WO2018058752A1 - 单刃微型钻头 - Google Patents

单刃微型钻头 Download PDF

Info

Publication number
WO2018058752A1
WO2018058752A1 PCT/CN2016/105501 CN2016105501W WO2018058752A1 WO 2018058752 A1 WO2018058752 A1 WO 2018058752A1 CN 2016105501 W CN2016105501 W CN 2016105501W WO 2018058752 A1 WO2018058752 A1 WO 2018058752A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip flute
flute
chip
drill bit
drill
Prior art date
Application number
PCT/CN2016/105501
Other languages
English (en)
French (fr)
Inventor
屈建国
郭强
张辉
周辉军
Original Assignee
深圳市金洲精工科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市金洲精工科技股份有限公司 filed Critical 深圳市金洲精工科技股份有限公司
Publication of WO2018058752A1 publication Critical patent/WO2018058752A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/32Chip breaking or chip evacuation
    • B23B2200/328Details of chip evacuation

Definitions

  • the present disclosure relates to the technical field of micro drill bits for printed circuit boards (PCBs), for example, to a single-edged micro drill bit.
  • PCBs printed circuit boards
  • a drill bit is required for drilling.
  • a twist drill is a commonly used drill bit.
  • the twist drill is provided with two chip flutes in a spiral shape on the outer peripheral surface, and a land portion is arranged between the flutes, facing the chip flute.
  • Two symmetrical cutting edges are provided at the intersecting ridge portions of the rake face in the direction of rotation of the drill and the flank face on the rear side of the rake face.
  • the two flutes of the twist drill are usually placed symmetrically with respect to the center of the center of rotation of the drill bit. They can be well balanced with a center-symmetrical cutting edge, and have good chip removal performance and high-precision hole machining. .
  • PCBs printed circuit boards
  • the drill diameter of the drill bit for the PCB board (the diameter of the outer edge of the drill bit) is generally small to accommodate the need for a small aperture.
  • a general twist drill if a drill having a small drill diameter is formed, the wall thickness of the drill is reduced, the rigidity is lowered, and the drill is easily bent during the drilling process, resulting in a decrease in the accuracy of the drilling position.
  • the PCB is generally formed by impregnating a resin into a glass fiber cloth formed of woven glass fiber to form a prepreg resin blank, which is formed by laminating a copper foil on the surface of the prepreg resin blank, which is a heterogeneous composite material, and the bending of the glass fiber is sensitive.
  • the ground affects the hole position accuracy, so when drilling a PCB with a small diameter drill, the hole position accuracy is lowered. Therefore, it is difficult to obtain good hole position accuracy by using a conventional twist drill bit with a small diameter of a small diameter drill bit, particularly a printed circuit board.
  • CN200510105356.2 proposes a new structural drill with non-central symmetry of the double flutes relative to the center of rotation, the structure of the wall thickness (rigid) is ensured by forming the first flute, and the other flute is opposite to the first
  • a chipless groove is non-centralally symmetrically offset, does not form the main cutting edge, does not have a cutting effect, and the groove length is smaller than the first chip flute groove length, which increases the certain wall thickness, thereby increasing the rigidity of the drill bit and improving The precision of the drilling.
  • the asymmetrically designed drill tip results in a centroid shift, which is prone to yaw during drilling and reduces drilling accuracy.
  • the present disclosure proposes a single-edged micro drill bit that has better rigidity and reduces the centroid offset. Reduce the deflection during drilling and increase the accuracy of drilling.
  • a single-blade micro drill bit comprising: a first end portion and a second end portion;
  • a first chip flute, a second chip flute, and a third chip flute are opened from a first end surface of the first end of the drill bit toward the second end portion
  • the first chip flute, the second chip flute and the third flute are spiral.
  • the first chip flute and the second chip flute are 180° rotationally symmetric about the core.
  • a portion of the edge of the first chip flute is a main cutting edge, and an edge of the second flute that is centrally symmetrical with the main cutting edge is cut to form the third flute, the third row The flutes do not have a cutting action.
  • the third chip flute is in communication with the first chip flute and the second chip flute.
  • the third chip flute communicates with the first chip flute and spirally extends in a direction close to the second end.
  • the third chip flute and the second chip flute are short blind grooves and are not in communication with the first chip flute.
  • the top of the first end portion is provided with a chisel edge, and a portion of the chisel edge is cut to form a fourth chip flute.
  • a line connecting the first chip flute and the outer edge of the drill bit near the two end points of the drill tip is a first connection
  • An end point of the groove adjacent to the drill point is a first intersection
  • an intersection of the third chip flute and the outer edge of the drill bit near the end of the drill point is a second intersection
  • the line connecting the two intersections is a second connection
  • the angle between the first connection line and the second connection line is 45°-90°.
  • the end point of the fourth chip flute and the second chip flute adjacent to the drill point is a third intersection, and the first intersection and the third intersection are third.
  • the angle between the third connection and the second connection is 5°-75°.
  • the length of the second chip flute is 2.5 times to 4 times the diameter of the drill bit
  • the length of the fourth chip flute is 1 to 4 times the diameter of the drill bit
  • the first chip flute is a spiral groove whose spiral angle is in the range of 38°-42° and a constant spiral groove or helix angle is in the range of 38°-42°.
  • the second chip flute is a helical groove having a helix angle in the range of 38°-42° and a constant spiral groove or helix angle in the range of 38°-42°.
  • the third chip flute is a helical groove having a helix angle in the range of 38°-42° and a constant spiral groove or helix angle in the range of 38°-42°.
  • the second chip flute groove depth is smaller than the groove depth of the first chip flute and greater than 10% of the drill radius.
  • the present disclosure provides a single-blade micro drill having a first chip flute, a second chip flute, and a spiral-shaped first end face from a first end of the drill bit toward a second end.
  • a third chip flute, the first chip flute and the second chip flute are 180° rotationally symmetric about a core, and a part of the edge of the first flute forms a main cutting edge, the second An edge of the flute that is centrally symmetrical with the main cutting edge is cut to form the third flute, and no cutting action is formed.
  • the direction of chip removal improves the chip removal performance.
  • the first chip flute and the second chip flute are 180° rotationally symmetric, which reduces the centroid offset and reduces the deviation of the drill pin compared with the asymmetric mode.
  • the pendulum improves the drilling accuracy.
  • FIG. 1 is a partial structural schematic view of a horizontal placement of a single-blade micro drill provided in Embodiment 1 of the present disclosure.
  • FIG. 2 is a schematic structural view of a single-blade micro drill provided in Embodiment 1 of the present disclosure.
  • Fig. 3 is a partial enlarged view of a portion A of Fig. 2;
  • FIG. 4 is a partial structural schematic view 1 of a single-blade micro drill provided in Embodiment 1 of the present disclosure.
  • FIG. 5 is a partial schematic structural view 2 of a single-blade micro drill provided in Embodiment 1 of the present disclosure.
  • FIG. 6 is a partial structural schematic view 3 of a single-blade micro drill provided in Embodiment 1 of the present disclosure.
  • FIG. 7 is a front view of a single-blade micro drill provided in Embodiment 1 of the present disclosure.
  • Embodiment 8 is a left side view of a single-blade micro drill provided in Embodiment 2 of the present disclosure.
  • Embodiment 9 is a schematic structural view of a single-blade micro drill provided in Embodiment 2 of the present disclosure.
  • Fig. 10 is a partial enlarged view of the portion B of Fig. 9.
  • FIG. 11 is a partial structural schematic view 1 of a single-blade micro drill provided in Embodiment 2 of the present disclosure.
  • FIG. 12 is a partial structural schematic view 2 of a single-blade micro drill provided in Embodiment 2 of the present disclosure.
  • the present embodiment provides a single-blade micro drill bit comprising: a first end portion 100 and a second end portion 200; approaching from a first end surface of the first end portion 100 of the drill bit
  • the second end portion 200 is opened with a first chip flute 1, a second flute 2 and a third flute 3, a first flute 1, a second flute 2 and a third flute 3.
  • Both are spiral, the first chip flute 1 and the second chip flute 2 are 180° rotationally symmetric about the core, and a part of the edge of the first flute 1 forms a main cutting edge 5, and the second chip flute 2
  • the edge which is centrally symmetrical (i.e., 180° rotationally symmetric) to the main cutting edge 5 is cut to form the third chip flute 3 without cutting action.
  • the first end face may refer to the face of the first end portion 100 that faces away from the second end portion 200.
  • the main cutting edge 5 When there is only one cutting edge, that is, the main cutting edge 5, compared with the double cutting edge, only the rigidity of the main cutting edge 5 can be considered.
  • the wall thickness behind the blade 5 is used to obtain a larger amount of support and to increase the rigidity of the main cutting edge 5.
  • Both the first chip flute 1 and the second flute 2 can be chipped, which improves the chip discharging performance, and at the same time, the first chip flute and the second chip flute are 180° rotationally symmetric, compared with the asymmetric method.
  • the center of mass is closer to the center of the drill bit, which reduces the offset of the center of mass, reduces the yaw during drilling, and improves the accuracy of drilling.
  • the second chip flute 2 groove depth may be set to be smaller than the groove depth of the first chip flute 1 and greater than 10% of the bit radius.
  • the groove depth refers to the depth at which the bottom of the groove is cut into the core.
  • the groove depth of the spiral chip groove refers to the distance from the edge of the chip flute to the bottom of the flute along the radial direction of the bit, since the second flute 2 is only For discharging the chips, in order to increase the rigidity of the main cutting edge 5 on the first chip flute 1, the groove depth of the second chip flute 2 can be reduced, and the amount of support behind the main cutting edge 5 can be increased. However, in order to ensure chip capacity and chip removal performance, the groove depth of the second chip flute 2 should be greater than 10% of the radius of the bit.
  • the third chip flute 3 and the second chip flute 2 are short blind grooves and are not in communication with the first chip flute 1 . It is avoided that the metal substrate at the communication region with the first chip flute 1 is too small, the rigidity of the drill bit is lowered, the accuracy of the drilling is affected, and the problem of easy breakage is avoided.
  • the first chip flute 1 may be a spiral groove having a helix angle ⁇ in the range of 35°-50° and a constant spiral groove or helix angle ⁇ in the range of 35°-50°.
  • the pitch of the first chip flute 1 is relatively small, that is, the drill bit 1 of the same length has longer and more turns of the first chip flute 1 , and the amount of the metal substrate to be cut by the drill bit is relatively large.
  • the rigidity of the drill bit is deteriorated, the drilling accuracy is lowered, and it is easy to break.
  • the helix angle is too small, the first chip flute 1 becomes less, and the chip performance and chip removal performance are both reduce.
  • the helix angle can be selected from 38° to 42°, which can balance the good chip removal performance, chip handling performance and bit rigidity.
  • At least one of the second chip flute 2 and the third flute 3 may also be a spiral groove having a helix angle of 35°-50° and a constant spiral groove or a helix angle of 35°-50°.
  • the second chip flute 2 and the third flute 3 are prevented from communicating with the first flute 1 by adjusting the helix angle to ensure better rigidity of the bit.
  • the single-blade micro drill bit of the present embodiment further includes a fourth chip flute 4, and a chisel edge 6 is disposed at the top of the first end portion 100, and a portion of the chisel edge 6 is cut to form a fourth chip flute 4, and a fourth chip flute 4 may be located between the second chip flute 2 and the third flute 3, or may be only on the second flute 2 or the third flute 3, depending on the actual situation.
  • the fourth chip flute 4 By providing the fourth chip flute 4, the length of the chisel edge 6 is reduced, the cutting temperature is lowered, and the chisel edge 6 in the second chip flute 2 and the third chip flute 3 region is reduced, and the second row is entered.
  • the chips in the flute 2 and the third flute 3 are reduced to avoid accumulation in the second flute 2 and the third flute 3, resulting in blockage of the chips in the short blind.
  • the length of the second chip flute 2 can be 2.5 times to 4 times the diameter of the drill bit, and the length of the fourth chip flute 4 is 1 to 4 times the diameter of the drill bit, and in this range, better chip discharging performance can be obtained. While avoiding communication with the first chip flute.
  • the apex angle ⁇ of the drill bit of the drill bit is too large, the cutting performance is lowered, the apex angle ⁇ is too small, the wear resistance of the drill tip is deteriorated, and the apex angle ⁇ can be 100°-140°, taking into account the drill bit.
  • the wear resistance and cutting performance are generally 130° for better wear resistance and cutting performance.
  • the single-blade micro drill bit of the present embodiment is a UC (undercut) type drill bit, that is, a guide portion 7 for guiding is protruded from the outer wall of the first end portion of the drill bit.
  • the outer diameter of the guide portion 7 is The diameters of the holes to be drilled are equal to ensure the accuracy of the drilling, and the outer diameter of the drill bit behind the guide portion 7 is slightly smaller than the outer diameter of the guide portion 7, reducing the friction between the outer wall of the rear drill bit and the inner wall of the hole.
  • the length L of the guiding portion in the axial direction of the drill bit can be set to 0.4 mm-0.6 mm, so as to achieve the guiding performance, obtain better drilling precision, and avoid the excessive friction area caused by the too long guiding portion 7.
  • the heat is too large, so that the binder cobalt in the drill body made of a cemented carbide material is easily oxidized, resulting in a decrease in wear resistance of the drill bit and even a problem that the drill bit is easily broken.
  • the drill diameter of such a single-blade micro drill can be 0.15mm-0.7mm, and this structure can be used to obtain better drilling precision.
  • the rear portion in the present embodiment and the following embodiments refers to a direction toward the second end portion 200.
  • the third chip flute 3 of the present embodiment communicates with the first chip discharge.
  • the groove 1 and the second chip flute 2, and the third chip flute 3 communicate with the first chip flute 1 and spirally extend in a direction close to the second end portion 200.
  • the third chip flute 3 communicates the first chip flute 1 and the second flute 2
  • the 1 chip is discharged from the first chip flute 1 and the second flute 2 and the third flute 3 are
  • the discharged chips will collide with each other at the intersection to prevent the chips from continuing to entangle in the rear chip flutes and affect the chip removal.
  • the third chip flute 3 communicates with the first chip flute 1 and spirally extends in a direction close to the second end portion 200, which can increase the chip performance and the chip discharging performance of the first chip flute.
  • the groove length of the third chip flute 3 may be equal to the groove length of the first chip flute 1, that is, the end of the first flute 1 extending to the cutting length direction of the drill bit, thereby improving the chip removal performance in the entire cutting length direction. .
  • the line connecting the first chip flute 1 and the outer edge of the drill bit of the present embodiment near the two end points of the drill point is the first line 11, the third chip flute 3 and the The end point of the intersection of the four chip flutes 4 near the drill point is the first intersection point 31, and the end point of the third chip flute 3 and the outer edge of the drill bit near the end of the drill point is the second intersection point 32, the first intersection point 31
  • the line connecting the second intersection 32 is the second line 33, and the angle between the first line 11 and the second line 33 is the angle ⁇ between the first chip flute 1 and the third chip flute 3.
  • can be 45°-90°, which is suitable.
  • the end point of the fourth chip flute 4 and the second chip flute 2 near the drill point is the third intersection point 41, and the line connecting the first intersection point 31 and the third intersection point 41 is the third connection line 42, the third connection
  • the angle between the line 42 and the second line 33 is the angle ⁇ between the third chip flute 3 and the fourth chip flute 4.
  • the value of ⁇ mainly affects the length of the chisel edge 6, which is too large or too small. The length of the chisel edge 6 is too small or too large, resulting in a high cutting temperature or a good positioning accuracy in the initial drilling.
  • is in the range of 5°-75°.
  • the values of ⁇ and ⁇ are also within the scope of the present embodiment.
  • the single-blade micro drill provided by the present disclosure can ensure sufficient support of the main cutting edge by adjusting the first chip flute and the second chip flute, and ensure the rigidity of the bit body, the first chip flute and the second row.
  • the flutes can be chipped toward the second end, which improves the chip removal performance.
  • the first flute and the second flute are 180° rotationally symmetric, which reduces the centroid compared with the asymmetric mode. The offset reduces the yaw during drilling and improves the drilling accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)

Abstract

一种单刃微型钻头,从钻头的第一端部(100)的第一端面朝靠近第二端部(200)的方向开设有均为螺旋状的第一排屑槽(1)、第二排屑槽(2)和第三排屑槽(3),所述第一排屑槽(1)和所述第二排屑槽(2)以钻心为中心呈180°旋转对称,所述第一排屑槽(1)的部分边缘形成主切削刃(5),所述第二排屑槽(2)上与所述主切削刃(5)呈中心对称的边缘被切除形成所述第三排屑槽(3),不具有切削作用。该钻头主切削刃有足够的支撑量,并且提高了排屑性能和钻孔精度。

Description

单刃微型钻头 技术领域
本公开涉及印制电路板(PCB)用微型钻头的技术领域,例如涉及一种单刃微型钻头。
背景技术
在钻孔时需要用到钻头,麻花钻是一种常用的钻头,麻花钻在外周面呈螺旋状设置两个排屑槽,在排屑槽之间设置刃带部,在朝向排屑槽的钻头旋转方向的前刀面和前刀面后侧的后刀面的交叉棱线部设置两条相互对称的切削刃。麻花钻的两个排屑槽通常设置在相对于钻头旋转中心中心对称的位置,可以利用中心对称的刀刃进行平衡良好的切削,而且排屑性能良好,能够进行高精度的孔加工,因此使用广泛。
随着电子产品的高集成化和精密化发展,印制电路板(PCB)逐步向小孔径、窄线距、高密度和多层数的方向发展,对机械钻孔的要求,如孔位精度和断钻率,越来越高。用于PCB板的钻头的钻径(钻头外缘的直径)一般而言都比较小,以适应小孔径的需求。但是,对于一般的麻花钻而言,如果形成小钻径的钻头,则钻头的壁厚减小,刚性降低,钻头在钻孔的过程中,容易弯曲,导致钻孔位置精度的降低。此外,PCB一般是在编织玻璃纤维形成的玻璃纤维布中浸渍树脂形成预浸树脂坯料,在该预浸树脂坯料的表层层积铜箔形成,是非均质复合材料,而且玻璃纤维的弯曲很敏感地影响到孔位置精度,所以在利用小径钻头钻削PCB时,孔位置精度降低。因此,通过在小径钻头、特别是印刷电路板用小钻径的普通麻花钻钻头来获得良好的孔位置精度比较困难。CN200510105356.2提出了一种双排屑槽相对于旋转中心非中心对称性的新结构钻头,通过形成第一个排屑槽来确保壁厚(刚性)的结构,另一个排屑槽相对于第一个排屑槽非中心对称偏置设置,不形成主切削刃,不起切削作用,且槽长小于第一排屑槽槽长,增加了一定的壁厚,因而增加了钻头的刚性,提高了钻孔的精度。但是非对称设计的钻尖导致质心偏移,钻削时容易发生偏摆,降低了钻孔精度。
发明内容
本公开提出了一种单刃微型钻头,具有较好的刚性,且降低了质心的偏移, 减少钻销时的偏摆,提高了钻孔精度。
本公开采用以下技术方案:
一种单刃微型钻头,包括:第一端部和第二端部;
从钻头的第一端部的第一端面朝靠近第二端部的方向开设有第一排屑槽、第二排屑槽和第三排屑槽,
所述第一排屑槽、第二排屑槽和第三排屑槽均为螺旋状,
所述第一排屑槽和所述第二排屑槽以钻心为中心呈180°旋转对称,
所述第一排屑槽的部分边缘为主切削刃,所述第二排屑槽上与所述主切削刃呈中心对称的边缘被切除形成所述第三排屑槽,所述第三排屑槽不具有切削作用。
可选的,所述第三排屑槽与所述第一排屑槽和所述第二排屑槽连通。
可选的,所述第三排屑槽与所述第一排屑槽连通后并排朝靠近第二端部的方向螺旋延伸。
可选的,所述第三排屑槽和所述第二排屑槽均为短盲槽且均不与所述第一排屑槽连通。
可选的,所述第一端部的顶部设置有横刃,所述横刃的部分被切除形成第四排屑槽。
可选的,所述第一排屑槽与钻头的外缘的交线上靠近钻尖的两个端点的连线为第一连线,所述第三排屑槽与所述第四排屑槽的交线上靠近钻尖的端点为第一交点,所述第三排屑槽与钻头的外缘的交线上靠近钻尖的端点为第二交点,所述第一交点和所述第二交点的连线为第二连线,所述第一连线和所述第二连线的夹角为45°-90°。
可选的,所述第四排屑槽与所述第二排屑槽的交线上靠近钻尖的端点为第三交点,所述第一交点和所述第三交点的连线为第三连线,所述第三连线与所述第二连线的夹角为5°-75°。
可选的,所述第二排屑槽的长度为钻头直径的2.5倍-4倍,所述第四排屑槽的长度为钻头直径的1倍-4倍。
可选的,所述第一排屑槽为螺旋角在38°-42°范围内且恒定的螺旋槽或螺旋角在38°-42°范围内且变化的螺旋槽。
可选的,所述第二排屑槽为螺旋角在38°-42°范围内且恒定的螺旋槽或螺旋角在38°-42°范围内且变化的螺旋槽。
可选的,所述第三排屑槽为螺旋角在38°-42°范围内且恒定的螺旋槽或螺旋角在38°-42°范围内且变化的螺旋槽。
可选的,所述第二排屑槽槽深小于所述第一排屑槽的槽深,且大于钻头半径的10%。
本公开提供了一种单刃微型钻头,从钻头的第一端部的第一端面朝靠近第二端部的方向开设有均为螺旋状的第一排屑槽、第二排屑槽和第三排屑槽,所述第一排屑槽和所述第二排屑槽以钻心为中心呈180°旋转对称,所述第一排屑槽的部分边缘形成主切削刃,所述第二排屑槽上与所述主切削刃呈中心对称的边缘被切除形成所述第三排屑槽,不形成切削作用。通过调整第一排屑槽和第二排屑槽,可以保证主切削刃有足够的支撑量,保证钻头本体的刚性,第一排屑槽和第二排屑槽都可以朝靠近第二端部的方向排屑,提高了排屑性能,同时,第一排屑槽和第二排屑槽成180°旋转对称,与非对称方式相比,降低了质心的偏移,减少钻销时的偏摆,提高了钻孔精度。
附图概述
图1是本公开的实施例1提供的单刃微型钻头的水平放置的局部结构示意图。
图2是本公开的实施例1提供的单刃微型钻头的结构示意图。
图3是图2的A处的局部放大图。
图4是本公开的实施例1提供的单刃微型钻头的局部结构示意图一。
图5是本公开的实施例1提供的单刃微型钻头的局部结构示意图二。
图6是本公开的实施例1提供的单刃微型钻头的局部结构示意图三。
图7是本公开的实施例1提供的单刃微型钻头的主视图。
图8是本公开的实施例2提供的单刃微型钻头的左视图。
图9是本公开的实施例2提供的单刃微型钻头的结构示意图。
图10是图9的B处的局部放大图。
图11是本公开的实施例2提供的单刃微型钻头的局部结构示意图一。
图12是本公开的实施例2提供的单刃微型钻头的局部结构示意图二。
其中:
1-第一排屑槽,11-第一连线,2-第二排屑槽,3-第三排屑槽,31-第一交点,32-第二交点,33-第二连线,4-第四排屑槽,41-第三交点,41-第三连线,5-主切削刃,6-横刃,7-导向部,α-顶角,β-螺旋角,θ-第一排屑槽和第三排屑槽 的夹角,γ-第四排屑槽和第三排屑槽的夹角,L-导向部沿钻头轴向方向的长度。
具体实施方式
为使本公开解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面结合附图并通过具体实施方式来说明本公开的技术方案。
实施例1
如图1-图7所示,本实施例提供了一种单刃微型钻头,包括:第一端部100和第二端部200;从钻头的第一端部100的第一端面朝靠近第二端部200的方向开设有第一排屑槽1、第二排屑槽2和第三排屑槽3,第一排屑槽1、第二排屑槽2和第三排屑槽3均为螺旋状,第一排屑槽1和第二排屑槽2以钻心为中心呈180°旋转对称,第一排屑槽1的部分边缘形成主切削刃5,第二排屑槽2上与主切削刃5呈中心对称(即呈180°旋转对称)的边缘被切除形成第三排屑槽3,不具有切削作用。其中,第一端面可以是指第一端部100上背离所述第二端部200的那面。与双切削刃相比,只具有一个切削刃即主切削刃5时,可以只考虑主切削刃5的刚性,通过调整第一排屑槽1和第二排屑槽2,可以优先满足主切削刃5后方的壁厚,以获得较大的支撑量,提高主切削刃5的刚性。第一排屑槽1和第二排屑槽2都可以排屑,提高了排屑性能,同时,第一排屑槽和第二排屑槽成180°旋转对称,与非对称的方式相比,质心更靠近钻头的中心,降低了质心的偏移,减少钻销时的偏摆,提高了钻孔精度。第二排屑槽2槽深可以设置为小于第一排屑槽1的槽深,且大于钻头半径的10%。槽深是指槽底切入钻芯的深度,螺旋的排屑槽的槽深是指排屑槽的边缘到排屑槽的底部沿钻头的径向方向的距离,由于第二排屑槽2只是用于排出切屑,因此,为了提高第一排屑槽1上的主切削刃5的刚度,可以减少第二排屑槽2的槽深,增加主切削刃5后方的支撑量。但是为了保证容屑性能和排屑性能,第二排屑槽2的槽深应该大于钻头半径的10%。
本实施例中,第三排屑槽3和第二排屑槽2均为短盲槽且均不与第一排屑槽1连通。避免了在与第一排屑槽1的连通区域处的金属基体太少,钻头的刚性降低,影响钻孔的精度,且容易折断的问题。第一排屑槽1可以为螺旋角β在35°-50°范围内且恒定的螺旋槽或螺旋角β在35°-50°范围内且变化的螺旋槽。螺旋角过大时,第一排屑槽1的螺距比较小,即相同长度的钻头上会有更长的和更多圈的第一排屑槽1,钻头被切除的金属基体的量比较多,钻头的刚性变差,钻孔精度下降且容易折断。螺旋角过小时,第一排屑槽1变少,容屑性能和排屑性能均 降低。螺旋角可以选择为38°-42°,可以兼顾比较好的排屑性能、容屑性能以及钻头的刚性。第二排屑槽2和第三排屑槽3中的至少一个也可以为螺旋角在35°-50°内且恒定的螺旋槽或螺旋角在35°-50°内且变化的螺旋槽,第二排屑槽2和第三排屑槽3通过调整螺旋角,避免与第一排屑槽1连通,以保证钻头具有较好的刚性。
本实施的单刃微型钻头还包括第四排屑槽4,在第一端部100的顶部设置有横刃6,横刃6的部分被切除形成第四排屑槽4,第四排屑槽4可以位于第二排屑槽2和第三排屑槽3之间,也可以只是在第二排屑槽2或者第三排屑槽3上,根据实际情况而定。通过设置第四排屑槽4,减少了横刃6的长度,降低切削温度,且减少了在第二排屑槽2和第三排屑槽3区域的横刃6后,进入到第二排屑槽2和第三排屑槽3中的切屑减少,避免堆积在第二排屑槽2和第三排屑槽3中,导致短盲槽中排屑阻塞。
第二排屑槽2的长度可以为钻头直径的2.5倍-4倍,第四排屑槽4的长度为钻头直径的1倍-4倍,在此范围内,可以获得比较好的排屑性能,同时避免与第一排屑槽连通。
如图7所示,钻头的钻尖的顶角α过大时,切削性能下降,顶角α过小时,钻尖的耐磨性能变差,顶角α可以为100°-140°,兼顾钻头的耐磨性和切削性能,一般采用130°,以获得比较好的耐磨性和切削性能。
本实施的单刃微型钻头为UC(under cut,凹割)型钻头,即在钻头的第一端部的外壁凸设有用于导向的导向部7,一般而言,导向部7的外径与待钻孔的直径相等,以保证钻孔的精度,导向部7后方的钻头的外径略小于导向部7的外径,减少后方的钻头的外壁与孔的内壁的摩擦。导向部沿钻头轴向方向的长度L可以设置为0.4mm-0.6mm,以兼顾导向性能,获得较好的钻孔精度,且避免太长的导向部7带来的摩擦面积过大引起的发热量过大,从而由硬质合金材料制成的钻体中的粘合剂钴容易被氧化,导致钻头耐磨性降低,甚至导致钻头容易断裂的问题。此种单刃微型钻头的钻径可以为0.15mm-0.7mm,在此钻径下采用此结构可以获得比较好的钻孔精度。其中,本实施例以及下述实施例中所述后方都是指朝靠近第二端部200的方向。
实施例2
与实施例1不同的是,如图8-图12所示,本实施的第三排屑槽3连通第一排屑 槽1和第二排屑槽2,且第三排屑槽3与第一排屑槽1连通后并排朝靠近第二端部200的方向螺旋延伸。第三排屑槽3将第一排屑槽1和第二排屑槽2连通后,从第一排屑槽1中排出1切屑和从第二排屑槽2及第三排屑槽3中排出的切屑在交汇处会相互碰撞破碎,避免切屑在后方的排屑槽中继续缠绕,影响排屑。第三排屑槽3与第一排屑槽1连通后并排朝靠近第二端部200的方向螺旋延伸,可以加大第一排屑槽的容屑性能和排屑性能。第三排屑槽3的槽长可以与第一排屑槽1的槽长相等,即一直跟随第一排屑槽1延伸到钻头的切削长度方向的末端,提高整个切削长度方向的排屑性能。
如图8所示,本实施例的第一排屑槽1与钻头的外缘的交线上靠近钻尖的两个端点的连线为第一连线11,第三排屑槽3与第四排屑槽4的交线上靠近钻尖的端点为第一交点31,第三排屑槽3与钻头的外缘的交线上靠近钻尖的端点为第二交点32,第一交点31和第二交点32的连线为第二连线33,第一连线11和第二连线33的夹角为第一排屑槽1和第三排屑槽3的夹角θ。θ过大时,会将第一排屑槽1的外缘切掉,不能形成较好的支撑结构,降低了钻头的刚性,θ过小时,第三排屑槽3无法切除到第二排屑槽2上的切削刃。θ可以为45°-90°,比较合适。
第四排屑槽4与第二排屑槽2的交线上靠近钻尖的端点为第三交点41,第一交点31和第三交点41的连线为第三连线42,第三连线42与第二连线33的夹角为第三排屑槽3和第四排屑槽4之间的夹角γ,γ的值主要影响横刃6的长度,过大或过小会导致横刃6的长度过小或者过大,导致切削温度很高或者无法在初期钻孔时有比较好的定位精度。可选的,γ在5°-75°范围内。可选的,在实施例1中,θ和γ的值也在本实施例的范围内。
工业实用性
本公开提供的一种单刃微型钻头通过调整第一排屑槽和第二排屑槽,可以保证主切削刃有足够的支撑量,保证钻头本体的刚性,第一排屑槽和第二排屑槽都可以朝靠近第二端部的方向排屑,提高了排屑性能,同时,第一排屑槽和第二排屑槽成180°旋转对称,与非对称方式相比,降低了质心的偏移,减少钻销时的偏摆,提高了钻孔精度。

Claims (12)

  1. 一种单刃微型钻头,包括:第一端部(100)和第二端部(200);
    从钻头的第一端部(100)的第一端面朝靠近第二端部(200)的方向开设有第一排屑槽(1)、第二排屑槽(2)和第三排屑槽(3),
    所述第一排屑槽(1)、第二排屑槽(2)和第三排屑槽(3)均为螺旋状,
    所述第一排屑槽(1)和所述第二排屑槽(2)以钻心为中心呈180°旋转对称,
    所述第一排屑槽(1)的部分边缘为主切削刃(5),所述第二排屑槽(2)上与所述主切削刃(5)呈中心对称的边缘被切除形成所述第三排屑槽(3),所述第三排屑槽(3)不具有切削作用。
  2. 如权利要求1所述的单刃微型钻头,其中,所述第三排屑槽(3)与所述第一排屑槽(1)和所述第二排屑槽(2)连通。
  3. 如权利要求2所述的单刃微型钻头,其中,所述第三排屑槽(3)与所述第一排屑槽(1)连通后并排朝靠近第二端部(200)的方向螺旋延伸。
  4. 如权利要求1所述的单刃微型钻头,其中,所述第三排屑槽(3)和所述第二排屑槽(2)均为短盲槽且均不与所述第一排屑槽(1)连通。
  5. 如权利要求1-4任一项所述的单刃微型钻头,其中,所述第一端部(100)的顶部设置有横刃(6),所述横刃(6)的部分被切除形成第四排屑槽(4)。
  6. 如权利要求5所述的单刃微型钻头,其中,所述第一排屑槽(1)与钻头的外缘的交线上靠近钻尖的两个端点的连线为第一连线(11),所述第三排屑槽(3)与所述第四排屑槽(4)的交线上靠近钻尖的端点为第一交点(31),所述第三排屑槽(3)与钻头的外缘的交线上靠近钻尖的端点为第二交点(32),所述第一交点(31)和所述第二交点(32)的连线为第二连线(33),所述第一连线(11)和所述第二连线(33)的夹角为45°-90°。
  7. 如权利要求6所述的单刃微型钻头,其中,所述第四排屑槽(4)与所述第二排屑槽(2)的交线上靠近钻尖的端点为第三交点(41),所述第一交点(31)和所述第三交点(41)的连线为第三连线(42),所述第三连线(42)与所述第二连线(33)的夹角为5°-75°。
  8. 如权利要求5所述的单刃微型钻头,其中,所述第二排屑槽(2)的长度为钻头直径的2.5倍-4倍,所述第四排屑槽(4)的长度为钻头直径的1倍-4倍。
  9. 如权利要求1-4任一项所述的单刃微型钻头,其中,所述第一排屑槽(1)为螺旋角在38°-42°范围内且恒定的螺旋槽或螺旋角在38°-42°范围内且变 化的螺旋槽。
  10. 如权利要求1-4任一项所述的单刃微型钻头,其中,所述第二排屑槽(2)为螺旋角在38°-42°范围内且恒定的螺旋槽或螺旋角在38°-42°范围内且变化的螺旋槽。
  11. 如权利要求1-4任一项所述的单刃微型钻头,其中,所述第三排屑槽(3)为螺旋角在38°-42°范围内且恒定的螺旋槽或螺旋角在38°-42°范围内且变化的螺旋槽。
  12. 如权利要求1-4任一项所述的单刃微型钻头,其中,所述第二排屑槽(2)槽深小于所述第一排屑槽(1)的槽深,且大于钻头半径的10%。
PCT/CN2016/105501 2016-09-30 2016-11-11 单刃微型钻头 WO2018058752A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610873354.6A CN106270666B (zh) 2016-09-30 2016-09-30 一种单刃微型钻头
CN201610873354.6 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018058752A1 true WO2018058752A1 (zh) 2018-04-05

Family

ID=57716523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105501 WO2018058752A1 (zh) 2016-09-30 2016-11-11 单刃微型钻头

Country Status (3)

Country Link
CN (1) CN106270666B (zh)
TW (1) TWI637799B (zh)
WO (1) WO2018058752A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021148672A1 (en) * 2020-01-23 2021-07-29 Colt Technologies Gmbh Drill
NL2024734B1 (en) * 2020-01-23 2021-09-09 Colt Tech Gmbh Drill head

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017111630A1 (de) * 2017-05-29 2018-11-29 Botek Präzisionsbohrtechnik Gmbh Einlippen-Tieflochbohrer mit abgesetzter Spanfläche
CN107442815A (zh) * 2017-08-31 2017-12-08 广州卓程电子科技有限公司 一种高强度钻针
TWI786325B (zh) * 2018-10-04 2022-12-11 以色列商艾斯卡公司 具有設負傾角及正傾角二者之徑向延伸前切削刃的頂端部的切削頭、及旋轉切削工具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201291317Y (zh) * 2008-08-12 2009-08-19 深圳市金洲精工科技股份有限公司 一种用于电路板钻孔的微型钻头
CN101780553A (zh) * 2009-01-15 2010-07-21 株式会社钨钛合金 钻头及其磨削加工方法
CN202271010U (zh) * 2011-10-08 2012-06-13 深圳市金洲精工科技股份有限公司 一种微型钻头
JP2013049116A (ja) * 2011-08-31 2013-03-14 Kyocera Corp ドリルおよび該ドリルを用いる被削加工物の製造方法
CN103100740A (zh) * 2011-11-10 2013-05-15 高侨自动化科技股份有限公司 钻头及其制作方法
JP2013208692A (ja) * 2012-03-30 2013-10-10 Kyocera Corp ドリル及びそれを用いた切削加工物の製造方法
CN103357925A (zh) * 2012-03-30 2013-10-23 新野鼎泰电子精工科技有限公司 加工印刷电路板的微型单刃钻头
CN206065496U (zh) * 2016-09-30 2017-04-05 深圳市金洲精工科技股份有限公司 一种单刃微型钻头

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334711A (ja) * 2002-05-16 2003-11-25 Union Tool Co ドリル
CN101678475B (zh) * 2007-06-22 2012-12-12 日立工具股份有限公司 深孔加工用小直径钻头及细微深孔加工方法
CN202291543U (zh) * 2011-11-10 2012-07-04 高侨自动化科技股份有限公司 钻头
TWI532551B (zh) * 2012-11-27 2016-05-11 創國興業有限公司 倒錐型鑽頭結構
DE102014207510B4 (de) * 2014-04-17 2021-12-16 Kennametal Inc. Zerspanungswerkzeug sowie Verfahren zum Herstellen eines Zerspanungswerkzeugs
CN204123460U (zh) * 2014-06-26 2015-01-28 超美精密工业(惠州)有限公司 一种单刃钻针结构
CN204018808U (zh) * 2014-08-14 2014-12-17 武汉泰尔斯刀具有限公司 一种用于加工深孔的钻头
CN204367067U (zh) * 2014-12-16 2015-06-03 厦门厦芝科技工具有限公司 一种印刷电路板用钻针
CN204818199U (zh) * 2015-05-30 2015-12-02 奥斯机(上海)精密工具有限公司 超小径精密加工用硬质合金φ0.5钻头
CN205218134U (zh) * 2015-12-01 2016-05-11 厦门沃能科技有限公司 一种印刷电路板用钻头

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201291317Y (zh) * 2008-08-12 2009-08-19 深圳市金洲精工科技股份有限公司 一种用于电路板钻孔的微型钻头
CN101780553A (zh) * 2009-01-15 2010-07-21 株式会社钨钛合金 钻头及其磨削加工方法
JP2013049116A (ja) * 2011-08-31 2013-03-14 Kyocera Corp ドリルおよび該ドリルを用いる被削加工物の製造方法
CN202271010U (zh) * 2011-10-08 2012-06-13 深圳市金洲精工科技股份有限公司 一种微型钻头
CN103100740A (zh) * 2011-11-10 2013-05-15 高侨自动化科技股份有限公司 钻头及其制作方法
JP2013208692A (ja) * 2012-03-30 2013-10-10 Kyocera Corp ドリル及びそれを用いた切削加工物の製造方法
CN103357925A (zh) * 2012-03-30 2013-10-23 新野鼎泰电子精工科技有限公司 加工印刷电路板的微型单刃钻头
CN206065496U (zh) * 2016-09-30 2017-04-05 深圳市金洲精工科技股份有限公司 一种单刃微型钻头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021148672A1 (en) * 2020-01-23 2021-07-29 Colt Technologies Gmbh Drill
NL2024734B1 (en) * 2020-01-23 2021-09-09 Colt Tech Gmbh Drill head

Also Published As

Publication number Publication date
TWI637799B (zh) 2018-10-11
CN106270666A (zh) 2017-01-04
TW201813744A (zh) 2018-04-16
CN106270666B (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
WO2018058752A1 (zh) 单刃微型钻头
EP2058073B1 (en) Drilling tool
US9421620B2 (en) Miniature drill
CN103097062A (zh) 钻头及使用该钻头的切削加工物的制造方法
TWM548042U (zh) 單刃微型鑽頭
TWI617379B (zh) 鑽頭結構
US6976812B2 (en) Small drill
KR200470572Y1 (ko) 드릴 비트 칩 방출 장치
TW201601862A (zh) 鑽孔工具
JP2012148384A (ja) ドリルビット構造
CN203484717U (zh) 无卤素板及厚铜板加工用微型钻头
CN210817596U (zh) 一种微型钻头
WO2017076092A1 (zh) 用于 pcb 板钻孔的钻头
CN208961067U (zh) 一种高强度长短沟槽刀
US20170066063A1 (en) Drill structure
CN203030977U (zh) 钻头结构
TW200306896A (en) Drill
CN110216312A (zh) 一种用于孔内铣孔的铣削工具及加工方法
CN110170686A (zh) 一种微型钻头
CN208408643U (zh) 一种高强度uc型钻针
CN216912221U (zh) Pcb钻孔工具
CN217160126U (zh) 一种pcb钻针
CN212469904U (zh) 一种大刃径比微型钻头
CN219445350U (zh) 钻孔工具
CN203371084U (zh) Pcb微型钻头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16917498

Country of ref document: EP

Kind code of ref document: A1