WO2018062046A1 - 電極用アルミニウム部材および電極用アルミニウム部材の製造方法 - Google Patents

電極用アルミニウム部材および電極用アルミニウム部材の製造方法 Download PDF

Info

Publication number
WO2018062046A1
WO2018062046A1 PCT/JP2017/034356 JP2017034356W WO2018062046A1 WO 2018062046 A1 WO2018062046 A1 WO 2018062046A1 JP 2017034356 W JP2017034356 W JP 2017034356W WO 2018062046 A1 WO2018062046 A1 WO 2018062046A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
oxide film
film
electrode
aluminum member
Prior art date
Application number
PCT/JP2017/034356
Other languages
English (en)
French (fr)
Inventor
小松 寛
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201780060297.2A priority Critical patent/CN109791850B/zh
Priority to KR1020197006595A priority patent/KR102180260B1/ko
Priority to JP2018542523A priority patent/JP6794463B2/ja
Priority to EP17856000.9A priority patent/EP3522193A4/en
Publication of WO2018062046A1 publication Critical patent/WO2018062046A1/ja
Priority to US16/366,157 priority patent/US20190221853A1/en
Priority to US17/503,046 priority patent/US11527760B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an aluminum member for an electrode and a method for manufacturing an aluminum member for an electrode, which are used for a current collector for a storage device and the like.
  • an aluminum plate is used as a current collector for an electrode (hereinafter, simply referred to as “current collector”) used for the positive electrode or the negative electrode of such a storage device.
  • an active material such as activated carbon is coated on the surface of a current collector made of this aluminum plate and used as an electrode of a positive electrode or a negative electrode.
  • Patent Document 1 describes that an aluminum foil is used as a current collector, and describes that an active material is applied to the aluminum foil and used as an electrode (see [claim 1] [claim 1]. 0021].
  • Patent Document 2 describes that an aluminum plate having a plurality of through holes is used as a current collector ([claim 1]).
  • the current collector made of such aluminum is easily oxidized and oxidized when exposed to the air, it always has an oxide film. Since the oxide film has high insulating properties, the presence of a thick oxide film on the surface of the current collector may increase the electrical resistance between the current collector and the active material layer.
  • Patent Document 1 by laminating a conductive layer having conductivity on the surface oxide film of the aluminum base, the thickness of the surface oxide film of the aluminum base is set to 3 nm or less, and the conductivity is ensured. It is described that the increase in resistance is suppressed.
  • the configuration in which the thickness of the surface oxide film of the aluminum base is less than the predetermined thickness is the surface oxidation of the aluminum base Since it is necessary to form a conductive layer on the surface oxide film after the film is adjusted to a predetermined thickness or less by etching, there is a problem that the process becomes complicated and the productivity is poor.
  • this invention makes it a subject to provide the manufacturing method of the aluminum member for electrodes which can maintain stably a state with low electrical resistance, and has high productivity, and an aluminum member for electrodes.
  • the inventor of the present invention has an aluminum base and an oxide film laminated on at least one main surface of the aluminum base, and the oxide film has a density of 2.7 to
  • the inventors have found that the above problems can be solved by having a thickness of 5 nm or less at 4.1 g / cm 3 , and the present invention has been completed. That is, it discovered that the said objective could be achieved by the following structures.
  • [1] Aluminum base, And an oxide film laminated on at least one main surface of the aluminum base, An aluminum member for an electrode, wherein the oxide film has a density of 2.7 to 4.1 g / cm 3 and a thickness of 5 nm or less.
  • Oxide films are aluminum oxide (Al 2 O 3 ), aluminum oxide monohydrate (Al 2 O 3 ⁇ 1 H 2 O), and aluminum oxide trihydrate (Al 2 O 3 ⁇ 3 H 2 O)
  • the aluminum member for electrodes as described in [1] which contains any one.
  • [3] The aluminum member for an electrode according to [1] or [2], wherein the oxide film contains 70% or more of aluminum oxide (Al 2 O 3 ).
  • the oxide film contains 45% or less of aluminum oxide monohydrate (Al 2 O 3 .1H 2 O) and aluminum oxide trihydrate (Al 2 O 3 .3H 2 O) [1] to The aluminum member for electrodes in any one of [3].
  • the aluminum base material after the water washing step is heated to remove hydrates contained in the oxide film of the aluminum base material, and has an oxide film densification step for densifying the oxide film
  • FIG. 2A It is sectional drawing which shows typically an example of the aluminum member for electrodes of this invention. It is a top view which shows typically another example of the aluminum member for electrodes of this invention. It is the BB sectional drawing of FIG. 2A. It is a typical sectional view for explaining an example of the suitable manufacturing method of the aluminum member for electrodes of the present invention. It is a typical sectional view for explaining an example of the suitable manufacturing method of the aluminum member for electrodes of the present invention. It is a typical sectional view for explaining an example of the suitable manufacturing method of the aluminum member for electrodes of the present invention. It is a typical sectional view for explaining an example of the suitable manufacturing method of the aluminum member for electrodes of the present invention. It is a typical sectional view for explaining an example of the suitable manufacturing method of the aluminum member for electrodes of the present invention.
  • FIG. 7 is an optical micrograph of the aluminum member for an electrode produced in Example 1.
  • FIG. 7 is a SEM photograph of the aluminum member for an electrode produced in Example 1.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the aluminum member for electrodes of the present invention is Aluminum base, And an oxide film laminated on at least one main surface of the aluminum base, It is an aluminum member for an electrode having a density of 2.7 to 4.1 g / cm 3 and a thickness of 5 nm or less. Next, the structure of the aluminum member for electrodes of this invention is demonstrated using FIG.
  • FIG. 1 is a schematic cross-sectional view showing an example of a preferred embodiment of the aluminum member for an electrode of the present invention.
  • an oxide film 12 is laminated on both main surfaces of the aluminum base 1.
  • the aluminum member for an electrode of the present invention is used as a current collector, and an active material is coated on the surface to be used as a positive electrode or a negative electrode of a storage device.
  • the density of the oxide film 12 is 2.7 to 4.1 g / cm 3 and the thickness is 5 nm or less.
  • the oxide film has high insulating properties, when a thick oxide film is present on the surface of the aluminum base, there is a problem that the electrical resistance between the aluminum base and the active material may increase. Therefore, in order to suppress the progress of oxidation over time, it was necessary to store under certain conditions during storage.
  • the oxide film on the surface of the aluminum base it is considered to thin the oxide film on the surface of the aluminum base and to laminate the conductive layer having conductivity on the oxide film to secure the conductivity.
  • the oxidation of the aluminum base progresses with time, and the thickness of the oxide film may be increased, which may increase the electrical resistance.
  • the conductive layer is stacked on the oxide film, it is necessary to form the conductive layer on the oxide film after adjusting the oxide film of the aluminum base material to a predetermined thickness or less by etching or the like. As a result, the process becomes complicated and the productivity is poor.
  • the film thickness of the oxide film is 5 nm or less, and the film density is 2.7 to 4.1 g / cm 3 .
  • the film density of the oxide film is low, water penetrates into the oxide film and reaches the aluminum substrate, so the oxidation of the aluminum substrate progresses and the film thickness of the oxide film increases. It turned out that electrical resistance will increase.
  • the film density of the oxide film is 2.7 to 4.1 g / cm 3 , it is possible to prevent moisture from penetrating into the oxide film and reaching the aluminum substrate. It is possible to suppress the progress of oxidation and suppress the increase in the thickness of the oxide film. Thereby, the state where the electrical resistance is low can be stably maintained.
  • an oxide film having a film thickness of 5 nm or less and a film density satisfying 2.7 to 4.1 g / cm 3 can be easily formed, the productivity is high without the process becoming complicated.
  • a method of forming an oxide film having a film thickness of 5 nm or less and a film density of 2.7 to 4.1 g / cm 3 will be described in detail later.
  • the thickness of the oxide film is preferably 1 nm to 5 nm, and more preferably 1 nm to 3 nm, from the viewpoint of being able to lower the electrical resistance between the aluminum base and the active material.
  • the film thickness of an oxide film observes a cross section with a transmission electron microscope (Transmission Electron Microscope: TEM), measures a film thickness in three places, and calculates an average value as a film thickness.
  • TEM Transmission Electron Microscope
  • the film density of the oxide film is preferably 2.7 to 4.1 g / cm 3, and more preferably 3.2 to 4.1 g / cm 3 from the viewpoint that the progress of oxidation of the aluminum base can be suppressed more reliably. Is more preferred.
  • the film density of the oxide film is measured using a high resolution RBS analyzer (HRBS 500 (High Resolution Rutherford Backscattering Spectrum; HR-RBS) manufactured by Kobe Steel, Ltd.).
  • He + ions with an energy of 450 keV are incident on the sample at 62.5 ° to the normal to the sample surface (surface of the oxide film of the aluminum member for electrode), and scattered He + ions are deflected at a scattering angle of 55 ° Detected by an energy analyzer to obtain areal density.
  • the surface density (atoms / cm 2 ) thus obtained is converted to mass surface density (g / cm 2 ), and this value and the film thickness measured by transmission electron microscopy (TEM) give the density (g / cm 3 ) of the oxide film. Calculate).
  • FIG. 2A shows a schematic top view of another example of the aluminum member for electrodes of the present invention
  • FIG. 2B shows a cross-sectional view taken along the line BB in FIG. 2A.
  • the electrode aluminum member 20 shown in FIGS. 2A and 2B has a plurality of through holes 5 penetrating the aluminum base and the oxide film in the thickness direction. That is, the electrode aluminum member 20 has a configuration in which the aluminum base 3 having a through hole penetrating in the thickness direction and the oxide film 14 having a through hole penetrating in the thickness direction are laminated. The plurality of through holes formed in the aluminum base 3 and the plurality of through holes formed in the oxide film 14 are formed at the same position in the surface direction of the main surface of the aluminum member for electrode 20, The through holes 5 respectively penetrate the aluminum base and the oxide film in the thickness direction.
  • the aluminum member for an electrode has a plurality of through holes penetrating in the thickness direction, movement of lithium ions can be facilitated when used as a current collector. Moreover, adhesiveness with an active material can be improved by having a large number of through holes.
  • the average opening diameter of the through holes is preferably 0.1 ⁇ m or more and less than 100 ⁇ m, more preferably 1 ⁇ m or more and 80 ⁇ m or less, still more preferably 3 ⁇ m or more and 40 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the average opening diameter of the through hole is obtained by photographing the surface of the aluminum member for electrode at a magnification of 200 using a high resolution scanning electron microscope (SEM) from one surface of the aluminum member for electrode, In the obtained SEM photograph, at least 20 through holes whose circumference is annularly continuous are extracted, the diameter of the opening is read, and the average value of these is calculated as the average opening diameter. Moreover, the opening diameter measured the maximum value of the distance between the ends of the through-hole part. That is, since the shape of the opening of the through hole is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the end portions of the through holes is taken as the opening diameter. Therefore, for example, even in the case of a through hole having a shape in which two or more through holes are integrated, this is regarded as one through hole, and the maximum value of the distance between the ends of the through hole portions is taken as the opening diameter. .
  • SEM scanning electron microscope
  • the average opening ratio of the through holes is preferably 0.5% to 30%, more preferably 1% to 30%, still more preferably 3% to 20%, and particularly preferably 3% to 10%.
  • the average aperture ratio of the through holes is obtained by photographing the surface of the aluminum member for an electrode at a magnification of 200 times from the top right using a high resolution scanning electron microscope (SEM), and the field of view of 30 mm ⁇ 30 mm of the obtained SEM photograph About (5 places), it digitizes with image analysis software etc and observes the through hole part and the non-through hole part, and the ratio of the total of the opening area of the through holes and the area of the field of view (geometrical area) (opening area (Geometrical area) was calculated, and the average value in each visual field (five places) was calculated as an average aperture ratio.
  • SEM scanning electron microscope
  • the aluminum member 10 for an electrode shown in FIG. 1 and the aluminum member 20 for an electrode shown in FIG. 2 have a structure in which oxide films are laminated on both main surfaces of the aluminum base, the present invention is not limited thereto.
  • the oxide film may be stacked on at least one of the main surfaces of the aluminum base.
  • the aluminum base is not particularly limited, and, for example, a known aluminum base such as alloy No. 1085, 1N30 or 3003 described in JIS Standard H4000 can be used.
  • an aluminum base material is an alloy plate which has aluminum as a main component and contains a trace amount of different elements.
  • the thickness of the aluminum substrate is not limited, but is preferably 5 ⁇ m to 100 ⁇ m, and more preferably 10 ⁇ m to 30 ⁇ m.
  • the above oxide film is a layer containing aluminum oxide such as aluminum oxide (Al 2 O 3 ), and aluminum oxide is aluminum oxide monohydrate (Al 2 O 3 ⁇ 1H 2 O), aluminum oxide 3 water It is a layer that can be present as a hydrate of aluminum such as a hydrate (Al 2 O 3 .3H 2 O).
  • the density of the oxide film is 2.7 to 4.1 g / cm 3 and the thickness is 5 nm or less.
  • the oxide film formed by natural oxidation tends to have a high proportion of hydrate and a low density.
  • the oxide film of the aluminum member for an electrode of the present invention has a low ratio of hydrate and a high ratio of aluminum oxide, so the density is as high as 2.7 to 4.1 g / cm 3 .
  • Such an oxide film having a high density is easily formed by an oxide film forming process to be described later, so that the productivity is high.
  • the density of aluminum oxide (Al 2 O 3) is about 4.1 g / cm 3
  • the density of the aluminum oxide monohydrate (Al 2 O 3 ⁇ 1H 2 O) is 3.07 g / cm 3
  • the density of aluminum oxide trihydrate (Al 2 O 3 .3H 2 O) is about 2.42 g / cm 3 . Therefore, the higher the hydrate ratio, the lower the density of the oxide film. For example, when the density of the oxide film is less than 3.95 g / cm 3 , the oxide film contains 3% or more of hydrate.
  • aluminum oxide (Al 2 O 3 ) contained in the oxide film is preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more. Also, 45% or less of aluminum oxide monohydrate (Al 2 O 3 ⁇ 1H 2 O) and aluminum oxide trihydrate (Al 2 O 3 ⁇ 3H 2 O) contained in the oxide film is preferable, 30% or less is more preferable, and 15% or less is more preferable.
  • the method for producing an aluminum member for an electrode according to the present invention is A film forming step of forming an aluminum hydroxide film on the surface of the aluminum base material by electrolytic treatment in a first acidic aqueous solution using the aluminum base material as a cathode; A film removing step of removing the aluminum hydroxide film by immersing the aluminum substrate after the film forming step in an alkaline aqueous solution; And an oxide film forming step of forming an oxide film on the surface of the aluminum substrate by immersing the aluminum substrate after the film removing step in a second acidic aqueous solution.
  • an oxide film having a density of 2.7 to 4.1 g / cm 3 and a thickness of 5 nm or less is formed on the aluminum substrate. Further, unnecessary film, oil and the like are removed by the film removing step to expose the aluminum base to facilitate formation of an oxide film.
  • electrolysis is performed with the third acidic aqueous solution using the aluminum base as an anode. It is preferable to have a through-hole formation process which processes and performs a through-hole formation process to an aluminum base material and an aluminum hydroxide film, and forms a through-hole.
  • a water washing process in which water washing is performed after completion of each of the film forming process, the film removing process, the oxide film forming process, and the through hole forming process.
  • a drying process which performs a drying process.
  • each step of the method of manufacturing the aluminum member for electrode will be described with reference to FIGS. 3A to 3E by using the aluminum member for electrode having the through hole shown in FIG. 2B as an example, and then each step will be described in detail.
  • FIGS. 3A to 3E are schematic cross-sectional views showing an example of a preferred embodiment of a method of manufacturing an aluminum member for an electrode.
  • the film forming process is performed on both main surfaces of the aluminum substrate 1 to form an aluminum hydroxide film 2 (FIG. 3A and FIG. 3B), the through hole forming step of forming the through hole 5 by electrolytic dissolution treatment after the film forming step to form the aluminum base 3 having the through hole and the aluminum hydroxide film 4 having the through hole A film removing step (FIGS.
  • the film forming step is a step of forming an aluminum hydroxide film on the surface of the aluminum substrate by subjecting the aluminum substrate to a cathode and electrolytic treatment (film forming treatment) in a first acidic aqueous solution.
  • the film formation process is not particularly limited, and, for example, the same process as the conventionally known aluminum hydroxide film formation process can be performed.
  • the film formation process for example, the conditions and apparatus described in paragraphs [0013] to [0026] of JP-A-2011-201123 can be appropriately adopted.
  • the conditions of the film formation treatment can not be determined indiscriminately because they vary depending on the electrolyte used, but generally, the electrolyte concentration is 1 to 80 mass%, the solution temperature is 5 to 70 ° C. It is appropriate that the current density is 0.5 to 60 A / dm 2 , the voltage is 1 to 100 V, and the electrolysis time is 1 second to 20 minutes, and it is adjusted to obtain a desired amount of film.
  • the electrochemical treatment it is preferable to carry out the electrochemical treatment using nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid or a mixture of two or more of these acids as the electrolytic solution (first acidic aqueous solution).
  • the electrochemical treatment is performed in an electrolytic solution containing nitric acid and hydrochloric acid, direct current may be applied between the aluminum base and the counter electrode, and alternating current may be applied.
  • the current density is preferably 1 to 60 A / dm 2 , more preferably 5 to 50 A / dm 2 .
  • the liquid electric power feeding system which supplies electric power through electrolyte solution.
  • the amount of the aluminum hydroxide film formed by the film forming treatment is preferably 0.05 to 50 g / m 2 , and more preferably 0.1 to 10 g / m 2 .
  • an electrolytic treatment electrolytic dissolution treatment
  • a third acidic aqueous solution using the aluminum base as an anode to form through holes in the aluminum base and the aluminum hydroxide coating It is.
  • the electrolytic dissolution treatment is not particularly limited, and an acidic solution (third acidic aqueous solution) can be used as the electrolytic solution using direct current or alternating current.
  • electrochemical treatment is preferably performed using at least one or more acids of nitric acid and hydrochloric acid, and electrochemical treatment is performed using a mixed acid of at least one or more of sulfuric acid, phosphoric acid and oxalic acid in addition to these acids. Is more preferred.
  • the concentration of the acidic solution is preferably 0.1 to 2.5% by mass, particularly preferably 0.2 to 2.0% by mass.
  • the liquid temperature of the acidic solution is preferably 20 to 80 ° C., and more preferably 30 to 60 ° C.
  • the aqueous solution mainly composed of the acid is a nitrate compound having nitrate ion such as aluminum nitrate, sodium nitrate and ammonium nitrate in an aqueous solution of acid having a concentration of 1 to 100 g / L or hydrochloric acid such as aluminum chloride, sodium chloride and ammonium chloride.
  • a hydrochloric acid compound having an ion and a sulfate compound having a sulfate ion such as aluminum sulfate, sodium sulfate and ammonium sulfate can be added and used in a range from 1 g / L to saturation.
  • the metal contained in aluminum alloys such as iron, copper, manganese, nickel, titanium, magnesium, a silica
  • the alternating current power source wave is not particularly limited when using alternating current, and sine wave, rectangular wave, trapezoidal wave, triangular wave or the like is used, Among them, rectangular waves or trapezoidal waves are preferable, and trapezoidal waves are particularly preferable.
  • nitric acid electrolysis In the present invention, through holes having an average opening diameter of 0.1 ⁇ m or more and less than 100 ⁇ m can be easily obtained by electrochemical dissolution treatment using an electrolyte mainly composed of nitric acid (hereinafter also referred to as “nitric acid dissolution treatment”). Can be formed.
  • nitric acid dissolution treatment the condition that the average current density is 5 A / dm 2 or more and the amount of electricity is 50 C / dm 2 or more using a direct current because it is easy to control the dissolution point of through hole formation It is preferable that it is the electrolytic treatment given by.
  • the average current density is preferably 100 A / dm 2 or less, and the amount of electricity is preferably 10000 C / dm 2 or less.
  • concentration and temperature of the electrolyte in nitric acid electrolysis are not particularly limited, and electrolysis is performed at 30 to 60 ° C. using a high concentration nitric acid electrolyte having a nitric acid concentration of 15 to 35 mass%, for example. Electrolysis can be performed at a high temperature, for example, 80 ° C. or more, using a 7 to 2% by mass nitric acid electrolyte. In addition, electrolysis can be performed using an electrolytic solution obtained by mixing at least one of sulfuric acid, oxalic acid and phosphoric acid at a concentration of 0.1 to 50% by mass with the above nitric acid electrolytic solution.
  • the through holes having an average opening diameter of 1 ⁇ m or more and less than 100 ⁇ m can be easily obtained by electrochemical dissolution treatment using an electrolytic solution mainly composed of hydrochloric acid (hereinafter also abbreviated as “hydrochloric acid dissolution treatment”). It can be formed.
  • hydrochloric acid dissolution treatment the condition that the average current density is 5 A / dm 2 or more and the amount of electricity is 50 C / dm 2 or more using a direct current because it is easy to control the dissolution point of through hole formation It is preferable that it is the electrolytic treatment given by.
  • the average current density is preferably 100 A / dm 2 or less, and the amount of electricity is preferably 10000 C / dm 2 or less.
  • the concentration and temperature of the electrolytic solution in hydrochloric acid electrolysis are not particularly limited, and electrolysis is carried out at 30 to 60 ° C. using a high concentration, for example, a hydrochloric acid electrolytic solution having a hydrochloric acid concentration of 10 to 35 mass%. Electrolysis can be performed at a high temperature, for example, 80 ° C. or more, using a 7 to 2% by mass hydrochloric acid electrolyte solution. Further, electrolysis can be performed using an electrolytic solution obtained by mixing at least one of sulfuric acid, oxalic acid and phosphoric acid at a concentration of 0.1 to 50% by mass with the above-mentioned hydrochloric acid electrolytic solution.
  • the film removal step is a step of chemical dissolution treatment to remove the aluminum hydroxide film.
  • the aluminum hydroxide film can be removed by performing an acid etching treatment or an alkali etching treatment described later.
  • the solution treatment is a treatment in which an aluminum hydroxide film is dissolved using a solution in which aluminum hydroxide is preferentially dissolved in preference to aluminum (hereinafter referred to as “aluminum hydroxide solution”).
  • the aluminum hydroxide solution for example, nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid, chromium compound, zirconium compound, titanium compound, lithium salt, cerium salt, magnesium salt, sodium silicofluoride, fluoride fluoride
  • An aqueous solution containing at least one selected from the group consisting of zinc, a manganese compound, a molybdenum compound, a magnesium compound, a barium compound and a halogen alone is preferred.
  • chromium compound for example, chromium (III) oxide, chromium (VI) anhydride and the like can be mentioned.
  • zirconium-based compound include ammonium zirconium fluoride, zirconium fluoride and zirconium chloride.
  • titanium compounds include titanium oxide and titanium sulfide.
  • lithium salts include lithium fluoride and lithium chloride.
  • cerium salt include cerium fluoride and cerium chloride.
  • magnesium salt magnesium sulfide is mentioned, for example.
  • manganese compounds include sodium permanganate and calcium permanganate.
  • molybdenum compound sodium molybdate is mentioned, for example.
  • magnesium fluoride pentahydrate is mentioned, for example.
  • a barium compound for example, barium oxide, barium acetate, barium carbonate, barium chlorate, barium chloride, barium fluoride, barium iodide, barium lactate, barium oxalate, barium perchlorate, barium selenate, selenious acid
  • barium stearate, barium sulfite, barium titanate, barium hydroxide, barium nitrate, and hydrates of these barium oxide, barium acetate and barium carbonate are preferred, and barium oxide is particularly preferred.
  • the halogen alone include chlorine, fluorine and bromine.
  • the above-mentioned aluminum hydroxide solution is preferably an aqueous solution containing an acid, and examples of the acid include nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid and the like, and even a mixture of two or more acids.
  • the acid concentration is preferably 0.01 mol / L or more, more preferably 0.05 mol / L or more, and still more preferably 0.1 mol / L or more.
  • the upper limit is not particularly limited, but generally 10 mol / L or less is preferable, and 5 mol / L or less is more preferable.
  • the dissolution treatment is carried out by bringing the aluminum base on which the aluminum hydroxide film is formed into contact with the above-mentioned solution.
  • the method for contacting is not particularly limited, and examples thereof include a dipping method and a spraying method. Among them, the immersion method is preferred.
  • the immersion method is a process of immersing the aluminum base on which the aluminum hydroxide film is formed in the above-described solution. Stirring during the immersion treatment is preferable because the treatment without unevenness is performed.
  • the immersion treatment time is preferably 10 minutes or more, more preferably 1 hour or more, and still more preferably 3 hours or more and 5 hours or more.
  • the alkali etching treatment is a treatment in which the surface layer is dissolved by bringing the aluminum hydroxide film into contact with an alkali solution.
  • alkali used for the alkali solution examples include caustic alkali and alkali metal salts.
  • caustic alkali examples include sodium hydroxide (caustic soda) and caustic potash.
  • alkali metal salt for example, alkali metal silicates such as sodium metasilicate, sodium silicate, potassium metasilicate and potassium silicate; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium aluminate, aluminum Alkali metal aluminates such as potassium hydroxide; alkali metal aldonates such as sodium gluconate and potassium gluconate; sodium dibasic phosphate, potassium dibasic phosphate, sodium tribasic phosphate, potassium tribasic phosphate and the like And alkali metal hydrogen phosphates.
  • a solution of caustic alkali and a solution containing both caustic alkali and an alkali metal aluminate are preferable from the viewpoint of high etching rate and low cost.
  • an aqueous solution of sodium hydroxide is preferred.
  • the concentration of the alkaline solution is preferably 0.1 to 50% by mass, and more preferably 0.2 to 10% by mass.
  • concentration of aluminum ions is preferably 0.01 to 10% by mass, and more preferably 0.1 to 3% by mass.
  • the temperature of the alkaline solution is preferably 10 to 90.degree.
  • the treatment time is preferably 1 to 120 seconds.
  • a method of bringing an aluminum hydroxide film into contact with an alkaline solution for example, a method of passing an aluminum base on which an aluminum hydroxide film is formed through a tank containing an alkaline solution, aluminum on which an aluminum hydroxide film is formed There is a method of immersing the substrate in a bath containing an alkaline solution, and a method of spraying the alkaline solution onto the surface (aluminum hydroxide film) of the aluminum substrate on which the aluminum hydroxide film is formed.
  • the oxide film formation process In the oxide film forming step, the aluminum base material from which the aluminum hydroxide film has been removed is brought into contact with the second acidic aqueous solution (an oxide film forming treatment is performed), and the density is 2.7 to This is a step of forming an oxide film having a thickness of 5 nm or less at 4.1 g / cm 3 . As described above, the oxide film formation process is performed to form a thin oxide film having a high thickness and a high density on the surface of the aluminum substrate, thereby suppressing the progress of oxidation of the aluminum substrate with time. Since the increase in thickness of the oxide film can be suppressed, the state of low electrical resistance can be stably maintained.
  • a method of forming an oxide film by bringing an aluminum base into contact with an acidic solution which is less likely to form hydrates A method of densifying the oxide film by reducing the proportion of hydrates in the oxide film by performing high-temperature heat treatment after forming the oxide film by contacting with an acidic solution (oxide film densification step).
  • nitric acid, sulfuric acid, phosphoric acid, and oxalic acid can be used as the acidic solution. It is preferable to use an acid or a mixture of two or more of these acids, and more preferable to use nitric acid, sulfuric acid or a mixture of these acids.
  • concentration of the acidic solution is preferably 0.01 to 10% by mass, particularly preferably 0.1 to 5% by mass.
  • the liquid temperature of the acidic solution is preferably 25 to 70 ° C., and more preferably 30 to 55 ° C.
  • the method to which an aluminum base material is made to contact with an acidic solution is not specifically limited,
  • the immersion method and a spray method are mentioned.
  • the immersion method is preferred.
  • the immersion method is a treatment in which the aluminum substrate is immersed in the above-described acidic solution. Stirring during the immersion treatment is preferable because the treatment without unevenness is performed.
  • the immersion treatment time is preferably 15 seconds or more, more preferably 30 seconds or more, and still more preferably 40 seconds or more.
  • An acid solution is brought into contact to form an oxide film, and then the high temperature heat treatment is carried out to reduce the ratio of hydrate in the oxide film, and the acid solution may be nitric acid, sulfuric acid, phosphoric acid, oxalic acid, or It is preferable to use two or more of these mixed acids, and it is more preferable to use nitric acid, sulfuric acid, or a mixed acid thereof.
  • the concentration of the acidic solution is preferably 0.01 to 10% by mass, particularly preferably 0.1 to 5% by mass.
  • the liquid temperature of the acidic solution is preferably 25 to 70 ° C., and more preferably 30 to 55 ° C.
  • the method to which an aluminum base material is made to contact with an acidic solution is not specifically limited,
  • the immersion method and a spray method are mentioned.
  • the immersion method is preferred.
  • the immersion method is a treatment in which the aluminum substrate is immersed in the above-described acidic solution. Stirring during the immersion treatment is preferable because the treatment without unevenness is performed.
  • the immersion treatment time is preferably 15 seconds or more, more preferably 30 seconds or more, and still more preferably 40 seconds or more.
  • the oxide film densification step is a step of subjecting the aluminum substrate after being brought into contact with an acidic solution to form an oxide film to a high temperature heat treatment.
  • the heating temperature is preferably 100 ° C. or more and 400 ° C. or less, more preferably 200 ° C. or more and 350 ° C. or less, and still more preferably 250 ° C. or more and 330 ° C. or less.
  • the heating time is preferably 1 minute to 30 minutes, more preferably 3 minutes to 20 minutes, and still more preferably 5 minutes to 15 minutes.
  • the heating temperature is preferably 1 minute to 30 minutes, more preferably 3 minutes to 20 minutes, and still more preferably 5 minutes to 15 minutes.
  • Water washing process As described above, in the present invention, it is preferable to have a water washing process in which water washing is performed after completion of each of the film formation process, the film removal process, the oxide film formation process, and the through hole formation process described above. Pure water, well water, tap water or the like can be used for washing. A nip device may be used to prevent the processing solution from being carried into the next process.
  • drying process As described above, it is preferable to have a drying step of drying treatment after the water washing step after each step.
  • a drying step of drying treatment after the water washing step after each step.
  • known drying methods such as a method of blowing off water with an air knife or the like, a method by heating and the like can be appropriately used. Also, multiple drying methods may be performed.
  • a water washing process of washing the aluminum substrate after the oxide film forming process it is preferable to have a drying process after the water washing process after the oxide film forming process.
  • a water washing step is performed to remove the second acidic aqueous solution remaining on the surface of the aluminum substrate (oxide film). Water film will be left behind. If the water film remains on the surface of the oxide film, water may permeate into the oxide film over time, the oxide film may become a hydrate, and the density of the oxide film may decrease.
  • the drying process is performed after the water washing process after the oxide film formation process, and the water film remaining on the surface of the oxide film is removed, whereby water permeates into the oxide film with time and the oxide film becomes a hydrate.
  • the reduction in the density of the oxide film can be suppressed.
  • the drying temperature in the case of drying by heating is preferably 100 to 200 ° C., and more preferably 100 to 150 ° C.
  • the drying time is preferably 1 to 30 seconds, and more preferably 3 to 10 seconds.
  • the manufacturing method for manufacturing the aluminum member for the electrode having the through hole as shown in FIG. 2B when the through hole is not formed, the film formation for forming the aluminum hydroxide film is formed. Since the process and the through hole forming process are unnecessary, the process of removing the aluminum hydroxide film is not necessary, but the same film removing process as described above is performed to remove the oxide film and oil formed by natural oxidation. It is preferable to carry out.
  • the aluminum member for an electrode of the present invention can be used as a current collector for a power storage device (hereinafter, also referred to as “current collector”).
  • current collector when the aluminum member for electrode has a plurality of through holes in the thickness direction, for example, when used for a lithium ion capacitor, pre-doping of lithium in a short time becomes possible, and lithium It becomes possible to disperse
  • the adhesion to the active material layer and the activated carbon is improved, and an electricity storage device excellent in productivity such as cycle characteristics, output characteristics, and coating suitability can be manufactured.
  • the current collector using the aluminum member for an electrode according to the present invention has an oxide film density of 2.7 to 4.1 g / cm 3 and a thickness of 5 nm or less. The resistance is low, and an efficient storage device can be manufactured.
  • ⁇ Active material layer> There is no limitation in particular as an active material layer, and the well-known active material layer used in the conventional electrical storage device can be utilized. Specifically, in the case of using an aluminum member for an electrode as a collector of a positive electrode, the conductive material, the binder, the solvent, etc. which may be contained in the active material and the active material layer are disclosed in JP 2012-216513A. The materials described in paragraphs [0077] to [0088] of the gazette can be suitably adopted, the contents of which are incorporated herein by reference. In addition, as the active material in the case of using the aluminum member for electrode as the current collector of the negative electrode, the material described in paragraph [0089] of JP 2012-216513 A can be suitably adopted, and the content is Incorporated herein by reference.
  • the electrode using the aluminum member for an electrode of the present invention as a current collector can be used as a positive electrode or a negative electrode of an electricity storage device.
  • the materials and applications described in paragraphs [0090] to [0123] of JP 2012-216513 A are suitably used. It may be employed, the contents of which are incorporated herein by reference.
  • the positive electrode using the aluminum member for an electrode of the present invention as a current collector is a positive electrode current collector using an aluminum member for an electrode as a positive electrode, and a layer containing a positive electrode active material formed on the surface of the positive electrode current collector And an active material layer).
  • the conductive material which may be contained in the above-mentioned positive electrode active material layer, the binder, the solvent and the like, see paragraphs [0077] to [0088] of JP 2012-216513A.
  • the materials described can be employed as appropriate, the contents of which are incorporated herein by reference.
  • the negative electrode using the aluminum member for electrode of the present invention as a current collector comprises a negative electrode current collector using the aluminum member for electrode as a negative electrode, and a layer containing a negative electrode active material formed on the surface of the negative electrode current collector. It is the negative electrode which it has.
  • the negative electrode active material the material described in paragraph [0089] of JP-A-2012-216513 can be appropriately adopted, and the contents thereof are incorporated herein by reference.
  • the aluminum member for electrodes of the present invention can be used not only as a current collector for a storage device but also as an electrolytic capacitor.
  • Example 1 ⁇ Production of aluminum member for electrode> The surface of an aluminum base (JIS H-4160, alloy No .: 1N30-H, aluminum purity: 99.30%) with an average thickness of 20 ⁇ m and a size of 200 mm ⁇ 300 mm is subjected to the treatment shown below, and an aluminum member for electrodes Was produced.
  • JIS H-4160, alloy No .: 1N30-H, aluminum purity: 99.30% The surface of an aluminum base (JIS H-4160, alloy No .: 1N30-H, aluminum purity: 99.30%) with an average thickness of 20 ⁇ m and a size of 200 mm ⁇ 300 mm is subjected to the treatment shown below, and an aluminum member for electrodes Was produced.
  • A-1 Aluminum hydroxide film formation process (film formation process) Using an electrolytic solution (nitric acid concentration 0.8%, sulfuric acid concentration 0.7%, aluminum concentration 0.5%) kept at 50 ° C. and using the above aluminum substrate as a cathode, the total electric quantity is 800 C / dm 2 Electrolytic treatment was performed under conditions to form an aluminum hydroxide film on the aluminum substrate. In addition, the electrolysis process was performed by direct-current power supply. The current density was 50 A / dm 2 . After the formation of the aluminum hydroxide film, washing with water by spraying was performed.
  • Example 2 An aluminum member for an electrode was produced in the same manner as in Example 1 except that the oxide film forming step shown in (d-2) below was performed instead of the oxide film forming step shown in (d-1) above.
  • Example 3 instead of the drying step shown in the above (e-1), the drying step shown in the following (e-2) was carried out, and further, the oxide film densifying step shown in the following (f-1) was carried out, except for the example In the same manner as in 1, an aluminum member for an electrode was produced.
  • Example 4 An aluminum member for an electrode was produced in the same manner as in Example 3, except that the oxide film forming step shown in (d-2) above was performed instead of the oxide film forming step shown in (d-1) above.
  • Example 5 An aluminum member for an electrode was produced in the same manner as in Example 3, except that the oxide film densification step shown in (f-2) below was performed instead of the oxide film densification step shown in (f-1) above. .
  • Example 6 An aluminum member for an electrode was produced in the same manner as in Example 3, except that the oxide film densification step shown in (f-3) below was performed instead of the oxide film densification step shown in (f-1) above. .
  • Example 7 An aluminum member for an electrode was produced in the same manner as in Example 1 except that the step of densifying the oxide film shown in the above (f-1) was further performed after the drying step shown in the above (e-1).
  • Example 8 An aluminum member for an electrode was produced in the same manner as in Example 7 except that the oxide film forming step shown in (d-2) above was performed instead of the oxide film forming step shown in (d-1) above.
  • Example 9 An aluminum member for an electrode was produced in the same manner as in Example 1 except that the (a-1) aluminum hydroxide film forming treatment and the (b-1) electrolytic dissolution treatment were not performed.
  • the aluminum base to be subjected to the (c-1) aluminum hydroxide film removing process is aluminum hydroxide.
  • the removal of the rolling oil is performed by performing the removal treatment of the (c-1) aluminum hydroxide film.
  • Example 10 An aluminum member for an electrode was produced in the same manner as in Example 9 except that the oxide film forming step shown in (d-2) above was performed instead of the oxide film forming step shown in (d-1) above.
  • Comparative Example 1 An aluminum member for an electrode was produced in the same manner as in Example 1 except that the oxide film formation process shown in (d-4) below was performed instead of the oxide film formation process shown in (d-1) above.
  • Comparative Example 2 instead of the oxide film formation process shown in the above (d-1), the oxide film formation process shown in the above (d-2) is performed, and the above described (e-2) is carried out in place of the drying process shown in the above (e-1).
  • An aluminum member for an electrode was produced in the same manner as in Example 1 except that the drying step shown in was carried out.
  • Comparative Example 3 An aluminum member for an electrode was produced in the same manner as in Example 1 except that the drying step shown in (e-2) above was performed instead of the drying step shown in (e-1) above.
  • Comparative Example 4 An aluminum member for an electrode was produced in the same manner as in Comparative Example 3 except that the oxide film densification step shown in the following (f-4) was further performed after the drying step shown in the above (e-2).
  • Comparative Example 5 An aluminum member for an electrode was produced in the same manner as in Comparative Example 3 except that the oxide film densification step shown in the following (f-5) was further performed after the drying step shown in the above (e-2).
  • the average opening diameter of the through hole is obtained by photographing the surface of the aluminum member for electrode at a magnification of 200 times from the top directly using a high resolution scanning electron microscope (SEM), and the obtained SEM photograph shows that the circumference is annularly continuous At least 20 through holes were extracted, the opening diameter was read, and the average value of these was calculated and determined.
  • SEM scanning electron microscope
  • the average aperture ratio of the through holes is obtained by photographing the surface of the aluminum member for electrode at a magnification of ⁇ 200 from the top right using a high resolution scanning electron microscope (SEM), and the 30 mm ⁇ 30 mm field of view of the obtained SEM photograph (5 About the part), it is binarized with image analysis software etc. and observes the through hole part and the non-through hole part, and the ratio (opening area / from the total of the opening area of the through holes and the area of the visual field (geometrical area) Geometrical area was calculated, and the average value of the ratio in each visual field (5 places) was calculated as an average aperture ratio.
  • SEM scanning electron microscope
  • the surface density of the oxide film was measured using a high resolution Rutherford backscattering spectrometry (HR-RBS) 500 manufactured by Kobe Steel, Ltd., a high resolution RBS analyzer.
  • HR-RBS Rutherford backscattering spectrometry
  • the He + ions of energy 450keV is incident on the sample at 62.5 degrees to the normal of the sample surface (the surface of the oxide film of the electrode aluminum member), deflects the scattered He + ions at a position of the scattering angle 55 ° It was detected by a magnetic field energy analyzer.
  • the surface density (atoms / cm 2 ) thus obtained is converted to mass surface density (g / cm 2 ), and this value and the film thickness measured by transmission electron microscopy (TEM) give the density (g / cm 3 ) of the oxide film. ) was calculated.
  • Table 1 shows the measurement results of the average opening diameter and the average opening ratio of the through holes of each aluminum member for electrodes, and the film thickness and density of the oxide film. Further, the surface of the aluminum member for an electrode produced in Example 1 was photographed with an optical microscope (M205C manufactured by LEICA, magnification 100 ⁇ ) and SEM (S-3000N manufactured by HITACHI, magnification 200 ⁇ ). Images taken are shown in FIGS. 4 and 5, respectively.
  • ⁇ Thickness of oxide film over time> The film thickness of the oxide film was measured after leaving for 3 weeks in the atmosphere of temperature 25 ° C. and relative humidity 70%.
  • Electrode ⁇ Electric resistance> (Fabrication of electrode) A conductive paint (Bunny Height T-602, manufactured by Nippon Graphite Industry Co., Ltd.) is applied to a thickness of 3 ⁇ m on one side of the aluminum member for electrode, and then dried under reduced pressure at 200 ° C. for 24 hours to form a conductive layer. Then, an electrode was produced.
  • a conductive paint (Bunny Height T-602, manufactured by Nippon Graphite Industry Co., Ltd.) is applied to a thickness of 3 ⁇ m on one side of the aluminum member for electrode, and then dried under reduced pressure at 200 ° C. for 24 hours to form a conductive layer. Then, an electrode was produced.
  • the aluminum member for an electrode having an oxide film density of 2.7 to 4.1 g / cm 3 and a film thickness of 5 nm or less progresses in oxidation with time.
  • the film thickness of the oxide film can be suppressed from being thickened, and the state in which the electric resistance is low can be stably maintained.
  • the higher the density of the oxide film the smaller the increase of the film thickness with time. From the above, the effects of the present invention are clear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

電気抵抗が低い状態を安定して維持することができる電極用アルミニウム部材および電極用アルミニウム部材の製造方法を提供することを課題とする。アルミニウム基材と、アルミニウム基材の少なくとも一方の主面に積層された酸化膜とを有し、酸化膜の密度が2.7~4.1g/cm3であり、厚みが5nm以下である。

Description

電極用アルミニウム部材および電極用アルミニウム部材の製造方法
 本発明は、蓄電デバイス用集電体などに用いられる電極用アルミニウム部材および電極用アルミニウム部材の製造方法に関する。
 近年、パーソナルコンピュータ、携帯電話等のポータブル機器や、ハイブリッド自動車、電気自動車等の開発に伴い、その電源としての蓄電デバイス、特に、リチウムイオンキャパシタ、リチウムイオン二次電池、電気二重層キャパシタの需要が増大している。
 このような蓄電デバイスの正極または負極に用いられる電極用集電体(以下、単に「集電体」という。)としては、アルミニウム板を用いることが知られている。また、このアルミニウム板からなる集電体の表面に、活性炭などの活物質を塗布され、正極または負極の電極として用いることが知られている。
 例えば、特許文献1には、集電体として、アルミニウム箔を用いることが記載されており、このアルミニウム箔に活物質を塗布して電極として用いることが記載されている([請求項1][0021])。
 また、特許文献2には、複数の貫通孔を有するアルミニウム板を集電体として用いることが記載されている([請求項1])。
 このようなアルミニウムからなる集電体は酸化され易く、大気にさらされると酸化してしまうため、常時、酸化膜を有する。酸化膜は絶縁性が高いため、集電体の表面に厚い酸化膜が存在すると、集電体と活物質層との間の電気抵抗が増大するおそれがある。
 そのため、特許文献1には、アルミニウム基材の表面酸化膜上に、導電性を有する導電層を積層することで、アルミニウム基材の表面酸化膜の厚みを3nm以下として導電性を確保し、電気抵抗の増大を抑制することが記載されている。
特開2011-96667号公報 国際公開第2016/060037号
 しかしながら、アルミニウム基材の表面酸化膜の上に導電性を有する導電層を積層することで、アルミニウム基材の表面酸化膜の厚みを所定の厚さ以下とする構成は、アルミニウム基材の表面酸化膜を、エッチング加工によって所定の厚さ以下に調整した後に、表面酸化膜の上に導電層を形成する必要があるため、工程が複雑になり、生産性が悪いという問題があった。
 そこで、本発明は、電気抵抗が低い状態を安定して維持することができ、生産性が高い電極用アルミニウム部材および電極用アルミニウム部材の製造方法を提供することを課題とする。
 本発明者は、上記課題を達成すべく鋭意検討した結果、アルミニウム基材と、アルミニウム基材の少なくとも一方の主面に積層された酸化膜とを有し、酸化膜の密度が2.7~4.1g/cm3であり、厚みが5nm以下であることにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
 [1] アルミニウム基材と、
 アルミニウム基材の少なくとも一方の主面に積層された酸化膜とを有し、
 酸化膜の密度が2.7~4.1g/cm3であり、厚みが5nm以下である電極用アルミニウム部材。
 [2] 酸化膜が、酸化アルミニウム(Al23)、酸化アルミニウム1水和物(Al23・1H2O)および、酸化アルミニウム3水和物(Al23・3H2O)のいづれか1つを含む[1]に記載の電極用アルミニウム部材。
 [3] 酸化膜が、酸化アルミニウム(Al23)を70%以上含む[1]または[2]に記載の電極用アルミニウム部材。
 [4] 酸化膜が、酸化アルミニウム1水和物(Al23・1H2O)および、酸化アルミニウム3水和物(Al23・3H2O)を45%以下含む[1]~[3]のいずれかに記載の電極用アルミニウム部材。
 [5] アルミニウム基材および酸化膜を厚み方向に貫通する複数の貫通孔を有する[1]~[4]のいずれかに記載の電極用アルミニウム部材。
 [6] 貫通孔の平均開口径が0.1μm以上100μm未満である[5]に記載の電極用アルミニウム部材。
 [7] 貫通孔の平均開口率が0.5%~30%である[5]または[6]に記載の電極用アルミニウム部材。
 [8] アルミニウム基材の厚みが5μm~100μmである[1]~[7]のいずれかに記載の電極用アルミニウム部材。
 [9] 酸化膜が、アルミニウム基材の両面に積層された[1]~[8]のいずれかに記載の電極用アルミニウム部材。
 [10] [1]~[9]のいずれかに記載の電極用アルミニウム部材を製造する電極用アルミニウム部材の製造方法であって、
 アルミニウム基材を陰極として、第1の酸性水溶液中で電解処理を行い、アルミニウム基材の表面に水酸化アルミニウム皮膜を形成する皮膜形成工程と、
 皮膜形成工程後のアルミニウム基材をアルカリ性水溶液に接触させて水酸化アルミニウム皮膜を除去する皮膜除去工程と、
 皮膜除去工程後のアルミニウム基材を第2の酸性水溶液に接触させて、アルミニウム基材の表面に酸化膜を形成する酸化膜形成工程と、を有する電極用アルミニウム部材の製造方法。
 [11] 皮膜形成工程後、皮膜除去工程前にアルミニウム基材を陽極として、第3の酸性水溶液で電解処理を行い、アルミニウム基材および水酸化アルミニウム皮膜に貫通孔を形成する貫通孔形成工程を有する[10]に記載の電極用アルミニウム部材の製造方法。
 [12] 第2の酸性水溶液が、硝酸、硫酸、燐酸、シュウ酸、あるいは、これらの2以上の混酸である[10]または[11]に記載の電極用アルミニウム部材の製造方法。
 [13] 第2の酸性水溶液が、硝酸、硫酸、あるいは、これらの混酸である[10]~[12]のいずれかに記載の電極用アルミニウム部材の製造方法。
 [14] 酸化膜形成後のアルミニウム基材を水洗する水洗工程を有する[10]~[13]のいずれかに記載の電極用アルミニウム部材の製造方法。
 [15] 水洗工程後のアルミニウム基材の酸化膜に付着する水膜を除去する乾燥工程を有する[14]に記載の電極用アルミニウム部材の製造方法。
 [16] 乾燥工程は、アルミニウム基材を100℃~200℃に加熱する工程である[15]に記載の電極用アルミニウム部材の製造方法。
 [17] 水洗工程後のアルミニウム基材を加熱して、アルミニウム基材の酸化膜中に含まれる水和物を除去し、酸化膜を緻密化する酸化膜緻密化工程を有する[14]~[16]のいずれかに記載の電極用アルミニウム部材の製造方法。
 [18] 酸化膜緻密化工程における加熱温度が、100℃~400℃である[17]に記載の電極用アルミニウム部材の製造方法。
 以下に説明するように、本発明によれば、電気抵抗が低い状態を安定して維持することができ、生産性が高い電極用アルミニウム部材および電極用アルミニウム部材の製造方法を提供することができる。
本発明の電極用アルミニウム部材の一例を模式的に示す断面図である。 本発明の電極用アルミニウム部材の他の一例を模式的に示す上面図である。 図2AのB-B線断面図である。 本発明の電極用アルミニウム部材の好適な製造方法の一例を説明するための模式的な断面図である。 本発明の電極用アルミニウム部材の好適な製造方法の一例を説明するための模式的な断面図である。 本発明の電極用アルミニウム部材の好適な製造方法の一例を説明するための模式的な断面図である。 本発明の電極用アルミニウム部材の好適な製造方法の一例を説明するための模式的な断面図である。 本発明の電極用アルミニウム部材の好適な製造方法の一例を説明するための模式的な断面図である。 実施例1で作製した電極用アルミニウム部材の光学顕微鏡写真である。 実施例1で作製した電極用アルミニウム部材のSEM写真である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[電極用アルミニウム部材]
 本発明の電極用アルミニウム部材は、
 アルミニウム基材と、
 アルミニウム基材の少なくとも一方の主面に積層された酸化膜とを有し、
 酸化膜の密度が2.7~4.1g/cm3であり、厚みが5nm以下である電極用アルミニウム部材である。
 次に、本発明の電極用アルミニウム部材の構成について、図1を用いて説明する。
 図1は、本発明の電極用アルミニウム部材の好適な実施態様の一例を示す模式的な断面図である。
 図1に示すように、電極用アルミニウム部材10は、アルミニウム基材1の両主面それぞれに酸化膜12が積層されている。
 本発明の電極用アルミニウム部材は、集電体として用いられ、表面に活物質を塗布されて蓄電デバイスの正極または負極として用いられる。
 ここで、本発明の電極用アルミニウム部材においては、酸化膜12の密度が2.7~4.1g/cm3であり、厚みが5nm以下である。
 前述のとおり、アルミニウムは酸化され易く、大気にさらされると酸化してしまうため、常時、酸化膜を有する。酸化膜は絶縁性が高いため、アルミニウム基材の表面に厚い酸化膜が存在すると、アルミニウム基材と活物質との間の電気抵抗が増大するおそれがあるという問題があった。そのため、経時による酸化の進行を抑制するためには、保管の際に一定の条件下で保管する必要があった。
 また、アルミニウム基材の表面の酸化膜を薄くし、酸化膜の上に導電性を有する導電層を積層して導電性を確保することが考えられている。しかしながら、酸化膜の上に導電性を有する導電層を積層した場合であっても、経時により、アルミニウム基材の酸化が進行し、酸化膜の厚みが厚くなって、電気抵抗が増大するおそれがあるという問題があった。
 また、酸化膜の上に導電層を積層する構成は、アルミニウム基材の酸化膜を、エッチング加工等によって所定の厚さ以下に調整した後に、酸化膜の上に導電層を形成する必要があるため、工程が複雑になり、生産性が悪いという問題があった。
 これに対して本発明の電極用アルミニウム部材は、酸化膜の膜厚が5nm以下で、膜密度が2.7~4.1g/cm3である。
 本発明者の検討によれば、酸化膜の膜密度が低いと、水分が酸化膜に浸透してアルミニウム基材に到達するため、アルミニウム基材の酸化が進行して酸化膜の膜厚が増大してしまい、電気抵抗が増大してしまうことがわかった。
 これに対して、酸化膜の膜密度を2.7~4.1g/cm3とすることにより、水分が酸化膜に浸透してアルミニウム基材に到達するのを抑制できるので、アルミニウム基材の酸化の進行を抑制して酸化膜の厚みが厚くなるのを抑制できる。これにより、電気抵抗が低い状態を安定して維持することができる。
 また、膜厚が5nm以下で、膜密度が2.7~4.1g/cm3を満たす酸化膜は、容易に形成することができるので、工程が複雑になることなく、生産性が高い。
 なお、膜厚5nm以下で、膜密度2.7~4.1g/cm3を満たす酸化膜の形成方法については、後に詳述する。
 ここで、アルミニウム基材と活物質との間の電気抵抗をより低くできる等の観点から、酸化膜の膜厚は、1nm~5nmが好ましく、1nm~3nmがより好ましい。
 なお、酸化膜の膜厚は、透過型電子顕微鏡(Transmission Electron Microscope:TEM)により断面を観察して、3箇所で膜厚を測定して平均値を膜厚として算出する。
 また、アルミニウム基材の酸化の進行をより確実に抑制できる等の観点から、酸化膜の膜密度は、2.7~4.1g/cm3が好ましく、3.2~4.1g/cm3がより好ましい。
 なお、酸化膜の膜密度は、株式会社神戸製鋼所製、高分解能RBS分析装置 HRBS500(High Resolution Rutherford Backscattering Spectrometry;HR-RBS)を使用して測定する。エネルギー450keVのHe+イオンを試料面(電極用アルミニウム部材の酸化膜の表面)の法線に対し62.5度で試料に入射させ、散乱されたHe+イオンを散乱角55度の位置で偏向磁場型エネルギー分析器により検出して面密度を得る。得られた面密度(atoms/cm2)から質量面密度(g/cm2)に換算し、この値と透過型電子顕微鏡(TEM)により測定した膜厚から酸化膜の密度(g/cm3)を算出する。
 ここで、図1に示す例では、無孔のアルミニウム基材上に酸化膜が積層された構成としたが、これに限定はされず、アルミニウム基材を厚み方向に貫通する貫通孔を複数有する構成としてもよい。
 図2Aに、本発明の電極用アルミニウム部材の他の一例の模式的な上面図を示し、図2Bに、図2AのB-B線断面図を示す。
 図2Aおよび図2Bに示す電極用アルミニウム部材20は、アルミニウム基材および酸化膜を厚み方向に貫通する複数の貫通孔5を有する。すなわち、電極用アルミニウム部材20は、厚み方向に貫通する貫通孔を有するアルミニウム基材3と、厚み方向に貫通する貫通孔を有する酸化膜14とを積層した構成を有する。電極用アルミニウム部材20の主面の面方向において、アルミニウム基材3に形成された複数の貫通孔と、酸化膜14に形成された複数の貫通孔とは、同じ位置に形成されており、複数の貫通孔5はそれぞれ、アルミニウム基材および酸化膜を厚み方向に貫通している。
 電極用アルミニウム部材が、厚み方向に貫通する複数の貫通孔を有することで、集電体として用いる場合に、リチウムイオンの移動を容易にすることができる。また、多数の貫通孔を有することで、活物質との密着性を向上することができる。
 また、貫通孔の平均開口径は、0.1μm以上100μm未満であることが好ましく、1μm超80μm以下がより好ましく、3μm超40μm以下がさらに好ましく、5μm以上30μm以下が特に好ましい。
 貫通孔の平均開口径を上記範囲とすることで、電極用アルミニウム部材に活物質を塗布する際に抜け等が発生するのを防止でき、また、塗布した活物質との密着性を向上できる。また、電極用アルミニウム部材が多数の貫通孔を有するものとした場合でも、十分な引張強度を有するものとすることができる。
 なお、貫通孔の平均開口径は、電極用アルミニウム部材の一方の面から、高分解能走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて電極用アルミニウム部材の表面を倍率200倍で撮影し、得られたSEM写真において、周囲が環状に連なっている貫通孔を少なくとも20個抽出し、その開口径を読み取って、これらの平均値を平均開口径として算出する。
 また、開口径は、貫通孔部分の端部間の距離の最大値を測定した。すなわち、貫通孔の開口部の形状は略円形状に限定はされないので、開口部の形状が非円形状の場合には、貫通孔部分の端部間の距離の最大値を開口径とする。従って、例えば、2以上の貫通孔が一体化したような形状の貫通孔の場合にも、これを1つの貫通孔とみなし、貫通孔部分の端部間の距離の最大値を開口径とする。
 また、貫通孔の平均開口率は、0.5%~30%であるのが好ましく、1%~30%がより好ましく、3%~20%がさらに好ましく、3%~10%が特に好ましい。
 貫通孔の平均開口率を上記範囲とすることで、電極用アルミニウム部材に活物質を塗布する際に抜け等が発生するのを防止でき、また、塗布した活物質との密着性を向上できる。また、電極用アルミニウム部材が多数の貫通孔を有するものとした場合でも、十分な引張強度を有するものとすることができる。
 なお、貫通孔の平均開口率は、高分解能走査型電子顕微鏡(SEM)を用いて電極用アルミニウム部材の表面を真上から倍率200倍で撮影し、得られたSEM写真の30mm×30mmの視野(5箇所)について、画像解析ソフト等で2値化して貫通孔部分と非貫通孔部分を観察し、貫通孔の開口面積の合計と視野の面積(幾何学的面積)との比率(開口面積/幾何学的面積)から算出し、各視野(5箇所)における平均値を平均開口率として算出した。
 また、図1に示す電極用アルミニウム部材10、および、図2に示す電極用アルミニウム部材20は、アルミニウム基材の両主面に酸化膜が積層された構成としたが、これに限定はされず、アルミニウム基材の少なくとも一方の主面に酸化膜が積層されていればよい。
 <アルミニウム基材>
 上記アルミニウム基材は、特に限定はされず、例えば、JIS規格H4000に記載されている合金番号1085、1N30、3003等の公知のアルミニウム基材を用いることができる。なお、アルミニウム基材は、アルミニウムを主成分とし、微量の異元素を含む合金板である。
 アルミニウム基材の厚みとしては、限定はないが、5μm~100μmが好ましく、10μm~30μmがより好ましい。
 <酸化膜>
 上記酸化膜は、酸化アルミニウム(Al23)等のアルミニウム酸化物を含有する層であり、酸化アルミニウムが、酸化アルミニウム1水和物(Al23・1H2O)、酸化アルミニウム3水和物(Al23・3H2O)等のアルミニウムの水和物として存在しうる層である。
 ここで、前述のとおり、本発明においては、酸化膜の密度が2.7~4.1g/cm3であり、厚みが5nm以下である。
 一般に、アルミニウムは酸化され易く、大気にさらされると酸化してしまう。自然酸化により生成された酸化膜は、水和物の割合が多くなり易く、密度は低くなる。
 これに対して、本発明の電極用アルミニウム部材が有する酸化膜は、水和物の割合が少なく、酸化アルミニウムの割合が多いため、密度が2.7~4.1g/cm3と高い。
 このような密度が高い酸化膜は後述する酸化膜形成処理により容易に形成されるので、生産性が高い。
 なお、酸化アルミニウム(Al23)の密度は、4.1g/cm3程度であり、酸化アルミニウム1水和物(Al23・1H2O)の密度は、3.07g/cm3程度であり、酸化アルミニウム3水和物(Al23・3H2O)の密度は、2.42g/cm3程度である。
 従って、水和物の比率が高くなるほど酸化膜の密度は低くなる。例えば、酸化膜の密度が3.95g/cm3未満の場合は、酸化膜は水和物を3%以上含んでいる。
 密度の高い酸化膜とする観点から、酸化膜中に含まれる酸化アルミニウム(Al23)は、70%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましい。
 また、酸化膜中に含まれる酸化アルミニウム1水和物(Al23・1H2O)および、酸化アルミニウム3水和物(Al23・3H2O)は、45%以下が好ましく、30%以下がより好ましく、15%以下がさらに好ましい。
[電極用アルミニウム部材の製造方法]
 次に、本発明の電極用アルミニウム部材の製造方法について説明する。
 本発明の電極用アルミニウム部材の製造方法は、
 アルミニウム基材を陰極として、第1の酸性水溶液中で電解処理を行い、アルミニウム基材の表面に水酸化アルミニウム皮膜を形成する皮膜形成工程と、
 皮膜形成工程後のアルミニウム基材をアルカリ性水溶液に浸漬して水酸化アルミニウム皮膜を除去する皮膜除去工程と、
 皮膜除去工程後のアルミニウム基材を第2の酸性水溶液に浸漬して、アルミニウム基材の表面に酸化膜を形成する酸化膜形成工程と、を有する。
 酸化膜形成工程により、アルミニウム基材に、密度が2.7~4.1g/cm3、厚みが5nm以下の酸化膜を形成する。
 また、皮膜除去工程により、不要な皮膜や油分等を除去し、アルミニウム基材を露出させて、酸化膜の形成を容易にする。
 また、図2Bに示すような貫通孔を有する電極用アルミニウム部材を製造する場合には、皮膜形成工程の後、皮膜除去工程の前に、アルミニウム基材を陽極として、第3の酸性水溶液で電解処理を行い、アルミニウム基材および水酸化アルミニウム皮膜に貫通孔形成処理を行って貫通孔を形成する貫通孔形成工程を有することが好ましい。
 また、皮膜形成工程、皮膜除去工程、酸化膜形成工程、および、貫通孔形成工程それぞれの工程終了後には水洗処理を行う水洗工程を有するのが好ましい。
 また、各工程後の水洗処理の後には、乾燥処理を行う乾燥工程を有するのが好ましい。
 以下、図2Bに示す貫通孔を有する電極用アルミニウム部材を例にして、電極用アルミニウム部材の製造方法の各工程を図3A~図3Eを用いて説明した後に、各工程について詳述する。
 図3A~図3Eは、電極用アルミニウム部材の製造方法の好適な実施態様の一例を示す模式的な断面図である。
 電極用アルミニウム部材の製造方法は、図3A~図3Eに示すように、アルミニウム基材1の両方の主面に対して皮膜形成処理を施し、水酸化アルミニウム皮膜2を形成する皮膜形成工程(図3Aおよび図3B)と、皮膜形成工程の後に電解溶解処理を施して貫通孔5を形成し、貫通孔を有するアルミニウム基材3および貫通孔を有する水酸化アルミニウム皮膜4を形成する貫通孔形成工程(図3Bおよび図3C)と、貫通孔形成工程の後に、貫通孔を有する水酸化アルミニウム皮膜4を除去し、貫通孔を有するアルミニウム基材3を作製する皮膜除去工程(図3Cおよび図3D)と、皮膜除去工程の後に、酸化膜形成処理を行い、貫通孔を有するアルミニウム基材3の両方の主面に、密度が2.7~4.1g/cm3、厚みが5nm以下の酸化膜を形成する酸化膜形成工程(図3Dおよび図3E)と、を有する製造方法である。
 〔皮膜形成工程〕
 皮膜形成工程は、アルミニウム基材を陰極として、第1の酸性水溶液中で電解処理(皮膜形成処理)を施し、アルミニウム基材の表面に水酸化アルミニウム皮膜を形成する工程である。
 <皮膜形成処理>
 上記皮膜形成処理は特に限定されず、例えば、従来公知の水酸化アルミニウム皮膜の形成処理と同様の処理を施すことができる。
 皮膜形成処理としては、例えば、特開2011-201123号公報の[0013]~[0026]段落に記載された条件や装置を適宜採用することができる。
 本発明においては、皮膜形成処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度1~80質量%、液温5~70℃、電流密度0.5~60A/dm2、電圧1~100V、電解時間1秒~20分であるのが適当であり、所望の皮膜量となるように調整される。
 本発明においては、電解液(第1の酸性水溶液)として、硝酸、塩酸、硫酸、燐酸、シュウ酸、あるいは、これらの酸の2以上の混酸を用いて電気化学的処理を行うのが好ましい。
 硝酸、塩酸を含む電解液中で電気化学的処理を行う場合には、アルミニウム基材と対極との間に直流を印加してもよく、交流を印加してもよい。アルミニウム基材に直流を印加する場合においては、電流密度は、1~60A/dm2であるのが好ましく、5~50A/dm2であるのがより好ましい。連続的に電気化学的処理を行う場合には、アルミニウム基材に、電解液を介して給電する液給電方式により行うのが好ましい。
 本発明においては、皮膜形成処理により形成される水酸化アルミニウム皮膜の量は0.05~50g/m2であるのが好ましく、0.1~10g/m2であるのがより好ましい。
 〔貫通孔形成工程〕
 貫通孔形成工程は、皮膜形成工程の後に、アルミニウム基材を陽極として、第3の酸性水溶液で電解処理(電解溶解処理)を施し、アルミニウム基材および水酸化アルミニウム皮膜に貫通孔を形成する工程である。
 <電解溶解処理>
 上記電解溶解処理は特に限定されず、直流または交流を用い、酸性溶液(第3の酸性水溶液)を電解液に用いることができる。中でも、硝酸、塩酸の少なくとも1以上の酸を用いて電気化学処理を行うのが好ましく、これらの酸に加えて硫酸、燐酸、シュウ酸の少なくとも1以上の混酸を用いて電気化学的処理を行うのが更に好ましい。
 本発明においては、電解液である酸性溶液としては、上記酸のほかに、米国特許第4,671,859号、同第4,661,219号、同第4,618,405号、同第4,600,482号、同第4,566,960号、同第4,566,958号、同第4,566,959号、同第4,416,972号、同第4,374,710号、同第4,336,113号、同第4,184,932号の各明細書等に記載されている電解液を用いることもできる。
 酸性溶液の濃度は0.1~2.5質量%であるのが好ましく、0.2~2.0質量%であるのが特に好ましい。また、酸性溶液の液温は20~80℃であるのが好ましく、30~60℃であるのがより好ましい。
 また、上記酸を主体とする水溶液は、濃度1~100g/Lの酸の水溶液に、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウム等の硝酸イオンを有する硝酸化合物または塩化アルミニウム、塩化ナトリウム、塩化アンモニウム等の塩酸イオンを有する塩酸化合物、硫酸アルミニウム、硫酸ナトリウム、硫酸アンモニウム等の硫酸イオンを有する硫酸化合物少なくとも一つを1g/Lから飽和するまでの範囲で添加して使用することができる。
 また、上記酸を主体とする水溶液には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、シリカ等のアルミニウム合金中に含まれる金属が溶解していてもよい。好ましくは、酸の濃度0.1~2質量%の水溶液にアルミニウムイオンが1~100g/Lとなるように、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム等を添加した液を用いることが好ましい。
 電気化学的溶解処理には、主に直流電流が用いられるが、交流電流を使用する場合にはその交流電源波は特に限定されず、サイン波、矩形波、台形波、三角波等が用いられ、中でも、矩形波または台形波が好ましく、台形波が特に好ましい。
 (硝酸電解)
 本発明においては、硝酸を主体とする電解液を用いた電気化学的溶解処理(以下、「硝酸溶解処理」とも略す。)により、容易に、平均開口径が0.1μm以上100μm未満の貫通孔を形成することができる。
 ここで、硝酸溶解処理は、貫通孔形成の溶解ポイントを制御しやすい理由から、直流電流を用い、平均電流密度を5A/dm2以上とし、かつ、電気量を50C/dm2以上とする条件で施す電解処理であるであるのが好ましい。なお、平均電流密度は100A/dm2以下であるのが好ましく、電気量は10000C/dm2以下であるのが好ましい。
 また、硝酸電解における電解液の濃度や温度は特に限定されず、高濃度、例えば、硝酸濃度15~35質量%の硝酸電解液を用いて30~60℃で電解を行ったり、硝酸濃度0.7~2質量%の硝酸電解液を用いて高温、例えば、80℃以上で電解を行うことができる。
 また、上記硝酸電解液に濃度0.1~50質量%の硫酸、シュウ酸、燐酸の少なくとも1つを混ぜた電解液を用いて電解を行うことができる。
 (塩酸電解)
 本発明においては、塩酸を主体とする電解液を用いた電気化学的溶解処理(以下、「塩酸溶解処理」とも略す。)によっても、容易に、平均開口径が1μm以上100μm未満の貫通孔を形成することができる。
 ここで、塩酸溶解処理は、貫通孔形成の溶解ポイントを制御しやすい理由から、直流電流を用い、平均電流密度を5A/dm2以上とし、かつ、電気量を50C/dm2以上とする条件で施す電解処理であるであるのが好ましい。なお、平均電流密度は100A/dm2以下であるのが好ましく、電気量は10000C/dm2以下であるのが好ましい。
 また、塩酸電解における電解液の濃度や温度は特に限定されず、高濃度、例えば、塩酸濃度10~35質量%の塩酸電解液を用いて30~60℃で電解を行ったり、塩酸濃度0.7~2質量%の塩酸電解液を用いて高温、例えば、80℃以上で電解を行うことができる。
 また、上記塩酸電解液に濃度0.1~50質量%の硫酸、シュウ酸、燐酸の少なくとも1つを混ぜた電解液を用いて電解を行うことができる。
 〔皮膜除去工程〕
 皮膜除去工程は、化学的溶解処理を行って水酸化アルミニウム皮膜を除去する工程である。
 上記皮膜除去工程は、例えば、後述する酸エッチング処理やアルカリエッチング処理を施すことにより水酸化アルミニウム皮膜を除去することができる。
 <酸エッチング処理>
 上記溶解処理は、アルミニウムよりも水酸化アルミニウムを優先的に溶解させる溶液(以下、「水酸化アルミニウム溶解液」という。)を用いて水酸化アルミニウム皮膜を溶解させる処理である。
 ここで、水酸化アルミニウム溶解液としては、例えば、硝酸、塩酸、硫酸、燐酸、シュウ酸、クロム化合物、ジルコニウム系化合物、チタン系化合物、リチウム塩、セリウム塩、マグネシウム塩、ケイフッ化ナトリウム、フッ化亜鉛、マンガン化合物、モリブデン化合物、マグネシウム化合物、バリウム化合物およびハロゲン単体からなる群から選択される少なくとも1種を含有した水溶液が好ましい。
 具体的には、クロム化合物としては、例えば、酸化クロム(III)、無水クロム(VI)酸等が挙げられる。
 ジルコニウム系化合物としては、例えば、フッ化ジルコンアンモニウム、フッ化ジルコニウム、塩化ジルコニウムが挙げられる。
 チタン化合物としては、例えば、酸化チタン、硫化チタンが挙げられる。
 リチウム塩としては、例えば、フッ化リチウム、塩化リチウムが挙げられる。
 セリウム塩としては、例えば、フッ化セリウム、塩化セリウムが挙げられる。
 マグネシウム塩としては、例えば、硫化マグネシウムが挙げられる。
 マンガン化合物としては、例えば、過マンガン酸ナトリウム、過マンガン酸カルシウムが挙げられる。
 モリブデン化合物としては、例えば、モリブデン酸ナトリウムが挙げられる。
 マグネシウム化合物としては、例えば、フッ化マグネシウム・五水和物が挙げられる。
 バリウム化合物としては、例えば、酸化バリウム、酢酸バリウム、炭酸バリウム、塩素酸バリウム、塩化バリウム、フッ化バリウム、ヨウ化バリウム、乳酸バリウム、シュウ酸バリウム、過塩素酸バリウム、セレン酸バリウム、亜セレン酸バリウム、ステアリン酸バリウム、亜硫酸バリウム、チタン酸バリウム、水酸化バリウム、硝酸バリウム、あるいはこれらの水和物等が挙げられる。
 上記バリウム化合物の中でも、酸化バリウム、酢酸バリウム、炭酸バリウムが好ましく、酸化バリウムが特に好ましい。
 ハロゲン単体としては、例えば、塩素、フッ素、臭素が挙げられる。
 中でも、上記水酸化アルミニウム溶解液が、酸を含有する水溶液であるのが好ましく、酸として、硝酸、塩酸、硫酸、燐酸、シュウ酸等が挙げられ、2種以上の酸の混合物であってもよい。
 酸濃度としては、0.01mol/L以上であるのが好ましく、0.05mol/L以上であるのがより好ましく、0.1mol/L以上であるのが更に好ましい。上限は特にないが、一般的には10mol/L以下であるのが好ましく、5mol/L以下であるのがより好ましい。
 溶解処理は、水酸化アルミニウム皮膜が形成されたアルミニウム基材を上述した溶解液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。
 浸せき法は、水酸化アルミニウム皮膜が形成されたアルミニウム基材を上述した溶解液に浸せきさせる処理である。浸せき処理の際にかくはんを行うと、ムラのない処理が行われるため、好ましい。
 浸せき処理の時間は、10分以上であるのが好ましく、1時間以上であるのがより好ましく、3時間以上、5時間以上であるのが更に好ましい。
 <アルカリエッチング処理>
 アルカリエッチング処理は、上記水酸化アルミニウム皮膜をアルカリ溶液に接触させることにより、表層を溶解させる処理である。
 アルカリ溶液に用いられるアルカリとしては、例えば、カセイアルカリ、アルカリ金属塩が挙げられる。具体的には、カセイアルカリとしては、例えば、水酸化ナトリウム(カセイソーダ)、カセイカリが挙げられる。また、アルカリ金属塩としては、例えば、メタケイ酸ソーダ、ケイ酸ソーダ、メタケイ酸カリ、ケイ酸カリ等のアルカリ金属ケイ酸塩;炭酸ソーダ、炭酸カリ等のアルカリ金属炭酸塩;アルミン酸ソーダ、アルミン酸カリ等のアルカリ金属アルミン酸塩;グルコン酸ソーダ、グルコン酸カリ等のアルカリ金属アルドン酸塩;第二リン酸ソーダ、第二リン酸カリ、第三リン酸ソーダ、第三リン酸カリ等のアルカリ金属リン酸水素塩が挙げられる。中でも、エッチング速度が速い点および安価である点から、カセイアルカリの溶液、および、カセイアルカリとアルカリ金属アルミン酸塩との両者を含有する溶液が好ましい。特に、水酸化ナトリウムの水溶液が好ましい。
 アルカリ溶液の濃度は、0.1~50質量%であるのが好ましく、0.2~10質量%であるのがより好ましい。アルカリ溶液中にアルミニウムイオンが溶解している場合には、アルミニウムイオンの濃度は、0.01~10質量%であるのが好ましく、0.1~3質量%であるのがより好ましい。アルカリ溶液の温度は10~90℃であるのが好ましい。処理時間は1~120秒であるのが好ましい。
 水酸化アルミニウム皮膜をアルカリ溶液に接触させる方法としては、例えば、水酸化アルミニウム皮膜が形成されたアルミニウム基材をアルカリ溶液を入れた槽の中を通過させる方法、水酸化アルミニウム皮膜が形成されたアルミニウム基材をアルカリ溶液を入れた槽の中に浸せきさせる方法、アルカリ溶液を水酸化アルミニウム皮膜が形成されたアルミニウム基材の表面(水酸化アルミニウム皮膜)に噴きかける方法が挙げられる。
 〔酸化膜形成工程〕
 酸化膜形成工程は、水酸化アルミニウム皮膜を除去したアルミニウム基材を第2の酸性水溶液に接触させて(酸化膜形成処理を施し)、アルミニウム基材の表面ないし裏面に、密度が2.7~4.1g/cm3で、膜厚が5nm以下の酸化膜を形成する工程である。
 前述のとおり、酸化膜形成処理を施し、アルミニウム基材の表面に、膜厚が薄く、高い密度の酸化膜を形成することで、経時によりアルミニウム基材の酸化が進行するのを抑制して、酸化膜の厚みが厚くなるのを抑制できるので、電気抵抗が低い状態を安定して維持することができる。
 膜厚が薄く、密度の高い酸化膜の形成方法としては、以下の2つの方法がある。
・アルミニウム基材を、水和物が生成されにくい酸性の溶液に接触させて酸化膜を形成する方法。
・酸性の溶液に接触させて酸化膜を形成した後、高温加熱処理を行って、酸化膜中の水和物の割合を少なくして酸化膜を緻密化する方法(酸化膜緻密化工程)。
 (水和物が生成されにくい酸性の溶液に接触させる方法)
 具体的には、アルミニウム基材を、水和物が生成されにくい酸性の溶液(第2の酸性水溶液)に接触させて酸化膜を形成する場合の酸性溶液としては、硝酸、硫酸、燐酸、シュウ酸、あるいは、これらの2以上の混酸を用いることが好ましく、硝酸、硫酸、あるいは、これらの混酸を用いることがより好ましい。
 酸性溶液の濃度は0.01~10質量%であるのが好ましく、0.1~5質量%であるのが特に好ましい。また、酸性溶液の液温は25~70℃であるのが好ましく、30~55℃であるのがより好ましい。
 また、アルミニウム基材を酸性溶液に接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。
 浸せき法は、アルミニウム基材を上述した酸性溶液に浸せきさせる処理である。浸せき処理の際にかくはんを行うと、ムラのない処理が行われるため、好ましい。
 浸せき処理の時間は、15秒以上であるのが好ましく、30秒以上であるのがより好ましく、40秒以上であるのが更に好ましい。
 (酸化膜形成後に酸化膜緻密化工程を行う方法)
 酸性の溶液に接触させて酸化膜を形成した後、高温加熱処理を行って酸化膜中の水和物の割合を少なくする場合の酸性溶液としては、硝酸、硫酸、燐酸、シュウ酸、あるいは、これらの2以上の混酸を用いることが好ましく、硝酸、硫酸、あるいは、これらの混酸を用いることがより好ましい。
 酸性溶液の濃度は0.01~10質量%であるのが好ましく、0.1~5質量%であるのが特に好ましい。また、酸性溶液の液温は25~70℃であるのが好ましく、30~55℃であるのがより好ましい。
 また、アルミニウム基材を酸性溶液に接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。
 浸せき法は、アルミニウム基材を上述した酸性溶液に浸せきさせる処理である。浸せき処理の際にかくはんを行うと、ムラのない処理が行われるため、好ましい。
 浸せき処理の時間は、15秒以上であるのが好ましく、30秒以上であるのがより好ましく、40秒以上であるのが更に好ましい。
 <酸化膜緻密化工程>
 酸化膜緻密化工程は、酸性の溶液に接触させて酸化膜を形成した後のアルミニウム基材に高温加熱処理を行う工程である。高温加熱処理を行うことで、酸化膜中のアルミニウムの水和物から水分が除去されて酸化アルミニウムの比率が高くなる。これにより、酸化膜中の酸化アルミニウムの割合を増加させて密度を高く(緻密化)することができる。
 加熱温度は、100℃以上400℃以下であるのが好ましく、200℃超350℃以下であるのがより好ましく、250℃以上330℃以下であるのが更に好ましい。
 加熱時間は、1分~30分であるのが好ましく、3分~20分であるのがより好ましく、5分~15分であるのが更に好ましい。
 加熱温度を300℃以上とし、加熱時間を5分以上とすることで、酸化膜中の水和物の割合を低減することができ、好ましい。一方で、長時間加熱しすぎると、アルミニウム基材の酸化が進行して酸化膜の膜厚が増大してしまうおそれがある。したがって、加熱温度および加熱時間は、上記範囲とするのが好ましい。
 〔水洗工程〕
 前述のとおり、本発明においては、上述した皮膜形成工程、皮膜除去工程、酸化膜形成工程、および、貫通孔形成工程それぞれの工程終了後には水洗処理を行う水洗工程を有するのが好ましい。水洗には、純水、井水、水道水等を用いることができる。処理液の次工程への持ち込みを防ぐためにニップ装置を用いてもよい。
 〔乾燥工程〕
 前述のとおり、各工程後の水洗工程の後には、乾燥処理を行う乾燥工程を有するのが好ましい。
 乾燥の方法には限定はなく、エアナイフ等により水分を吹き飛ばす方法、加熱による方法等の公知の乾燥方法が適宜利用可能である。また、複数の乾燥方法を行なってもよい。
 ここで、酸化膜形成工程の後にアルミニウム基材を水洗する水洗工程を有するのが好ましく、酸化膜形成工程後の水洗工程の後に、乾燥工程を有するのが好ましい。
 酸化膜形成工程でアルミニウム基材の表面に酸化膜を形成した後に、アルミニウム基材(酸化膜)の表面に残存する第2の酸性水溶液を除去するために水洗工程を行うと、酸化膜の表面に水膜が残存することになる。酸化膜の表面に水膜が残存すると、経時により水分が酸化膜に浸透して酸化膜が水和物になり、酸化膜の密度が低下するおそれがある。
 そこで、酸化膜形成工程後の水洗工程の後に乾燥工程を行い、酸化膜の表面に残存する水膜を除去することで、経時により水分が酸化膜に浸透して酸化膜が水和物になり、酸化膜の密度が低下することを抑制できる。
 加熱により乾燥を行う場合の乾燥温度は、100~200℃が好ましく、100~150℃がより好ましい。また、乾燥時間は、1~30秒が好ましく、3~10秒がより好ましい。
 ここで、上記の説明では、図2Bに示すような貫通孔を有する電極用アルミニウム部材を製造する製造方法について説明したが、貫通孔を形成しない場合には、水酸化アルミニウム皮膜を形成する皮膜形成工程および貫通孔形成工程が不要であるため、水酸化アルミニウム皮膜を除去する工程も不要であるが、自然酸化により形成された酸化膜および油分を除去するために、先と同様の皮膜除去工程を実施するのが好ましい。
[集電体]
 上述のとおり、本発明の電極用アルミニウム部材は、蓄電デバイス用集電体(以下、「集電体」ともいう)として利用可能である。
 集電体は、電極用アルミニウム部材が厚み方向に複数の貫通孔を有していることにより、例えば、リチウムイオンキャパシタに用いた場合においては短時間でのリチウムのプレドープが可能となり、リチウムをより均一に分散させることが可能となる。また、活物質層や活性炭との密着性が良好となり、サイクル特性や出力特性、塗布適性等の生産性に優れる蓄電デバイスを作製することができる。
 また、本発明の電極用アルミニウム部材を用いる集電体は、酸化膜の密度が2.7~4.1g/cm3であり、厚みが5nm以下であるので、活物質層との間の電気抵抗が低くなり、効率の良い蓄電デバイスを作製することができる。
<活物質層>
 活物質層としては特に限定はなく、従来の蓄電デバイスにおいて用いられる公知の活物質層が利用可能である。
 具体的には、電極用アルミニウム部材を正極の集電体として用いる場合の、活物質および活物質層に含有していてもよい導電材、結着剤、溶媒等については、特開2012-216513号公報の[0077]~[0088]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
 また、電極用アルミニウム部材を負極の集電体として用いる場合の、活物質については、特開2012-216513号公報の[0089]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[蓄電デバイス]
 本発明の電極用アルミニウム部材を集電体として利用する電極は、蓄電デバイスの正極あるいは負極として用いることができる。
 ここで、蓄電デバイス(特に、二次電池)の具体的な構成や適用される用途については、特開2012-216513号公報の[0090]~[0123]段落に記載された材料や用途を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[正極]
 本発明の電極用アルミニウム部材を集電体として用いた正極は、電極用アルミニウム部材を正極に用いた正極集電体と、正極集電体の表面に形成される正極活物質を含む層(正極活物質層)とを有する正極である。
 ここで、上記正極活物質や、上記正極活物質層に含有していてもよい導電材、結着剤、溶媒等については、特開2012-216513号公報の[0077]~[0088]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[負極]
 本発明の電極用アルミニウム部材を集電体として用いた負極は、電極用アルミニウム部材を負極に用いた負極集電体と、負極集電体の表面に形成される負極活物質を含む層とを有する負極である。
 ここで、上記負極活物質については、特開2012-216513号公報の[0089]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[その他の用途]
 本発明の電極用アルミニウム部材は、蓄電デバイス用の集電体の他、電解コンデンサにも用いることができる。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 [実施例1]
 <電極用アルミニウム部材の作製>
 平均厚さ20μm、大きさ200mm×300mmのアルミニウム基材(JIS H-4160、合金番号:1N30-H、アルミニウム純度:99.30%)の表面に、以下に示す処理を施し、電極用アルミニウム部材を作製した。
 (a-1)水酸化アルミニウム皮膜形成処理(皮膜形成工程)
 50℃に保温した電解液(硝酸濃度0.8%、硫酸濃度0.7%、アルミニウム濃度0.5%)を用いて、上記アルミニウム基材を陰極として、電気量総和が800C/dm2の条件下で電解処理を施し、アルミニウム基材に水酸化アルミニウム皮膜を形成した。なお、電解処理は、直流電源で行った。電流密度は、50A/dm2とした。
 水酸化アルミニウム皮膜形成後、スプレーによる水洗を行った。
 (b-1)電解溶解処理(貫通孔形成工程)
 次いで、50℃に保温した電解液(硝酸濃度0.8%、硫酸濃度0.7%、アルミニウム濃度0.5%)を用いて、アルミニウム基材を陽極として、電気量総和が800C/dm2の条件下で電解処理を施し、アルミニウム基材及び水酸化アルミニウム皮膜に貫通孔を形成した。なお、電解処理は、直流電源で行った。電流密度は、30A/dm2とした。
 貫通孔の形成後、スプレーによる水洗を行なった。
 (c-1)水酸化アルミニウム皮膜の除去処理(皮膜除去工程)
 次いで、電解溶解処理後のアルミニウム基材を、水酸化ナトリウム濃度5質量%、アルミニウムイオン濃度0.3質量%の水溶液(液温37℃)中に40秒間浸漬して水酸化アルミニウム皮膜を除去した。
 アルミニウム皮膜の除去後、スプレーによる水洗を行なった。
 (d-1)酸化膜形成処理(酸化膜形成工程)
 次いで、皮膜除去処理後のアルミニウム基材を、硝酸濃度1%、アルミニウムイオン濃度0.5質量%の水溶液(液温50℃)中に20秒間浸漬してアルミニウム基材の表面に酸化膜を形成した。
 その後、スプレーによる水洗を行なった。
 (e-1)乾燥工程
 次いで、酸化膜を形成し水洗を行なったアルミニウム基材の表面に残存した水分をエアナイフで除去し、さらに、乾燥温度105℃で10秒間加熱して乾燥させることにより、電極用アルミニウム部材を作製した。
 [実施例2]
 上記(d-1)に示す酸化膜形成工程に代えて、下記(d-2)に示す酸化膜形成工程を行なった以外は、実施例1と同様にして電極用アルミニウム部材を作製した。
 (d-2)酸化膜形成処理(酸化膜形成工程)
 次いで、皮膜除去処理後のアルミニウム基材を、硫酸濃度30%、アルミニウムイオン濃度0.5質量%の水溶液(液温50℃)中に20秒間浸漬してアルミニウム基材の表面に酸化膜を形成した。
 その後、スプレーによる水洗を行なった。
 [実施例3]
 上記(e-1)に示す乾燥工程に代えて、下記(e-2)に示す乾燥工程を行い、さらに、下記(f-1)に示す酸化膜緻密化工程を行なった以外は、実施例1と同様にして電極用アルミニウム部材を作製した。
 (e-2)乾燥工程
 次いで、酸化膜を形成し水洗を行なったアルミニウム基材の表面に残存した水分をエアナイフで除去し、さらに、乾燥温度70℃で10秒間加熱して乾燥させた。
 (f-1)酸化膜緻密化工程(高温加熱処理)
 その後、300℃のオーブンに3分間入れて高温加熱処理を行い、電極用アルミニウム部材を作製した。
 [実施例4]
 上記(d-1)に示す酸化膜形成工程に代えて、上記(d-2)に示す酸化膜形成工程を行なった以外は、実施例3と同様にして電極用アルミニウム部材を作製した。
 [実施例5]
 上記(f-1)に示す酸化膜緻密化工程に代えて、下記(f-2)に示す酸化膜緻密化工程を行なった以外は、実施例3と同様にして電極用アルミニウム部材を作製した。
 (f-2)酸化膜緻密化工程(高温加熱処理)
 その後、300℃のオーブンに8分間入れて高温加熱処理を行い、電極用アルミニウム部材を作製した。
 [実施例6]
 上記(f-1)に示す酸化膜緻密化工程に代えて、下記(f-3)に示す酸化膜緻密化工程を行なった以外は、実施例3と同様にして電極用アルミニウム部材を作製した。
 (f-3)酸化膜緻密化工程(高温加熱処理)
 その後、230℃のオーブンに3分間入れて高温加熱処理を行い、電極用アルミニウム部材を作製した。
 [実施例7]
 上記(e-1)に示す乾燥工程の後に、さらに、上記(f-1)に示す酸化膜緻密化工程を行なった以外は、実施例1と同様にして電極用アルミニウム部材を作製した。
 [実施例8]
 上記(d-1)に示す酸化膜形成工程に代えて、上記(d-2)に示す酸化膜形成工程を行なった以外は、実施例7と同様にして電極用アルミニウム部材を作製した。
 [実施例9]
 上記(a-1)水酸化アルミニウム皮膜形成処理、および、上記(b-1)電解溶解処理を行わない以外は、実施例1と同様にして電極用アルミニウム部材を作製した。
 なお、本実施例においては、上記(a-1)水酸化アルミニウム皮膜形成処理を行わないため、上記(c-1)水酸化アルミニウム皮膜の除去処理に供されるアルミニウム基材には水酸化アルミニウム皮膜が形成されていないが、上記(c-1)水酸化アルミニウム皮膜の除去処理を行うことで圧延油の除去等を行う。
 [実施例10]
 上記(d-1)に示す酸化膜形成工程に代えて、上記(d-2)に示す酸化膜形成工程を行なった以外は、実施例9と同様にして電極用アルミニウム部材を作製した。
 [比較例1]
 上記(d-1)に示す酸化膜形成処理に代えて、下記(d-4)に示す酸化膜形成処理を施した以外は、実施例1と同様にして電極用アルミニウム部材を作製した。
 (d-4)酸化膜形成処理(酸化膜形成工程)
 次いで、皮膜除去処理後のアルミニウム基材を、塩酸濃度1%、アルミニウムイオン濃度0.5質量%の水溶液(液温50℃)中に20秒間浸漬してアルミニウム基材の表面に酸化膜を形成した。
 その後、スプレーによる水洗を行った。
 [比較例2]
 上記(d-1)に示す酸化膜形成処理に代えて、上記(d-2)に示す酸化膜形成処理を施し、上記(e-1)に示す乾燥工程に代えて、上記(e-2)に示す乾燥工程を行った以外は、実施例1と同様にして電極用アルミニウム部材を作製した。
 [比較例3]
 上記(e-1)に示す乾燥工程に代えて、上記(e-2)に示す乾燥工程を行なった以外は、実施例1と同様にして電極用アルミニウム部材を作製した。
 [比較例4]
 上記(e-2)に示す乾燥工程の後に、さらに、下記(f-4)に示す酸化膜緻密化工程を行なった以外は、比較例3と同様にして電極用アルミニウム部材を作製した。
 (f-4)酸化膜緻密化工程(高温加熱処理)
 その後、300℃のオーブンに60分間入れて高温加熱処理を行い、電極用アルミニウム部材を作製した。
 [比較例5]
 上記(e-2)に示す乾燥工程の後に、さらに、下記(f-5)に示す酸化膜緻密化工程を行なった以外は、比較例3と同様にして電極用アルミニウム部材を作製した。
 (f-5)酸化膜緻密化工程(高温加熱処理)
 その後、70℃のオーブンに3分間入れて高温加熱処理を行い、電極用アルミニウム部材を作製した。
 [貫通孔の平均開口径、平均開口率、酸化膜の膜厚および密度の測定]
 作製した電極用アルミニウム部材に形成された貫通孔の平均開口径および平均開口率、ならびに、酸化膜の密度および膜厚をそれぞれ以下の方法で測定した。
 <貫通孔の平均開口径の測定>
 貫通孔の平均開口径は、高分解能走査型電子顕微鏡(SEM)を用いて電極用アルミニウム部材の表面を真上から倍率200倍で撮影し、得られたSEM写真において、周囲が環状に連なっている貫通孔を少なくとも20個抽出し、その開口径を読み取って、これらの平均値を算出して求めた。
 <貫通孔の平均開口率の測定>
 貫通孔の平均開口率は、高分解能走査型電子顕微鏡(SEM)を用いて電極用アルミニウム部材の表面を真上から倍率200倍で撮影し、得られたSEM写真の30mm×30mmの視野(5箇所)について、画像解析ソフト等で2値化して貫通孔部分と非貫通孔部分を観察し、貫通孔の開口面積の合計と視野の面積(幾何学的面積)とから、比率(開口面積/幾何学的面積)を算出し、各視野(5箇所)における比率の平均値を平均開口率として算出した。
 <酸化膜の膜厚の測定>
 透過型電子顕微鏡(TEM)により断面を観察し、膜厚を測定した。
 <酸化膜の密度の測定>
 酸化膜の面密度の測定は、株式会社神戸製鋼所製、高分解能RBS分析装置 HRBS500(High Resolution Rutherford Backscattering Spectrometry;HR-RBS)を使用した。エネルギー450keVのHeイオンを試料面(電極用アルミニウム部材の酸化膜の表面)の法線に対し62.5度で試料に入射させ、散乱されたHeイオンを散乱角55度の位置で偏向磁場型エネルギー分析器により検出した。得られた面密度(atoms/cm2)から質量面密度(g/cm2)に換算し、この値と透過型電子顕微鏡(TEM)により測定した膜厚から酸化膜の密度(g/cm3)を算出した。
 各電極用アルミニウム部材の貫通孔の平均開口径、平均開口率、酸化膜の膜厚および密度の測定結果を表1に示す。
 また、実施例1で作製した電極用アルミニウム部材の表面を光学顕微鏡(LEICA社製 M205C、倍率100倍)およびSEM(HITACHI社製 S-3000N、倍率200倍)で撮影した。撮影した画像をそれぞれ図4および図5に示す。
 [評価]
 経時での酸化膜の膜厚、ならびに、作製した電極用アルミニウム部材を用いた電極の抵抗を評価した。
 <経時での酸化膜の膜厚>
 温度25℃、相対湿度70%の雰囲気に3週間放置した後、酸化膜の膜厚を測定した。
 <電気抵抗>
 (電極の作製)
 電極用アルミニウム部材の片面に、導電性塗料(バニーハイトT-602、日本黒鉛工業株式会社製)を塗布厚み3μmで塗工した後、200℃で24時間の条件で減圧乾燥して、導電層を形成し、電極を作製した。
 (電気抵抗測定)
 導電層を形成した電極用アルミニウム部材(電極)の表裏面にφ2.8cmの銅プローブを0.20MPaの荷重を掛けて密着させて、抵抗計(RESISTANCE HiTESTER 3541、日置電気株式会社)を用いて電気抵抗値を測定した。
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

 
 表1に示す通り、実施例と比較例との対比から、酸化膜の密度が2.7~4.1g/cm3で、膜厚が5nm以下の電極用アルミニウム部材は、経時による酸化の進行を抑制できるので、酸化膜の膜厚が厚くなるのを抑制でき、電気抵抗が低い状態を安定して維持することができることがわかる。
 また、実施例1~4の対比から、酸化膜の密度が高いほど経時での膜厚の増加が少ないことがわかる。
 以上より本発明の効果は明らかである。
 1 アルミニウム基材
 2 水酸化アルミニウム皮膜
 3 貫通孔を有するアルミニウム基材
 4 貫通孔を有する水酸化アルミニウム皮膜
 5 貫通孔
 10、20 電極用アルミニウム部材
 12 酸化膜
 14 貫通孔を有する酸化膜
 

Claims (18)

  1.  アルミニウム基材と、
     前記アルミニウム基材の少なくとも一方の主面に積層された酸化膜とを有し、
     前記酸化膜の密度が2.7~4.1g/cm3であり、厚みが5nm以下である電極用アルミニウム部材。
  2.  前記酸化膜が、酸化アルミニウム(Al23)、酸化アルミニウム1水和物(Al23・1H2O)および、酸化アルミニウム3水和物(Al23・3H2O)のいづれか1つを含む請求項1に記載の電極用アルミニウム部材。
  3.  前記酸化膜が、酸化アルミニウム(Al23)を70%以上含む請求項1または2に記載の電極用アルミニウム部材。
  4.  前記酸化膜が、酸化アルミニウム1水和物(Al23・1H2O)および、酸化アルミニウム3水和物(Al23・3H2O)を45%以下含む請求項1~3のいずれか一項に記載の電極用アルミニウム部材。
  5.  前記アルミニウム基材および前記酸化膜を厚み方向に貫通する複数の貫通孔を有する請求項1~4のいずれか一項に記載の電極用アルミニウム部材。
  6.  前記貫通孔の平均開口径が0.1μm以上100μm未満である請求項5に記載の電極用アルミニウム部材。
  7.  前記貫通孔の平均開口率が0.5%~30%である請求項請求項5または6に記載の電極用アルミニウム部材。
  8.  前記アルミニウム基材の厚みが5μm~100μmである請求項1~7のいずれか一項に記載の電極用アルミニウム部材。
  9.  前記酸化膜が、前記アルミニウム基材の両面に積層された請求項1~8のいずれか一項に記載の電極用アルミニウム部材。
  10.  請求項1~9のいずれか一項に記載の電極用アルミニウム部材を製造する電極用アルミニウム部材の製造方法であって、
     アルミニウム基材を陰極として、第1の酸性水溶液中で電解処理を行い、前記アルミニウム基材の表面に水酸化アルミニウム皮膜を形成する皮膜形成工程と、
     前記皮膜形成工程後の前記アルミニウム基材をアルカリ性水溶液に接触させて前記水酸化アルミニウム皮膜を除去する皮膜除去工程と、
     前記皮膜除去工程後の前記アルミニウム基材を第2の酸性水溶液に接触させて、前記アルミニウム基材の表面に酸化膜を形成する酸化膜形成工程と、を有する電極用アルミニウム部材の製造方法。
  11.  前記皮膜形成工程後、前記皮膜除去工程前に前記アルミニウム基材を陽極として、第3の酸性水溶液で電解処理を行い、前記アルミニウム基材および前記水酸化アルミニウム皮膜に貫通孔を形成する貫通孔形成工程を有する請求項10に記載の電極用アルミニウム部材の製造方法。
  12.  前記第2の酸性水溶液が、硝酸、硫酸、燐酸、シュウ酸、あるいは、これらの2以上の混酸である請求項10または11に記載の電極用アルミニウム部材の製造方法。
  13.  前記第2の酸性水溶液が、硝酸、硫酸、あるいは、これらの混酸である請求項10~12のいずれか一項に記載の電極用アルミニウム部材の製造方法。
  14.  前記酸化膜形成後の前記アルミニウム基材を水洗する水洗工程を有する請求項10~13のいずれか一項に記載の電極用アルミニウム部材の製造方法。
  15.  前記水洗工程後の前記アルミニウム基材の前記酸化膜に付着する水膜を除去する乾燥工程を有する請求項14に記載の電極用アルミニウム部材の製造方法。
  16.  前記乾燥工程は、前記アルミニウム基材を100℃~200℃に加熱する工程である請求項15に記載の電極用アルミニウム部材の製造方法。
  17.  前記水洗工程後の前記アルミニウム基材を加熱して、前記アルミニウム基材の前記酸化膜中に含まれる水和物を除去し、前記酸化膜を緻密化する酸化膜緻密化工程を有する請求項14~16のいずれか一項に記載の電極用アルミニウム部材の製造方法。
  18.  前記酸化膜緻密化工程における加熱温度が、100℃~400℃である請求項17に記載の電極用アルミニウム部材の製造方法。
     
     
     
PCT/JP2017/034356 2016-09-29 2017-09-22 電極用アルミニウム部材および電極用アルミニウム部材の製造方法 WO2018062046A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780060297.2A CN109791850B (zh) 2016-09-29 2017-09-22 电极用铝部件及电极用铝部件的制造方法
KR1020197006595A KR102180260B1 (ko) 2016-09-29 2017-09-22 전극용 알루미늄 부재 및 전극용 알루미늄 부재의 제조 방법
JP2018542523A JP6794463B2 (ja) 2016-09-29 2017-09-22 電極用アルミニウム部材の製造方法
EP17856000.9A EP3522193A4 (en) 2016-09-29 2017-09-22 ALUMINUM ELEMENT FOR ELECTRODES AND METHOD FOR PRODUCING ALUMINUM ELEMENT FOR ELECTRODES
US16/366,157 US20190221853A1 (en) 2016-09-29 2019-03-27 Aluminum member for electrodes and method for producing aluminum member for electrodes
US17/503,046 US11527760B2 (en) 2016-09-29 2021-10-15 Aluminum member for electrodes and method of producing aluminum member for electrodes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-191022 2016-09-29
JP2016191022 2016-09-29
JP2017030813 2017-02-22
JP2017-030813 2017-02-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/366,157 Continuation US20190221853A1 (en) 2016-09-29 2019-03-27 Aluminum member for electrodes and method for producing aluminum member for electrodes

Publications (1)

Publication Number Publication Date
WO2018062046A1 true WO2018062046A1 (ja) 2018-04-05

Family

ID=61762643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034356 WO2018062046A1 (ja) 2016-09-29 2017-09-22 電極用アルミニウム部材および電極用アルミニウム部材の製造方法

Country Status (7)

Country Link
US (2) US20190221853A1 (ja)
EP (1) EP3522193A4 (ja)
JP (1) JP6794463B2 (ja)
KR (1) KR102180260B1 (ja)
CN (1) CN109791850B (ja)
TW (1) TW201828523A (ja)
WO (1) WO2018062046A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020203085A1 (ja) * 2019-03-29 2020-10-08
JP2020198290A (ja) * 2019-05-31 2020-12-10 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited リチウムイオン二次電池、セル及び負極シート
US11646424B2 (en) 2019-05-31 2023-05-09 Contemporary Amperex Technology Co., Limited Lithium-ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156328A (ja) * 1998-11-19 2000-06-06 Toyota Motor Corp キャパシタまたは電池に使用される集電体の製造方法
JP2010118258A (ja) * 2008-11-13 2010-05-27 Toyota Motor Corp 正極集電体およびその製造方法
JP2013026041A (ja) * 2011-07-21 2013-02-04 Kobe Steel Ltd リチウムイオン二次電池用正極集電体、リチウムイオン二次電池用正極およびリチウムイオン二次電池用正極集電体の製造方法
WO2016060037A1 (ja) * 2014-10-14 2016-04-21 富士フイルム株式会社 アルミニウム板およびアルミニウム板の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660737A (en) * 1995-05-17 1997-08-26 Ventritex, Inc. Process for making a capacitor foil with enhanced surface area
US6621686B1 (en) * 2000-06-30 2003-09-16 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor formed with partially through-etched and through-hole punctured anode sheets
TW200537536A (en) * 2004-02-17 2005-11-16 Showa Denko Kk Method of manufacturing aluminum material for electrolytic capacitor electrodes, aluminum material for electrolytic capacitor electrodes, anode material for aluminum electrolytic capacitors, and aluminum electrolytic capacitors
WO2005086191A1 (en) * 2004-03-09 2005-09-15 Showa Denko K.K. Solid electrolytic capacitor and the use thereof
CN101142333B (zh) * 2005-03-17 2013-03-27 昭和电工株式会社 电解电容器电极用铝材及其制造方法、电解电容器用电极材料、铝电解电容器用阳极材料、电解电容器用阳极材料的制造方法及铝电解电容器
US20070189959A1 (en) * 2006-02-15 2007-08-16 Steven Allen Carlson Methods of preparing separators for electrochemical cells
CN100595345C (zh) * 2006-07-25 2010-03-24 大连理工大学 具有韧性多孔阳极氧化铝膜及其制备方法
JP5560595B2 (ja) * 2009-06-18 2014-07-30 富士電機株式会社 半導体装置の製造方法
JP5460155B2 (ja) * 2009-07-14 2014-04-02 新光電気工業株式会社 キャパシタ及び配線基板
JP5299710B2 (ja) 2010-12-13 2013-09-25 トヨタ自動車株式会社 正極集電体およびその製造方法
JP2014072267A (ja) * 2012-09-28 2014-04-21 Hitachi Aic Inc 貫通孔を有するアルミニウム集電箔およびその製造方法
WO2016017380A1 (ja) * 2014-07-31 2016-02-04 富士フイルム株式会社 アルミニウム板
KR101661141B1 (ko) * 2014-08-18 2016-09-29 (주)포인트엔지니어링 접철형 커패시터
WO2016051976A1 (ja) * 2014-09-30 2016-04-07 富士フイルム株式会社 アルミニウム板
CN105869905A (zh) * 2015-02-06 2016-08-17 韩国Jcc株式会社 双电层电容器的高电压电极及其制备方法
US10158122B2 (en) * 2016-08-08 2018-12-18 Nanotek Instruments, Inc. Graphene oxide-bonded metal foil thin film current collector and battery and supercapacitor containing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156328A (ja) * 1998-11-19 2000-06-06 Toyota Motor Corp キャパシタまたは電池に使用される集電体の製造方法
JP2010118258A (ja) * 2008-11-13 2010-05-27 Toyota Motor Corp 正極集電体およびその製造方法
JP2013026041A (ja) * 2011-07-21 2013-02-04 Kobe Steel Ltd リチウムイオン二次電池用正極集電体、リチウムイオン二次電池用正極およびリチウムイオン二次電池用正極集電体の製造方法
WO2016060037A1 (ja) * 2014-10-14 2016-04-21 富士フイルム株式会社 アルミニウム板およびアルミニウム板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3522193A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020203085A1 (ja) * 2019-03-29 2020-10-08
WO2020203085A1 (ja) * 2019-03-29 2020-10-08 富士フイルム株式会社 アルミニウム箔、アルミニウム箔の製造方法、集電体、リチウムイオンキャパシタ、および、リチウムイオンバッテリー
KR20210133270A (ko) 2019-03-29 2021-11-05 후지필름 가부시키가이샤 알루미늄박, 알루미늄박의 제조 방법, 집전체, 리튬 이온 커패시터, 및, 리튬 이온 배터리
CN113646460A (zh) * 2019-03-29 2021-11-12 富士胶片株式会社 铝箔、铝箔的制造方法、集电体、锂离子电容器及锂离子电池
JP7183395B2 (ja) 2019-03-29 2022-12-05 富士フイルム株式会社 アルミニウム箔、アルミニウム箔の製造方法、集電体、リチウムイオンキャパシタ、および、リチウムイオンバッテリー
CN113646460B (zh) * 2019-03-29 2023-08-15 富士胶片株式会社 铝箔、铝箔的制造方法、集电体、锂离子电容器及锂离子电池
JP2020198290A (ja) * 2019-05-31 2020-12-10 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited リチウムイオン二次電池、セル及び負極シート
US11611081B2 (en) 2019-05-31 2023-03-21 Contemporary Amperex Technology Co., Limited Lithium ion secondary battery, battery core, negative electrode plate, and apparatus
US11646424B2 (en) 2019-05-31 2023-05-09 Contemporary Amperex Technology Co., Limited Lithium-ion secondary battery
JP7271390B2 (ja) 2019-05-31 2023-05-11 寧徳時代新能源科技股▲分▼有限公司 リチウムイオン二次電池、セル及び負極シート

Also Published As

Publication number Publication date
JP6794463B2 (ja) 2020-12-02
CN109791850A (zh) 2019-05-21
US20220037671A1 (en) 2022-02-03
KR102180260B1 (ko) 2020-11-18
US11527760B2 (en) 2022-12-13
JPWO2018062046A1 (ja) 2019-07-11
CN109791850B (zh) 2021-06-01
US20190221853A1 (en) 2019-07-18
TW201828523A (zh) 2018-08-01
EP3522193A4 (en) 2019-10-30
EP3522193A1 (en) 2019-08-07
KR20190031576A (ko) 2019-03-26

Similar Documents

Publication Publication Date Title
JP6374013B2 (ja) アルミニウム板
US11527760B2 (en) Aluminum member for electrodes and method of producing aluminum member for electrodes
WO2015115531A1 (ja) アルミニウム板の製造方法、アルミニウム板、蓄電デバイス用集電体および蓄電デバイス
JP6328785B2 (ja) アルミニウム板およびアルミニウム板の製造方法
WO2016017380A1 (ja) アルミニウム板
WO2017018462A1 (ja) アルミニウム板およびアルミニウム板の製造方法
JP6636612B2 (ja) アルミニウム板の製造方法、及び、アルミニウム板の製造装置
US11527758B2 (en) Aluminum foil and aluminum member for electrodes
WO2022185778A1 (ja) 集電体用アルミニウム基材、キャパシタ、二次電池、および、集電体用アルミニウム基材の製造方法
CN113646460B (zh) 铝箔、铝箔的制造方法、集电体、锂离子电容器及锂离子电池
JP7526800B2 (ja) 集電体用アルミニウム部材、ならびに、リチウムイオンキャパシタ、電気二重層キャパシタ、半固体電池、固体電池、および、非水電解液を使用する二次電池
WO2022044624A1 (ja) 集電体用アルミニウム部材、ならびに、リチウムイオンキャパシタ、電気二重層キャパシタ、半固体電池、固体電池、および、非水電解液を使用する二次電池
WO2021033537A1 (ja) アルミニウム箔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006595

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018542523

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017856000

Country of ref document: EP

Effective date: 20190429