WO2018058935A1 - 一种发光玻璃陶瓷及其制法与在led照明器件中的应用 - Google Patents

一种发光玻璃陶瓷及其制法与在led照明器件中的应用 Download PDF

Info

Publication number
WO2018058935A1
WO2018058935A1 PCT/CN2017/080057 CN2017080057W WO2018058935A1 WO 2018058935 A1 WO2018058935 A1 WO 2018058935A1 CN 2017080057 W CN2017080057 W CN 2017080057W WO 2018058935 A1 WO2018058935 A1 WO 2018058935A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent glass
glass ceramic
reaction
glass powder
luminescent
Prior art date
Application number
PCT/CN2017/080057
Other languages
English (en)
French (fr)
Inventor
雷炳富
邓建昆
张浩然
刘应亮
肖勇
郑明涛
董汉武
Original Assignee
华南农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南农业大学 filed Critical 华南农业大学
Priority to SG11201805043YA priority Critical patent/SG11201805043YA/en
Publication of WO2018058935A1 publication Critical patent/WO2018058935A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/773Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • solid-state lighting is widely praised for its low pollution, resource saving and long life, and the most widely used in the market is a white LED packaged by a blue GaN chip and a Ce 3+ :YAG phosphor.
  • this type of white LED tends to have a relatively high color temperature (>5000K), which is prone to eye fatigue under long-term illumination and is not conducive to general life lighting.
  • the common packaging method in the market is to directly mix the phosphor with the epoxy resin and then apply it on the blue chip. Although this method is simple, the light emitted by the product is prone to chromatic aberration after a period of use.
  • the glass ceramic thus formed is not only stable, but also the phosphor is not affected, and has been successfully applied to high-power remote LEDs.
  • the packaging material since only the packaging material is changed from epoxy resin to glass ceramic, it cannot change the shortness of light emitted by the package and the high color temperature.
  • the primary object of the present invention is to provide an illuminating glass ceramic which has uniform color and good illuminating performance, and can be packaged with an ultraviolet ray chip on the existing market.
  • Power remote warm white LEDs enrich existing luminescent materials and make up for the deficiencies of the prior art.
  • Another object of the present invention is to provide a method for producing the above-described luminescent glass ceramic.
  • Still another object of the present invention is to provide an application of the above-described luminescent glass ceramic in the preparation of an LED lighting device.
  • a luminescent glass ceramic composed of a silicate red luminescent glass powder having a mass ratio of 100:0 to 99.1:0.9 and an azure blue phosphor Sr 4 Al 14 O 25 :Eu 2+ .
  • silicate red luminescent glass powder is composed of the following mole fraction components:
  • a method for preparing the above luminescent glass ceramic comprises the following steps:
  • SiO 2 , Na 2 CO 3 , Al 2 O 3 , CaO and Eu 2 O 3 are uniformly mixed, and then placed in a high-temperature box type electric resistance furnace to raise the temperature. After the reaction is completed, the furnace is cooled to room temperature. Grinding the reaction product to obtain a silicate red luminescent glass powder;
  • the temperature rising reaction described in the step (1) means that the temperature is raised to 1300 to 1500 ° C at 5 to 10 ° C / min, and then the reaction is kept for 3 to 6 hours.
  • the molar ratio of SiO 2 , Na 2 CO 3 , Al 2 O 3 , CaO and Eu 2 O 3 used in the step (1) is (50 to 60): (20 to 30): 9:6:5.
  • the mass ratio of the silicate red luminescent glass powder and the Sr 4 Al 14 O 25 :Eu 2+ phosphor used in the step (2) is 100:0 to 99.1:0.9.
  • the tableting described in the step (2) means that the tablet is pressed under a pressure of 20 to 40 MPa, preferably at 20 MPa.
  • the temperature rising reaction in the step (2) means that the temperature is raised to 650 to 700 ° C at 5 to 10 ° C / min, and the temperature is kept for 0.5 to 10 hours.
  • the temperature rising reaction described in the step (2) means raising the temperature to 680 ° C at 5 ° C / min, and maintaining the reaction for 0.5 h.
  • the above-mentioned application of the illuminating glass ceramic in the preparation of the LED lighting device comprises the following steps: directly covering the illuminating glass ceramic on the 385 nm ultraviolet illuminating chip, and fixing the illuminating glass ceramic with the high temperature resistant encapsulant, and then obtaining the LED lighting device.
  • the mechanism of the invention is:
  • the invention obtains an ultraviolet-excited luminescent glass ceramic by mixing azure blue phosphor Sr 4 Al 14 O 25 :Eu 2+ and silicate red luminescent glass powder and sintering at a low temperature. Since the emission wavelength range of the phosphor used is covered at 450 to 550 nm, and the precursor glass powder can simultaneously provide a red light portion, the thus obtained luminescent glass ceramic can obtain warm white light under excitation of a 385 nm ultraviolet chip. By adjusting the ratio of phosphor to glass powder, the types of warm white light are also different, which provides more options for practical applications.
  • the present invention has the following advantages and beneficial effects:
  • the invention is coated with a luminescent glass ceramic material, which largely isolates the phosphor from contact with the outside to reduce the probability of the phosphor being eroded, and because the luminescent glass ceramic has a high thermal conductivity, it can be very Good application on high power remote LEDs.
  • the glass powder used in the present invention is specially designed to emit red light by adding a lanthanum element, and can also emit red light under excitation of a certain wavelength, and is better for low-temperature warm white LED after compounding with the phosphor.
  • the application, and adjust the ratio of the two can get warm white LEDs with different color temperatures.
  • FIG. 4 is a color coordinate corresponding to the operation of the high-power remote LED obtained by the packages of Embodiments 1 to 6 and the working effect thereof.
  • FIG. 5 is a diagram showing color coordinate changes corresponding to the operation of the high-power remote LED in different currents in Embodiment 11.
  • FIG. 5 is a diagram showing color coordinate changes corresponding to the operation of the high-power remote LED in different currents in Embodiment 11.
  • each raw material in the silicate red luminescent glass powder 60% SiO 2 , 20% Na 2 CO 3 , 9% Al 2 O 3 , 6% CaO, 5% Eu 2 O 3 ratio is fully mixed, placed in a high temperature box type resistance furnace, heated to 1300 ° C at 5 ° C / min, after 3 h of heat preservation, after cooling to room temperature with the furnace, grinding, to obtain silicate red luminescent glass powder.
  • each raw material in the silicate red luminescent glass powder 60% SiO 2 , 20% Na 2 CO 3 , 9% Al 2 O 3 , 6% CaO, 5% Eu 2 O 3 ratio is fully mixed, placed in a high temperature box type resistance furnace, heated to 1300 ° C at 5 ° C / min, after 3 h of heat preservation, after cooling to room temperature with the furnace, grinding, to obtain silicate red luminescent glass powder.
  • the obtained illuminating glass ceramic is directly covered on the ultraviolet light emitting chip with an emission wavelength of 385 nm, and is fixed at a periphery with a high temperature resistant encapsulant to obtain a high-power remote LED, which is operated at a input current of 90 mA and an input voltage of 16 V for 0.5 h and tested for color of light. performance.
  • each raw material in the silicate red luminescent glass powder 60% SiO 2 , 20% Na 2 CO 3 , 9% Al 2 O 3 , 6% CaO, 5% Eu 2 O 3 ratio is fully mixed, placed in a high temperature box type resistance furnace, heated to 1300 ° C at 5 ° C / min, after 3 h of heat preservation, after cooling to room temperature with the furnace, grinding, to obtain silicate red luminescent glass powder.
  • the obtained luminescent glass ceramic is directly covered on an ultraviolet light emitting chip having an emission wavelength of 385 nm.
  • a high-power remote LED is obtained by fixing the high-temperature encapsulant at the periphery, and the light color performance is tested by operating at 90 mA input current and 16 V input voltage for 0.5 h.
  • each raw material in the silicate red luminescent glass powder 60% SiO 2 , 20% Na 2 CO 3 , 9% Al 2 O 3 , 6% CaO, 5% Eu 2 O 3 ratio is fully mixed, placed in a high temperature box type resistance furnace, heated to 1300 ° C at 5 ° C / min, after 3 h of heat preservation, after cooling to room temperature with the furnace, grinding, to obtain silicate red luminescent glass powder.
  • the mixture is pressed into a sheet under a pressure of 20 MPa, placed in a high temperature box type electric resistance furnace, and heated at 5 ° C / min. After sintering at 680 ° C for 0.5 h, the furnace was cooled to room temperature, and after polishing and polishing, a luminescent glass ceramic was obtained.
  • the obtained illuminating glass ceramic is directly covered on the ultraviolet light emitting chip with an emission wavelength of 385 nm, and is fixed at a periphery with a high temperature resistant encapsulant to obtain a high-power remote LED, which is operated at a input current of 90 mA and an input voltage of 16 V for 0.5 h and tested for color of light. performance.
  • the excitation and emission spectra of the Sr 4 Al 14 O 25 :Eu 2+ phosphor and the silicate red luminescent glass powder used in Example 4 and the emission spectrum of the prepared luminescent glass ceramic are as shown in FIG. It can be seen in Fig. 1 that the Sr 4 Al1 4 O 25 :Eu 2+ phosphor and the silicate red luminescent glass powder have a common excitation range (for example, 385 nm), and the mixed light of the two can be obtained by excitation at the same wavelength.
  • a common excitation range for example, 385 nm
  • each raw material in the silicate red luminescent glass powder 60% SiO 2 , 20% Na 2 CO 3 , 9% Al 2 O 3 , 6% CaO, 5% Eu 2 O 3 ratio is fully mixed, placed in a high temperature box type resistance furnace, heated to 1300 ° C at 5 ° C / min, after 3 h of heat preservation, after cooling to room temperature with the furnace, grinding, to obtain silicate red luminescent glass powder.
  • each raw material in the silicate red luminescent glass powder 60% SiO 2 , 20% Na 2 CO 3 , 9% Al 2 O 3 , 6% CaO, 5% Eu 2 O 3 ratio is fully mixed, placed in a high temperature box type resistance furnace, heated to 1300 ° C at 5 ° C / min, after 3 h of heat preservation, after cooling to room temperature with the furnace, grinding, to obtain silicate red luminescent glass powder.
  • the obtained illuminating glass ceramic is directly covered on the ultraviolet light emitting chip with an emission wavelength of 385 nm, and is fixed at a periphery with a high temperature resistant encapsulant to obtain a high-power remote LED, which is operated at a input current of 90 mA and an input voltage of 16 V for 0.5 h and tested for color of light. performance.
  • the emission spectrum of the luminescent glass ceramics obtained in Examples 1 to 6 is shown in Fig. 2. It can be seen from Fig. 2 that as the phosphor content increases, the emission peak also increases with it, which is beneficial for regulation.
  • the luminescent color, the optical performance data of the luminescent glass ceramics obtained in Examples 1 to 6 are shown in Table 1 below:
  • the luminescent glass ceramics of Examples 1 to 6 emit light due to the difference in the ratio of the raw materials.
  • the color also changes from red to azure blue, and the quantum efficiency at the corresponding wavelength also exhibits regular changes, which can meet the needs of practical applications.
  • the emission spectra of the high-power remote LEDs packaged in Examples 1 to 6 are shown in Fig. 3. As can be seen from Fig. 3, the obtained LED emission spectrum can correspond well to the emission spectrum of the glass ceramic.
  • the color coordinates corresponding to the high-power remote LEDs packaged in the embodiments 1 to 6 and the working effect diagrams thereof are shown in Fig. 4. As can be seen from Fig. 4, as the phosphor content increases, it can be obtained. Different kinds of warm white LEDs.
  • optical performance data of the high-power remote LEDs packaged in Examples 1 to 6 are shown in Table 2 below:
  • each raw material in the silicate red luminescent glass powder 50% SiO 2 , 30% Na 2 CO 3 , 9% Al 2 O 3 , 6% CaO, 5% Eu 2 O 3 ratio is fully mixed, placed in a high temperature box type resistance furnace, heated to 1300 ° C at 5 ° C / min, after 3 h of heat preservation, after cooling to room temperature with the furnace, grinding, to obtain silicate red luminescent glass powder.
  • the mixture is pressed into a sheet under a pressure of 20 MPa, placed in a high temperature box type electric resistance furnace, and heated at 5 ° C / min. After sintering at 680 ° C for 0.5 h, the furnace was cooled to room temperature, and after polishing and polishing, a luminescent glass ceramic was obtained.
  • the obtained luminescent glass ceramic is directly covered on the ultraviolet ray emitting chip with an emission wavelength of 385 nm, and is fixed at a periphery by using a high temperature resistant encapsulant to obtain a high-power remote LED, which is input at 90 mA.
  • the current and the 16V input voltage were operated for 0.5h and tested for light color performance.
  • each raw material in the silicate red luminescent glass powder 50% SiO 2 , 30% Na 2 CO 3 , 9% Al 2 O 3 , 6% CaO, 5% Eu 2 O 3 ratio is thoroughly mixed, placed in a high temperature box type electric resistance furnace, and heated to 1500 ° C at 10 ° C / min. After 5 h of heat preservation, the furnace is cooled to room temperature and then ground to obtain a silicate red luminescent glass powder.
  • the mixture is pressed into a sheet under a pressure of 20 MPa, placed in a high temperature box type electric resistance furnace, and heated at 5 ° C / min. After sintering at 680 ° C for 0.5 h, the furnace was cooled to room temperature, and after polishing and polishing, a luminescent glass ceramic was obtained.
  • the obtained illuminating glass ceramic is directly covered on the ultraviolet light emitting chip with an emission wavelength of 385 nm, and is fixed at a periphery with a high temperature resistant encapsulant to obtain a high-power remote LED, which is operated at a input current of 90 mA and an input voltage of 16 V for 0.5 h and tested for color of light. performance.
  • each raw material in the silicate red luminescent glass powder 60% SiO 2 , 20% Na 2 CO 3 , 9% Al 2 O 3 , 6% CaO, 5% Eu 2 O 3 ratio is fully mixed, placed in a high temperature box type resistance furnace, heated to 1300 ° C at 5 ° C / min, after 3 h of heat preservation, after cooling to room temperature with the furnace, grinding, to obtain silicate red luminescent glass powder.
  • the mixture is fully mixed, pressed at 40MPa pressure to form a sheet, placed in a high temperature box type resistance furnace, heated at 10 ° C / min After sintering at 650 ° C for 0.5 h, the furnace was cooled to room temperature, and after polishing and polishing, a luminescent glass ceramic was obtained.
  • each raw material in the silicate red luminescent glass powder 60% SiO 2 , 20% Na 2 CO 3 , 9% Al 2 O 3 , 6% CaO, 5% Eu 2 O 3 ratio is fully mixed, placed in a high temperature box type resistance furnace, heated to 1300 ° C at 5 ° C / min, after 3 h of heat preservation, after cooling to room temperature with the furnace, grinding, to obtain silicate red luminescent glass powder.
  • the mixture is fully mixed, pressed at 40MPa pressure to form a sheet, placed in a high temperature box type resistance furnace, heated at 10 ° C / min After sintering at 700 ° C for 1 h, the furnace was cooled to room temperature, and after polishing and polishing, a luminescent glass ceramic was obtained.
  • the obtained illuminating glass ceramic is directly covered on the ultraviolet light emitting chip with an emission wavelength of 385 nm, and is fixed at a periphery with a high temperature resistant encapsulant to obtain a high-power remote LED, which is operated at a input current of 90 mA and an input voltage of 16 V for 0.5 h and tested for color of light. performance.
  • the luminescent glass ceramic obtained in Example 4 of the present invention and the ultraviolet ray emitting chip having an emission wavelength of 385 nm were packaged into a high-power remote LED, and operated at 20 to 90 mA input current and 16 V input voltage for 0.5 h and tested for light color performance.
  • the color coordinate change diagram corresponding to the operation of the high-power remote LED at different currents is shown in Fig. 5. It can be seen from Fig. 5 that the color of the LED light obtained changes with the change of the current, but in the Acceptable range.
  • optical performance data of the high power remote LEDs packaged in Example 11 are shown in Table 3 below:
  • Example 4 luminescent glass ceramic 20 0.3708 0.4107 UV chip + Example 4 luminescent glass ceramic 30 0.3706 0.4075 UV chip + Example 4 luminescent glass ceramic 40 0.3705 0.4041 UV chip + Example 4 luminescent glass ceramic 50 0.371 0.4008 UV chip + Example 4 luminescent glass ceramic 60 0.3715 0.3972 UV chip + Example 4 luminescent glass ceramic 70 0.3726 0.3935 UV chip + Example 4 luminescent glass ceramic 80 0.3739 0.3896 UV chip + Example 4 luminescent glass ceramic 90 0.3756 0.3855

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Glass Compositions (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

本发明属于无机发光材料领域,公开了一种发光玻璃陶瓷及其制法与在LED照明器件中的应用。该发光陶瓷由质量比为100:0~99.1:0.9的硅酸盐红色发光玻璃粉和Sr4Al14O25:Eu2+构成,其中硅酸盐红色发光玻璃粉由以下摩尔分数的组分组成:50~60%SiO2;20-30%Na2CO3;9%Al2O3;6%CaO;Eu2O35%。由于所使用的荧光粉的发射波长范围在450~550nm都有覆盖,而前驱体玻璃粉同时能提供红光的部分,由此得到的发光玻璃陶瓷能够在385nm的紫外芯片激发下得到暖白光。通过调控荧光粉和玻璃粉的比例,暖白光的种类也有所不同,拓展了发光材料的种类领域和应用范围。

Description

一种发光玻璃陶瓷及其制法与在LED照明器件中的应用 技术领域
本发明属于无机发光材料领域,特别涉及一种发光玻璃陶瓷及其制法与在LED照明器件中的应用。
背景技术
目前,固体照明由于其污染少、节省资源以及较长的寿命而广受人们而推崇,而市场上应用最广的是由蓝光GaN芯片和Ce3+:YAG荧光粉所封装而成白光LED。首次,这种类型的白光LED往往色温比较高(>5000K),在长时间照明下容易造成眼睛的疲倦,不利于一般生活的照明。其次,市场常见的封装方法是把荧光粉与环氧树脂直接混合后涂覆在蓝光芯片上。这种办法虽然简便,但是产品在使用一段时间后,所发出的光容易产生色差现象,这是由于所使用的环氧树脂的热导率较低,产品在工作时所产生热量会使得环氧树脂老化,久而久之就会影响产品的质量。最后,随着大功率LED产品面世,芯片所生的热量大幅升高,对封装材料的要求更为严峻。
发光玻璃陶瓷,不仅拥有较高的热导率和优秀的稳定性,而且直接掺入不同的稀土离子或者与荧光粉复合后能发出各种颜色的光,这样的属性使其作为转光材料而成功地应用于大功率远程LED上。现有的文献报道的发光玻璃陶瓷可以分为稀土玻璃陶瓷和荧光粉复合玻璃陶瓷两种。相比于前者,后者更容易得到想要的发光效果。而荧光粉复合玻璃陶瓷研究较多的主要是把Ce3+:YAG荧光粉与前驱体玻璃粉混合后在低温条件下(<1000℃)进行烧结后得到块状的荧光粉复合玻璃陶瓷。这样子形成的玻璃陶瓷不仅稳定,而且荧光粉不会受到影响,已经被成功应用于大功率远程LED上。但是由于只是把封装材料从环氧树脂更换成玻璃陶瓷,并不能改变其发出的光偏冷,高色温的缺点。为解决这一问题,大部分文献报道是向其中添加红色荧光粉以改善其色温,这 无疑增加了制备的难度和成本。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种发光玻璃陶瓷,该发光玻璃陶瓷色泽均匀,且具有良好发光性能,与现有市场上的紫外发光芯片可以封装成大功率远程暖白光LED,丰富现有的发光材料,并且弥补现有技术的不足。
本发明另一目的在于提供上述发光玻璃陶瓷的制备方法。
本发明再一目的在于提供上述发光玻璃陶瓷在制备LED照明器件中的应用。
本发明的目的通过下述方案实现:
一种发光玻璃陶瓷,其由质量比为100:0~99.1:0.9的硅酸盐红色发光玻璃粉和天青蓝色荧光粉Sr4Al14O25:Eu2+构成。
其中,所述的硅酸盐红色发光玻璃粉由以下摩尔分数的组分组成:
Figure PCTCN2017080057-appb-000001
一种上述的发光玻璃陶瓷的制备方法,具体包括以下步骤:
(1)将SiO2、Na2CO3、Al2O3、CaO和Eu2O3混合均匀,然后置于高温箱式电阻炉中,升温反应,待反应完成后随炉冷却至室温后,将反应产物研磨即得到硅酸盐红色发光玻璃粉;
(2)将步骤(1)中得到的硅酸盐红色发光玻璃粉和Sr4Al14O25:Eu2+荧光粉混合均匀,然后将其压片并置于高温箱式电阻炉中,升温反应,反应结束后随炉冷却至室温,经过打磨、抛光后得到发光玻璃陶瓷。
步骤(1)中所述的升温反应是指以5~10℃/min升温至1300~1500℃,然后保温反应3~6h。
优选的,步骤(1)中所述的升温反应是指以5℃/min升温至1300℃,然后保温反应3h。
步骤(1)中所使用的SiO2、Na2CO3、Al2O3、CaO和Eu2O3的摩尔比为(50~60):(20~30):9:6:5。
步骤(2)中所使用的硅酸盐红色发光玻璃粉和Sr4Al14O25:Eu2+荧光粉的质量比为100:0~99.1:0.9。
步骤(2)中所述的压片是指在20~40MPa压力下压制成片,优选在20MPa下压制成片。
步骤(2)中所述的升温反应是指以5~10℃/min升温至650~700℃,保温反应0.5~10h。
优选的,步骤(2)中所述的升温反应是指以5℃/min升温至680℃,保温反应0.5h。
上述的发光玻璃陶瓷在制备LED照明器件中的应用,具体包括以下步骤:在385nm紫外发光芯片上直接覆盖上述的发光玻璃陶瓷,使用耐高温封装胶于周边进行固定后记得到LED照明器件。
本发明的机理为:
本发明通过把天青蓝色荧光粉Sr4Al14O25:Eu2+和硅酸盐红色发光玻璃粉混合后在低温烧结,从而得到一种紫外激发的发光玻璃陶瓷。由于所使用的荧光粉的发射波长范围在450~550nm都有覆盖,而前驱体玻璃粉同时能提供红光的部分,由此得到的发光玻璃陶瓷能够在385nm的紫外芯片激发下得到暖白光。通过调控荧光粉和玻璃粉的比例,暖白光的种类也有所不同,这为实际应用提供更多的选择。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)本发明采用发光玻璃陶瓷材料包覆,很大程度地隔绝了荧光粉与外界接触从而减少荧光粉被侵蚀的几率,且由于发光玻璃陶瓷拥有较高的热导率,使其能很好地应用在大功率远程LED上。
(2)本发明采用的玻璃粉经过特殊设计,通过加入铕元素达到自身也能在一定波长的激发下发射红光,与荧光粉复合后更利于低色温的暖白光LED 的应用,且调节两者的比例能得到色温不同的暖白光LED。
(3)本发明所述发光玻璃陶瓷的制备方法工艺简单,节约成本,有利于工业化生产的需求,拓展了发光材料的种类领域和应用范围,拥有广阔的应用前景。
(4)本发明所述发光玻璃陶瓷的性质稳定,能够抵抗高温高压的环境并保持较高的发光效果,使用其与紫外芯片封装而成的大功率远程暖白光LED在不同的输入电流和运行时间下均能维持较好的性能。
附图说明
图1为实施例4所使用的Sr4Al14O25:Eu2+荧光粉和硅酸盐红色发光玻璃粉的激发和发射光谱图以及所制备的发光玻璃陶瓷的发射光谱图。
图2为实施例1~6所制备的发光玻璃陶瓷的发射光谱图。
图3为实施例1~6封装得到的大功率远程LED的发射光谱。
图4为实施例1~6封装得到的大功率远程LED工作时所对应的色坐标以及其工作效果图。
图5为实施例11中大功率远程LED在不同电流时工作所对应的色坐标变化图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例中所用实际均可从市场常规购得。
实施例1
根据各原料在硅酸盐红色发光玻璃粉中的摩尔百分含量,按60%的SiO2、20%的Na2CO3、9%的Al2O3、6%的CaO、5%的Eu2O3的配比充分混合,置于高温箱式电阻炉中,以5℃/min升温至1300℃,保温3h后随炉冷却至室温后,研磨,得到硅酸盐红色发光玻璃粉。
按照玻璃粉和Sr4Al14O25:Eu2+荧光粉质量百分比为100:0的比例充分混合,在20MPa压力下压制成片,置于高温箱式电阻炉中,以5℃/min升温至680℃烧结0.5h后随炉冷却至室温,经过打磨、抛光后得到发光玻璃陶瓷。
获得的发光玻璃陶瓷直接覆盖在发射波长为385nm的紫外发光芯片上,使用耐高温封装胶于周边进行固定后得到大功率远程LED,在90mA输入电流和16V输入电压工作0.5h并测试其光色性能。
实施例2
根据各原料在硅酸盐红色发光玻璃粉中的摩尔百分含量,按60%的SiO2、20%的Na2CO3、9%的Al2O3、6%的CaO、5%的Eu2O3的配比充分混合,置于高温箱式电阻炉中,以5℃/min升温至1300℃,保温3h后随炉冷却至室温后,研磨,得到硅酸盐红色发光玻璃粉。
按照玻璃粉和Sr4Al14O25:Eu2+荧光粉质量百分比为99.9:0.1的比例充分混合,在20MPa压力下压制成片,置于高温箱式电阻炉中,以5℃/min升温至680℃烧结0.5h后随炉冷却至室温,经过打磨、抛光后得到发光玻璃陶瓷。
获得的发光玻璃陶瓷直接覆盖在发射波长为385nm的紫外发光芯片上,使用耐高温封装胶于周边进行固定后得到大功率远程LED,在90mA输入电流和16V输入电压工作0.5h并测试其光色性能。
实施例3
根据各原料在硅酸盐红色发光玻璃粉中的摩尔百分含量,按60%的SiO2、20%的Na2CO3、9%的Al2O3、6%的CaO、5%的Eu2O3的配比充分混合,置于高温箱式电阻炉中,以5℃/min升温至1300℃,保温3h后随炉冷却至室温后,研磨,得到硅酸盐红色发光玻璃粉。
按照玻璃粉和Sr4Al14O25:Eu2+荧光粉质量百分比为99.7:0.3的比例充分混合,在20MPa压力下压制成片,置于高温箱式电阻炉中,以5℃/min升温至680℃烧结0.5h后随炉冷却至室温,经过打磨、抛光后得到发光玻璃陶瓷。
获得的发光玻璃陶瓷直接覆盖在发射波长为385nm的紫外发光芯片上, 使用耐高温封装胶于周边进行固定后得到大功率远程LED,在90mA输入电流和16V输入电压工作0.5h并测试其光色性能。
实施例4
根据各原料在硅酸盐红色发光玻璃粉中的摩尔百分含量,按60%的SiO2、20%的Na2CO3、9%的Al2O3、6%的CaO、5%的Eu2O3的配比充分混合,置于高温箱式电阻炉中,以5℃/min升温至1300℃,保温3h后随炉冷却至室温后,研磨,得到硅酸盐红色发光玻璃粉。
按照玻璃粉和Sr4Al14O25:Eu2+荧光粉质量百分比为99.5:0.5的比例充分混合,在20MPa压力下压制成片,置于高温箱式电阻炉中,以5℃/min升温至680℃烧结0.5h后随炉冷却至室温,经过打磨、抛光后得到发光玻璃陶瓷。
获得的发光玻璃陶瓷直接覆盖在发射波长为385nm的紫外发光芯片上,使用耐高温封装胶于周边进行固定后得到大功率远程LED,在90mA输入电流和16V输入电压工作0.5h并测试其光色性能。
实施例4所使用的Sr4Al14O25:Eu2+荧光粉和硅酸盐红色发光玻璃粉的激发和发射光谱图以及所制备的发光玻璃陶瓷的发射光谱图如图1所示,从图1中可以看出Sr4Al14O25:Eu2+荧光粉和硅酸盐红色发光玻璃粉拥有公共的激发范围(例如385nm),通过同一波长的激发后可以得到两者的混合光。
实施例5
根据各原料在硅酸盐红色发光玻璃粉中的摩尔百分含量,按60%的SiO2、20%的Na2CO3、9%的Al2O3、6%的CaO、5%的Eu2O3的配比充分混合,置于高温箱式电阻炉中,以5℃/min升温至1300℃,保温3h后随炉冷却至室温后,研磨,得到硅酸盐红色发光玻璃粉。
按照玻璃粉和Sr4Al14O25:Eu2+荧光粉质量百分比为99.3:0.7的比例充分混合,在20MPa压力下压制成片,置于高温箱式电阻炉中,以5℃/min升温至680℃烧结0.5h后随炉冷却至室温,经过打磨、抛光后得到发光玻璃陶瓷。
获得的发光玻璃陶瓷直接覆盖在发射波长为385nm的紫外发光芯片上, 使用耐高温封装胶于周边进行固定后得到大功率远程LED,在90mA输入电流和16V输入电压工作0.5h并测试其光色性能。
实施例6
根据各原料在硅酸盐红色发光玻璃粉中的摩尔百分含量,按60%的SiO2、20%的Na2CO3、9%的Al2O3、6%的CaO、5%的Eu2O3的配比充分混合,置于高温箱式电阻炉中,以5℃/min升温至1300℃,保温3h后随炉冷却至室温后,研磨,得到硅酸盐红色发光玻璃粉。
按照玻璃粉和Sr4Al14O25:Eu2+荧光粉质量百分比为99.1:0.9的比例充分混合,在20MPa压力下压制成片,置于高温箱式电阻炉中,以5℃/min升温至680℃烧结0.5h后随炉冷却至室温,经过打磨、抛光后得到发光玻璃陶瓷。
获得的发光玻璃陶瓷直接覆盖在发射波长为385nm的紫外发光芯片上,使用耐高温封装胶于周边进行固定后得到大功率远程LED,在90mA输入电流和16V输入电压工作0.5h并测试其光色性能。
实施例1~6中得到的发光玻璃陶瓷的发射光谱图如图2所示,从图2中可以看出:随着荧光粉的含量增大,其发射峰也随其增大,有利于调控发光颜色,实施例1~6中得到的发光玻璃陶瓷的光学性能数据如下表1所示:
表1实施例1~6发光玻璃陶瓷的光学性能数据
Figure PCTCN2017080057-appb-000002
由上述表1可以得到,实施例1~6发光玻璃陶瓷由于原料比例不同而发光 颜色也从红色向天青蓝色变换,同时相对应波长处的量子效率也是呈现规律性变化,可以满足实际应用的需要。
实施例1~6中封装得到的大功率远程LED的发射光谱如图3所示,从图3中可以看出,获得的LED发射光谱与玻璃陶瓷的发射光谱能很好地对应。实施例1~6中封装得到的大功率远程LED工作时所对应的色坐标以及其工作效果图如图4所示,从图4中可以看出,随着荧光粉的含量增大,能获得不同种类的暖白光LED。
实施例1~6中封装得到的大功率远程LED的光学性能数据如下表2所示:
表2实施例1~6的LED的组分及其光学性能数据
组成 色坐标X 色坐标Y 色温
紫外芯片+实施例1发光玻璃陶瓷 0.5651 0.2624 56930
紫外芯片+实施例2发光玻璃陶瓷 0.5024 0.3061 3116
紫外芯片+实施例3发光玻璃陶瓷 0.4301 0.3508 2496
紫外芯片+实施例4发光玻璃陶瓷 0.3706 0.3861 4320
紫外芯片+实施例5发光玻璃陶瓷 0.3575 0.3961 4752
紫外芯片+实施例6发光玻璃陶瓷 0.3329 0.4131 5531
由上述表2可以得到,实施例1~6所封装的大功率远程LED的发光颜色可以实现从红光向暖白光的变换,并且可以得到不同种类的色温,极大的提高其应用的范围。
实施例7
根据各原料在硅酸盐红色发光玻璃粉中的摩尔百分含量,按50%的SiO2、30%的Na2CO3、9%的Al2O3、6%的CaO、5%的Eu2O3的配比充分混合,置于高温箱式电阻炉中,以5℃/min升温至1300℃,保温3h后随炉冷却至室温后,研磨,得到硅酸盐红色发光玻璃粉。
按照玻璃粉和Sr4Al14O25:Eu2+荧光粉质量百分比为99.5:0.5的比例充分混合,在20MPa压力下压制成片,置于高温箱式电阻炉中,以5℃/min升温至680℃烧结0.5h后随炉冷却至室温,经过打磨、抛光后得到发光玻璃陶瓷。
获得的发光玻璃陶瓷直接覆盖在发射波长为385nm的紫外发光芯片上,使用耐高温封装胶于周边进行固定后得到大功率远程LED,在90mA输入电 流和16V输入电压工作0.5h并测试其光色性能。
实施例8
根据各原料在硅酸盐红色发光玻璃粉中的摩尔百分含量,按50%的SiO2、30%的Na2CO3、9%的Al2O3、6%的CaO、5%的Eu2O3的配比充分混合,置于高温箱式电阻炉中,以10℃/min升温至1500℃,保温5h后随炉冷却至室温后,研磨,得到硅酸盐红色发光玻璃粉。
按照玻璃粉和Sr4Al14O25:Eu2+荧光粉质量百分比为99.5:0.5的比例充分混合,在20MPa压力下压制成片,置于高温箱式电阻炉中,以5℃/min升温至680℃烧结0.5h后随炉冷却至室温,经过打磨、抛光后得到发光玻璃陶瓷。
获得的发光玻璃陶瓷直接覆盖在发射波长为385nm的紫外发光芯片上,使用耐高温封装胶于周边进行固定后得到大功率远程LED,在90mA输入电流和16V输入电压工作0.5h并测试其光色性能。
实施例9
根据各原料在硅酸盐红色发光玻璃粉中的摩尔百分含量,按60%的SiO2、20%的Na2CO3、9%的Al2O3、6%的CaO、5%的Eu2O3的配比充分混合,置于高温箱式电阻炉中,以5℃/min升温至1300℃,保温3h后随炉冷却至室温后,研磨,得到硅酸盐红色发光玻璃粉。
按照玻璃粉和Sr4Al14O25:Eu2+荧光粉质量百分比为99.5:0.5的比例充分混合,在40MPa压力下压制成片,置于高温箱式电阻炉中,以10℃/min升温至650℃烧结0.5h后随炉冷却至室温,经过打磨、抛光后得到发光玻璃陶瓷。
获得的发光玻璃陶瓷直接覆盖在发射波长为385nm的紫外发光芯片上,使用耐高温封装胶于周边进行固定后得到大功率远程LED,在90mA输入电流和16V输入电压工作0.5h并测试其光色性能。
实施例10
根据各原料在硅酸盐红色发光玻璃粉中的摩尔百分含量,按60%的SiO2、 20%的Na2CO3、9%的Al2O3、6%的CaO、5%的Eu2O3的配比充分混合,置于高温箱式电阻炉中,以5℃/min升温至1300℃,保温3h后随炉冷却至室温后,研磨,得到硅酸盐红色发光玻璃粉。
按照玻璃粉和Sr4Al14O25:Eu2+荧光粉质量百分比为99.5:0.5的比例充分混合,在40MPa压力下压制成片,置于高温箱式电阻炉中,以10℃/min升温至700℃烧结1h后随炉冷却至室温,经过打磨、抛光后得到发光玻璃陶瓷。
获得的发光玻璃陶瓷直接覆盖在发射波长为385nm的紫外发光芯片上,使用耐高温封装胶于周边进行固定后得到大功率远程LED,在90mA输入电流和16V输入电压工作0.5h并测试其光色性能。
实施例11
将本发明实施例4获得的发光玻璃陶瓷与发射波长为385nm的紫外发光芯片封装成大功率远程LED,在20~90mA输入电流和16V输入电压工作0.5h并测试其光色性能。
实施例11大功率远程LED在不同电流时工作所对应的色坐标变化图如图5所示,从图5中可以看出:随着电流的变化,获得的LED发光颜色有所变化,但在可接受范围之内。
实施例11中封装得到的大功率远程LED的光学性能数据如下表3所示:
表3实施例11中LED的组分及其光学性能数据
组成 输入电流 色坐标X 色坐标Y
紫外芯片+实施例4发光玻璃陶瓷 20 0.3708 0.4107
紫外芯片+实施例4发光玻璃陶瓷 30 0.3706 0.4075
紫外芯片+实施例4发光玻璃陶瓷 40 0.3705 0.4041
紫外芯片+实施例4发光玻璃陶瓷 50 0.371 0.4008
紫外芯片+实施例4发光玻璃陶瓷 60 0.3715 0.3972
紫外芯片+实施例4发光玻璃陶瓷 70 0.3726 0.3935
紫外芯片+实施例4发光玻璃陶瓷 80 0.3739 0.3896
紫外芯片+实施例4发光玻璃陶瓷 90 0.3756 0.3855
由上述表3可以得到,实施例11所封装的大功率远程LED的色坐标随输入电流的升高而改变幅度较小,从而说明所封装的LED具有较好的稳定性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实 施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

  1. 一种发光玻璃陶瓷,其特征在于由质量比为100:0~99.1:0.9的硅酸盐红色发光玻璃粉和天青蓝色荧光粉Sr4Al14O25:Eu2+构成。
  2. 根据权利要求1所述的发光玻璃陶瓷,其特征在于:
    所述的硅酸盐红色发光玻璃粉由以下摩尔分数的组分组成:
    Figure PCTCN2017080057-appb-100001
  3. 一种根据权利要求1或2所述的发光玻璃陶瓷的制备方法,其特征在于包括以下步骤:
    (1)将SiO2、Na2CO3、Al2O3、CaO和Eu2O3混合均匀,然后置于高温箱式电阻炉中,升温反应,待反应完成后随炉冷却至室温后,将反应产物研磨即得到硅酸盐红色发光玻璃粉;
    (2将步骤(1)中得到的硅酸盐红色发光玻璃粉和Sr4Al14O25:Eu2+荧光粉混合均匀,然后将其压片并置于高温箱式电阻炉中,升温反应,反应结束后随炉冷却至室温,经过打磨、抛光后得到发光玻璃陶瓷。
  4. 根据权利要求3所述的发光玻璃陶瓷的制备方法,其特征在于:
    步骤(1)中所述的升温反应是指以5~10℃/min升温至1300~1500℃,然后保温反应3~6h;
    步骤(2)中所述的升温反应是指以5~10℃/min升温至650~700℃,保温反应0.5~1h;
    步骤(2)中所述的压片是指在20~40MPa压力下压制成片。
  5. 根据权利要求3所述的发光玻璃陶瓷的制备方法,其特征在于:
    步骤(1)中所述的升温反应是指以5℃/min升温至1300℃,然后保温反应3h;
    步骤(2)中所述的升温反应是指以5℃/min升温至680℃,保温反应0.5h;
    步骤(2)中所述的压片是指在20MPa压力下压制成片。
  6. 根据权利要求3所述的发光玻璃陶瓷的制备方法,其特征在于:
    步骤(1)中所使用的SiO2、Na2CO3、Al2O3、CaO和Eu2O3的摩尔比为(50~60):(20~30):9:6:5;
    步骤(2)中所使用的硅酸盐红色发光玻璃粉和Sr4Al14O25:Eu2+荧光粉的质量比为100:0~99.1:0.9。
  7. 根据权利要求1或2所述的发光玻璃陶瓷在制备LED照明器件中的应用,具体包括以下步骤:在385nm紫外发光芯片上直接覆盖权利要求1或2所述的发光玻璃陶瓷,使用耐高温封装胶于周边进行固定后即得到LED照明器件。
PCT/CN2017/080057 2016-09-29 2017-04-11 一种发光玻璃陶瓷及其制法与在led照明器件中的应用 WO2018058935A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11201805043YA SG11201805043YA (en) 2016-09-29 2017-04-11 A luminescent glass ceramic and the preparation method thereof and the use in LED lighting device thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610864346.5A CN106479500B (zh) 2016-09-29 2016-09-29 一种发光玻璃陶瓷及其制法与在led照明器件中的应用
CN201610864346.5 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018058935A1 true WO2018058935A1 (zh) 2018-04-05

Family

ID=58267821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080057 WO2018058935A1 (zh) 2016-09-29 2017-04-11 一种发光玻璃陶瓷及其制法与在led照明器件中的应用

Country Status (3)

Country Link
CN (1) CN106479500B (zh)
SG (1) SG11201805043YA (zh)
WO (1) WO2018058935A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372911A (zh) * 2021-05-27 2021-09-10 华北电力大学科技学院 一种氧化铝基体的红色荧光粉及其制备方法
CN114479859A (zh) * 2022-01-05 2022-05-13 浙江大学 一种多色可调锗酸盐荧光玻璃陶瓷及其制备方法
CN115893847A (zh) * 2022-10-25 2023-04-04 福建江夏学院 一种多模荧光微晶玻璃及其制备与应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106479500B (zh) * 2016-09-29 2018-08-28 华南农业大学 一种发光玻璃陶瓷及其制法与在led照明器件中的应用
CN108249772A (zh) * 2018-01-19 2018-07-06 南昌大学 基于稀土离子掺杂钒酸钇纳米晶的发光微晶玻璃的制备方法
CN110615613A (zh) * 2019-07-01 2019-12-27 上海大学 红光补偿荧光玻璃陶瓷及其制备方法和在白光led器件中的应用
CN112851124B (zh) * 2021-02-04 2022-03-22 中国科学院福建物质结构研究所 一种激光照明用玻璃陶瓷膜复合材料
CN113248926B (zh) * 2021-05-06 2023-11-24 甘肃颐年商贸有限责任公司 一种能促进植物生长的红光转化膜及其制备方法
CN113251326B (zh) * 2021-06-04 2022-06-21 厦门大学 一种实现高品质暖白光激光照明光源的荧光转换器件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122135A (ja) * 1984-11-19 1986-06-10 Toshiba Glass Co Ltd 螢光ガラス線量計用螢光標準ガラス
US20070110904A1 (en) * 2005-11-17 2007-05-17 Pai-Hua Chen Method for producing luminous ceramic article
CN102464450A (zh) * 2011-07-01 2012-05-23 华东理工大学 一种绿色节能荧光粉/玻璃复合发光材料及其制备方法
CN103159407A (zh) * 2013-03-19 2013-06-19 东华大学 一种荧光粉复合硅基介孔材料的发光玻璃及其制备方法
CN104150763A (zh) * 2014-08-12 2014-11-19 昆明理工大学 一种红色发光玻璃材料及其制备方法
CN104193346A (zh) * 2014-08-21 2014-12-10 厦门百嘉祥微晶材料科技股份有限公司 一种半透明的荧光粉/玻璃复合发光陶瓷片及其制备方法
CN105084765A (zh) * 2014-05-16 2015-11-25 天津纳正科技有限公司 一种硅酸盐玻璃陶瓷荧光粉及其制备方法
CN106479500A (zh) * 2016-09-29 2017-03-08 华南农业大学 一种发光玻璃陶瓷及其制法与在led照明器件中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8900950A (nl) * 1989-04-17 1990-11-16 Philips Nv Lagedrukkwikdampontladingslamp.
US20130026905A1 (en) * 2011-07-27 2013-01-31 General Electric Company Fluorescent lamps having high cri and lpw

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122135A (ja) * 1984-11-19 1986-06-10 Toshiba Glass Co Ltd 螢光ガラス線量計用螢光標準ガラス
US20070110904A1 (en) * 2005-11-17 2007-05-17 Pai-Hua Chen Method for producing luminous ceramic article
CN102464450A (zh) * 2011-07-01 2012-05-23 华东理工大学 一种绿色节能荧光粉/玻璃复合发光材料及其制备方法
CN103159407A (zh) * 2013-03-19 2013-06-19 东华大学 一种荧光粉复合硅基介孔材料的发光玻璃及其制备方法
CN105084765A (zh) * 2014-05-16 2015-11-25 天津纳正科技有限公司 一种硅酸盐玻璃陶瓷荧光粉及其制备方法
CN104150763A (zh) * 2014-08-12 2014-11-19 昆明理工大学 一种红色发光玻璃材料及其制备方法
CN104193346A (zh) * 2014-08-21 2014-12-10 厦门百嘉祥微晶材料科技股份有限公司 一种半透明的荧光粉/玻璃复合发光陶瓷片及其制备方法
CN106479500A (zh) * 2016-09-29 2017-03-08 华南农业大学 一种发光玻璃陶瓷及其制法与在led照明器件中的应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372911A (zh) * 2021-05-27 2021-09-10 华北电力大学科技学院 一种氧化铝基体的红色荧光粉及其制备方法
CN113372911B (zh) * 2021-05-27 2022-05-13 华北电力大学科技学院 一种氧化铝基体的红色荧光粉及其制备方法
CN114479859A (zh) * 2022-01-05 2022-05-13 浙江大学 一种多色可调锗酸盐荧光玻璃陶瓷及其制备方法
CN114479859B (zh) * 2022-01-05 2023-08-15 浙江大学 一种多色可调锗酸盐荧光玻璃陶瓷及其制备方法
CN115893847A (zh) * 2022-10-25 2023-04-04 福建江夏学院 一种多模荧光微晶玻璃及其制备与应用

Also Published As

Publication number Publication date
CN106479500B (zh) 2018-08-28
SG11201805043YA (en) 2018-07-30
CN106479500A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2018058935A1 (zh) 一种发光玻璃陶瓷及其制法与在led照明器件中的应用
WO2019223023A1 (zh) 一种yag荧光陶瓷及其制备方法和应用
Suehiro et al. Facile synthesis of (Sr, Ca) 2Si5N8: Eu2+-based red-emitting phosphor for solid-state lighting
TWI657064B (zh) 螢光玻璃陶瓷材料、其製造方法及包括其的發光裝置
WO2017128492A1 (zh) 一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件
WO2020010899A1 (zh) 植物生长用发光二极管
CN101880528B (zh) 一种单一基质白光荧光粉及其制造方法和所制发光器件
WO2020015423A1 (zh) 全光谱led光源
WO2020107425A1 (zh) 一种荧光体混合物及其发光装置
CN108998025B (zh) 一种led用硅酸盐基红色荧光粉及其制备方法
Wang et al. The study of luminescence properties on Ce: YAG phosphor in glass co-sintered at different temperatures
CN107879623B (zh) 一种白光led用红色发光玻璃陶瓷及其制备方法
TWI434913B (zh) 螢光層及其製造方法與用途
CN106978176A (zh) 一种黄色荧光粉及制备方法和其在发光器件中的应用
CN102162598A (zh) 白光led照明装置
CN106986626B (zh) 一种羟基磷灰石基荧光陶瓷材料及其制备方法
WO2018170975A1 (zh) 一种高功率照明与显示用荧光玻璃陶瓷及其制备方法和应用
CN103468264A (zh) 一种Ce:YAG多晶荧光体的制作方法
CN108314332B (zh) 一种远红光型荧光玻璃陶瓷、其制备方法和植物灯
CN107098582B (zh) 一种热稳定性高的硼酸盐基质led用白光发光玻璃及其制备方法
CN102454945A (zh) 一种获得高显色性暖白光的方法及其封装结构
Liu et al. Spectrum regulation of YAG: Ce/YAG: Cr/YAG: Pr phosphor ceramics with barcode structure prepared by tape casting
CN107652973B (zh) 白光LED用Mn离子掺杂石榴石结构红色发光材料及其制备方法和应用
CN102786929A (zh) 红色荧光粉
CN115851261A (zh) 高显色指数PoCs荧光体及其制备方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11201805043Y

Country of ref document: SG

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17854394

Country of ref document: EP

Kind code of ref document: A1