得られるポリイミドに関する。
 第8観点として、第7観点に記載のポリイミドと、有機溶媒とを含む膜形成用組成物に関する。
 第9観点として、第8観点に記載の膜形成用組成物から形成される薄膜に関する。
 第10観点として、第9観点に記載の薄膜からなるフレキシブルデバイス用基板に関する。
 第11観点として、式(2-1)で表されることを特徴とするジニトロ化合物に関する。
Figure JPOXMLDOC01-appb-C000028
(式中、R1、R2、R3、R4及びR5は、それぞれ独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
6及びR7は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
a、b、d及びeは、それぞれ独立して、0~4の整数を表し、そして
cは0~2の整数を表す。)
 第12観点として、式(2-2)で表されるジニトロ化合物である、第11観点に記載のジニトロ化合物に関する。
Figure JPOXMLDOC01-appb-C000029
 第13観点として、式(2-3)又は式(2-4)で表されるジニトロ化合物である、第12観点に記載のジニトロ化合物に関する。
Figure JPOXMLDOC01-appb-C000030
第14観点として、式(1-1)で表されるジアミンを製造する方法であって、
Figure JPOXMLDOC01-appb-C000031
(式中、R1、R2、R3、R4及びR5は、それぞれ独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
6及びR7は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
a、b、d及びeは、それぞれ独立して、0~4の整数を表し、そして
cは0~2の整数を表す。)
式(2-1)で表されるジニトロ化合物のニトロ基を還元して式(1-1)で表されるジアミンを得る段階を含む、製造方法に関する。
Figure JPOXMLDOC01-appb-C000032
(式中、R1、R2、R3、R4、R5、R6、R7、a、b、c、d及びeは上記と同じ意味を表す。)
That is, the present invention relates to a diamine represented by the formula (1-1) as a first aspect.
Figure JPOXMLDOC01-appb-C000017
(Wherein R 1 , R 2 , R 3 , R 4 and R 5 each independently represents a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms,
R 6 and R 7 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms,
a, b, d and e each independently represents an integer of 0 to 4, and c represents an integer of 0 to 2. )
As a second aspect, the present invention relates to the diamine according to the first aspect, which is a diamine represented by the formula (1-2).
Figure JPOXMLDOC01-appb-C000018
A third aspect relates to the diamine according to the second aspect, which is a diamine represented by formula (1-3) or formula (1-4).
Figure JPOXMLDOC01-appb-C000019
As a 4th viewpoint, it is related with the polyamic acid which is a reaction product of the diamine component containing the diamine as described in any one of a 1st viewpoint thru | or a 3rd viewpoint, and an acid dianhydride component.
As a 5th viewpoint, the said diamine component is related with the polyamic acid as described in a 4th viewpoint which further contains the diamine represented by a formula (A1).
Figure JPOXMLDOC01-appb-C000020
(Wherein B 2 represents a divalent group selected from the group consisting of formulas (Y-1) to (Y-34)).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
(In the formula, * represents a bond.)
As a 6th viewpoint, the said acid dianhydride component is related with the polyamic acid as described in a 4th viewpoint or a 5th viewpoint containing the acid dianhydride represented by Formula (C1).
Figure JPOXMLDOC01-appb-C000026
[Wherein B 1 represents a tetravalent group selected from the group consisting of formulas (X-1) to (X-12).
Figure JPOXMLDOC01-appb-C000027
(In the formula, a plurality of R's independently represent a hydrogen atom or a methyl group, and * represents a bond.)
As a seventh aspect, the present invention relates to a polyimide obtained by imidizing the polyamic acid according to any one of the fourth aspect to the sixth aspect.
As an eighth aspect, the present invention relates to a film-forming composition comprising the polyimide according to the seventh aspect and an organic solvent.
As a 9th viewpoint, it is related with the thin film formed from the composition for film formation as described in an 8th viewpoint.
As a 10th viewpoint, it is related with the board | substrate for flexible devices which consists of a thin film as described in a 9th viewpoint.
As an eleventh aspect, the present invention relates to a dinitro compound characterized by being represented by the formula (2-1).
Figure JPOXMLDOC01-appb-C000028
(Wherein R 1 , R 2 , R 3 , R 4 and R 5 each independently represents a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms,
R 6 and R 7 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms,
a, b, d and e each independently represents an integer of 0 to 4, and c represents an integer of 0 to 2. )
As a twelfth aspect, the present invention relates to the dinitro compound according to the eleventh aspect, which is a dinitro compound represented by the formula (2-2).
Figure JPOXMLDOC01-appb-C000029
A thirteenth aspect relates to the dinitro compound according to the twelfth aspect, which is a dinitro compound represented by formula (2-3) or formula (2-4).
Figure JPOXMLDOC01-appb-C000030
As a fourteenth aspect, a method for producing a diamine represented by formula (1-1),
Figure JPOXMLDOC01-appb-C000031
(Wherein R 1 , R 2 , R 3 , R 4 and R 5 each independently represents a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms,
R 6 and R 7 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms,
a, b, d and e each independently represents an integer of 0 to 4, and c represents an integer of 0 to 2. )
The present invention relates to a production method including a step of obtaining a diamine represented by formula (1-1) by reducing a nitro group of a dinitro compound represented by formula (2-1).
Figure JPOXMLDOC01-appb-C000032
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d and e represent the same meaning as described above.)
 本発明の新規ジアミン化合物は、とりわけ従来既知の含フッ素原子芳香族ジアミンとともに、脂環式テトラカルボン酸二無水物と共重合させることで、有機溶媒に可溶なポリイミドを得ることができる。
 また本発明のジアミン化合物から得られるポリイミドは、柔軟性及び透明性に優れ、さらに低いリタデーションを実現できる薄膜を形成できる。
 さらに本発明のポリイミドを含む膜形成用組成物より得られる薄膜は、柔軟性及び透明性に優れることに加え、特に低い線膨張係数、低いリタデーションを示すことから、該樹脂膜についてもフレキシブルデバイス、特にフレキシブルディスプレイの基板として好適に用いることができる。
 そして、本発明のポリイミドを用いて形成される膜は、高い透明性(高い光線透過率、低い黄色度)、低いリタデーションを示すことから、フレキシブルデバイス、特にフレキシブルディスプレイの基板として好適に用いることができる。
The novel diamine compound of the present invention can obtain a polyimide soluble in an organic solvent by copolymerizing with a alicyclic tetracarboxylic dianhydride together with a conventionally known fluorine-containing aromatic diamine.
Moreover, the polyimide obtained from the diamine compound of the present invention is excellent in flexibility and transparency, and can form a thin film that can realize a lower retardation.
Furthermore, since the thin film obtained from the film-forming composition containing the polyimide of the present invention exhibits excellent flexibility and transparency, and particularly exhibits a low linear expansion coefficient and low retardation, the resin film is also a flexible device, In particular, it can be suitably used as a substrate for a flexible display.
And since the film | membrane formed using the polyimide of this invention shows high transparency (high light transmittance, low yellowness) and low retardation, it can be used suitably as a board | substrate of a flexible device, especially a flexible display. it can.
[ジアミン化合物]
 以下、本発明についてさらに詳しく説明する。
 本発明に係るジアミンは、式(1-1)で表されるジアミンであり、特に式(1-2)で表されるジアミンが好ましく、中でも、柔軟性及び透明性に優れ、低リタデーションの薄膜等を再現性よく得ることを考慮すると、好ましくは式(1-3)又は式(1-4)で表されるジアミンである。
Figure JPOXMLDOC01-appb-C000033
(上記式(1-1)中、R1、R2、R3、R4及びR5は、それぞれ独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、R6及びR7は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、a、b、d及びeは、それぞれ独立して、0~4の整数を表し、そしてcは0~2の整数を表す。)
[Diamine compound]
Hereinafter, the present invention will be described in more detail.
The diamine according to the present invention is a diamine represented by the formula (1-1), and particularly preferred is a diamine represented by the formula (1-2). Among them, a thin film having excellent flexibility and transparency and low retardation. Considering that the above can be obtained with good reproducibility, a diamine represented by formula (1-3) or formula (1-4) is preferable.
Figure JPOXMLDOC01-appb-C000033
(In the above formula (1-1), R 1 , R 2 , R 3 , R 4 and R 5 are each independently a halogen atom, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. R 6 and R 7 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, and a, b, d and e each independently represents an integer of 0 to 4, and c represents an integer of 0 to 2.)
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。
 上記炭素原子数1乃至5のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソアミル基、ネオペンチル基、tert-アミル基、sec-イソアミル基、シクロペンチル基、n-ヘキシル基等が挙げられる。
 また炭素原子数1乃至5のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基、イソペントキシ基、ネオペントキシ基、tert-ペントキシ基等が挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
Examples of the alkyl group having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, and n-pentyl group. , Isoamyl group, neopentyl group, tert-amyl group, sec-isoamyl group, cyclopentyl group, n-hexyl group and the like.
Examples of the alkoxy group having 1 to 5 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, and n-pentoxy group. , Isopentoxy group, neopentoxy group, tert-pentoxy group and the like.
 本発明の上記式(1-1)~(1-4)で表されるジアミンは、それぞれ下記式(2-1)~(2-4)で表されるジニトロ化合物のニトロ基を還元して得ることができる。
Figure JPOXMLDOC01-appb-C000034
(式中、R1、R2、R3、R4、R5、R6、R7、a、b、c、d及びeは上記と同じ意味を表す。)
The diamines represented by the above formulas (1-1) to (1-4) of the present invention are obtained by reducing the nitro groups of dinitro compounds represented by the following formulas (2-1) to (2-4), respectively. Obtainable.
Figure JPOXMLDOC01-appb-C000034
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d and e represent the same meaning as described above.)
 具体的には、上記式(1-1)で表されるジアミンは、一例として下記スキームで示されるように、有機溶媒中、9,10-[1,2]ベンゼノアントラセン-1,4-ジアミノ化合物(以下、ベンゼノアントラセンジアミノ化合物ともいう。)と、ニトロベンゾイルハライド化合物を塩基触媒の存在下で反応させて、中間体(9,10-[1,2]ベンゼノアントラセン-1,4-ジイル ビス(ニトロベンズアミド)化合物)(式(2-1)で表される化合物)を得(第1段階)、この中間体のニトロ基を還元する(第2段階)ことで得ることができる。なお中間体である上記式(2-1)~(2-4)で表されるジニトロ化合物も本発明の対象である。
Figure JPOXMLDOC01-appb-C000035
(上記スキーム中、Xはハロゲン原子を表し、R1、R2、R3、R4、R5、R6、R7、a、b、c、d及びeは上記と同じ意味を表す。)
Specifically, the diamine represented by the formula (1-1) is 9,10- [1,2] benzenoanthracene-1,4-in an organic solvent as shown in the following scheme as an example. A diamino compound (hereinafter also referred to as a benzenoanthracene diamino compound) and a nitrobenzoyl halide compound are reacted in the presence of a base catalyst to obtain an intermediate (9,10- [1,2] benzenoanthracene-1,4 -Diyl bis (nitrobenzamide) compound) (compound represented by formula (2-1)) can be obtained (first stage), and the nitro group of this intermediate can be reduced (second stage). . The dinitro compounds represented by the above formulas (2-1) to (2-4) which are intermediates are also the object of the present invention.
Figure JPOXMLDOC01-appb-C000035
(In the above scheme, X represents a halogen atom, and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d and e have the same meaning as described above. )
 第1段階の反応において、ベンゼノアントラセンジアミノ化合物とニトロベンゾイルハライド化合物との仕込み比は、ベンゼノアントラセンジアミノ化合物1モルに対し、ニトロベンゾイルハライド化合物2~4モルが好ましい。また、ニトロベンゾイルハライド化合物は、反応液での安定性が低いことから、ベンゼンアントラセンジアミン化合物をニトロベンズハライド化合物の溶液に添加する際には、必要量を一度に添加するのではなく、数回に分けて添加することが好ましい。
 塩基触媒としては、トリメチルアミン、トリエチルアミン、ジイソプロピルアミン、ジイソプロピルエチルアミン、N-メチルピペリジン、2,2,6,6-テトラメチル-N-メチルピペリジン、ピリジン、4-ジメチルアミノピリジン、N-メチルモルホリン等の有機アミン類等の有機塩基が好適に用いられる。また、塩基触媒の使用量は、ベンゼノアントラセンジアミノ化合物1モルに対して2モル以上であれば特に限定されるものではないが、通常2~10モル程度である。
 また、反応で副生する塩酸等の酸を中和するために、酸吸収剤を用いてもよい。酸吸収剤としては、プロピレンオキシド等のエポキシド類が挙げられる。酸吸収剤の使用量は、ベンゼノアントラセンジアミノ化合物1モルに対して2モル以上であれば特に限定されるものではないが、通常2~10モル程度である。
 有機溶媒としては、反応に影響を及ぼさない溶媒であれば特に限定されるものではないが、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;N,N-ジメチルホルムアミド(以下、DMFという)、N,N-ジメチルアセトアミド(以下、DMAcという)、N-メチル-2-ピロリドン(以下、NMPという)等のアミド類;ジエチルエーテル、テトラヒドロフラン(以下、THFという)、1,4-ジオキサン、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル類、2-ブタノン、4-メチル-2-ペンタノンなどのケトン類、アセトニトリル等のニトリル類、ジメチルスルホキシド(以下、DMSOという)などを用いることができる。これらの溶媒は、単独で用いても、2種以上を組み合わせて用いてもよい。なお、溶媒中に水分が多く含まれると、エステルの加水分解が起こることから、溶媒は脱水溶媒を使用する、もしくは、脱水してから使用することが好ましい。
 反応温度は、0~200℃程度とすることができるが、20~150℃が好ましい。
 反応後は、溶媒を留去し、粗生成物のまま、あるいは精製して次工程に用いる。精製法は任意であり、再結晶、蒸留、シリカゲルカラムクロマトグラフィ等公知の手法から適宜選択すればよい。
In the first stage reaction, the charging ratio of the benzenoanthracene diamino compound to the nitrobenzoyl halide compound is preferably 2 to 4 mol of the nitrobenzoyl halide compound with respect to 1 mol of the benzenoanthracene diamino compound. Also, since the nitrobenzoyl halide compound has low stability in the reaction solution, when adding the benzeneanthracenediamine compound to the solution of the nitrobenzhalide compound, the necessary amount is not added all at once, but several times. It is preferable to add in portions.
Base catalysts include trimethylamine, triethylamine, diisopropylamine, diisopropylethylamine, N-methylpiperidine, 2,2,6,6-tetramethyl-N-methylpiperidine, pyridine, 4-dimethylaminopyridine, N-methylmorpholine, etc. Organic bases such as organic amines are preferably used. The amount of the base catalyst used is not particularly limited as long as it is 2 mol or more with respect to 1 mol of the benzenoanthracene diamino compound, but it is usually about 2 to 10 mol.
In addition, an acid absorbent may be used to neutralize an acid such as hydrochloric acid by-produced in the reaction. Examples of the acid absorbent include epoxides such as propylene oxide. The amount of the acid absorbent used is not particularly limited as long as it is 2 mol or more with respect to 1 mol of the benzenoanthracenediamino compound, but it is usually about 2 to 10 mol.
The organic solvent is not particularly limited as long as it does not affect the reaction, but is an aromatic hydrocarbon such as benzene, toluene, xylene; N, N-dimethylformamide (hereinafter referred to as DMF), Amides such as N, N-dimethylacetamide (hereinafter referred to as DMAc) and N-methyl-2-pyrrolidone (hereinafter referred to as NMP); diethyl ether, tetrahydrofuran (hereinafter referred to as THF), 1,4-dioxane, 1, Ethers such as 2-dimethoxyethane and cyclopentylmethyl ether, ketones such as 2-butanone and 4-methyl-2-pentanone, nitriles such as acetonitrile, dimethyl sulfoxide (hereinafter referred to as DMSO) and the like can be used. These solvents may be used alone or in combination of two or more. It should be noted that if the solvent contains a large amount of water, hydrolysis of the ester occurs. Therefore, it is preferable to use a dehydrated solvent or a dehydrated solvent.
The reaction temperature can be about 0 to 200 ° C., preferably 20 to 150 ° C.
After the reaction, the solvent is distilled off, and the crude product is used in the next step as it is or after purification. The purification method is arbitrary and may be appropriately selected from known methods such as recrystallization, distillation, silica gel column chromatography.
 第2段階の反応において、中間体のニトロ基をアミノ基へ還元する方法としては、公知の方法を採用すればよく、特に制限はないが、例えば、パラジウム-炭素、酸化白金、ラネーニッケル、白金-炭素、ロジウム-アルミナ、硫化白金炭素、還元鉄、塩化鉄、スズ、塩化スズ、亜鉛などを触媒として用い、水素ガス、ヒドラジン、塩化水素、塩化アンモニウムなどによって行う方法がある。特に、中間体のエステル部位に起因する副反応を起こしにくく、容易に目的物を得ることができることから、接触水素化が好ましい。
 接触水素化の水素原子源としては、水素ガスやヒドラジン、塩化水素、塩化アンモニウム、ギ酸アンモニウム等が挙げられる。
 接触水素化に用いる触媒としては、白金、パラジウム、ルテニウム、ロジウム、ニッケル、鉄、亜鉛、スズ等の金属の粉末が挙げられ、金属の粉末が活性体に担持されたものであってもよい。触媒の種類は、水素源の種類や反応条件に応じて適宜決定されるため、特に限定されないが、ニトロ基のみを還元できる触媒であればよく、好ましくは、パラジウム-炭素、酸化白金、ラネーニッケル、白金-炭素、ロジウム-アルミナ、硫化白金炭素が挙げられる。また、触媒の使用量は、水素源の種類や反応条件に応じて適宜決定されるため、特に限定されないが、原料のジニトロ体(中間体)に対して金属換算で通常0.01モル%から50モル%、好ましくは0.1モル%から20モル%である。
 反応溶媒としては、反応に影響を及ぼさない溶媒を用いることができる。例えば、酢酸エチル、酢酸メチルなどのエステル系溶媒、トルエン、キシレンなどの芳香族炭化水素溶媒、n-ヘキサン、n-ヘプタン、シクロヘキサンなどの脂肪族炭化水素溶媒、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、エタノールなどのアルコール系溶媒、2-ブタノン、4-メチル-2-ペンタノンなどのケトン系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシドなどの非プロトン性極性溶媒、水などが挙げられる。これらの溶媒は、単独、又は、2種類以上混合して使用することができる。
 反応温度は、原料や生成物が分解することなく、用いる溶媒の沸点以下であれば、反応が効率よく進行する温度で行なうことができる。具体的には、-78℃から溶媒の沸点以下の温度が好ましく、合成の簡便性の観点から、0℃から溶媒の沸点以下の温度がより好ましく、さらに好ましくは0~100℃、さらにより好ましくは10~50℃である。
 また、接触水素化は、オートクレーブを用いる等して、加圧条件の下で行ってもよい。
 反応後は、溶媒を留去後、再結晶、蒸留、シリカゲルカラムクロマトグラフィ等公知の手法を用いて精製し、目的物のジアミンを得ることができる。なお、溶媒中に酸素が多く含まれると、生成したジアミン化合物の着色が起こる場合があるため、反応および精製に使用する溶媒は脱気してから使用することが好ましい。また、より着色を防ぐために、反応後の溶媒留去前、溶媒留去後の反応液も脱気することが好ましい。
In the second stage reaction, the method for reducing the nitro group of the intermediate to an amino group may be a known method and is not particularly limited. For example, palladium-carbon, platinum oxide, Raney nickel, platinum- There is a method in which carbon, rhodium-alumina, platinum carbon sulfide, reduced iron, iron chloride, tin, tin chloride, zinc or the like is used as a catalyst, and hydrogen gas, hydrazine, hydrogen chloride, ammonium chloride or the like is used. In particular, catalytic hydrogenation is preferred because side reactions due to the ester sites of the intermediate are unlikely to occur and the desired product can be easily obtained.
Examples of the hydrogen atom source for catalytic hydrogenation include hydrogen gas, hydrazine, hydrogen chloride, ammonium chloride, and ammonium formate.
Examples of the catalyst used for the catalytic hydrogenation include powders of metals such as platinum, palladium, ruthenium, rhodium, nickel, iron, zinc, tin and the like, and the metal powder may be supported on an active material. The type of the catalyst is appropriately determined according to the type of the hydrogen source and the reaction conditions, and is not particularly limited, but may be any catalyst that can reduce only the nitro group, preferably palladium-carbon, platinum oxide, Raney nickel, Examples include platinum-carbon, rhodium-alumina, and platinum sulfide carbon. The amount of the catalyst used is not particularly limited because it is appropriately determined according to the type of hydrogen source and the reaction conditions, but is usually 0.01 mol% in terms of metal with respect to the raw dinitro compound (intermediate). 50 mol%, preferably 0.1 mol% to 20 mol%.
As the reaction solvent, a solvent that does not affect the reaction can be used. For example, ester solvents such as ethyl acetate and methyl acetate, aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents such as n-hexane, n-heptane and cyclohexane, 1,2-dimethoxyethane, tetrahydrofuran, Ether solvents such as dioxane, alcohol solvents such as methanol and ethanol, ketone solvents such as 2-butanone and 4-methyl-2-pentanone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl Examples include aprotic polar solvents such as -2-pyrrolidone and dimethyl sulfoxide, and water. These solvents can be used alone or in admixture of two or more.
The reaction can be carried out at a temperature at which the reaction proceeds efficiently as long as it is not higher than the boiling point of the solvent used without decomposition of the raw materials and products. Specifically, a temperature from −78 ° C. to the boiling point of the solvent is preferable, and from the viewpoint of ease of synthesis, a temperature from 0 ° C. to the boiling point of the solvent is more preferable, more preferably from 0 to 100 ° C., and even more preferable. Is 10 to 50 ° C.
Further, the catalytic hydrogenation may be performed under pressure conditions such as using an autoclave.
After the reaction, after distilling off the solvent, the target diamine can be obtained by purification using a known method such as recrystallization, distillation, silica gel column chromatography or the like. If the solvent contains a large amount of oxygen, the produced diamine compound may be colored. Therefore, the solvent used for the reaction and purification is preferably degassed before use. Moreover, in order to prevent coloring more, it is preferable to deaerate also the reaction liquid after the solvent distillation after the reaction.
 また、本発明で用いるベンゼノアントラセンジアミノ化合物は、例えば、一例として下記スキームで示されるように、公知の方法に従い得る事ができる。具体的には、まず、有機溶媒中、アントラセン化合物と1,4-ベンゾキノン化合物とをDiels-Alder反応させて、9,10-[1,2]ベンゼノアントラセン-13,16(9H,10H)-ジオン化合物(I)を得、これを酢酸溶媒中、47%臭化水素存在下、加熱条件で処理することで、ベンゼノアントラセンジオール化合物(II)を得る。その後、酢酸溶媒中、臭素酸カリウム存在下、加熱条件で処理してキノン化合物(III)を得、これをヒドロキシルアミン塩酸塩とともにアルコール溶媒中で加熱することでジオキシムとしたあと、アルコール溶媒中、塩化第一スズ及び塩酸の存在下、加熱条件で処理することで、ベンゼノアントラセンジアミノ化合物(IV)を得ることができる。
Figure JPOXMLDOC01-appb-C000036
(上記スキーム中、R1、R2、R3、R6、R7、a、b及びcは上記と同じ意味を表す。)
In addition, the benzenoanthracenediamino compound used in the present invention can be obtained according to a known method, for example, as shown in the following scheme as an example. Specifically, first, an anthracene compound and a 1,4-benzoquinone compound are subjected to a Diels-Alder reaction in an organic solvent, and 9,10- [1,2] benzenoanthracene-13,16 (9H, 10H) -Dione compound (I) is obtained, and this is treated under heating conditions in the presence of 47% hydrogen bromide in an acetic acid solvent to obtain benzenoanthracenediol compound (II). Thereafter, the quinone compound (III) is obtained by heating in an acetic acid solvent in the presence of potassium bromate to obtain a quinone compound (III), which is heated in an alcohol solvent together with hydroxylamine hydrochloride to form a dioxime. The benzenoanthracene diamino compound (IV) can be obtained by treatment under heating conditions in the presence of stannous chloride and hydrochloric acid.
Figure JPOXMLDOC01-appb-C000036
(In the above scheme, R 1 , R 2 , R 3 , R 6 , R 7 , a, b and c have the same meaning as described above.)
[ポリアミック酸及びポリイミド]
 以上説明した本発明のジアミンは、酸二無水物との重縮合反応によりポリアミック酸とした後、熱または触媒を用いた脱水閉環反応により、対応するポリイミドとすることができる。該ポリアミック酸及びポリイミド、すなわち、本発明の上記式(1-1)で表されるジアミンを含むジアミン成分と、酸二無水成分とを反応させることで得られるポリアミック酸(ジアミン成分と酸二無水物成分との反応生成物)、並びに該ポリアミック酸のイミド化物であるポリイミドも、本発明の対象である。
[Polyamic acid and polyimide]
The diamine of the present invention described above can be converted to a polyamic acid by a polycondensation reaction with an acid dianhydride, and then converted into a corresponding polyimide by a dehydration ring-closing reaction using heat or a catalyst. The polyamic acid and polyimide, that is, a polyamic acid (diamine component and acid dianhydride) obtained by reacting a diamine component containing the diamine represented by the above formula (1-1) of the present invention with an acid dianhydride component. Reaction products with physical components), and polyimide which is an imidized product of the polyamic acid are also objects of the present invention.
 柔軟性及び透明性に優れるだけでなく、リタデーションが低いという特徴をも有する薄膜等を与えるポリアミック酸及びポリイミドを再現性よく得る観点から、本発明のポリアミック酸の製造に用いるジアミン成分は、本発明の上記式(1-1)で表されるジアミンに加え、好ましくは含フッ素原子芳香族ジアミンを、より好ましくは下記式(A1)で表されるジアミンを含む。
Figure JPOXMLDOC01-appb-C000037
(式中、B2は、式(Y-1)~(Y-34)からなる群から選ばれる2価の基を表す。)
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
(式中、*は結合手を表す。)
The diamine component used in the production of the polyamic acid of the present invention is not only excellent in flexibility and transparency, but also from the viewpoint of obtaining a polyamic acid and a polyimide that give a thin film having a characteristic of low retardation with good reproducibility. In addition to the diamine represented by the above formula (1-1), a fluorine-containing aromatic diamine is preferably contained, and a diamine represented by the following formula (A1) is more preferably contained.
Figure JPOXMLDOC01-appb-C000037
(Wherein B 2 represents a divalent group selected from the group consisting of formulas (Y-1) to (Y-34)).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
(In the formula, * represents a bond.)
 上記式(A1)で表されるジアミンの中でも、式中のB2が前記式(Y-12)、(Y-13)、(Y-14)、(Y-15)、(Y-18)、(Y-27)、(Y-28)、(Y-30)、(Y-33)で表されるジアミンが好ましく、前記B2が前記式(Y-12)、(Y-13)、(Y-14)、(Y-15)、(Y-33)で表されるジアミンが特に好ましい。
 また、本発明の効果を損なわない範囲において、前記ジアミン成分には、上記式(1-1)で表されるジアミン、上記式(A1)で表されるジアミン以外の、その他のジアミン化合物を用いてもよい。
Among the diamines represented by the above formula (A1), B 2 in the formula is the formula (Y-12), (Y-13), (Y-14), (Y-15), (Y-18) A diamine represented by (Y-27), (Y-28), (Y-30), (Y-33) is preferred, and the B 2 is represented by the formula (Y-12), (Y-13), Diamines represented by (Y-14), (Y-15), and (Y-33) are particularly preferred.
Further, as long as the effects of the present invention are not impaired, as the diamine component, other diamine compounds other than the diamine represented by the above formula (1-1) and the diamine represented by the above formula (A1) are used. May be.
 上記ジアミン成分において、本発明の上記式(1-1)で表されるジアミンとともに含フッ素原子芳香族ジアミンを用いる場合における、上記式(1-1)で表されるジアミンと含フッ素原子芳香族ジアミンとのモル比率は、通常、上記式(1-1)で表されるジアミン:含フッ素原子芳香族ジアミン=1:1~1:10である。このような範囲とすることで、薄膜の脆弱化を抑制でき、また低線膨張係数の薄膜を再現性よく得ることができる。 In the diamine component, when the fluorine-containing aromatic diamine is used together with the diamine represented by the formula (1-1) of the present invention, the diamine represented by the formula (1-1) and the fluorine-containing atom aromatic The molar ratio with the diamine is usually diamine: fluorine-containing aromatic diamine represented by the above formula (1-1) = 1: 1 to 1:10. By setting it as such a range, the weakening of a thin film can be suppressed and the thin film of a low linear expansion coefficient can be obtained with sufficient reproducibility.
 柔軟性及び透明性に優れるだけでなく、リタデーションが低いという特徴をも有する薄膜等を与えるポリアミック酸及びポリイミドを再現性よく得る観点から、本発明のポリアミック酸の製造に用いる酸二無水物成分は、好ましくは脂環式テトラカルボン酸二無水物を、より好ましくは下記式(C1)で表される酸二無水物を含む。
Figure JPOXMLDOC01-appb-C000043
〔式中、B1は、式(X-1)~(X-12)からなる群から選ばれる4価の基を表す。
Figure JPOXMLDOC01-appb-C000044
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
The acid dianhydride component used in the production of the polyamic acid of the present invention is not only excellent in flexibility and transparency, but also has a reproducibility of polyamic acid and polyimide that give a thin film having a characteristic of low retardation. , Preferably alicyclic tetracarboxylic dianhydride, more preferably acid dianhydride represented by the following formula (C1).
Figure JPOXMLDOC01-appb-C000043
[Wherein B 1 represents a tetravalent group selected from the group consisting of formulas (X-1) to (X-12).
Figure JPOXMLDOC01-appb-C000044
(In the formula, a plurality of R's independently represent a hydrogen atom or a methyl group, and * represents a bond.)
 上記式(C1)で表される酸二無水物の中でも、式中のB1が前記式(X-1)、(X-2)、(X-4)、(X-5)、(X-6)、(X-7)、(X-8)、(X-9)、(X-11)、(X-12)で表される酸二無水物が好ましく、前記B1が前記式(X-1)、(X-2)、(X-6)、(X-7)、(X-11)、(X-12)で表される酸二無水物が特に好ましい。 Among the acid dianhydrides represented by the above formula (C1), B 1 in the formula is represented by the formula (X-1), (X-2), (X-4), (X-5), (X -6), (X-7), (X-8), (X-9), (X-11), and (X-12) are preferred acid dianhydrides, wherein B 1 represents the above formula Acid dianhydrides represented by (X-1), (X-2), (X-6), (X-7), (X-11), and (X-12) are particularly preferred.
 高柔軟性、高透明性、低リタデーションの薄膜等を与えるポリアミック酸及びポリイミドを再現性よく得る観点から、本発明のポリアミック酸の製造に用いる酸二無水物成分中の脂環式テトラカルボン酸二無水物の含有量は、好ましくは50mol%以上、より好ましくは60mol%以上、より一層好ましくは70モル%以上、さらに好ましくは80モル%以上、さらに一層好ましくは90モル%以上、最も好ましくは100モル%である。 From the viewpoint of obtaining a polyamic acid and polyimide that give a thin film having high flexibility, high transparency, low retardation, etc. with good reproducibility, the alicyclic tetracarboxylic acid dicarboxylic acid in the acid dianhydride component used in the production of the polyamic acid of the present invention is used. The anhydride content is preferably 50 mol% or more, more preferably 60 mol% or more, even more preferably 70 mol% or more, still more preferably 80 mol% or more, still more preferably 90 mol% or more, and most preferably 100 mol%. Mol%.
 なお、上記ジアミン成分として上記式(1-1)で表されるジアミンと上記式(A1)で表されるジアミンとを用い、上記酸二無水物成分として上記(C1)で表される酸二無水物を用いた場合、ポリアミック酸は下記式(4-1)で表されるモノマー単位と、下記式(4-2)で表されるモノマー単位とを有するものとなる。
Figure JPOXMLDOC01-appb-C000045
(式中、R1、R2、R3、R4、R5、R6、R7、a、b、c、d、e、B1及びB2は、上記と同じ意味を表す。)
The diamine represented by the above formula (1-1) and the diamine represented by the above formula (A1) are used as the diamine component, and the acid dianhydride component represented by the above (C1) is used as the acid dianhydride component. When an anhydride is used, the polyamic acid has a monomer unit represented by the following formula (4-1) and a monomer unit represented by the following formula (4-2).
Figure JPOXMLDOC01-appb-C000045
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d, e, B 1 and B 2 represent the same meaning as described above.)
 本発明のポリアミック酸を得る方法は特に限定されるものではなく、前述の酸二無水物成分とジアミン成分とを公知の手法によって反応、重合させればよい。
 ポリアミック酸を合成する際の酸二無水物成分のモル数とジアミン成分のモル数との比は、酸二無水物成分/ジアミン成分=0.8~1.2である。
The method for obtaining the polyamic acid of the present invention is not particularly limited, and the aforementioned acid dianhydride component and diamine component may be reacted and polymerized by a known method.
The ratio of the number of moles of the acid dianhydride component to the number of moles of the diamine component when synthesizing the polyamic acid is acid dianhydride component / diamine component = 0.8 to 1.2.
 ポリアミック酸合成に用いられる溶媒としては、例えば、m-クレゾール、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルカプロラクタム、ジメチルスルホキシド(DMSO)、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、γ-ブチロラクトンなどが挙げられる。これらは、単独で使用しても、混合して使用してもよい。さらに、ポリアミック酸を溶解しない溶媒であっても、均一な溶液が得られる範囲内で上記溶媒に加えて使用してもよい。
 重縮合反応の温度は、-20~150℃、好ましくは-5~100℃の任意の温度を選択することができる。
Examples of the solvent used for polyamic acid synthesis include m-cresol, N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), and N-methyl. Examples include caprolactam, dimethyl sulfoxide (DMSO), tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl phosphoramide, and γ-butyrolactone. These may be used alone or in combination. Furthermore, even if it is a solvent which does not melt | dissolve a polyamic acid, you may use it in addition to the said solvent within the range in which a uniform solution is obtained.
The temperature of the polycondensation reaction can be selected from -20 to 150 ° C, preferably -5 to 100 ° C.
 上述したポリアミック酸の重合反応により得られたポリアミック酸含有溶液は、そのまま、あるいは希釈もしくは濃縮した後、後述するポリイミドの膜を形成するための膜形成用組成物として使用することができる。また該ポリアミック酸含有溶液に、メタノール、エタノールなどの貧溶媒を加えてポリイミドを沈殿させてポリアミック酸を単離し、その単離したポリアミック酸を適当な溶媒に再溶解させ、これを後述する膜形成用組成物として使用することもできる。
 ポリアミック酸含有溶液の希釈用溶媒並びに単離したポリアミック酸の再溶解用溶媒は、得られたポリアミック酸を溶解させるものであれば特に限定されるものではなく、例えば、m-クレゾール、2-ピロリドン、NMP、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、DMAc、DMF、γ-ブチロラクトンなどが挙げられる。
The polyamic acid-containing solution obtained by the polymerization reaction of the polyamic acid described above can be used as a film-forming composition for forming a polyimide film, which will be described later, as it is, or after dilution or concentration. In addition, a poor solvent such as methanol or ethanol is added to the polyamic acid-containing solution to precipitate the polyimide to isolate the polyamic acid, and the isolated polyamic acid is redissolved in an appropriate solvent to form a film which will be described later. It can also be used as a composition.
The solvent for diluting the polyamic acid-containing solution and the solvent for re-dissolving the isolated polyamic acid are not particularly limited as long as the obtained polyamic acid can be dissolved. For example, m-cresol, 2-pyrrolidone NMP, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, DMAc, DMF, γ-butyrolactone, and the like.
 また、単独ではポリアミック酸を溶解しない溶媒であっても、ポリアミック酸が析出しない範囲であれば上記溶媒に加えて使用することができる。その具体例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどが挙げられる。 Further, even if the solvent alone does not dissolve the polyamic acid, it can be used in addition to the above solvent as long as the polyamic acid does not precipitate. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and 1-butoxy-2-propanol. 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-Ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate isoamyl ester, etc.
 本発明のポリイミドは、上記説明したポリアミック酸を、加熱により脱水閉環(熱イミド化)、または公知の脱水閉環触媒を使用して化学的に閉環して得ることができる。すなわち本発明のポリイミドは前記ポリアミック酸のイミド化物である。
 加熱による方法は、100~300℃、好ましくは120~250℃の任意の温度で行うことができる。
 化学的に閉環する方法は、例えば、ピリジンやトリエチルアミン、1-エチルピペリジンなどと、無水酢酸などとの存在下で行うことができ、この際の温度は、-20~200℃の任意の温度を選択することができる。
The polyimide of the present invention can be obtained by subjecting the above-mentioned polyamic acid to dehydration ring closure (thermal imidization) by heating, or chemically ring closure using a known dehydration ring closure catalyst. That is, the polyimide of the present invention is an imidized product of the polyamic acid.
The method by heating can be performed at an arbitrary temperature of 100 to 300 ° C., preferably 120 to 250 ° C.
The chemical ring closure method can be carried out, for example, in the presence of pyridine, triethylamine, 1-ethylpiperidine, etc., and acetic anhydride, and the temperature at this time is an arbitrary temperature of −20 to 200 ° C. You can choose.
 こうして得られる上記式(4-1)で表されるモノマー単位と上記記式(4-2)で表されるモノマー単位とを有するポリアミック酸から得られるポリイミドは、下記式(5-1)で表されるモノマー単位と下記式(5-2)で表されるモノマー単位とを有するものである。
Figure JPOXMLDOC01-appb-C000046
(式中、R1、R2、R3、R4、R5、R6、R7、a、b、c、d、e、B1及びB2は、上記と同じ意味を表す。)
The polyimide obtained from the polyamic acid having the monomer unit represented by the above formula (4-1) and the monomer unit represented by the above formula (4-2) thus obtained is represented by the following formula (5-1). And a monomer unit represented by the following formula (5-2).
Figure JPOXMLDOC01-appb-C000046
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d, e, B 1 and B 2 represent the same meaning as described above.)
 上述したポリアミック酸の閉環反応により得られたポリイミド溶液(ポリイミド含有溶液とも称する)は、そのまま、あるいは希釈もしくは濃縮した後、後述する膜形成用組成物として使用することができる。また該ポリイミド溶液に、メタノール、エタノールなどの貧溶媒を加えてポリイミドを沈殿させてポリイミドを単離し、その単離したポリイミドを適当な溶媒に再溶解させ、これを後述する膜形成用組成物として使用することができる。
 再溶解用溶媒は、得られたポリイミドを溶解させるものであれば特に限定されるものではなく、例えば、m-クレゾール、2-ピロリドン、NMP、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、DMAc、DMF、γ-ブチロラクトンなどが挙げられる。
The polyimide solution (also referred to as a polyimide-containing solution) obtained by the above-described ring closing reaction of polyamic acid can be used as it is, or after diluting or concentrating, as a film-forming composition described later. In addition, a poor solvent such as methanol or ethanol is added to the polyimide solution to precipitate the polyimide, and the polyimide is isolated. The isolated polyimide is redissolved in an appropriate solvent, and this is used as a film forming composition to be described later. Can be used.
The solvent for re-dissolution is not particularly limited as long as it can dissolve the obtained polyimide. For example, m-cresol, 2-pyrrolidone, NMP, N-ethyl-2-pyrrolidone, N-vinyl-2 -Pyrrolidone, DMAc, DMF, γ-butyrolactone and the like.
 また、単独ではポリイミドを溶解しない溶媒であっても、ポリイミドが析出しない範囲であれば上記溶媒に加えて使用することができる。その具体例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどが挙げられる。 Further, even if the solvent alone does not dissolve the polyimide, it can be used in addition to the above solvent as long as the polyimide does not precipitate. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and 1-butoxy-2-propanol. 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-Ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate isoamyl ester, etc.
 本発明において、ポリアミック酸(ポリイミド)の数平均分子量は、得られる薄膜の柔軟性、強度等を向上させるという観点から、好ましくは5,000以上、より好ましくは10,000以上、より一層好ましくは15,000以上、さらに好ましくは20,000以上であり、得られるポリイミドの溶解性を確保するという観点から、好ましくは200,000以下、より好ましくは100,000以下、より一層好ましくは、50,000以下である。なお本明細書において、数平均分子量は、GPC(ゲル浸透クロマトグラフィー)装置によって測定し、ポリスチレン換算値として算出される値である。 In the present invention, the number average molecular weight of the polyamic acid (polyimide) is preferably 5,000 or more, more preferably 10,000 or more, and still more preferably from the viewpoint of improving the flexibility, strength, etc. of the thin film obtained. 15,000 or more, more preferably 20,000 or more, and preferably 200,000 or less, more preferably 100,000 or less, and still more preferably 50,000 or more from the viewpoint of ensuring the solubility of the resulting polyimide. 000 or less. In the present specification, the number average molecular weight is a value measured by a GPC (gel permeation chromatography) apparatus and calculated as a polystyrene equivalent value.
[膜形成用組成物]
 上述の本発明のポリイミドと有機溶媒を含む膜形成用組成物も本発明の対象である。
[Composition for film formation]
The film forming composition containing the polyimide of the present invention and an organic solvent is also an object of the present invention.
<有機溶媒>
 上記膜形成組成物に使用する有機溶媒は、特に限定されるものではなく、例えば、上記ポリアミック酸及びポリイミドの調製時に用いた反応溶媒の具体例と同様のものが挙げられる。より具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-エチル-2-ピロリドン、γ-ブチロラクトンなどが挙げられる。なお、有機溶媒は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 これらの中でも、平坦性の高い薄膜を再現性よく得ることを考慮すると、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンが好ましい。
<Organic solvent>
The organic solvent used for the film-forming composition is not particularly limited, and examples thereof include the same examples as the specific examples of the reaction solvent used when preparing the polyamic acid and the polyimide. More specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-ethyl-2-pyrrolidone, γ- Examples include butyrolactone. In addition, an organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
Among these, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and γ-butyrolactone are preferable in view of obtaining a thin film with high flatness with good reproducibility.
<膜形成用組成物>
本発明の膜形成用組成物は、均一なものであって、相分離は認められないものである。
 また本発明の膜形成用組成物における固形分量の配合量は、通常0.5~30質量%程度、好ましくは5~25質量%程度である。固形分濃度が0.5質量%未満であると薄膜を作製する上において製膜効率が低くなり、また膜形成用組成物の粘度が低くなるため、表面が均一な塗膜を得られにくい。また固形分濃度が30質量%を超えると、膜形成用組成物の粘度が高くなりすぎて、やはり成膜効率の悪化や塗膜の表面均一性に欠ける虞がある。なおここでいう固形分量とは、有機溶媒以外の成分の総質量を意味し、液状のモノマー等であっても固形分として重量に含めるものとする。
 なお膜形成用組成物の粘度は、作製する薄膜の厚み等を勘案し適宜設定するものではあるが、特に5~50μm程度の厚さの薄膜を再現性よく得ること目的とする場合、通常、25℃で500~50,000mPa・s程度、好ましくは1,000~20,000mPa・s程度である。
<Film forming composition>
The film-forming composition of the present invention is uniform and phase separation is not observed.
The blending amount of the solid content in the film-forming composition of the present invention is usually about 0.5 to 30% by mass, preferably about 5 to 25% by mass. When the solid content concentration is less than 0.5% by mass, the film-forming efficiency is lowered in producing a thin film, and the viscosity of the film-forming composition is lowered, so that it is difficult to obtain a coating film having a uniform surface. On the other hand, when the solid content concentration exceeds 30% by mass, the viscosity of the film-forming composition becomes too high, and there is a possibility that the film forming efficiency is deteriorated and the surface uniformity of the coating film is lacking. In addition, solid content here means the total mass of components other than an organic solvent, and even if it is a liquid monomer etc., it shall be included in a weight as solid content.
The viscosity of the film-forming composition is appropriately set in consideration of the thickness of the thin film to be produced, etc. However, in particular, when the purpose is to obtain a thin film having a thickness of about 5 to 50 μm with good reproducibility, It is about 500 to 50,000 mPa · s at 25 ° C., preferably about 1,000 to 20,000 mPa · s.
 本発明の膜形成用組成物には、加工特性や各種機能性を付与するために、その他に様々な有機又は無機の低分子又は高分子化合物を配合してもよい。例えば、触媒、消泡剤、レベリング剤、界面活性剤、染料、可塑剤、微粒子、カップリング剤、増感剤等を用いることができる。
 なおその他成分を含む場合も含め、本発明の膜形成用組成物の固形分量において、上記ポリイミドの割合は70~100質量%とすることができる。
 本発明の膜形成用組成物は、上述の方法で得られたポリイミドを上述の有機溶媒に溶解して得ることができるし、ポリイミドの調製後の反応溶液に所望により前記有機溶媒を更に加えたものとしてもよい。
In addition, various organic or inorganic low-molecular or high-molecular compounds may be added to the film-forming composition of the present invention in order to impart processing characteristics and various functionalities. For example, a catalyst, an antifoaming agent, a leveling agent, a surfactant, a dye, a plasticizer, fine particles, a coupling agent, a sensitizer, and the like can be used.
The proportion of the polyimide in the solid content of the film-forming composition of the present invention, including the case where other components are included, can be 70 to 100% by mass.
The film-forming composition of the present invention can be obtained by dissolving the polyimide obtained by the above-described method in the above-mentioned organic solvent, and further adding the above-mentioned organic solvent to the reaction solution after preparation of the polyimide as desired. It may be a thing.
[薄膜]
 以上説明した本発明の膜形成用組成物を基材に塗布して乾燥・加熱することで有機溶媒を除去し、高い耐熱性と、高い透明性と、適度な柔軟性と、適度な線膨張係数とを有し、しかもリタデーションの小さい薄膜を得ることができる。
 そして上記薄膜、すなわち上記ポリイミドを含有する薄膜(膜形成用組成物の固形分からなる薄膜)も本発明の対象である。
[Thin film]
The organic solvent is removed by applying the film forming composition of the present invention described above to a substrate, drying and heating, high heat resistance, high transparency, appropriate flexibility, and appropriate linear expansion. And a thin film having a small retardation.
And the said thin film, ie, the thin film (thin film which consists of solid content of the composition for film formation) containing the said polyimide is also the object of this invention.
 薄膜の製造に用いる基材としては、例えば、プラスチック(ポリカーボネート、ポリメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ、メラミン、トリアセチルセルロース、ABS、AS、ノルボルネン系樹脂等)、金属、ステンレス鋼(SUS)、木材、紙、ガラス、シリコンウェハ、スレート等が挙げられる。
 特に、電子デバイスの基板材料として適用する場合においては、既存設備を利用することができるという観点から、適用する基材がガラス、シリコンウェハであることが好ましく、また得られる薄膜が良好な剥離性を示すことからガラスであることがさらに好ましい。なお、適用する基材の線膨張係数としては塗工後の基材の反りの観点から、好ましくは35ppm/℃以下、より好ましくは30ppm/℃以下、より一層好ましくは25ppm/℃以下、さらに好ましくは、20ppm/℃以下である。
Examples of the base material used for the production of the thin film include plastics (polycarbonate, polymethacrylate, polystyrene, polyester, polyolefin, epoxy, melamine, triacetyl cellulose, ABS, AS, norbornene resin, etc.), metal, stainless steel (SUS). Wood, paper, glass, silicon wafer, slate and the like.
In particular, when applied as a substrate material for an electronic device, it is preferable that the base material to be applied is glass or a silicon wafer from the viewpoint that existing equipment can be used, and the obtained thin film has good peelability. Of these, glass is more preferable. The linear expansion coefficient of the substrate to be applied is preferably 35 ppm / ° C. or less, more preferably 30 ppm / ° C. or less, still more preferably 25 ppm / ° C. or less, more preferably from the viewpoint of the warp of the substrate after coating. Is 20 ppm / ° C. or less.
 基材への膜形成用組成物の塗布法は、特に限定されるものではないが、例えば、キャストコート法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、インクジェット法、印刷法(凸版、凹版、平版、スクリーン印刷等)等が挙げられ、目的に応じてこれらを適宜用いることができる。 The coating method of the film-forming composition on the substrate is not particularly limited. For example, cast coating method, spin coating method, blade coating method, dip coating method, roll coating method, bar coating method, die coating method. Method, ink jet method, printing method (letter plate, intaglio plate, planographic plate, screen printing, etc.) and the like, and these can be appropriately used according to the purpose.
 加熱温度は、300℃以下が好ましい。300℃を超えると、得られる薄膜が脆くなり、特にディスプレイ基板用途に適した薄膜を得ることができない場合がある。
 また、得られる薄膜の耐熱性と線膨張係数特性を考慮すると、塗布した膜形成用組成物を40℃~100℃で5分間~2時間加熱した後に、そのまま段階的に加熱温度を上昇させ、最終的に175℃超~280℃で30分~2時間加熱することが望ましい。このように、溶媒を乾燥させる段階と分子配向を促進する段階の2段階以上の温度で加熱することにより、低熱膨張特性を発現させることができる。
 特に、塗布した膜形成用組成物は、40℃~100℃で5分間~2時間加熱した後に、100℃超~175℃で5分間~2時間、次いで、175℃超~280℃で5分~2時間加熱することが好ましい。
 加熱に用いる器具は、例えばホットプレート、オーブン等が挙げられる。加熱雰囲気は、空気下であっても窒素等の不活性ガス下であってもよく、また、常圧下であっても減圧下であってもよく、また加熱の各段階において異なる圧力を適用してもよい。
The heating temperature is preferably 300 ° C. or lower. If it exceeds 300 ° C., the resulting thin film becomes brittle, and a thin film particularly suitable for display substrate use may not be obtained.
In consideration of the heat resistance and linear expansion coefficient characteristics of the obtained thin film, after heating the applied film-forming composition at 40 ° C. to 100 ° C. for 5 minutes to 2 hours, the heating temperature is increased stepwise as it is, Finally, it is desirable to heat at over 175 ° C. to 280 ° C. for 30 minutes to 2 hours. Thus, the low thermal expansion characteristic can be expressed by heating at a temperature of two or more stages of drying the solvent and promoting molecular orientation.
In particular, the applied film-forming composition is heated at 40 ° C. to 100 ° C. for 5 minutes to 2 hours, and then heated from 100 ° C. to 175 ° C. for 5 minutes to 2 hours, and then from 175 ° C. to 280 ° C. for 5 minutes. Heating for ~ 2 hours is preferred.
Examples of the appliance used for heating include a hot plate and an oven. The heating atmosphere may be under air or under an inert gas such as nitrogen, and may be under normal pressure or under reduced pressure, and different pressures are applied at each stage of heating. May be.
 薄膜の厚さは、特にフレキシブルディスプレイ用の基板として用いる場合、通常1~60μm程度、好ましくは5~50μm程度であり、加熱前の塗膜の厚さを調整して所望の厚さの薄膜を形成する。
 なおこのようにして形成された薄膜を基材から剥離する方法としては特に限定はなく、該薄膜を基材ごと冷却し、薄膜に切れ目を入れ剥離する方法やロールを介して張力を与えて剥離する方法等が挙げられる。
When used as a substrate for a flexible display, the thickness of the thin film is usually about 1 to 60 μm, preferably about 5 to 50 μm. A thin film having a desired thickness can be obtained by adjusting the thickness of the coating before heating. Form.
In addition, there is no limitation in particular as a method of peeling the thin film formed in this way from a base material, The thin film is cooled with the base material, the thin film is cut and peeled, and a tension is applied through a roll to separate. And the like.
 なお上述したように、前記ポリアミック酸含有溶液や前記ポリイミド含有溶液は、ポリイミドの膜を形成するための膜形成用組成物として、好適に用いることができる。
 すなわち、基材上に塗布した上記ポリアミック酸含有溶液を加熱し、溶媒を蒸発させつつイミド化反応をさせることで、あるいは、基材上に塗布した上記ポリイミド含有溶液を加熱し、溶媒を蒸発させることで、本発明のポリイミドを含む膜を得ることができる。すなわち該膜は、上記ポリアミック酸含有溶液の固形分からなり、該固形分中のポリアミック酸のイミド化物を含む膜であるか、上記ポリイミド溶液の固形分からなるものである。この際、加熱温度は、通常40~500℃程度であり、例えば、40~150℃の範囲、180~350℃の範囲、さらに380~450℃の範囲で段階的に加熱してもよい。
 なお、ポリイミドの膜と基材との密着性を更に向上させる目的で、ポリアミック酸含有溶液やポリイミド溶液に、カップリング剤等の公知の添加剤を加えてもよい。
 上記ポリアミック酸含有溶液やポリイミド溶液からなる膜形成用組成物並びに該組成物を用いて形成される膜も本発明の対象である。
 なお、ポリアミック酸含有溶液やポリイミド溶液に配合され得る公知の添加剤や、ポリイミドの膜の形成等に係る諸条件は、先に詳述した膜形成用組成物に配合され得る添加剤や、該組成物から形成される薄膜の製造等に係る諸条件を適宜採用することができる。
As described above, the polyamic acid-containing solution and the polyimide-containing solution can be suitably used as a film-forming composition for forming a polyimide film.
That is, the polyamic acid-containing solution applied on the substrate is heated to cause an imidization reaction while evaporating the solvent, or the polyimide-containing solution applied on the substrate is heated to evaporate the solvent. Thereby, the film | membrane containing the polyimide of this invention can be obtained. That is, the film is made of a solid content of the polyamic acid-containing solution and contains an imidized product of polyamic acid in the solid content, or is made of a solid content of the polyimide solution. At this time, the heating temperature is usually about 40 to 500 ° C., and for example, it may be heated stepwise in the range of 40 to 150 ° C., 180 to 350 ° C., and further 380 to 450 ° C.
For the purpose of further improving the adhesion between the polyimide film and the substrate, a known additive such as a coupling agent may be added to the polyamic acid-containing solution or the polyimide solution.
A film-forming composition comprising the above polyamic acid-containing solution or polyimide solution and a film formed using the composition are also objects of the present invention.
The known additives that can be blended in the polyamic acid-containing solution and the polyimide solution, and various conditions relating to the formation of the polyimide film, the additives that can be blended in the film-forming composition described in detail above, Various conditions relating to the production of a thin film formed from the composition can be appropriately employed.
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。なお、使用した試薬の略語並びに使用した装置及びその条件は、以下の通りである。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In addition, the abbreviation of the used reagent, the used apparatus, and its conditions are as follows.
DAT:ジアミノトリプチセン(Diamino Triptycene)
DATDNB:ジアミノトリプチセンジニトロベンズアミド(Diamino Triptycene Dinitrobenzamide)
DATDAB:ジアミノトリプチセンジアミノベンズアミド(Diamino Triptycene Diaminobenzamide)
THF:テトラヒドロフラン
DMF:ジメチルスルホキシド
GBL:γ-ブチロラクトン
TFMB:2,2’-ジ(トリフルオロメチル)ベンジジン
TCA:2,3,5-トリカルボキシシクロペンチル酢酸-1,4:2,3-二無水物
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
DAT: Diaminotriptycene
DATDNB: Diaminotriptycene dinitrobenzamide
DATDAB: Diaminotriptycene diaminobenzamide
THF: tetrahydrofuran DMF: dimethyl sulfoxide GBL: γ-butyrolactone TFMB: 2,2′-di (trifluoromethyl) benzidine TCA: 2,3,5-tricarboxycyclopentylacetic acid-1,4: 2,3-dianhydride CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride
<HPLC分析条件>
カラム:Inertsil ODS-3、5μm、4.6×250mm
オーブン:40℃、 検出波長:200nm、254nm、 流速:1.0mL/分
溶離液:
DATDAB:アセトニトリル/0.5%リン酸水溶液=70/30  サンプル注入量:10μL
<HPLC analysis conditions>
Column: Inertsil ODS-3, 5 μm, 4.6 × 250 mm
Oven: 40 ° C., detection wavelength: 200 nm, 254 nm, flow rate: 1.0 mL / min eluent:
DATDAB: Acetonitrile / 0.5% phosphoric acid aqueous solution = 70/30 Sample injection amount: 10 μL
1HNMR分析条件>
装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)(INOVA-400(Varian社)400MHz、
溶媒:DMSO-d6、CDCl3
内標準物質:テトラメチルシラン(TMS)
<1 HNMR analysis conditions>
Apparatus: Fourier transform type superconducting nuclear magnetic resonance apparatus (FT-NMR) (INOVA-400 (Varian) 400 MHz,
Solvent: DMSO-d6, CDCl 3
Internal standard: Tetramethylsilane (TMS)
[1]化合物の合成
<実施1-1>(DATDNBの合成)
Figure JPOXMLDOC01-appb-C000047
 窒素雰囲気下、4-ニトロベンゾイルクロリド(33.6g)をテトラヒドロフラン(164g)に溶解し、この溶液を5℃に冷却後、ここにDAT(23.4g)、トリエチルアミン(18.3g)、テトラヒドロフラン(164g)の混合溶液を30分かけて滴下した後、室温へ昇温し18時間撹拌した。室温下、反応液に水(702g)を加え、30分撹拌後、析出物をろ過し、メタノール(234g)で洗浄した。得られたろ取物を70℃で減圧乾燥し、DATDNB粗物(57.3g)を得た。
 次にこのDATDNB粗物(57.3g)をメタノール(360g)に加え、還流条件(65℃)で1時間撹拌し、室温に冷却した。析出物をろ過し、得られたろ取物を70℃にて減圧乾燥し、DATDNBを45.8g得た(収率:95.4%)。
 この結晶は、1H-NMR分析結果から、DATDNBであることを確認した。
1H-NMR(DMSO-d6、δppm):10.7(s、2H)、8.5(d、4H)、8.4(d,4H)、7.5(m,4H)、7.1(s,2H)、7.0(m,4H)、5.7(s,2H).
[1] Synthesis of Compound <Example 1-1> (Synthesis of DATADNB)
Figure JPOXMLDOC01-appb-C000047
Under a nitrogen atmosphere, 4-nitrobenzoyl chloride (33.6 g) was dissolved in tetrahydrofuran (164 g). The solution was cooled to 5 ° C., and then DAT (23.4 g), triethylamine (18.3 g), tetrahydrofuran ( 164 g) was added dropwise over 30 minutes, and then the mixture was warmed to room temperature and stirred for 18 hours. Water (702 g) was added to the reaction solution at room temperature, and after stirring for 30 minutes, the precipitate was filtered and washed with methanol (234 g). The obtained filtered product was dried at 70 ° C. under reduced pressure to obtain a DATDNB crude product (57.3 g).
Next, this crude DATADNB product (57.3 g) was added to methanol (360 g), stirred for 1 hour under reflux conditions (65 ° C.), and cooled to room temperature. The precipitate was filtered, and the resulting filtered product was dried at 70 ° C. under reduced pressure to obtain 45.8 g of DATADNB (yield: 95.4%).
This crystal was confirmed to be DATADNB from the result of 1 H-NMR analysis.
1 H-NMR (DMSO-d6, δ ppm): 10.7 (s, 2H), 8.5 (d, 4H), 8.4 (d, 4H), 7.5 (m, 4H), 7. 1 (s, 2H), 7.0 (m, 4H), 5.7 (s, 2H).
<実施例1-2>(DATDABの合成)
 反応容器にDATDNB(10.0g)、5%Pd-C(STDタイプ、wet品、エヌ・イー ケムキャット(株)製、1.0g)、ジメチルホルムアミド(70g)を仕込み、反応容器内を水素置換した後、水素圧0.8MPaの条件下、室温にて23時間撹拌した。ここまでと同じ操作をDATDNB(10.0g)スケールで2度実施した。反応完了をHPLCにて確認し、反応液を合一後、Pd-Cをろ過し、N,N-ジメチルホルムアミド(60g)でPd-Cを洗浄した。このろ液にヒドラジン1滴を添加後、室温で水(1650g)を滴下した。析出物をろ過後、ろ取物を70℃にて減圧乾燥することでDATDAB粗物(28.5g)を得た。
 このDATDAB粗物(28.5g)を酢酸エチル(1140g)に加え、還流条件下(77℃)1時間撹拌後、室温まで冷却した。析出物をろ過し、酢酸エチル(285g)で2回洗浄後、ろ取物(35.0g)を70℃にて減圧乾燥することでDATDAB酢酸エチルリパルプ物(28.0g)を得た。このDATDAB酢酸エチルリパルプ物(28.0g)を室温下、N,N-ジメチルホルムアミド(84g)に溶解し、酢酸エチル:ヘキサン=1:1の混合溶媒(317g)を滴下し、1時間撹拌した。析出物をろ過し、ろ取物(42.5g)を70℃にて減圧乾燥することでDATDAB再結晶物(23.9g)を得た。
 このDATDAB再結晶物(23.9g)をヘキサン(717g)に加え、還流条件下(68℃)、1時間撹拌後、室温まで冷却した。析出物をろ過し、ヘキサン(120g)で3回洗浄後、ろ取物(27.5g)を70℃にて減圧乾燥することでDATDABを22.4g得た(収率:76.0%、HPLC面百(保持時間:4.0min):99.3%)。この結晶は、1H-NMR分析結果から、DATDABであることを確認した。
1H-NMR(DMSO-d6、δppm):9.8(s、2H)、7.9(m、4H)、7.4(m,4H)、7.0(m,4H)、6.9(s,2H)、6.7(m,4H)、5.8(b,4H).5.6(s,2H).
<Example 1-2> (Synthesis of DATDAB)
A reaction vessel was charged with DATADNB (10.0 g), 5% Pd-C (STD type, wet product, 1.0 g), and dimethylformamide (70 g), and the inside of the reaction vessel was replaced with hydrogen. Then, the mixture was stirred for 23 hours at room temperature under a hydrogen pressure of 0.8 MPa. The same operation as described above was performed twice on the DATDNB (10.0 g) scale. Completion of the reaction was confirmed by HPLC. After the reaction solutions were combined, Pd—C was filtered and washed with N, N-dimethylformamide (60 g). After adding 1 drop of hydrazine to the filtrate, water (1650 g) was added dropwise at room temperature. After filtering the precipitate, the filtered product was dried under reduced pressure at 70 ° C. to obtain a DATDAB crude product (28.5 g).
The crude DATDAB (28.5 g) was added to ethyl acetate (1140 g), stirred under reflux conditions (77 ° C.) for 1 hour, and then cooled to room temperature. The precipitate was filtered, washed twice with ethyl acetate (285 g), and the filtered product (35.0 g) was dried under reduced pressure at 70 ° C. to obtain a DATDAB ethyl acetate repulp product (28.0 g). This DATDAB ethyl acetate repulp product (28.0 g) was dissolved in N, N-dimethylformamide (84 g) at room temperature, and a mixed solvent (317 g) of ethyl acetate: hexane = 1: 1 was added dropwise and stirred for 1 hour. The precipitate was filtered, and the filtered product (42.5 g) was dried under reduced pressure at 70 ° C. to obtain a DATDAB recrystallized product (23.9 g).
This DATDAB recrystallized product (23.9 g) was added to hexane (717 g), stirred under reflux conditions (68 ° C.) for 1 hour, and then cooled to room temperature. The precipitate was filtered, washed 3 times with hexane (120 g), and the filtered product (27.5 g) was dried under reduced pressure at 70 ° C. to obtain 22.4 g of DATDAB (yield: 76.0%, HPLC area (retention time: 4.0 min): 99.3%). This crystal was confirmed to be DATDAB from the result of 1 H-NMR analysis.
1 H-NMR (DMSO-d6, δ ppm): 9.8 (s, 2H), 7.9 (m, 4H), 7.4 (m, 4H), 7.0 (m, 4H), 6. 9 (s, 2H), 6.7 (m, 4H), 5.8 (b, 4H). 5.6 (s, 2H).
[2]ポリイミドの製造
<実施例1-3 ポリイミドの製造[DATDAB:TFMB:TCA:CBDA=30:70:50:50(モル比)]
Figure JPOXMLDOC01-appb-C000048
 窒素注入/排出口を有しメカニカルスターラーが取り付けられた100mLの三口反応フラスコ内に、TFMB 1.457g(0.00455モル)及びDATDAB 1.019g(0.00195モル)を仕込んだ。続いてγ-ブチロラクトン(GBL) 13.13gを加え、撹拌を開始した。TFMB及びDATDABが完全に溶解した後、TCA 0.7285g(0.00325モル)をGBL 2.813gとともに加え、窒素雰囲気下にて90℃に加熱し、7時間反応させた。その後、30℃に冷却し、CBDA 0.637g(0.00325モル)をGBL 2.813gとともに加え、窒素雰囲気にて50℃で一晩反応させた。
 その後、固形分濃度が10質量%となるように、GBLを用いて反応混合物を希釈し、希釈した反応混合物に無水酢酸2.654g(0.026モル)及びピリジン1.542g(0.0195モル)を加え、窒素雰囲気下、100℃にて4時間撹拌した。
 次いで、得られた反応混合物を500gのメタノール中に加えて30分間撹拌し、ろ過によって析出物であるポリイミドを回収した。この操作を3回繰り返した。
 最後に、得られたポリイミド中のメタノール残渣を真空オーブンにより、120℃で8時間乾燥し、乾燥したポリイミドを得た(3.53g、収率:97.8%)。
 得られたポリイミド(粉末)を、固形分濃度が12質量%となるようにGBLに溶解させた。
[2] Manufacture of polyimide <Example 1-3 Manufacture of polyimide [DATDAB: TFMB: TCA: CBDA = 30: 70: 50: 50 (molar ratio)]
Figure JPOXMLDOC01-appb-C000048
TFMB 1.457 g (0.00455 mol) and DATDAB 1.019 g (0.00195 mol) were charged into a 100 mL three-necked reaction flask equipped with a mechanical stirrer with nitrogen inlet / outlet. Subsequently, 13.13 g of γ-butyrolactone (GBL) was added and stirring was started. After TFMB and DATDAB were completely dissolved, 0.7285 g (0.00325 mol) of TCA was added together with 2.813 g of GBL, heated to 90 ° C. in a nitrogen atmosphere, and reacted for 7 hours. Thereafter, the mixture was cooled to 30 ° C., 0.637 g (0.00325 mol) of CBDA was added together with 2.813 g of GBL, and reacted at 50 ° C. overnight in a nitrogen atmosphere.
Thereafter, the reaction mixture was diluted with GBL so that the solid content concentration was 10% by mass, and 2.654 g (0.026 mol) of acetic anhydride and 1.542 g (0.0195 mol) of pyridine were added to the diluted reaction mixture. ) And stirred at 100 ° C. for 4 hours under a nitrogen atmosphere.
Next, the obtained reaction mixture was added to 500 g of methanol, stirred for 30 minutes, and the polyimide as a precipitate was collected by filtration. This operation was repeated three times.
Finally, the methanol residue in the obtained polyimide was dried in a vacuum oven at 120 ° C. for 8 hours to obtain a dried polyimide (3.53 g, yield: 97.8%).
The obtained polyimide (powder) was dissolved in GBL so that the solid content concentration was 12% by mass.
[3]ポリイミド溶液(ワニス)の調製及びポリイミド膜の作製
 室温にて、前記ポリイミド3gを、固形分濃度が12質量%となるようにGBLに溶解し、得られたポリイミド溶液を、5μmのフィルターを用いて加圧ろ過した。
 その後、ろ過したポリイミド溶液をガラス基板上に塗布し、大気下で、50℃で30分間、140℃で30分間、200℃で60分間、順次加熱し、透明のポリイミドの膜を得た。そして、得られたポリイミドの膜を機械的切断にて剥がし、評価試料とした。
[3] Preparation of polyimide solution (varnish) and production of polyimide film At room temperature, 3 g of the polyimide was dissolved in GBL so that the solid content concentration was 12% by mass, and the obtained polyimide solution was filtered using a 5 μm filter. And pressure filtered using.
Then, the filtered polyimide solution was apply | coated on the glass substrate, and it heated in order at 50 degreeC for 30 minutes, 140 degreeC for 30 minutes, and 200 degreeC for 60 minutes in air | atmosphere, and obtained the film | membrane of transparent polyimide. Then, the obtained polyimide film was peeled off by mechanical cutting to obtain an evaluation sample.
 上述の手順にて作製した樹脂薄膜(評価試料)の耐熱性及び光学特性、すなわち、50℃乃至200℃及び200℃乃至250℃における線熱膨張係数(CTE)、光線透過率(T400nm、T550nm)、5%重量減少温度(Td5%)、CIE b*値(黄色評価)、リタデーション(Rth、R0)並びに複屈折(Δn)に関して、下記手順に従いそれぞれ評価した。
 また、上記ポリイミドの数平均分子量及び重量平均分子量についても、下記手順に従い測定した。結果を表1に示す。
The heat resistance and optical characteristics of the resin thin film (evaluation sample) produced by the above procedure, that is, the linear thermal expansion coefficient (CTE) at 50 ° C. to 200 ° C. and 200 ° C. to 250 ° C., and the light transmittance (T 400 nm , T 550 nm ), 5% weight loss temperature (Td 5% ), CIE b * value (yellow evaluation), retardation (R th , R 0 ) and birefringence (Δn) were evaluated according to the following procedures.
The number average molecular weight and weight average molecular weight of the polyimide were also measured according to the following procedure. The results are shown in Table 1.
1)CIE b値(CIE b*
 CIE b値(CIE b*)は、日本電色工業(株)製 SA4000スペクトロメーターを用いて、室温にて、リファレンスを空気として、測定を行った。
2)光線透過率(透明性)(T400nm、T550nm
 波長400nm及び550nmの光線透過率(T400nm、T550nm[%])は、(株)島津製作所 紫外可視分光光度計 UV-Visible 3600を用い、室温にて、リファレンスを空気として、測定を行った。
3)リタデーション(Rth、R0
 厚さ方向リタデーション(Rth)及び面内リタデーション(R0)を、王子計測機器(株)製、KOBURA 2100ADHを用いて、室温にて測定した。
 なお、厚さ方向リタデーション(Rth)及び面内リタデーション(R0)は以下の式にて算出される。
0=(Nx-Ny)×d=ΔNxy×d
th=[(Nx+Ny)/2-Nz]×d=[(ΔNxz×d)+(ΔNyz×d)/2
 Nx、Ny:面内の直交する2つの屈折率(Nx>Ny、Nxを遅相軸、Nyを進相軸とも称する)
 Nz:面に対して厚さ(垂直)方向の屈折率
 d:膜厚
 ΔNxy:面内の2つの屈折率の差(Nx-Ny)(複屈折)
 ΔNxz:面内の屈折率Nxと厚さ方向の屈折率Nzの差(複屈折)
 ΔNyz:面内の屈折率Nyと厚さ方向の屈折率Nzの差(複屈折)
4)線膨張係数(CTE)
 各評価試料を幅5mm、長さ16mmのサイズにカットし、
これをTAインスツルメンツ社製 TMA Q400を用いて、まず10℃/minで昇温して50℃乃至300℃まで加熱(第一加熱)し、次いで10℃/minで降温して30℃まで冷却した後に、10℃/minで昇温して30℃乃至410℃まで加熱(第二加熱)した際の、第二加熱の50℃乃至200℃、並びに200℃乃至250℃における線膨張係数(CTE[ppm/℃])の値を測定することで求めた。なお、第一加熱、冷却および第二加熱を通じて、荷重0.05Nを加えた。
5)5%重量減少温度(Td5%
 5%重量減少温度(Td5%[℃])は、TAインスツルメンツ社製 TGA Q500を用い、窒素中、樹脂薄膜約5乃至10mgを50乃至800℃まで10℃/minで昇温して測定することで求めた。なお、150℃における重量を重量減少0%とした。
6)膜厚
 得られた樹脂薄膜の膜厚は、(株)テクロック製 シックネスゲージにて測定した。
7)面内複屈折(Δn)
 前述の<3)リタデーション>により得られた厚さ方向リタデーション(Rth)の値を用い、以下の式にて算出した。
 ΔN=[Rth/d(フィルム膜厚)]/1000
8)数平均分子量(Mn)及び重量平均分子量(Mw)
 数平均分子量(以下、Mnと略す)と重量平均分子量(以下、Mwと略す)は、ポリテトラフルオロエチレン(PTFE)製0.45μmのフィルタにてろ過したポリマー試料を、装置:昭和電工(株)製、Showdex GPC-101、カラム:KD803およびKD805、カラム温度:50℃、溶出溶媒:DMF、流量:1.5ml/分、検量線:標準ポリスチレン、の条件にて測定した。
1) CIE b value (CIE b * )
The CIE b value (CIE b * ) was measured using a SA4000 spectrometer manufactured by Nippon Denshoku Industries Co., Ltd., at room temperature, using air as a reference.
2) Light transmittance (transparency) ( T400nm , T550nm )
Light transmittances at wavelengths of 400 nm and 550 nm (T 400 nm , T 550 nm [%]) were measured using Shimadzu Corporation UV-Visible Spectrophotometer UV-Visible 3600 at room temperature with reference air. .
3) Retardation ( Rth , R0 )
Thickness direction retardation (R th ) and in-plane retardation (R 0 ) were measured at room temperature using KOBURA 2100ADH manufactured by Oji Scientific Instruments.
The thickness direction retardation (R th ) and the in-plane retardation (R 0 ) are calculated by the following equations.
R 0 = (Nx−Ny) × d = ΔNxy × d
R th = [(Nx + Ny) / 2−Nz] × d = [(ΔNxz × d) + (ΔNyz × d) / 2
Nx, Ny: Two in-plane orthogonal refractive indexes (Nx> Ny, Nx is also called the slow axis, and Ny is also called the fast axis)
Nz: Refractive index in the thickness (perpendicular) direction with respect to the surface d: Film thickness ΔNxy: Difference between two refractive indexes in the surface (Nx−Ny) (birefringence)
ΔNxz: difference between in-plane refractive index Nx and thickness direction refractive index Nz (birefringence)
ΔNyz: difference between in-plane refractive index Ny and thickness direction refractive index Nz (birefringence)
4) Linear expansion coefficient (CTE)
Cut each evaluation sample into a size of 5 mm wide and 16 mm long,
This was first heated at 10 ° C./min and heated to 50 ° C. to 300 ° C. (first heating), then cooled down to 10 ° C./min and cooled to 30 ° C. using TMA Q400 manufactured by TA Instruments. Later, when the temperature was raised at 10 ° C./min and heated to 30 ° C. to 410 ° C. (second heating), the linear expansion coefficient (CTE [ ppm / ° C.]). Note that a load of 0.05 N was applied through the first heating, cooling, and second heating.
5) 5% weight loss temperature (Td 5% )
5% weight loss temperature (Td 5% [° C.]) is measured by using TGA Q500 manufactured by TA Instruments Inc. and raising the temperature of about 5 to 10 mg of resin thin film to 50 to 800 ° C. at 10 ° C./min in nitrogen. I asked for it. The weight at 150 ° C. was set to 0% weight reduction.
6) Film thickness The film thickness of the obtained resin thin film was measured with a thickness gauge manufactured by TECLOCK Co., Ltd.
7) In-plane birefringence (Δn)
Using the thickness direction retardation (R th ) obtained by the above <3) retardation>, the following formula was used.
ΔN = [R th / d (film thickness)] / 1000
8) Number average molecular weight (Mn) and weight average molecular weight (Mw)
The number average molecular weight (hereinafter abbreviated as Mn) and the weight average molecular weight (hereinafter abbreviated as Mw) were measured by a polymer sample filtered through a 0.45 μm filter made of polytetrafluoroethylene (PTFE). ), Showdex GPC-101, column: KD803 and KD805, column temperature: 50 ° C., elution solvent: DMF, flow rate: 1.5 ml / min, calibration curve: standard polystyrene.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 表1に示すように本発明の上記トリプチセン構造を有する新規なジアミンを用いて作製したポリイミド膜は、厚さ方向のリタデーションRthは800nm未満の値、面内リタデーションR0が5未満といった非常に低い値を有する結果となった。また波長400nmにおける透過率(T400nm)と波長550nmにおける透過率(T550nm)、そして50℃-200℃におけるCTE値と200℃-250℃におけるCTE値が、それぞれ異なる値となった。そしてTd5%値に示すように高い耐熱性を有することが確認された。
 上記新規なジアミンは、共役系を破壊し光伝送のためのより大きな自由体積をもたらす嵩高い構造によって特異な配列方向を有すると考えられ、そしてそのことがポリイミド膜において、透過率とリタデーション(位相差)に優れた性能をもたらすと考えられる。
 このように、本発明の新規な酸二無水物を用いて製造したポリイミド膜は、高い透明性(高い光線透過率)及び耐熱性、そして低いリタデーションという特性を有し、すなわちフレキシブルディスプレイ基板のベースフィルムとして必要な要件を満たすものであり、フレキシブルディスプレイ基板のベースフィルムとして特に好適に用いることができることが期待できる。
As shown in Table 1, the polyimide film produced using the novel diamine having the above triptycene structure according to the present invention has a thickness direction retardation R th of less than 800 nm and an in-plane retardation R 0 of less than 5. The result has a low value. Further, the transmittance at a wavelength of 400 nm (T 400 nm ), the transmittance at a wavelength of 550 nm (T 550 nm ), the CTE value at 50 ° C.-200 ° C., and the CTE value at 200 ° C.-250 ° C. were different from each other. And it was confirmed that it has high heat resistance as shown in the Td 5% value.
The novel diamine is believed to have a unique orientation due to the bulky structure that breaks the conjugated system and provides a larger free volume for light transmission, and that in the polyimide membrane is the transmittance and retardation. It is thought that it provides excellent performance in (phase difference).
Thus, the polyimide film produced using the novel acid dianhydride of the present invention has the characteristics of high transparency (high light transmittance), heat resistance, and low retardation, that is, the base of the flexible display substrate. It can be expected that the film satisfies the necessary requirements as a film and can be particularly suitably used as a base film of a flexible display substrate.

Claims (14)

  1. 式(1-1)で表されることを特徴とするジアミン。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1、R2、R3、R4及びR5は、それぞれ独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
    6及びR7は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
    a、b、d及びeは、それぞれ独立して、0~4の整数を表し、そして
    cは0~2の整数を表す。)
    A diamine represented by the formula (1-1):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 , R 2 , R 3 , R 4 and R 5 each independently represents a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms,
    R 6 and R 7 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms,
    a, b, d and e each independently represents an integer of 0 to 4, and c represents an integer of 0 to 2. )
  2.  式(1-2)で表されるジアミンである、請求項1に記載のジアミン。
    Figure JPOXMLDOC01-appb-C000002
    The diamine according to claim 1, which is a diamine represented by the formula (1-2).
    Figure JPOXMLDOC01-appb-C000002
  3. 式(1-3)又は式(1-4)で表されるジアミンである、請求項2に記載のジアミン。
    Figure JPOXMLDOC01-appb-C000003
    The diamine according to claim 2, which is a diamine represented by formula (1-3) or formula (1-4).
    Figure JPOXMLDOC01-appb-C000003
  4. 請求項1乃至請求項3のうちいずれか一項に記載のジアミンを含むジアミン成分と、酸二無水物成分との反応生成物であるポリアミック酸。 The polyamic acid which is a reaction product of the diamine component containing the diamine as described in any one of Claims 1 thru | or 3, and an acid dianhydride component.
  5. 前記ジアミン成分が、式(A1)で表されるジアミンをさらに含む、請求項4に記載のポリアミック酸。
    Figure JPOXMLDOC01-appb-C000004
    (式中、B2は、式(Y-1)~(Y-34)からなる群から選ばれる2価の基を表す。)
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    (式中、*は結合手を表す。)
    The polyamic acid according to claim 4, wherein the diamine component further contains a diamine represented by the formula (A1).
    Figure JPOXMLDOC01-appb-C000004
    (Wherein B 2 represents a divalent group selected from the group consisting of formulas (Y-1) to (Y-34)).
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    (In the formula, * represents a bond.)
  6. 前記酸二無水物成分が、式(C1)で表される酸二無水物を含む、請求項4又は請求項5に記載のポリアミック酸。
    Figure JPOXMLDOC01-appb-C000010
    〔式中、B1は、式(X-1)~(X-12)からなる群から選ばれる4価の基を表す。
    Figure JPOXMLDOC01-appb-C000011
    (式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
    The polyamic acid according to claim 4 or 5, wherein the acid dianhydride component comprises an acid dianhydride represented by the formula (C1).
    Figure JPOXMLDOC01-appb-C000010
    [Wherein B 1 represents a tetravalent group selected from the group consisting of formulas (X-1) to (X-12).
    Figure JPOXMLDOC01-appb-C000011
    (In the formula, a plurality of R's independently represent a hydrogen atom or a methyl group, and * represents a bond.)
  7. 請求項4乃至請求項6のうちいずれか一項に記載のポリアミック酸をイミド化して得られるポリイミド。 A polyimide obtained by imidizing the polyamic acid according to any one of claims 4 to 6.
  8. 請求項7に記載のポリイミドと、有機溶媒とを含む膜形成用組成物。 A film-forming composition comprising the polyimide according to claim 7 and an organic solvent.
  9. 請求項8に記載の膜形成用組成物から形成される薄膜。 A thin film formed from the film-forming composition according to claim 8.
  10. 請求項9に記載の薄膜からなるフレキシブルデバイス用基板。 A flexible device substrate comprising the thin film according to claim 9.
  11.  式(2-1)で表されることを特徴とするジニトロ化合物。
    Figure JPOXMLDOC01-appb-C000012
    (式中、R1、R2、R3、R4及びR5は、それぞれ独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
    6及びR7は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
    a、b、d及びeは、それぞれ独立して、0~4の整数を表し、そして
    cは0~2の整数を表す。)
    A dinitro compound represented by the formula (2-1):
    Figure JPOXMLDOC01-appb-C000012
    (Wherein R 1 , R 2 , R 3 , R 4 and R 5 each independently represents a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms,
    R 6 and R 7 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms,
    a, b, d and e each independently represents an integer of 0 to 4, and c represents an integer of 0 to 2. )
  12.  式(2-2)で表されるジニトロ化合物である、請求項11に記載のジニトロ化合物。
    Figure JPOXMLDOC01-appb-C000013
    The dinitro compound according to claim 11, which is a dinitro compound represented by the formula (2-2).
    Figure JPOXMLDOC01-appb-C000013
  13.  式(2-3)又は式(2-4)で表されるジニトロ化合物である、請求項12に記載のジニトロ化合物。
    Figure JPOXMLDOC01-appb-C000014
    The dinitro compound according to claim 12, which is a dinitro compound represented by formula (2-3) or formula (2-4).
    Figure JPOXMLDOC01-appb-C000014
  14. 式(1-1)で表されるジアミンを製造する方法であって、
    Figure JPOXMLDOC01-appb-C000015
    (式中、R1、R2、R3、R4及びR5は、それぞれ独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
    6及びR7は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
    a、b、d及びeは、それぞれ独立して、0~4の整数を表し、そして
    cは0~2の整数を表す。)
    式(2-1)で表されるジニトロ化合物のニトロ基を還元して式(1-1)で表されるジアミンを得る段階を含む、製造方法。
    Figure JPOXMLDOC01-appb-C000016
    (式中、R1、R2、R3、R4、R5、R6、R7、a、b、c、d及びeは上記と同じ意味を表す。)
    A method for producing a diamine represented by formula (1-1),
    Figure JPOXMLDOC01-appb-C000015
    (Wherein R 1 , R 2 , R 3 , R 4 and R 5 each independently represents a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms,
    R 6 and R 7 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms,
    a, b, d and e each independently represents an integer of 0 to 4, and c represents an integer of 0 to 2. )
    A production method comprising a step of obtaining a diamine represented by the formula (1-1) by reducing the nitro group of the dinitro compound represented by the formula (2-1).
    Figure JPOXMLDOC01-appb-C000016
    (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d and e represent the same meaning as described above.)
PCT/JP2017/035322 2016-09-28 2017-09-28 Diamine and use thereof WO2018062422A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018542879A JP7037122B2 (en) 2016-09-28 2017-09-28 Diamine and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016190092 2016-09-28
JP2016-190092 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018062422A1 true WO2018062422A1 (en) 2018-04-05

Family

ID=61760369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035322 WO2018062422A1 (en) 2016-09-28 2017-09-28 Diamine and use thereof

Country Status (3)

Country Link
JP (1) JP7037122B2 (en)
TW (1) TWI725236B (en)
WO (1) WO2018062422A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109081939A (en) * 2018-07-28 2018-12-25 成都市水泷头化工科技有限公司 A kind of polyimide composite film and preparation method having both electric conductivity and magnetism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708134B (en) * 2020-12-28 2021-08-03 深圳瑞华泰薄膜科技股份有限公司 Colorless transparent copolyamide-imide film and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016153064A1 (en) * 2015-03-25 2016-09-29 日産化学工業株式会社 Diamine and use thereof
WO2017060863A1 (en) * 2015-10-08 2017-04-13 King Abdullah University Of Science And Technology Ortho-substituted triptycene-based diamines, monomers, and polymers, methods of making and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942092A (en) * 2010-09-10 2011-01-12 中山大学 Polyamide imide, film and preparation method thereof
TWI586639B (en) * 2012-04-26 2017-06-11 Nissan Chemical Ind Ltd Diamine, polymer, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
US20160145304A1 (en) * 2013-07-12 2016-05-26 Helmholtz-Zentrum für Infektionsforschung GmbH Cystobactamides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016153064A1 (en) * 2015-03-25 2016-09-29 日産化学工業株式会社 Diamine and use thereof
WO2017060863A1 (en) * 2015-10-08 2017-04-13 King Abdullah University Of Science And Technology Ortho-substituted triptycene-based diamines, monomers, and polymers, methods of making and uses thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MIKITAEV A. K. ET AL.: "New aromatic polymers based on triptycene-2,5-diamine, Vysokomolekulyarnye Soedineniya", SERIYA B: KRATKIE SOOBSHCHENIYA, vol. 25, no. 11, 1983, pages 845 - 847 *
SNEHASISH MONDAL ET AL.: "Triptycene based organosoluble polyamides: synthesis, characterization and study of the effect of chain flexibility on morphology", RSC ADVANCES, vol. 4, 2014, pages 6 1383 - 61393, XP055602915 *
YOSHIO KASASHIMA ET AL.: "Synthesis and Properties of Aromatic Polyamides and Polyimides from 9, 10-Dihydro-9, 10-o-benzenoanthracene-1, 4-diamine", POLYMER JOURNAL, vol. 26, no. 10, 1994, pages 1179 - 1185, XP055389692 *
ZAHRA RAFIEE ET AL.: "Preparation and characterization of heat-resistant polyimide/titanium dioxide nanocomposite films containing triptycene side units by sol-gel processes", HIGH PERFORMANCE POLYMERS, vol. 26, no. 4, 2014, pages 373 - 380 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109081939A (en) * 2018-07-28 2018-12-25 成都市水泷头化工科技有限公司 A kind of polyimide composite film and preparation method having both electric conductivity and magnetism
CN109081939B (en) * 2018-07-28 2020-11-10 广州睿得实业有限公司 Polyimide composite film with both conductivity and magnetism and preparation method thereof

Also Published As

Publication number Publication date
TW201817710A (en) 2018-05-16
TWI725236B (en) 2021-04-21
JP7037122B2 (en) 2022-03-16
JPWO2018062422A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
CN107614483B (en) Diamine and use thereof
JP5190109B2 (en) Liquid crystal aligning agent comprising 3,4-dicarboxy-1,2,3,4-tetrahydro-6-tert-butyl-1-naphthalene succinic dianhydride and a polyimide resin prepared from the dianhydride
US20090182114A1 (en) Tetracarboxylic acid compound, polyimide thereof, and production method thereof
WO2013121917A1 (en) Diamine, polyimide, and polyimide film and utilization thereof
JP2015214597A (en) Polyimide and use thereof
CN108463454B (en) Diamine and use thereof
JP7037122B2 (en) Diamine and its use
WO2018016526A1 (en) Polyimide resin film and method for producing polyimide resin film
JP6966725B2 (en) Acid dianhydride and its use
JPWO2019131896A1 (en) Polyimide, polyimide solution composition, polyimide film, and substrate
JP5315994B2 (en) Polyamic acid and polyimide
JP7054064B2 (en) Composition for forming a flexible device substrate
JP6966726B2 (en) Acid dianhydride and its use
JP6515921B2 (en) Acid dianhydride and use thereof
WO2019172460A2 (en) Tetracarboxylic dianhydride, carbonyl compound, polyimide precursor resin, and polyimide
JP5163898B2 (en) Polyamic acid and polyimide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542879

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856371

Country of ref document: EP

Kind code of ref document: A1