WO2018062205A1 - エポキシ接着剤組成物 - Google Patents

エポキシ接着剤組成物 Download PDF

Info

Publication number
WO2018062205A1
WO2018062205A1 PCT/JP2017/034798 JP2017034798W WO2018062205A1 WO 2018062205 A1 WO2018062205 A1 WO 2018062205A1 JP 2017034798 W JP2017034798 W JP 2017034798W WO 2018062205 A1 WO2018062205 A1 WO 2018062205A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyvinyl acetal
adhesive composition
acid
acetal resin
Prior art date
Application number
PCT/JP2017/034798
Other languages
English (en)
French (fr)
Inventor
栞 立野
貴之 前田
山内 健司
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2017552179A priority Critical patent/JP6420917B2/ja
Priority to EP17856155.1A priority patent/EP3521396B1/en
Priority to CN201780039809.7A priority patent/CN109328220B/zh
Priority to KR1020187026885A priority patent/KR102450608B1/ko
Priority to US16/334,814 priority patent/US10968373B2/en
Publication of WO2018062205A1 publication Critical patent/WO2018062205A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/28Condensation with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2431/00Presence of polyvinyl acetate

Definitions

  • the present invention is excellent in compatibility and storage stability, has high strength and excellent adhesiveness, can suppress the occurrence of warping and peeling when used for bonding different materials,
  • the present invention relates to an epoxy adhesive composition having excellent impact resistance.
  • Polyvinyl acetal resin is a resin synthesized from polyvinyl alcohol as a raw material, and has excellent toughness, adhesiveness, crosslinkability, and hygroscopicity by having an acetyl group, a hydroxyl group, and an acetal group in the side chain. Can do. Moreover, it becomes possible to change the resin physical properties by changing the ratio of the side chain groups. Utilizing such characteristics, it is used in a wide range of applications such as laminated glass interlayers for automobiles and ceramic green sheets.
  • Patent Documents 1 to 4 describe adhesives using epoxy resins, but these adhesives have insufficient resin strength and insufficient adhesion to metal materials. There was a problem.
  • the present invention is excellent in compatibility and storage stability, has high strength and excellent adhesiveness, and can suppress the occurrence of warping and peeling when used for adhesion of dissimilar materials, Furthermore, it aims at providing the epoxy adhesive composition which is excellent also in the impact resistance of hardened
  • the present invention is an epoxy adhesive composition containing a modified polyvinyl acetal resin having a structural unit having an acid-modified group and an epoxy resin, and having an organic solvent content of 10.0% by weight or less.
  • the present invention is described in detail below.
  • the epoxy adhesive composition of the present invention contains a modified polyvinyl acetal resin having a structural unit having an acid-modified group.
  • a crosslinked structure can be formed with the epoxy resin when used in combination with the epoxy resin.
  • the crosslinked body obtained after crosslinking has moderate elasticity while having high mechanical strength.
  • warpage due to the difference in shrinkage rate of each material and peeling of the bonded portion can be suppressed.
  • the modified polyvinyl acetal resin has a structural unit having an acid-modified group.
  • compatibility with the epoxy resin can be improved and high mechanical strength can be realized.
  • Examples of the acid-modifying group include a carboxyl group, a sulfonic acid group, a maleic acid group, a sulfinic acid group, a sulfenic acid group, a phosphoric acid group, a phosphonic acid group, an amino group, and salts thereof.
  • a carboxyl group is preferred.
  • the structural unit having an acid-modified group may have a structure in which an acid-modified group as a side chain is directly bonded to carbon constituting the main chain, and the acid-modified group is bonded to the carbon constituting the main chain via an alkylene group.
  • the structural unit having an acid-modified group may have a three-dimensional structure in which two acid-modified groups are bonded to the same carbon constituting the main chain, and one acid-modified group is bonded to the carbon constituting the main chain. It may be a three-dimensional structure. Further, it may be a three-dimensional structure in which one acid-modified group is bonded to adjacent carbons constituting the main chain, or a structure in which an acid-modified group is bonded to only one of adjacent carbons constituting the main chain. There may be.
  • the structural unit having an acid-modified group may have a three-dimensional structure having an isotactic arrangement in which the acid-modified group is bonded to the carbon constituting the main chain in the same direction. May have a three-dimensional structure in a syndiotactic configuration in which are alternately bonded to the opposite side. Furthermore, you may have the three-dimensional structure which is the atactic arrangement
  • the alkylene group is an alkylene group having 1 to 10 carbon atoms. Is more preferable, an alkylene group having 1 to 5 carbon atoms is more preferable, and an alkylene group having 1 to 3 carbon atoms is still more preferable.
  • Examples of the alkylene group having 1 to 10 carbon atoms include a linear alkylene group, a branched alkylene group, and a cyclic alkylene group.
  • Examples of the linear alkylene group include a methylene group, vinylene group, n-propylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group, decamethylene group and the like.
  • Examples of the branched alkylene group include a methylmethylene group, a methylethylene group, a 1-methylpentylene group, and a 1,4-dimethylbutylene group.
  • cyclic alkylene group examples include a cyclopropylene group, a cyclobutylene group, and a cyclohexylene group. Of these, a linear alkylene group is preferred, a methylene group, vinylene group, and n-propylene group are more preferred, and a methylene group and vinylene group are still more preferred.
  • Examples of the structural unit having a carboxyl group include a structural unit represented by the following formula (1-1), a structural unit represented by the following formula (1-2), and a structural unit represented by the following formula (1-3). And structural units represented by the following formula (1-4).
  • R 1 represents a single bond or an alkylene group having 1 to 10 carbon atoms
  • X 1 represents a hydrogen atom, a metal atom or a methyl group.
  • R 1 is preferably a single bond or an alkylene group having 1 to 5 carbon atoms, and more preferably a single bond or an alkylene group having 1 to 3 carbon atoms.
  • Examples of the alkylene group having 1 to 10 carbon atoms include a linear alkylene group, a branched alkylene group, and a cyclic alkylene group.
  • Examples of the linear alkylene group include a methylene group, vinylene group, n-propylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group, decamethylene group and the like.
  • Examples of the branched alkylene group include a methylmethylene group, a methylethylene group, a 1-methylpentylene group, and a 1,4-dimethylbutylene group.
  • cyclic alkylene group examples include a cyclopropylene group, a cyclobutylene group, and a cyclohexylene group. Of these, a linear alkylene group is preferred, a methylene group, vinylene group, and n-propylene group are more preferred, and a methylene group and vinylene group are still more preferred.
  • Examples of the metal atom include a sodium atom, a lithium atom, and a potassium atom. Of these, a sodium atom is preferable.
  • R 2 and R 3 are each independently a single bond or an alkylene group having 1 to 10 carbon atoms
  • X 2 and X 3 are each independently a hydrogen atom, a metal atom or methyl Represents a group.
  • alkylene group having 1 to 10 carbon atoms include those similar to R 1 in the above formula (1-1).
  • metal atom include those similar to X 1 in formula (1-1).
  • R 4 and R 5 are each independently a single bond or an alkylene group having 1 to 10 carbon atoms
  • X 4 and X 5 are each independently a hydrogen atom, a metal atom or methyl Represents a group.
  • alkylene group having 1 to 10 carbon atoms include those similar to R 1 in the above formula (1-1).
  • metal atom include those similar to X 1 in formula (1-1).
  • R 6 and R 7 are each independently a single bond or an alkylene group having 1 to 10 carbon atoms
  • X 6 and X 7 are each independently a hydrogen atom, a metal atom or methyl Represents a group.
  • alkylene group having 1 to 10 carbon atoms include those similar to R 1 in the above formula (1-1).
  • metal atom include those similar to X 1 in formula (1-1).
  • the steric hindrance increases, the network structure of the crosslinked structure formed with the epoxy resin can be widened, and as a result, the impact resistance of the resulting cured product can be further improved. It preferably has a structure of the above formulas (1-2) to (1-4), and more preferably has a structure of the above formula (1-4).
  • the acid-modified group may be directly bonded to carbon constituting the main chain of the modified polyvinyl acetal resin, or may be bonded through a linking group such as an alkylene group. Moreover, you may have the structural unit which has the said acid modification group in a side chain.
  • a preferable lower limit of the content of the structural unit having an acid-modified group is 0.01 mol%, and a preferable upper limit is 5.0 mol%.
  • the curability with the epoxy resin can be excellent.
  • Storage stability can be improved as content of the structural unit which has the said acid modification group is 5.0 mol% or less.
  • the minimum with more preferable content of the structural unit which has the said acid modification group is 0.05 mol%, and a more preferable upper limit is 3.0 mol%.
  • the content of the structural unit having an acid-modified group can be measured by, for example, NMR.
  • the modified polyvinyl acetal resin includes a structural unit having an acetal group represented by the following formula (2-1), a structural unit having a hydroxyl group represented by the following formula (2-2), and the following formula (2-3). It has a structural unit having an acetyl group represented.
  • R 8 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 8 is preferably a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, Examples include tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, and eicosyl group. Of these, a methyl group, an ethyl group, and a propyl group are preferable.
  • a preferable lower limit of the content of the structural unit having an acetal group (hereinafter also referred to as an acetal group amount) is 60 mol%, and a preferable upper limit is 90 mol%.
  • the amount of the acetal group is 60 mol% or more, the modified polyvinyl acetal resin can be sufficiently precipitated in the synthesis step by the precipitation method.
  • compatibility with an epoxy resin can be made favorable as acetal group amount is 90 mol% or less.
  • a more preferable lower limit of the amount of the acetal group is 65 mol%, and a more preferable upper limit is 85 mol%.
  • the ratio of the amount of acetoacetal group to the amount of butyral group in the modified polyvinyl acetal resin is preferably 3: 7 to 10: 0, and more preferably 7: 3 to 10: 0.
  • the modified polyvinyl acetal resin has a preferable lower limit of 15 mol% and a preferable upper limit of 35 mol% of the content of the structural unit having a hydroxyl group (hereinafter also referred to as a hydroxyl group amount).
  • a hydroxyl group amount When the amount of the hydroxyl group is 15 mol% or more, the toughness of the modified polyvinyl acetal resin can be sufficiently increased, and the strength of the resulting crosslinked product becomes good.
  • the amount of the hydroxyl group is 35 mol% or less, the polarity of the modified polyvinyl acetal resin does not become too high, and defects such as cracks in the resulting crosslinked product are suppressed, and the releasability is improved. be able to.
  • a more preferred lower limit of the hydroxyl group content is 17 mol%, and a more preferred upper limit is 30 mol%.
  • the modified polyvinyl acetal resin has a preferable lower limit of 0.0001 mol% and a preferable upper limit of 15 mol% of the content of the structural unit having an acetyl group (hereinafter also referred to as acetyl group amount).
  • the average degree of polymerization of the modified polyvinyl acetal resin is not particularly limited, but a preferable lower limit is 150 and a preferable upper limit is 4500.
  • a preferable lower limit is 150
  • a preferable upper limit is 4500.
  • an epoxy adhesive composition having a sufficient viscosity can be obtained, and when the degree of polymerization of the modified polyvinyl acetal resin is 4500 or less, coating is performed. Handling can be improved with good coatability in the intended use. Moreover, the adhesive force can be further improved.
  • a more preferable minimum is 200 and a more preferable upper limit is 4000.
  • modified polyvinyl acetal resin for example, polyvinyl alcohol obtained by saponifying polyvinyl acetate obtained by copolymerizing a monomer having an acid-modified group and vinyl acetate is conventionally known. The method of acetalizing by the method of this is mentioned. Further, an acid-modified group may be introduced by post-modifying a polyvinyl acetal resin obtained by acetalizing unmodified polyvinyl alcohol by a conventionally known method.
  • the modified polyvinyl acetal resin may be an acetalized product of polyvinyl alcohol having an acid-modified group, or may be one obtained by introducing an acid-modified group into an acetalized product of unmodified polyvinyl alcohol.
  • the monomer having an acid-modifying group include monocarboxylic acids such as acrylic acid, crotonic acid, methacrylic acid, and oleic acid, methylene malonic acid, itaconic acid, 2-methylene glutaric acid, 2-methylene adipic acid, Examples thereof include dicarboxylic acids such as 2-methylene sebacic acid, maleic anhydride, and metal salts thereof.
  • the acetalization can be carried out by a known method, and is preferably carried out in an aqueous solvent, a mixed solvent of water and water-compatible organic solvent, or an organic solvent.
  • an organic solvent compatible with the water for example, an alcohol-based organic solvent can be used.
  • the organic solvent include alcohol organic solvents, aromatic organic solvents, aliphatic ester solvents, ketone solvents, lower paraffin solvents, ether solvents, amine solvents, and the like.
  • the alcohol organic solvent include methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol and the like.
  • Examples of the aromatic organic solvent include xylene, toluene, ethylbenzene, methyl benzoate, and the like.
  • Examples of the aliphatic ester solvent include methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetoacetate, and ethyl acetoacetate.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl cyclohexanone, benzophenone, and acetophenone.
  • Examples of the lower paraffinic solvent include hexane, pentane, octane, cyclohexane, and decane.
  • Examples of the ether solvent include diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, and the like.
  • Examples of the amide-based solvent include N, N-dimethylformamide, N, N-dimethyltecetamide, N-methylpyrrolidone, acetanilide and the like.
  • amine solvent examples include ammonia, trimethylamine, triethylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, aniline, N-methylaniline, N, N-dimethylaniline, pyridine and the like. These can be used alone or in a mixture of two or more solvents. Among these, ethanol, n-propanol, isopropanol, and tetrahydrofuran are particularly preferable from the viewpoints of solubility in a resin and simplicity during purification.
  • the acetalization is preferably performed in the presence of an acid catalyst.
  • the acid catalyst is not particularly limited, mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, carboxylic acids such as formic acid, acetic acid, propionic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, paratoluenesulfone. Examples thereof include sulfonic acids such as acids.
  • These acid catalysts may be used alone or in combination of two or more compounds. Of these, hydrochloric acid, nitric acid and sulfuric acid are preferable, and hydrochloric acid is particularly preferable.
  • aldehyde used for the acetalization examples include aldehydes having a chain aliphatic group having 1 to 10 carbon atoms, a cyclic aliphatic group, or an aromatic group. Conventionally known aldehydes can be used as these aldehydes.
  • the aldehyde used for the acetalization reaction is not particularly limited, and examples thereof include aliphatic aldehydes and aromatic aldehydes.
  • Examples of the aliphatic aldehyde include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, n-hexylaldehyde, 2-ethylbutyraldehyde, 2-ethylhexylaldehyde, n-heptylaldehyde, n- Examples include octyl aldehyde, n-nonyl aldehyde, n-decyl aldehyde, amyl aldehyde, and the like.
  • aromatic aldehyde examples include benzaldehyde, cinnamaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, phenylacetaldehyde, ⁇ -phenylpropionaldehyde and the like. These aldehydes may be used alone or in combination of two or more.
  • formaldehyde, acetaldehyde, butyraldehyde, 2-ethylhexylaldehyde which are excellent in acetalization reactivity, provide a sufficient internal plastic effect to the resulting resin, and as a result, give good flexibility
  • n-Nonylaldehyde is preferred.
  • formaldehyde, acetaldehyde, and butyraldehyde are more preferable because an adhesive composition that is particularly excellent in impact resistance and adhesion to metal can be obtained.
  • the addition amount of the aldehyde can be appropriately set according to the amount of acetal group of the target modified polyvinyl acetal resin. What is necessary is just to set suitably as the addition amount of the said aldehyde according to the amount of acetal groups of the target modified polyvinyl acetal resin. In particular, it is preferably 60 to 95 mol%, preferably 65 to 90 mol%, relative to 100 mol% of polyvinyl alcohol, because the acetalization reaction is efficiently performed and unreacted aldehyde is easily removed.
  • the preferable lower limit of the content of the modified polyvinyl acetal resin is 0.5% by weight, and the preferable upper limit is 50% by weight.
  • the content of the modified polyvinyl acetal resin is 0.5% by weight or more, high toughness can be exhibited when used as an adhesive. High adhesiveness can be exhibited as the said content is 50 weight% or less.
  • the more preferable lower limit of the content of the modified polyvinyl acetal resin is 1.0% by weight, the still more preferable lower limit is 10% by weight, the more preferable upper limit is 40% by weight, and the still more preferable upper limit is 30% by weight.
  • the epoxy adhesive composition of the present invention contains an epoxy resin. By containing the epoxy resin, it is possible to crosslink by applying energy by heating or the like, and high adhesiveness can be realized.
  • epoxy resin examples include aromatic epoxy resins, heterocyclic epoxy resins, and aliphatic epoxy resins.
  • Examples of the aromatic epoxy resin include glycidyl ethers and glycidyl esters of polyhydric phenols, glycidyl aromatic polyamines, and the like.
  • Examples of the glycidyl ethers of the polyhydric phenols include bisphenol A type epoxy resins, bisphenol F type epoxy resins, and phenol novolac type epoxy resins.
  • Examples of the glycidyl esters of polyhydric phenols include phthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, and terephthalic acid diglycidyl ester.
  • Examples of the glycidyl aromatic polyamine include N, N-diglycidylaniline, N, N, N ′, N′-tetraglycidylxylylenediamine, N, N, N ′, N′-tetraglycidyldiphenylmethanediamine and the like. .
  • heterocyclic epoxy resin examples include triglycidyl isocyanate and triglycidyl melamine.
  • Examples of the aliphatic epoxy resin include glycidyl ethers of aliphatic alcohols and glycidyl esters of polyvalent fatty acids.
  • Examples of the glycidyl ether of the aliphatic alcohol include butyl glycidyl ether, lauryl glycidyl ether, neopentyl glycol diglycidyl ether, and polypropylene glycol diglycidyl ether.
  • Examples of the glycidyl ester of polyvalent fatty acid include diglycidyl oxalate, diglycidyl malate, diglycidyl succinate, diglycidyl glutarate, diglycidyl adipate, diglycidyl pimelate and the like.
  • the said epoxy resin may be used individually by 1 type, and may use 2 or more types together.
  • an aromatic epoxy resin is preferably used from the viewpoint of improving adhesive strength, and an aromatic epoxy resin and an aliphatic epoxy resin are more preferably used.
  • the epoxy equivalent (molecular weight per epoxy group) of the epoxy resin has a preferable lower limit of 90 and a preferable upper limit of 700.
  • the epoxy equivalent is equal to or more than the preferable lower limit, poor curing hardly occurs and the mechanical strength can be sufficiently improved.
  • the epoxy equivalent is less than or equal to the preferable upper limit, the molecular weight between cross-linking points decreases, and heat resistance can be improved.
  • a more preferable lower limit of the epoxy equivalent is 100, and a more preferable upper limit is 600.
  • a preferable minimum is 100 and a preferable upper limit is 5500.
  • the molecular weight is 100 or more, the mechanical strength and heat resistance of the crosslinked product can be sufficiently improved.
  • the molecular weight is 5500 or less, the crosslinked body does not become too rigid and can have sufficient strength.
  • the molecular weight is more preferably 200 to 1,000.
  • the preferable lower limit of the content of the epoxy resin is 0.5% by weight, and the preferable upper limit is 99.5% by weight.
  • Adhesiveness can be improved more as content of the said epoxy resin is 0.5 weight% or more.
  • a toughness can be improved as the said content is 99.5 weight% or less.
  • content of the said epoxy resin a more preferable minimum is 1.0 weight% and a more preferable upper limit is 90.0 weight%.
  • the content of the modified polyvinyl acetal resin with respect to 100 parts by weight of the epoxy resin has a preferable lower limit of 0.5 parts by weight and a preferable upper limit of 100 parts by weight.
  • the toughness can be made sufficient.
  • Adhesiveness can be made sufficient as content of the said modified polyvinyl acetal resin is 100 weight part or less.
  • a more preferable lower limit is 1.0 part by weight, and a more preferable upper limit is 80 parts by weight.
  • the ratio of the number of acid-modified groups contained in the modified polyvinyl acetal resin and the number of epoxy groups contained in the epoxy resin (number of acid-modified groups / number of epoxy groups)
  • the preferred lower limit is 0.0005, and the preferred upper limit is 0.5.
  • a more preferred lower limit is 0.00075, a still more preferred lower limit is 0.001, a more preferred upper limit is 0.25, and a further preferred upper limit is 0.05.
  • the ratio between the number of acid-modified groups and the number of epoxy groups is not less than the preferable lower limit and not more than the preferable upper limit, the impact resistance of the cured product of the resulting epoxy adhesive composition can be improved.
  • the content of the organic solvent is 10.0% by weight or less, and preferably 0% by weight.
  • the content of the organic solvent is 10.0% by weight or less, it is possible to make it difficult to inhibit curing.
  • Examples of the organic solvent include various conventionally known organic solvents such as alcohols, ketones, acetic esters, aromatic hydrocarbons, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and the like.
  • Examples of the alcohols include methanol, ethanol, isopropyl alcohol, and the like.
  • Examples of the ketones include acetone, methyl ethyl ketone, and cyclohexanone.
  • Examples of the acetates include ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate and the like.
  • Examples of the carbitols include cellosolves such as cellosolve and butylcellosolve, carbitol, and butylcarbitol.
  • Examples of the aromatic hydrocarbon include toluene and xylene.
  • the epoxy adhesive composition of the present invention may further contain a crosslinking agent in addition to the modified polyvinyl acetal resin and the epoxy resin.
  • the crosslinking agent include halohydrin compounds, halogen compounds, isocyanate compounds, bisacrylamide compounds, urea compounds, guanidine compounds, dicarboxylic acid compounds, unsaturated carboxylic acid compounds, unsaturated carboxylic acid ester compounds, and aldehyde compounds.
  • the halohydrin compound include epichlorohydrin and epibromohydrin.
  • the halogen compound include 1,2-dichloroethane, 1,3-dichloropropane, and the like. As said isocyanate compound, hexamethylene diisocyanate etc.
  • Examples of the bisacrylamide compound include N, N′-methylenebisacrylamide, N, N′-ethylenebisacrylamide and the like.
  • Examples of the urea compound include urea and thiourea.
  • Examples of the guanidine compound include guanidine and diguanide.
  • Examples of the dicarboxylic acid compound include oxalic acid and adipic acid.
  • Examples of the unsaturated carboxylic acid compound include acrylic acid and methacrylic acid.
  • Examples of the unsaturated carboxylic acid ester compound include methyl acrylate, methyl methacrylate, 2-ethylhexyl acrylate, isobutyl acrylate, butyl acrylate, 2-ethylhexyl methacrylate, isobutyl methacrylate, butyl methacrylate and the like.
  • Examples of the aldehyde compound include glyoxal, glutaraldehyde, malonaldehyde, succinaldehyde, adipine aldehyde, phthalaldehyde, isophthalaldehyde, terephthalaldehyde, and other dialdehydes. These may be used alone or in combination of two or more. If necessary, these crosslinking agents can be used by dissolving in an organic solvent such as water or alcohol.
  • the epoxy adhesive composition of the present invention may further contain a curing agent and a curing accelerator.
  • a curing agent include dicyandiamide, imidazole compound, aromatic amine compound, phenol novolac resin, cresol novolac resin, and the like. Of these, dicyandiamide is preferable.
  • the curing accelerator include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds. Of these, imidazole compounds are preferred.
  • the content of the curing agent in the epoxy adhesive composition of the present invention is preferably 0.5 parts by weight with respect to 100 parts by weight of the epoxy resin, 1.0 part by weight with a more preferable lower limit, and a preferable upper limit. 100 parts by weight, and a more preferable upper limit is 50 parts by weight.
  • the content of the curing accelerator in the epoxy adhesive composition of the present invention is preferably 0.5 parts by weight with respect to 100 parts by weight of the epoxy resin, more preferably 1.0 part by weight, and a preferred upper limit with respect to 100 parts by weight. Is 30 parts by weight, and a more preferable upper limit is 10 parts by weight.
  • the ratio between the content of the curing agent and the content of the curing accelerator has a preferable lower limit of 1/18.
  • a more preferred lower limit is 1/8
  • a preferred upper limit is 1 / 0.05
  • a more preferred upper limit is 1 / 0.125.
  • the modified polyvinyl acetal resin of the present invention may contain additives such as a plasticizer and a dispersant as long as the effects of the present invention are not impaired.
  • Examples of the method of crosslinking the epoxy adhesive composition of the present invention include a method by heating.
  • the heating temperature is not particularly limited, but is preferably 50 to 170 ° C.
  • the heating temperature is 50 ° C. or more, crosslinking can be sufficiently advanced to improve the strength.
  • the heating temperature is 170 ° C. or lower, the modified polyvinyl acetal resin is not thermally deteriorated and sufficient characteristics can be exhibited.
  • a more preferable lower limit of the heating temperature is 60 ° C., and a more preferable upper limit is 150 ° C.
  • the heating time is not particularly limited, but the preferred lower limit is 5 minutes and the preferred upper limit is 10 hours.
  • the heating time is 5 minutes or more, the crosslinking is sufficiently advanced, and sufficient strength can be obtained. Further, when the heating time is 10 hours or less, the modified polyvinyl acetal resin is not thermally deteriorated, and sufficient characteristics can be exhibited.
  • the epoxy adhesive composition of the present invention can be suitably used for applications in which ordinary polyvinyl acetal resins are used.
  • the coating solution for manufacturing etc. can be obtained.
  • it can be used for adhesives for film adhesives for displays, interlayer adhesives for ceramic laminates, structural adhesives for automobiles, buildings, and the like.
  • the present invention has excellent compatibility and storage stability, has high strength and excellent adhesiveness, has excellent adhesion, and suppresses the occurrence of warping and peeling even when used for bonding dissimilar materials.
  • an epoxy adhesive composition excellent in impact resistance of the cured product can be provided.
  • Example 1 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. This solution was cooled to 40 ° C., 150 g of hydrochloric acid having a concentration of 35% by weight and 75 g of acetaldehyde were added thereto, and the liquid temperature was kept at 40 ° C. to carry out an acetalization reaction to precipitate a reaction product.
  • the polyvinyl alcohol includes a structural unit having a degree of polymerization of 400, a degree of saponification of 97.7 mol%, and a carboxyl group represented by the above formula (1-4) (in formula (1-4), R 6 is a single unit.
  • Example 2 Using the modified polyvinyl acetal resin obtained in Example 1 and adding an epoxy resin, a curing agent, and a curing accelerator as shown in Table 1, the adhesive composition and the resin sheet were prepared in the same manner as in Example 1. Produced. In addition, the following were used as an epoxy resin.
  • epoxy resin Bisphenol F type epoxy resin (Mitsubishi Chemical Corporation, jER 807, epoxy equivalent 170) Neopentyl glycol diglycidyl ether (epoxy equivalent 138, molecular weight 216) Polypropylene glycol diglycidyl ether (manufactured by Nagase ChemteX Corporation, EX-920, epoxy equivalent 176)
  • Example 9 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. This solution was cooled to 40 ° C., 150 g of hydrochloric acid having a concentration of 35% by weight and 75 g of acetaldehyde were added thereto, and the liquid temperature was kept at 40 ° C. to carry out an acetalization reaction to precipitate a reaction product.
  • Polyvinyl alcohol includes a structural unit having a degree of polymerization of 400, a degree of saponification of 97.7 mol%, and a carboxyl group represented by the above formula (1-4) (in formula (1-4), R 6 is a single bond.
  • X 6 is a hydrogen atom
  • R 7 is a methylene group
  • X 7 is a hydrogen atom
  • the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a modified polyvinyl acetal resin powder.
  • the obtained modified polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was represented by the above formula (1-4). It has confirmed that it has a structural unit (content: 2.0 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 10 Using the modified polyvinyl acetal resin obtained in Example 9, an adhesive composition and a resin sheet were produced in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1. did.
  • Example 11 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. This solution was cooled to 40 ° C., 150 g of hydrochloric acid having a concentration of 35% by weight and 75 g of acetaldehyde were added thereto, and the liquid temperature was kept at 40 ° C. to carry out an acetalization reaction to precipitate a reaction product.
  • Polyvinyl alcohol includes a structural unit having a polymerization degree of 1000, a saponification degree of 97.6 mol%, and a carboxyl group represented by the above formula (1-4) (in formula (1-4), R 6 is a single bond.
  • X 6 is a hydrogen atom
  • R 7 is a methylene group
  • X 7 is a hydrogen atom
  • the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a modified polyvinyl acetal resin powder.
  • the obtained modified polyvinyl acetal resin is dissolved in DMSO-d 6 (dimethylsulfoxide), and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum), represented by the formula (1-4) It has confirmed that it has a structural unit (content: 0.4 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 12 Using the modified polyvinyl acetal resin obtained in Example 11, an adhesive composition and a resin sheet were produced in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1. did.
  • Example 13 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. This solution was cooled to 40 ° C., 150 g of hydrochloric acid having a concentration of 35% by weight and 75 g of acetaldehyde were added thereto, and the liquid temperature was kept at 40 ° C. to carry out an acetalization reaction to precipitate a reaction product.
  • Polyvinyl alcohol includes a structural unit having a degree of polymerization of 1700, a degree of saponification of 97.7 mol%, and a carboxyl group represented by the above formula (1-4) (in formula (1-4), R 6 is a single bond.
  • X 6 is a hydrogen atom
  • R 7 is a methylene group
  • X 7 is a hydrogen atom
  • the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a modified polyvinyl acetal resin powder.
  • the obtained modified polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was represented by the above formula (1-4). It has confirmed that it has a structural unit (content: 0.4 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 14 An adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that the modified polyvinyl acetal resin obtained in Example 13 was used and an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1. did.
  • Example 15 Using the modified polyvinyl acetal resin obtained in Example 1, an adhesive composition and a resin sheet were produced in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1. did.
  • Example 18 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. The solution was cooled to 40 ° C., 150 g of hydrochloric acid having a concentration of 35% by weight and 75 g of formaldehyde were added thereto, and the liquid temperature was kept at 40 ° C. to carry out an acetalization reaction to precipitate a reaction product. In addition, as polyvinyl alcohol, the same thing as Example 1 was used. Thereafter, the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a modified polyvinyl acetal resin powder.
  • the obtained modified polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was represented by the above formula (1-4). It has confirmed that it has a structural unit (content: 0.4 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 19 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. The solution is cooled to 40 ° C., 150 g of 35% by weight hydrochloric acid and 150 g of n-butyraldehyde are added to the solution, and the acetalization reaction is carried out while maintaining the liquid temperature at 40 ° C. to precipitate the reaction product. It was.
  • Polyvinyl alcohol includes a structural unit having a degree of polymerization of 400, a degree of saponification of 97.7 mol%, and a carboxyl group represented by the above formula (1-4) (in formula (1-4), R 6 is a single bond.
  • X 6 is a hydrogen atom
  • R 7 is a vinylene group
  • X 7 is a hydrogen atom
  • the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a modified polyvinyl acetal resin powder.
  • the obtained modified polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was represented by the above formula (1-4). It has confirmed that it has a structural unit (content: 0.4 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 20 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. The solution is cooled to 40 ° C., 150 g of 35% by weight hydrochloric acid and 150 g of n-butyraldehyde are added to the solution, and the acetalization reaction is carried out while maintaining the liquid temperature at 40 ° C. to precipitate the reaction product. It was.
  • Polyvinyl alcohol includes a structural unit having a degree of polymerization of 400, a degree of saponification of 97.7 mol%, and a carboxyl group represented by the above formula (1-4) (in formula (1-4), R 6 is a single bond.
  • X 6 is a hydrogen atom
  • R 7 is a vinylene group
  • X 7 is a hydrogen atom
  • the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a modified polyvinyl acetal resin powder.
  • the obtained modified polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was represented by the above formula (1-4). It has confirmed that it has a structural unit (content: 2.0 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 21 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. The solution is cooled to 40 ° C., 150 g of 35% by weight hydrochloric acid and 150 g of n-butyraldehyde are added to the solution, and the acetalization reaction is carried out while maintaining the liquid temperature at 40 ° C. to precipitate the reaction product. It was.
  • Polyvinyl alcohol includes a structural unit having a degree of polymerization of 400, a degree of saponification of 97.7 mol%, and a carboxyl group represented by the above formula (1-4) (in formula (1-4), R 6 is a single bond.
  • X 6 is a hydrogen atom
  • R 7 is a vinylene group
  • X 7 is a hydrogen atom
  • the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a modified polyvinyl acetal resin powder.
  • the obtained modified polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was represented by the above formula (1-4). It has confirmed that it has a structural unit (content: 5.0 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 22 Using the polyvinyl acetal resin obtained in Example 19, an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1. .
  • Example 24 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. The solution was cooled to 40 ° C., 150 g of hydrochloric acid having a concentration of 35% by weight and 145 g of n-butyraldehyde were added thereto, and the acetalization reaction was carried out while maintaining the liquid temperature at 40 ° C. to precipitate the reaction product. It was.
  • polyvinyl alcohol polymerization degree 1700, saponification degree 97.7 mol%, in the structural units (formula (1-4) having a carboxyl group represented by the formula (1-4), R 6 is a single bond , X 6 is a hydrogen atom, R 7 is a vinylene group, and X 7 is a hydrogen atom).
  • the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a modified polyvinyl acetal resin powder.
  • the obtained modified polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was represented by the above formula (1-4). It has confirmed that it has a structural unit (content: 0.4 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 25 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. The solution is cooled to 40 ° C., 150 g of hydrochloric acid having a concentration of 35% by weight and 140 g of n-butyraldehyde are added thereto, and the liquid temperature is kept at 40 ° C. to carry out an acetalization reaction to precipitate a reaction product. It was. In addition, as polyvinyl alcohol, the same thing as Example 24 was used. Thereafter, the liquid temperature was kept at 40 ° C.
  • modified polyvinyl acetal resin powder was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was represented by the above formula (1-4). It has confirmed that it has a structural unit (content: 0.4 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 26 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. This solution is cooled to 40 ° C., and 150 g of hydrochloric acid having a concentration of 35% by weight and 155 g of n-butyraldehyde are added thereto, and the acetalization reaction is carried out while maintaining the liquid temperature at 40 ° C. to precipitate the reaction product. It was.
  • polyvinyl alcohol the same thing as Example 1 was used. Thereafter, the liquid temperature was kept at 40 ° C.
  • modified polyvinyl acetal resin powder was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was represented by the above formula (1-4). It has confirmed that it has a structural unit (content: 0.4 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 27 Using the polyvinyl acetal resin obtained in Example 21, an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1. .
  • Example 28 Using the polyvinyl acetal resin obtained in Example 1, an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1. .
  • Example 29 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. The solution was cooled to 40 ° C., 150 g of hydrochloric acid having a concentration of 35% by weight, 50 g of acetaldehyde and 50 g of butyraldehyde were added thereto, and the acetalization reaction was carried out while maintaining the liquid temperature at 40 ° C. to precipitate the reaction product. I let you.
  • Polyvinyl alcohol includes a structural unit having a degree of polymerization of 800, a degree of saponification of 97.7 mol%, and a carboxyl group represented by the above formula (1-4) (in formula (1-4), R 6 is a single bond. , X 6 is a hydrogen atom, R 7 is a methylene group, and X 7 is a hydrogen atom). Thereafter, the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a modified polyvinyl acetal resin powder.
  • the obtained modified polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was represented by the above formula (1-4). It has confirmed that it has a structural unit (content: 2.0 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 30 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. This solution was cooled to 40 ° C., 150 g of hydrochloric acid having a concentration of 35% by weight and 75 g of acetaldehyde were added thereto, and the liquid temperature was kept at 40 ° C. to carry out an acetalization reaction to precipitate a reaction product. The same polyvinyl alcohol as that used in Example 29 was used. Thereafter, the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a modified polyvinyl acetal resin powder.
  • the obtained modified polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was represented by the above formula (1-4). It has confirmed that it has a structural unit (content: 2.0 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 31 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. This solution was cooled to 40 ° C., 150 g of hydrochloric acid having a concentration of 35% by weight and 75 g of acetaldehyde were added thereto, and the liquid temperature was kept at 40 ° C. to carry out an acetalization reaction to precipitate a reaction product.
  • Polyvinyl alcohol includes a structural unit having a degree of polymerization of 800, a degree of saponification of 97.7 mol%, and a carboxyl group represented by the above formula (1-2) (in the above formula (1-2), R 2 is a single unit.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 32 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. This solution was cooled to 40 ° C., 150 g of hydrochloric acid having a concentration of 35% by weight and 75 g of acetaldehyde were added thereto, and the liquid temperature was kept at 40 ° C. to carry out an acetalization reaction to precipitate a reaction product.
  • Polyvinyl alcohol includes a structural unit having a degree of polymerization of 800, a degree of saponification of 97.7 mol%, and a carboxyl group represented by the above formula (1-3) (in formula (1-3), R 4 is a single bond.
  • X 4 is a hydrogen atom
  • R 5 is a single bond
  • X 5 is a hydrogen atom
  • the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a modified polyvinyl acetal resin powder.
  • the obtained modified polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was represented by the above formula (1-4). It has confirmed that it has a structural unit (content: 2.0 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 33 200 g of polyvinyl alcohol was added to 1800 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. This solution was cooled to 40 ° C., 150 g of hydrochloric acid having a concentration of 35% by weight and 75 g of acetaldehyde were added thereto, and the liquid temperature was kept at 40 ° C. to carry out an acetalization reaction to precipitate a reaction product.
  • Polyvinyl alcohol includes a structural unit having a degree of polymerization of 800, a degree of saponification of 97.7 mol%, and a carboxyl group represented by the above formula (1-1) (in formula (1-1), R 1 is a methylene group.
  • Polyvinyl alcohol containing 2.0 mol% of X 1 is a hydrogen atom was used. Thereafter, the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a modified polyvinyl acetal resin powder.
  • the obtained modified polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was represented by the above formula (1-4). It has confirmed that it has a structural unit (content: 2.0 mol%) which has a carboxyl group.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Example 1 A polyvinyl acetal resin was obtained in the same manner as in Example 1 except that polyvinyl alcohol was changed to polyvinyl alcohol having a polymerization degree of 600 and a saponification degree of 99.5 mol%.
  • the obtained polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it was confirmed that it had a structural unit having an acid-modified group. could not.
  • the amounts of acetal group, acetyl group, and hydroxyl group measured using 13 C-NMR are shown in Table 1.
  • Example 2 The same as Example 1 except that 70 g of neopentyl glycol diglycidyl ether was added to 30 g of the obtained polyvinyl acetal resin, and an adhesive composition was prepared by mixing the polyvinyl acetal resin and the epoxy resin in a weight ratio of 30:70. Thus, an adhesive composition and a resin sheet were produced.
  • Comparative Examples 2-3 Using the polyvinyl acetal resin obtained in Comparative Example 1, an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1. .
  • Example 4 A polyvinyl acetal resin was obtained in the same manner as in Example 1 except that polyvinyl alcohol was changed to polyvinyl alcohol having a polymerization degree of 400 and a saponification degree of 97.7 mol%.
  • the resulting polyvinyl acetal resin is dissolved in DMSO-d 6 (dimethylsulfoxide), 13 C-NMR were analyzed using (nuclear magnetic resonance spectrum), confirmed to have a structure unit having an acid-modified group could not.
  • the amounts of acetal group, acetyl group, and hydroxyl group measured using 13 C-NMR are shown in Table 1.
  • an adhesive composition and a resin sheet were prepared in the same manner as in Example 1 except that an epoxy resin, a curing agent, and a curing accelerator were added as shown in Table 1.
  • Shear adhesive strength The obtained adhesive composition was applied to various metal substrates, heated at 170 ° C. for 30 minutes to cure the adhesive composition, and measured by a method in accordance with JIS K 6850. The shear adhesive strength was measured under the conditions of a temperature of 20 ° C. and a tensile speed of 5 mm / min.
  • As the metal substrate aluminum, stainless steel (SUS304), or SPCC steel plate was used.
  • SUS304 stainless steel
  • SPCC steel plate As the metal substrate, aluminum, stainless steel (SUS304), or SPCC steel plate was used.
  • the shear adhesive force is high, it can be said that it is difficult to peel off even when an external force is applied, and the adhesive force is excellent.
  • the obtained adhesive composition was applied to an SPCC steel plate by a method in accordance with JIS K 6854-3, and two SPCC steel plates were bonded together with the adhesive composition, and then at 170 ° C. for 30 minutes. After heating to cure the adhesive composition, the peel adhesive strength was measured under the conditions of a peel angle of 180 degrees and a peel speed of 200 mm / min.
  • the obtained adhesive composition was poured into a mold and heated at 170 ° C. for 30 minutes to obtain a cured resin.
  • the cured resin obtained was subjected to a Charpy impact test using a digital impact tester DG-UB type (manufactured by Toyo Seiki Seisakusho Co., Ltd.) by a method in accordance with JIS K 7111, and the cured resin product was destroyed.
  • the impact resistance was evaluated by measuring the Charpy impact value.
  • the present invention has excellent compatibility and storage stability, has high strength and excellent adhesiveness, can suppress the occurrence of warpage and peeling when used for adhesion of different materials, and further cure An epoxy adhesive composition having excellent impact resistance can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明は、相溶性及び貯蔵安定性に優れ、高い強度及び優れた接着性を有し、異種材料の接着に用いた際の反りや剥がれの発生を抑制することができ、更に、硬化物の耐衝撃性にも優れるエポキシ接着剤組成物を提供する。 本発明は、酸変性基を有する構成単位を有する変性ポリビニルアセタール樹脂とエポキシ樹脂とを含有し、有機溶剤の含有量が10.0重量%以下であるエポキシ接着剤組成物である。

Description

エポキシ接着剤組成物
本発明は、相溶性及び貯蔵安定性に優れ、高い強度及び優れた接着性を有し、異種材料の接着に用いた際の反りや剥がれの発生を抑制することができ、更に、硬化物の耐衝撃性にも優れるエポキシ接着剤組成物に関する。
ポリビニルアセタール樹脂は、ポリビニルアルコールを原料として合成される樹脂であり、側鎖にアセチル基と水酸基、そしてアセタール基を有することによって、優れた強靭性、接着性、架橋性、吸湿性を発現することができる。また、側鎖基の比率を変化させることによって樹脂物性を変化させることが可能となる。このような特性を利用して自動車用合わせガラス中間膜やセラミックグリーンシート等幅広い用途に使用されている。
現在、ポリビニルアセタール樹脂の側鎖に、アセチル基、水酸基、アセタール基以外の官能基を導入することによって、樹脂物性の向上を図ることや、新たな機能発現を目指す試みが進められている。
しかしながら、ポリビニルアセタール樹脂は、金属材料との接着力が充分ではないという問題があった。また、硬化時の加熱処理を行った際に、金属材料との収縮率の差により、反りや剥離等が生じる原因となっていた。
また、特許文献1~4には、エポキシ樹脂を用いた接着剤が記載されているが、これらの接着剤は、樹脂の強度が不充分であり、金属材料との接着力が不充分となったりするという問題があった。
特表2008-531817号公報 特表2002-517595号公報 特開2015-108077号公報 特開平6-212138号公報
本発明は、上記現状に鑑み、相溶性及び貯蔵安定性に優れ、高い強度及び優れた接着性を有し、異種材料の接着に用いた際の反りや剥がれの発生を抑制することができ、更に、硬化物の耐衝撃性にも優れるエポキシ接着剤組成物を提供することを目的とする。
本発明は、酸変性基を有する構成単位を有する変性ポリビニルアセタール樹脂とエポキシ樹脂とを含有し、有機溶剤の含有量が10.0重量%以下であるエポキシ接着剤組成物である。
以下に本発明を詳述する。
本発明者らは、鋭意検討の結果、酸変性基を有する構成単位を有する変性ポリビニルアセタール樹脂を、エポキシ樹脂と併用した場合、優れた架橋性を発現することができ、充分な強度を有する架橋体が得られることを見出した。また、異種材料の接着に用いた際に、収縮率を低くして、反りや剥がれを抑制することができることを見出し、本発明を完成させるに至った。
本発明のエポキシ接着剤組成物は、酸変性基を有する構成単位を有する変性ポリビニルアセタール樹脂を含有する。
このような変性ポリビニルアセタール樹脂を含有することで、エポキシ樹脂と併用した場合に、エポキシ樹脂との間で架橋構造を形成することができる。このため、架橋後に得られる架橋体は、高い機械的強度を有しつつ、適度な弾性を有するものとなる。更に、硬化収縮を緩やかにして、異種材料の接着に用いた際、それぞれの材料の収縮率の差に起因する反りや、接着部分の剥離を抑制することができる。
上記変性ポリビニルアセタール樹脂は、酸変性基を有する構成単位を有する。
上記変性ポリビニルアセタール樹脂が上記酸変性基を有する構成単位を有することにより、エポキシ樹脂との相溶性を向上させて、高い機械的強度を実現することができる。
上記酸変性基としては、カルボキシル基、スルホン酸基、マレイン酸基、スルフィン酸基、スルフェン酸基、リン酸基、ホスホン酸基、アミノ基、及び、それらの塩等が挙げられる。なかでも、カルボキシル基が好ましい。
上記酸変性基を有する構成単位は、主鎖を構成する炭素に側鎖としての酸変性基が直接結合した構造であってもよく、主鎖を構成する炭素にアルキレン基を介して酸変性基が結合した構造であってもよい。
上記酸変性基を有する構成単位は、主鎖を構成する同一の炭素に2つの酸変性基が結合した立体構造を有してもよく、主鎖を構成する炭素に酸変性基が1つ結合した立体構造であってもよい。また、主鎖を構成する隣り合う炭素に酸変性基が1つずつ結合した立体構造であってもよく、主鎖を構成する隣り合う炭素のどちらか一方のみに酸変性基が結合した構造であってもよい。なかでも、主鎖を構成する同一の炭素に2つの酸変性基が結合した立体構造、又は、主鎖を構成する隣り合う炭素に酸変性基が1つずつ結合した立体構造を有することが好ましい。更に、立体障害を大きくして、エポキシ樹脂との組み合わせにより得られる架橋体の網目構造を広くすることができ、その結果、得られる硬化物の柔軟性を向上させることができることから、主鎖を構成する同一の炭素に2つの酸変性基が結合した立体構造を有することがより好ましい。
また、酸変性基を有する構成単位は、主鎖を構成する炭素に酸変性基が同一方向に結合したイソタクチック配置である立体構造を有してもよく、主鎖を構成する炭素に酸変性基が交互に反対側に結合したシンジオタクチック配置である立体構造を有してもよい。更に、上記酸変性基がランダムに結合したアタクチック配置である立体構造を有してもよい。
上記酸変性基を有する構成単位が、主鎖を構成する炭素にアルキレン基を介して酸変性基が結合した構造を有する場合、上記アルキレン基としては、炭素数1~10のアルキレン基であることが好ましく、炭素数1~5のアルキレン基であることがより好ましく、炭素数1~3のアルキレン基であることが更に好ましい。
上記炭素数1~10のアルキレン基としては、直鎖状アルキレン基、分岐鎖状アルキレン基、環状アルキレン基が挙げられる。
上記直鎖状アルキレン基としては、メチレン基、ビニレン基、n-プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基等が挙げられる。
上記分岐鎖状アルキレン基としては、メチルメチレン基、メチルエチレン基、1-メチルペンチレン基、1,4-ジメチルブチレン基等が挙げられる。
上記環状アルキレン基としてはシクロプロピレン基、シクロブチレン基、シクロヘキシレン基等が挙げられる。
なかでも、直鎖状アルキレン基が好ましく、メチレン基、ビニレン基、n-プロピレン基がより好ましく、メチレン基、ビニレン基が更に好ましい。
上記カルボキシル基を有する構成単位としては、例えば、下記式(1-1)で表される構成単位、下記式(1-2)で表される構成単位、下記式(1-3)で表される構成単位、及び、下記式(1-4)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000001
上記式(1-1)中、Rは、単結合又は炭素数1~10のアルキレン基、Xは水素原子、金属原子又はメチル基を表す。
上記Rとしては、単結合、又は、炭素数1~5のアルキレン基であることが好ましく、単結合、又は、炭素数1~3のアルキレン基であることがより好ましい。
上記炭素数1~10のアルキレン基としては、直鎖状アルキレン基、分岐鎖状アルキレン基、環状アルキレン基が挙げられる。
上記直鎖状アルキレン基としては、メチレン基、ビニレン基、n-プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基等が挙げられる。
上記分岐鎖状アルキレン基としては、メチルメチレン基、メチルエチレン基、1-メチルペンチレン基、1,4-ジメチルブチレン基等が挙げられる。
上記環状アルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロヘキシレン基等が挙げられる。
なかでも、直鎖状アルキレン基が好ましく、メチレン基、ビニレン基、n-プロピレン基がより好ましく、メチレン基、ビニレン基が更に好ましい。
上記金属原子としては、ナトリウム原子、リチウム原子、カリウム原子等が挙げられる。なかでも、ナトリウム原子が好ましい。
上記式(1-2)中、R及びRはそれぞれ独立して、単結合又は炭素数1~10のアルキレン基、X及びXはそれぞれ独立して、水素原子、金属原子又はメチル基を表す。
上記炭素数1~10のアルキレン基としては、上記式(1-1)中、Rと同様のものが挙げられる。
上記金属原子としては、上記式(1-1)中、Xと同様のものが挙げられる。
上記式(1-3)中、R及びRはそれぞれ独立して、単結合又は炭素数1~10のアルキレン基、X及びXはそれぞれ独立して、水素原子、金属原子又はメチル基を表す。
上記炭素数1~10のアルキレン基としては、上記式(1-1)中、Rと同様のものが挙げられる。
上記金属原子としては、上記式(1-1)中、Xと同様のものが挙げられる。
上記式(1-4)中、R及びRはそれぞれ独立して、単結合又は炭素数1~10のアルキレン基、X及びXはそれぞれ独立して、水素原子、金属原子又はメチル基を表す。
上記炭素数1~10のアルキレン基としては、上記式(1-1)中、Rと同様のものが挙げられる。
上記金属原子としては、上記式(1-1)中、Xと同様のものが挙げられる。
なかでも、立体障害が大きくなり、エポキシ樹脂との間で形成される架橋構造の網目構造を広くすることができ、その結果、得られる硬化物の耐衝撃性をより向上させることができることから、上記式(1-2)~(1-4)の構造を有することが好ましく、上記式(1-4)の構造を有することがより好ましい。
本発明の変性ポリビニルアセタール樹脂において、上記酸変性基は、変性ポリビニルアセタール樹脂の主鎖を構成する炭素に直接結合してもよく、アルキレン基等の連結基を介して結合していてもよい。
また、上記酸変性基を有する構成単位を側鎖に有していてもよい。
上記変性ポリビニルアセタール樹脂は、酸変性基を有する構成単位の含有量の好ましい下限が0.01モル%、好ましい上限が5.0モル%である。
上記酸変性基を有する構成単位の含有量が0.01モル%以上であると、エポキシ樹脂との硬化性に優れたものとすることができる。上記酸変性基を有する構成単位の含有量が5.0モル%以下であると、貯蔵安定性を向上させることができる。上記酸変性基を有する構成単位の含有量のより好ましい下限は0.05モル%、より好ましい上限が3.0モル%である。上記酸変性基を有する構成単位の含有量は、例えば、NMRにより測定することができる。
上記変性ポリビニルアセタール樹脂は、下記式(2-1)で表されるアセタール基を有する構成単位、下記式(2-2)で表される水酸基を有する構成単位及び下記式(2-3)で表されるアセチル基を有する構成単位を有する。
Figure JPOXMLDOC01-appb-C000002
上記式(2-1)中、Rは水素原子又は炭素数1~20のアルキル基を表す。
上記Rとしては、水素原子、又は、炭素数1~12のアルキル基が好ましい。
上記炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等が挙げられる。なかでも、メチル基、エチル基、プロピル基が好ましい。
上記変性ポリビニルアセタール樹脂は、上記アセタール基を有する構成単位の含有量(以下、アセタール基量ともいう)の好ましい下限が60モル%、好ましい上限が90モル%である。上記アセタール基量が60モル%以上であると、沈殿法による合成工程において変性ポリビニルアセタール樹脂を充分に析出させることができる。また、アセタール基量が90モル%以下であると、エポキシ樹脂との相溶性を良好なものとすることができる。上記アセタール基量は、より好ましい下限が65モル%、より好ましい上限が85モル%である。
上記変性ポリビニルアセタール樹脂における上記アセトアセタール基量と上記ブチラール基量との比は、3:7~10:0であることが好ましく、7:3~10:0であることがより好ましい。
上記変性ポリビニルアセタール樹脂は、上記水酸基を有する構成単位の含有量(以下、水酸基量ともいう)の好ましい下限が15モル%、好ましい上限が35モル%である。上記水酸基量が15モル%以上であると、変性ポリビニルアセタール樹脂の強靱性を充分に高めることができ、得られる架橋体の強度が良好なものとなる。また、上記水酸基量が35モル%以下であると、変性ポリビニルアセタール樹脂の極性が高くなりすぎることがなく、得られる架橋体のひび割れ等の不具合を抑制して、剥離性を良好なものとすることができる。上記水酸基量のより好ましい下限は17モル%、より好ましい上限が30モル%である。
上記変性ポリビニルアセタール樹脂は、上記アセチル基を有する構成単位の含有量(以下、アセチル基量ともいう)の好ましい下限が0.0001モル%、好ましい上限が15モル%である。
上記変性ポリビニルアセタール樹脂の平均重合度は特に限定されないが、好ましい下限が150、好ましい上限が4500である。上記変性ポリビニルアセタール樹脂の重合度が150以上であると、充分な粘度を有するエポキシ接着剤組成物を得ることができ、上記変性ポリビニルアセタール樹脂の重合度が4500以下であると、塗工して使用する用途で塗工性を良好なものとしてハンドリングを向上することができる。また、接着力をより向上させることができる。
上記平均重合度は、より好ましい下限が200、より好ましい上限が4000である。
上記変性ポリビニルアセタール樹脂を作製する方法としては、例えば、酸変性基を有する単量体と酢酸ビニルとを共重合させることによって得られたポリ酢酸ビニルをケン化し得られたポリビニルアルコールを、従来公知の方法によりアセタール化する方法が挙げられる。また、未変性のポリビニルアルコールを、従来公知の方法によりアセタール化して得られたポリビニルアセタール樹脂を後変性させることで酸変性基を導入してもよい。
すなわち、上記変性ポリビニルアセタール樹脂は、酸変性基を有するポリビニルアルコールのアセタール化物であってもよく、無変性のポリビニルアルコールのアセタール化物に酸変性基を導入したものであってもよい。
上記酸変性基を有する単量体としては、例えば、アクリル酸、クロトン酸、メタクリル酸、オレイン酸等のモノカルボン酸、メチレンマロン酸、イタコン酸、2-メチレングルタル酸、2-メチレンアジピン酸、2-メチレンセバシン酸等のジカルボン酸、無水マレイン酸等やその金属塩が挙げられる。
上記アセタール化は、公知の方法を用いることができ、水溶媒中、水と水との相溶性のある有機溶媒との混合溶媒中、あるいは有機溶媒中で行うことが好ましい。
上記水との相溶性のある有機溶媒としては、例えば、アルコール系有機溶剤を用いることができる。
上記有機溶媒としては、例えば、アルコール系有機溶剤、芳香族有機溶剤、脂肪族エステル系溶剤、ケトン系溶剤、低級パラフィン系溶剤、エーテル系溶剤、アミン系溶剤等が挙げられる。
上記アルコール系有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール等が挙げられる。
上記芳香族有機溶剤としては、例えば、キシレン、トルエン、エチルベンゼン、安息香酸メチル等が挙げられる。
上記脂肪族エステル系溶剤としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、アセト酢酸メチル、アセト酢酸エチル等が挙げられる。
上記ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ベンゾフェノン、アセトフェノン等が挙げられる。
上記低級パラフィン系溶剤としては、ヘキサン、ペンタン、オクタン、シクロヘキサン、デカン等が挙げられる。
上記エーテル系溶剤としては、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル等が挙げられる。
上記アミド系溶剤としては、N,N-ジメチルホルムアミド、N,N-ジメチルテセトアミド、N-メチルピロリドン、アセトアニリド等が挙げられる。
上記アミン系溶剤としては、アンモニア、トリメチルアミン、トリエチルアミン、n-ブチルアミン、ジn-ブチルアミン、トリn-ブチルアミン、アニリン、N-メチルアニリン、N,N-ジメチルアニリン、ピリジン等が挙げられる。
これらは、単体で用いることもできるし、2種以上の溶媒を混合で用いることもできる。これらのなかでも、樹脂に対する溶解性及び精製時の簡易性の観点から、エタノール、n-プロパノール、イソプロパノール、テトラヒドロフランが特に好ましい。
上記アセタール化は、酸触媒の存在下において行うことが好ましい。
上記酸触媒は特に限定されず、硫酸、塩酸、硝酸、リン酸等の鉱酸や、ギ酸、酢酸、プロピオン酸等のカルボン酸や、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸等のスルホン酸が挙げられる。これらの酸触媒は、単独で用いられてもよく、2種以上の化合物を併用してもよい。なかでも、塩酸、硝酸、硫酸が好ましく、塩酸が特に好ましい。
上記アセタール化に用いられるアルデヒドとしては、炭素数1~10の鎖状脂肪族基、環状脂肪族基又は芳香族基を有するアルデヒドが挙げられる。これらのアルデヒドとしては、従来公知のアルデヒドを使用できる。上記アセタール化反応に用いられるアルデヒドは、特に限定されるものではなく、例えば、脂肪族アルデヒド、芳香族アルデヒド等が挙げられる。
上記脂肪族アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、n-ヘキシルアルデヒド、2-エチルブチルアルデヒド、2-エチルヘキシルアルデヒド、n-ヘプチルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、アミルアルデヒド等が挙げられる。
上記芳香族アルデヒドとしては、ベンズアルデヒド、シンナムアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、p-ヒドロキシベンズアルデヒド、m-ヒドロキシベンズアルデヒド、フェニルアセトアルデヒド、β-フェニルプロピオンアルデヒド等が挙げられる。
これらのアルデヒドは、1種を単独で使用してもよく、2種以上を併用してもよい。アルデヒドとしては、なかでも、アセタール化反応性に優れ、生成する樹脂に充分な内部可塑効果をもたらし、結果として良好な柔軟性を付与することができるホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、2-エチルヘキシルアルデヒド、n-ノニルアルデヒドが好ましい。また、耐衝撃性及び金属との接着性に特に優れる接着剤組成物を得られることから、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒドがより好ましい。
上記アルデヒドの添加量としては、目的とする変性ポリビニルアセタール樹脂のアセタール基量にあわせて適宜設定することができる。上記アルデヒドの添加量としては、目的とする変性ポリビニルアセタール樹脂のアセタール基量にあわせて適宜設定すればよい。特に、ポリビニルアルコール100モル%に対して、60~95モル%、好ましくは65~90モル%とすると、アセタール化反応が効率よく行われ、未反応のアルデヒドも除去しやすいため好ましい。
本発明のエポキシ接着剤組成物において、上記変性ポリビニルアセタール樹脂の含有量は、好ましい下限が0.5重量%、好ましい上限が50重量%である。
上記変性ポリビニルアセタール樹脂の含有量が0.5重量%以上であると、接着剤として用いた際に高い強靭性を発揮することができる。上記含有量が50重量%以下であると、高い接着性を発揮することができる。
上記変性ポリビニルアセタール樹脂の含有量は、より好ましい下限が1.0重量%、更に好ましい下限が10重量%、より好ましい上限が40重量%、更に好ましい上限が30重量%である。
本発明のエポキシ接着剤組成物は、エポキシ樹脂を含有する。
上記エポキシ樹脂を含有することで、加熱等によりエネルギーを印加することで架橋させることが可能となり、高い接着性を実現することができる。
上記エポキシ樹脂としては、例えば、芳香族系エポキシ樹脂、複素環系エポキシ樹脂及び脂肪族系エポキシ樹脂等が挙げられる。
上記芳香族系エポキシ樹脂としては、多価フェノール類のグリシジルエーテル及びグリシジルエステル、グリシジル芳香族ポリアミン等が挙げられる。
上記多価フェノール類のグリシジルエーテルとしては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂等が挙げられる。
上記多価フェノール類のグリシジルエステルとしては、フタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル等が挙げられる。
上記グリシジル芳香族ポリアミンとしては、N,N-ジグリシジルアニリン、N,N,N’,N’-テトラグリシジルキシリレンジアミン、N,N,N’,N’-テトラグリシジルジフェニルメタンジアミン等が挙げられる。
複素環系エポキシ樹脂としては、トリグリシジルイソシアネート、トリグリシジルメラミン等が挙げられる。
脂肪族系エポキシ樹脂としては、脂肪族アルコールのグリシジルエーテル、多価脂肪酸のグリシジルエステル等が挙げられる。
脂肪族アルコールのグリシジルエーテルとしては、ブチルグリシジルエーテル、ラウリルグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等が挙げられる。
多価脂肪酸のグリシジルエステルとしては、ジグリシジルオキサレート、ジグリシジルマレート、ジグリシジルスクシネート、ジグリシジルグルタレート、ジグリシジルアジペート、ジグリシジルピメレート等が挙げられる。
上記エポキシ樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。これらのエポキシ樹脂のなかでも、接着力を向上させる観点から、芳香族系エポキシ樹脂を用いることが好ましく、芳香族系エポキシ樹脂と脂肪族系エポキシ樹脂とを用いることがより好ましい。
上記エポキシ樹脂のエポキシ当量(エポキシ基1つ当たりの分子量)は、好ましい下限が90、好ましい上限が700である。
上記エポキシ当量が上記好ましい下限以上であると、硬化不良を起こしにくく、機械的強度を充分に向上させることができる。上記エポキシ当量が上記好ましい上限以下であると、架橋点間分子量が低下し、耐熱性を向上させることができる。
上記エポキシ当量のより好ましい下限は100、より好ましい上限は600である。
上記エポキシ樹脂の分子量は、好ましい下限が100、好ましい上限が5500である。
上記分子量が100以上であると、架橋体の機械的強度や耐熱性を充分に向上させることができる。上記分子量が5500以下であると、架橋体が剛直になりすぎることがなく、充分な強度を有するものとすることができる。
上記分子量は200~1000であることがより好ましい。
本発明のエポキシ接着剤組成物において、上記エポキシ樹脂の含有量は、好ましい下限が0.5重量%、好ましい上限が99.5重量%である。
上記エポキシ樹脂の含有量が0.5重量%以上であると、接着性をより向上させることができる。上記含有量が99.5重量%以下であると、強靭性を向上させることができる。
上記エポキシ樹脂の含有量は、より好ましい下限が1.0重量%、より好ましい上限が90.0重量%である。
本発明のエポキシ接着剤組成物において、エポキシ樹脂100重量部に対する上記変性ポリビニルアセタール樹脂の含有量は、好ましい下限が0.5重量部、好ましい上限が100重量部である。
上記変性ポリビニルアセタール樹脂の含有量が0.5重量部以上であると、強靭性を充分なものとすることができる。上記変性ポリビニルアセタール樹脂の含有量が100重量部以下であると、接着性を充分なものとすることができる。
上記変性ポリビニルアセタール樹脂の含有量は、より好ましい下限が1.0重量部、より好ましい上限が80重量部である。
本発明のエポキシ接着剤組成物において、上記変性ポリビニルアセタール樹脂に含まれる酸変性基の数、及び、上記エポキシ樹脂に含まれるエポキシ基の数の比率(酸変性基の数/エポキシ基の数)は、好ましい下限が0.0005、好ましい上限が0.5である。
また、より好ましい下限が0.00075、更に好ましい下限が0.001、より好ましい上限が0.25、更に好ましい上限が0.05である。
上記酸変性基の数とエポキシ基の数の比率が上記好ましい下限以上、かつ、上記好ましい上限以下であると、得られるエポキシ接着剤組成物の硬化物の耐衝撃性を向上させることができる。
本発明のエポキシ接着剤組成物は、有機溶剤の含有量が10.0重量%以下であり、0重量%であることが好ましい。
有機溶剤の含有量が10.0重量%以下であることにより、硬化阻害を起こしにくくすることができる。
上記有機溶剤としては、従来公知の各種有機溶剤、例えば、アルコール類、ケトン類、酢酸エステル類、芳香族炭化水素等の他、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。
上記アルコール類としては、例えば、メタノール、エタノール、イソプロピルアルコール等が挙げられる。
上記ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等が挙げられる。
上記酢酸エステル類としては、例えば、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等が挙げられる。
上記カルビトール類としては、例えば、セロソルブ、ブチルセロソルブ等のセロソルブ類、カルビトール、ブチルカルビトール等が挙げられる。
上記芳香族炭化水素としては、例えば、トルエン、キシレン等が挙げられる。
本発明のエポキシ接着剤組成物は、更に、上記変性ポリビニルアセタール樹脂、上記エポキシ樹脂の他に架橋剤を含んでもよい。
上記架橋剤としては、例えば、ハロヒドリン化合物、ハロゲン化合物、イソシアネート化合物、ビスアクリルアミド化合物、尿素化合物、グアニジン化合物、ジカルボン酸化合物、不飽和カルボン酸化合物、不飽和カルボン酸エステル化合物、アルデヒド化合物等が挙げられる。
上記ハロヒドリン化合物としては、例えば、エピクロロヒドリン、エピブロモヒドリン等が挙げられる。
上記ハロゲン化合物としては、例えば、1,2-ジクロロエタン、1,3-ジクロロプロパン等が挙げられる。
上記イソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート等が挙げられる。
上記ビスアクリルアミド化合物としては、例えば、N,N’-メチレンビスアクリルアミド、N,N’-エチレンビスアクリルアミド等が挙げられる。
上記尿素化合物としては、例えば、尿素、チオ尿素等が挙げられる。
上記グアニジン化合物としては、例えば、グアニジン、ジグアニド等が挙げられる。
上記ジカルボン酸化合物としては、例えば、シュウ酸、アジピン酸等が挙げられる。
上記不飽和カルボン酸化合物としては、例えば、アクリル酸、メタクリル酸等が挙げられる。
上記不飽和カルボン酸エステル化合物としては、例えば、アクリル酸メチル、メタクリル酸メチル、アクリル酸-2-エチルヘキシル、アクリル酸イソブチル、アクリル酸ブチル、メタクリル酸-2-エチルヘキシル、メタクリル酸イソブチル、メタクリル酸ブチル等が挙げられる。
上記アルデヒド化合物としては、例えば、グリオキサール、グルタルアルデヒド、マロンアルデヒド、スクシンアルデヒド、アジピンアルデヒド、フタルアルデヒド、イソフタルアルデヒド、テレフタルアルデヒド等のジアルデヒド類等が挙げられる。
これらは単独でも、あるいは2種以上を組み合わせて使用することもできる。これら架橋剤は、必要であれば、水やアルコールなどの有機溶媒に溶かして使用することもできる。
本発明のエポキシ接着剤組成物は、更に、硬化剤、硬化促進剤を含んでもよい。
上記硬化剤としては、例えば、ジシアンジアミド、イミダゾール化合物、芳香族アミン化合物、フェノールノボラック樹脂、クレゾールノボラック樹脂等が挙げられる。なかでも、ジシアンジアミドが好ましい。
硬化促進剤としては、例えば、イミダゾール化合物、リン化合物、アミン化合物及び有機金属化合物等が挙げられる。なかでも、イミダゾール化合物が好ましい。
本発明のエポキシ接着剤組成物中の上記硬化剤の含有量は、上記エポキシ樹脂100重量部に対して、好ましい下限が0.5重量部、より好ましい下限が1.0重量部、好ましい上限が100重量部、より好ましい上限が50重量部である。
本発明のエポキシ接着剤組成物中の上記硬化促進剤の含有量は、上記エポキシ樹脂100重量部に対して、好ましい下限が0.5重量部、より好ましい下限が1.0重量部、好ましい上限が30重量部、より好ましい上限が10重量部である。
本発明のエポキシ接着剤組成物において、上記硬化剤の含有量と上記硬化促進剤の含有量との比(硬化剤の含有量/硬化促進剤の含有量)は、好ましい下限が1/18、より好ましい下限が1/8、好ましい上限が1/0.05、より好ましい上限が1/0.125である。
本発明の変性ポリビニルアセタール樹脂は、本発明の効果を損なわない範囲で、可塑剤、分散剤等の添加剤を含有してもよい。
本発明のエポキシ接着剤組成物を架橋させる方法は、加熱による方法が挙げられる。加熱により熱硬化させる場合、加熱温度は特に限定されないが、50~170℃であることが好ましい。加熱温度が50℃以上であると、架橋を充分に進行させて強度を良好なものとすることができる。また、加熱温度が170℃以下であると、上記変性ポリビニルアセタール樹脂の熱劣化が起こることがなく、充分な特性を発揮することができる。上記加熱温度のより好ましい下限は60℃、より好ましい上限は150℃である。
また、加熱時間も特に限定されないが、好ましい下限は5分間、好ましい上限は10時間である。加熱時間が5分間以上であると架橋を充分に進行させて、充分な強度を得ることができる。また、加熱時間が10時間以下であると上記変性ポリビニルアセタール樹脂の熱劣化が起こることがなく、充分な特性を発揮することができる。
本発明のエポキシ接着剤組成物は、通常のポリビニルアセタール樹脂が使用されている用途に好適に用いることができ、例えば、セラミック成形体、金属ペースト、熱現像性感光材料、塗料、インキ、反射シート等を製造するための塗工溶液を得ることができる。また、ディスプレイ向けフィルム用接着剤、セラミック積層体の層間接着剤、自動車、建築物等の構造接着剤等の接着剤に使用することができる。
本発明によれば、相溶性及び貯蔵安定性に優れ、高い強度及び優れた接着性を有し、密着性に優れ、異種材料の接着に用いた際にも反りや剥がれの発生を抑制することができ、更に、硬化物の耐衝撃性にも優れるエポキシ接着剤組成物を提供できる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
(実施例1)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとアセトアルデヒド75gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、上記ポリビニルアルコールとしては、重合度400、鹸化度97.7モル%、上記式(1-4)で表されるカルボキシル基を有する構成単位(式(1-4)中、Rが単結合、Xが水素原子、Rがメチレン基、Xが水素原子)を0.4モル%含有するポリビニルアルコールを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:0.4モル%)を有することが確認できた。
なお、13C-NMRを用いて測定したアセタール基量、アセチル基量、水酸基量を表1に示す。
得られた変性ポリビニルアセタール樹脂10g、エポキシ樹脂85g、硬化剤としてジシアンジアミド(三菱化学社製、DICY)3g、硬化促進剤としてイミダゾール化合物(三菱化学社製、jERキュアEMI24)2gを添加し、ポリビニルアセタール樹脂とエポキシ樹脂とを重量比10:85で混合した接着剤組成物を作製した。
なお、エポキシ樹脂としてビスフェノールA型エポキシ樹脂(jER 828、三菱化学社製、エポキシ当量190、分子量370)を用いた。
得られた接着剤組成物を離型処理されたポリエチレンテレフタレート(PET)フィルム上に、乾燥後の膜厚が20μmとなるように塗工し、125℃で乾燥することで樹脂シートを作製した。
(実施例2~8)
実施例1で得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は、実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
なお、エポキシ樹脂としては以下のものを用いた。
(エポキシ樹脂)
ビスフェノールF型エポキシ樹脂(三菱化学社製、jER 807、エポキシ当量170)
ネオペンチルグリコールジグリシジルエーテル(エポキシ当量138、分子量216)
ポリプロピレングリコールジグリシジルエーテル(ナガセケムテックス社製、EX-920、エポキシ当量176)
(実施例9)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとアセトアルデヒド75gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、重合度400、鹸化度97.7モル%、上記式(1-4)で表されるカルボキシル基を有する構成単位(式(1-4)中、Rが単結合、Xが水素原子、Rがメチレン基、Xが水素原子)を2.0モル%含有するポリビニルアルコールを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:2.0モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例10)
実施例9で得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例11)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとアセトアルデヒド75gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、重合度1000、鹸化度97.6モル%、上記式(1-4)で表されるカルボキシル基を有する構成単位(式(1-4)中、Rが単結合、Xが水素原子、Rがメチレン基、Xが水素原子)を0.4モル%含有するポリビニルアルコールを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:0.4モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例12)
実施例11で得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例13)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとアセトアルデヒド75gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、重合度1700、鹸化度97.7モル%、上記式(1-4)で表されるカルボキシル基を有する構成単位(式(1-4)中、Rが単結合、Xが水素原子、Rがメチレン基、Xが水素原子)を0.4モル%含有するポリビニルアルコールを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:0.4モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例14)
実施例13で得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例15~17)
実施例1で得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例18)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとホルムアルデヒド75gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、実施例1と同様のものを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:0.4モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例19)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとn-ブチルアルデヒド150gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、重合度400、鹸化度97.7モル%、上記式(1-4)で表されるカルボキシル基を有する構成単位(式(1-4)中、Rが単結合、Xが水素原子、Rがビニレン基、Xが水素原子)を0.4モル%含有するポリビニルアルコールを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:0.4モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例20)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとn-ブチルアルデヒド150gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、重合度400、鹸化度97.7モル%、上記式(1-4)で表されるカルボキシル基を有する構成単位(式(1-4)中、Rが単結合、Xが水素原子、Rがビニレン基、Xが水素原子)を2.0モル%含有するポリビニルアルコールを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:2.0モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例21)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとn-ブチルアルデヒド150gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、重合度400、鹸化度97.7モル%、上記式(1-4)で表されるカルボキシル基を有する構成単位(式(1-4)中、Rが単結合、Xが水素原子、Rがビニレン基、Xが水素原子)を5.0モル%含有するポリビニルアルコールを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:5.0モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例22及び23)
実施例19で得られたポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例24)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとn-ブチルアルデヒド145gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、重合度1700、鹸化度97.7モル%、上記式(1-4)で表されるカルボキシル基を有する構成単位(式(1-4)中、Rが単結合、Xが水素原子、Rがビニレン基、Xが水素原子)を0.4モル%含有するポリビニルアルコールを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:0.4モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例25)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとn-ブチルアルデヒド140gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、実施例24と同様のものを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:0.4モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例26)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとn-ブチルアルデヒド155gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、実施例1と同様のものを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:0.4モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例27)
実施例21で得られたポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例28)
実施例1で得られたポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例29)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとアセトアルデヒド50gとブチルアルデヒド50gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、重合度800、鹸化度97.7モル%、上記式(1-4)で表されるカルボキシル基を有する構成単位(式(1-4)中、Rが単結合、Xが水素原子、Rがメチレン基、Xが水素原子)を2.0モル%含有するポリビニルアルコールを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:2.0モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例30)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとアセトアルデヒド75gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、実施例29と同様のものを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:2.0モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例31)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとアセトアルデヒド75gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、重合度800、鹸化度97.7モル%、上記式(1-2)で表されるカルボキシル基を有する構成単位(上記式(1-2)中、Rが単結合、Xが水素原子、Rが単結合、Xが水素原子)を2.0モル%含有するポリビニルアルコールを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:2.0モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例32)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとアセトアルデヒド75gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、重合度800、鹸化度97.7モル%、上記式(1-3)で表されるカルボキシル基を有する構成単位(式(1-3)中、Rが単結合、Xが水素原子、Rが単結合、Xが水素原子)を2.0モル%含有するポリビニルアルコールを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:2.0モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(実施例33)
ポリビニルアルコール200gを純水1800gに加え、90℃の温度で約2時間撹拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸150gとアセトアルデヒド75gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
なお、ポリビニルアルコールとしては、重合度800、鹸化度97.7モル%、上記式(1-1)で表されるカルボキシル基を有する構成単位(式(1-1)中、Rがメチレン基、Xが水素原子)を2.0モル%含有するポリビニルアルコールを用いた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(1-4)で表されるカルボキシル基を有する構成単位(含有量:2.0モル%)を有することが確認できた。
得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(比較例1)
ポリビニルアルコールを、重合度600、鹸化度99.5モル%のポリビニルアルコールに変更した以外は、実施例1と同様の方法によりポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、酸変性基を有する構成単位を有することが確認できなかった。
なお、13C-NMRを用いて測定したアセタール基量、アセチル基量、水酸基量を表1に示す。
得られたポリビニルアセタール樹脂30gにネオペンチルグリコールジグリシジルエーテル70gを添加し、ポリビニルアセタール樹脂とエポキシ樹脂とを重量比30:70で混合した接着剤組成物を作製した以外は、実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(比較例2~3)
比較例1で得られたポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
(比較例4)
ポリビニルアルコールを、重合度400、鹸化度97.7モル%のポリビニルアルコールに変更した以外は、実施例1と同様の方法によりポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、酸変性基を有する構成単位を有することが確認できなかった。
なお、13C-NMRを用いて測定したアセタール基量、アセチル基量、水酸基量を表1に示す。
得られたポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして接着剤組成物及び樹脂シートを作製した。
<評価>
実施例及び比較例で得られた接着剤組成物、樹脂シートについて以下の評価を行った。結果を表2に示した。
(1)ゲル分率
樹脂シートのサンプル約0.1g(w1)に、トルエンとエタノールを重量比1:1で混合した溶媒40gを加え、24時間撹拌させることによって、再溶解させ、あらかじめ質量を測定した200メッシュのステンレス金網(w2)で固液分離を行う。その後ステンレス金網を取り出し、100℃、1時間真空乾燥して質量(w3)を測定し,以下の計算式でゲル分率を算出した。
ゲル分率(%)={(w3-w2)/w1}×100
得られたゲル分率について、以下の基準で評価した。
なお、ゲル分率が高い場合、硬化性に優れているといえる。
◎:80%以上
○:40%以上、80%未満
△:10%以上、40%未満
×:10%未満
(2)貯蔵安定性
トルエンとエタノールを重量比1:1で混合した溶媒90gに接着剤組成物10gを加え溶解し、溶液サンプルを作製する。得られた溶液サンプルについて、B型粘度計を用いて、溶液サンプル作製直後と一か月後の粘度を測定し、溶液粘度の変化率を確認し、以下の基準で評価した。
◎:10%未満
○:10%以上、20%未満
△:20%以上、30%未満
×:30%以上
(3)引張弾性率、伸度、降伏点応力
得られた樹脂シートをPETフィルムから剥離し、剥離したシートについて、JIS K 7113に準拠した方法により、AUTOGRAPH(AGS-J、島津製作所社製)を用いて引張速度20mm/分の条件にて引張弾性率(MPa)、伸度(%)、降伏点応力(MPa)を測定した。
(4)せん断接着力
得られた接着剤組成物を各種金属基材に塗工し、170℃で30分間加熱することにより接着剤組成物を硬化させ、JIS K 6850に準拠した方法により、測定温度20℃、引張速度5mm/minの条件でせん断接着力を測定した。
金属基材としては、アルミニウム、ステンレス鋼(SUS304)、SPCC鋼板を用いた。
なお、せん断接着力が高い場合、外力がかかった際にも剥がれにくく、接着力に優れているといえる。
(5)剥離接着力
JIS K 6854-3に準拠した方法により、得られた接着剤組成物をSPCC鋼板に塗工し、SPCC鋼板2枚を接着剤組成物により貼り合わせ、170℃で30分間加熱して接着剤組成物を硬化させた後、剥離角度180度、剥離速度200mm/minの条件で、剥離接着力を測定した。
(6)耐衝撃性
得られた接着剤組成物を型に流し込み、170℃で30分間加熱することにより樹脂硬化物を得た。得られた樹脂硬化物について、JIS K 7111に準拠した方法により、デジタル衝撃試験機DG-UB型(東洋精機製作所社製)を用いてシャルピー衝撃試験を行い、樹脂硬化物を破壊させたときのシャルピー衝撃値を測定することにより、耐衝撃性を評価した。
(7)相溶性
各実施例及び比較例において、硬化剤及び硬化促進剤を添加せずにポリビニルアセタール樹脂とエポキシ樹脂との混合物を作製した。得られた混合物について、分光光度計(日立製作所社製、U4000)を用いて、ヘイズ値を測定した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
本発明によれば、相溶性及び貯蔵安定性に優れ、高い強度及び優れた接着性を有し、異種材料の接着に用いた際の反りや剥がれの発生を抑制することができ、更に、硬化物の耐衝撃性にも優れるエポキシ接着剤組成物を提供できる。

Claims (9)

  1. 酸変性基を有する構成単位を有する変性ポリビニルアセタール樹脂とエポキシ樹脂とを含有し、有機溶剤の含有量が10.0重量%以下であることを特徴とするエポキシ接着剤組成物。
  2. 酸変性基がカルボキシル基であることを特徴とする請求項1記載のエポキシ接着剤組成物。
  3. 変性ポリビニルアセタール樹脂は、酸変性基を有する構成単位を側鎖に有することを特徴とする請求項1又は2記載のエポキシ接着剤組成物。
  4. 変性ポリビニルアセタール樹脂における、酸変性基を有する構成単位の含有量が0.01~5.0モル%であることを特徴とする請求項1、2又は3記載のエポキシ接着剤組成物。
  5. 変性ポリビニルアセタール樹脂は、アセタール基量が60~90モル%であることを特徴とする請求項1、2、3又は4記載のエポキシ接着剤組成物。
  6. 変性ポリビニルアセタール樹脂は、酸変性基を有するポリビニルアルコールのアセタール化物であることを特徴とする請求項1、2、3、4又は5記載のエポキシ接着剤組成物。
  7. 変性ポリビニルアセタール樹脂の含有量が0.5~50重量%であることを特徴とする請求項1、2、3、4、5又は6記載のエポキシ接着剤組成物。
  8. 変性ポリビニルアセタール樹脂の含有量が10~30重量%であることを特徴とする請求項1、2、3、4、5、6又は7記載のエポキシ接着剤組成物。
  9. 変性ポリビニルアセタール樹脂に含まれる酸変性基の数とエポキシ樹脂に含まれるエポキシ基の数との比率が0.0005~0.5であることを特徴とする請求項1、2、3、4、5、6、7又は8記載のエポキシ接着剤組成物。
PCT/JP2017/034798 2016-09-30 2017-09-26 エポキシ接着剤組成物 WO2018062205A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017552179A JP6420917B2 (ja) 2016-09-30 2017-09-26 エポキシ接着剤組成物
EP17856155.1A EP3521396B1 (en) 2016-09-30 2017-09-26 Epoxy adhesive composition
CN201780039809.7A CN109328220B (zh) 2016-09-30 2017-09-26 环氧粘接剂组合物
KR1020187026885A KR102450608B1 (ko) 2016-09-30 2017-09-26 에폭시 접착제 조성물
US16/334,814 US10968373B2 (en) 2016-09-30 2017-09-26 Epoxy adhesive composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-194177 2016-09-30
JP2016194177 2016-09-30
JP2017-068920 2017-03-30
JP2017068920 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018062205A1 true WO2018062205A1 (ja) 2018-04-05

Family

ID=61760461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034798 WO2018062205A1 (ja) 2016-09-30 2017-09-26 エポキシ接着剤組成物

Country Status (6)

Country Link
US (1) US10968373B2 (ja)
EP (1) EP3521396B1 (ja)
JP (1) JP6420917B2 (ja)
KR (1) KR102450608B1 (ja)
CN (1) CN109328220B (ja)
WO (1) WO2018062205A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066592A1 (ja) * 2018-09-26 2020-04-02 積水化学工業株式会社 エポキシ樹脂組成物
JP2020132863A (ja) * 2019-02-19 2020-08-31 積水化学工業株式会社 エポキシ接着剤組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198141A (ja) * 2001-12-21 2003-07-11 Hitachi Chem Co Ltd 多層プリント配線板用絶縁材、金属箔付き絶縁材及び多層プリント配線板
JP2006290997A (ja) * 2005-04-08 2006-10-26 Hitachi Chem Co Ltd 熱硬化性樹脂組成物および該組成物を用いた接着シート並びに銅箔つき接着シート
JP2013110084A (ja) * 2011-11-17 2013-06-06 Pelnox Ltd 導電性ペースト組成物及び導電性接着剤

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041100B2 (ja) 1982-10-27 1985-09-13 横浜ゴム株式会社 熱硬化性接着組成物
DE3526270A1 (de) 1985-07-23 1987-02-05 Herberts Gmbh Waermehaertbare klebfolie
US5385990A (en) * 1992-11-02 1995-01-31 Lord Corporation Structural adhesive composition having high temperature resistance
US5574098A (en) 1993-10-07 1996-11-12 Daicel Chemical Industries, Ltd. Lactone-modified polyvinyl acetal resin and process for the preparation thereof
JPH09157621A (ja) 1995-12-05 1997-06-17 Japan Energy Corp カチオン電着用接着剤樹脂組成物
CA2333557C (en) * 1998-06-12 2010-05-11 Lord Corporation Adhesive formulations containing a primary low molecular weight toughener and an auxiliary high molecular weight toughener
JP2000212532A (ja) * 1999-01-19 2000-08-02 Hitachi Chem Co Ltd 金属箔用接着剤組成物及びそれを用いた接着剤付金属箔、金属張積層板
JP2000218734A (ja) * 1999-02-03 2000-08-08 Sumitomo Bakelite Co Ltd 金属箔張積層板の製造方法
JP2001098165A (ja) * 1999-07-29 2001-04-10 Mitsubishi Chemicals Corp 硬化性樹脂組成物
US6555617B1 (en) * 1999-07-29 2003-04-29 Mitsubishi Chemical Corporation Composition of cyclic anhydride modified polyvinyl acetal and curable resin and laminated products
US20040157078A1 (en) * 2001-01-25 2004-08-12 Takahiro Yoshida Polyvinyl acetal, polyvinyl acetal composition, ink coating material, dispersant, heat-developable photosensitive material,ceramic green sheet, primer for plastic lens, recording agent for water-based ink and adhesive for metal foil
JP2002285118A (ja) * 2001-03-27 2002-10-03 Sekisui Chem Co Ltd 接着剤、接着剤付き銅箔及び印刷回路形成用基板
EP1695990A1 (en) * 2005-02-28 2006-08-30 Dow Global Technologies Inc. Two-component epoxy adhesive composition
JP5441954B2 (ja) 2010-06-14 2014-03-12 日立化成株式会社 回路接続用接着フィルム、これを用いた回路接続構造体及び回路部材の接続方法
JP6061837B2 (ja) * 2013-12-05 2017-01-18 アイシン化工株式会社 構造用接着剤組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198141A (ja) * 2001-12-21 2003-07-11 Hitachi Chem Co Ltd 多層プリント配線板用絶縁材、金属箔付き絶縁材及び多層プリント配線板
JP2006290997A (ja) * 2005-04-08 2006-10-26 Hitachi Chem Co Ltd 熱硬化性樹脂組成物および該組成物を用いた接着シート並びに銅箔つき接着シート
JP2013110084A (ja) * 2011-11-17 2013-06-06 Pelnox Ltd 導電性ペースト組成物及び導電性接着剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3521396A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066592A1 (ja) * 2018-09-26 2020-04-02 積水化学工業株式会社 エポキシ樹脂組成物
CN112585214A (zh) * 2018-09-26 2021-03-30 积水化学工业株式会社 环氧树脂组合物
JPWO2020066592A1 (ja) * 2018-09-26 2021-08-30 積水化学工業株式会社 エポキシ樹脂組成物
JP7402048B2 (ja) 2018-09-26 2023-12-20 積水化学工業株式会社 エポキシ樹脂組成物
JP2020132863A (ja) * 2019-02-19 2020-08-31 積水化学工業株式会社 エポキシ接着剤組成物
JP7372847B2 (ja) 2019-02-19 2023-11-01 積水化学工業株式会社 エポキシ接着剤組成物

Also Published As

Publication number Publication date
KR20190058379A (ko) 2019-05-29
US10968373B2 (en) 2021-04-06
EP3521396A4 (en) 2020-04-29
EP3521396A1 (en) 2019-08-07
JPWO2018062205A1 (ja) 2018-10-04
US20190276718A1 (en) 2019-09-12
CN109328220B (zh) 2022-01-11
EP3521396B1 (en) 2021-09-15
KR102450608B1 (ko) 2022-10-04
JP6420917B2 (ja) 2018-11-07
CN109328220A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
JP6714061B2 (ja) 変性ポリビニルアセタール樹脂
JP6144437B1 (ja) 変性ポリビニルアセタール樹脂組成物
JP6420917B2 (ja) エポキシ接着剤組成物
JP6835523B2 (ja) エポキシ樹脂系接着剤組成物
WO2019189226A1 (ja) エポキシ樹脂組成物
JP7431579B2 (ja) エポキシ接着剤組成物
JP7372847B2 (ja) エポキシ接着剤組成物
JP7402048B2 (ja) エポキシ樹脂組成物
JP6871042B2 (ja) 変性ポリビニルアセタール樹脂組成物
JP7044486B2 (ja) 硬化性樹脂組成物
JP2018203929A (ja) 硬化性樹脂組成物
JP2021036060A (ja) エポキシ樹脂系接着剤組成物
JP2021155722A (ja) 接着剤組成物及び微小領域固定用接着剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017552179

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187026885

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017856155

Country of ref document: EP

Effective date: 20190430