WO2018062372A1 - Light-transmitting conductive film and method for producing light-transmitting conductive film having patterned conductive layer - Google Patents

Light-transmitting conductive film and method for producing light-transmitting conductive film having patterned conductive layer Download PDF

Info

Publication number
WO2018062372A1
WO2018062372A1 PCT/JP2017/035179 JP2017035179W WO2018062372A1 WO 2018062372 A1 WO2018062372 A1 WO 2018062372A1 JP 2017035179 W JP2017035179 W JP 2017035179W WO 2018062372 A1 WO2018062372 A1 WO 2018062372A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
film
light
layer
conductive
Prior art date
Application number
PCT/JP2017/035179
Other languages
French (fr)
Japanese (ja)
Inventor
俊輝 伊神
守雄 滝沢
明弘 相川
林 秀樹
Original Assignee
積水化学工業株式会社
積水ナノコートテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59351413&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018062372(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 積水化学工業株式会社, 積水ナノコートテクノロジー株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020187027796A priority Critical patent/KR102446081B1/en
Priority to CN201780032474.6A priority patent/CN109155167B/en
Publication of WO2018062372A1 publication Critical patent/WO2018062372A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • One embodiment of the present invention relates to a light-transmitting conductive film having light transmittance and conductivity. Another embodiment of the present invention relates to a method for producing a light transmissive conductive film having a patterned conductive layer using the light transmissive conductive film.
  • touch panel type liquid crystal display devices have been widely used in electronic devices such as smartphones, mobile phones, notebook computers, tablet PCs, copiers, and car navigation systems.
  • a liquid crystal display device a light transmissive conductive film in which a transparent conductive layer is laminated on a substrate is used.
  • the light transmissive conductive film is usually mounted on the touch panel after patterning a light transmissive and conductive conductive layer by performing an etching process.
  • a light transmissive and conductive conductive layer by performing an etching process.
  • Patent Document 1 a transparent conductive film in which the surface tension of an amorphous transparent conductive thin film is adjusted is disclosed.
  • the pattern electrode and the wiring are used simultaneously for improving the detection sensitivity, and the conductive layer is used as the pattern electrode for increasing the density and miniaturizing the wiring.
  • the conductive layer is also used for wiring connecting to the pattern electrode.
  • the pattern electrode and wiring pattern formation methods are also changing.
  • a method of performing an etching process after forming a resist by screen printing using a liquid resist has been the mainstream.
  • the method has been changed to a method in which a dry film resist is attached to a conductive layer and etching treatment is performed after exposure and development.
  • the conductive layer is broken or the edge of the conductive layer is excessively chipped, causing problems such as failure, responsiveness deterioration, and pattern appearance. It becomes easy.
  • the present inventors have found that these problems are caused by the adhesion of the dry film resist to the surface of the conductive layer.
  • one of the objects of the present invention is to provide a light-transmitting conductive film that can improve the adhesion of a member such as a dry film resist to the surface of the conductive layer.
  • Another object of the present invention is to provide a method for producing a light transmissive conductive film having a patterned conductive layer using the light transmissive conductive film.
  • a conductive layer having optical transparency and conductivity, and a base material disposed on one surface side of the conductive layer, the base side of the conductive layer; Provides a light-transmissive conductive film having a surface tension of 28 dyn / cm or more and 34 dyn / cm or less on the opposite surface.
  • the arithmetic average height Sa in a visual field of 70 ⁇ m ⁇ 90 ⁇ m on the surface opposite to the substrate side of the conductive layer is 0.5 nm or more and 20 nm or less, and the conductive layer
  • the arithmetic average roughness Ra in the range of 1.0 ⁇ m ⁇ 1.0 ⁇ m on the surface opposite to the substrate side is 2.0 nm or more and 15 nm or less.
  • the conductive layer is a crystallized conductive layer.
  • the light transmissive conductive film is used by contacting a dry film resist on the outer surface of the conductive layer.
  • a step of bringing a dry film resist into contact with the surface of the light-transmissive conductive film described above on the side opposite to the substrate side of the conductive layer, and the conductive layer is patterned.
  • a method for producing a light-transmitting conductive film having a pattern-like conductive layer comprising a step of forming a conductive layer and a step of peeling the dry film resist.
  • the light transmissive conductive film which is one embodiment of the present invention includes a light transmissive and conductive layer and a base material disposed on one surface side of the conductive layer.
  • the surface tension of the surface of the conductive layer opposite to the substrate side is 28 dyn / cm or more and 34 dyn / cm or less.
  • the adhesion of a member such as a dry film resist to the surface can be improved.
  • FIG. 1 is a cross-sectional view showing a light transmissive conductive film according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a light transmissive conductive film according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a state where the conductive layer of the light-transmitting conductive film according to one embodiment of the present invention is a patterned conductive layer.
  • the light transmissive conductive film which is one embodiment of the present invention includes a conductive layer and a base material.
  • the conductive layer has light transmittance and conductivity.
  • the base material is disposed on one surface side of the conductive layer.
  • the surface tension of the surface of the conductive layer on the side opposite to the substrate side is 28 dyn / cm or more and 34 dyn / cm or less.
  • the adhesion of a member such as a dry film resist to the surface of the conductive layer can be improved.
  • a dry film resist is attached to the conductive layer in order to form a patterned conductive layer
  • the adhesion of the dry film resist can be improved.
  • peeling of a dry film resist can be suppressed and the defect
  • disconnection of the conductive layer can be prevented, and the shape of the edge portion of the conductive layer can be improved.
  • the surface tension can be measured as follows.
  • the surface tension is measured at 25 ° C.
  • a tension checker pen (2-ethoxyethanol mixed solution) manufactured by Kasuga Electric Co., Ltd. can be used when the surface tension is in the range of more than 34 dyn / cm and not more than 40 dyn / cm.
  • a liquid mixture for wet tension test manufactured by Wako Pure Chemical Industries, Ltd. can be used (based on JIS K6768: 1999). Specifically, using a tension checker pen or a wet tension test mixed liquid, the liquid is spread on the surface of the conductive layer so as to have an area of 2 cm 2 or more to form a liquid film.
  • the amount of the liquid is, for example, such that a liquid film is formed without forming a pool.
  • the measurement should be performed in the unmeasured area each time, the liquid should not be spread multiple times, and the line should not be drawn multiple times with the tension checker pen and the wet tension test mixture.
  • the surface tension is determined 5 seconds after the liquid is spread to form a liquid film. If the area of 80% or more is maintained after 5 seconds with respect to the area of 100% immediately after spreading the liquid without tearing the liquid film, the conductive layer has a predetermined surface tension. .
  • the surface tension when high surface tension is shown is the surface tension of the conductive layer.
  • the measurement is usually performed 3 times or more, and the average value is defined as the surface tension.
  • the arithmetic average height Sa in the visual field of 70 ⁇ m ⁇ 90 ⁇ m (square) on the surface of the conductive layer opposite to the substrate side preferably satisfies the following lower limit and upper limit.
  • the arithmetic average height Sa is preferably 0.5 nm or more, more preferably 1.0 nm or more, still more preferably 2.0 nm or more, still more preferably 4.0 nm or more, particularly preferably 6.0 nm or more, and particularly preferably Is 8.0 nm or more, more preferably 10 nm or more, very preferably 12 nm or more, and most preferably 15 nm or more.
  • the arithmetic average height Sa is preferably 20 nm or less, more preferably 19 nm or less.
  • the arithmetic average height Sa is not less than the above lower limit or not more than the above upper limit, the adhesion of a member such as a dry film resist to the surface of the conductive layer can be further enhanced.
  • the arithmetic average roughness Ra in the range of 1.0 ⁇ m ⁇ 1.0 ⁇ m on the surface of the conductive layer opposite to the substrate side preferably satisfies the following lower limit and upper limit.
  • the arithmetic average roughness Ra is preferably 2.0 nm or more, more preferably 2.5 nm or more, further preferably 5 nm or more, even more preferably 7 nm or more, particularly preferably 10 nm or more, preferably 15 nm or less, more Preferably it is 14 nm or less, More preferably, it is 13 nm or less.
  • the adhesion of a member such as a dry film resist to the surface of the conductive layer can be further enhanced.
  • the arithmetic average height Sa and the arithmetic average roughness Ra can be specifically measured as follows.
  • the arithmetic average height Sa is measured using a white interference microscope (for example, “VertScan” manufactured by Ryoka System Co., Ltd. or an equivalent product). Specifically, a CCD camera (for example, SONY HR-50 1/3 or equivalent) is used, the lens barrel is 1 ⁇ , the objective lens is 50 ⁇ , the measurement mode is wave mode, and the measurement range is Y Observation is made in the direction 71.15 ⁇ m and the X direction 94.89 ⁇ m, and the arithmetic average height Sa is calculated for an arbitrary region in the Y direction 70 ⁇ m and the X direction 90 ⁇ m. The measurement is usually performed twice or more, and the average value is defined as the arithmetic average height Sa.
  • a white interference microscope for example, “VertScan” manufactured by Ryoka System Co., Ltd. or an equivalent product.
  • a CCD camera for example, SONY HR-50 1/3 or equivalent
  • the lens barrel is 1 ⁇
  • the objective lens is 50
  • the arithmetic average roughness Ra is measured using a scanning probe microscope (for example, “SPM-9700” manufactured by Shimadzu Corporation or an equivalent product). Specifically, a microcantilever (“OMCL-TR800PSA-1" manufactured by Olympus or equivalent) can be used, and is calculated from the measurement result obtained by scanning the measurement area in the contact area of 1.0 ⁇ m ⁇ 1.0 ⁇ m. To do. The measurement is usually performed twice or more, and the average value is defined as the arithmetic average roughness Ra.
  • the substrate preferably includes a substrate film, preferably includes a hard coat layer, and preferably includes an undercoat layer.
  • the hard coat layer and the undercoat layer may be each independently a single layer or multiple layers.
  • the light transmissive conductive film which is one embodiment of the present invention is preferably annealed.
  • the annealing treatment the crystallinity of the conductive layer can be increased, and a crystallized conductive layer can be formed.
  • the conductive layer is a crystallized conductive layer, and in such a case, it is preferable from the viewpoint of reducing resistance and improving pattern formation by etching.
  • the light transmissive conductive film is preferably used by bringing a dry film resist into contact with the outer surface of the conductive layer.
  • the light transmissive conductive film is suitably used for forming a patterned conductive layer by bringing a dry film resist into contact with the outer surface of the conductive layer.
  • the manufacturing method of the translucent conductive film which has the pattern-shaped conductive layer which concerns on another embodiment of this invention comprises the following each process.
  • the process of making a dry film resist contact the surface on the opposite side to the said base material side of the said conductive layer of the said light-transmitting conductive film.
  • the process of making the said conductive layer pattern-form conductive layer.
  • a step of peeling the dry film resist By forming the patterned conductive layer through these steps, the formation accuracy of the patterned conductive layer can be increased.
  • a step of curing the dry film resist is provided between the step of bringing the dry film resist into contact with and the step of forming the conductive layer patterned conductive layer.
  • the conductive layer is preferably etched.
  • the light-transmitting conductive film which is one embodiment of the present invention is used for a touch panel, the formation accuracy of the patterned conductive layer can be increased, so that the occurrence of problems due to disconnection of the conductive layer can be suppressed. Therefore, the light transmissive conductive film can be suitably used for a liquid crystal display device, and can be suitably used for a touch panel.
  • FIG. 1 is a cross-sectional view showing a light transmissive conductive film according to an embodiment of the present invention.
  • the light transmissive conductive film 1 shown in FIG. 1 includes a substrate 2, a conductive layer 3, and a protective film 4.
  • the base material 2 has a first surface 2a and a second surface 2b.
  • the first surface 2a and the second surface 2b are opposed to each other.
  • a conductive layer 3 is laminated on the first surface 2 a of the substrate 2.
  • the first surface 2a is a surface on the side where the conductive layer 3 is laminated.
  • the substrate 2 is a member disposed between the conductive layer 3 and the protective film 4 and is a support member for the conductive layer 3. Further, a protective film may be attached to the surface of the conductive layer 3 opposite to the base 2.
  • the protective film 4 is laminated on the second surface 2b of the substrate 2.
  • the second surface 2b is a surface on the side where the protective film 4 is laminated.
  • the surface tension of the surface of the conductive layer 3 on the side opposite to the substrate 2 side is 28 dyn / cm or more and 34 dyn / cm or less.
  • the base material 2 has a base film 11, first and second hard coat layers 12 and 13, and an undercoat layer 14.
  • the base film 11 is made of a material having high light transmittance.
  • a second hard coat layer 13 and an undercoat layer 14 are laminated in this order.
  • the undercoat layer 14 is in contact with the conductive layer 3.
  • a first hard coat layer 12 is laminated on the surface of the base film 11 on the protective film 4 side.
  • the first hard coat layer 12 is in contact with the protective film 4.
  • the conductive layer 3 is made of a material having optical transparency and conductivity, preferably a material having high optical transparency and high electrical conductivity.
  • the conductive layer 3 is laminated on the first surface 2 a of the substrate 2.
  • the protective film may be laminated on the second surface of the base material by an adhesive layer. It is preferable that the 2nd surface of a base material is in contact with the said adhesive layer of a protective film.
  • FIG. 2 is a cross-sectional view showing a light transmissive conductive film according to an embodiment of the present invention.
  • the first hard coat layer 12 is not provided.
  • the light transmissive conductive film 1A has a base 2A in which an undercoat layer 14, a second hard coat layer 13, and a base film 11 are laminated in this order.
  • the protective film 4 is laminated directly on the surface of the base film 11 opposite to the conductive layer 3.
  • the first hard coat layer may not be provided like the light transmissive conductive film 1A.
  • a protective film may be directly laminated on the surface of the base film.
  • at least one of the second hard coat layer and the undercoat layer may not be provided.
  • the undercoat layer and the conductive layer may be laminated in this order, or the conductive layer may be laminated directly on the base film.
  • the undercoat layer may be a single layer or a multilayer.
  • the manufacturing method of the light-transmitting conductive film 1 is not particularly limited, but can be manufactured by the following method, for example.
  • 1st hard coat layer 12 is formed on one surface of substrate film 11. Specifically, when an ultraviolet curable resin is used as the resin, a photocurable monomer and a photoinitiator are stirred in a diluent to prepare a coating solution. The obtained coating liquid is applied onto the base film 11 and the resin is cured by irradiating with ultraviolet rays to form the first hard coat layer 12.
  • the protective film 4 is formed on the first hard coat layer 12.
  • a protective film provided with a pressure-sensitive adhesive layer on a base sheet is used as the protective film 4
  • the adhesive surface is bonded to the surface of the first hard coat layer 12, and the first hard coat layer 12 is then bonded.
  • the protective film 4 can be formed.
  • a second hard coat layer 13 is formed on the surface of the base film 11 opposite to the first hard coat layer 12.
  • a photocurable monomer and a photoinitiator are stirred in a diluent to prepare a coating solution.
  • the obtained coating liquid is applied onto the surface of the base film 11 opposite to the first hard coat layer 12 side, and the resin is cured by irradiating with ultraviolet rays, whereby the second hard coat layer 13 is formed.
  • the undercoat layer 14 is formed on the second hard coat layer 13. Specifically, when SiO 2 is used, the undercoat layer 14 can be formed on the second hard coat layer 13 by vapor deposition or sputtering.
  • the first and second hard coat layers 12 and 13 and the undercoat layer 14 are formed on the base film 11.
  • the first and second hard coat layers 12 and 13 and the undercoat layer 14 may not be provided.
  • the surface of the base film 11 on the conductive layer 3 side is the first surface 2 a of the base material 2
  • the surface of the base film 11 on the protective film 4 side is the second surface of the base material 2. It is the surface 2b.
  • the light transmissive conductive film 1 can be produced by forming the conductive layer 3 on the undercoat layer 14.
  • the method for forming the conductive layer is not particularly limited, and a method by vapor deposition or sputtering can be used.
  • the formed conductive layer can be improved in crystallinity by annealing.
  • the annealing treatment may be performed in a state where a protective film is used on the side opposite to the conductive layer side of the substrate. Moreover, the annealing treatment may be performed in a state where the protective film attached to the conductive layer side is peeled off.
  • the light transmissive conductive film 1 is obtained by, for example, using the above-described method for producing a light transmissive conductive film having a patterned conductive layer, as shown in FIG. 3, the conductive layer 3 (FIG. 1) as a patterned conductive layer. By making it 3X, it can be used as the light transmissive conductive film 1X.
  • a patterned conductive layer 3X can be formed by partially forming a resist layer on the surface of the conductive layer 3 opposite to the base film 11 side and performing an etching process. After the etching process, washing with water is performed.
  • the light transmissive conductive film 1X has a patterned conductive layer 3X.
  • the patterned conductive layer 3 ⁇ / b> X is partially stacked on the first surface 2 a of the substrate 2.
  • the light transmissive conductive film 1 ⁇ / b> X has, on the first surface 2 a of the substrate 2, a portion with the patterned conductive layer 3 ⁇ / b> X and a portion without the patterned conductive layer 3 ⁇ / b> X.
  • Annealing methods include several means such as a method using hot air drying and a method using infrared rays.
  • the annealing method is not particularly limited, but a method using far infrared rays is preferable.
  • the annealing temperature is preferably 120 ° C. or higher, more preferably 140 ° C. or higher, preferably 200 ° C. or lower, more preferably 170 ° C. or lower.
  • the treatment time for the annealing treatment is preferably 5 minutes or more, more preferably 10 minutes or more, preferably 60 minutes or less, more preferably 30 minutes or less.
  • the light transmissive conductive film 1X may be used while the protective film 4 is laminated, or may be used after the protective film 4 is peeled off.
  • the total thickness of the substrate is preferably 23 ⁇ m or more, more preferably 50 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the base material may include a base film, a hard coat layer, and / or an undercoat layer, and the total thickness of the base material in such a case is preferably not less than the above lower limit and not more than the above upper limit.
  • the base film preferably has high light transmittance.
  • the material of the base film is not particularly limited.
  • examples include phthalate, triacetylcellulose, and cellulose nanofiber.
  • the material for the base film may be used alone or in combination.
  • the thickness of the base film is preferably 5 ⁇ m or more, more preferably 20 ⁇ m or more, preferably 190 ⁇ m or less, more preferably 125 ⁇ m or less.
  • the pattern of the conductive layer can be made even less visible.
  • the average transmittance in the visible light region with a wavelength of 380 to 780 nm is preferably 85% or more, more preferably 90% or more, and usually 100% or less.
  • the base film may contain various stabilizers, ultraviolet absorbers, plasticizers, lubricants, or colorants.
  • First and second hard coat layers are preferably composed of a binder resin.
  • the binder resin is preferably a cured resin.
  • the curable resin a thermosetting resin, an active energy ray curable resin, or the like can be used. From the viewpoint of improving productivity and economy, the curable resin is preferably an ultraviolet curable resin.
  • Examples of the photocurable monomer for forming the ultraviolet curable resin include 1,6-hexanediol diacrylate, 1,4-butanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, and tetraethylene glycol diacrylate.
  • triacrylate compounds such as trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol monohydroxytriacrylate and trimethylolpropane triethoxytriacrylate; such as pentaerythritol tetraacrylate and di-trimethylolpropane tetraacrylate Tetraacrylate compounds
  • pentaacrylate compounds such as dipentaerythritol (monohydroxy) pentaacrylate.
  • a polyfunctional acrylate compound having five or more functional groups may be used as the ultraviolet curable resin.
  • a polyfunctional acrylate compound may be used independently and may use multiple. Moreover, you may add a photoinitiator, a photosensitizer, a leveling agent, a diluent, etc. to a polyfunctional acrylate compound.
  • the first hard coat layer may be composed of a resin portion and a filler.
  • the pattern of the conductive layer can be made even less visible.
  • surface undulation called “Yuzu skin” may occur or fogging due to surface irregularities may occur, and when used in a liquid crystal display device, display light becomes difficult to see.
  • the first hard coat layer does not contain a filler and is constituted only by a resin portion from the viewpoint of making it difficult to cause the skin and cloudiness.
  • the average particle diameter of the filler is smaller than the thickness of the first hard coat layer, and the filler does not protrude on the surface of the first hard coat layer.
  • the filler is not particularly limited.
  • metal oxide such as silica, iron oxide, aluminum oxide, zinc oxide, titanium oxide, silicon dioxide, antimony oxide, zirconium oxide, tin oxide, cerium oxide, and indium-tin oxide.
  • Product particles resin particles such as silicone, (meth) acryl, styrene, melamine, and the like. More specifically, resin particles such as crosslinked poly (meth) methyl acrylate can be used.
  • the said filler may be used independently and may use multiple together.
  • each of the first and second hard coat layers may contain various stabilizers, ultraviolet absorbers, plasticizers, lubricants or colorants.
  • the undercoat layer is, for example, a refractive index adjustment layer.
  • the undercoat layer By providing the undercoat layer, the difference in refractive index between the conductive layer and the second hard coat layer or substrate film can be reduced, so that the light transmissive conductive film can be made more transparent. Can be increased.
  • the undercoat layer can be formed by a vacuum deposition method, a sputtering method, an ion plating method, or a coating method.
  • the conductive layer is made of a light-transmitting conductive material.
  • the conductive material is not particularly limited, for example, IZO (indium zinc oxide) or, In-based oxides such as ITO (indium tin oxide), Sn, such as SnO 2, FTO (fluorine-doped tin oxide) -Based oxides, Zn-based oxides such as AZO (aluminum zinc oxide), GZO (gallium zinc oxide), sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum -Lithium alloys, Al / Al 2 O 3 mixtures, Al / LiF mixtures, metals such as gold, CuI, Ag nanowires (AgNW), carbon nanotubes (CNT) or conductive transparent polymers.
  • the said electroconductive material may be used independently and may use multiple together.
  • the conductive material includes: In-based oxides such as IZO (indium zinc oxide) and ITO (indium tin oxide); Sn-based oxides such as SnO 2 and FTO (fluorine-doped tin oxide); AZO (aluminum zinc) Oxide) and Zn-based oxides such as GZO (gallium zinc oxide) are preferable, and ITO (indium tin oxide) is more preferable.
  • In-based oxides such as IZO (indium zinc oxide) and ITO (indium tin oxide)
  • Sn-based oxides such as SnO 2 and FTO (fluorine-doped tin oxide)
  • AZO (aluminum zinc) Oxide) and Zn-based oxides such as GZO (gallium zinc oxide) are preferable, and ITO (indium tin oxide) is more preferable.
  • Examples of the method for controlling the surface tension in the conductive layer include a method for controlling the oxygen flow rate during ITO film formation to be larger than the bottom of the U curve, and a method for controlling the flow rate by increasing / decreasing the argon flow rate.
  • a method for controlling the arithmetic average height Sa and the arithmetic average roughness Ra for example, there is a method of adding a filler to the hard coat layer.
  • the filler material include metal oxide particles such as silica, iron oxide, aluminum oxide, zirconium oxide, and indium-tin oxide, and resin particles such as silicone, acrylic, styrene, and melamine.
  • the fillers may be used alone or in combination.
  • Other methods for controlling the arithmetic average height Sa and the arithmetic average roughness Ra include a method for controlling the polymerization rate when forming the hard coat layer and the undercoat layer.
  • the thickness of the conductive layer is preferably 12 nm or more, more preferably 16 nm or more, still more preferably 17 nm or more, preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 19.9 nm or less.
  • the thickness of the conductive layer is not less than the above lower limit, the resistance value of the light-transmitting conductive film can be effectively reduced, and the conductivity can be further increased.
  • the thickness of the conductive layer is less than or equal to the above upper limit, the pattern of the conductive layer can be made less visible and the light transmissive conductive film can be made even thinner.
  • the average transmittance in the visible light region with a wavelength of 380 to 780 nm is preferably 85% or more, more preferably 90% or more, and usually 100% or less. It is.
  • the protective film is comprised by the base material sheet and the adhesive layer.
  • the protective film preferably has a base sheet.
  • the base sheet preferably has high light transmittance.
  • the material of the base sheet is not particularly limited, but for example, polyolefin, polyethersulfone, polysulfone, polycarbonate, cycloolefin polymer, polyarylate, polyamide, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate , Triacetyl cellulose, and cellulose nanofibers.
  • polystyrene resin examples include polyethylene, polypropylene and the like.
  • the material of the protective film preferably contains polyolefin, preferably contains polypropylene, and the material of the base sheet is preferably polyolefin, and is polypropylene. It is preferable.
  • the above polypropylene is obtained by polymerizing propylene monomer.
  • Polypropylene is a polymer.
  • the polymer includes a copolymer.
  • Examples of polypropylene include a homopolymer of propylene monomer and a copolymer of polymerization components mainly composed of propylene monomer.
  • the content of the propylene monomer is 50% by weight or more, preferably 80% by weight or more, more preferably 90% by weight in 100% by weight of the polymerizable polymerization component. It is at least% by weight and usually less than 100% by weight.
  • the form of copolymerization may be random or block.
  • polypropylene examples include propylene homopolymer, propylene random polymer, and propylene block polymer.
  • Polypropylene is preferably a homopolymer of propylene monomer, and is preferably a propylene homopolymer.
  • the pressure-sensitive adhesive layer can be composed of a (meth) acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a urethane-based adhesive, or an epoxy-based adhesive. From the viewpoint of suppressing an increase in adhesive force due to heat treatment, the adhesive layer is preferably composed of a (meth) acrylic adhesive.
  • the above (meth) acrylic pressure-sensitive adhesive is a pressure-sensitive adhesive obtained by adding a crosslinking agent, a tackifying resin, various stabilizers and the like to a (meth) acrylic polymer as necessary.
  • the (meth) acrylic polymer is not particularly limited, but (meth) acrylic copolymer obtained by copolymerizing a mixed monomer containing a (meth) acrylic acid ester monomer and another copolymerizable monomer. A polymer is preferred.
  • the (meth) acrylic acid ester monomer is not particularly limited, and is obtained by an esterification reaction between a primary or secondary alkyl alcohol having 1 to 12 carbon atoms in the alkyl group and (meth) acrylic acid ( A meth) acrylic acid ester monomer is preferred.
  • Specific examples of the (meth) acrylate monomer include ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • the said (meth) acrylic acid ester monomer may be used independently and may use multiple together.
  • Examples of other polymerizable monomers that can be copolymerized include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; Isobornyl (meth) acrylate, hydroxyalkyl (meth) acrylate, glycerin dimethacrylate, glycidyl (meth) acrylate, 2-methacryloyloxyethyl isocyanate, (meth) acrylic acid, itaconic acid, maleic anhydride, crotonic acid, malein Examples thereof include functional monomers such as acid and fumaric acid.
  • the said other polymerizable monomer which can be copolymerized may be used independently, and may use multiple together.
  • the crosslinking agent is not particularly limited, and for example, an isocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, a peroxide crosslinking agent, a urea crosslinking agent, a metal alkoxide crosslinking agent, a metal chelate crosslinking agent.
  • the above crosslinking agents may be used alone or in combination.
  • the tackifying resin is not particularly limited, and examples thereof include petroleum resins such as aliphatic copolymers, aromatic copolymers, aliphatic / aromatic copolymers, and alicyclic copolymers.
  • petroleum resins such as aliphatic copolymers, aromatic copolymers, aliphatic / aromatic copolymers, and alicyclic copolymers.
  • the tackifying resin may be a hydrogenated resin.
  • the tackifying resins may be used alone or in combination.
  • the thickness of the protective film is preferably 25 ⁇ m or more, more preferably 50 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the thickness of the protective film is not less than the above lower limit and not more than the above upper limit, the pattern of the conductive layer can be made even less visible.
  • Example 1 Production of light-transmitting conductive film A PET film having a thickness of 125 ⁇ m was used as the base film. An acrylic hard coat resin in which zirconia particles were dispersed was applied to one surface of the PET film to obtain a hard coat layer having a thickness of 1.0 ⁇ m. An acrylic hard coat resin was applied to the other surface of the PET film to obtain a hard coat layer having a thickness of 1.0 ⁇ m. In this way, a double-sided hard coat film was obtained.
  • This double-sided hard coat film was placed in a vacuum apparatus and evacuated. After reaching a vacuum degree of 8.0 ⁇ 10 ⁇ 4 Pa, an argon gas was introduced, and a SiO x layer, a SiO 2 layer, and a SiO x layer were formed in this order in an argon atmosphere by a DC magnetron sputtering method.
  • Indium tin oxide (ITO) was laminated thereon. Specifically, using an ITO sintered body target with SnO 2 of 7 wt%, a cathode having a maximum horizontal magnetic flux density of 1000 gauss on the target surface, a sputtering pressure of 0.4 Pa, an O 2 pressure of 0.004 Pa. A conductive layer (indium tin oxide layer) having a thickness of 18 nm was formed at an Ar pressure of 0.11 Pa to obtain a light-transmitting conductive film.
  • a surface protective film having a thickness of 30 ⁇ m (“Toretec 7332” manufactured by Toray Film Processing Co., Ltd., substrate: polyolefin, adhesive strength at 23 ° C .: 0.07 N / 50 mm width)
  • Toretec 7332 manufactured by Toray Film Processing Co., Ltd., substrate: polyolefin, adhesive strength at 23 ° C .: 0.07 N / 50 mm width
  • the surface protective film was peeled off.
  • the samples thus prepared were evaluated for surface tension, arithmetic average height Sa, and arithmetic average roughness Ra.
  • the support film was peeled off, and the substrate was developed by being immersed in a 1% by weight alkaline solution (1 / 4N KOH aqueous solution) at 30 ° C. for 1 minute.
  • the cured resist pattern was peeled off by immersing the base material in a 3% by mass NaOH aqueous solution at 50 ° C. for 120 seconds. In this way, a light transmissive conductive film having a patterned conductive layer was obtained.
  • Example 2 to 5 and Comparative Example 1 Except that the flow rate (pressure) of oxygen (O 2 ) and argon (Ar) during the formation of the conductive layer was changed as shown in Table 1 below, the conductive layer was formed in the same manner as in Example 1, A light transmissive conductive film was obtained.
  • a light transmissive conductive film having a patterned conductive layer was obtained in the same manner as in Example 1.
  • Example 6 A PET film having a thickness of 125 ⁇ m was used as the base film.
  • An acrylic hard coat resin in which zirconia particles and silica particles having a particle diameter of 1.0 ⁇ m were dispersed was applied to one surface of the PET film to obtain a hard coat layer having a thickness of 1.0 ⁇ m.
  • An acrylic hard coat resin was applied to the other surface of the PET film to obtain a hard coat layer having a thickness of 1.0 ⁇ m. In this way, a double-sided hard coat film was obtained.
  • Example 7 A PET film having a thickness of 125 ⁇ m was used as the base film.
  • An acrylic hard coat resin in which zirconia particles and acrylic particles having a particle diameter of 1.0 ⁇ m were dispersed was applied to one surface of the PET film to obtain a hard coat layer having a thickness of 1.0 ⁇ m.
  • An acrylic hard coat resin was applied to the other surface of the PET film to obtain a hard coat layer having a thickness of 1.0 ⁇ m. In this way, a double-sided hard coat film was obtained.
  • a PET film having a thickness of 125 ⁇ m was used as the base film.
  • An acrylic hard coat resin in which zirconia particles and silica particles having a particle size of 1.5 ⁇ m were dispersed was applied to one surface of the PET film to obtain a hard coat layer having a thickness of 1.0 ⁇ m.
  • An acrylic hard coat resin was applied to the other surface of the PET film to obtain a hard coat layer having a thickness of 1.0 ⁇ m. In this way, a double-sided hard coat film was obtained.
  • a light-transmitting conductive film was obtained in the same manner as in Example 1 except that this double-sided hard coat film was used.
  • the liquid was spread on the surface of the conductive layer to have an area of 2 cm 2 or more to form a liquid film.
  • the amount of liquid was such that a liquid film was formed without creating a pool.
  • the measurement was performed in an unmeasured area every time, the liquid was not spread several times, and the line was not drawn with the tension checker pen and the wet tension test mixed liquid several times.
  • the determination of the surface tension was performed 5 seconds after the liquid was spread to form a liquid film.
  • the liquid film was not torn and the area of 80% or more was maintained after 5 seconds with respect to the area of 100% immediately after spreading the liquid, it was determined that the conductive layer had a predetermined surface tension. .
  • the arithmetic average height Sa was measured using a white interferometer “VertScan” manufactured by Ryoka System. Specifically, a CCD camera SONY HR-50 1/3 is used, the lens barrel is 1 ⁇ , the objective lens is 50 ⁇ , the measurement mode is the wave mode, the measurement range is 71.15 ⁇ m in the Y direction, and 94 in the X direction. Observed as 89 ⁇ m. The arithmetic average height Sa in the region of 70 ⁇ m in the Y direction and 90 ⁇ m in the X direction of the obtained observation image was obtained.
  • the arithmetic average roughness Ra was measured using a scanning probe microscope (“SPM-9700” manufactured by Shimadzu Corporation). Specifically, it was calculated from the measurement results obtained by using a microcantilever ("OMCL-TR800PSA-1" manufactured by Olympus) and scanning in the contact area in a measurement area of 1.0 ⁇ m ⁇ 1.0 ⁇ m. The measurement was performed twice, and the average value was adopted as the arithmetic average height Sa and the arithmetic average roughness Ra.
  • adhesiveness was determined according to the following criteria.
  • the detection terminal of the multimeter was brought into contact with the conductive layer of the light-transmitting conductive film on which the pattern was formed, and the presence or absence of conduction between the terminals (distance between terminals: 8 cm) was confirmed.
  • the adhesion was determined according to the following criteria.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

A light-transmitting conductive film which is provided with: a conductive layer which has light transmitting properties and electrical conductivity; and a substrate which is arranged on one surface of the conductive layer. This light-transmitting conductive film is configured such that the surface tension of a surface of the conductive layer, said surface being on the reverse side of the substrate-side surface, is from 28 dyn/cm to 34 dyn/cm (inclusive).

Description

光透過性導電フィルム及びパターン状の導電層を有する光透過性導電フィルムの製造方法Light transmissive conductive film and method for producing light transmissive conductive film having patterned conductive layer
 本発明の一実施態様は、光透過性及び導電性を有する光透過性導電フィルムに関する。また、本発明の別の実施態様は、上記光透過性導電フィルムを用いるパターン状の導電層を有する光透過性導電フィルムの製造方法に関する。 One embodiment of the present invention relates to a light-transmitting conductive film having light transmittance and conductivity. Another embodiment of the present invention relates to a method for producing a light transmissive conductive film having a patterned conductive layer using the light transmissive conductive film.
 近年、スマートフォン、携帯電話、ノートパソコン、タブレットPC、複写機又はカーナビゲーションなどの電子機器において、タッチパネル式の液晶表示装置が、広く用いられている。このような液晶表示装置では、基材上に透明導電層が積層された光透過性導電フィルムが用いられている。 In recent years, touch panel type liquid crystal display devices have been widely used in electronic devices such as smartphones, mobile phones, notebook computers, tablet PCs, copiers, and car navigation systems. In such a liquid crystal display device, a light transmissive conductive film in which a transparent conductive layer is laminated on a substrate is used.
 光透過性導電フィルムは、通常エッチング処理を行うことにより光透過性及び導電性を有する導電層をパターン化した後にタッチパネルに搭載される。このようにして導電層がパターン化された光透過性導電フィルムにおいて、光透過性導電フィルムの表面にて導電層のパターンが視認されるようになる問題が知られている。 The light transmissive conductive film is usually mounted on the touch panel after patterning a light transmissive and conductive conductive layer by performing an etching process. Thus, in the light transmissive conductive film in which the conductive layer is patterned, there is a problem that the pattern of the conductive layer is visually recognized on the surface of the light transmissive conductive film.
 また、これまで額縁配線部では、銀ペーストをプリントするなどの方法で配線が形成されている。そのため、導電層には、銀ペーストとの密着性が要求される。密着性を高める手段として、非晶質透明導電性薄膜の表面張力を調整した透明導電膜などが開示されている(特許文献1)。 Also, until now, in the frame wiring part, wiring is formed by a method such as printing silver paste. For this reason, the conductive layer is required to have adhesiveness with the silver paste. As a means for improving adhesion, a transparent conductive film in which the surface tension of an amorphous transparent conductive thin film is adjusted is disclosed (Patent Document 1).
特開2000-243146号公報JP 2000-243146 A
 一方、近年、検出感度の向上のために、パターン電極と配線とが同時に用いられたり、高密度化及び配線の微細化のために、導電層がパターン電極として用いられたりしているのみならず、額縁配線部において、導電層がパターン電極に接続する配線にも用いられるようになってきている。 On the other hand, in recent years, the pattern electrode and the wiring are used simultaneously for improving the detection sensitivity, and the conductive layer is used as the pattern electrode for increasing the density and miniaturizing the wiring. In the frame wiring portion, the conductive layer is also used for wiring connecting to the pattern electrode.
 このような状況で、パターン電極や配線パターンの形成方法も変わってきている。従来、液体レジストを用いて、スクリーン印刷によりレジストを形成した後にエッチング処理する方法が主流である。しかし、近年、ドライフィルムレジストを導電層に貼り付け、露光及び現像後にエッチング処理する方法に変わってきている。 In this situation, the pattern electrode and wiring pattern formation methods are also changing. Conventionally, a method of performing an etching process after forming a resist by screen printing using a liquid resist has been the mainstream. However, in recent years, the method has been changed to a method in which a dry film resist is attached to a conductive layer and etching treatment is performed after exposure and development.
 しかし、ドライフィルムレジストによるエッチング処理方法で形成したパターン電極や配線において、導電層が断線したり、導電層のエッジ部分が過度に欠けたりし、故障、応答性低下、パターン見えなどの問題が起きやすくなる。 However, in the patterned electrodes and wiring formed by the dry film resist etching method, the conductive layer is broken or the edge of the conductive layer is excessively chipped, causing problems such as failure, responsiveness deterioration, and pattern appearance. It becomes easy.
 本発明者らは、これらの問題は、導電層の表面に対するドライフィルムレジストの密着性に起因することを見出した。 The present inventors have found that these problems are caused by the adhesion of the dry film resist to the surface of the conductive layer.
 そのため、本発明の目的の1つは、導電層の表面に対するドライフィルムレジストなどの部材の密着性を高めることができる光透過性導電フィルムを提供することである。また、本発明の別の目的は、上記光透過性導電フィルムを用いるパターン状の導電層を有する光透過性導電フィルムの製造方法を提供することである。 Therefore, one of the objects of the present invention is to provide a light-transmitting conductive film that can improve the adhesion of a member such as a dry film resist to the surface of the conductive layer. Another object of the present invention is to provide a method for producing a light transmissive conductive film having a patterned conductive layer using the light transmissive conductive film.
 本発明の一実施態様によれば、光透過性及び導電性を有する導電層と、前記導電層の一方の表面側に配置されている基材とを備え、前記導電層の前記基材側とは反対側の表面の表面張力が28dyn/cm以上、34dyn/cm以下である、光透過性導電フィルムが提供される。 According to one embodiment of the present invention, a conductive layer having optical transparency and conductivity, and a base material disposed on one surface side of the conductive layer, the base side of the conductive layer; Provides a light-transmissive conductive film having a surface tension of 28 dyn / cm or more and 34 dyn / cm or less on the opposite surface.
 本発明の一実施態様においては、前記導電層の前記基材側とは反対側の表面の70μmx90μmの視野での算術平均高さSaが0.5nm以上、20nm以下であり、前記導電層の前記基材側とは反対側の表面の1.0μmx1.0μmの範囲での算術平均粗さRaが2.0nm以上、15nm以下である。 In one embodiment of the present invention, the arithmetic average height Sa in a visual field of 70 μm × 90 μm on the surface opposite to the substrate side of the conductive layer is 0.5 nm or more and 20 nm or less, and the conductive layer The arithmetic average roughness Ra in the range of 1.0 μm × 1.0 μm on the surface opposite to the substrate side is 2.0 nm or more and 15 nm or less.
 本発明の一実施態様においては、前記導電層は結晶化した導電層である。 In one embodiment of the present invention, the conductive layer is a crystallized conductive layer.
 本発明の一実施態様において、前記光透過性導電フィルムは、前記導電層の外側の表面上にドライフィルムレジストを接触させて用いられる。 In one embodiment of the present invention, the light transmissive conductive film is used by contacting a dry film resist on the outer surface of the conductive layer.
 本発明の別の実施態様によれば、上述した光透過性導電フィルムの前記導電層の前記基材側とは反対側の表面に、ドライフィルムレジストを接触させる工程と、前記導電層をパターン状の導電層にする工程と、前記ドライフィルムレジストを剥離する工程とを備える、パターン状の導電層を有する光透過性導電フィルムの製造方法が提供される。 According to another embodiment of the present invention, a step of bringing a dry film resist into contact with the surface of the light-transmissive conductive film described above on the side opposite to the substrate side of the conductive layer, and the conductive layer is patterned. There is provided a method for producing a light-transmitting conductive film having a pattern-like conductive layer, comprising a step of forming a conductive layer and a step of peeling the dry film resist.
 本発明の一実施態様である光透過性導電フィルムは、光透過性及び導電性を有する導電層と、上記導電層の一方の表面側に配置されている基材とを備える。その本発明の一実施態様である光透過性導電フィルムにおいて、上記導電層の上記基材側とは反対側の表面の表面張力が28dyn/cm以上、34dyn/cm以下であるので、導電層の表面に対するドライフィルムレジストなどの部材の密着性を高めることができる。 The light transmissive conductive film which is one embodiment of the present invention includes a light transmissive and conductive layer and a base material disposed on one surface side of the conductive layer. In the light-transmitting conductive film that is one embodiment of the present invention, the surface tension of the surface of the conductive layer opposite to the substrate side is 28 dyn / cm or more and 34 dyn / cm or less. The adhesion of a member such as a dry film resist to the surface can be improved.
図1は、本発明の一実施形態に係る光透過性導電フィルムを示す断面図である。FIG. 1 is a cross-sectional view showing a light transmissive conductive film according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る光透過性導電フィルムを示す断面図である。FIG. 2 is a cross-sectional view showing a light transmissive conductive film according to an embodiment of the present invention. 図3は、本発明の一実施形態に係る光透過性導電フィルムの導電層をパターン状の導電層にしたときの状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state where the conductive layer of the light-transmitting conductive film according to one embodiment of the present invention is a patterned conductive layer.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 本発明の一実施態様である光透過性導電フィルムは、導電層と、基材とを備える。上記導電層は、光透過性及び導電性を有する。上記基材は、上記導電層の一方の表面側に配置されている。 The light transmissive conductive film which is one embodiment of the present invention includes a conductive layer and a base material. The conductive layer has light transmittance and conductivity. The base material is disposed on one surface side of the conductive layer.
 本発明の一実施態様である光透過性導電フィルムでは、上記導電層の上記基材側とは反対側の表面の表面張力が28dyn/cm以上、34dyn/cm以下である。 In the light-transmissive conductive film according to one embodiment of the present invention, the surface tension of the surface of the conductive layer on the side opposite to the substrate side is 28 dyn / cm or more and 34 dyn / cm or less.
 本発明の一実施態様によれば、導電層の表面に対するドライフィルムレジストなどの部材の密着性を高めることができる。例えば、パターン状の導電層を形成するために、導電層にドライフィルムレジストを貼り付けたときに、ドライフィルムレジストの密着性を高めることができる。このため、ドライフィルムレジストの剥離を抑えることができ、更にドライフィルムレジストで被覆された導電層のエッチングによる欠損を防止することができる。これらのように、導電層の断線を防ぐことができ、導電層のエッジ部分の形状を良好にすることができる。 According to one embodiment of the present invention, the adhesion of a member such as a dry film resist to the surface of the conductive layer can be improved. For example, when a dry film resist is attached to the conductive layer in order to form a patterned conductive layer, the adhesion of the dry film resist can be improved. For this reason, peeling of a dry film resist can be suppressed and the defect | deletion by the etching of the conductive layer coat | covered with the dry film resist can be prevented. As described above, disconnection of the conductive layer can be prevented, and the shape of the edge portion of the conductive layer can be improved.
 上記表面張力は、具体的には以下のようにして測定することができる。 Specifically, the surface tension can be measured as follows.
 表面張力は25℃で測定する。表面張力の測定には、表面張力が34dyn/cmを超え、40dyn/cm以下の範囲内である場合に、春日電気社製のテンションチェッカーペン(2-エトキシエタノール混合液)を用いることができる。また、表面張力が34dyn/cm以下である場合に、和光純薬工業社製のぬれ張力試験用混合液を用いることができる(JIS K6768:1999準拠)。具体的には、テンションチェッカーペン、又はぬれ張力試験用混合液を用い、導電層の表面に2cm以上の面積になるように液体を拡げて、液膜を形成する。液体の量は、例えばたまりを作らないで液膜を形成する程度にする。測定は毎回未測定領域で行い、複数回にわたって液体を拡げてはならず、複数回にわたってテンションチェッカーペン、及びぬれ張力試験用混合液で線を引いてはならない。 The surface tension is measured at 25 ° C. For the measurement of the surface tension, a tension checker pen (2-ethoxyethanol mixed solution) manufactured by Kasuga Electric Co., Ltd. can be used when the surface tension is in the range of more than 34 dyn / cm and not more than 40 dyn / cm. Moreover, when the surface tension is 34 dyn / cm or less, a liquid mixture for wet tension test manufactured by Wako Pure Chemical Industries, Ltd. can be used (based on JIS K6768: 1999). Specifically, using a tension checker pen or a wet tension test mixed liquid, the liquid is spread on the surface of the conductive layer so as to have an area of 2 cm 2 or more to form a liquid film. The amount of the liquid is, for example, such that a liquid film is formed without forming a pool. The measurement should be performed in the unmeasured area each time, the liquid should not be spread multiple times, and the line should not be drawn multiple times with the tension checker pen and the wet tension test mixture.
 表面張力の判定は、液体を拡げて液膜を形成してから5秒後に行う。液膜に破れが生じないで液体を拡げた直後の100%の面積に対して5秒後に80%以上の面積を保っていれば、導電層が所定の表面張力を有していることになる。 The surface tension is determined 5 seconds after the liquid is spread to form a liquid film. If the area of 80% or more is maintained after 5 seconds with respect to the area of 100% immediately after spreading the liquid without tearing the liquid film, the conductive layer has a predetermined surface tension. .
 表面張力の低い試薬から測定を開始し、導電層が所定の表面張力を有していることを確認したら、さらに次に表面張力の高い混合液での測定に進み、表面張力の判定にて最も高い表面張力を示した場合の表面張力を、導電層の表面張力とする。測定は、通常3回以上を行い、その平均値を表面張力とする。 Start the measurement with a reagent with a low surface tension and confirm that the conductive layer has the specified surface tension. Then proceed to the measurement with the liquid mixture with the next highest surface tension. The surface tension when high surface tension is shown is the surface tension of the conductive layer. The measurement is usually performed 3 times or more, and the average value is defined as the surface tension.
 上記導電層の上記基材側とは反対側の表面の70μmx90μm(正方形)の視野での算術平均高さSaは、以下の下限及び上限を満足することが好ましい。上記算術平均高さSaは、好ましくは0.5nm以上、より好ましくは1.0nm以上、さらに好ましくは2.0nm以上、さらにより好ましくは4.0nm以上、特に好ましくは6.0nm以上、とりわけ好ましくは8.0nm以上、ことさら好ましくは10nm以上、非常に好ましくは12nm以上、最も好ましくは15nm以上である。上記算術平均高さSaは、好ましくは20nm以下、より好ましくは19nm以下である。上記算術平均高さSaが上記下限以上であったり、上記上限以下であったりすると、導電層の表面に対するドライフィルムレジストなどの部材の密着性をより一層高めることができる。上記導電層の上記基材側とは反対側の表面の1.0μmx1.0μmの範囲での算術平均粗さRaは、以下の下限及び上限を満足することが好ましい。上記算術平均粗さRaは、好ましくは2.0nm以上、より好ましくは2.5nm以上、さらに好ましくは5nm以上、さらにより好ましくは7nm以上、とりわけ好ましくは10nm以上であり、好ましくは15nm以下、より好ましくは14nm以下、さらに好ましくは13nm以下である。上記算術平均粗さRaが上記下限以上であったり、上記上限以下であったりすると、導電層の表面に対するドライフィルムレジストなどの部材の密着性をより一層高めることができる。 The arithmetic average height Sa in the visual field of 70 μm × 90 μm (square) on the surface of the conductive layer opposite to the substrate side preferably satisfies the following lower limit and upper limit. The arithmetic average height Sa is preferably 0.5 nm or more, more preferably 1.0 nm or more, still more preferably 2.0 nm or more, still more preferably 4.0 nm or more, particularly preferably 6.0 nm or more, and particularly preferably Is 8.0 nm or more, more preferably 10 nm or more, very preferably 12 nm or more, and most preferably 15 nm or more. The arithmetic average height Sa is preferably 20 nm or less, more preferably 19 nm or less. When the arithmetic average height Sa is not less than the above lower limit or not more than the above upper limit, the adhesion of a member such as a dry film resist to the surface of the conductive layer can be further enhanced. The arithmetic average roughness Ra in the range of 1.0 μm × 1.0 μm on the surface of the conductive layer opposite to the substrate side preferably satisfies the following lower limit and upper limit. The arithmetic average roughness Ra is preferably 2.0 nm or more, more preferably 2.5 nm or more, further preferably 5 nm or more, even more preferably 7 nm or more, particularly preferably 10 nm or more, preferably 15 nm or less, more Preferably it is 14 nm or less, More preferably, it is 13 nm or less. When the arithmetic average roughness Ra is not less than the above lower limit or not more than the above upper limit, the adhesion of a member such as a dry film resist to the surface of the conductive layer can be further enhanced.
 上記、算術平均高さSa及び算術平均粗さRaは、具体的に以下のように測定することができる。 The arithmetic average height Sa and the arithmetic average roughness Ra can be specifically measured as follows.
 算術平均高さSaの測定は、白色干渉顕微鏡(例えば、菱化システム社製の「VertScan」もしくは同等品)を用いて行う。具体的には、CCDカメラ(例えば、SONY HR-50 1/3もしくは同等品)を使用し、鏡筒は1倍、対物レンズは50倍、測定モードはwaveモードを選択し、測定レンジはY方向71.15μm、X方向94.89μmで観察し、この範囲内における任意のY方向70μm、X方向90μmの領域について算術平均高さSaを算出する。測定は、通常2回以上を行い、その平均値を算術平均高さSaとする。 The arithmetic average height Sa is measured using a white interference microscope (for example, “VertScan” manufactured by Ryoka System Co., Ltd. or an equivalent product). Specifically, a CCD camera (for example, SONY HR-50 1/3 or equivalent) is used, the lens barrel is 1 ×, the objective lens is 50 ×, the measurement mode is wave mode, and the measurement range is Y Observation is made in the direction 71.15 μm and the X direction 94.89 μm, and the arithmetic average height Sa is calculated for an arbitrary region in the Y direction 70 μm and the X direction 90 μm. The measurement is usually performed twice or more, and the average value is defined as the arithmetic average height Sa.
 算術平均粗さRaの測定は、走査型プローブ顕微鏡(例えば、島津製作所社製「SPM-9700」もしくは同等品)を用いて測定する。具体的には、マイクロカンチレバー(オリンパス社製「OMCL-TR800PSA-1」もしくは同等品)を用いることができ、コンタクトモードで測定領域1.0μmx1.0μmの範囲で走査して得た測定結果より算出する。測定は、通常2回以上を行い、その平均値を算術平均粗さRaとする。 The arithmetic average roughness Ra is measured using a scanning probe microscope (for example, “SPM-9700” manufactured by Shimadzu Corporation or an equivalent product). Specifically, a microcantilever ("OMCL-TR800PSA-1" manufactured by Olympus or equivalent) can be used, and is calculated from the measurement result obtained by scanning the measurement area in the contact area of 1.0 μm × 1.0 μm. To do. The measurement is usually performed twice or more, and the average value is defined as the arithmetic average roughness Ra.
 上記基材は、基材フィルムを含むことが好ましく、ハードコート層を含むことが好ましく、アンダーコート層を含むことが好ましい。ハードコート層及びアンダーコート層は、それぞれ独立に、単層であっても複層であってもよい。 The substrate preferably includes a substrate film, preferably includes a hard coat layer, and preferably includes an undercoat layer. The hard coat layer and the undercoat layer may be each independently a single layer or multiple layers.
 また、本発明の一実施態様である光透過性導電フィルムは、アニール処理されていることが好ましい。アニール処理により、導電層の結晶性を高めることができ、結晶化した導電層を形成できる。本発明の好適な実施態様において、上記導電層は結晶化した導電層であり、かかる場合、低抵抗化やエッチングによるパターン形成性の向上の観点から好ましい。 In addition, the light transmissive conductive film which is one embodiment of the present invention is preferably annealed. By the annealing treatment, the crystallinity of the conductive layer can be increased, and a crystallized conductive layer can be formed. In a preferred embodiment of the present invention, the conductive layer is a crystallized conductive layer, and in such a case, it is preferable from the viewpoint of reducing resistance and improving pattern formation by etching.
 また、上記の効果が得られるので、上記光透過性導電フィルムは、上記導電層の外側の表面上にドライフィルムレジストを接触させて好適に用いられる。上記光透過性導電フィルムは、上記導電層の外側の表面上にドライフィルムレジストを接触させて、パターン状の導電層を形成するために好適に用いられる。 In addition, since the above effect can be obtained, the light transmissive conductive film is preferably used by bringing a dry film resist into contact with the outer surface of the conductive layer. The light transmissive conductive film is suitably used for forming a patterned conductive layer by bringing a dry film resist into contact with the outer surface of the conductive layer.
 また、本発明の別の実施態様に係るパターン状の導電層を有する光透過性導電フィルムの製造方法は、以下の各工程を備える。上述した光透過性導電フィルムの上記導電層の上記基材側とは反対側の表面に、ドライフィルムレジストを接触させる工程。上記導電層パターン状の導電層にする工程。上記ドライフィルムレジストを剥離する工程。このような各工程を経て、パターン状の導電層を形成することで、パターン状の導電層の形成精度を高めることできる。上記ドライフィルムレジストを接触させる工程と、上記導電層パターン状の導電層にする工程との間に、上記ドライフィルムレジストを硬化させる工程が備えられることが好ましい。上記導電層パターン状の導電層にする工程において、上記導電層をエッチングすることが好ましい。 Moreover, the manufacturing method of the translucent conductive film which has the pattern-shaped conductive layer which concerns on another embodiment of this invention comprises the following each process. The process of making a dry film resist contact the surface on the opposite side to the said base material side of the said conductive layer of the said light-transmitting conductive film. The process of making the said conductive layer pattern-form conductive layer. A step of peeling the dry film resist. By forming the patterned conductive layer through these steps, the formation accuracy of the patterned conductive layer can be increased. Preferably, a step of curing the dry film resist is provided between the step of bringing the dry film resist into contact with and the step of forming the conductive layer patterned conductive layer. In the step of forming the conductive layer patterned conductive layer, the conductive layer is preferably etched.
 本発明の一実施態様である光透過性導電フィルムをタッチパネルに用いた場合、パターン状の導電層の形成精度を高めることができるので、導電層の断線による不具合の発生を抑制することができる。よって、光透過性導電フィルムは、液晶表示装置に好適に用いることができ、タッチパネルにより好適に用いることができる。 When the light-transmitting conductive film which is one embodiment of the present invention is used for a touch panel, the formation accuracy of the patterned conductive layer can be increased, so that the occurrence of problems due to disconnection of the conductive layer can be suppressed. Therefore, the light transmissive conductive film can be suitably used for a liquid crystal display device, and can be suitably used for a touch panel.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る光透過性導電フィルムを示す断面図である。 FIG. 1 is a cross-sectional view showing a light transmissive conductive film according to an embodiment of the present invention.
 図1に示す光透過性導電フィルム1は、基材2、導電層3及び保護フィルム4を備える。 1 includes a substrate 2, a conductive layer 3, and a protective film 4. The light transmissive conductive film 1 shown in FIG.
 基材2は、第1の表面2a及び第2の表面2bを有する。第1の表面2aと、第2の表面2bとは、互いに対向している。基材2の第1の表面2a上に、導電層3が積層されている。第1の表面2aは、導電層3が積層される側の表面である。基材2は、導電層3と保護フィルム4との間に配置される部材であり、導電層3の支持部材である。また、導電層3の基材2とは反対側の表面に、保護フィルムが貼り付けてあってもよい。 The base material 2 has a first surface 2a and a second surface 2b. The first surface 2a and the second surface 2b are opposed to each other. A conductive layer 3 is laminated on the first surface 2 a of the substrate 2. The first surface 2a is a surface on the side where the conductive layer 3 is laminated. The substrate 2 is a member disposed between the conductive layer 3 and the protective film 4 and is a support member for the conductive layer 3. Further, a protective film may be attached to the surface of the conductive layer 3 opposite to the base 2.
 基材2の第2の表面2b上に、保護フィルム4が積層されている。第2の表面2bは、保護フィルム4が積層される側の表面である。保護フィルム4を設けることで、基材2の第2の表面2bを保護することができる。本実施形態では、導電層3の基材2側とは反対側の表面の表面張力が、28dyn/cm以上、34dyn/cm以下である。 The protective film 4 is laminated on the second surface 2b of the substrate 2. The second surface 2b is a surface on the side where the protective film 4 is laminated. By providing the protective film 4, the second surface 2 b of the substrate 2 can be protected. In the present embodiment, the surface tension of the surface of the conductive layer 3 on the side opposite to the substrate 2 side is 28 dyn / cm or more and 34 dyn / cm or less.
 基材2は、基材フィルム11、第1及び第2のハードコート層12,13及びアンダーコート層14を有する。基材フィルム11は、光透過性の高い材料により構成されている。基材フィルム11の導電層3側の表面上には、第2のハードコート層13及びアンダーコート層14がこの順に積層されている。アンダーコート層14は、導電層3に接している。 The base material 2 has a base film 11, first and second hard coat layers 12 and 13, and an undercoat layer 14. The base film 11 is made of a material having high light transmittance. On the surface of the base film 11 on the conductive layer 3 side, a second hard coat layer 13 and an undercoat layer 14 are laminated in this order. The undercoat layer 14 is in contact with the conductive layer 3.
 基材フィルム11の保護フィルム4側の表面上には、第1のハードコート層12が積層されている。第1のハードコート層12は、保護フィルム4に接している。 A first hard coat layer 12 is laminated on the surface of the base film 11 on the protective film 4 side. The first hard coat layer 12 is in contact with the protective film 4.
 導電層3は、光透過性及び導電性を有する材料、好ましくは光透過性が高く、かつ導電性の高い材料により構成されている。導電層3は、基材2の第1の表面2a上に積層されている。 The conductive layer 3 is made of a material having optical transparency and conductivity, preferably a material having high optical transparency and high electrical conductivity. The conductive layer 3 is laminated on the first surface 2 a of the substrate 2.
 保護フィルムは、粘着剤層により、基材の第2の表面に積層されてもよい。基材の第2の表面は、保護フィルムの上記粘着剤層と接していることが好ましい。 The protective film may be laminated on the second surface of the base material by an adhesive layer. It is preferable that the 2nd surface of a base material is in contact with the said adhesive layer of a protective film.
 図2は、本発明の一実施形態に係る光透過性導電フィルムを示す断面図である。 FIG. 2 is a cross-sectional view showing a light transmissive conductive film according to an embodiment of the present invention.
 図2に示す光透過性導電フィルム1Aでは、第1のハードコート層12が設けられていない。光透過性導電フィルム1Aは、アンダーコート層14と、第2のハードコート層13と、基材フィルム11とがこの順で積層された基材2Aを有する。光透過性導電フィルム1Aでは、基材フィルム11の導電層3とは反対側の表面上に直接、保護フィルム4が積層されている。 In the light transmissive conductive film 1A shown in FIG. 2, the first hard coat layer 12 is not provided. The light transmissive conductive film 1A has a base 2A in which an undercoat layer 14, a second hard coat layer 13, and a base film 11 are laminated in this order. In the light transmissive conductive film 1 </ b> A, the protective film 4 is laminated directly on the surface of the base film 11 opposite to the conductive layer 3.
 本発明の一実施態様である光透過性導電フィルムでは、光透過性導電フィルム1Aのように、第1のハードコート層が設けられていなくてもよい。基材フィルムの表面上に、保護フィルムが直接積層されていてもよい。また、第2のハードコート層及びアンダーコート層のうち少なくとも一方が設けられていなくてもよい。基材フィルムの導電層側の表面上には、アンダーコート層及び導電層がこの順に積層されていてもよく、基材フィルムに導電層が直接積層されていてもよい。アンダーコート層は、単層であってもよく、多層であってもよい。 In the light transmissive conductive film which is one embodiment of the present invention, the first hard coat layer may not be provided like the light transmissive conductive film 1A. A protective film may be directly laminated on the surface of the base film. Further, at least one of the second hard coat layer and the undercoat layer may not be provided. On the surface of the base film on the conductive layer side, the undercoat layer and the conductive layer may be laminated in this order, or the conductive layer may be laminated directly on the base film. The undercoat layer may be a single layer or a multilayer.
 次に、図1に示す光透過性導電フィルム1の製造方法を説明する。 Next, a method for manufacturing the light transmissive conductive film 1 shown in FIG. 1 will be described.
 光透過性導電フィルム1は、その製造方法は特に限定されないが、例えば、以下の方法により作製することができる。 The manufacturing method of the light-transmitting conductive film 1 is not particularly limited, but can be manufactured by the following method, for example.
 基材フィルム11の一方の表面上に、第1のハードコート層12を形成する。具体的には、樹脂に紫外線硬化樹脂を用いる場合は、光硬化性モノマー及び光開始剤を希釈剤中で撹拌して塗工液を作製する。得られた塗工液を基材フィルム11上に塗布し、紫外線を照射して樹脂を硬化させて、第1のハードコート層12を形成する。 1st hard coat layer 12 is formed on one surface of substrate film 11. Specifically, when an ultraviolet curable resin is used as the resin, a photocurable monomer and a photoinitiator are stirred in a diluent to prepare a coating solution. The obtained coating liquid is applied onto the base film 11 and the resin is cured by irradiating with ultraviolet rays to form the first hard coat layer 12.
 続いて、第1のハードコート層12上に保護フィルム4を形成する。保護フィルム4として、基材シート上に粘着剤層が設けられた保護フィルムを用いる場合は、粘着面を第1のハードコート層12の表面に貼り合わせて、第1のハードコート層12上に保護フィルム4を形成することができる。 Subsequently, the protective film 4 is formed on the first hard coat layer 12. When a protective film provided with a pressure-sensitive adhesive layer on a base sheet is used as the protective film 4, the adhesive surface is bonded to the surface of the first hard coat layer 12, and the first hard coat layer 12 is then bonded. The protective film 4 can be formed.
 次に、基材フィルム11の第1のハードコート層12とは反対側の表面上に、第2のハードコート層13を形成する。具体的には、樹脂に紫外線硬化樹脂を用いる場合は、光硬化性モノマー及び光開始剤を、希釈剤中で撹拌して塗工液を作製する。得られた塗工液を基材フィルム11の第1のハードコート層12側とは反対側の表面上に塗布し、紫外線を照射して樹脂を硬化させて、第2のハードコート層13を形成する。 Next, a second hard coat layer 13 is formed on the surface of the base film 11 opposite to the first hard coat layer 12. Specifically, when an ultraviolet curable resin is used as the resin, a photocurable monomer and a photoinitiator are stirred in a diluent to prepare a coating solution. The obtained coating liquid is applied onto the surface of the base film 11 opposite to the first hard coat layer 12 side, and the resin is cured by irradiating with ultraviolet rays, whereby the second hard coat layer 13 is formed. Form.
 次に、第2のハードコート層13上にアンダーコート層14を形成する。具体的には、SiOを用いる場合は、蒸着又はスパッタリングにより第2のハードコート層13上にアンダーコート層14を形成することができる。 Next, the undercoat layer 14 is formed on the second hard coat layer 13. Specifically, when SiO 2 is used, the undercoat layer 14 can be formed on the second hard coat layer 13 by vapor deposition or sputtering.
 上記のようにして、基材フィルム11上に、第1及び第2のハードコート層12,13及びアンダーコート層14を形成する。なお、本発明の一実施態様において、第1及び第2のハードコート層12,13及びアンダーコート層14は設けなくてもよい。この場合には、基材フィルム11の導電層3側の表面が、基材2の第1の表面2aであり、基材フィルム11の保護フィルム4側の表面が、基材2の第2の表面2bである。 As described above, the first and second hard coat layers 12 and 13 and the undercoat layer 14 are formed on the base film 11. In one embodiment of the present invention, the first and second hard coat layers 12 and 13 and the undercoat layer 14 may not be provided. In this case, the surface of the base film 11 on the conductive layer 3 side is the first surface 2 a of the base material 2, and the surface of the base film 11 on the protective film 4 side is the second surface of the base material 2. It is the surface 2b.
 次に、アンダーコート層14上に、導電層3を形成することにより、光透過性導電フィルム1を作製することができる。 Next, the light transmissive conductive film 1 can be produced by forming the conductive layer 3 on the undercoat layer 14.
 導電層の形成方法は、特に限定されないが、蒸着又はスパッタリングによる方法等を用いることができる。形成した導電層は、アニール処理により結晶性を高めることができる。アニール処理は、基材の導電層側とは反対側に保護フィルムが用いられた状態で行われてもよい。また、アニール処理は、導電層側に貼られた保護フィルムを、剥がした状態で行われてもよい。 The method for forming the conductive layer is not particularly limited, and a method by vapor deposition or sputtering can be used. The formed conductive layer can be improved in crystallinity by annealing. The annealing treatment may be performed in a state where a protective film is used on the side opposite to the conductive layer side of the substrate. Moreover, the annealing treatment may be performed in a state where the protective film attached to the conductive layer side is peeled off.
 光透過性導電フィルム1は、例えば、上述したパターン状の導電層を有する光透過性導電フィルムの製造方法を用いて、図3に示すように導電層3(図1)をパターン状の導電層3Xにすることにより、光透過性導電フィルム1Xとして用いることができる。導電層3の基材フィルム11側とは反対側の表面上に、レジスト層を部分的に形成して、エッチング処理することで、パターン状の導電層3Xを形成することができる。エッチング処理後には、水洗が行われる。 The light transmissive conductive film 1 is obtained by, for example, using the above-described method for producing a light transmissive conductive film having a patterned conductive layer, as shown in FIG. 3, the conductive layer 3 (FIG. 1) as a patterned conductive layer. By making it 3X, it can be used as the light transmissive conductive film 1X. A patterned conductive layer 3X can be formed by partially forming a resist layer on the surface of the conductive layer 3 opposite to the base film 11 side and performing an etching process. After the etching process, washing with water is performed.
 光透過性導電フィルム1Xは、パターン状の導電層3Xを有する。パターン状の導電層3Xは、基材2の第1の表面2a上に部分的に積層されている。光透過性導電フィルム1Xは、基材2の第1の表面2a上において、パターン状の導電層3Xがある部分と、パターン状の導電層3Xがない部分とを有する。 The light transmissive conductive film 1X has a patterned conductive layer 3X. The patterned conductive layer 3 </ b> X is partially stacked on the first surface 2 a of the substrate 2. The light transmissive conductive film 1 </ b> X has, on the first surface 2 a of the substrate 2, a portion with the patterned conductive layer 3 </ b> X and a portion without the patterned conductive layer 3 </ b> X.
 アニール方法としては、熱風乾燥を用いる方法、赤外線を用いる方法等、いくつかの手段が挙げられる。アニール方法は特に限定されないが、遠赤外線を用いる方法が好ましい。 Annealing methods include several means such as a method using hot air drying and a method using infrared rays. The annealing method is not particularly limited, but a method using far infrared rays is preferable.
 加熱手段により条件が異なるが、遠赤外線を用いる場合等は、アニール処理の温度は、好ましくは120℃以上、より好ましくは140℃以上、好ましくは200℃以下、より好ましくは170℃以下である。 Although the conditions differ depending on the heating means, when using far infrared rays, the annealing temperature is preferably 120 ° C. or higher, more preferably 140 ° C. or higher, preferably 200 ° C. or lower, more preferably 170 ° C. or lower.
 上記アニール処理の処理時間は、好ましくは5分以上、より好ましくは10分以上、好ましくは60分以下、より好ましくは30分以下である。 The treatment time for the annealing treatment is preferably 5 minutes or more, more preferably 10 minutes or more, preferably 60 minutes or less, more preferably 30 minutes or less.
 光透過性導電フィルム1Xは、保護フィルム4を積層したまま使用してもよいし、保護フィルム4を剥がして使用してもよい。 The light transmissive conductive film 1X may be used while the protective film 4 is laminated, or may be used after the protective film 4 is peeled off.
 以下、光透過性導電フィルムを構成する各層の詳細を説明する。 Hereinafter, details of each layer constituting the light transmissive conductive film will be described.
 (基材)
 基材の全体の厚みは、好ましくは23μm以上、より好ましくは50μm以上、好ましくは300μm以下、より好ましくは200μm以下である。上記基材は、基材フィルム、ハードコート層、及び/又はアンダーコート層を含んでよく、かかる場合の基材の全体の厚みが上記下限以上及び上記上限以下であることが好ましい。
(Base material)
The total thickness of the substrate is preferably 23 μm or more, more preferably 50 μm or more, preferably 300 μm or less, more preferably 200 μm or less. The base material may include a base film, a hard coat layer, and / or an undercoat layer, and the total thickness of the base material in such a case is preferably not less than the above lower limit and not more than the above upper limit.
基材フィルム;
 基材フィルムは、高い光透過性を有することが好ましい。従って、基材フィルムの材料としては、特に限定されないが、例えば、ポリオレフィン、ポリエーテルサルフォン、ポリスルホン、ポリカーボネート、シクロオレフィンポリマー、ポリアリレート、ポリアミド、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、及びセルロースナノファイバー等が挙げられる。上記基材フィルムの材料は、単独で用いてもよく、複数を併用してもよい。
Base film;
The base film preferably has high light transmittance. Accordingly, the material of the base film is not particularly limited. For example, polyolefin, polyethersulfone, polysulfone, polycarbonate, cycloolefin polymer, polyarylate, polyamide, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate. Examples include phthalate, triacetylcellulose, and cellulose nanofiber. The material for the base film may be used alone or in combination.
 基材フィルムの厚みは、好ましくは5μm以上、より好ましくは20μm以上、好ましくは190μm以下、より好ましくは125μm以下である。基材フィルムの厚みが、上記下限以上及び上記上限以下である場合、導電層のパターンを、より一層視認され難くすることができる。 The thickness of the base film is preferably 5 μm or more, more preferably 20 μm or more, preferably 190 μm or less, more preferably 125 μm or less. When the thickness of the base film is not less than the above lower limit and not more than the above upper limit, the pattern of the conductive layer can be made even less visible.
 また、基材フィルムの光透過率に関しては、波長380~780nmの可視光領域における平均透過率が好ましくは85%以上、より好ましくは90%以上であり、通常100%以下である。 In addition, regarding the light transmittance of the base film, the average transmittance in the visible light region with a wavelength of 380 to 780 nm is preferably 85% or more, more preferably 90% or more, and usually 100% or less.
 また、基材フィルムは、各種安定剤、紫外線吸収剤、可塑剤、滑剤又は着色剤を含んでいてもよい。 The base film may contain various stabilizers, ultraviolet absorbers, plasticizers, lubricants, or colorants.
第1及び第2のハードコート層;
 第1及び第2のハードコート層はそれぞれ、バインダー樹脂により構成されていることが好ましい。上記バインダー樹脂は、硬化樹脂であることが好ましい。上記硬化樹脂としては、熱硬化樹脂や、活性エネルギー線硬化樹脂などを用いることができる。生産性及び経済性を良好にする観点から、上記硬化樹脂は、紫外線硬化樹脂であることが好ましい。
First and second hard coat layers;
Each of the first and second hard coat layers is preferably composed of a binder resin. The binder resin is preferably a cured resin. As the curable resin, a thermosetting resin, an active energy ray curable resin, or the like can be used. From the viewpoint of improving productivity and economy, the curable resin is preferably an ultraviolet curable resin.
 上記紫外線硬化樹脂を形成するための光硬化性モノマーとしては、例えば、1,6-ヘキサンジオールジアクリレート、1,4-ブタンジオールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジメタクリレート、ポリ(ブタンジオール)ジアクリレート、テトラエチレングリコールジメタクリレート、1,3-ブチレングリコールジアクリレート、トリエチレングリコールジアクリレート、トリイソプロピレングリコールジアクリレート、ポリエチレングリコールジアクリレート及びビスフェノールAジメタクリレートのようなジアクリレート化合物;トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリトリトールモノヒドロキシトリアクリレート及びトリメチロールプロパントリエトキシトリアクリレートのようなトリアクリレート化合物;ペンタエリトリトールテトラアクリレート及びジ-トリメチロールプロパンテトラアクリレートのようなテトラアクリレート化合物;並びにジペンタエリトリトール(モノヒドロキシ)ペンタアクリレートのようなペンタアクリレート化合物等が挙げられる。上記紫外線硬化樹脂としては、5官能以上の多官能アクリレート化合物も用いてもよい。多官能アクリレート化合物は、単独で用いてもよく、複数を併用してもよい。また、多官能アクリレート化合物に、光開始剤、光増感剤、レベリング剤、希釈剤などを添加してもよい。 Examples of the photocurable monomer for forming the ultraviolet curable resin include 1,6-hexanediol diacrylate, 1,4-butanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, and tetraethylene glycol diacrylate. , Tripropylene glycol diacrylate, neopentyl glycol diacrylate, 1,4-butanediol dimethacrylate, poly (butanediol) diacrylate, tetraethylene glycol dimethacrylate, 1,3-butylene glycol diacrylate, triethylene glycol diacrylate Such as triisopropylene glycol diacrylate, polyethylene glycol diacrylate and bisphenol A dimethacrylate Rate compounds; triacrylate compounds such as trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol monohydroxytriacrylate and trimethylolpropane triethoxytriacrylate; such as pentaerythritol tetraacrylate and di-trimethylolpropane tetraacrylate Tetraacrylate compounds; and pentaacrylate compounds such as dipentaerythritol (monohydroxy) pentaacrylate. As the ultraviolet curable resin, a polyfunctional acrylate compound having five or more functional groups may be used. A polyfunctional acrylate compound may be used independently and may use multiple. Moreover, you may add a photoinitiator, a photosensitizer, a leveling agent, a diluent, etc. to a polyfunctional acrylate compound.
 また、第1のハードコート層は、樹脂部及びフィラーにより構成されていてもよい。第1のハードコート層がフィラーを含む場合、導電層のパターンをより一層視認され難くすることができる。なお、第1のハードコート層がフィラーを含む場合、ゆず肌と呼ばれる表面のうねりが生じたり、表面の凹凸による曇りが生じたりすることがあり、液晶表示装置に用いると表示光が見えにくくなることがある。従って、ゆず肌及び曇りを生じ難くする観点からは、第1のハードコート層が、フィラーを含まず、樹脂部のみによって構成されていることが望ましい。あるいは、同様の観点から、フィラーの平均粒子径が、第1のハードコート層の厚みより小さく、フィラーが、第1のハードコート層の表面において突出していないことが好ましい。 Further, the first hard coat layer may be composed of a resin portion and a filler. When the first hard coat layer contains a filler, the pattern of the conductive layer can be made even less visible. In addition, when the first hard coat layer contains a filler, surface undulation called “Yuzu skin” may occur or fogging due to surface irregularities may occur, and when used in a liquid crystal display device, display light becomes difficult to see. Sometimes. Therefore, it is desirable that the first hard coat layer does not contain a filler and is constituted only by a resin portion from the viewpoint of making it difficult to cause the skin and cloudiness. Alternatively, from the same viewpoint, it is preferable that the average particle diameter of the filler is smaller than the thickness of the first hard coat layer, and the filler does not protrude on the surface of the first hard coat layer.
 上記フィラーとしては、特に限定されないが、例えば、シリカ、酸化鉄、酸化アルミニウム、酸化亜鉛、酸化チタン、二酸化ケイ素、酸化アンチモン、酸化ジルコニウム、酸化錫、酸化セリウム、インジウム-錫酸化物などの金属酸化物粒子;シリコーン、(メタ)アクリル、スチレン、メラミンなどの樹脂粒子等が挙げられる。より具体的には、架橋ポリ(メタ)アクリル酸メチルなどの樹脂粒子を用いることができる。上記フィラーは、単独で用いてもよく、複数を併用してもよい。 The filler is not particularly limited. For example, metal oxide such as silica, iron oxide, aluminum oxide, zinc oxide, titanium oxide, silicon dioxide, antimony oxide, zirconium oxide, tin oxide, cerium oxide, and indium-tin oxide. Product particles; resin particles such as silicone, (meth) acryl, styrene, melamine, and the like. More specifically, resin particles such as crosslinked poly (meth) methyl acrylate can be used. The said filler may be used independently and may use multiple together.
 また、第1及び第2のハードコート層はそれぞれ、各種安定剤、紫外線吸収剤、可塑剤、滑剤又は着色剤を含んでいてもよい。 Further, each of the first and second hard coat layers may contain various stabilizers, ultraviolet absorbers, plasticizers, lubricants or colorants.
アンダーコート層;
 アンダーコート層は、例えば、屈折率調整層である。アンダーコート層を設けることで、導電層と、第2のハードコート層又は基材フィルムとの間の屈折率の差を小さくすることができるので、光透過性導電フィルムの光透過性をより一層高めることができる。
Undercoat layer;
The undercoat layer is, for example, a refractive index adjustment layer. By providing the undercoat layer, the difference in refractive index between the conductive layer and the second hard coat layer or substrate film can be reduced, so that the light transmissive conductive film can be made more transparent. Can be increased.
 アンダーコート層を構成する材料としては、屈折率調整機能を有する限り特に限定されず、SiO(x=1.0~2.0)、SiO、MgF、Alなどの無機材料や、アクリル樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂及びシロキサンポリマーなどの有機材料が挙げられる。 The material constituting the undercoat layer is not particularly limited as long as it has a refractive index adjusting function, and is an inorganic material such as SiO x (x = 1.0 to 2.0), SiO 2 , MgF 2 , Al 2 O 3 And organic materials such as acrylic resin, urethane resin, melamine resin, alkyd resin, and siloxane polymer.
 アンダーコート層は、真空蒸着法、スパッタリング法、イオンプレーティング法又は塗工法により形成することができる。 The undercoat layer can be formed by a vacuum deposition method, a sputtering method, an ion plating method, or a coating method.
 (導電層)
 導電層は、光透過性を有する導電性材料により形成されている。上記導電性材料としては、特に限定されないが、例えば、IZO(インジウム亜鉛酸化物)や、ITO(インジウムスズ酸化物)などのIn系酸化物、SnO、FTO(フッ素ドープ酸化スズ)などのSn系酸化物、AZO(アルミニウム亜鉛酸化物)、GZO(ガリウム亜鉛酸化物)などのZn系酸化物、ナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、Al/Al混合物、Al/LiF混合物、金等の金属、CuI、Agナノワイヤー(AgNW)、カーボンナノチューブ(CNT)又は導電性透明ポリマーなどが挙げられる。上記導電性材料は、単独で用いてもよく、複数を併用してもよい。
(Conductive layer)
The conductive layer is made of a light-transmitting conductive material. As the conductive material is not particularly limited, for example, IZO (indium zinc oxide) or, In-based oxides such as ITO (indium tin oxide), Sn, such as SnO 2, FTO (fluorine-doped tin oxide) -Based oxides, Zn-based oxides such as AZO (aluminum zinc oxide), GZO (gallium zinc oxide), sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum -Lithium alloys, Al / Al 2 O 3 mixtures, Al / LiF mixtures, metals such as gold, CuI, Ag nanowires (AgNW), carbon nanotubes (CNT) or conductive transparent polymers. The said electroconductive material may be used independently and may use multiple together.
 上記導電性材料は、IZO(インジウム亜鉛酸化物)や、ITO(インジウムスズ酸化物)などのIn系酸化物、SnO、FTO(フッ素ドープ酸化スズ)などのSn系酸化物、AZO(アルミニウム亜鉛酸化物)、GZO(ガリウム亜鉛酸化物)などのZn系酸化物であることが好ましく、ITO(インジウムスズ酸化物)であることがより好ましい。これらの好ましい導電性材料の使用により、導電性をより一層高め、光透過性をより一層高めることができる。 The conductive material includes: In-based oxides such as IZO (indium zinc oxide) and ITO (indium tin oxide); Sn-based oxides such as SnO 2 and FTO (fluorine-doped tin oxide); AZO (aluminum zinc) Oxide) and Zn-based oxides such as GZO (gallium zinc oxide) are preferable, and ITO (indium tin oxide) is more preferable. By using these preferable conductive materials, the conductivity can be further increased and the light transmittance can be further increased.
 上記導電層における表面張力を制御する方法としては、例えば、ITO成膜時の酸素流量をUカーブのボトムより多くなるように制御する方法、並びにアルゴン流量の増減により制御する方法等が挙げられる。 Examples of the method for controlling the surface tension in the conductive layer include a method for controlling the oxygen flow rate during ITO film formation to be larger than the bottom of the U curve, and a method for controlling the flow rate by increasing / decreasing the argon flow rate.
 算術平均高さSa及び算術平均粗さRaを制御する方法としては、例えば、ハードコート層にフィラーを添加する方法がある。該フィラーの材質としては、例えばシリカ、酸化鉄、酸化アルミニウム、酸化ジルコニウム、インジウム-錫酸化物などの金属酸化物粒子、シリコーン、アクリル、スチレン、メラミンなどの樹脂粒子等が挙げられる。上記フィラーは単独で用いても、複数で併用してもよい。算術平均高さSa及び算術平均粗さRaを制御する他の方法としては、ハードコート層やアンダーコート層を形成する際の重合速度を制御する方法等が挙げられる。 As a method for controlling the arithmetic average height Sa and the arithmetic average roughness Ra, for example, there is a method of adding a filler to the hard coat layer. Examples of the filler material include metal oxide particles such as silica, iron oxide, aluminum oxide, zirconium oxide, and indium-tin oxide, and resin particles such as silicone, acrylic, styrene, and melamine. The fillers may be used alone or in combination. Other methods for controlling the arithmetic average height Sa and the arithmetic average roughness Ra include a method for controlling the polymerization rate when forming the hard coat layer and the undercoat layer.
 導電層の厚みは、好ましくは12nm以上、より好ましくは16nm以上、更に好ましくは17nm以上、好ましくは50nm以下、より好ましくは30nm以下、更に好ましくは19.9nm以下である。 The thickness of the conductive layer is preferably 12 nm or more, more preferably 16 nm or more, still more preferably 17 nm or more, preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 19.9 nm or less.
 導電層の厚みが上記下限以上である場合、光透過性導電フィルムの抵抗値を効果的に低くすることができ、導電性をより一層高めることができる。導電層の厚みが上記上限以下である場合、導電層のパターンをより一層視認され難くすることができ、光透過性導電フィルムをより一層薄くすることができる。 When the thickness of the conductive layer is not less than the above lower limit, the resistance value of the light-transmitting conductive film can be effectively reduced, and the conductivity can be further increased. When the thickness of the conductive layer is less than or equal to the above upper limit, the pattern of the conductive layer can be made less visible and the light transmissive conductive film can be made even thinner.
 また、光透過性導電フィルムの光透過率に関しては、波長380~780nmの可視光領域における可視光領域における平均透過率が好ましくは85%以上、より好ましくは90%以上であり、通常100%以下である。 Regarding the light transmittance of the light transmissive conductive film, the average transmittance in the visible light region with a wavelength of 380 to 780 nm is preferably 85% or more, more preferably 90% or more, and usually 100% or less. It is.
 (保護フィルム)
 保護フィルムは、基材シート及び粘着剤層により構成されていることが好ましい。保護フィルムは、基材シートを有することが好ましい。
(Protective film)
It is preferable that the protective film is comprised by the base material sheet and the adhesive layer. The protective film preferably has a base sheet.
 上記基材シートは、高い光透過性を有することが好ましい。上記基材シートの材料としては、特に限定されないが、例えば、ポリオレフィン、ポリエーテルサルフォン、ポリスルホン、ポリカーボネート、シクロオレフィンポリマー、ポリアリレート、ポリアミド、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、及びセルロースナノファイバー等が挙げられる。 The base sheet preferably has high light transmittance. The material of the base sheet is not particularly limited, but for example, polyolefin, polyethersulfone, polysulfone, polycarbonate, cycloolefin polymer, polyarylate, polyamide, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate , Triacetyl cellulose, and cellulose nanofibers.
 上記ポリオレフィンとしては、ポリエチンレン及びポリプロピレン等が挙げられる。 Examples of the polyolefin include polyethylene, polypropylene and the like.
 保護性能を高めることが容易であるので、上記保護フィルムの材料は、ポリオレフィンを含むことが好ましく、ポリプロピレンを含むことが好ましく、上記基材シートの材料は、ポリオレフィンであることが好ましく、ポリプロピレンであることが好ましい。 Since it is easy to improve the protection performance, the material of the protective film preferably contains polyolefin, preferably contains polypropylene, and the material of the base sheet is preferably polyolefin, and is polypropylene. It is preferable.
 上記ポリプロピレンは、プロピレンモノマーを重合させることにより得られる。ポリプロピレンは重合体である。重合体には共重合体が含まれる。ポリプロピレンとしては、プロピレンモノマーの単独重合体、並びにプロピレンモノマーを主成分とする重合成分の共重合体が挙げられる。上記プロピレンモノマーを主成分とする重合成分の共重合体では、重合可能な重合成分100重量%中、プロピレンモノマーの含有量は50重量%以上であり、好ましくは80重量%以上、より好ましくは90重量%以上であり、通常100重量%未満である。また、共重合の形態は、ランダムであってもよく、ブロックであってもよい。 The above polypropylene is obtained by polymerizing propylene monomer. Polypropylene is a polymer. The polymer includes a copolymer. Examples of polypropylene include a homopolymer of propylene monomer and a copolymer of polymerization components mainly composed of propylene monomer. In the copolymer of the polymerization component mainly composed of the propylene monomer, the content of the propylene monomer is 50% by weight or more, preferably 80% by weight or more, more preferably 90% by weight in 100% by weight of the polymerizable polymerization component. It is at least% by weight and usually less than 100% by weight. The form of copolymerization may be random or block.
 ポリプロピレンとしては、プロピレンホモポリマー、プロピレンランダムポリマー及びプロピレンブロックポリマー等が挙げられる。ポリプロピレンは、プロピレンモノマーの単独重合体であることが好ましく、プロピレンホモポリマーであることが好ましい。 Examples of polypropylene include propylene homopolymer, propylene random polymer, and propylene block polymer. Polypropylene is preferably a homopolymer of propylene monomer, and is preferably a propylene homopolymer.
 上記粘着剤層は、(メタ)アクリル系粘着剤、ゴム系粘着剤、ウレタン系接着剤又はエポキシ系接着剤により構成することができる。熱処理による粘着力の上昇を抑制する観点から、上記粘着剤層は、(メタ)アクリル系粘着剤により構成されていることが好ましい。 The pressure-sensitive adhesive layer can be composed of a (meth) acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a urethane-based adhesive, or an epoxy-based adhesive. From the viewpoint of suppressing an increase in adhesive force due to heat treatment, the adhesive layer is preferably composed of a (meth) acrylic adhesive.
 上記(メタ)アクリル系粘着剤は、(メタ)アクリル重合体に、必要に応じて架橋剤、粘着付与樹脂及び各種安定剤などを添加した粘着剤である。 The above (meth) acrylic pressure-sensitive adhesive is a pressure-sensitive adhesive obtained by adding a crosslinking agent, a tackifying resin, various stabilizers and the like to a (meth) acrylic polymer as necessary.
 上記(メタ)アクリル重合体は、特に限定されないが、(メタ)アクリル酸エステルモノマーと、他の共重合可能な重合性モノマーとを含む混合モノマーを共重合して得られた(メタ)アクリル共重合体であることが好ましい。 The (meth) acrylic polymer is not particularly limited, but (meth) acrylic copolymer obtained by copolymerizing a mixed monomer containing a (meth) acrylic acid ester monomer and another copolymerizable monomer. A polymer is preferred.
 上記(メタ)アクリル酸エステルモノマーとしては、特に限定されないが、アルキル基の炭素数が1~12の1級又は2級のアルキルアルコールと、(メタ)アクリル酸とのエステル化反応により得られる(メタ)アクリル酸エステルモノマーが好ましい。上記(メタ)アクリル酸エステルモノマーとしては、具体的には、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシルなどが挙げられる。上記(メタ)アクリル酸エステルモノマーは、単独で用いてもよく、複数を併用してもよい。 The (meth) acrylic acid ester monomer is not particularly limited, and is obtained by an esterification reaction between a primary or secondary alkyl alcohol having 1 to 12 carbon atoms in the alkyl group and (meth) acrylic acid ( A meth) acrylic acid ester monomer is preferred. Specific examples of the (meth) acrylate monomer include ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. The said (meth) acrylic acid ester monomer may be used independently and may use multiple together.
 上記共重合可能な他の重合性モノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル;(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ヒドロキシアルキル、グリセリンジメタクリレート、(メタ)アクリル酸グリシジル、2-メタクリロイルオキシエチルイソシアネート、(メタ)アクリル酸、イタコン酸、無水マレイン酸、クロトン酸、マレイン酸及びフマル酸等の官能性モノマーが挙げられる。上記共重合可能な他の重合性モノマーは、単独で用いてもよく、複数を併用してもよい。 Examples of other polymerizable monomers that can be copolymerized include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; Isobornyl (meth) acrylate, hydroxyalkyl (meth) acrylate, glycerin dimethacrylate, glycidyl (meth) acrylate, 2-methacryloyloxyethyl isocyanate, (meth) acrylic acid, itaconic acid, maleic anhydride, crotonic acid, malein Examples thereof include functional monomers such as acid and fumaric acid. The said other polymerizable monomer which can be copolymerized may be used independently, and may use multiple together.
 上記架橋剤としては、特に限定されず、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、メラミン系架橋剤、過酸化物系架橋剤、尿素系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、アミン系架橋剤、多官能アクリレートなどが挙げられる。上記架橋剤は、単独で用いてもよく、複数を併用してもよい。 The crosslinking agent is not particularly limited, and for example, an isocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, a peroxide crosslinking agent, a urea crosslinking agent, a metal alkoxide crosslinking agent, a metal chelate crosslinking agent. Agents, metal salt crosslinking agents, carbodiimide crosslinking agents, oxazoline crosslinking agents, aziridine crosslinking agents, amine crosslinking agents, polyfunctional acrylates and the like. The above crosslinking agents may be used alone or in combination.
 上記粘着付与樹脂としては、特に限定されないが、例えば、脂肪族系共重合体、芳香族系共重合体、脂肪族・芳香族系共重合体及び脂環式系共重合体等の石油系樹脂;クマロン-インデン系樹脂;テルペン系樹脂;テルペンフェノール系樹脂;重合ロジン等のロジン系樹脂;フェノール系樹脂;キシレン系樹脂等が挙げられる。上記粘着付与樹脂は、水素添加された樹脂であってもよい。上記粘着付与樹脂は、単独で用いてもよく、複数を併用してもよい。 The tackifying resin is not particularly limited, and examples thereof include petroleum resins such as aliphatic copolymers, aromatic copolymers, aliphatic / aromatic copolymers, and alicyclic copolymers. Coumarone-indene resin; terpene resin; terpene phenol resin; rosin resin such as polymerized rosin; phenol resin; xylene resin. The tackifying resin may be a hydrogenated resin. The tackifying resins may be used alone or in combination.
 保護フィルムの厚みは、好ましくは25μm以上、より好ましくは50μm以上、好ましくは300μm以下、より好ましくは200μm以下である。保護フィルムの厚みが、上記下限以上及び上記上限以下である場合、導電層のパターンを、より一層視認され難くすることができる。 The thickness of the protective film is preferably 25 μm or more, more preferably 50 μm or more, preferably 300 μm or less, more preferably 200 μm or less. When the thickness of the protective film is not less than the above lower limit and not more than the above upper limit, the pattern of the conductive layer can be made even less visible.
 以下、本発明について、具体的な実施例に基づき、更に詳しく説明する。なお、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be described in more detail based on specific examples. The present invention is not limited to the following examples.
 (実施例1)
 (1)光透過性導電フィルムの作製
 基材フィルムとして、厚み125μmのPETフィルムを用いた。PETフィルムの一方の面にジルコニア粒子を分散したアクリル系ハードコート樹脂を塗布し、厚み1.0μmのハードコート層を得た。PETフィルムの他方の面には、アクリル系ハードコート樹脂を塗布し、厚み1.0μmのハードコート層を得た。このようにして、両面ハードコートフィルムを得た。
(Example 1)
(1) Production of light-transmitting conductive film A PET film having a thickness of 125 μm was used as the base film. An acrylic hard coat resin in which zirconia particles were dispersed was applied to one surface of the PET film to obtain a hard coat layer having a thickness of 1.0 μm. An acrylic hard coat resin was applied to the other surface of the PET film to obtain a hard coat layer having a thickness of 1.0 μm. In this way, a double-sided hard coat film was obtained.
 この両面ハードコートフィルムを真空装置内に設置し、真空排気を実施した。真空度が8.0x10-4Paまで到達した後、アルゴンガスを導入して、DCマグネトロンスパッタリング法によりアルゴン雰囲気下でSiO層、SiO層、SiO層をこの順で成膜し、その上に酸化インジウム・スズ(ITO)を積層した。具体的には、SnOが7重量%のITO焼結体ターゲットを用いて、ターゲット表面の最大水平磁束密度が1000ガウスとなるカソードを用いて、スパッタ圧力0.4Pa、O圧力0.004Pa、Ar圧力0.11Paで、厚み18nmの導電層(インジウム・スズ酸化物層)を形成し、光透過性導電フィルムを得た。 This double-sided hard coat film was placed in a vacuum apparatus and evacuated. After reaching a vacuum degree of 8.0 × 10 −4 Pa, an argon gas was introduced, and a SiO x layer, a SiO 2 layer, and a SiO x layer were formed in this order in an argon atmosphere by a DC magnetron sputtering method. Indium tin oxide (ITO) was laminated thereon. Specifically, using an ITO sintered body target with SnO 2 of 7 wt%, a cathode having a maximum horizontal magnetic flux density of 1000 gauss on the target surface, a sputtering pressure of 0.4 Pa, an O 2 pressure of 0.004 Pa. A conductive layer (indium tin oxide layer) having a thickness of 18 nm was formed at an Ar pressure of 0.11 Pa to obtain a light-transmitting conductive film.
 この光透過性導電フィルムの導電層の表面に、厚み30μmの表面保護フィルム(東レフィルム加工社製「トレテック7332」、基材:ポリオレフィン、23℃での粘着力:0.07N/50mm幅)をロールtoロールで張力をかけた状態で、気泡が入らないようにニップして、貼り合せた。貼り合わせから10秒以上保持した後、表面保護フィルムを剥離した。このようにして作製したサンプルの、表面張力、算術平均高さSa及び算術平均粗さRaを評価した。 On the surface of the conductive layer of this light transmissive conductive film, a surface protective film having a thickness of 30 μm (“Toretec 7332” manufactured by Toray Film Processing Co., Ltd., substrate: polyolefin, adhesive strength at 23 ° C .: 0.07 N / 50 mm width) In a state in which tension was applied with a roll-to-roll, nip was performed so that air bubbles did not enter, and bonding was performed. After holding for 10 seconds or more from the bonding, the surface protective film was peeled off. The samples thus prepared were evaluated for surface tension, arithmetic average height Sa, and arithmetic average roughness Ra.
 (2)パターン状の導電層を有する光透過性導電フィルムの作製
 表面保護フィルムを剥離した後の光透過性導電フィルムを10cm角に切り出し、送風乾燥器にて150℃で1時間加熱処理した。送風乾燥器から取り出された光透過性導電フィルムを室温に達するまで放置した後、光透過性導電フィルムの導電層側とは反対側に、透明接着フィルム(エリエールテクセル社製「EW1502-A1」)を介してガラス(コーニング社製「Gorilla Glass 2」)に貼り付けた。
(2) Production of light-transmitting conductive film having pattern-shaped conductive layer The light-transmitting conductive film after peeling the surface protective film was cut into a 10 cm square, and heat-treated at 150 ° C. for 1 hour in a blower dryer. The light-transmitting conductive film taken out from the blower dryer is allowed to stand until it reaches room temperature, and then a transparent adhesive film ("EW1502-A1" manufactured by Elle Texel) on the side opposite to the conductive layer side of the light-transmitting conductive film. Was attached to glass ("Gorilla Glass 2" manufactured by Corning).
 次いで、上記ガラス付き光透過性透明導電フィルムについて、旭化成イーマテリアル社製「サンフォートAQ3038」を用いて、ドライフィルムレジストによりパターン形成を行った。具体的には、ロール温度を100℃に設定したホットロールラミネーターを用い、ドライフィルムレジストの保護層を剥がしながら、基材にラミネートをした。上記ガラス付き光透過性導電フィルムの導電層上に、L/S=600μmのストライプ状のパターンを持つフォトマスクを設置し、超高圧水銀ランプを用い、露光量90mJ/cmで露光させることにより、硬化レジストパターンを有するドライフィルムレジストを得た。 Next, the light transmissive transparent conductive film with glass was subjected to pattern formation with a dry film resist using “Sunfort AQ3038” manufactured by Asahi Kasei E-materials. Specifically, using a hot roll laminator whose roll temperature was set to 100 ° C., the substrate was laminated while peeling off the protective layer of the dry film resist. By installing a photomask having a stripe pattern of L / S = 600 μm on the conductive layer of the light transmissive conductive film with glass and exposing it at an exposure amount of 90 mJ / cm 2 using an ultrahigh pressure mercury lamp. A dry film resist having a cured resist pattern was obtained.
 次に、支持体フィルムを剥離して、基材を1質量%のアルカリ溶液(1/4N KOH水溶液)に30℃で1分浸漬して現像した。 Next, the support film was peeled off, and the substrate was developed by being immersed in a 1% by weight alkaline solution (1 / 4N KOH aqueous solution) at 30 ° C. for 1 minute.
 次に、基材を3質量%のNaOH水溶液中に50℃で120秒浸漬して硬化レジストパターンを剥離した。このようにして、パターン状の導電層を有する光透過性導電フィルムを得た。 Next, the cured resist pattern was peeled off by immersing the base material in a 3% by mass NaOH aqueous solution at 50 ° C. for 120 seconds. In this way, a light transmissive conductive film having a patterned conductive layer was obtained.
 (実施例2~5及び比較例1)
 導電層の形成時の酸素(O)及びアルゴン(Ar)の流量(圧力)を下記の表1に示すように変更したこと以外は実施例1と同様にして、導電層を形成して、光透過性導電フィルムを得た。
(Examples 2 to 5 and Comparative Example 1)
Except that the flow rate (pressure) of oxygen (O 2 ) and argon (Ar) during the formation of the conductive layer was changed as shown in Table 1 below, the conductive layer was formed in the same manner as in Example 1, A light transmissive conductive film was obtained.
 得られた光透過性導電フィルムを用いて、実施例1と同様にして、パターン状の導電層を有する光透過性導電フィルムを得た。 Using the obtained light transmissive conductive film, a light transmissive conductive film having a patterned conductive layer was obtained in the same manner as in Example 1.
 (実施例6)
 基材フィルムとして、厚み125μmのPETフィルムを用いた。PETフィルムの一方の面にジルコニア粒子と粒径1.0μmのシリカ粒子を分散したアクリル系ハードコート樹脂を塗布し、厚み1.0μmのハードコート層を得た。PETフィルムの他方の面には、アクリル系ハードコート樹脂を塗布し、厚み1.0μmのハードコート層を得た。このようにして、両面ハードコートフィルムを得た。
(Example 6)
A PET film having a thickness of 125 μm was used as the base film. An acrylic hard coat resin in which zirconia particles and silica particles having a particle diameter of 1.0 μm were dispersed was applied to one surface of the PET film to obtain a hard coat layer having a thickness of 1.0 μm. An acrylic hard coat resin was applied to the other surface of the PET film to obtain a hard coat layer having a thickness of 1.0 μm. In this way, a double-sided hard coat film was obtained.
 この両面ハードコートフィルムを用いたこと、並びに導電層の形成時の酸素(O)の流量(圧力)を下記の表1に示すように変更したこと以外は実施例1と同様にして光透過性導電フィルムを得た。 Light transmission was carried out in the same manner as in Example 1 except that this double-sided hard coat film was used and the flow rate (pressure) of oxygen (O 2 ) during formation of the conductive layer was changed as shown in Table 1 below. Conductive film was obtained.
 (実施例7)
 基材フィルムとして、厚み125μmのPETフィルムを用いた。PETフィルムの一方の面にジルコニア粒子と粒径1.0μmのアクリル粒子を分散したアクリル系ハードコート樹脂を塗布し、厚み1.0μmのハードコート層を得た。PETフィルムの他方の面には、アクリル系ハードコート樹脂を塗布し、厚み1.0μmのハードコート層を得た。このようにして、両面ハードコートフィルムを得た。
(Example 7)
A PET film having a thickness of 125 μm was used as the base film. An acrylic hard coat resin in which zirconia particles and acrylic particles having a particle diameter of 1.0 μm were dispersed was applied to one surface of the PET film to obtain a hard coat layer having a thickness of 1.0 μm. An acrylic hard coat resin was applied to the other surface of the PET film to obtain a hard coat layer having a thickness of 1.0 μm. In this way, a double-sided hard coat film was obtained.
 この両面ハードコートフィルムを用いたこと、並びに導電層の形成時の酸素(O)の流量(圧力)を下記の表1に示すように変更したこと以外は実施例1と同様にして光透過性導電フィルムを得た。 Light transmission was carried out in the same manner as in Example 1 except that this double-sided hard coat film was used and the flow rate (pressure) of oxygen (O 2 ) during formation of the conductive layer was changed as shown in Table 1 below. Conductive film was obtained.
 (比較例2)
 基材フィルムとして、厚み125μmのPETフィルムを用いた。PETフィルムの一方の面にジルコニア粒子と粒径1.5μmのシリカ粒子を分散したアクリル系ハードコート樹脂を塗布し、厚み1.0μmのハードコート層を得た。PETフィルムの他方の面には、アクリル系ハードコート樹脂を塗布し、厚み1.0μmのハードコート層を得た。このようにして、両面ハードコートフィルムを得た。
(Comparative Example 2)
A PET film having a thickness of 125 μm was used as the base film. An acrylic hard coat resin in which zirconia particles and silica particles having a particle size of 1.5 μm were dispersed was applied to one surface of the PET film to obtain a hard coat layer having a thickness of 1.0 μm. An acrylic hard coat resin was applied to the other surface of the PET film to obtain a hard coat layer having a thickness of 1.0 μm. In this way, a double-sided hard coat film was obtained.
 この両面ハードコートフィルムを用いたこと以外は実施例1と同様にして光透過性導電フィルムを得た。 A light-transmitting conductive film was obtained in the same manner as in Example 1 except that this double-sided hard coat film was used.
 (評価)
 (1)表面張力
 表面張力は25℃で測定した。表面張力の測定には、表面張力が34dyn/cmを超え、40dyn/cm以下の範囲内である場合に、春日電気社製のテンションチェッカーペン(2-エトキシエタノール混合液)を用いた。また、表面張力が34dyn/cm以下である場合に、和光純薬工業社製のぬれ張力試験用混合液を用いた(JIS K6768:1999)。
(Evaluation)
(1) Surface tension The surface tension was measured at 25 ° C. For measurement of the surface tension, a tension checker pen (2-ethoxyethanol mixed solution) manufactured by Kasuga Electric Co., Ltd. was used when the surface tension was in the range of more than 34 dyn / cm and not more than 40 dyn / cm. Further, when the surface tension was 34 dyn / cm or less, a liquid mixture for wet tension test manufactured by Wako Pure Chemical Industries, Ltd. was used (JIS K6768: 1999).
 具体的には、テンションチェッカーペン、もしくはぬれ張力試験用混合液を用い、導電層の表面に2cm以上の面積になるように液体を拡げて、液膜を形成した。液体の量は、たまりを作らないで液膜を形成する程度にした。 Specifically, using a tension checker pen or a wet tension test mixed liquid, the liquid was spread on the surface of the conductive layer to have an area of 2 cm 2 or more to form a liquid film. The amount of liquid was such that a liquid film was formed without creating a pool.
 測定は毎回未測定領域で行い、複数回にわたって液体を拡げず、複数回にわたってテンションチェッカーペン及びぬれ張力試験用混合液で線を引かなかった。 The measurement was performed in an unmeasured area every time, the liquid was not spread several times, and the line was not drawn with the tension checker pen and the wet tension test mixed liquid several times.
 表面張力の判定は、液体を拡げて液膜を形成してから5秒後に行った。液膜に破れが生じず、液体を拡げた直後の100%の面積に対して5秒後に80%以上の面積を保っている場合、導電層が所定の表面張力を有していると判断した。 The determination of the surface tension was performed 5 seconds after the liquid was spread to form a liquid film. When the liquid film was not torn and the area of 80% or more was maintained after 5 seconds with respect to the area of 100% immediately after spreading the liquid, it was determined that the conductive layer had a predetermined surface tension. .
 表面張力の低い試薬から測定を開始し、導電層が所定の表面張力を有していることを確認したら、さらに2dyn/cm毎に表面張力の高い混合液での測定に進み、表面張力の判定にて最も高い表面張力を示した場合の表面張力を、導電層の表面張力とした。 Start measurement with a reagent with a low surface tension and confirm that the conductive layer has the specified surface tension. Then, proceed to measurement with a liquid mixture with a high surface tension every 2 dyn / cm to determine the surface tension. The surface tension when the highest surface tension was exhibited was the surface tension of the conductive layer.
 (2)算術平均高さSa及び算術平均粗さRa
 算術平均高さSaの測定は、菱化システム社製の白色干渉計「VertScan」を用いて行った。具体的にはCCDカメラ SONY HR-50 1/3を使用し、鏡筒は1倍、対物レンズは50倍、測定モードはwaveモードを選択し、測定レンジはY方向71.15μm、X方向94.89μmとして観察した。得られた観察画像のY方向70μm、X方向90μmの領域における算術平均高さSaを求めた。
(2) Arithmetic mean height Sa and arithmetic mean roughness Ra
The arithmetic average height Sa was measured using a white interferometer “VertScan” manufactured by Ryoka System. Specifically, a CCD camera SONY HR-50 1/3 is used, the lens barrel is 1 ×, the objective lens is 50 ×, the measurement mode is the wave mode, the measurement range is 71.15 μm in the Y direction, and 94 in the X direction. Observed as 89 μm. The arithmetic average height Sa in the region of 70 μm in the Y direction and 90 μm in the X direction of the obtained observation image was obtained.
 算術平均粗さRaの測定は、走査型プローブ顕微鏡(島津製作所社製「SPM-9700」)を用いて測定した。具体的には、マイクロカンチレバー(オリンパス社製「OMCL-TR800PSA-1」)を用い、コンタクトモードで測定領域1.0μmx1.0μmの範囲で走査して得た測定結果より算出した。測定は2回行い、算術平均高さSa及び算術平均粗さRaとして、その平均値を採用した。 The arithmetic average roughness Ra was measured using a scanning probe microscope (“SPM-9700” manufactured by Shimadzu Corporation). Specifically, it was calculated from the measurement results obtained by using a microcantilever ("OMCL-TR800PSA-1" manufactured by Olympus) and scanning in the contact area in a measurement area of 1.0 μm × 1.0 μm. The measurement was performed twice, and the average value was adopted as the arithmetic average height Sa and the arithmetic average roughness Ra.
 (3)密着性の評価
 パターン状の導電層を形成した後に、密着性を以下の基準で判定した。
(3) Evaluation of adhesiveness After forming a patterned conductive layer, adhesiveness was determined according to the following criteria.
 パターンを形成した光透過性導電フィルムの導電層上に、マルチメーターの検知用端子を接触させて、端子間(端子間距離8cm)の導通の有無を確認した。 The detection terminal of the multimeter was brought into contact with the conductive layer of the light-transmitting conductive film on which the pattern was formed, and the presence or absence of conduction between the terminals (distance between terminals: 8 cm) was confirmed.
 任意の10本の導電層パターン中、全てで導通していない場合をC(不合格)と評価した。 In any 10 conductive layer patterns, the case where all of the conductive layer patterns were not conductive was evaluated as C (failed).
 さらに、任意の10本の導電層パターン中、全てで導通しているサンプルに対し、光学顕微鏡にて50倍の倍率でパターンを観察し、パターン形状にブレ(波形状)がない場合をAとし、パターン形状にブレ(波形状)がある場合をBとした。従って、密着性を以下の基準で判定した。 Furthermore, for any 10 conductive layer patterns, all the conductive samples were observed with an optical microscope at a magnification of 50 times, and A was defined as the pattern without blurring (wave shape). The case where the pattern shape has a blur (wave shape) was defined as B. Therefore, the adhesion was determined according to the following criteria.
 [密着性の判定基準]
 A:パターン形状にブレ(波形状)が無く導通も問題無し
 B:パターン形状にブレ(波形状)があるが導通は問題無し
 C:導通に問題あり
[Adhesion criteria]
A: No blurring (wave shape) in the pattern shape and no problem with conduction B: There is a blur (wave shape) in the pattern shape, but there is no problem with conduction C: There is a problem with conduction
 詳細及び結果を下記の表1に示す。 Details and results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1,1A,1X 光透過性導電フィルム
 2,2A    基材
 2a      第1の表面
 2b      第2の表面
 3       導電層
 3X      パターン状の導電層
 4       保護フィルム
 11      基材フィルム
 12      第1のハードコート層
 13      第2のハードコート層
 14      アンダーコート層
DESCRIPTION OF SYMBOLS 1,1A, 1X Light transmission conductive film 2,2A Base material 2a 1st surface 2b 2nd surface 3 Conductive layer 3X Patterned conductive layer 4 Protective film 11 Base film 12 1st hard-coat layer 13 1st 2 Hard coat layer 14 Undercoat layer

Claims (5)

  1.  光透過性及び導電性を有する導電層と、
     前記導電層の一方の表面側に配置されている基材とを備え、
     前記導電層の前記基材側とは反対側の表面の表面張力が28dyn/cm以上、34dyn/cm以下である、光透過性導電フィルム。
    A conductive layer having optical transparency and conductivity;
    A substrate disposed on one surface side of the conductive layer,
    The light transmissive conductive film whose surface tension of the surface on the opposite side to the base material side of the conductive layer is 28 dyn / cm or more and 34 dyn / cm or less.
  2.  前記導電層の前記基材側とは反対側の表面の70μmx90μmの視野での算術平均高さSaが0.5nm以上、20nm以下であり、
     前記導電層の前記基材側とは反対側の表面の1.0μmx1.0μmの範囲での算術平均粗さRaが2.0nm以上、15nm以下である、請求項1に記載の光透過性導電フィルム。
    The arithmetic average height Sa in a visual field of 70 μm × 90 μm on the surface opposite to the base material side of the conductive layer is 0.5 nm or more and 20 nm or less,
    2. The light-transmissive conductive material according to claim 1, wherein an arithmetic average roughness Ra in a range of 1.0 μm × 1.0 μm of a surface opposite to the base material side of the conductive layer is 2.0 nm or more and 15 nm or less. the film.
  3.  前記導電層が結晶化した導電層である、請求項1又は2に記載の光透過性導電フィルム。 The light-transmitting conductive film according to claim 1 or 2, wherein the conductive layer is a crystallized conductive layer.
  4.  前記導電層の外側の表面上にドライフィルムレジストを接触させて用いられる、請求項1~3のいずれか1項に記載の光透過性導電フィルム。 The light-transmitting conductive film according to any one of claims 1 to 3, which is used by contacting a dry film resist on the outer surface of the conductive layer.
  5.  請求項1~4のいずれか1項に記載の光透過性導電フィルムの前記導電層の前記基材側とは反対側の表面に、ドライフィルムレジストを接触させる工程と、
     前記導電層をパターン状の導電層にする工程と、
     前記ドライフィルムレジストを剥離する工程とを備える、パターン状の導電層を有する光透過性導電フィルムの製造方法。
    A step of bringing a dry film resist into contact with a surface of the light-transmissive conductive film according to any one of claims 1 to 4 on the side opposite to the substrate side of the conductive layer;
    Making the conductive layer a patterned conductive layer;
    A method for producing a light-transmitting conductive film having a patterned conductive layer, comprising a step of peeling the dry film resist.
PCT/JP2017/035179 2016-09-29 2017-09-28 Light-transmitting conductive film and method for producing light-transmitting conductive film having patterned conductive layer WO2018062372A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187027796A KR102446081B1 (en) 2016-09-29 2017-09-28 Method for producing a light-transmitting conductive film and a light-transmitting conductive film having a patterned conductive layer
CN201780032474.6A CN109155167B (en) 2016-09-29 2017-09-28 Light-transmitting conductive film and method for manufacturing light-transmitting conductive film having patterned conductive layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016191672A JP6166828B1 (en) 2016-09-29 2016-09-29 Light transmissive conductive film and method for producing light transmissive conductive film having patterned conductive layer
JP2016-191672 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018062372A1 true WO2018062372A1 (en) 2018-04-05

Family

ID=59351413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035179 WO2018062372A1 (en) 2016-09-29 2017-09-28 Light-transmitting conductive film and method for producing light-transmitting conductive film having patterned conductive layer

Country Status (4)

Country Link
JP (1) JP6166828B1 (en)
KR (1) KR102446081B1 (en)
CN (1) CN109155167B (en)
WO (1) WO2018062372A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107775B2 (en) * 2017-07-26 2022-07-27 積水化学工業株式会社 Transparent conductive film for light control film and light control film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299106A (en) * 1989-05-12 1990-12-11 Nitto Denko Corp Transparent conducting film
WO1999059814A1 (en) * 1998-05-15 1999-11-25 Toyo Boseki Kabushiki Kaisha Transparent conductive film and touch panel
JP2000243146A (en) * 1999-02-23 2000-09-08 Toyobo Co Ltd Transparent conductive film and touch panel using same
JP2007146117A (en) * 2005-11-04 2007-06-14 Mitsui Mining & Smelting Co Ltd Nickel ink and electrically conductive film formed from the same
JP2010269504A (en) * 2009-05-21 2010-12-02 Toyobo Co Ltd Transparent electroconductive laminated film, transparent electroconductive laminated sheet and touch panel
WO2011102168A1 (en) * 2010-02-17 2011-08-25 日本写真印刷株式会社 Transparent electrode film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098474B2 (en) * 2006-08-02 2012-12-12 セイコーエプソン株式会社 Manufacturing method of liquid crystal display device
JP2010059280A (en) * 2008-09-02 2010-03-18 Toppan Printing Co Ltd Hardcoat coating liquid, hardcoat film, and upper electrode plate for touch panel
JP5405391B2 (en) * 2010-05-21 2014-02-05 日本メクトロン株式会社 Transparent flexible printed wiring board and manufacturing method thereof
WO2014050567A1 (en) * 2012-09-27 2014-04-03 日立化成株式会社 Photosensitive resin composition, photosensitive element, method for forming resist pattern, and method for producing touch panel
KR20140082405A (en) * 2012-12-24 2014-07-02 도레이첨단소재 주식회사 Transparent conductive film
JP6301324B2 (en) * 2013-05-23 2018-03-28 リンテック株式会社 Conductive film and electronic device having conductive film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299106A (en) * 1989-05-12 1990-12-11 Nitto Denko Corp Transparent conducting film
WO1999059814A1 (en) * 1998-05-15 1999-11-25 Toyo Boseki Kabushiki Kaisha Transparent conductive film and touch panel
JP2000243146A (en) * 1999-02-23 2000-09-08 Toyobo Co Ltd Transparent conductive film and touch panel using same
JP2007146117A (en) * 2005-11-04 2007-06-14 Mitsui Mining & Smelting Co Ltd Nickel ink and electrically conductive film formed from the same
JP2010269504A (en) * 2009-05-21 2010-12-02 Toyobo Co Ltd Transparent electroconductive laminated film, transparent electroconductive laminated sheet and touch panel
WO2011102168A1 (en) * 2010-02-17 2011-08-25 日本写真印刷株式会社 Transparent electrode film

Also Published As

Publication number Publication date
KR102446081B1 (en) 2022-09-22
JP2018053140A (en) 2018-04-05
CN109155167A (en) 2019-01-04
CN109155167B (en) 2020-10-20
JP6166828B1 (en) 2017-07-19
KR20190065187A (en) 2019-06-11

Similar Documents

Publication Publication Date Title
US10626304B2 (en) Polarizing film laminate comprising transparent pressure-sensitive adhesive layer and patterned transparent electroconductive layer, liquid crystal panel and organic EL panel
JPWO2017057556A1 (en) Light transmissive conductive film and method for producing annealed light transmissive conductive film
WO2014142054A1 (en) Adhesive film, and stacked body for touch panel
JP6560622B2 (en) Light transmissive conductive film laminate
JP2017121696A (en) Method for manufacturing light-transmitting conductive film laminate
WO2018062372A1 (en) Light-transmitting conductive film and method for producing light-transmitting conductive film having patterned conductive layer
JP7144318B2 (en) Transparent conductive film for light control film and light control film
US10023766B2 (en) Electroconductive film laminate comprising transparent pressure-sensitive adhesive layer
JP6669468B2 (en) Light-transmitting conductive film and method for producing annealed light-transmitting conductive film
JP7074510B2 (en) Transparent conductive film and light control film for light control film
JP6458445B2 (en) Transparent conductive laminate, touch panel using the transparent conductive laminate, a method for producing the transparent conductive laminate, and a method for producing a touch panel using the transparent conductive laminate
JP7107775B2 (en) Transparent conductive film for light control film and light control film
JP2018164985A (en) Light-transmissive conductive film with protective film
CN110442268A (en) Flexible touch screen and its manufacturing method, display device
JP6849490B2 (en) Method for manufacturing light-transmitting conductive film and light-transmitting conductive film
JP6718343B2 (en) Light-transmitting conductive film and method for manufacturing light-transmitting conductive film
JP6718344B2 (en) Light-transmitting conductive film and method for manufacturing light-transmitting conductive film
JP7176950B2 (en) Analysis method for visualization of light-transmitting conductive film, and light-transmitting conductive film
JP2017054814A (en) Production method of light-transmitting conductive film and laminate for producing light-transmitting conductive film
JP2017174807A (en) Optically transparent conductive film, and method for producing the optically transparent conductive film
JP7156858B2 (en) Transparent conductive film for light control film and light control film
JP6745177B2 (en) Light-transmissive conductive film
JP6705678B2 (en) Light-transmissive conductive film
JP2020104520A (en) Optically-transparent conductive film, and production method of annealed optically-transparent conductive film
TW201604757A (en) Capacitive touch panel

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187027796

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP