WO2018059325A1 - 无人机飞行控制方法和*** - Google Patents

无人机飞行控制方法和*** Download PDF

Info

Publication number
WO2018059325A1
WO2018059325A1 PCT/CN2017/102975 CN2017102975W WO2018059325A1 WO 2018059325 A1 WO2018059325 A1 WO 2018059325A1 CN 2017102975 W CN2017102975 W CN 2017102975W WO 2018059325 A1 WO2018059325 A1 WO 2018059325A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
flight
control system
uav
route
Prior art date
Application number
PCT/CN2017/102975
Other languages
English (en)
French (fr)
Inventor
胡华智
贾宗林
熊逸放
Original Assignee
亿航智能设备(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亿航智能设备(广州)有限公司 filed Critical 亿航智能设备(广州)有限公司
Publication of WO2018059325A1 publication Critical patent/WO2018059325A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones

Definitions

  • the present invention relates to the field of drone technology, and in particular, to a drone flight control method and system.
  • the terminal control modes are basically remote controllers or consoles, and the corresponding controllers need to be manually used for control.
  • the application scenarios of drones in various fields are becoming more and more abundant, and the frequency of use is getting higher and higher.
  • the commonly used application areas include: police, energy, land and resources, entertainment, commerce, agriculture, power line, logistics and disaster prevention and relief, among which the market size in the logistics field is relatively large.
  • the trial production participants of UAV express delivery are mainly global e-commerce giants, retail giants and logistics companies, including Google, Amazon, and Ali.
  • the terminal control mode is basically a remote controller or a console, and it is necessary to manually control the corresponding controller.
  • a UAV flight control method includes:
  • the location information of the take-off landing location is recorded into the mobile intelligent terminal and saved;
  • the route is introduced into the UAV control system by moving the intelligent terminal to the control data link of the drone control system, and the drone is controlled to fly from the takeoff point to the landing point along the route.
  • a UAV flight control method comprising:
  • the UAV control system controls the drone to fly from the takeoff point to the landing point along the route according to the location information of the takeoff and landing point of the route;
  • the drone control system returns the actual flight parameters of the drone to the mobile intelligent terminal.
  • a UAV flight control system includes: a mobile intelligent terminal and a drone control system provided in the drone;
  • the mobile intelligent terminal and the drone control system are connected through a wireless network, including a control data link and a backhaul data link;
  • the mobile intelligent terminal enters the location information of the takeoff and landing site according to the takeoff and landing location selected by the user, and saves the location information according to the landing point of the drone flight input by the user, and obtains Position information of a landing point of the flight mission, generating a route from the takeoff point to the destination on the electronic map according to the location information; importing the route into the drone control system by using the control data link, and controlling The drone flies from the takeoff point to the landing point along the route;
  • the UAV control system of the UAV control system controls the drone to fly from the takeoff point to the landing point along the route according to the position information of the takeoff and landing point of the route; During flight, based on the backhaul data link of the UAV control system to the mobile intelligent terminal, the actual flight parameters of the UAV are Return to the mobile smart terminal.
  • the above-mentioned UAV flight control method and system uses the mobile intelligent terminal to generate a route, introduces the drone control system to perform automatic flight, and controls the flight of the drone by constructing a control data link. Reduce the complexity of drone control; especially in express delivery services, it can significantly improve the efficiency of express delivery services and reduce costs.
  • FIG. 1 is a flow chart of a drone flight control method according to an embodiment
  • FIG. 2 is a schematic diagram of data transmission between a mobile intelligent terminal and a drone
  • FIG. 3 is a flow chart of another embodiment of a drone flight control method
  • FIG. 4 is a schematic diagram of an obstacle avoidance flight of a drone
  • FIG. 5 is a schematic diagram of a drone delivering goods
  • FIG. 6 is a schematic structural diagram of a drone flight control system according to an embodiment
  • FIG. 7 is a basic functional flow chart of a drone flight control system.
  • FIG. 1 is a flowchart of a method for controlling flight control of a drone according to an embodiment, including:
  • the human-computer interaction function can be implemented by using an APP client installed on the mobile intelligent terminal.
  • the take-off and landing sites of the drone are selected according to the use requirements, and the GPS module function of the mobile intelligent terminal can be used to measure the location information of these locations, and then the information is recorded and saved to the mobile intelligent terminal. in.
  • the location information may include latitude and longitude coordinates of the take-off point and the landing point, the take-off point and Height of the landing point; Calculate the height difference using the height of the landing point, and use the coordinates and height difference of the landing point to determine the route.
  • S102 reading a landing point of a UAV flight input by the user on the mobile intelligent terminal, acquiring location information of the landing and landing point, and generating, on the electronic map, a departure point to a destination according to the location information.
  • the route is surveyed, the flight route of the drone is entered in the APP client, and then the route is imported into the drone control system to write the route task.
  • the drone control system automatically controls the drone to fly from the takeoff point to the landing point along the route;
  • the mobile intelligent terminal needs to establish a control data link between the drone control systems, and can adopt a 4G network.
  • the route is introduced into the drone control system, and the drone control system uses the route to automatically fly from the takeoff point to the landing point.
  • the drone control system returns the real flight parameters to the mobile intelligent terminal interface through the 4G network for display; in the scheme adopting Wi-Fi communication, no one The machine control system displays the actual flight parameters on the mobile intelligent terminal interface within the coverage of the Wi-Fi signal near the take-off and landing points. Thus, the user can actually monitor the flight status of the drone.
  • the above-mentioned actual flight parameters may include the current position information of the drone, the altitude information, the number of GPS satellites, the flight speed, the flight path, the power quantity, and the attitude information, etc., through the above parameter information, the user can fully understand the unmanned Flight status of the aircraft.
  • the VR glasses can be used for viewing; firstly, the data connection between the mobile intelligent terminal and the VR glasses is established, and the interface of the mobile intelligent terminal is displayed on the VR glasses for display. .
  • FIG. 2 is a schematic diagram of data transmission between a mobile intelligent terminal and a drone, by writing a data link to write a route, and returning a flight parameter by returning a data link, and realizing the VR glasses. ⁇ show flight Parameters.
  • the solution of the above embodiment fully utilizes the convenience of operation and the diversity of functions of the mobile intelligent terminal (smartphone/tablet), and does not need to configure a remote controller for the drone, and can select mobile when performing the take-off and landing site.
  • the intelligent terminal measures the data, and the related data can be saved in the mobile intelligent terminal after testing.
  • the form of the APP client is convenient for human-computer interaction. After using the user, the user only needs to select the landing and landing point on the APP client, and then the mobile intelligent The terminal writes the route to the drone control system, and the drone control system can then perform the flight according to the route.
  • a mobile intelligent terminal can plan a route for multiple unmanned aerial vehicles, and multiple mobile intelligent terminals can control an unmanned aerial vehicle by using an APP client, and the user can actually view through the APP client.
  • the actual flight information of the drone can plan a route for multiple unmanned aerial vehicles, and multiple mobile intelligent terminals can control an unmanned aerial vehicle by using an APP client, and the user can actually view through the APP client. The actual flight information of the drone.
  • the route library is created, and then after performing the flight task, the corresponding route is selected from the route library and imported into the drone control system.
  • the UAV flight control method according to the embodiment of the present invention is particularly suitable for a logistics and transportation use scenario with low weight and high efficiency, such as short-distance meal delivery, express delivery, etc., and provides automatic express delivery service. Reduce the complexity of drone control and improve the efficiency of express delivery services.
  • the APP client automatically presets the route task to the drone, so that the drone can perform the task of transporting the cargo according to the route.
  • FIG. 3 is a flowchart of a method for controlling flight control of a drone according to another embodiment, including:
  • S201 importing a flight path of the mission into the drone control system by moving the smart terminal to a control data link of the drone control system;
  • a control data link of the mobile intelligent terminal to the drone control system is established, and the mobile intelligent terminal can be used to select a route take-off point, route survey, and then generate a route to the drone control system.
  • the UAV control system controls the drone to fly from the takeoff point to the landing point along the route according to the location information of the takeoff and landing point of the route;
  • the drone control system may fly according to the location information of the route, and automatically fly from the takeoff point to the landing point.
  • the drone needs to confirm whether the current landing point is correct in the APP client before each execution of the flight task. If it is correct, the drone is automatically executed after the input confirmation. Task, if not correct, the APP client guides the user to reset the landing and landing point.
  • the UAV control system controls the UAV to acquire the real position information through the GPS module of the UAV, and the actual position information and the target waypoint on the route. The coordinate information of the (coordinate points on the route) is compared to control the drone to fly along the route.
  • the UAV control system further detects an obstacle through a detector installed on the UAV, and detects an obstacle, according to the current position of the UAV and the position of the edge of the obstacle. Position, controlling the drone to set a safe distance from the edge of the obstacle, flying around the obstacle or controlling the drone to climb the flight, bypassing the obstacle, and after bypassing the obstacle, controlling the drone to continue Fly to the target waypoint.
  • FIG. 4 is a schematic diagram of an obstacle avoidance flight of a drone.
  • the obstacle is prevented by flying around the obstacle, and the flight height can also be raised to avoid obstacles.
  • the drone control system monitors the flight state of the drone, and transmits the flight parameters back to the mobile intelligent terminal.
  • the mobile intelligent terminal can perform the man-machine through the form of the APP client. Interaction, after using ⁇ , the user operates on the APP client to complete the control of the drone. You can use the APP client of multiple mobile intelligent terminals to view the flight status of the same drone. You can also use the APP client of a mobile intelligent terminal to view the flight status of multiple drones. In this way, both the sender and the receiver can view the status information of the drone after the goods are transported.
  • the automatic mode of the drone control system is triggered by the mobile intelligent terminal, and the GPS module of the drone is started to search for the GPS signal, and the GPS signal is unlocked after being stabilized; Thereby avoiding GPS positioning errors during take-off and improving flight safety.
  • the drone is provided with a cargo box (loading cargo) with an electronic lock structure; when the load box is required to be locked or locked, the drone control system passes The control data link receives a corresponding shackle command or a lockout command, and controls the electronic lock structure to be shackled or latched;
  • the UAV control system monitors the status of the cargo box and returns it to the mobile intelligent terminals of both the transmitting and receiving parties, and knows the status of the goods to avoid loss.
  • the drone control system calculates whether the power can complete the current according to the distance of the route, the weight of the current load box, and the current weather condition affecting parameter. Flight mission, when the power of the drone is insufficient, a warning prompt is issued, and the drone is stopped to take off;
  • the UAV control system calculates the flight power consumption according to the remaining distance of the route, the carrying weight of the cargo box, and the current weather condition affecting parameters. Quantity, and calculate whether the remaining power can complete the current mission.
  • the power of the drone is insufficient, re-plan the route according to the location information of the pre-stored station and the actual location information of the current drone, and control the drone to fly to the nearest Station
  • the UAV control system after the delivery of the goods at the station, the UAV control system establishes a communication connection with the station via Wi-Fi after the UAV reaches the station at the target location; and controls the storage of the station.
  • the module starts and delivers the goods, and after the delivery is completed, the storage module of the control station will be closed; after the storage module is closed, the control box is closed and the return flow is entered.
  • the drone control system performs ranging using an ultrasonic device installed at the bottom of the drone, and according to the distance between the drone and the storage module, the actual control is not The speed of the human machine
  • the ultrasonic device After the drone is lowered, the ultrasonic device transmits ultrasonic waves downward, and receives ultrasonic reflected waves.
  • the flight control system converts the distance data according to the propagation characteristics of the ultrasonic waves in the air, thereby achieving the purpose of measuring the distance. According to the measured distance between the drone and the ground, the control aircraft slowly descends as it approaches the ground, thus avoiding the speed of falling too fast and damaging the drone.
  • the UAV flight control system calculates whether the remaining power is sufficient to return to the takeoff point. If sufficient, the drone will automatically return to the takeoff point after the delivery is completed. The drone is charged until the power is sufficient to support the drone to complete the return flight, and the drone is restarted to return to the route.
  • the mobile intelligent terminal sends an instruction through the drone control system to control the drone to deliver the goods at a specified latitude, longitude and altitude, and automatically return to the air. If the user needs to take out the corresponding goods actively, the goods are taken out after the goods are taken out. , restart the aircraft power, control the drone to fly back to the takeoff point according to the original route.
  • FIG. 5 is a schematic diagram of the delivery of the unmanned aerial vehicle. After the drone is lowered, the ultrasonic device transmits the ultrasonic ranging downward, and reduces the descending speed, and controls the storage module of the station through the Wi-Fi. Delivery of goods at a certain height, after the delivery is completed, the control storage module will be closed and locked, after the storage module is closed
  • the drone can deliver the goods according to the imported route. If the route needs to be changed, the route survey is performed again, the location information of the landing point is recorded, and a new route is introduced into the drone control system. Complete the route update settings.
  • FIG. 6 is a schematic structural diagram of a drone flight control system according to an embodiment, including: a mobile intelligent terminal and a drone control system provided in the drone;
  • the mobile intelligent terminal and the drone control system are connected through a wireless network, including a control data link and a backhaul data link;
  • the mobile intelligent terminal enters the location information of the takeoff and landing site according to the takeoff and landing location selected by the user, and saves the location information according to the landing and landing point of the drone flight input by the user in the survey route; a flight task, acquiring location information of a landing point of the mission, generating a route from the takeoff point to the destination on the electronic map according to the location information; importing the route into the drone by using the control data link a control system that controls the drone to fly from the takeoff point to the landing point along the route;
  • the UAV control system of the UAV control system controls the drone to fly from the takeoff point to the landing point along the route according to the position information of the takeoff and landing point of the route; During the flight, based on the backhaul data link of the drone control system to the mobile intelligent terminal, the actual flight parameters of the drone are returned to the mobile intelligent terminal.
  • the function of the mobile intelligent terminal can be implemented by an APP client, and the user can conveniently control the flight of the drone through the APP client. At the same time, you can also combine the use of VR glasses to make it easier for users to view related information.
  • FIG. 7 is a basic functional flowchart of the UAV flight control system.
  • the user operates through the AAP client to communicate with the UAV control system, and the user completes the selection of the take-off landing point and enters Go to the APP client, and then enter the information of the survey route. After confirming the dispatch of the mission, write the route task to the drone. After the drone is unlocked, the flight will be automatically performed. The APP client will display the unmanned. The drone of the machine control system returned to the actual flight state.
  • the UAV can be controlled by using the intelligent mobile terminal; the express delivery service can be automatically performed according to the route surveyed by the user; (Climb or bypass); According to the situation, pre-set the safe landing height; safely take off and land at the landing point; record various information about the flight of the drone (including flight path, altitude, electricity, etc.) and create a route
  • the flight status of the drone and the cargo carried can also be monitored by VR glasses; the drone has a smart load box with an electronic lock structure that can automatically open and close the door; the drone can be based on Actually, the goods are placed and collected at the station, and wirelessly charged at the station; the power calculation and evaluation of the drone is carried out, and corresponding safety measures are taken; the drone can automatically return after the finished goods are delivered; or the drone After arriving at the receiving location, the user takes out the goods, restarts the aircraft, and the drone automatically returns.
  • the multiple UAVs are dispatched through the central dispatching system, and the central dispatching system dispatches multiple UAVs at different altitudes from the takeoff point to the landing point.
  • the central dispatching system can also assign different inter-segments to multiple drones, so that multiple drones take off from the take-off point in different inter-segments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机飞行控制方法和***,其中包括:根据用户选定的无人机起飞降落地点,将起飞降落地点的位置信息录入移动智能终端并保存(S101);读取用户在移动智能终端上输入的无人机飞行的起降点,获取起降点的位置信息,根据位置信息在电子地图上生成从起飞点到目的地的航线(S102);通过移动智能终端至无人机控制***的控制数据链路将航线导入无人机控制***,控制无人机沿着航线由起飞点飞行至降落点(S103)。通过构建控制数据链对无人机飞行进行控制,降低无人机操控的复杂度;特别是用在快递运输服务中,能够明显提高快递运输服务的效率、降低成本。

Description

发明名称:无人机飞行控制方法和***
技术领域
[0001] 本发明涉及无人机技术领域, 特别是涉及一种无人机飞行控制方法和***。
背景技术
[0002] 目前针对于各个领域使用的无人机, 其终端操控方式基本都是遥控器或操控台 , 需要人工使用相应控制器进行控制。 随着技术的发展和需求的产生, 无人机 在各个领域中的应用场景越来越丰富, 使用频率越来越高。 目前常用的应用领 域主要包括: 警用、 能源、 国土资源、 娱乐、 商业、 农业、 电力巡线、 物流和 防灾救灾等, 其中物流领域的市场规模占比较大。 无人机快递运输的试产参与 者主要是全球的电商巨头、 零售业巨头和物流企业, 包括 Google、 Amazon. 阿 里等。
[0003] 此外, 据国家***公布的数据, 2015年全国快递年业务量累计完成 206.7亿件 。 从 100亿件到 200亿件, 仅仅用了 432天。 由北京交通大学、 阿里研究院和菜鸟 网络联合发布的 《全国社会化电商物流从业人员研究报告》 显示, 承担了其中 主要递送业务的电商物流从业人员达到 203.3万人。 可见, 快递运输服务已经不 能再仅依靠人的力量, 也需要新的技术、 数据等智能服务***进行支持。 由于 小型快递无人机具有成本低、 效率高、 可以实现货物投送自动化、 信息化的多 重优势, 因此能够降低物流的人工成本、 运营成本, 缩短快件的配送吋间, 减 少延误率和丢失率。
[0004] 现在的技术下, 如上所述, 针对于各个领域使用的无人机, 其终端操控方式基 本都是遥控器或操控台, 需要人工使用相应控制器进行控制。
技术问题
[0005] 对于小重量、 吋效性要求高的物流运输使用场景, 复杂的操作设备影响了用户 的操作效率, 无法为用户提供高效、 低成本、 自动的快递运输服务。
问题的解决方案
技术解决方案 [0006] 基于此, 有必要针对上述技术问题, 提供一种无人机飞行控制方法和***, 以 提供对无人机飞行更加高效、 低成本的控制方案。
[0007] 一种无人机飞行控制方法, 包括:
[0008] 根据用户选定的无人机起飞降落地点, 将所述起飞降落地点的位置信息录入移 动智能终端并保存;
[0009] 读取用户在移动智能终端上输入的无人机飞行的起降点, 获取所述起降点的位 置信息, 根据所述位置信息在电子地图上生成从起飞点到目的地的航线;
[0010] 通过移动智能终端至无人机控制***的控制数据链路将所述航线导入所述无人 机控制***, 控制无人机沿着所述航线由起飞点飞行至降落点。
[0011] 一种无人机飞行控制方法, 包括:
[0012] 通过移动智能终端至无人机控制***的控制数据链路将飞行任务的航线导入所 述无人机控制***;
[0013] 所述无人机控制***根据所述航线的起降点的位置信息, 控制无人机沿着所述 航线由起飞点飞行至降落点;
[0014] 在无人机飞行过程中, 基于所述无人机控制***至移动智能终端的回传数据链
, 无人机控制***将无人机的实吋飞行参数返回至所述移动智能终端。
[0015] 一种无人机飞行控制***, 包括: 移动智能终端和设于无人机的无人机控制系 统;
[0016] 所述移动智能终端与无人机控制***通过无线网络进行连接, 包括控制数据链 路和回传数据链;
[0017] 所述移动智能终端根据用户选定的无人机起飞降落地点, 录入所述起飞降落地 点的位置信息并保存; 根据用户输入的无人机飞行的起降点确定当前飞行任务 , 获取飞行任务的起降点的位置信息, 根据所述位置信息在电子地图上生成从 起飞点到目的地的航线; 利用所述控制数据链路将所述航线导入所述无人机控 制***, 控制无人机沿着所述航线由起飞点飞行至降落点;
[0018] 所述无人机控制***所述无人机控制***根据所述航线的起降点的位置信息, 控制无人机沿着所述航线由起飞点飞行至降落点; 在无人机飞行过程中, 基于 所述无人机控制***至移动智能终端的回传数据链, 将无人机的实吋飞行参数 返回至所述移动智能终端。
发明的有益效果
有益效果
[0019] 上述无人机飞行控制方法和***, 结合移动智能终端的功能, 利用移动智能终 端生成航线, 导入无人机控制***进行自动飞行, 通过构建控制数据链对无人 机飞行进行控制, 降低无人机操控的复杂度; 特别是用在快递运输服务中, 能 够明显提高快递运输服务的效率、 降低成本。
对附图的简要说明
附图说明
[0020] 图 1为一个实施例的无人机飞行控制方法流程图;
[0021] 图 2是移动智能终端与无人机之间数据传输示意图;
[0022] 图 3为另一个实施例的无人机飞行控制方法流程图;
[0023] 图 4是无人机避障飞行示意图;
[0024] 图 5是无人机投递货物示意图;
[0025] 图 6为一个实施例的无人机飞行控制***结构示意图;
[0026] 图 7是无人机飞行控制***的基础功能流程图。
本发明的实施方式
[0027] 下面结合附图阐述本发明的无人机飞行控制方法和***的实施例。
[0028] 参考图 1, 图 1为一个实施例的无人机飞行控制方法流程图, 包括:
[0029] S101 , 根据用户选定的无人机起飞降落地点, 将所述起飞降落地点的位置信息 录入移动智能终端并保存;
[0030] 本实施例中, 可以利用安装在移动智能终端上的 APP客户端实现人机交互功能
, 对于无人机的用户, 根据使用需要选定无人机的起飞降落地点, 利用移动智 能终端的 GPS模块功能, 可以测量到这些地点的位置信息, 然后将这些信息录入 并保存到移动智能终端中。
[0031] 在一个实施例中, 位置信息可以包括起飞点与降落点的经纬度坐标, 起飞点与 降落点的高度; 利用起降点的高度计算高度差, 利用起降点的坐标和高度差, 可以确定航线路径。
[0032] S102, 读取用户在移动智能终端上输入的无人机飞行的起降点, 获取所述起降 点的位置信息, 根据所述位置信息在电子地图上生成从起飞点到目的地的航线
[0033] 选择起飞降落地点后, 勘察航线, 在 APP客户端录入无人机的飞行航线, 然后 将航线导入到无人机控制***中, 写入航线任务。
[0034] S103 , 通过移动智能终端至无人机控制***的控制数据链路将所述航线导入所 述无人机控制***, 控制无人机沿着所述航线由起飞点飞行至降落点;
[0035] 此过程中, 无人机控制***在移动智能终端将所述航线导入后, 自主控制无人 机沿着所述航线由起飞点飞行至降落点;
[0036] 在首次设置航线后, 如果不需要更换起降点, 后续的飞行就无需重新通过移动 智能终端设置相关航线参数。
[0037] 移动智能终端需要建立无人机控制***之间的控制数据链路, 可以采用 4G网络
/Wi-Fi等通信方式, 将航线导入无人机控制***, 无人机控制***利用该航线从 起飞点自动飞行至降落点。
[0038] 进一步地, 在采用 4G网络通信的方案中, 无人机控制***通过 4G网络将实吋 飞行参数返回至移动智能终端界面上进行显示; 在采用 Wi-Fi通信的方案中, 无 人机控制***在起飞和降落点附近 Wi-Fi信号覆盖范围内将实吋飞行参数在移动 智能终端界面上进行显示。 由此, 用户可以实吋监测到无人机的飞行状态。
[0039] 对于上述实吋飞行参数, 可以包括无人机当前位置信息、 高度信息、 GPS卫星 数、 飞行速度、 飞行路径、 电量和姿态信息等, 通过上述参数信息, 用户可以 全面了解到无人机的飞行状态。
[0040] 另外, 在显示无人机的相关信息吋, 可以利用 VR眼镜进行观看; 首先建立移 动智能终端与 VR眼镜之间的数据连接, 将移动智能终端的界面实吋在 VR眼镜上 进行显示。
[0041] 参考图 2所示, 图 2是移动智能终端与无人机之间数据传输示意图, 通过控制数 据链路写入航线, 通过回传数据链路回传飞行参数, 在 VR眼镜上实吋显示飞行 参数。
[0042] 上述实施例的方案, 充分利用了移动智能终端 (智能手机 /平板) 的操控便利 性和功能多样性, 无需为无人机配置遥控器, 在进行起飞降落地点选择吋, 可 以利用移动智能终端测量数据, 相关数据测试后可以保存在移动智能终端中, 通过 APP客户端的形式, 便于人机交互, 在使用吋, 用户只需要在 APP客户端上 选择起降点, 即可通过移动智能终端将航线写入到无人机控制***中, 无人机 控制***后续就可以根据该航线执行飞行任务。
[0043] 在实际应用中, 一个移动智能终端可以为多个无人机规划航线, 而且多个移动 智能终端可以利用 APP客户端控制一架无人机, 用户通过 APP客户端实吋査看到 无人机的实吋飞行信息。
[0044] 根据实际应用需要, 创建航线库, 然后在执行飞行任务吋, 从航线库中选择相 应的航线导入到无人机控制***。
[0045] 本发明实施例的无人机飞行控制方法, 特别适合于小重量、 吋效性要求高的物 流运输的使用场景, 如短距离送餐、 快递等业务, 提供自动的快递运输服务, 降低无人机操控的复杂度, 提高快递服务的效率。 通过 APP客户端来给无人机自 动预设航线任务, 使无人机自主按照航线执行运送货物的任务。
[0046] 参考图 3, 图 3为另一个实施例的无人机飞行控制方法流程图, 包括:
[0047] S201, 通过移动智能终端至无人机控制***的控制数据链路将飞行任务的航线 导入所述无人机控制***;
[0048] 首先建立移动智能终端至无人机控制***的控制数据链路, 利用移动智能终端 可以进行航线起降点选点, 航线勘察, 然后生成航线导入到无人机控制***。
[0049] S202, 所述无人机控制***根据所述航线的起降点的位置信息, 控制无人机沿 着所述航线由起飞点飞行至降落点;
[0050] 无人机控制***接收飞行任务后, 可以根据航线的位置信息进行飞行, 自动从 起飞点飞行至降落点。
[0051] 另外, 为了确保每次飞行安全, 无人机在每次执行飞行任务之前, 需要用户在 APP客户端中确认当前起降点是否正确, 如果正确, 输入确认后启动无人机自动 执行任务, 如果不正确, APP客户端引导用户重新设置起降点。 [0052] 在一个实施例中, 所述无人机控制***控制无人机飞行过程中, 通过无人机的 GPS模块获取实吋位置信息, 将所述实吋位置信息与航线上目标航点 (航线上的 坐标点) 的坐标信息进行对比, 控制无人机沿着所述航线进行飞行。
[0053] 进一步地, 所述无人机控制***还通过安装在无人机上的探测器探测障碍物, 在探测到障碍物吋, 根据无人机当前的实吋位置与障碍物边缘位置的相对位置 , 控制无人机在距障碍物边缘设定安全距离, 环绕障碍物飞行或者控制无人机 爬升飞行, 绕过所述障碍物, 并在绕过所述障碍物后, 控制无人机继续飞往目 标航点。
[0054] 参考图 4所示, 图 4是无人机避障飞行示意图, 当无人机遇到障碍物吋, 通过环 绕障碍物飞行进行避幵障碍, 也可以提升飞行高度进行避障。
[0055] S203 , 在无人机飞行过程中, 基于所述无人机控制***至移动智能终端的回传 数据链, 无人机控制***将无人机的实吋飞行参数返回至所述移动智能终端;
[0056] 在无人机飞行过程中, 无人机控制***实吋监测无人机的飞行状态, 将飞行参 数实吋回传至移动智能终端, 移动智能终端可以通过 APP客户端的形式进行人机 交互, 在使用吋, 用户在 APP客户端上进行操作, 完成对无人机的控制。 可以利 用多个移动智能终端的 APP客户端, 査看同一个无人机的飞行状态; 也可以利用 一个移动智能终端的 APP客户端, 査看同多个无人机的飞行状态。 这样在进行货 物运输吋, 收发双方都能够査看到无人机的状态信息。
[0057] 在一个实施例中, 在无人机起飞前, 通过移动智能终端触发无人机控制***的 自动模式, 启动无人机的 GPS模块搜索 GPS信号, 并在 GPS信号稳定后进行解锁 ; 从而避免在起飞过程中 GPS定位错误, 提高飞行安全性。
[0058] 在一个实施例中, 所述无人机设有带电子锁结构的载物盒子 (装载货物) ; 当 需要幵锁或闭锁所述载物盒子吋, 所述无人机控制***通过所述控制数据链路 接收相应的幵锁指令或闭锁指令, 控制电子锁结构幵锁或闭锁;
[0059] 在飞行过程中或在降落后, 无人机控制***实吋监测载物盒子的状态, 并回传 至收发双方的移动智能终端, 及吋了解货物状态, 避免丢失。
[0060] 在一个实施例中, 在无人机起飞前, 所述无人机控制***根据所述航线的距离 、 当前载物盒子的承载重量以及当前天气状况影响参数计算电量能否完成当前 飞行任务, 当无人机的电量不足吋进行警告提示, 并停止无人机起飞;
[0061] 通过电量告警提示, 避免在飞行过程中电量不足的情况, 确保飞行任务完成。
[0062] 考虑到实际航线和航点设置, 可以在航线一定区域范围内设置多个驿站, 作为 无人机停靠站点, 货物送到指定驿站进行投放。
[0063] 在一个实施例中, 在无人机飞行过程中, 所述无人机控制***根据所述航线的 剩余距离、 载物盒子的承载重量以及当前天气状况影响参数实吋计算飞行耗电 量, 并计算剩余电量能否完成当前飞行任务, 当无人机的电量不足吋, 根据预 存驿站的位置信息以及当前无人机的实吋位置信息, 重新规划航线, 控制无人 机飞往最近的驿站;
[0064] 通过在飞行过程中实吋计算电量消耗, 预判飞行任务能否完成, 选择最近的驿 站进行货物投递, 确保了飞行安全和货物投递安全。
[0065] 在一个实施例中, 在驿站进行投递货物吋, 所述无人机控制***在无人机到达 目标位置的驿站后, 通过 Wi-Fi方式与驿站建立通信连接; 控制驿站的储物模块 幵启并进行投递货物, 并在投递完成后控制驿站的储物模块将关闭上锁; 在储 物模块关闭后, 控制载物盒子关闭, 并进入返回流程。
[0066] 在一个实施例中, 在投递货物过程, 所述无人机控制***利用安装在无人机底 部的超声波装置进行测距, 根据无人机与储物模块的距离, 实吋控制无人机的 下降速度;
[0067] 在无人机降落吋, 超声波装置向下发射超声波, 接收超声波反射波, 飞行控制 ***依据超声波在空气中的传播特性, 换算出距离数据, 从而实现测量距离的 目的。 根据测量到的无人机和地面之间的距离, 控制飞机在接近地面吋缓慢下 降, 从而避免下降速度过快, 损坏无人机。
[0068] 进一步地, 在投递完货物后, 无人机飞控***计算剩余电量是否足够返回起飞 点, 如果足够, 无人机将在投递完成后自动返回起飞点, 如果电量不足, 在驿 站对无人机进行充电, 直至电量足够支持无人机完成返航, 重启无人机按航线 进行返航。
[0069] 移动智能终端通过无人机控制***发送指令, 控制无人机在指定经纬度和高度 定点投放货物, 并自动返航, 如果用户需要主动取出相应货物, 则取出货物后 , 重启飞机电源, 控制无人机按原航线飞回起飞点。
[0070] 参考图 5, 图 5是无人机投递货物示意图, 无人机降落吋, 超声波装置向下发射 超声波测距, 降低下降速度, 通过 Wi-Fi控制驿站的储物模块幵启, 在一定高度 进行投递货物, 在投递完成后, 控制储物模块将关闭上锁, 在储物模块关闭后
, 控制载物盒子关闭, 上升高度返回起飞点。
[0071] 后续使用过程当中, 无人机可以根据导入的航线进行货物投递, 如果需要对航 线进行变更, 则再次进行航线勘察, 录入起降点位置信息, 生成新航线导入无 人机控制***, 完成航线更新设置。
[0072] 参考图 6所示, 图 6为一个实施例的无人机飞行控制***结构示意图, 包括: 移 动智能终端和设于无人机的无人机控制***;
[0073] 所述移动智能终端与无人机控制***通过无线网络进行连接, 包括控制数据链 路和回传数据链;
[0074] 所述移动智能终端根据用户选定的无人机起飞降落地点, 录入所述起飞降落地 点的位置信息并保存; 在勘察航线中根据用户输入的无人机飞行的起降点确定 当前飞行任务, 获取飞行任务的起降点的位置信息, 根据所述位置信息在电子 地图上生成从起飞点到目的地的航线; 利用所述控制数据链路将所述航线导入 所述无人机控制***, 控制无人机沿着所述航线由起飞点飞行至降落点;
[0075] 所述无人机控制***所述无人机控制***根据所述航线的起降点的位置信息, 控制无人机沿着所述航线由起飞点飞行至降落点; 在无人机飞行过程中, 基于 所述无人机控制***至移动智能终端的回传数据链, 将无人机的实吋飞行参数 返回至所述移动智能终端。
[0076] 对于所述移动智能终端的功能, 可以通过 APP客户端实现, 用户通过 APP客户 端能够方便地控制无人机的飞行。 同吋, 还可以结合 VR眼镜的使用, 便于用户 査看相关信息。
[0077] 参考图 7所示, 图 7是无人机飞行控制***的基础功能流程图, 用户通过 AAP客 户端进行操作, 与无人机控制***进行通信, 用户完成起飞降落点的选取, 录 入到 APP客户端中, 然后将勘察航线的信息录入, 在确认幵始派送飞行任务后, 向无人机写入航线任务, 无人机解锁后进行自动飞行, APP客户端实吋显示无人 机控制***回传的无人机实吋飞行状态。
[0078] 采用本发明实施例的无人机飞行控制***, 可以使用智能移动终端即可操控无 人机; 可以按用户勘察好的航线自动进行快递运输服务; 飞行吋遇到障碍物自 动避障 (爬升或绕行) ; 根据情况, 预先设定安全降落高度; 可在起降点安全 垂直起降; 记录无人机飞行的各种信息 (包括飞行路径、 海拔、 电量等) , 并 创建航线库; 无人机的飞行实况与所搭载货物情况也可通过 VR眼镜进行监测; 无人机设有带电子锁结构的智能载物盒子, 可自动幵启和关闭仓门; 无人机可 根据实际情况在驿站投放和收取货物, 并在驿站进行无线充电; 实吋进行无人 机的电量计算与评估, 并采取相应安全措施; 无人机投放完毕货物吋, 可自动 返航; 或者无人机到达收货地点吋, 用户取出货物, 重启飞机电源, 无人机自 动返航。
[0079] 当多架无人机同吋占用相同航线吋, 多架无人机通过中心调度***调度, 所述 中心调度***调度多架无人机分别处于不同的高度从起飞点飞行到降落点, 所 述中心调度***也可以分配不同的吋间段分别给多架无人机, 使得多架无人机 在不同的吋间段从起飞点起飞。
[0080] 以上所述实施例的各技术特征可以进行任意的组合, 为使描述简洁, 未对上述 实施例中的各个技术特征所有可能的组合都进行描述, 然而, 只要这些技术特 征的组合不存在矛盾, 都应当认为是本说明书记载的范围。
[0081] 以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和详细, 但 并不能因此而理解为对发明专利范围的限制。 应当指出的是, 对于本领域的普 通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进 , 这些都属于本发明的保护范围。 因此, 本发明专利的保护范围应以所附权利 要求为准。

Claims

权利要求书
[权利要求 1] 一种无人机飞行控制方法, 其特征在于, 包括:
根据用户选定的无人机起飞降落地点, 将所述起飞降落地点的位置信 息录入移动智能终端并保存;
读取用户在移动智能终端上输入的无人机飞行的起降点, 获取所述起 降点的位置信息, 根据所述位置信息在电子地图上生成从起飞点到目 的地的航线;
通过移动智能终端至无人机控制***的控制数据链路将所述航线导入 所述无人机控制***, 控制无人机沿着所述航线由起飞点飞行至降落 点。
[权利要求 2] 根据权利要求 1所述的无人机飞行控制方法, 其特征在于, 所述位置 信息包括: 起飞点与降落点的经纬度坐标, 起飞点与降落点的高度。
[权利要求 3] 根据权利要求 1所述的无人机飞行控制方法, 其特征在于, 还包括: 基于所述无人机控制***至移动智能终端的回传数据链接收无人机控 制***返回的无人机实吋飞行参数, 并在移动智能终端界面上进行显 示。
[权利要求 4] 根据权利要求 3所述的无人机飞行控制方法, 其特征在于, 还包括: 建立移动智能终端与 VR眼镜之间的数据连接, 将移动智能终端的界 面实吋在 VR眼镜上进行显示。
[权利要求 5] 根据权利要求 3或 4所述的无人机飞行控制方法, 其特征在于, 所述实 吋飞行参数包括: 无人机当前位置信息、 高度信息、 GPS卫星数、 飞 行速度、 飞行路径、 电量和姿态信息。
[权利要求 6] —种无人机飞行控制方法, 其特征在于, 包括:
通过移动智能终端至无人机控制***的控制数据链路将飞行任务的航 线导入所述无人机控制***;
所述无人机控制***根据所述航线的起降点的位置信息, 控制无人机 沿着所述航线由起飞点飞行至降落点;
在无人机飞行过程中, 基于所述无人机控制***至移动智能终端的回 传数据链, 无人机控制***将无人机的实吋飞行参数返回至所述移动 智能终端。
根据权利要求 6所述的无人机飞行控制方法, 其特征在于, 还包括: 在无人机起飞前, 通过移动智能终端触发无人机控制***的自动模式
, 启动无人机的 GPS模块搜索 GPS信号, 并在 GPS信号稳定后进行解 锁。
根据权利要求 7所述的无人机飞行控制方法, 其特征在于, 所述无人 机控制***控制无人机飞行过程中, 通过无人机的 GPS模块获取实吋 位置信息, 将所述实吋位置信息与航线上相应的坐标信息进行对比, 控制无人机沿着所述航线进行飞行。
根据权利要求 6所述的无人机飞行控制方法, 其特征在于, 所述无人 机控制***通过安装在无人机上的探测器探测障碍物, 在探测到障碍 物吋, 根据无人机当前的实吋位置与障碍物边缘位置的相对位置, 控 制无人机在设定的安全距离外, 环绕障碍物飞行或者控制无人机爬升 飞行绕过所述障碍物, 并在绕过所述障碍物后, 控制无人机回到所述 航线上进行飞行。
根据权利要求 6所述的无人机飞行控制方法, 其特征在于, 所述无人 机设有带电子锁结构的载物盒子;
当需要幵锁或闭锁所述载物盒子吋, 所述无人机控制***通过所述控 制数据链路接收相应的幵锁指令或闭锁指令, 控制电子锁结构幵锁或 闭锁。
根据权利要求 10所述的无人机飞行控制方法, 其特征在于, 在无人机 起飞前, 所述无人机控制***根据所述航线的距离、 当前载物盒子的 承载重量以及当前天气状况影响参数计算电量能否完成当前飞行任务 , 当无人机的电量不足吋进行警告提示, 并停止无人机起飞。
根据权利要求 11所述的无人机飞行控制方法, 其特征在于, 在无人机 飞行过程中, 所述无人机控制***根据所述航线的剩余距离、 载物盒 算剩余电量能否完成当前飞行任务, 当无人机的电量不足吋, 根据预 存的驿站的位置信息以及当前无人机的实吋位置信息, 根据距离最近 的驿站的位置信息和所述实吋位置信息生成新航线, 控制无人机沿新 航线飞向所述驿站进行停靠; 其中, 所属驿站是预定地点设置的停靠 站点。
[权利要求 13] 根据权利要求 11所述的无人机飞行控制方法, 其特征在于, 所述无人 机控制***在无人机到达目标位置的驿站后, 通过 Wi-Fi方式与驿站 建立通信连接;
控制驿站的储物模块幵启并进行投递货物, 并在投递完成后控制驿站 的储物模块将关闭上锁;
在储物模块关闭后, 控制载物盒子关闭, 并进入返回流程。
[权利要求 14] 根据权利要求 13所述的无人机飞行控制方法, 其特征在于, 在投递货 物过程, 所述无人机控制***利用安装在无人机底部的超声波装置进 行测距, 根据无人机与储物模块的距离, 实吋控制无人机的下降速度
[权利要求 15] —种无人机飞行控制***, 其特征在于, 包括: 移动智能终端和设于 无人机的无人机控制***;
所述移动智能终端与无人机控制***通过无线网络进行连接, 包括控 制数据链路和回传数据链;
所述移动智能终端根据用户选定的无人机起飞降落地点, 录入所述起 飞降落地点的位置信息并保存; 根据用户输入的无人机飞行的起降点 确定当前飞行任务, 获取飞行任务的起降点的位置信息, 根据所述位 置信息在电子地图上生成从起飞点到目的地的航线; 利用所述控制数 据链路将所述航线导入所述无人机控制***, 控制无人机沿着所述航 线由起飞点飞行至降落点;
所述无人机控制***所述无人机控制***根据所述航线的起降点的位 置信息, 控制无人机沿着所述航线由起飞点飞行至降落点; 在无人机 飞行过程中, 基于所述无人机控制***至移动智能终端的回传数据链 , 将无人机的实吋飞行参数返回至所述移动智能终端。
PCT/CN2017/102975 2016-09-30 2017-09-22 无人机飞行控制方法和*** WO2018059325A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610882311.4 2016-09-30
CN201610882311.4A CN107340781A (zh) 2016-09-30 2016-09-30 无人机飞行控制方法和***

Publications (1)

Publication Number Publication Date
WO2018059325A1 true WO2018059325A1 (zh) 2018-04-05

Family

ID=60222379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102975 WO2018059325A1 (zh) 2016-09-30 2017-09-22 无人机飞行控制方法和***

Country Status (2)

Country Link
CN (1) CN107340781A (zh)
WO (1) WO2018059325A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967701A (zh) * 2019-10-15 2020-04-07 广西电网有限责任公司贵港供电局 一种基于无人机测量弧垂的方法及***
CN113485442A (zh) * 2021-08-05 2021-10-08 深圳洲际通航投资控股有限公司 一种反无人机***及其反制方法
CN113552893A (zh) * 2021-07-06 2021-10-26 苏州臻迪智能科技有限公司 无人机电力自主巡检的航线设计方法、飞行方法以及无人机
CN114489135A (zh) * 2022-01-28 2022-05-13 北京航空航天大学东营研究院 一种多任务航线设计方法
CN115281063A (zh) * 2022-08-26 2022-11-04 吉林省佰强科技有限责任公司 一种智能灌溉控制***及操作方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181922A (zh) * 2017-12-01 2018-06-19 北京臻迪科技股份有限公司 无人机降落控制方法、装置及***
CN107943082A (zh) * 2017-12-01 2018-04-20 亿航智能设备(广州)有限公司 无人机飞控方法、装置和计算机可读介质
CN108163198A (zh) * 2017-12-24 2018-06-15 广西南宁英凡达科技有限公司 基于无人机的货物投递***
CN107992083B (zh) * 2017-12-27 2021-03-26 北京臻迪科技股份有限公司 基于电网地图进行物流无人机航线规划的***及方法
CN108196586A (zh) * 2018-03-14 2018-06-22 广州亿航智能技术有限公司 无人机控制方法、装置和储存介质
CN108860639A (zh) * 2018-05-21 2018-11-23 中宇航通(北京)科技有限公司 一种无人机着舰方法
CN108733075B (zh) * 2018-05-23 2021-03-16 广东容祺智能科技有限公司 无人机的连续定点环绕拍摄的飞行***及其飞行控制方法
CN110530364B (zh) * 2018-05-24 2023-01-10 旻新科技股份有限公司 利用禽鸟飞行路径规画无人飞行载具路径的方法
CN108688806A (zh) * 2018-07-27 2018-10-23 苏州万泽龙科技有限公司 运输飞行器
WO2020113446A1 (zh) * 2018-12-04 2020-06-11 深圳市大疆创新科技有限公司 农业植保无人机及其控制方法
CN113423641A (zh) * 2019-02-25 2021-09-21 株式会社日立高新技术 医用材料传送***
CN110262549A (zh) * 2019-06-24 2019-09-20 亿航智能设备(广州)有限公司 一种固定翼无人机及其地面滑行控制方法、存储介质
CN111752294B (zh) * 2019-08-27 2021-06-15 广州极飞科技股份有限公司 一种飞行控制方法及相关装置
CN111240359A (zh) * 2020-01-17 2020-06-05 广东汇卓航科技有限公司 无人机异地起降和双遥控切换控制***
CN115857533A (zh) * 2020-05-26 2023-03-28 深圳市道通智能航空技术股份有限公司 一种返航方法、控制器、无人机及存储介质
JP7363733B2 (ja) * 2020-09-30 2023-10-18 トヨタ自動車株式会社 端末プログラム、無人航空機、及び情報処理装置
CN112729309A (zh) * 2020-12-24 2021-04-30 北京瓴域航空技术研究院有限公司 一种无人机物流路径规划方法及设备
CN112801600B (zh) * 2021-04-01 2021-07-16 北京三快在线科技有限公司 生成航线轨迹的方法、装置、可读存储介质及电子设备
CN115657706B (zh) * 2022-09-22 2023-06-27 中铁八局集团第一工程有限公司 基于无人机的地貌测量方法及***
CN117455093B (zh) * 2023-11-06 2024-05-24 杭州蓝巡科技有限公司 一种无人机机场航线库管理平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8930044B1 (en) * 2012-12-28 2015-01-06 Google Inc. Multi-part navigation process by an unmanned aerial vehicle for navigating to a medical situatiion
CN104503462A (zh) * 2014-12-15 2015-04-08 无锡捷盈科技有限公司 一种手机遥控与接收的无人机快递
CN104808675A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 基于智能终端的体感飞行操控***及终端设备
CN105160505A (zh) * 2015-07-24 2015-12-16 刘擂 无人机物流运输***
US9387928B1 (en) * 2014-12-18 2016-07-12 Amazon Technologies, Inc. Multi-use UAV docking station systems and methods
CN105974929A (zh) * 2016-06-11 2016-09-28 深圳市哈博森科技有限公司 一种基于智能装置操控的无人机控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104162278B (zh) * 2014-06-17 2016-08-17 廖明忠 一种空中悬浮及可编程运动的方法、***及玩具飞行器
CN105306500B (zh) * 2014-06-19 2018-11-02 赵海 一种基于四轴飞行器的快递运输***、快递运输方法及单目避障方法
CN105069595A (zh) * 2015-08-18 2015-11-18 杨珊珊 一种利用无人机实现的快递***及方法
CN105398571B (zh) * 2015-12-21 2017-08-25 谭圆圆 基于无人飞行器的点对点送达***及其送达方法
CN105976144A (zh) * 2016-05-03 2016-09-28 天机智汇科技(深圳)有限公司 一种智能收发包裹的方法及***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8930044B1 (en) * 2012-12-28 2015-01-06 Google Inc. Multi-part navigation process by an unmanned aerial vehicle for navigating to a medical situatiion
CN104503462A (zh) * 2014-12-15 2015-04-08 无锡捷盈科技有限公司 一种手机遥控与接收的无人机快递
US9387928B1 (en) * 2014-12-18 2016-07-12 Amazon Technologies, Inc. Multi-use UAV docking station systems and methods
CN104808675A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 基于智能终端的体感飞行操控***及终端设备
CN105160505A (zh) * 2015-07-24 2015-12-16 刘擂 无人机物流运输***
CN105974929A (zh) * 2016-06-11 2016-09-28 深圳市哈博森科技有限公司 一种基于智能装置操控的无人机控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967701A (zh) * 2019-10-15 2020-04-07 广西电网有限责任公司贵港供电局 一种基于无人机测量弧垂的方法及***
CN113552893A (zh) * 2021-07-06 2021-10-26 苏州臻迪智能科技有限公司 无人机电力自主巡检的航线设计方法、飞行方法以及无人机
CN113485442A (zh) * 2021-08-05 2021-10-08 深圳洲际通航投资控股有限公司 一种反无人机***及其反制方法
CN113485442B (zh) * 2021-08-05 2024-02-20 深圳洲际通航投资控股有限公司 一种反无人机***及其反制方法
CN114489135A (zh) * 2022-01-28 2022-05-13 北京航空航天大学东营研究院 一种多任务航线设计方法
CN114489135B (zh) * 2022-01-28 2023-10-13 北京航空航天大学东营研究院 一种多任务航线设计方法
CN115281063A (zh) * 2022-08-26 2022-11-04 吉林省佰强科技有限责任公司 一种智能灌溉控制***及操作方法
CN115281063B (zh) * 2022-08-26 2023-11-24 吉林省佰强科技有限责任公司 一种智能灌溉控制***及操作方法

Also Published As

Publication number Publication date
CN107340781A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
WO2018059325A1 (zh) 无人机飞行控制方法和***
CN107567606B (zh) 用于远程交通工具引导的集中式***和用于远程地自动和手动引导交通工具的方法
US11113976B2 (en) Unmanned aerial vehicle management system
WO2019042236A1 (zh) 订单配送方法、装置和***
AU2015243644B2 (en) Method for delivering a shipment by an unmanned transport device
US10139817B2 (en) Unmanned aircraft systems and methods to interact with specifically intended objects
CN108290633A (zh) 使用无人航空载具进行运输的方法和***
CN110998467A (zh) 确定运送位置处的下放点的模型
US20190035287A1 (en) Drone collision avoidance via Air Traffic Control over wireless networks
EP3333591B1 (en) Aircraft radar system for bird and bat strike avoidance
CA3018209A1 (en) Unmanned aircraft systems and methods
US10807712B2 (en) Systems and methods for transferring control of an unmanned aerial vehicle
CN108369417A (zh) 移动体、通信终端以及移动体的控制方法
KR20190126756A (ko) 멀티-릴레이 스테이션 환경에 기반하는 무인 비행체를 이용한 물류 운송 방법 및 시스템
WO2021230948A2 (en) Smart city smart drone uass/uav/vtol smart mailbox landing pad
KR101901648B1 (ko) 무인 항공기 관제 시스템 및 무인 항공기 관제 방법
WO2020016962A1 (ja) 空中権管理システム
US20200294322A1 (en) Air Traffic Tolling System
US20200258401A1 (en) Drone Air Traffic Control over wireless networks for delayed package delivery
US20200250998A1 (en) Drone Air Traffic Control over wireless networks for package delivery cancelation
CN112330167A (zh) 无人车执行任务方法、***、计算机设备和存储介质
CN106779655B (zh) 一种植保无人机作业费用自动计算和自助结算***及方法
US11341860B2 (en) Drone air traffic control over wireless networks for package pickup and delivery in an order defined by coordinates
RU2734927C1 (ru) Система точной доставки дронами с идентификацией личности получателя
WO2022026690A1 (en) Dynamic flight path variation for unmanned aerial vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17854775

Country of ref document: EP

Kind code of ref document: A1