WO2018058345A1 - 传输解调参考信号的方法、网络设备和终端设备 - Google Patents

传输解调参考信号的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2018058345A1
WO2018058345A1 PCT/CN2016/100487 CN2016100487W WO2018058345A1 WO 2018058345 A1 WO2018058345 A1 WO 2018058345A1 CN 2016100487 W CN2016100487 W CN 2016100487W WO 2018058345 A1 WO2018058345 A1 WO 2018058345A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
dmrs
terminal device
silent
network device
Prior art date
Application number
PCT/CN2016/100487
Other languages
English (en)
French (fr)
Inventor
张永平
杜光龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/100487 priority Critical patent/WO2018058345A1/zh
Publication of WO2018058345A1 publication Critical patent/WO2018058345A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of wireless communications, and more particularly to a method, network device, and terminal device for transmitting a demodulation reference signal DMRS.
  • the receiving end can acquire the wireless channel information and use the estimated wireless channel information to perform data reception and demodulation, the data receiving quality can be greatly improved, and in order to achieve the above purpose, the transmitting end is usually At the same time of transmitting data, some reference signals are transmitted. These reference signals are preset, and both ends of the transmitting and receiving are predicted. By estimating the reference signals, the receiving end can obtain wireless channel information for receiving and demodulating data. In order to improve resource utilization, in actual systems, only a small amount of resources are often used for the transmission of reference signals. The reason why the channel information can be obtained by transmitting the reference signal using only a small part of the resources is because the wireless channel is often block fading, that is, it has correlation in two dimensions of frequency and time. As long as the time interval of the reference signal is less than the coherence time and the interval in the frequency domain is smaller than the coherence bandwidth, channel state information on all time-frequency resources can be obtained according to the reference signals.
  • the reference signal is placed on the first symbol when transmitting data, and after receiving the first symbol, the receiving end can estimate the entire resource block according to the reference signal therein.
  • the channel state information is started, and the received data is detected, so that the receiving side detection is performed in the subsequent data receiving process, thereby shortening the receiving delay.
  • the channel state information estimated from the reference signal transmitted on the foremost symbol, when used for data reception is inferior to the performance on the lower symbol. Therefore, in 5G systems, when high-order modulation is used in some special scenes such as high-speed or high-frequency systems, in addition to using the first symbol to transmit the reference signal, some additional reference signals are transmitted in the subsequent symbols.
  • the reference signal is used together with the reference signal transmitted on the foremost symbol for demodulation reception of the data, which can effectively improve the reception performance of the system. In order to cope with different scenarios, such as shown in Figure 2, these symbols for transmitting reference signals will have different distribution patterns.
  • the level of the received signal to noise ratio of the reference signal directly affects the effect of channel estimation.
  • Transmission resources in such reference signals In a multi-port system that can be flexibly configured, in order to improve the signal-to-noise ratio of the reference signal, it is necessary to avoid interference caused by the data transmission of other ports to the reference signal transmitted on the current port.
  • An effective method is that other ports do not transmit data on the resources of the current port transmitting reference signals, that is, remain silent.
  • Embodiments of the present invention provide a method, a network device, and a terminal device for transmitting a demodulation reference signal DMRS, which can improve a received signal to noise ratio of a DMRS.
  • a method of transmitting a DMRS comprising:
  • the network device determines a DMRS pattern corresponding to the first port, and a silent mode corresponding to the first port, where the first port is a port used by the network device to perform DMRS transmission with the terminal device;
  • the network device maps, by using the first port, the DMRS of the terminal device on the resource indicated by the DMRS pattern, and does not map data on the resource indicated by the silent mode; or the network device passes the The first port receives the DMRS from the terminal device on the resource indicated by the DMRS pattern, and assumes that the data power is zero on the resource indicated by the silent pattern.
  • the network device configures a DMRS pattern for transmitting the DMRS for the terminal device, and also configures a silent mode for the terminal device, so that when the other terminal device transmits the DMRS on the resource indicated by the silent mode, the network device does not receive the data transmission of the terminal device. Interference, and the terminal device is not interfered with by the data transmission of the other terminal device when transmitting the DMRS, so that the receiving signal to noise ratio of the DMRS can be improved.
  • Different ports have different shift values, such as port 1, v shift is 1; port 2, v shift is 2; port 3, v shift is 3.
  • the foregoing method implements multiplexing of different port DMRSs in a frequency division manner, and may also In order to use the code division or the time division, the above method is only for exemplifying the achievability of the present invention, and does not limit the scope of protection of the present invention.
  • the DMRS pattern corresponding to the first port may be the same as or different from the DMRS pattern corresponding to the other ports except the first port. If the DMRS pattern corresponding to the first port is the same as the DMRS pattern corresponding to the other ports except the first port, the network device may indicate the silent mode and the DMRS pattern to the terminal device in an implicit configuration manner.
  • the silent mode can be implemented by implicit configuration. That is, when the network device schedules the terminal device, the same DMRS pattern is adopted on different ports, and the DMRS resources are transmitted on other ports. The device does not transmit data. The terminal device defaults to the DMRS pattern on the other ports, which is the same as the DMRS pattern of the first port, and assumes that the signal power on the resources of the other ports transmitting the DMRS is zero.
  • the method further includes: the network device sending, by the network device, first resource indication information, where the first resource indication information is used to indicate the DMRS Style and the silent style.
  • the silent mode can also be implemented by explicitly configuring, that is, the first resource indication information is included in the scheduling signaling of the network device, where the first resource indication information is used to indicate the DMRS style and silence used by the current terminal device. style.
  • the following line transmission is taken as an example. After receiving the scheduling signaling, the terminal device determines the location of the resource that needs to be silenced according to the silent pattern, and assumes that the signal power on the resource indicated by the silent pattern is zero.
  • the method further includes: the network device sending, by the network device, a first style identifier, where the first style identifier is used to indicate the network The DMRS style corresponding to each of the multiple ports of the device.
  • the method before the sending, by the network device, the first style identifier to the terminal device, the method further includes:
  • the network device determines a plurality of DMRS patterns, the plurality of DMRS patterns including the DMRS pattern; the network device transmitting the plurality of DMRS style information to the terminal device.
  • the silent pattern can also be implemented in a semi-static configuration manner, that is, the first style identifier is included in the scheduling signaling of the network device, and the first style identifier is used to indicate the DMRS style corresponding to each port of the network device.
  • the network device may send the preset multiple DMRS patterns to the terminal device by using the high layer signaling, and The downlink scheduling signaling dynamically notifies the terminal device of the style identifier.
  • the terminal device can determine the current DMRS pattern corresponding to each port in the obtained multiple DMRS patterns, thereby determining the location of the resource indicated by the silent mode corresponding to the first port, and assuming that the corresponding The signal power on the quiet resource unit is zero.
  • the method further includes: the network device sending, to the terminal device, second resource indication information that is used to indicate the DMRS pattern;
  • the terminal device sends a second style identifier for indicating a silent style corresponding to the first port.
  • the method before the sending, by the network device, the second style identifier to the terminal device, the method further includes: determining, by the network device, a plurality of silent styles, The plurality of silent styles include the silent style; the network device sends the plurality of silent style information to the terminal device.
  • the configuration of the silent style can be explicit, semi-static; or explicit, dynamic; or implicit, static.
  • the implicit static configuration method does not require additional configuration overhead, but it imposes a large limitation on scheduling, affecting system performance and customer experience.
  • Explicit and dynamic configuration is the most flexible, but requires a large number of valuable physical layers. Resources are used to transfer configuration information.
  • Explicit semi-static takes into account both flexibility and overhead, so an explicit semi-static configuration is preferred.
  • a method of transmitting a DMRS comprising:
  • the terminal device acquires a DMRS pattern corresponding to the first port, and a silent mode corresponding to the first port, where the first port is a port used by the network device to perform DMRS transmission with the terminal device;
  • the terminal device maps, by using the first port, the DMRS of the terminal device on the resource indicated by the DMRS pattern, and does not map data on the resource indicated by the silent mode; or the terminal device passes the
  • the first port acquires the DMRS of the terminal device on the resource indicated by the DMRS pattern, and assumes that the data power is zero on the resource indicated by the silent pattern.
  • the terminal device can acquire the silent mode even if the DMRS pattern of the DMRS is transmitted, so that the other terminal device does not interfere with the data transmission of the terminal device when the DMRS is transmitted on the resource indicated by the silent mode, and the terminal When the device transmits the DMRS, it will not be interfered with by the data transmission of the other terminal device, thereby improving the receiving signal to noise ratio of the DMRS.
  • the terminal device determines a DMRS pattern corresponding to the first port, and a silent mode corresponding to the first port, including:
  • the terminal device acquires first resource indication information from the network device, where the first resource indication information is used to indicate the DMRS pattern and the silent mode;
  • the terminal device acquires, according to the first resource indication information, the DMRS pattern corresponding to the first port, and the silence pattern corresponding to the first port.
  • the terminal device determines a DMRS pattern corresponding to the first port, and a silent mode corresponding to the first port, including:
  • the method before the receiving, by the terminal device, the first resource indication information sent by the network device, the method further includes: receiving, by the terminal device, the network device DMRS style information;
  • the terminal device determines, according to the pattern identifier, a DMRS pattern corresponding to the first port, and a silent pattern corresponding to the first port, where the terminal device includes: according to the style identifier, the multiple DMRS patterns. Determining, by the DMRS pattern corresponding to the first port, the silence pattern corresponding to the first port.
  • the method further includes: receiving, by the terminal device, second resource indication information that is sent by the network device to indicate the DMRS pattern; Receiving, by the network device, a second style identifier for indicating a silent style corresponding to the first port;
  • the terminal device acquires the DMRS pattern corresponding to the first port, and the silent mode corresponding to the first port, where the terminal device acquires the first port according to the second resource indication information and the second style identifier.
  • the method further includes: before the terminal device receives the second style identifier sent by the network device, the method further includes: receiving, by the terminal device The plurality of silent style information sent by the network device, where the multiple silent styles include the silent style;
  • the terminal device is configured according to the second resource indication information and the second style identifier. Obtaining a DMRS pattern corresponding to the first port and a silent pattern corresponding to the first port, where the terminal device determines the DMRS pattern according to the second resource indication information, and according to the second style identifier, Determining, in the plurality of silent patterns, the silent style corresponding to the first port.
  • a network device which can be used to perform various processes performed by a network device in the method for transmitting DMRS in the foregoing first aspect and various implementation manners.
  • the network device includes a determining unit and a transmitting unit.
  • a determining unit configured to determine a DMRS pattern corresponding to the first port, and a silent pattern corresponding to the first port, where the first port is a port used by the network device to perform DMRS transmission with the terminal device;
  • a transmitting unit configured to map, by using the first port, a DMRS of the terminal device on a resource indicated by the DMRS pattern determined by the determining unit, and the resource indicated by the silent mode determined by the determining unit.
  • the data is not mapped on the first port, or the DMRS of the terminal device is obtained on the resource indicated by the DMRS pattern determined by the determining unit, and is indicated by the silent mode determined by the determining unit.
  • the resource assumes that the data power is zero.
  • a terminal device which can be used to perform the processes performed by the terminal device in the method for transmitting DMRS in the foregoing second aspect and various implementation manners.
  • the terminal device includes an acquisition unit and a transmission unit.
  • a determining unit configured to determine a DMRS pattern corresponding to the first port, and a silent pattern corresponding to the first port, where the first port is a port used by the network device to perform DMRS transmission with the terminal device;
  • a transmitting unit configured to map, by using the first port, a DMRS of the terminal device on a resource indicated by the DMRS pattern determined by the determining unit, and the resource indicated by the silent mode determined by the determining unit.
  • the data is not mapped on the first port, or the DMRS of the terminal device is obtained on the resource indicated by the DMRS pattern determined by the determining unit, and is indicated by the silent mode determined by the determining unit.
  • the resource assumes that the data power is zero.
  • a network device which can be used to perform the processes performed by the network device in the method for transmitting DMRS in the foregoing first aspect and various implementation manners.
  • the network device includes a processor and a transceiver.
  • the processor is configured to determine a DMRS pattern corresponding to the first port, and a silent mode corresponding to the first port, where the first port is used by the network device to perform DMRS with the terminal device Transmitted port;
  • the transceiver is configured to map, by using the first port, a DMRS of the terminal device on a resource indicated by the DMRS pattern, and do not map data on a resource indicated by the silent mode; or
  • a terminal device which can be used to perform the processes performed by the terminal device in the method for transmitting DMRS in the foregoing second aspect and various implementation manners.
  • the terminal device includes a processor and a transceiver.
  • the processor is configured to acquire a DMRS pattern corresponding to the first port, and a silent mode corresponding to the first port, where the first port is a port used by the network device to perform DMRS transmission with the terminal device;
  • the transceiver is configured to map, by using the first port, a DMRS of the terminal device on a resource indicated by the DMRS pattern, and do not map data on a resource indicated by the silent mode; or
  • a computer readable storage medium in a seventh aspect, storing a program causing a network device to perform the first aspect described above, and any one of its various implementations for transmitting a DMRS Methods.
  • a computer readable storage medium storing a program causing a network device to perform the second aspect described above, and any one of its various implementations for transmitting a DMRS Methods.
  • the network device not only configures the DMRS pattern for transmitting the DMRS for the terminal device, but also configures the silent mode for the terminal device. Therefore, in the system in which the DMRS pattern can be flexibly configured, the DMRS can be effectively protected and transmitted. So that it will not be interfered by other data, thus improving the SNR of the DMRS and improving the performance of the system.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of resources used in the prior art for transmitting DMRS.
  • 3 is a schematic diagram of resources used in the prior art for transmitting DMRS.
  • FIG. 4 is a schematic diagram of a DMRS pattern according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a DMRS pattern and a silent pattern according to an embodiment of the present invention.
  • FIG. 6 is a flow diagram of a process for transmitting a DMRS according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a DMRS pattern and a silent pattern corresponding to three ports in a 3-port system according to an embodiment of the present invention.
  • FIG. 8 is a flow diagram of a process for transmitting a DMRS according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a DMRS pattern and a silent pattern corresponding to four ports in a 4-port system according to an embodiment of the present invention.
  • FIG. 10 is a flow diagram of a process for transmitting a DMRS according to another embodiment of the present invention.
  • FIG. 11 is a flow diagram of a process for transmitting a DMRS according to another embodiment of the present invention.
  • Figure 12 is a schematic illustration of a silent pattern in accordance with an embodiment of the present invention.
  • FIG. 13 is a structural block diagram of a network device according to an embodiment of the present invention.
  • FIG. 14 is a structural block diagram of a network device according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • Figure 16 is a block diagram showing the structure of a terminal device according to an embodiment of the present invention.
  • Figure 17 is a block diagram showing the structure of a terminal device according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the terminal device in the embodiment of the present invention may also be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and a user terminal.
  • UE User Equipment
  • terminal wireless communication device, user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SIP") phone, a Wireless Local Loop (WLL) station, or a personal digital assistant (Personal Digital Assistant, Referred to as "PDA”), a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, or a future evolved public land mobile communication network ( Terminal devices in the Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the network device in the embodiment of the present invention may be a device for communicating with a terminal device, where the network device may be a base station (Base Transceiver Station, or "BTS”) in GSM or CDMA, or may be a base station in a WCDMA system (
  • the NodeB (abbreviated as “NB”) may also be an evolved base station (Evolutional NodeB, hereinafter referred to as “eNB or eNodeB”) in the LTE system, or may be a cloud radio access network (CRAN) scenario.
  • BTS Base Transceiver Station
  • eNB evolved base station
  • CRAN cloud radio access network
  • the underlying wireless controller, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network device in a future 5G communication network or a network device in a future evolved PLMN network.
  • FIG. 1 is a schematic structural diagram of an application scenario according to an embodiment of the present invention.
  • the basic network architecture of the communication system as shown in FIG. 1 may include a network device such as an eNodeB 10, and at least one terminal device such as User Equipment ("UE") 20 and UE 30.
  • the eNodeB 10 is configured to provide communication services for the UE 20 and the UE 30, and access the core network.
  • the UE 20 and the UE 30 access the network by searching for synchronization signals, broadcast signals, and the like sent by the eNodeB 10, thereby performing Network communication.
  • the positions of the symbols used by the different terminal devices to transmit the reference signal may be different.
  • the network in the embodiment of the present invention may refer to a Public Land Mobile Network (PLMN) or a Device to Device (D2D) network or a Machine to Machine (Machine to Machine). /Man, referred to as "M2M" network or other network
  • PLMN Public Land Mobile Network
  • D2D Device to Device
  • Machine to Machine Machine to Machine
  • FIG. 1 is only an example of an application scenario of the embodiment of the present invention, and the embodiment of the present invention can also be applied to other scenarios.
  • FIG. 1 is only a simplified schematic diagram of an example, in the network. Other network devices may also be included, which are not shown in FIG.
  • the following takes the eNodeB 10, the UE 20, and the UE 30 as an example, and takes an Orthogonal Frequency Division Multiplexing (OFDM) based Long Term Evolution (LTE) system as an example.
  • OFDM Orthogonal Frequency Division Multiplexing
  • LTE Long Term Evolution
  • FIG. 2 A schematic diagram of a resource for transmitting a reference signal as shown in FIG. 2, for transmission of a control channel on up to three OFDM symbols in a subframe, the reception and demodulation being based on a common reference signal (Common reference signal) , referred to as "CRS" for short, the transmission resource of the uplink reference signal for demodulation of the data channel, such as a demodulation reference signal (“DMRS”), is shown in the shaded part of FIG. 2, each small in FIG.
  • DMRS demodulation reference signal
  • a square represents the smallest resource unit, called a resource unit, which is the duration of one OFDM symbol in time and the width of one subcarrier in frequency.
  • the receiving end can estimate the channel state information by using the reference signal located on the same OFDM symbol, and can obtain the channel state information on other resource elements on the same OFDM symbol by interpolation; using the time correlation of the channel.
  • the receiver uses channel state information obtained by using reference signals located on different OFDM symbols, and obtains channel state information on resource elements on different OFDM symbols by interpolation.
  • a reference signal may be placed on the first OFDM symbol, such as the schematic of the resource for transmitting the reference signal shown in FIG.
  • the resources shown in Figure 3 are used for the transmission of the data channel, and the resources used for the transmission of the control channel should be before the data channel, not shown here.
  • FIG. 3 is merely illustrative, and the density in the frequency domain of the transmission reference signal shown in FIG. 3 may be different in an actual system.
  • the receiving end can estimate the channel state information of the entire resource block, and start detecting the received data, thereby During the data reception process, the edge reception side detection is implemented, thereby shortening the reception delay.
  • the channel state information on the following OFDM symbols can only be obtained based on the channel state information obtained on the foremost OFDM symbol, which is the case for most scenarios. Data reception is no problem of.
  • the correlation between the channel state on the following OFDM symbol and the channel state on the foremost OFDM symbol is significantly lower than the correlation between the channel state on the intermediate OFDM and the channel state on the foremost OFDM symbol.
  • phase noise is caused by the non-ideality of the crystal oscillator. Phase noise has an impact on the reception performance, especially when high-order modulation is used, phase noise needs to be estimated and compensated, otherwise performance will result. decline. More seriously, the phase noise is fast changing, and each OFDM symbol is changed. At this time, if the reference signal is transmitted on the foremost symbol, and the channel state and phase noise estimated based on the reference signal are used, Demodulation of data on subsequent OFDM symbols can result in a significant degradation in system performance.
  • some additional demodulation reference signals are inserted in the subsequent OFDM symbols, in most scenes, on the front symbol
  • the demodulation reference signal will be used for data demodulation alone, and the additional reference signal will not be transmitted; in some special scenarios, such as high-speed scenes, or high-frequency modulation in high-frequency systems, it has a certain time domain.
  • An additional reference signal of density will be transmitted, at which time the demodulation reference signal on the previous symbol and the additional demodulation reference signal immediately following it are used together for demodulation reception of the data.
  • FIG. 4 shows some different distribution patterns.
  • the pattern 1 shown in FIG. 4 can be used for estimating the phase noise in the high frequency system.
  • Styles 2 through 4 can be used for data demodulation in mobile scenes of different speeds, while Style 5 can be considered as the default configuration and can be used for data demodulation in most common scenarios.
  • FIG. 5 is a schematic diagram of resources for transmitting a reference signal. For example, for a two-port system, on the time-frequency resource of the reference signal transmitted by port 1, the port 2 remains silent, that is, no data is transmitted, and the port is also 2 On the time-frequency resource of the transmission reference signal, port 1 remains silent.
  • port 1 of eNodeB 10 transmits a reference signal
  • port 2 needs to be at port 1. If no data is transmitted on the symbol of the transmission reference signal, then it is necessary to configure the transmission resource for the reference signal, so that the terminal device corresponding to port 2 can know the style of the resource that needs to remain silent. As shown in FIG. 5, if port 1 is used for data transmission and reception of the UE 20, port 2 is used for data transmission and reception of the UE 30, and the eNodeB 10 determines the format of the resource for transmitting the reference signal for the UE 20 and the UE 30.
  • the UE 20 and the UE 30 need to know which resources on the corresponding ports need to remain silent, so as to avoid when other terminal devices send data on these silent resources. At the same time, it affects the received signal-to-noise ratio of the reference signals of other terminal devices.
  • the port 2 when the eNodeB 10 transmits the reference signal to the UE 20 on the port 1, the port 2 does not send any data on the resource that the port 1 transmits the reference signal. In this case, in order to prevent the terminal device corresponding to the port 2 from being on the resource that does not transmit data. If the system performance degradation caused by attempting to receive data is required, the terminal device corresponding to port 2 can learn the silent mode while configuring the transmission resource for the reference signal. As shown in FIG.
  • port 1 is used for data transmission and reception of UE 20
  • port 2 is used for data transmission and reception of UE 30
  • eNodeB 10 determines the distribution pattern of resources for transmitting reference signal for UE 20 and UE 30, which
  • the UE 20 and the UE 30 need to know the silent mode on the corresponding port, and do not have the data transmission required by the silent resource indicated by the silent mode. In this way, it is possible to avoid receiving data of other ports on the quiet resources of the ports corresponding to the UE 20 and the UE 30, and improving data transceiving performance.
  • the UE 20 needs to avoid receiving data on the silent resources of the port 1, otherwise it will receive the data.
  • the reference signal transmitted and received by the UE 30 affects the transceiving performance of the UE 20 data. .
  • the DMRS pattern of the UE 20 is the silent mode of the UE 30, and the DMRS pattern of the UE 30 is the silent mode of the UE 20.
  • the terminal device when the network device configures the resource for transmitting the reference signal for the terminal device, the terminal device can also acquire the resource location that needs to remain silent, so that when the network device sends the reference signal through different ports, the reference signal does not It is interfered by other data, which can improve the received signal-to-noise ratio of the DMRS.
  • the transmitting end of the demodulation reference signal may be a terminal device or a network device
  • the receiving end of the demodulation reference signal may be a terminal device or a network device.
  • the transmitting end of the demodulation reference signal is a terminal device
  • the receiving end of the demodulation reference signal is another terminal device.
  • the D2D transmission can be applied.
  • the transmission between the sender and the receiver can pass through
  • the line wave is transmitted, and can also be transmitted through a transmission medium such as visible light, laser, infrared, or optical fiber. This embodiment of the present invention is not limited thereto.
  • the DMRS transmission is performed by using the method of the embodiment of the present invention.
  • the method performed by other terminal devices may refer to the method performed by the terminal device. For brevity, details are not described herein again.
  • the embodiment of the present invention is described by taking a DMRS as an example, but the method of the present invention can also use transmission with other reference signals.
  • the method for transmitting a DMRS includes:
  • the network device determines a DMRS pattern corresponding to the first port, and a silent pattern corresponding to the first port.
  • the first port is a port used by the network device to perform DMRS transmission with the terminal device.
  • the DMRS pattern here is a style for transmitting or receiving a DMRS, and the silent pattern is used to indicate that no data is transmitted or received on the silent resource indicated by the silent style.
  • the network device can simultaneously perform DMRS transmission between multiple ports and multiple terminal devices, and the network device can configure a DMRS pattern for each port, and the network device is configured according to the DMRS pattern corresponding to each port.
  • the DMRS is sent to the terminal device corresponding to the port on the port, or the DMRS sent by the terminal device corresponding to the port is received on each port.
  • the network device also configures a corresponding muting pattern for each port, and does not send data to the terminal device corresponding to the port on the silent resource of each port, and does not receive data sent by the terminal device.
  • the network device when the network device performs DMRS transmission between the terminal device and the plurality of terminal devices, for any one of the plurality of terminal devices, the DMRS pattern on the port corresponding to the terminal device, That is, the silent mode on the port corresponding to the other terminal devices of the multiple terminal devices; the silent mode on the port corresponding to the terminal device, that is, the DMRS style on the port corresponding to the other terminal devices in the multiple terminal devices.
  • the DMRS pattern or the silent pattern may be, for example, five patterns shown in FIG. 4, and among the five patterns shown in FIG. 4, resources for transmitting DMRS on the first symbol of the data resource for transmitting data.
  • a Resource Element (“RE") is distributed in a frequency domain according to a certain density; on a symbol following the first symbol, a resource element for transmitting a DMRS is in a time domain. Distribution according to a certain density. For example, in FIG.
  • the resources indicated in the style 1, or referred to as Configuration 1, for transmitting the DMRS are continuous in the time domain and can be used in the high frequency system; and the patterns 2 to 4 indicate The density of resources transmitting DMRS is gradually reduced in the time domain and can be used in mobile scenarios of different speeds; while style 5 can be considered as the default configuration, only DMRS can be transmitted on the first symbol, which can be used for most common Under the scene.
  • the multiple DMRS patterns of the network device may correspond to different DMRS patterns, and may also correspond to the same DMRS pattern.
  • the corresponding silent patterns on the multiple ports may also be different or the same.
  • the terminal device determines a DMRS pattern corresponding to the first port, and a silent pattern corresponding to the first port.
  • the DMRS pattern and the silent mode determined by the terminal device in 620 may be obtained from the network device, that is, the terminal device receives the DMRS pattern configured by the network device.
  • silent mode when different ports correspond to the same DMRS style and silent style, the terminal device may directly obtain the DMRS transmission using the default DMRS style and not transmit data on the silent resource indicated by the silent style, instead of acquiring from the network. .
  • the network device is configured to configure the DMRS mode of the DMRS for the terminal device, and the terminal device is configured with the silent mode, so that the other terminal device does not receive the DMRS when transmitting the DMRS on the resource indicated by the silent mode.
  • the interference of data transmission can therefore improve the received signal to noise ratio of the DMRS.
  • the network device acts as the transmitting end and the terminal device acts as the receiving end, then 520 and 530 are performed; if the network device acts as the receiving end and the terminal device acts as the transmitting end, then 540 and 550 are performed.
  • the network device maps the DMRS of the terminal device on the resource indicated by the DMRS pattern through the first port, and does not map data on the resource indicated by the silent mode.
  • the network terminal device obtains the DMRS of the terminal device on the resource indicated by the DMRS pattern through the first port, and assumes that the data power is zero on the resource indicated by the silent mode.
  • the terminal device maps the DMRS of the terminal device on the resource indicated by the DMRS pattern through the first port, and does not map data on the resource indicated by the silent mode.
  • the network device obtains the DMRS of the terminal device on the resource indicated by the DMRS pattern through the first port, and assumes that the data power is zero on the resource indicated by the silent mode.
  • the DMRS can be effectively protected from being transmitted and received by other data, thereby improving the SNR of the DMRS and improving the performance of the system.
  • mapping of the DMRS of the terminal device on the resource indicated by the DMRS pattern is understood to be that the DMRS is sent on the resource indicated by the DMRS pattern; the data is not mapped on the resource indicated by the silent mode, which can be understood as a silent mode.
  • Obtaining no data on the indicated resource; obtaining the DMRS of the terminal device on the resource indicated by the DMRS pattern may be understood as receiving the DMRS sent by the terminal device on the resource indicated by the DMRS pattern; and assuming that the data power is on the resource indicated by the silent mode Zero, can be understood as not receiving data on the resource indicated by the silent style.
  • data is not sent or received on the silent resource
  • the data includes the service data and the reference signal, that is, on the silent resource indicated by the silent mode, that is, The service data is transmitted and the DMRS is not transmitted, and no signal is transmitted on the silent resource.
  • the DMRS may be transmitted on the resource indicated by the DMRS pattern according to the DMRS pattern, and no data is transmitted on the resource indicated by the silent pattern.
  • the terminal device may transmit the DMRS on the resource indicated by the DMRS pattern according to the DMRS pattern, and do not transmit data on the resource indicated by the silent mode.
  • the terminal device may determine the location of the resource indicated by the DMRS pattern according to the port number configured by the network device and the DMRS pattern, and determine the silent style indication according to the port number configured by the network device and the silent mode. The location of the resource.
  • Different ports have different shift values, such as port 1, v shift is 1; port 2, v shift is 2; port 3, v shift is 3.
  • the foregoing method implements multiplexing of different port DMRSs in a frequency division manner, and may also adopt code division or time division.
  • the above method is only for exemplifying the achievability of the present invention, and does not limit the protection scope of the present invention.
  • the network device and the terminal device determine the location of the resource indicated by the DMRS style and the location of the resource indicated by the silent style according to the DMRS style and the silent style and the port number.
  • the port number v shift can take a positive value or a negative value in the formula.
  • Network devices configure silent styles for end devices, either through implicit static configuration, explicit dynamic configuration, or explicit semi-static configuration.
  • the following line transmission is used as an example.
  • the above-mentioned silent mode can be implemented by implicit static configuration. That is, when the network device schedules the terminal device, the same DMRS pattern is adopted on different ports, and the DMRS resources are transmitted on other ports. The terminal device does not transmit data. The terminal device defaults to the DMRS pattern on other ports, which is the same as the DMRS pattern of the current port, and assumes that the signal power on the resources of other ports transmitting DMRS is zero when receiving signals.
  • the above-mentioned silent mode can also be implemented by means of an explicit dynamic configuration, that is, the first resource indication information is included in the scheduling signaling of the network device, and the first resource indication information is used to indicate the DMRS used by the current terminal device.
  • the mode and the silent mode after receiving the scheduling signaling, the terminal device determines the location of the resource unit that needs to be silenced according to the silent pattern, and when receiving the data, assumes that the signal power on the resource indicated by the silent pattern is zero.
  • the above-mentioned silent pattern can also be implemented by means of an explicit semi-static configuration, that is, the first style identifier is simultaneously included in the scheduling signaling of the network device, and the first style identifier is used to indicate multiple ports of the network device.
  • the DMRS corresponding to each port the network device sends a preset DMRS style group consisting of DMRS patterns to the terminal device through the high layer signaling, and each DMRS style group is composed of a possible DMRS pattern corresponding to each port of the network device. of.
  • the network device dynamically notifies the terminal device of the style identifier by using downlink scheduling signaling.
  • the terminal device can determine the DMRS pattern corresponding to each port in the obtained multiple DMRS patterns, thereby determining the location of the resource unit indicated by the silence pattern corresponding to the first port, and assuming that the corresponding of The signal power on the quiet resource unit is zero.
  • the configuration of the silent style can be explicit, semi-static; or explicit, dynamic; or implicit, static.
  • the implicit static configuration method does not require additional configuration overhead, but it imposes a large limitation on scheduling, affecting system performance and customer experience.
  • Explicit and dynamic configuration is the most flexible, but requires a large number of valuable physical layers. Resources are used to transfer configuration information.
  • Explicit semi-static takes into account both flexibility and overhead, so an explicit semi-static configuration is preferred.
  • the method of transmitting DMRS, before 630 to 660 the method further includes 670, at which time 620 includes 680 and 690, ie 620 may be replaced by 621 and 622.
  • the network device sends, to the terminal device, first resource indication information, where the first resource indication information is used to indicate the DMRS pattern and the silence pattern.
  • the terminal device receives the first resource indication information sent by the network device, where the first resource indication information is used to indicate the DMRS pattern and the silence pattern.
  • the terminal device determines, according to the first resource indication information, the DMRS pattern corresponding to the first port, and the silence pattern corresponding to the first port.
  • the eNodeB 10, the UE 20, and the UE 30 in FIG. 1 are taken as an example for description.
  • the eNodeB 10 For the downlink transmission, when the eNodeB 10 schedules the UE 20, it first determines the receiving port, the DMRS pattern, and the silent mode adopted by the scheduled UE 20, and includes the port number used by the UE 20, for example, the port number of the first port, and the DMRS.
  • the scheduling information such as the style and the quiet mode, is sent to the UE 20 through the physical layer signaling, where the quiet resource on the port corresponding to the UE 20 is a resource for transmitting the DMRS on the port corresponding to the UE 30.
  • the eNodeB 10 maps the data of the UE 20 to the corresponding port and transmits the data to the UE 20, and at the time of mapping, the eNodeB 10 does not map the data on the silent resource.
  • the UE 20 obtains the port number of the first port, the DMRS pattern and the silent mode corresponding to the first port by using physical layer signaling, and receives the DMRS on the resource indicated by the DMRS pattern, performs channel estimation according to the DMRS, and receives other resource units.
  • the data is assumed, it is assumed by the silent style The data power on the resource is zero.
  • the eNodeB 10 For the uplink transmission, when the eNodeB 10 schedules the UE 20, it first determines the receiving port, the DMRS pattern, and the silent mode adopted by the scheduled UE 20, and includes the port number used by the UE 20, for example, the port number of the first port, and the DMRS.
  • the scheduling information such as the style and the quiet mode, is sent to the UE 20 through the physical layer signaling, where the quiet resource on the port corresponding to the UE 20 is a resource for transmitting the DMRS on the port corresponding to the UE 30.
  • the UE 20 obtains the port number of the first port, the DMRS pattern of the current first port, and the silent mode through physical layer signaling.
  • the UE 20 maps its uplink data and transmits it to the eNodeB 10.
  • the UE 20 does not map data on the silent resource when performing data mapping.
  • the eNodeB 10 receives the data transmitted by the UE 20 at the first port, and when receiving the data, assumes that the data power on the resource indicated by the silent pattern is zero.
  • the method further includes 681 and 682.
  • the network device sends, to the terminal device, a first style identifier, where the first pattern identifier is used to indicate a DMRS pattern corresponding to each of the multiple ports of the network device.
  • the terminal device receives a first style identifier sent by the network device, where the first pattern identifier is used to indicate a DMRS pattern corresponding to each of the multiple ports of the network device.
  • the method further includes 691 to 693.
  • 620 includes 623, that is, 620 can be replaced by 623.
  • the network device determines a plurality of DMRS patterns, where the multiple DMRS patterns include the DMRS pattern.
  • the network device sends the multiple DMRS style information to the terminal device.
  • the terminal device receives multiple DMRS style information sent by the network device.
  • the terminal device determines, according to the first style identifier and the multiple DMRS patterns, a DMRS style corresponding to the first port, and a silent style corresponding to the first port.
  • the eNodeB 10, the UE 20, and the UE 30 in FIG. 1 are taken as an example for description.
  • the network device For downlink transmission, the network device first determines a set of DMRS style groups for the UE 20, and notifies the UE 20 semi-statically through high layer signaling.
  • the first group ⁇ style 1, style 1, style 1, style 1 ⁇
  • Second group ⁇ style 1, style 1, style 1, style 5 ⁇
  • the third group ⁇ style 1, style 1, style 5, style 5 ⁇
  • the foregoing mode group is that the eNodeB 10 adjusts according to the long period according to the actual situation, and notifies the UE 20 semi-statically. It may also be pre-agreed by the eNodeB 10 and the UE 20 beforehand.
  • the first element in each group corresponds to port 1, the second element corresponds to port 2, the third element corresponds to port 3, and the fourth element corresponds to port 4.
  • the DMRS pattern corresponding to port 1, port 2, and port 3 is style 1
  • the DMRS pattern corresponding to port 4 is style 5.
  • the eNodeB 10 schedules the UE 20, and transmits scheduling information including the port number of the first port used by the UE 20 (for example, port 1 shown in FIG. 9) and the DMRS pattern to the UE 20 through physical layer signaling.
  • the DMRS pattern here can be represented by the binary number identified by the above DMRS style group. Taking the above four groups as an example, "00" represents the first style identifier of the first group, and "01" represents the first style of the second group. The identifier, "10” represents the first style identifier of the third group, and "11” represents the first style identifier of the fourth group. It should be noted that the DMRS pattern of each port here corresponds to the DMRS pattern in a certain style group in the DMRS style group that the eNodeB 10 recently notified the UE 20.
  • the eNodeB 10 maps the data of the UE 20 to the first port and sends the data to the UE 20.
  • mapping the data is not mapped at the location where the DMRS is sent on the port corresponding to the other UE, as shown in FIG.
  • the group is taken as an example to show the resource mapping on each port.
  • the UE 20 obtains the DMRS pattern group through the high layer signaling, and the UE 20 obtains the port number and the first pattern identifier of the first port through physical layer signaling.
  • the UE 20 determines, according to the first style identifier, the DMRS pattern corresponding to the first port and the DMRS pattern corresponding to the other port from the DMRS style group obtained last time, and further determines the silent style corresponding to the first port, where the port is The corresponding silent mode is actually the DMRS style corresponding to port 2 to port 4.
  • the UE 20 performs channel estimation on the DMRS resource unit and receives data on other resource units, and upon receiving the data, assumes that the data power on the resource indicated by the silence pattern is zero.
  • the eNodeB 10 For uplink transmission, the eNodeB 10 first determines a set of DMRS style groups for the UE 20 and semi-statically notifies the UE 20 through higher layer signaling. The eNodeB 10 schedules the UE 20, and sends scheduling information including the port number of the first port used by the UE 20 and the first pattern identifier to the UE 20 through physical layer signaling. The UE 20 obtains the DMRS pattern group through the high layer signaling, and obtains the port number of the first port and the first pattern identifier through physical layer signaling.
  • the UE 20 maps the uplink data to the network device, and at the time of data mapping, the UE 20
  • the resources used for the DMRS by other ports are determined as the silent resources corresponding to the first port, and the data is not mapped on the silent resources.
  • the eNodeB 10 performs data reception on the first port corresponding to the UE 20, performs channel estimation on the resources indicated by the DMRS pattern, and receives data on other resource units, and assumes data on the silent resource when receiving data.
  • the power is zero.
  • the method further includes 683 to 685.
  • the network device sends, to the terminal device, second resource indication information indicating the DMRS pattern.
  • the network device sends, to the terminal device, a second style identifier that is used to indicate a silent pattern corresponding to the first port.
  • the terminal device receives the second style identifier and the second resource indication information sent by the network device.
  • FIG. 10 is a flow interaction diagram of the DMRS of the embodiment, and the method further includes 694 to 696.
  • 620 includes 624, that is, 620 can be replaced by 624.
  • the network device determines a plurality of silent styles, where the multiple silent styles include the silent style
  • the network device sends the multiple silence style information to the terminal device.
  • the terminal device receives information of multiple silent styles sent by the network device.
  • the terminal device determines the DMRS pattern according to the second resource indication information, and determines, according to the second style identifier, the silence pattern corresponding to the first port in the multiple silence patterns.
  • the network device sends the second resource indication information to the terminal device to indicate the DMRS pattern, and sends the second style identifier to the terminal device to indicate the silent style.
  • the terminal device may obtain a silent pattern corresponding to the first port from the preset multiple candidate silent patterns, thereby determining a resource indicated by the silent mode corresponding to the first port, and assuming that the corresponding silence is performed.
  • the signal power on the resource unit is zero.
  • the network device dynamically indicates, by using the downlink scheduling signaling, the identifier corresponding to one of the multiple silence patterns of the terminal device.
  • the terminal device can determine the silence pattern corresponding to the current first port in the obtained multiple silence patterns, so as to determine the location of the resource unit indicated by the silence pattern corresponding to the first port, and assume The signal power on the corresponding quiet resource unit is zero.
  • the network device is configured with four types of silent patterns.
  • the terminal device can The second style identifier, in multiple silent styles The silent mode corresponding to the first port is determined, so that the quiet resource of the terminal device can be determined according to the port number of the first port and the silent mode corresponding to the first port.
  • FIG. 12 shows four silent patterns, and the specific location of the silent resource indicated by each silent mode needs to be determined according to a preset rule. For example, after receiving the second style identifier, the terminal device first determines, according to the second style identifier, the silent style indicated by the second style identifier in the four silent patterns shown in FIG. 12, and determines the corresponding silence. After the mode, the terminal device may determine the location of the silent resource specifically indicated by the silent mode according to the port number of the corresponding first port and the silent mode, so that no data is mapped on the silent resource, or a hypothesis is assumed on the silent resource. The signal power is zero.
  • the silent mode shown in FIG. 12 is a reference resource mapping.
  • the silent mode needs to be according to the different port number.
  • the terminal device needs to inform the terminal device of the DMRS style and the silent mode to be used.
  • the network device may not inform the terminal device of the DMRS pattern and the silent mode corresponding to the first port. In this case, the terminal device may default to the first port.
  • the DMRS pattern corresponding to the DMRS pattern and the other ports are the same, so that the terminal device only needs to determine the location of the resource unit used by the other port to send the DMRS according to a preset rule.
  • the eNodeB 10, the UE 20, and the UE 30 shown in FIG. 1 are taken as an example for description.
  • the eNodeB 10 configures the same DMRS pattern for all scheduled UEs.
  • the eNodeB 10 transmits scheduling information including the port number of the first port used by the UE 20 and the DMRS pattern to the UE 20 through physical layer signaling.
  • the eNodeB 10 maps the data of the UE 20 to the corresponding port and transmits the data to the UE 20.
  • the eNodeB 10 does not map data at the location where the other port transmits the DMRS.
  • the UE 20 obtains the port number of the first port and the DMRS corresponding to the first port through physical layer signaling. style.
  • the UE 20 determines the location of the quiet resource on the first port according to the DMRS pattern corresponding to the current first port, and determines that the DMRS pattern adopted by the other port is the same as the DMRS pattern used by the current port, and according to a preset rule, Determine the location of the resource unit for other port DMRS transmissions.
  • the UE 20 performs channel estimation on the resource elements indicated by the DMRS pattern and receives data on other resource elements, and when receiving data, assumes that the data power on the silent resources is zero.
  • the eNodeB 10 configures the same DMRS pattern for all scheduled UEs.
  • the eNodeB 10 transmits scheduling information including the port number of the first port used by the UE 20 and the DMRS pattern to the UE 20 through physical layer signaling.
  • the UE 20 obtains the port number of the first port and the DMRS pattern corresponding to the first port through physical layer signaling.
  • the UE 20 determines the location of the silent resource indicated by the silent mode on the first port according to the DMRS pattern of the current first port, and determines that the DMRS pattern of the other port is the same as the DMRS style used by the current port, and according to a preset rule. , determine the location of the resource unit used by other ports to send the DMRS.
  • the UE 20 maps and transmits the uplink data, and when the data is mapped, the data is not mapped on the resource unit indicated by the silent mode.
  • the eNodeB 10 receives the data sent by the UE 20 at the first port.
  • the eNodeB 10 considers that all the UEs 10 scheduled by the eNodeB 10 adopt the same DMRS pattern, and determine the location of the silent resource unit corresponding to the first port, and receive the data. Assume that the data power on the silent resource is zero.
  • the network device configures a DMRS pattern for transmitting the DMRS for the terminal device, and also configures a silent mode for the terminal device, so that the other terminal device does not receive the DMRS when transmitting the DMRS on the resource indicated by the silent mode.
  • the interference of the data transmission of the terminal device, and the terminal device does not interfere with the data transmission of other terminal devices when transmitting the DMRS, so the receiving signal to noise ratio of the DMRS can be improved.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • a network device for transmitting a DMRS according to an embodiment of the present invention will be described below with reference to FIG. 13, and the technical features described in the method embodiments may be applied to the following device embodiments.
  • FIG. 13 illustrates a network device 1300 for transmitting data in accordance with an embodiment of the present invention. As shown in FIG. 7, the network device 1300 includes:
  • a determining unit 1310 configured to determine a DMRS pattern corresponding to the first port, and a silent mode corresponding to the first port, where the first port is a port used by the network device to perform DMRS transmission with the terminal device;
  • the transmitting unit 1320 is configured to map, by using the first port, the DMRS of the terminal device on the resource indicated by the DMRS pattern determined by the determining unit 1310, and the silent mode determined by the determining unit 1310 No data is mapped on the indicated resource; or
  • the DMRS of the terminal device Acquiring, by the first port, the DMRS of the terminal device on the resource indicated by the DMRS pattern determined by the determining unit 1310, and assuming data on the resource indicated by the silent mode determined by the determining unit 1310
  • the power is zero.
  • the network device configures a DMRS pattern for transmitting the DMRS for the terminal device, and also configures a silent mode for the terminal device, so that when the other terminal device transmits the DMRS on the resource indicated by the silent mode, the network device does not receive the data transmission of the terminal device. Interference, and the terminal device is not interfered with by the data transmission of the other terminal device when transmitting the DMRS, so that the receiving signal to noise ratio of the DMRS can be improved.
  • the transmitting unit 1320 is further configured to: send, to the terminal device, first resource indication information, where the first resource indication information is used to indicate the DMRS pattern and the silent pattern.
  • the transmitting unit is further configured to: send, to the terminal device, a first style identifier, where the first pattern identifier is used to indicate that each of the multiple ports of the network device corresponds to DMRS style.
  • the determining unit 1310 is further configured to: determine a plurality of DMRS patterns, where the multiple DMRS patterns include the DMRS pattern; The transmitting unit 1320 is further configured to send the multiple DMRS style information to the terminal device.
  • the transmitting unit 1320 is further configured to: send, to the terminal device, second resource indication information that is used to indicate the DMRS pattern, and send, to the terminal device, a silence that is used to indicate that the first port is corresponding to The second style identifier for the style.
  • the transmitting unit 1320 before the transmitting unit 1320 sends the second style identifier to the terminal device, the transmitting unit 1320 is specifically configured to: determine a plurality of silent styles, where the multiple silent patterns include the silent style; The terminal device sends the information of the multiple silence patterns.
  • the determining unit 1310 may be implemented by a processor, and the transmitting unit 1320 may be implemented by a transceiver.
  • network device 1400 can include a processor 1410, a transceiver 1420, and a memory 1430.
  • the transceiver 1420 can include a receiver 1421 and a transmitter 1422, and the memory 1430 can be used to store code and the like executed by the processor 1410.
  • the various components in network device 1400 are coupled together by a bus system 1440, which in addition to the data bus includes a power bus, a control bus, a status signal bus, and the like.
  • the processor 1410 is configured to determine a DMRS pattern corresponding to the first port, and a silent mode corresponding to the first port, where the first port is a port used by the network device to perform DMRS transmission with the terminal device. ;
  • the transceiver 1420 is configured to map, by using the first port, a DMRS of the terminal device on a resource indicated by the DMRS pattern, and do not map data on a resource indicated by the silent mode; or
  • the transceiver 1420 is further configured to: send the first resource indication information to the terminal device, where the first resource indication information is used to indicate the DMRS pattern and the silence pattern.
  • the transceiver 1420 is further configured to: send, to the terminal device, a first style identifier, where the first pattern identifier is used to indicate that each of the multiple ports of the network device corresponds to DMRS style.
  • the processor 1410 is further configured to: determine a plurality of DMRS patterns, where the multiple DMRS patterns include the DMRS pattern
  • the transceiver 1420 is further configured to send the multiple DMRS style information to the terminal device.
  • the transceiver 1420 is further configured to: send, to the terminal device, second resource indication information that is used to indicate the DMRS pattern, and send, to the terminal device, a The second style identifier for the silent style.
  • the transceiver 1420 before the transceiver 1420 sends the second style identifier to the terminal device, the transceiver 1420 is specifically configured to: determine a plurality of silent styles, where the multiple silence patterns include the silent style Sending the plurality of silent style information to the terminal device.
  • FIG. 15 is a schematic block diagram of a system chip in accordance with an embodiment of the present invention.
  • the system chip 1500 of FIG. 15 includes an input interface 1501, an output interface 1502, at least one processor 1503, and a memory. 1504.
  • the input interface 1501, the output interface 1502, the processor 1503, and the memory 1504 are connected by a bus 1505.
  • the processor 1503 is configured to execute code in the memory 1504 when the code is executed.
  • the processor 1503 implements the method performed by the network device in FIGS. 6-10.
  • the network device 1300 shown in FIG. 13 or the network device 1400 shown in FIG. 14 or the system chip 1500 shown in FIG. 15 can implement the processes implemented by the network device in the foregoing method embodiments of FIG. 6 to FIG. 12, in order to avoid duplication. , no longer repeat them here.
  • a terminal device for transmitting a DMRS according to an embodiment of the present invention will be described below with reference to FIG. 16.
  • the technical features described in the method embodiments may be applied to the following device embodiments.
  • FIG. 16 shows a terminal device 1600 that transmits a DMRS according to an embodiment of the present invention.
  • the terminal device 1600 includes:
  • a determining unit 1610 configured to determine a DMRS pattern corresponding to the first port, and a silent pattern corresponding to the first port, where the first port is a port used by the network device to perform DMRS transmission with the terminal device;
  • the transmitting unit 1620 is configured to map, by using the first port, the DMRS of the terminal device on the resource indicated by the DMRS pattern determined by the determining unit 1610, and determine, by the determining unit 1610, the silent style indication Does not map data on resources; or
  • the terminal device can acquire the silent mode even if the DMRS pattern of the DMRS is transmitted, so that the other terminal device does not interfere with the data transmission of the terminal device when the DMRS is transmitted on the resource indicated by the silent mode, and the terminal When the device transmits the DMRS, it will not be interfered with by the data transmission of the other terminal device, thereby improving the receiving signal to noise ratio of the DMRS.
  • the transmitting unit 1620 is further configured to: receive, by the network device, first resource indication information, where the first resource indication information is used to indicate the DMRS pattern and the silent pattern;
  • the determining unit 1610 is specifically configured to: determine, according to the first resource indication information, the DMRS pattern corresponding to the first port, and the silence pattern corresponding to the first port.
  • the transmitting unit 1620 is further configured to: receive a first style identifier sent by the network device, where The pattern identifier is used to indicate a DMRS pattern corresponding to each of the plurality of ports of the network device;
  • the determining unit 1610 is specifically configured to: determine, according to the first pattern identifier, the DMRS pattern corresponding to the first port, and the silent pattern corresponding to the first port.
  • the transmitting unit 1620 before the transmitting unit 1620 receives the first style identifier sent by the network device, the transmitting unit 1620 is further configured to: receive information of multiple DMRS patterns sent by the network device;
  • the determining unit 1610 is specifically configured to: determine, according to the first pattern identifier and the multiple DMRS patterns, the DMRS pattern corresponding to the first port, and the corresponding to the first port Silent style.
  • the transmitting unit 1620 is further configured to:
  • the determining unit 1610 is specifically configured to:
  • the transmitting unit 1620 before the transmitting unit 1620 receives the second style identifier sent by the network device, the transmitting unit 1620 is specifically configured to:
  • the determining unit 1610 is specifically configured to:
  • the determining unit 1610 may be implemented by a processor, and the transmitting unit 1620 may be implemented by a transceiver.
  • the terminal device 1700 can include a processor 1710, a transceiver 1720, and a memory 1730.
  • the transceiver 1720 can include a receiver 1721 and a transmitter 1722 that can be used to store code and the like executed by the processor 1710.
  • the various components in network device 1700 are coupled together by a bus system 1740 that includes, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like.
  • the processor 1710 is configured to determine a DMRS pattern corresponding to the first port, and a silent mode corresponding to the first port, where the first port is a port used by the network device to perform DMRS transmission with the terminal device. ;
  • the transceiver 1720 is configured to map, by using the first port, the DMRS of the terminal device on the resource indicated by the DMRS pattern determined by the determining unit 1410, and determined by the determining unit 1710 The data indicated by the silent style does not map data; or
  • the transceiver 1720 is further configured to: receive, by the network device, first resource indication information, where the first resource indication information is used to indicate the DMRS pattern and the silence pattern;
  • the processor 1710 is specifically configured to: determine, according to the first resource indication information, the DMRS pattern corresponding to the first port, and the silent pattern corresponding to the first port.
  • the transceiver 1720 is further configured to: receive a first style identifier sent by the network device, where the first pattern identifier is used to indicate that each of the multiple ports of the network device corresponds to DMRS style;
  • the processor 1710 is specifically configured to: determine, according to the first style identifier, the DMRS pattern corresponding to the first port, and the silent style corresponding to the first port.
  • the transceiver 1720 before the transceiver 1720 receives the first style identifier sent by the network device, the transceiver 1720 is further configured to: receive information of multiple DMRS patterns sent by the network device;
  • the processor 1710 is specifically configured to: determine, according to the pattern identifier and the multiple DMRS patterns, the DMRS pattern corresponding to the first port, and the silent pattern corresponding to the first port.
  • the transceiver 1720 is further configured to: receive second resource indication information that is sent by the network device to indicate the DMRS pattern, and receive, by the network device, the first port that is sent by the network device. a second style identifier of the corresponding silent style;
  • the processor 1710 is specifically configured to: determine, according to the second resource indication information, a DMRS pattern corresponding to the first port, and determine, according to the second pattern identifier, a silence pattern corresponding to the first port.
  • the transceiver 1720 is further configured to: receive information about multiple silent patterns sent by the network device, where the multiple silence patterns include the silent pattern;
  • the processor 1710 is specifically configured to: determine, according to the second style identifier, the silent style corresponding to the first port in the multiple silence patterns.
  • Figure 18 is a schematic structural diagram of a system chip of an embodiment of the present invention.
  • the system chip 1800 of FIG. 18 includes an input interface 1801, an output interface 1802, at least one processor 1803, and a memory 1804.
  • the input interface 1801, the output interface 1802, the processor 1803, and the memory 1804 are connected by a bus 1805.
  • the processor 1803 is configured to execute code in the memory 1804, and when the code is executed, the processor 1803 implements the method performed by the terminal device in FIGS. 6-10.
  • the terminal device 1600 shown in FIG. 16 or the terminal network device 1700 shown in FIG. 17 or the system chip 1800 shown in FIG. 18 can implement the various processes implemented by the terminal device in the foregoing method embodiments of FIG. 6 to FIG. 12, in order to avoid Repeat, no longer repeat them here.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and may be implemented in actual implementation.
  • multiple units or components may be combined or integrated into another system, or some features may be omitted or not performed.
  • the couplings or direct couplings or communication connections that are explicitly or discussed may be indirect coupling or communication connections through some interfaces, devices or units, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory ROM, a random access memory RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种传输DMRS的方法、网络设备和终端设备。该方法包括:网络设备确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为所述网络设备用于与终端设备进行DMRS传输的端口;所述网络设备通过所述第一端口,在所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述静默样式指示的资源上不映射数据;或者所述网络设备通过所述第一端口,在所述DMRS样式指示的资源上获取所述终端设备的DMRS,且在所述静默样式指示的资源上假设数据功率为零。因此,能够提高DMRS的接收信噪比。

Description

传输解调参考信号的方法、网络设备和终端设备 技术领域
本发明涉及无线通信领域,并且更具体地,涉及一种传输解调参考信号DMRS的方法、网络设备和终端设备。
背景技术
在无线通信***中,若是接收端能够获取无线信道信息,并利用估计得到的无线信道信息进行数据的接收解调,则能够大大的提高数据接收质量,而要实现上述目的,通常是发射端在发射数据的同时,发射一些参考信号,这些参考信号是预设的,收发两端都是预知的,接收端通过估计这些参考信号,就可以获得无线信道信息,以用于数据的接收解调。为了提高资源利用率,在实际***中,往往只有一小部分资源用于参考信号的发射。而之所以可以只采用一小部分资源发射参考信号就能够获得信道信息,是因为无线信道往往是块衰落的,即在频率和时间两个维度上具有相关性。只要保证参考信号在时间上的间隔小于相干时间,且在频域上的间隔小于相干带宽,就能根据这些参考信号得到所有时频资源上的信道状态信息。
为了降低***通信的时延,5G***中,在传输数据时将参考信号放置在最开始的符号上,接收端在接收到第一个符号后,就可以根据其中的参考信号估计出整个资源块的信道状态信息,并开始对接收的数据进行检测,从而在后续的数据接收过程中,实现边接收边检测,从而缩短接收时延。但根据最前面符号上传输的参考信号估计得到的信道状态信息,在用于数据接收时,对于越靠后的符号上的性能越差。因此5G***中,在一些特殊场景例如高速或者高频***中采用高阶调制时,除了使用最前面的符号传输参考信号外,在后续的符号中也会传输一些附加的参考信号,这些附加的参考信号与最前面符号上传输的参考信号共同用于数据的解调接收,这样能够有效提高***的接收性能。为了应对不同的场景,例如图2所示,这些用于传输参考信号的符号会有不同的分布样式。
上述基于参考信号进行信道估计并进行数据解调的***中,参考信号的接收信噪比的高低将直接影响信道估计的效果。在这种参考信号的传输资源 可以灵活配置的多端口***中,为了提高参考信号接收信噪比,需要避免其他端口的数据传输对当前端口上传输的参考信号带来的干扰。一种有效的方法是其他端口在当前端口传输参考信号的资源上不传输数据,即保持静默。
因此,如何实现通过数据静默来提高参考信号接收信噪比是急需解决的问题。
发明内容
本发明实施例提供一种传输解调参考信号DMRS的方法、网络设备和终端设备,能够提高DMRS的接收信噪比。
第一方面,提供了一种传输DMRS的方法,该方法包括:
网络设备确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为所述网络设备用于与终端设备进行DMRS传输的端口;
所述网络设备通过所述第一端口,在所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述静默样式指示的资源上不映射数据;或者所述网络设备通过所述第一端口,在所述DMRS样式指示的资源上接收来自所述终端设备的DMRS,且在所述静默样式指示的资源上假设数据功率为零。
因此,网络设备除了为终端设备配置传输DMRS的DMRS样式,还为终端设备配置了静默样式,使得其他终端设备在该静默样式指示的资源上传输DMRS时,不会受到该终端设备的数据传输的干扰,并且该终端设备在传输DMRS时,也不会受到替他终端设备数据传输的干扰,从而能够提高DMRS的接收信噪比。
可选地,网络设备和终端设备在确定了DMRS样式和静默样式后,可以根据第一端口的端口号,以及
Figure PCTCN2016100487-appb-000001
来确定DMRS样式指示的资源以及静默样式指示的资源,其中,m=0,1,...3NRB-1,NRB是以资源块为单位的带宽,这些带宽被用于为终端设备提供数据服务,
Figure PCTCN2016100487-appb-000002
其中
Figure PCTCN2016100487-appb-000003
表示每个资源块包含的子载波数,不同端口vshift取值不同,例如端口1,vshift为1;端口2,vshift为2;端口3,vshift为3。
应理解,上述方法是以频分的方式实现不同端口DMRS的复用,也可 以采用码分或者时分,上述方法只是为了举例说明本发明的可实现性,并不限定本发明的保护范围。
第一端口对应的DMRS样式与除所述第一端口外的其他端口对应的DMRS样式可以相同或者不同。如果所述第一端口对应的DMRS样式与除所述第一端口外的其他端口对应的DMRS样式相同,那么网络设备可以采用隐式配置的方式向终端设备指示静默样式和DMRS样式。
以下行传输为例,该静默样式可以通过隐式配置的方式来实现,即网络设备在对终端设备进行调度时,不同端口上采用相同的DMRS样式,在其他端口传输DMRS的资源上,该终端设备不传输数据。该终端设备默认其他端口上的DMRS样式,与第一端口的DMRS样式相同,并且假设其他端口传输DMRS的资源上的信号功率为零。
可选地,在第一方面的一种实现方式中,所述方法还包括:所述网络设备向所述终端设备发送第一资源指示信息,所述第一资源指示信息用于指示所述DMRS样式和所述静默样式。
该静默样式也可以通过显式配置的方式来实现,即在网络设备的调度信令中同时包括第一资源指示信息,该第一资源指示信息用于指示当前终端设备所使用的DMRS样式和静默样式。以下行传输为例,终端设备接收到调度信令后,根据该静默样式确定需要静默的资源的位置,并假设该静默样式所指示的资源上的信号功率为零。
可选地,在第一方面的一种实现方式中,所述方法还包括:所述网络设备向所述终端设备发送第一样式标识,所述第一样式标识用于指示所述网络设备的多个端口中的每个端口对应的DMRS样式。
可选地,在第一方面的一种实现方式中,所述网络设备向所述终端设备发送所述第一样式标识之前,所述方法还包括:
所述网络设备确定多个DMRS样式,所述多个DMRS样式包括所述DMRS样式;所述网络设备向所述终端设备发送所述多个DMRS样式的信息。
该静默样式还可以通过半静态配置的方式来实现,即在网络设备的调度信令中同时包括第一样式标识,该第一样式标识用于指示网络设备的每个端口对应的DMRS样式,在所述网络设备向所述终端设备发送样式标识之前,网络设备可以通过高层信令向终端设备发送预设的多个DMRS样式,并通 过下行调度信令动态通知终端设备该样式标识。终端设备获得该样式标识后,就能够在获得的多个DMRS样式中,确定当前每个端口对应的DMRS样式,从而确定第一端口对应的静默样式所指示的资源的位置,并假设在相应的静默资源单元上的信号功率为零。
可选地,在第一方面的一种实现方式中,所述方法还包括:所述网络设备向所述终端设备发送用于指示所述DMRS样式的第二资源指示信息;所述网络设备向所述终端设备发送用于指示所述第一端口对应的静默样式的第二样式标识。
可选地,在第一方面的一种实现方式中,在所述网络设备向所述终端设备发送第二样式标识之前,所述方法还包括:所述网络设备确定多个静默样式,所述多个静默样式包括所述静默样式;所述网络设备向所述终端设备发送所述多个静默样式的信息。
基于上面的描述,对于静默样式的配置方式可以是显式的、半静态的;或者显式的、动态的;或者隐式的、静态的。其中,隐式静态的配置方法虽然不需要增加额外的配置开销,但是会对调度造成很大的限制,影响***性能和客户体验;显式动态的配置方式最为灵活,但是需要大量宝贵的物理层资源用于传输配置信息。显式半静态兼顾了灵活和开销两方面,因而显式半静态的配置方式是较为优选的。
第二方面,提供了一种传输DMRS的方法,该方法包括:
终端设备获取第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为网络设备用于与所述终端设备进行DMRS传输的端口;
所述终端设备通过所述第一端口,在所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述静默样式指示的资源上不映射数据;或者所述终端设备通过所述第一端口,在所述DMRS样式指示的资源上获取所述终端设备的DMRS,且在所述静默样式指示的资源上假设数据功率为零。
因此,终端设备除了能够获取传输DMRS的DMRS样式,还能够获取静默样式,使得其他终端设备在该静默样式指示的资源上传输DMRS时,不会受到该终端设备的数据传输的干扰,并且该终端设备在传输DMRS时,也不会受到替他终端设备数据传输的干扰,从而能够提高DMRS的接收信噪比。
可选地,在第二方面的一种实现方式中,所述终端设备确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,包括:
所述终端设备从网络设备获取第一资源指示信息,所述第一资源指示信息用于指示所述DMRS样式和所述静默样式;
所述终端设备根据所述第一资源指示信息,获取所述第一端口对应的所述DMRS样式,和所述第一端口对应的所述静默样式。
可选地,在第二方面的一种实现方式中,所述终端设备确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,包括:
所述终端设备接收网络设备发送的样式标识,所述样式标识用于指示所述网络设备的多个端口中的每个端口对应的DMRS样式;所述终端设备根据所述样式标识,确定所述第一端口对应的所述DMRS样式,和所述第一端口对应的所述静默样式。
可选地,在第二方面的一种实现方式中,在所述终端设备接收网络设备发送的第一资源指示信息之前,所述方法还包括:所述终端设备接收所述网络设备发送的多个DMRS样式的信息;
其中,所述终端设备根据所述样式标识,确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,包括:所述终端设备根据所述样式标识和所述多个DMRS样式,确定所述第一端口对应的所述DMRS样式,和所述第一端口对应的所述静默样式。
可选地,在第二方面的一种实现方式中,所述方法还包括:所述终端设备接收所述网络设备发送的用于指示所述DMRS样式的第二资源指示信息;所述终端设备接收所述网络设备发送的用于指示所述第一端口对应的静默样式的第二样式标识;
其中,终端设备获取第一端口对应的DMRS样式,和所述第一端口对应的静默样式,包括:所述终端设备根据所述第二资源指示信息和所述第二样式标识,获取第一端口对应的DMRS样式和所述第一端口对应的静默样式。
可选地,在第二方面的一种实现方式中,所述方法还包括:在所述终端设备接收所述网络设备发送的第二样式标识之前,所述方法还包括:所述终端设备接收所述网络设备发送的多个静默样式的信息,所述多个静默样式包括所述静默样式;
其中,所述终端设备根据所述第二资源指示信息和所述第二样式标识, 获取第一端口对应的DMRS样式和所述第一端口对应的静默样式,包括:所述终端设备根据所述第二资源指示信息确定所述DMRS样式,并根据所述第二样式标识,在所述多个静默样式中确定所述第一端口对应的所述静默样式。
第三方面,提供了一种网络设备,该网络设备可以用于执行前述第一方面及各种实现方式中的传输DMRS的方法中由网络设备执行的各个过程。该网络设备包括确定单元和传输单元。
确定单元,用于确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为所述网络设备用于与终端设备进行DMRS传输的端口;
传输单元,用于通过所述第一端口,在所述确定单元确定的所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述确定单元确定的所述静默样式指示的资源上不映射数据;或者通过所述第一端口,在所述确定单元确定的所述DMRS样式指示的资源上获取所述终端设备的DMRS,且在所述确定单元确定的所述静默样式指示的资源上假设数据功率为零。
第四方面,提供了一种终端设备,该终端设备可以用于执行前述第二方面及各种实现方式中的传输DMRS的方法中由终端设备执行的各个过程。该终端设备包括获取单元和传输单元。
确定单元,用于确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为网络设备用于与所述终端设备进行DMRS传输的端口;
传输单元,用于通过所述第一端口,在所述确定单元确定的所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述确定单元确定的所述静默样式指示的资源上不映射数据;或者通过所述第一端口,在所述确定单元确定的所述DMRS样式指示的资源上获取所述终端设备的DMRS,且在所述确定单元确定的所述静默样式指示的资源上假设数据功率为零。
第五方面,提供了一种网络设备,该网络设备可以用于执行前述第一方面及各种实现方式中的传输DMRS的方法中由网络设备执行的各个过程。该网络设备包括处理器和收发信机。
所述处理器,用于确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为所述网络设备用于与终端设备进行DMRS 传输的端口;
所述收发信机,用于通过所述第一端口,在所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述静默样式指示的资源上不映射数据;或者
通过所述第一端口,在所述DMRS样式指示的资源上获取所述终端设备的DMRS,且在所述静默样式指示的资源上假设数据功率为零。
第六方面,提供了一种终端设备,该终端设备可以用于执行前述第二方面及各种实现方式中的传输DMRS的方法中由终端设备执行的各个过程。该终端设备包括处理器和收发信机。
所述处理器,用于获取第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为网络设备用于与所述终端设备进行DMRS传输的端口;
所述收发信机,用于通过所述第一端口,在所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述静默样式指示的资源上不映射数据;或者
通过所述第一端口,在所述DMRS样式指示的资源上获取所述终端设备的DMRS,且在所述静默样式指示的资源上假设数据功率为零。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第一方面,及其各种实现方式中的任一种传输DMRS的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第二方面,及其各种实现方式中的任一种传输DMRS的方法。
基于本发明实施例所述的方法,网络设备除了为终端设备配置传输DMRS的DMRS样式,还为终端设备配置了静默样式,因此在DMRS样式可以灵活配置的***中,能够有效的保护DMRS的收发,使其不会受到其它数据的干扰,从而提高DMRS的接收信噪比,改善***的性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图 仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一个应用场景的示意图。
图2是现有技术中用于传输DMRS的资源的示意图。
图3是现有技术中用于传输DMRS的资源的示意图。
图4是本发明实施例的DMRS样式的示意图。
图5是本发明实施例的DMRS样式与静默样式的示意图。
图6是本发明实施例的传输DMRS的方法的流程交互图。
图7是本发明实施例的3端口***中的三个端口对应的DMRS样式和静默样式的示意图。
图8是本发明另一实施例的传输DMRS的方法的流程交互图。
图9是本发明实施例的4端口***中的四个端口对应的DMRS样式和静默样式的示意图。
图10是本发明另一实施例的传输DMRS的方法的流程交互图。
图11是本发明另一实施例的传输DMRS的方法的流程交互图。
图12是本发明实施例的静默样式的示意图。
图13是本发明实施例的网络设备的结构框图。
图14是本发明实施例的网络设备的结构框图。
图15本发明实施例的***芯片的示意性结构图。
图16是本发明实施例的终端设备的结构框图。
图17是本发明实施例的终端设备的结构框图。
图18本发明实施例的***芯片的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,简称“GSM”)***、码分多址(Code Division Multiple Access,简称“CDMA”)***、宽带码分 多址(Wideband Code Division Multiple Access,简称“WCDMA”)***、通用分组无线业务(General Packet Radio Service,简称“GPRS”)、长期演进(Long Term Evolution,简称“LTE”)***、通用移动通信***(Universal Mobile Telecommunication System,简称“UMTS”)、等目前的通信***,以及,尤其应用于未来的5G***。
本发明实施例中的终端设备也可以指用户设备(User Equipment,简称“UE”)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称“SIP”)电话、无线本地环路(Wireless Local Loop,简称“WLL”)站、个人数字处理(Personal Digital Assistant,简称“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,简称“PLMN”)中的终端设备等。
本发明实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,简称“”BTS),也可以是WCDMA***中的基站(NodeB,简称“NB”),还可以是LTE***中的演进型基站(Evolutional NodeB,简称“eNB或eNodeB”),还可以是云无线接入网络(Cloud Radio Access Network,简称“CRAN”)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G通信网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
图1是本发明实施例的一种应用场景的示意性架构图。如图1所示的通信***的基本网络架构可以包括网络设备例如eNodeB 10,以及至少一个终端设备例如用户设备(User Equipment,简称“UE”)20和UE 30。如图3所示,eNodeB 10用于为UE 20和UE 30提供通信服务,并接入核心网,UE20和UE 30通过搜索eNodeB 10发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。其中,该通信***中的至少一个终端设备在与网络设备进行参考信号的传输时,不同终端设备用于传输参考信号的符号的位置可以不相同。
本发明实施例中的网络可以是指公共陆地移动网络(Public Land Mobile Network,简称“PLMN”)或者设备对设备(Device to Device,简称“D2D”)网络或者机器对机器/人(Machine to Machine/Man,简称“M2M”)网络或者其他网络,图1只是本发明实施例的一个应用场景的示例,本发明实施例还可以应用于其他场景,另外,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
下面以eNodeB 10、UE 20和UE 30为例,并以基于正交频分复用(Orthogonal Frequency Division Multiplexing,简称“OFDM”)的长期演进***(Long Term Evolution,简称“LTE”)为例。如图2所示的用于传输参考信号的资源的示意图,一个子帧中的前面的至多3个OFDM符号上用于控制信道的传输,其接收和解调是基于公共参考信号(Common reference signal,简称“CRS”),用于数据信道解调的上行参考信号例如解调参考信号(Demodulation reference signal,简称“DMRS”)的传输资源如图2中的阴影部分,图2中的每个小方块代表最小的资源单位,被称为资源单元,在时间上是一个OFDM符号的时长,在频率上是一个子载波的宽度。利用信道的频率相关性,接收可以端利用位于同一个OFDM符号上的参考信号估计得到信道状态信息,并可以通过插值获取同一个OFDM符号上其他资源单元上的信道状态信息;利用信道的时间相关性,接收端利用位于不同OFDM符号上的参考信号得到的信道状态信息,并通过插值获得不同OFDM符号上资源单元上的信道状态信息。
在5G***中,为了降低***通信的时延,可以将参考信号放置在最开始的OFDM符号上,例如图3所示的用于传输参考信号的资源的示意图。图3中示出的资源用于数据信道的发送,控制信道的发送所使用的资源应该在数据信道之前,这里均没有画出。另外,图3仅仅作为示意,图3中示出的传输参考信号的在频域上的密度在实际***中可以不同。
对于这种参考信号资源的分布方式,接收端在收到第一个OFDM符号上的参考信号后,就能估计出整个资源块的信道状态信息,并开始对接收数据进行检测,从而在后续的数据接收过程中,实现边接收边检测,从而缩短接收时延。但是由于只有最前面的OFDM符号用于参考信号的传输,后面的OFDM符号上的信道状态信息只能基于这些在最前面OFDM符号上获得的信道状态信息获得,这种方式对于大部分场景下的数据接收是没有问题 的。但是位于后面的OFDM符号上的信道状态与处于最前面的OFDM符号上的信道状态之间的相关度,明显低于中间OFDM上的信道状态与处于最前面OFDM符号上的信道状态的相关度,这意味着,根据最前面OFDM符号上估计得到的信道状态信息进行数据解调时,越靠后的OFDM符号上的性能越差,尤其是在高速场景下,相干时间大大缩短,这时候这种前置参考信号样式,会严重影响***接收性能。另外,在高频***中,由于晶振的非理想性,会引起相位噪声,相位噪声对于接收性能会有影响,尤其是当采用高阶调制时,相位噪声需要估计和补偿,否则将会导致性能下降。更为严重的是,相位噪声是快速变化的,每个OFDM符号都是变化的,这时候,若是在最前面的符号上传输参考信号,并根据参考信号估计得到的信道状态和相位噪声来对后续的OFDM符号上的数据做解调,会造成***性能的极大下降。
为了解决上述问题,在5G***中,除了使用最前面的符号来传输参考信号之外,还将在后续的OFDM符号中***一些附加的解调参考信号,在大部分场景下,最前面符号上的解调参考信号将单独用于数据解调,附加参考信号将不被发送;而在一些特殊场景下,例如高速场景下、或者高频***中采用高阶调制时,在时域上具有一定密度的附加参考信号将被发送,这时候,前面符号上的解调参考信号和紧随其后的附加的解调参考信号共同用于数据的解调接收。
为了应对不同的场景,传输参考信号的OFDM符号会具有不同的分布样式,图4给出了一些不同的分布样式,例如图4示出的样式1可以用于高频***中相位噪声的估计,而样式2至样式4,可以用于不同速度的移动场景下的数据解调,而样式5可以认为是缺省配置,能够用于大部分常见场景下的数据解调。
进一步地,信道估计的性能是由参考信号的接收信噪比决定,为了避免参考信号被干扰,最为常见的方法是:在正交的时频资源上使用不同端口传输参考信号。图5所示的用于传输参考信号的资源的示意图,例如对于两端口的***,在端口1传输参考信号的时频资源上,端口2上会保持静默,即不传输任何数据,同样在端口2传输参考信号的时频资源上,端口1上也保持静默。
例如,eNodeB 10的端口1在传输参考信号时,其端口2需要在端口1 传输参考信号的符号上不发送任何数据,那么则需要在为参考信号配置传输资源的同时,使端口2对应的终端设备能够获知需要保持静默的资源的样式。如图5所示,若是端口1用于UE 20的数据收发,端口2用于UE 30的数据收发,同时eNodeB 10为UE 20和UE 30确定了用于传输参考信号的资源的样式,这时UE 20和UE 30除了需要知道各自的用于发送参考信号的资源的样式,还需要知道各自对应的端口上哪些资源上需要保持静默,这样才能够避免当其他终端设备在这些静默资源上发送数据时,对其他终端设备的参考信号的接收信噪比造成影响。
又例如,eNodeB 10在端口1向UE 20传输参考信号时,端口2在端口1传输参考信号的资源上不发送任何数据,这时,为了避免端口2对应的终端设备在没有发射数据的资源上尝试接收数据所造成的***性能下降,则需要在为参考信号配置传输资源的同时,使端口2对应的终端设备能够获知静默样式。如图5所示,若是端口1用于UE 20的数据收发,端口2用于UE 30的数据收发,同时eNodeB 10为UE 20和UE 30确定了用于传输参考信号的资源的分布样式,这时UE 20和UE 30除了需要知道各自的用于传输参考信号的资源的样式,还需要知道各自对应的端口上的静默样式,在该静默样式指示的静默资源上没有自己所需的数据传输,这样才能够避免在UE 20和UE 30自己所对应端口的静默资源上收到其他端口的数据,提高数据收发性能,例如UE 20需要避免接收端口1的静默资源上的数据,否则会收到用于UE 30的收发的参考信号,从而影响UE 20数据的收发性能。。
如图5中所示,UE 20的DMRS样式为UE 30的静默样式,UE 30的DMRS样式为UE 20的静默样式。
本发明实施例中,网络设备在为终端设备配置用于传输参考信号的资源时,终端设备还能够获取需要保持静默的资源位置,从而在网络设备通过不同端口发送参考信号时,参考信号不会受到其他数据的干扰,从而能够提高DMRS的接收信噪比。
图6是根据本发明实施例的传输DMRS的方法的流程交互图。图5所示的方法中,解调参考信号的发送端可以为终端设备或网络设备,解调参考信号的接收端可以为终端设备或网络设备。例如,还可以是解调参考信号的发送端为终端设备,解调参考信号的接收端为另一终端设备,此时本申请实施例可以应用D2D传输。另外,发送端和接收端之间的传输,可以通过无 线电波来传输,也可以通过可见光、激光、红外、光纤等传输媒介来传输,本发明实施例对此并不限定。
图6示出了网络设备和终端设备,网络设备例如可以是图1中的eNodeB10,终端设备例如可以是图1中的UE 20或UE 30,但网络设备可以与包括UE 20和UE 30在内的多个终端设备之间利用本发明实施例的方法进行DMRS的传输,其他终端设备所执行的方法可以参考终端设备执行的方法,为了简洁,这里不再赘述。本发明实施例以DMRS为例进行描述,但本发明所述的方法也可以使用与其他参考信号的传输。如图6所示,该传输DMRS的方法包括:
在610中,网络设备确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式。
其中,所述第一端口为所述网络设备用于与终端设备进行DMRS传输的端口。
具体地说,这里的DMRS样式为用于发送或接收DMRS的样式,而该静默样式用于表示在静默样式指示的静默资源上不进行任何数据的发送或接收。网络设备可以通过多个端口与多个终端设备之间同时进行DMRS的传输,网络设备可以为每个端口配置一种DMRS样式(DMRS pattern),网络设备根据每个端口对应的DMRS样式,在每个端口上向该端口对应的终端设备发送DMRS,或者在每个端口上接收该端口对应的终端设备发送的DMRS。同时,网络设备还为每个端口配置对应的静默样式(muting pattern),在每个端口的静默资源上不向该端口对应的终端设备发送数据,也不接收该终端设备发送的数据。
应注意,本发明实施例中,在网络设备同时与多个终端设备之间进行DMRS的传输时,对于该多个终端设备中的任意一个终端设备,该终端设备对应的端口上的DMRS样式,也就是该多个终端设备中其他终端设备对应的端口上的静默样式;该终端设备对应的端口上的静默样式,也就是该多个终端设备中的其他终端设备对应的端口上的DMRS样式所组成的集合。
该DMRS样式或静默样式例如可以为图4所示的五种样式,图4中示出的五种样式中,在用于传输数据的数据资源的第一个符号上,用于传输DMRS的资源单元(Resource Element,简称“RE”)在频域上按照一定密度分布;在第一个符号之后的符号上,用于传输DMRS的资源单元在时域上 按照一定的密度分布。例如图4,在样式1,或者称为配置(Configuration)1所指示用于发射DMRS的资源在时域上是连续的,可以用于高频***;而样式2至样式4所指示的用于发射DMRS的资源在时域上的密度逐渐减小,可以用于不同速度的移动场景下;而样式5可以认为是缺省配置,只有在第一个符号上传输DMRS,能够用于大部分常见场景下。
应理解,网络设备的多个端口上可以分别对应不同的DMRS样式,也可以对应相同的DMRS样式,相应的,这多个端口上对应的静默样式也可以不同或者相同。
在620中,终端设备确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式。
具体地说,当不同端口对应不同的DMRS样式和静默样式时,620中终端设备确定的DMRS样式和静默样式,可以是从网络设备获取的,也就是终端设备接收网络设备为其配置的DMRS样式和静默样式;当不同端口对应相同的DMRS样式和静默样式时,终端设备可以无需从网络获取,而是直接使用该默认的DMRS样式进行DMRS传输并在该静默样式指示的静默资源上不传输数据。
本发明实施例中,由于网络设备除了为终端设备配置传输DMRS的DMRS样式,还为终端设备配置了静默样式,使得其他终端设备在该静默样式指示的资源上传输DMRS时不会受到该终端设备的数据传输的干扰,因此能够提高DMRS的接收信噪比。
如果网络设备作为发送端,终端设备作为接收端,则执行520和530;如果网络设备作为接收端,终端设备作为发送端,则执行540和550。
在630中,网络设备通过该第一端口,在该DMRS样式指示的资源上映射终端设备的DMRS,且在该静默样式指示的资源上不映射数据。
在640中,该网络终端设备通过该第一端口,在该DMRS样式指示的资源上获取终端设备的DMRS,且在该静默样式指示的资源上假设数据功率为零。
在650中,终端设备通过该第一端口,在该DMRS样式指示的资源上映射终端设备的DMRS,且在该静默样式指示的资源上不映射数据。
在660中,网络设备通过该第一端口,在该DMRS样式指示的资源上获取终端设备的DMRS,且在该静默样式指示的资源上假设数据功率为零。
这样,在DMRS样式可以灵活配置的***中,能够有效的保护DMRS的收发,使其不会受到其它数据的干扰,从而提高DMRS的接收信噪比,改善***的性能。
应理解,这里所说的在DMRS样式指示的资源上映射终端设备的DMRS,可以理解为在DMRS样式指示的资源上发送DMRS;在静默样式指示的资源上不映射数据,可以理解为在静默样式指示的资源上不发送任何数据;在DMRS样式指示的资源上获取终端设备的DMRS,可以理解为在DMRS样式指示的资源上接收终端设备发送的DMRS;在静默样式指示的资源上假设数据功率为零,可以理解为在静默样式指示的资源上不接收数据。
还应理解,本发明实施例中,在静默资源上不发送数据或不接收数据,所述的数据即包括业务数据也包括参考信号,也就是说,在静默样式指示的静默资源上,即不会传输业务数据,也不会传输DMRS,该静默资源上不传输任何信号。
具体地说,网络设备确定了DMRS样式和静默样式后,就可以根据该DMRS样式,在该DMRS样式指示的资源上传输DMRS,并在该静默样式指示的资源上不传输任何数据。同样,终端设备获取网络设备配置的DMRS样式静默样式后,可以根据该DMRS样式,在该DMRS样式指示的资源上传输DMRS,并在该静默样式指示的资源上不传输数据。例如,终端设备可以根据网络设备为自己配置的端口号以及该DMRS样式,确定该DMRS样式指示的资源的位置,并根据网络设备为自己配置的端口号以及该静默样式,确定该静默样式指示的资源的位置。
可选地,网络设备和终端设备在确定了DMRS样式和静默样式后,可以根据第一端口的端口号,以及
Figure PCTCN2016100487-appb-000004
来确定DMRS样式指示的资源以及静默样式指示的资源,其中,m=0,1,...3NRB-1,NRB是以资源块为单位的带宽,这些带宽被用于为终端设备提供数据服务,
Figure PCTCN2016100487-appb-000005
其中
Figure PCTCN2016100487-appb-000006
表示每个资源块包含的子载波数,不同端口vshift取值不同,例如端口1,vshift为1;端口2,vshift为2;端口3,vshift为3。
应理解,上述方法是以频分的方式实现不同端口DMRS的复用,也可以采用码分或者时分,上述方法只是为了举例说明本发明的可实现性,并不限定本发明的保护范围。
下面举例说明网络设备和终端设备,如何根据DMRS样式和静默样式和端口号,确定DMRS样式指示的资源的位置以及静默样式指示的资源的位置。例如图7示出的3端口***中的三个端口对应的DMRS样式和静默样式,假设网络设备为的哥端口配置的DMRS样式和静默样式是相同的,NRB=1,
Figure PCTCN2016100487-appb-000007
当m=0时,在第一个符号上即l=1,vshift=1时即端口1对应的子载波位置k=1,vshift=2时即端口2对应的子载波位置k=2,vshift=3时即端口3对应的子载波位置k=3;而在第一个符号之后的符号上即l≠1,DMRS样式和静默样式指示的资源中,资源单元在时域上连续分布,vshift=-1时即端口1对应的子载波位置12*1/2+1=7,vshift=2时即端口2对应的子载波位置k=6,vshift=3时即端口3对应的子载波位置k=5。这里端口号vshift在公式中可以取正值也可以取负值。
网络设备为终端设备配置静默样式,可以通过隐式静态配置、显式动态配置或者显式半静态配制的方式。
以下行传输为例,上述的静默样式可以通过隐式静态配置的方式来实现,即网络设备在对终端设备进行调度时,不同端口上采用相同的DMRS样式,在其他端口传输DMRS的资源上,该终端设备不传输数据。该终端设备默认其他端口上的DMRS样式,与当前端口的DMRS样式相同,并且在接收信号时,假设其他端口传输DMRS的资源上的信号功率为零。
上述的静默样式也可以通过显式动态配置的方式来实现,即在网络设备的调度信令中同时包括第一资源指示信息,所述第一资源指示信息用于指示当前终端设备所使用的DMRS样式和静默样式,终端设备接收到调度信令后,根据该静默样式确定需要静默的资源单元的位置,并在接收数据时,假设该静默样式所指示的资源上的信号功率为零。
上述的静默样式还可以通过显式半静态配置的方式来实现,即在网络设备的调度信令中同时包括第一样式标识,该第一样式标识用于指示网络设备的多个端口中每个端口对应的DMRS,网络设备通过高层信令向终端设备发送预设的多个由DMRS样式组成的DMRS样式组,每一个DMRS样式组是由网络设备的每个端口对应可能的DMRS样式组成的。网络设备通过下行调度信令动态通知终端设备该样式标识。终端设备获得该样式标识后,就能够在获得的多个DMRS样式中,确定当前每个端口对应的DMRS样式,从而确定第一端口对应的静默样式所指示的资源单元的位置,并假设在相应的 静默资源单元上的信号功率为零。
基于上面的描述,对于静默样式的配置方式可以是显式的、半静态的;或者显式的、动态的;或者隐式的、静态的。其中,隐式静态的配置方法虽然不需要增加额外的配置开销,但是会对调度造成很大的限制,影响***性能和客户体验;显式动态的配置方式最为灵活,但是需要大量宝贵的物理层资源用于传输配置信息。显式半静态兼顾了灵活和开销两方面,因而显式半静态的配置方式是较为优选的。
下面结合图8至图10,基于上述的几种静默样式的配制方式,详细地描述本发明实施例的传输DMRS的方法。
方式1
显式、动态的方式
作为另一个实施例,如图8所示的传输DMRS的方法,在630至660之前,该方法还包括670,这时,620包括680和690,即620可以由621和622替代。
670,网络设备向终端设备发送第一资源指示信息,该第一资源指示信息用于指示该DMRS样式和该静默样式。
621,终端设备接收网络设备发送的第一资源指示信息,该第一资源指示信息用于指示该DMRS样式和该静默样式。
622,终端设备根据该第一资源指示信息,确定该第一端口对应的该DMRS样式,和该第一端口对应的该静默样式。
以图1中的eNodeB 10、UE 20和UE 30为例进行说明。
对于下行传输,eNodeB 10对UE 20进行调度时,首先确定被调度的UE 20采用的接收端口、DMRS样式和静默样式,并将包括UE 20采用的端口号例如为第一端口的端口号、DMRS样式和静默样式在内的调度信息通过物理层信令发送给UE 20,其中,UE 20对应的端口上的静默资源是UE 30对应的端口上用于发送DMRS的资源。eNodeB 10将UE 20的数据映射到相应端口并将数据发送给UE 20,在映射时,eNodeB 10在静默资源上不映射数据。
UE 20通过物理层信令获得第一端口的端口号、第一端口对应的DMRS样式和静默样式,并在DMRS样式指示的资源上接收DMRS并根据DMRS进行信道估计,并且在接收其他资源单元上的数据时,假设静默样式指示的 资源上的数据功率为零。
对于上行传输,eNodeB 10对UE 20进行调度时,首先确定被调度的UE 20采用的接收端口、DMRS样式和静默样式,并将包括UE 20采用的端口号例如为第一端口的端口号、DMRS样式和静默样式在内的调度信息通过物理层信令发送给UE 20,其中,UE 20对应的端口上的静默资源是UE 30对应的端口上用于发送DMRS的资源。UE 20通过物理层信令获得第一端口的端口号、当前第一端口的DMRS样式和静默样式。UE 20对其上行数据进行映射并向eNodeB 10发送,这时,在进行数据映射时,UE 20在静默资源上不映射数据。eNodeB 10在第一端口接收UE 20发送的数据,且接收数据时,假设静默样式指示的资源上的数据功率为零。
方式2
显式、半静态的方式
作为另一个实施例,该方法还包括681和682。
681,网络设备向终端设备发送第一样式标识,该第一样式标识用于指示该网络设备的多个端口中的每个端口对应的DMRS样式;
682,终端设备接收网络设备发送的第一样式标识,该第一样式标识用于指示该网络设备的多个端口中的每个端口对应的DMRS样式。
并且进一步地,如图10所示,该方法还包括691至693。这时,620包括623,即620可以由623替代。
691,网络设备确定多个DMRS样式,所述多个DMRS样式包括所述DMRS样式;
692,网络设备向终端设备发送该多个DMRS样式的信息;
693,终端设备接收网络设备发送的多个DMRS样式的信息。
623,终端设备根据该第一样式标识和该多个DMRS样式,确定第一端口对应的DMRS样式,和第一端口对应的静默样式。
以图1中的eNodeB 10、UE 20和UE 30为例进行说明。
对于下行传输,网络设备首先为UE 20确定一组DMRS样式组,并通过高层信令半静态的通知UE 20。
这里以4端口***为例,DMRS样式如图10所示。
第一组:{样式1,样式1,样式1,样式1}
第二组:{样式1,样式1,样式1,样式5}
第三组:{样式1,样式1,样式5,样式5}
第四组:{样式1,样式5,样式5,样式5}
应注意,上述样式组是eNodeB 10根据实际情况,根据长周期进行调整,并半静态的通知UE 20的。也可以是eNodeB 10与UE 20之前预先约定的。每一组中的第一个元对应端口1,第二个元素对应端口2,第三个元素对应端口3,第四个元素对应端口4。例如,在第二组中,端口1、端口2和端口3对应的DMRS样式为样式1,端口4对应的DMRS样式为样式5。
eNodeB 10对UE 20进行调度,并将包括UE 20使用的第一端口的端口号(例如图9示出的端口1)、DMRS样式在内的调度信息通过物理层信令发送给UE 20。这里的DMRS样式可以用上述DMRS样式组标识的二进制数来表示,以上述4组为例,“00”表示第一组的第一样式标识,“01”表示第二组的第一样式标识,“10”表示第三组的第一样式标识,“11”表示第四组的第一样式标识。应注意,这里的每个端口的DMRS样式,所对应的是eNodeB 10最近一次通知UE 20的DMRS样式组中的某个样式组中的DMRS样式。
eNodeB 10将UE 20的数据映射到第一端口并将数据发送给UE 20,在映射时,在其它UE对应的端口上发送DMRS的位置上不映射数据,如图10所示,这里以第二组为例,给出了各个端口上资源映射情况。
对于下行传输,UE 20通过高层信令获得DMRS样式组,UE 20通过物理层信令获得第一端口的端口号和第一样式标识。UE 20根据第一样式标识,从最近一次获得的DMRS样式组中,确定第一端口对应的DMRS样式和其它端口对应的DMRS样式,并进一步地确定第一端口对应的静默样式,这里,端口1对应的静默样式,实际上为端口2至端口4对应的DMRS样式。UE 20在DMRS资源单元上进行信道估计,并且在其他资源单元上接收数据,并且在接收数据时,假设静默样式指示的资源上的数据功率为零。
对于上行传输,eNodeB 10首先为UE 20确定一组DMRS样式组,并通过高层信令半静态的通知UE 20。eNodeB 10对UE 20进行调度,并将包括UE 20使用的第一端口的端口号、第一样式标识在内的调度信息通过物理层信令发送给UE 20。UE 20通过高层信令获得DMRS样式组,通过物理层信令获得第一端口的端口号和该第一样式标识。
UE 20将上行数据进行映射并发送给网络设备,在数据映射时,UE 20 将其他端口用于DMRS的资源确定为第一端口对应的静默资源,并在静默资源上不映射数据。eNodeB 10在UE 20所对应的第一端口上进行数据接收,接收时在DMRS样式指示的资源上进行信道估计,并且在其他资源单元上接收数据,且在接收数据时,假设静默资源上的数据功率为零。
作为另一个实施例,该方法还包括683至685。
683,网络设备向终端设备发送用于指示该DMRS样式的第二资源指示信息;
684,网络设备向终端设备发送用于指示第一端口对应的静默样式的第二样式标识;
685,终端设备接收网络设备发送的第二样式标识和第二资源指示信息。
并且进一步地,如图10所示的本发明是实施例的DMRS的流程交互图,该方法还包括694至696。这时,620包括624,即620可以由624替代。
694,网络设备确定多个静默样式,所述多个静默样式包括所述静默样式;
695,网络设备向所述终端设备发送所述多个静默样式的信息。
696,终端设备接收网络设备发送的多个静默样式的信息。
624,终端设备根据所述第二资源指示信息确定所述DMRS样式,并根据所述第二样式标识,在所述多个静默样式中确定所述第一端口对应的所述静默样式。
也就是说,网络设备向终端设备发送第二资源指示信息指示DMRS样式,并向终端设备发送第二样式标识指示静默样式。终端设备获得第二样式标识后,可与从预设的多个候选静默样式中获得第一端口对应的静默样式,从而确定第一端口对应的静默样式所指示的资源,并假设在相应的静默资源单元上的信号功率为零。
这样,网络设备通过下行调度信令动态指示终端设备上述多个静默样式中的一个所对应的标识。终端设备获得该第二样式标识后,就能够在获得的多个静默样式中,确定当前第一端口对应的静默样式,从而确定第一端口对应的静默样式所指示的资源单元的位置,并假设在相应的静默资源单元上的信号功率为零。例如以图11所示的静默资源的示意图,以网络设备配置了4种静默样式为例,如果网络设备向终端设备发送的第二样式标识指示的静默样式为样式1,那么终端设备就可以根据该第二样式标识,在多个静默样式 中确定第一端口对应的静默样式,从而可以根据第一端口的端口号和该第一端口对应的静默样式,确定该终端设备的静默资源。
需要注意的是,图12示出的是四种静默样式,具体的每一种静默样式所指示的静默资源的具***置,还需要根据预设的规则来确定。例如,终端设备接收到第二样式标识后,首先根据该第二样式标识,在图12示出的四种静默样式中确定该第二样式标识所指示的静默样式,在确定了自己对应的静默样式后,终端设备可以根据自己对应的第一端口的端口号和该静默样式,确定该静默样式具体指示的静默资源的位置,从而在该静默资源上不映射数据,或者在该静默资源上假设信号功率为零。
也就是说,图12所示的静默样式是一个基准的资源映射,不同端口对应的终端设备,在根据获取的静默样式确定相应的静默资源时,需要根据端口号的不同对上述的该静默样式在时域和/或频域添加一个固定的预设偏移,例如在频域上,端口1对应的偏移值为vshift为1;端口2对应的偏移值vshift为2;端口3对应的偏移值vshift为3。
方式3
隐式、静态的方式
前面的方式1和方式2,描述的都是网络设备为该终端设备对应的第一端口配置DMRS样式和静默样式后,需要告知终端设备其应使用的DMRS样式和静默样式。在另一种情况下,如果网络设备为所有端口配置相同的DMRS样式,那么网络设备可以不告知终端设备该第一端口对应的DMRS样式和静默样式,这时,终端设备可以默认该第一端口对应DMRS样式和其它端口对应的DMRS样式是相同的,从而终端设备只需要根据预设的规则,确定其他端口用于发送DMRS的资源单元的位置即可。
方式3中,隐式静态的配置方法无需增加额外的配置开销。
以图1示出的eNodeB 10、UE 20和UE 30为例进行说明。
对于下行传输,eNodeB 10对所有被调度的UE配置相同的DMRS样式。eNodeB 10将包括UE 20使用的第一端口的端口号、DMRS样式的在内的调度信息通过物理层信令发送给UE 20。eNodeB 10将UE 20的数据映射到相应端口并将数据发送给UE 20,在数据映射时,eNodeB 10在其他端口发送DMRS的位置上不映射数据。
UE 20通过物理层信令获得第一端口的端口号和第一端口对应的DMRS 样式。UE 20根据当前第一端口对应的DMRS样式,确定第一端口上的静默资源的位置,确定方法是假设其他端口采用的DMRS样式与当前端口所使用的DMRS样式相同,并根据预设的规则,确定用于其他端口DMRS发送的资源单元的位置。预设的规则可以有很多,例如图7示出的3端口***中的三个端口对应的DMRS样式和静默样式,图7示出的是以频分的方式实现不同端口DMRS的复用。UE 20在DMRS样式指示的资源单元上进行信道估计,并且在其他资源单元上接收数据,且在接收数据时,假设静默资源上的数据功率为零。
对于上行传输,eNodeB 10对所有被调度的UE配置相同的DMRS样式。eNodeB 10将包括UE 20使用的第一端口的端口号、DMRS样式的在内的调度信息通过物理层信令发送给UE 20。
UE 20通过物理层信令获得第一端口的端口号和第一端口对应的DMRS样式。UE 20根据当前第一端口的DMRS样式,确定第一端口上静默样式指示的静默资源的位置,确定方法是假设其他端口采用DMRS样式与当前端口所使用的DMRS样式相同,并根据预设的规则,确定其他端口用于发送DMRS的资源单元的位置。
UE 20将上行数据进行映射并发送,在数据映射时,在静默样式指示的资源单元上不映射数据。eNodeB 10在第一端口接收UE 20发送的数据,接收数据时,eNodeB 10认为所有被eNodeB 10调度的UE 10采用相同的DMRS样式,并确定第一端口对应的静默资源单元的位置,且接收数据时,假设静默资源上的数据功率为零。
基于本发明实施例的方法,网络设备除了为终端设备配置传输DMRS的DMRS样式,还为终端设备配置了静默样式,使得其他终端设备在该静默样式指示的资源上传输DMRS时,不会受到该终端设备的数据传输的干扰,并且该终端设备在传输DMRS时,也不会受到其他终端设备的数据传输的干扰,因此能够提高DMRS的接收信噪比。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
下面将结合图13,描述根据本发明实施例的传输DMRS的网络设备,方法实施例所描述的技术特征可以适用于以下装置实施例。
图13示出了根据本发明实施例的传输数据的网络设备1300。如图7所示,该网络设备1300包括:
确定单元1310,用于确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为所述网络设备用于与终端设备进行DMRS传输的端口;
传输单元1320,用于通过所述第一端口,在所述确定单元1310确定的所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述确定单元1310确定的所述静默样式指示的资源上不映射数据;或者
通过所述第一端口,在所述确定单元1310确定的所述DMRS样式指示的资源上获取所述终端设备的DMRS,且在所述确定单元1310确定的所述静默样式指示的资源上假设数据功率为零。
因此,网络设备除了为终端设备配置传输DMRS的DMRS样式,还为终端设备配置了静默样式,使得其他终端设备在该静默样式指示的资源上传输DMRS时,不会受到该终端设备的数据传输的干扰,并且该终端设备在传输DMRS时,也不会受到替他终端设备数据传输的干扰,从而能够提高DMRS的接收信噪比。
可选地,所述传输单元1320还用于:向所述终端设备发送第一资源指示信息,所述第一资源指示信息用于指示所述DMRS样式和所述静默样式。
可选地,所述传输单元还1320用于:向所述终端设备发送第一样式标识,所述第一样式标识用于指示所述网络设备的多个端口中的每个端口对应的DMRS样式。
可选地,在所述传输单元1320向所述终端设备发送第一资源指示信息之前,所述确定单元1310还用于:确定多个DMRS样式,所述多个DMRS样式包括所述DMRS样式;所述传输单元1320还用于,向所述终端设备发送所述多个DMRS样式的信息。
可选地,所述传输单元1320还用于:向所述终端设备发送用于指示所述DMRS样式的第二资源指示信息;向所述终端设备发送用于指示所述第一端口对应的静默样式的第二样式标识。
可选地,在所述传输单元1320向所述终端设备发送第二样式标识之前,所述传输单元1320具体用于:确定多个静默样式,所述多个静默样式包括所述静默样式;向所述终端设备发送所述多个静默样式的信息。
应注意,本发明实施例中,确定单元1310可以由处理器实现,传输单元1320可以由收发信机实现。如图14所示,网络设备1400可以包括处理器1410、收发信机1420和存储器1430。其中,收发信机1420可以包括接收器1421和发送器1422,存储器1430可以用于存储处理器1410执行的代码等。网络设备1400中的各个组件通过总线***1440耦合在一起,其中总线***1440除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。
其中,所述处理器1410,用于确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为所述网络设备用于与终端设备进行DMRS传输的端口;
所述收发信机1420,用于通过所述第一端口,在所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述静默样式指示的资源上不映射数据;或者
通过所述第一端口,在所述DMRS样式指示的资源上获取所述终端设备的DMRS,且在所述静默样式指示的资源上假设数据功率为零。
可选地,所述收发信机1420还用于:向所述终端设备发送第一资源指示信息,所述第一资源指示信息用于指示所述DMRS样式和所述静默样式。
可选地,所述收发信机1420还用于:向所述终端设备发送第一样式标识,所述第一样式标识用于指示所述网络设备的多个端口中的每个端口对应的DMRS样式。
可选地,在所述收发信机1420向所述终端设备发送第一资源指示信息之前,所述处理器1410还用于:确定多个DMRS样式,所述多个DMRS样式包括所述DMRS样式;所述收发信机1420还用于,向所述终端设备发送所述多个DMRS样式的信息。
可选地,所述收发信机1420还用于:向所述终端设备发送用于指示所述DMRS样式的第二资源指示信息;向所述终端设备发送用于指示所述第一端口对应的静默样式的第二样式标识。
可选地,在所述收发信机1420向所述终端设备发送第二样式标识之前,所述收发信机1420具体用于:确定多个静默样式,所述多个静默样式包括所述静默样式;向所述终端设备发送所述多个静默样式的信息。
图15是本发明实施例的***芯片的一个示意性结构图。图15的***芯片1500包括输入接口1501、输出接口1502、至少一个处理器1503、存储器 1504,所述输入接口1501、输出接口1502、所述处理器1503以及存储器1504之间通过总线1505相连,所述处理器1503用于执行所述存储器1504中的代码,当所2述代码被执行时,所述处理器1503实现图6至图10中网络设备执行的方法。
图13所示的网络设备1300或图14所示的网络设备1400或图15所示的***芯片1500能够实现前述图6至图12方法实施例中由网络设备所实现的各个过程,为避免重复,这里不再赘述。
下面将结合图16,描述根据本发明实施例的传输DMRS的的终端设备,方法实施例所描述的技术特征可以适用于以下装置实施例。
图16示出了根据本发明实施例的传输DMRS的的终端设备1600。如图16所示,该终端设备1600包括:
确定单元1610,用于确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为网络设备用于与所述终端设备进行DMRS传输的端口;
传输单元1620,用于通过所述第一端口,在所述确定单元1610确定的所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述确定单元1610确定所述静默样式指示的资源上不映射数据;或者
通过所述第一端口,在所述确定单元1610确定所述DMRS样式指示的资源上获取所述终端设备的DMRS,且在所述确定单元1610确定所述静默样式指示的资源上假设数据功率为零。
因此,终端设备除了能够获取传输DMRS的DMRS样式,还能够获取静默样式,使得其他终端设备在该静默样式指示的资源上传输DMRS时,不会受到该终端设备的数据传输的干扰,并且该终端设备在传输DMRS时,也不会受到替他终端设备数据传输的干扰,从而能够提高DMRS的接收信噪比。
可选地,所述传输单元1620还用于:接收网络设备发送的第一资源指示信息,所述第一资源指示信息用于指示所述DMRS样式和所述静默样式;
其中,所述确定单元1610具体用于:根据所述第一资源指示信息,确定所述第一端口对应的所述DMRS样式,和所述第一端口对应的所述静默样式。
可选地,所述传输单元1620还用于:接收网络设备发送的第一样式标识, 所述样式标识用于指示所述网络设备的多个端口中的每个端口对应的DMRS样式;
其中,所述确定单元1610具体用于:根据所述第一样式标识,确定所述第一端口对应的所述DMRS样式,和所述第一端口对应的所述静默样式。
可选地,在所述传输单元1620接收网络设备发送的第一样式标识之前,所述传输单元1620还用于:接收所述网络设备发送的多个DMRS样式的信息;
其中,所述确定单元1610具体用于:根据所述第一样式标识和所述多个DMRS样式,确定所述第一端口对应的所述DMRS样式,和所述第一端口对应的所述静默样式。
可选地,所述传输单元1620还用于:
接收所述网络设备发送的用于指示所述DMRS样式的第二资源指示信息;接收所述网络设备发送的用于指示所述第一端口对应的静默样式的第二样式标识;
其中,所述确定单元1610具体用于:
根据所述第二资源指示信息和所述第二样式标识,确定第一端口对应的DMRS样式和所述第一端口对应的静默样式。
可选地,在所述传输单元1620接收所述网络设备发送的第二样式标识之前,所述传输单元1620具体用于:
接收所述网络设备发送的多个静默样式的信息,所述多个静默样式包括所述静默样式;
其中,所述确定单元1610具体用于:
根据所述第二资源指示信息确定所述DMRS样式,并根据所述第二样式标识,在所述多个静默样式中确定所述第一端口对应的所述静默样式。
应注意,本发明实施例中,确定单元1610可以由处理器实现,传输单元1620可以由收发信机实现。如图17所示,终端设备1700可以包括处理器1710、收发信机1720和存储器1730。其中,收发信机1720可以包括接收器1721和发送器1722,存储器1730可以用于存储处理器1710执行的代码等。网络设备1700中的各个组件通过总线***1740耦合在一起,其中总线***1740除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。
其中,所述处理器1710,用于确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为网络设备用于与所述终端设备进行DMRS传输的端口;
所述收发信机1720,用于通过所述第一端口,在所述确定单元1410确定的所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述确定单元1710确定的所述静默样式指示的资源上不映射数据;或者
通过所述第一端口,在所述确定单元1410确定的所述DMRS样式指示的资源上获取所述终端设备的DMRS,且在所述确定单元1410的所述静默样式指示的资源上假设数据功率为零。
可选地,所述收发信机1720还用于:接收网络设备发送的第一资源指示信息,所述第一资源指示信息用于指示所述DMRS样式和所述静默样式;
其中,所述处理器1710具体用于:根据所述第一资源指示信息,确定所述第一端口对应的所述DMRS样式,和所述第一端口对应的所述静默样式。
可选地,所述收发信机1720还用于:接收网络设备发送的第一样式标识,所述第一样式标识用于指示所述网络设备的多个端口中的每个端口对应的DMRS样式;
其中,所述处理器1710具体用于:根据所述第一样式标识,确定所述第一端口对应的所述DMRS样式,和所述第一端口对应的所述静默样式。
可选地,在所述收发信机1720接收网络设备发送的第一样式标识之前,所述收发信机1720还用于:接收所述网络设备发送的多个DMRS样式的信息;
其中,所述处理器1710具体用于:根据所述样式标识和所述多个DMRS样式,确定所述第一端口对应的所述DMRS样式,和所述第一端口对应的所述静默样式。
可选地,所述收发信机1720还用于:接收所述网络设备发送的用于指示所述DMRS样式的第二资源指示信息;接收所述网络设备发送的用于指示所述第一端口对应的静默样式的第二样式标识;
其中,所述处理器1710具体用于:根据所述第二资源指示信息确定所述第一端口对应的DMRS样式,并根据所述第二样式标识确定所述第一端口对应的静默样式。
可选地,所述收发信机1720还用于:接收所述网络设备发送的多个静默样式的信息,所述多个静默样式包括所述静默样式;
其中,所述处理器1710具体用于:根据所述第二样式标识,在所述多个静默样式中确定所述第一端口对应的所述静默样式。
图18是本发明实施例的***芯片的一个示意性结构图。图18的***芯片1800包括输入接口1801、输出接口1802、至少一个处理器1803、存储器1804,所述输入接口1801、输出接口1802、所述处理器1803以及存储器1804之间通过总线1805相连,所述处理器1803用于执行所述存储器1804中的代码,当所2述代码被执行时,所述处理器1803实现图6至图10中终端设备执行的方法。
图16所示的终端设备1600或图17所示的终端络设备1700或图18所示的***芯片1800能够实现前述图6至图12方法实施例中由终端设备所实现的各个过程,为避免重复,这里不再赘述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显式或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种传输解调参考信号DMRS的方法,其特征在于,所述方法包括:
    网络设备确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为所述网络设备用于与终端设备进行DMRS传输的端口;
    所述网络设备通过所述第一端口,在所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述静默样式指示的资源上不映射数据;或者所述网络设备通过所述第一端口,在所述DMRS样式指示的资源上接收所述终端设备的DMRS,且在所述静默样式指示的资源上假设数据功率为零。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一资源指示信息,所述第一资源指示信息用于指示所述DMRS样式和所述静默样式。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一样式标识,所述第一样式标识用于指示所述网络设备的多个端口中的每个端口对应的DMRS样式。
  4. 根据权利要求3所述的方法,其特征在于,在所述网络设备向所述终端设备发送第一样式标识之前,所述方法还包括:
    所述网络设备确定多个DMRS样式,所述多个DMRS样式包括所述DMRS样式;
    所述网络设备向所述终端设备发送所述多个DMRS样式的信息。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送用于指示所述DMRS样式的第二资源指示信息;
    所述网络设备向所述终端设备发送用于指示所述第一端口对应的静默样式的第二样式标识。
  6. 根据权利要求5所述的方法,其特征在于,在所述网络设备向所述终端设备发送用于指示所述第一端口对应的静默样式的第二样式标识之前,所述方法还包括:
    所述网络设备确定多个静默样式,所述多个静默样式包括所述静默样式;
    所述网络设备向所述终端设备发送所述多个静默样式的信息。
  7. 一种传输解调参考信号DMRS的方法,其特征在于,所述方法包括:
    终端设备确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为网络设备用于与所述终端设备进行DMRS传输的端口;
    所述终端设备通过所述第一端口,在所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述静默样式指示的资源上不映射数据;或者所述终端设备通过所述第一端口,在所述DMRS样式指示的资源上获取所述终端设备的DMRS,且在所述静默样式指示的资源上假设数据功率为零。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,包括:
    所述终端设备接收网络设备发送的第一资源指示信息,所述第一资源指示信息用于指示所述DMRS样式和所述静默样式;
    所述终端设备根据所述第一资源指示信息,确定所述第一端口对应的所述DMRS样式,和所述第一端口对应的所述静默样式。
  9. 根据权利要求7所述的方法,其特征在于,所述终端设备确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,包括:
    所述终端设备接收网络设备发送的第一样式标识,所述第一样式标识用于指示所述网络设备的多个端口中的每个端口对应的DMRS样式;
    所述终端设备根据所述第一样式标识,确定所述第一端口对应的所述DMRS样式和所述第一端口对应的所述静默样式。
  10. 根据权利要求9所述的方法,其特征在于,在所述终端设备接收网络设备发送的第一样式标识之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的多个DMRS样式的信息;
    其中,所述终端设备根据所述第一样式标识,确定第一端口对应的DMRS样式和所述第一端口对应的静默样式,包括:
    所述终端设备根据所述第一样式标识和所述多个DMRS样式,确定所述第一端口对应的所述DMRS样式和所述第一端口对应的所述静默样式。
  11. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的用于指示所述DMRS样式的第二资源指示信息;
    所述终端设备接收所述网络设备发送的用于指示所述第一端口对应的静默样式的第二样式标识;
    其中,终端设备确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,包括:
    所述终端设备根据所述第二资源指示信息确定所述第一端口对应的DMRS样式,并根据所述第二样式标识确定所述第一端口对应的静默样式。
  12. 根据权利要求11所述的方法,其特征在于,在所述终端设备接收所述网络设备发送的用于指示所述第一端口对应的静默样式的第二样式标识之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的多个静默样式的信息,所述多个静默样式包括所述静默样式;
    其中,所述终端设备根据所述第二样式标识确定所述第一端口对应的静默样式,包括:
    所述终端设备根据所述第二样式标识,在所述多个静默样式中确定所述第一端口对应的所述静默样式。
  13. 一种传输解调参考信号DMRS的网络设备,其特征在于,所述网络设备包括:
    确定单元,用于确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为所述网络设备用于与终端设备进行DMRS传输的端口;
    传输单元,用于通过所述第一端口,在所述确定单元确定的所述DMRS样式指示的资源上映射所述终端设备的DMRS,且在所述确定单元确定的所述静默样式指示的资源上不映射数据;或者通过所述第一端口,在所述确定单元确定的所述DMRS样式指示的资源上获取所述终端设备的DMRS,且在所述确定单元确定的所述静默样式指示的资源上假设数据功率为零。
  14. 根据权利要求13所述的网络设备,其特征在于,所述传输单元还用于:
    向所述终端设备发送第一资源指示信息,所述第一资源指示信息用于指示所述DMRS样式和所述静默样式。
  15. 根据权利要求13所述的网络设备,其特征在于,所述传输单元还用于:
    向所述终端设备发送第一样式标识,所述第一样式标识用于指示所述网络设备的多个端口中的每个端口对应的DMRS样式。
  16. 根据权利要求15所述的网络设备,其特征在于,在所述传输单元向所述终端设备发送第一样式标识之前,所述确定单元还用于:
    确定多个DMRS样式,所述多个DMRS样式包括所述DMRS样式;
    所述传输单元还用于,向所述终端设备发送所述多个DMRS样式的信息。
  17. 根据权利要求13所述的网络设备,其特征在于,所述传输单元还用于:
    向所述终端设备发送用于指示所述DMRS样式的第二资源指示信息;
    向所述终端设备发送用于指示所述第一端口对应的静默样式的第二样式标识。
  18. 根据权利要求17所述的网络设备,其特征在于,在所述传输单元向所述终端设备发送用于指示所述第一端口对应的静默样式的第二样式标识之前,所述传输单元具体用于:
    确定多个静默样式,所述多个静默样式包括所述静默样式;
    向所述终端设备发送所述多个静默样式的信息。
  19. 一种传输解调参考信号DMRS的终端设备,其特征在于,所述终端设备包括:
    确定单元,用于确定第一端口对应的DMRS样式,和所述第一端口对应的静默样式,所述第一端口为网络设备用于与所述终端设备进行DMRS传输的端口;
    传输单元,用于通过所述第一端口,在所述确定单元确定的所述DMRS样式所指示的资源上映射所述终端设备的DMRS,且在所述确定单元确定的所述静默样式所指示的资源上不映射数据;或者通过所述第一端口,在所述确定单元确定的所述DMRS样式所指示的资源上确定所述终端设备的DMRS,且在所述确定单元确定的所述静默样式所指示的资源上假设数据功率为零。
  20. 根据权利要求19所述的终端设备,其特征在于,所述传输单元还用于:
    接收网络设备发送的第一资源指示信息,所述第一资源指示信息用于指示所述DMRS样式和所述静默样式;
    其中,所述确定单元具体用于:
    根据所述第一资源指示信息,确定所述第一端口对应的所述DMRS样式,和所述第一端口对应的所述静默样式。
  21. 根据权利要求19所述的终端设备,其特征在于,所述传输单元还用于:
    接收所述网络设备发送的第一样式标识,所述第一样式标识用于指示所述网络设备的多个端口中的每个端口对应的DMRS样式;
    其中,所述确定单元具体用于:
    根据所述第一样式标识,确定所述第一端口对应的所述DMRS样式,和所述第一端口对应的所述静默样式。
  22. 根据权利要求21所述的终端设备,其特征在于,在所述传输单元接收所述网络设备发送的第一样式标识之前,所述传输单元还用于:
    接收所述网络设备发送的多个DMRS样式的信息;
    其中,所述确定单元具体用于:
    根据所述样式标识和所述多个DMRS样式,确定所述第一端口对应的所述DMRS样式,和所述第一端口对应的所述静默样式。
  23. 根据权利要求19所述的终端设备,其特征在于,所述传输单元还用于:
    接收所述网络设备发送的用于指示所述DMRS样式的第二资源指示信息;
    接收所述网络设备发送的用于指示所述第一端口对应的静默样式的第二样式标识;
    其中,所述确定单元具体用于:
    根据所述第二资源指示信息确定所述第一端口对应的DMRS样式,并根据所述第二样式标识确定所述第一端口对应的静默样式。
  24. 根据权利要求23所述的终端设备,其特征在于,在所述传输单元接收所述网络设备发送的第二样式标识之前,所述传输单元具体用于:
    接收所述网络设备发送的多个静默样式的信息,所述多个静默样式包括所述静默样式;
    其中,所述确定单元具体用于:
    根据所述第二样式标识,在所述多个静默样式中确定所述第一端口对应的所述静默样式。
PCT/CN2016/100487 2016-09-28 2016-09-28 传输解调参考信号的方法、网络设备和终端设备 WO2018058345A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100487 WO2018058345A1 (zh) 2016-09-28 2016-09-28 传输解调参考信号的方法、网络设备和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100487 WO2018058345A1 (zh) 2016-09-28 2016-09-28 传输解调参考信号的方法、网络设备和终端设备

Publications (1)

Publication Number Publication Date
WO2018058345A1 true WO2018058345A1 (zh) 2018-04-05

Family

ID=61762444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100487 WO2018058345A1 (zh) 2016-09-28 2016-09-28 传输解调参考信号的方法、网络设备和终端设备

Country Status (1)

Country Link
WO (1) WO2018058345A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044411A1 (en) * 2011-09-29 2013-04-04 Nokia Siemens Network Oy Resource aggregation in wireless communications
CN103856306A (zh) * 2012-12-05 2014-06-11 华为技术有限公司 处理干扰的方法及装置
US20140226636A1 (en) * 2013-02-14 2014-08-14 Research In Motion Limited Design for Small Cell Demodulation Reference Signal and Initial Synchronization
CN104105120A (zh) * 2013-04-08 2014-10-15 中兴通讯股份有限公司 一种干扰测量方法、网络侧设备及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044411A1 (en) * 2011-09-29 2013-04-04 Nokia Siemens Network Oy Resource aggregation in wireless communications
CN103856306A (zh) * 2012-12-05 2014-06-11 华为技术有限公司 处理干扰的方法及装置
US20140226636A1 (en) * 2013-02-14 2014-08-14 Research In Motion Limited Design for Small Cell Demodulation Reference Signal and Initial Synchronization
CN104105120A (zh) * 2013-04-08 2014-10-15 中兴通讯股份有限公司 一种干扰测量方法、网络侧设备及终端设备

Similar Documents

Publication Publication Date Title
JP7222076B2 (ja) 情報送信および受信方法、デバイス、および装置
TWI735616B (zh) 傳輸導頻信號的方法、終端設備和網絡側設備
CN109150777B (zh) 参考信号的传输方法和传输装置
TWI737844B (zh) 傳輸參考信號的方法和通訊設備
WO2018082457A1 (zh) 配置参考信号的方法和装置
EP3490316A1 (en) Information transmission method and information transmission apparatus
CN108282285A (zh) 信号传输方法和装置
WO2016107472A1 (zh) 解调参考信号的传输装置、***及方法
CN108632193B (zh) 一种资源指示方法及网络设备、终端设备
WO2018086016A1 (zh) 传输上行数据的方法、终端设备和网络设备
WO2018010184A1 (zh) 基于无线网络的通信方法、终端设备和网络设备
WO2018113618A1 (zh) 参考信号的发送和接收方法,接入网设备和终端设备
US11128424B2 (en) UE supporting low-latency wireless communication, method and apparatus in base station
CN109863797A (zh) 传输数据的方法、终端设备和网络设备
WO2017219204A1 (zh) 信息传输方法和装置
WO2013113261A1 (zh) 通信方法、基站和用户设备
KR20170027519A (ko) 무선 통신 시스템에서 셀 아이디 결정 방법 및 장치
CN109150461B (zh) 一种发送解调参考信号的方法和装置、解调方法和装置
US10999108B2 (en) Wireless communication method, apparatus, and system
WO2018112934A1 (zh) 传输信息的方法、网络设备和终端设备
WO2018107500A1 (zh) 资源映射的方法和通信设备
WO2018132944A1 (zh) 信号传输方法和设备
CN110890946B (zh) 解调参考信号的传输方法、网络侧设备及用户设备
WO2022171076A1 (zh) 资源确定、配置方法及通信设备
WO2018058345A1 (zh) 传输解调参考信号的方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917100

Country of ref document: EP

Kind code of ref document: A1