WO2018056107A1 - 非水電解質二次電池用負極、非水電解質二次電池及び非水電解質二次電池用負極の製造方法 - Google Patents

非水電解質二次電池用負極、非水電解質二次電池及び非水電解質二次電池用負極の製造方法 Download PDF

Info

Publication number
WO2018056107A1
WO2018056107A1 PCT/JP2017/032763 JP2017032763W WO2018056107A1 WO 2018056107 A1 WO2018056107 A1 WO 2018056107A1 JP 2017032763 W JP2017032763 W JP 2017032763W WO 2018056107 A1 WO2018056107 A1 WO 2018056107A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
electrolyte secondary
nonaqueous electrolyte
Prior art date
Application number
PCT/JP2017/032763
Other languages
English (en)
French (fr)
Inventor
浩史 川田
浩友紀 松本
福井 厚史
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780049714.3A priority Critical patent/CN109565032B/zh
Priority to JP2018540979A priority patent/JP7029676B2/ja
Publication of WO2018056107A1 publication Critical patent/WO2018056107A1/ja
Priority to US16/357,517 priority patent/US11069886B2/en
Priority to US17/336,566 priority patent/US20210296632A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This invention relates to the improvement of the negative electrode for nonaqueous electrolyte secondary batteries.
  • a part of the non-aqueous electrolyte containing a non-aqueous solvent and a lithium salt reacts irreversibly with charge / discharge.
  • a solid electrolyte interface SEI
  • SEI solid electrolyte interface
  • Patent Document 1 specifically, a carbon material, a lithium compound, and a binder are mixed to form a paste, and the paste is applied to a negative electrode current collector and dried to produce a negative electrode.
  • the lithium compound has almost no electronic conductivity, the internal resistance of the negative electrode active material layer increases as the surface of the carbon material is covered with the lithium compound. Therefore, the surface of the carbon material cannot be sufficiently covered with the lithium compound, and the effect of suppressing the generation of SEI is limited.
  • one aspect of the present disclosure covers the negative electrode current collector, the negative electrode active material layer provided on the surface of the negative electrode current collector, and at least a part of the surface of the negative electrode active material layer.
  • the present invention relates to a negative electrode for a nonaqueous electrolyte secondary battery, comprising: a first coating film having lithium ion permeability that partially covers a surface of a negative electrode current collector.
  • a nonaqueous electrolyte secondary battery including a positive electrode, the negative electrode, and a lithium ion conductive nonaqueous electrolyte.
  • the negative electrode for a nonaqueous electrolyte secondary battery of the present disclosure it is possible to reduce the amount of SEI generated while suppressing a decrease in battery capacity.
  • a negative electrode for a non-aqueous electrolyte secondary battery includes a negative electrode current collector, a negative electrode active material layer provided on the surface of the negative electrode current collector, and at least a part of the surface of the negative electrode active material layer. And a first film having lithium ion permeability that partially covers the surface of the negative electrode current collector.
  • the formation of a film that breaks the already formed electron conduction path does not occur, and the surface of the negative electrode active material layer is non-aqueous. It is possible to selectively coat the site that is the starting point for the decomposition of the electrolyte. Therefore, the amount of SEI generated can be effectively reduced, and an increase in internal resistance of the negative electrode active material layer is suppressed.
  • the surface of the negative electrode active material layer is not limited to the surface of the negative electrode active material layer on the side facing the positive electrode through the separator, and the surface of the negative electrode active material layer has an inner wall of a void in the porous negative electrode active material layer Is also included. It is preferable that the 1st film which coat
  • the first film When the first film is formed after the negative electrode active material layer is formed, the first film can partially cover the surface of the negative electrode current collector.
  • the surface of the negative electrode current collector When viewed microscopically, the surface of the negative electrode current collector is not completely covered with the negative electrode active material or the binder but has a minute exposed surface. Further, the cut end face of the negative electrode current collector and the lead attachment portion may be exposed. By covering such an exposed surface with the first film, decomposition of the nonaqueous electrolyte starting from the surface of the negative electrode current collector is also suppressed.
  • the first coating covering the surface of the negative electrode active material layer is a mixture of negative electrode active material particles and a binder, After the active material layer is formed, it is formed on the surface. Therefore, unlike the case where the first film is formed in advance on the negative electrode active material particles, a region where the first film is not present may exist at the adhesion interface between the negative electrode active material particles and the binder. Similarly, there may be a region where the first film is not present at the contact interface between the negative electrode active material particles and the negative electrode current collector. Further, there may be a region where the first coating is not present at the contact interface between the negative electrode active material particles adjacent to each other.
  • the first coating When the first coating is formed after the negative electrode active material layer is formed, the first coating can partially cover the surface of the binder.
  • the negative electrode active material layer includes a conductive agent, the first coating can partially cover the surface of the conductive agent. Thereby, decomposition
  • the heat-resistant temperature of a binder changes with kinds of binder, as a standard of the temperature which produces
  • the first film covering the surface of the negative electrode active material layer may be any film that has lithium ion permeability and can suppress the generation of SEI.
  • the element M 1, an element A 1, the first lithium compound containing lithium, a (hereinafter, referred to as a first compound.) Can be mentioned.
  • the element M 1 is at least one selected from the group consisting of P, Si, B, V, Nb, W, Ti, Zr, Al, Ba, La, and Ta, and the element A 1 is F , S, O, N, and Br.
  • the in the element M 1, P, at least one selected from the group consisting of Si and B is preferred in view raw material is inexpensive.
  • the element M 1 preferably contains at least P.
  • the surface of the negative electrode active material layer is coated with the first compound, it is difficult to completely prevent the decomposition of the nonaqueous electrolyte that proceeds in the battery. Therefore, SEI may further be generated outside the first compound.
  • the surface of the negative electrode active material layer is covered with the first film including the inner layer and the outer layer.
  • the composition of the constituent elements of the inner layer and the outer layer is different, and one of the inner layer and the outer layer contains an element that is not included in the other of the inner layer and the outer layer. That is, the inner layer mainly contains the first compound, and the outer layer contains a compound different from the first compound (hereinafter also referred to as the third compound).
  • the third compound contains an element derived from a component contained in the nonaqueous electrolyte.
  • the first compound (or element M 1 that is a constituent element of the first compound, element A
  • concentration C1 of at least one selected from 1 and lithium is small on the surface side (outer layer side) of the first coating, and the junction interface side between the first coating and the negative electrode active material layer or the first coating It is higher on the interface side (inner layer side) with the negative electrode current collector.
  • the surface side (outer layer side) of the first film is the surface opposite to the bonding interface with the negative electrode active material particles or the negative electrode current collector of the first film.
  • the concentration C1 decreases toward the negative electrode active material particles or the negative electrode current collector with the vicinity of the bonding interface between the first coating and the negative electrode active material particles or the negative electrode current collector as a boundary. Therefore, the concentration C1 has a maximum value in the direction from the surface side of the first coating toward the bonding interface between the first coating and the negative electrode active material particles or the negative electrode current collector.
  • Such an analysis can be performed by XPS, EPMA, or the like.
  • the concentration C1max at the maximum value of the first compound is 1.5 times or more the concentration C1sr on the surface side of the first film. Preferably, it is 2 times or more, more preferably 5 times or more. In this case, it can be said that the surface of the negative electrode active material layer is sufficiently covered with the first compound, thereby suppressing the generation of SEI.
  • the surface side of the first film may be a depth region within 15% of the thickness of the first film from the outermost surface of the first film.
  • a lithium salt of a polyanion is preferable.
  • the number of the central atom M 1 is not limited to one, the central atom M 1 is not limited to one.
  • the lithium salt of the polyanion containing the element M 1 represented by the composition formula (1): Li x1 M 1 A 1 y1 and the element A 1 is an A 1 -Li bond (for example, an O—Li bond) having ionic bonding properties.
  • the a 1 site lithium ion express lithium ion conductivity by hopping.
  • the first compound is preferably a polyoxymetalate compound from the viewpoint of stability. Note that the ranges of x1 and y1 are preferably 0.5 ⁇ x1 ⁇ 4 and 1 ⁇ y1 ⁇ 6, for example.
  • Examples of the polyoxymetalate compound include Li 3 PO 4 , Li 4 SiO 4 , Li 2 Si 2 O 5 , Li 2 SiO 3 , Li 3 BO 3 , Li 3 VO 4 , Li 3 NbO 4 , LiZr 2 (PO 4 LiTaO 3, Li 4 Ti 5 O 12, Li 7 La 3 Zr 2 O 12, Li 5 La 3 Ta 2 O 12, Li 0.35 La 0.55 TiO 3, Li 9 SiAlO 8 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 etc. can be used alone or in any combination.
  • Li 3 PO 4 Li 4 SiO 4 , Li 2 Si 2 O 5 , Li 2 SiO 3 , Li 3 BO 3 , Li 3 VO 4, and Li 3 NbO 4 in terms of excellent lithium ion permeability. It is preferable to use at least one selected from the group consisting of at least Li 3 PO 4 .
  • Lithium silicates such as Li 4 SiO 4 , Li 2 Si 2 O 5 , and Li 2 SiO 3 have good compatibility with alloy-based negative electrode active materials (silicon oxide, silicon alloy, etc.) containing silicon.
  • alloy-based negative electrode active materials silicon oxide, silicon alloy, etc.
  • Li 4 SiO 4 is preferable because it hardly causes a side reaction accompanied by gas generation and is relatively inexpensive. It is considered that Li 4 SiO 4 having a large lithium content hardly causes a side reaction that takes in lithium ions.
  • the polyoxymetalate compound preferably contains at least Li 4 SiO 4 .
  • the sheet-like negative electrode includes a sheet-like negative electrode current collector, a negative electrode active material layer formed on the surface of the negative electrode current collector, and a first film formed on the surface of the negative electrode active material layer.
  • the negative electrode active material layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces.
  • Negative electrode current collector examples of the negative electrode current collector include a metal foil, a metal sheet, a mesh body, a punching sheet, and an expanded metal.
  • the material of the negative electrode current collector stainless steel, nickel, copper, copper alloy, or the like can be used.
  • the thickness of the negative electrode current collector can be selected from a range of 3 to 50 ⁇ m, for example.
  • the negative electrode active material layer may include a negative electrode active material and a binder as essential components, and may include a conductive agent as an optional component.
  • the amount of the binder contained in the negative electrode active material layer is preferably 0.1 to 20 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the thickness of the negative electrode active material layer is, for example, 10 to 100 ⁇ m.
  • the negative electrode active material may be a non-carbon material, a carbon material, or a combination thereof. Carbon materials usually occlude or release lithium ions at a potential of 1 V or less with respect to metallic lithium. In this potential region, reductive decomposition of components of the nonaqueous electrolyte easily proceeds on the surface of the carbon material, and SEI is easily generated. When the surface of the negative electrode active material layer is covered with a lithium ion permeable first coating, the contact between the carbon material and the non-aqueous electrolyte is suppressed, so that the generation of SEI is also suppressed.
  • the carbon material used as the negative electrode active material is not particularly limited, but for example, at least one selected from the group consisting of graphite and hard carbon is preferable. Among them, graphite is promising because of its high capacity and small irreversible capacity. In addition, since graphite has a high activity against reductive decomposition of the nonaqueous electrolyte, the effect of covering the surface of the negative electrode active material layer with the first coating is also remarkable.
  • Graphite is a general term for carbon materials having a graphite structure, and includes natural graphite, artificial graphite, expanded graphite, graphitized mesophase carbon particles, and the like.
  • natural graphite include flaky graphite and earthy graphite.
  • a carbon material having a 002 plane spacing d 002 of 3.35 to 3.44 angstroms calculated from an X-ray diffraction spectrum is classified as graphite.
  • hard carbon crystals of fine graphite are arranged in a random direction, a carbon material more graphitization hardly proceeds, the surface spacing d 002 of the 002 plane is greater than 3.44 angstroms.
  • the non-carbon material used as the negative electrode active material is preferably an alloy material.
  • the alloy-based material preferably contains silicon or tin, and silicon alone or a silicon compound is particularly preferable. Silicon compounds include silicon oxides and silicon alloys.
  • the average particle diameter (D50) of the negative electrode active material particles is desirably sufficiently small with respect to the thickness of the negative electrode active material layer.
  • the average particle diameter (D50) of the negative electrode active material particles is preferably, for example, 5 to 30 ⁇ m, and more preferably 10 to 25 ⁇ m.
  • the average particle diameter (D50) means a median diameter at which the cumulative volume in the volume-based particle size distribution is 50%.
  • the average particle diameter is measured using, for example, a laser diffraction / scattering particle size distribution measuring apparatus.
  • Fluorine resin such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (HFP); polymethyl acrylate, ethylene-methyl methacrylate copolymer
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • HFP tetrafluoroethylene-hexafluoropropylene copolymer
  • SBR styrene-butadiene rubber
  • CMC carboxymethylcellulose
  • CMC carboxymethylcellulose
  • carbon black such as acetylene black and ketjen black is preferable.
  • the negative electrode active material layer can be formed by mixing negative electrode active material particles, a binder and the like together with a dispersion medium to prepare a negative electrode slurry, applying the negative electrode slurry to the surface of the negative electrode current collector, drying and rolling. It can.
  • a dispersion medium water, alcohol such as ethanol, ether such as tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), or the like is used.
  • NMP N-methyl-2-pyrrolidone
  • water it is preferable to use a rubber-like material and a water-soluble polymer in combination as the binder.
  • the first film having lithium ion permeability that covers the surface of the negative electrode active material layer is, for example, a negative electrode current collector and a negative electrode provided on the surface thereof in an atmosphere of 200 ° C. or less containing the raw material of the first film. It is formed by exposing a negative electrode precursor comprising an active material layer.
  • the thickness of the first film covering the surface of the negative electrode active material layer may be a thickness that can suppress contact between the negative electrode active material and the nonaqueous electrolyte.
  • the first coating desirably forms a homogeneous layer that covers the surface of the negative electrode active material layer in a necessary and sufficient amount.
  • the thickness of the first coating is desirably smaller than the average particle diameter of the negative electrode active material particles, and is preferably 0.1 ⁇ m (100 nm) or less, and more preferably 0.03 ⁇ m (30 nm) or less. .
  • the thickness of the first coating becomes excessively small, for example, electron transfer due to the tunnel effect may proceed, and reductive decomposition of the nonaqueous electrolyte may proceed. From the viewpoint of suppressing electron movement and smoothly moving lithium ions, the thickness of the first coating is preferably 0.5 nm or more.
  • the first film is formed after the formation of the negative electrode active material layer. Accordingly, there may be a region where the first film is not formed at the contact interface between the negative electrode active material particles, the adhesion interface between the negative electrode active material particles and the binder, or the like.
  • the lithium ion permeability of the first coating film may be such that lithium ions existing in the vicinity of the negative electrode active material particles can enter and exit the negative electrode active material particles, and high lithium ion conductivity is not required.
  • the first film may be a material having a lithium ion conductivity of 1.0 ⁇ 10 ⁇ 9 S / cm or more, for example, but preferably 1.0 ⁇ 10 ⁇ 8 S / cm or more.
  • the first film has a small electronic conductivity, and it is desirable that the electronic conductivity be smaller than 1.0 ⁇ 10 ⁇ 2 S / cm.
  • the amount of the first film contained in the negative electrode is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • a method for manufacturing a negative electrode for a nonaqueous electrolyte secondary battery includes (i) a negative electrode current collector and a negative electrode active material layer provided on the surface of the negative electrode current collector. Preparing a negative electrode precursor; and (ii) partially covering the surface of the negative electrode current collector together with at least a part of the surface of the negative electrode active material layer with a first film having lithium ion permeability. It has.
  • step (ii) it is preferable to form the first film by exposing the negative electrode precursor to an atmosphere containing the raw material of the first film at 200 ° C. or lower, preferably 120 ° C. or lower.
  • the first film can be formed on the surface of the negative electrode active material layer without deteriorating the binder.
  • the surface of the binder can be covered with the first coating without deteriorating the binder.
  • the first film is preferably formed by a liquid phase method or a gas phase method.
  • the liquid phase method is preferably a precipitation method or a sol-gel method.
  • the deposition method the negative electrode precursor is immersed in a solution sufficiently lower than 120 ° C. in which the raw material of the first film is dissolved, and the first negative electrode active material layer and the negative electrode current collector are exposed to the first method. It refers to a method of depositing the constituent material of the film.
  • the sol-gel method the negative electrode precursor is immersed in a liquid sufficiently lower than 120 ° C. containing the first coating material, and then the first active material layer and the negative electrode current collector are exposed to the first surface. It refers to a method in which intermediate particles of a coating are deposited and gelled.
  • the vapor phase method examples include physical vapor deposition (PVD), chemical vapor deposition (CVD), and atomic layer deposition (ALD). PVD and CVD are usually performed at a high temperature exceeding 200 ° C.
  • ALD atomic layer deposition
  • the first film can be formed in an atmosphere of 200 ° C. or lower, further 120 ° C. or lower, containing the first film material.
  • an organic compound having a high vapor pressure is used as a raw material for the first film.
  • the molecular raw material can interact with the surface of the negative electrode active material layer or the negative electrode current collector.
  • the molecular raw material can easily reach the void inside the negative electrode active material layer, and can easily form a uniform first film on the inner wall of the void.
  • the first film that covers the negative electrode active material layer and the negative electrode current collector is formed by the following procedure.
  • a gaseous first raw material is introduced into a reaction chamber in which a negative electrode precursor is accommodated.
  • the negative electrode precursor is exposed to the atmosphere containing the first raw material.
  • a self-stop mechanism due to the organic group of the first raw material works, and no further first raw material is adsorbed on the surface of the negative electrode precursor.
  • Excess first raw material is purged with an inert gas or the like and removed from the reaction chamber.
  • a gaseous second raw material is introduced into the reaction chamber in which the negative electrode precursor is accommodated. Thereby, the negative electrode precursor is exposed to the atmosphere containing the second raw material. At this time, when the reaction between the monomolecular layer of the first raw material and the second raw material is completed, no further second raw material is adsorbed on the surface of the negative electrode precursor. Excess second raw material is purged with an inert gas or the like and removed from the reaction chamber.
  • the first lithium compound containing the element M 1 , element A 1 and lithium (first compound) ) To form a first film having lithium ion permeability.
  • the materials used as the first raw material and the second raw material in the ALD method are not particularly limited, and an appropriate compound may be selected according to the desired first film.
  • a material containing phosphorus as the element M 1 trimethyl phosphate, triethyl phosphate, tris (dimethylamino) phosphine, trimethylphosphine, etc.
  • a material containing silicon as the element M 1 tetramethyl orthosilicate) and tetraethylorthosilicate
  • material lithium (bis-trimethylsilyl) amide containing both elements M 1 and lithium)
  • the material comprising a source of lithium Li tertiary butoxide, lithium cyclopentadienyl, etc.
  • an oxidizing agent may be introduced into the reaction chamber and the oxidizing agent may be used in combination with other raw materials.
  • the introduction of the oxidizing agent may be performed at any timing in the repetition of the series of operations, or may be performed every time.
  • three or more kinds of raw materials may be used. That is, in addition to the first material and the second material, one or more materials may be used. For example, a series of operations including introduction of the first material, purge, introduction of the second material, purge, introduction of the third material different from the first material and the second material, and purge may be repeated.
  • each constituent element other than the negative electrode will be described in detail by taking a rectangular wound battery as an example.
  • the type and shape of the nonaqueous electrolyte secondary battery are not particularly limited.
  • FIG. 1 is a perspective view schematically showing a rectangular nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 1 in order to show the structure of the principal part of the nonaqueous electrolyte secondary battery 1, a part thereof is cut away.
  • the rectangular battery case 11 In the rectangular battery case 11, a flat wound electrode group 10 and a non-aqueous electrolyte (not shown) are accommodated.
  • One end of a positive electrode lead 14 is connected to a positive electrode current collector of a positive electrode included in the electrode group 10.
  • the other end of the positive electrode lead 14 is connected to a sealing plate 12 that functions as a positive electrode terminal.
  • One end of a negative electrode lead 15 is connected to the negative electrode current collector, and the other end of the negative electrode lead 15 is connected to a negative electrode terminal 13 provided substantially at the center of the sealing plate 12.
  • a gasket 16 is disposed between the sealing plate 12 and the negative electrode terminal 13 to insulate them.
  • a frame body 18 made of an insulating material is disposed between the sealing plate 12 and the electrode group 10 to insulate the negative electrode lead 15 from the sealing plate 12.
  • the sealing plate 12 is joined to the open end of the rectangular battery case 11 and seals the rectangular battery case 11.
  • a liquid injection hole 17 a is formed in the sealing plate 12, and a nonaqueous electrolyte is injected into the square battery case 11 from the liquid injection hole 17 a. Thereafter, the liquid injection hole 17 a is
  • the sheet-like positive electrode includes a sheet-like positive electrode current collector and a positive electrode active material layer supported on the surface of the positive electrode current collector.
  • the positive electrode current collector include metal foil and metal sheet.
  • the material of the positive electrode current collector stainless steel, aluminum, aluminum alloy, titanium, or the like can be used.
  • the positive electrode active material layer can be formed by a method according to the production of the negative electrode active material layer, using a positive electrode slurry containing a positive electrode active material, a binder, and a dispersion medium.
  • the positive electrode active material layer may include an optional component such as a conductive agent as necessary.
  • a lithium-containing transition metal oxide is preferable.
  • the transition metal element include Sc, Y, Mn, Fe, Co, Ni, Cu, and Cr. Among these, Mn, Co, Ni and the like are preferable, and Ni is particularly preferable.
  • the lithium-containing transition metal oxide is more preferably a lithium nickel composite oxide containing Li, Ni, and another metal.
  • the lithium nickel composite oxide is, for example, composition formula (2): Li a Ni b M 3 1-b O 2 (M 3 is at least one selected from the group consisting of Mn, Co and Al, and 0 ⁇ A ⁇ 1.2 and 0.3 ⁇ b ⁇ 1.) Especially, it is preferable to satisfy
  • fill 0.85 ⁇ b ⁇ 1 from a viewpoint of high capacity
  • lithium nickel composite oxide examples include lithium-nickel-cobalt-manganese composite oxide (LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.4 Co 0.2 Mn 0.4 O 2 etc.), lithium-nickel-manganese composite oxide (LiNi 0.5 Mn 0.5 O 2 etc.), lithium-nickel-cobalt composite oxide ( LiNi 0.8 Co 0.2 O 2 etc.), lithium-nickel-cobalt-aluminum composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.8 Co 0.18 Al 0. 02 O 2, LiNi 0.88 Co 0.09 Al 0.03 O 2 , etc.) and the like.
  • At least part of the surface of the positive electrode active material layer may be covered with a second film having lithium ion permeability.
  • the second film is formed, for example, after the positive electrode active material layer is formed.
  • the second coating can partially cover the surface of the positive electrode current collector together with the surface of the positive electrode active material layer.
  • the amount of the second coating film contained in the positive electrode is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the second coating is, for example, the following composition formula (4): Li x2 M 2 A 2 y2 (Wherein M 2 is at least one selected from the group consisting of P, Si, B, V, Nb, W, Ti, Zr, Al, Ba, La, and Ta, and A 2 is F, And at least one selected from the group consisting of S, O, N, and Br, 0.5 ⁇ x2 ⁇ 4, and 1 ⁇ y2 ⁇ 6). .
  • the number of the central atom M 2 is not limited to one, the central atom M 2 is not necessarily one.
  • the first lithium compound contained in the first coating and the second lithium compound contained in the second coating may be the same or different.
  • Examples of the method for forming the second coating include the same methods as those for the first coating.
  • Separator As the separator, a resin microporous film, a nonwoven fabric, a woven fabric, or the like is used.
  • resin polyolefin such as polyethylene (PE) and polypropylene (PP), polyamide, polyamideimide, and the like are used.
  • Nonaqueous electrolyte includes a nonaqueous solvent and a solute that dissolves in the nonaqueous solvent.
  • Various lithium salts are used for the solute.
  • the concentration of the lithium salt in the nonaqueous electrolyte is, for example, 0.5 to 1.5 mol / L.
  • Non-aqueous solvents include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC); chain carbonates such as diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC); ⁇ - Examples thereof include cyclic carboxylic acid esters such as butyrolactone and ⁇ -valerolactone.
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • lithium salt examples include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 and the like.
  • a lithium salt may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Example 1 A coin-shaped cell having metallic lithium as a counter electrode was produced by the following procedure.
  • Negative Electrode Natural graphite particles (average particle diameter (D50) 15 ⁇ m) as a negative electrode active material and a binder were mixed with an appropriate amount of water to prepare a negative electrode slurry.
  • SBR and CMC were used in combination. 1 part by weight of SBR and 1 part by weight of CMC were blended with 100 parts by weight of natural graphite particles.
  • the negative electrode slurry was applied to one side of a 10 ⁇ m thick copper foil (negative electrode current collector), and the coating film was dried and then rolled to prepare a negative electrode precursor.
  • the total thickness of the negative electrode active material layer and the negative electrode current collector was 150 ⁇ m.
  • the negative electrode precursor was punched into a disk shape having a diameter of 9 mm.
  • the negative electrode precursor was accommodated in a predetermined reaction chamber, and a lithium ion permeable first film was formed on the surface of the negative electrode precursor by the following procedure.
  • the first raw material (trimethyl phosphate) serving as a supply source of the element M 1 (phosphorus: P) and the element A 1 (oxygen: O) is vaporized and introduced into the reaction chamber in which the negative electrode precursor is accommodated. did.
  • the temperature of the atmosphere containing the first raw material was controlled at 120 ° C. and the pressure at 260 Pa. After 30 seconds, assuming that the surface of the negative electrode precursor was covered with the monolayer of the first raw material, the excess first raw material was purged with nitrogen gas.
  • the second raw material (lithium (bistrimethylsilyl) amide) serving as a lithium supply source was vaporized and introduced into the reaction chamber containing the negative electrode precursor.
  • the temperature of the atmosphere containing the second raw material was controlled at 120 ° C. and the pressure at 260 Pa. After 30 seconds, assuming that the monolayer of the first raw material had reacted with the second raw material, the excess second raw material was purged with nitrogen gas.
  • a first film of the first lithium compound (first compound) was formed by repeating a series of operations consisting of introduction of the first raw material, purge, introduction of the second raw material, and purge 100 times.
  • composition of the first film was analyzed by XPS, IPC, or the like, it was lithium phosphate having a composition formula of Li 3 PO 4 .
  • the mass of the negative electrode precursor before forming the first film, the mass of the negative electrode after forming the first film, the composition of the negative electrode active material layer and the specific gravity of each material per 100 parts by mass of the negative electrode active material was 1.5 parts by mass.
  • the thickness of the first coating is presumed to be in the range of 10 nm to 25 nm from the number of series of operations in ALD.
  • non-aqueous electrolyte 1 part by mass of vinylene carbonate was added to 100 parts by mass of a mixed solution containing EC and EMC at a mass ratio of 1: 3 to obtain a non-aqueous solvent.
  • LiPF 6 was dissolved in a non-aqueous solvent at a concentration of 1.0 mol / L to prepare a non-aqueous electrolyte.
  • a bottomed cell case made of stainless steel having an opening was prepared, and a negative electrode and a separator were arranged in this order inside.
  • a non-woven fabric made of polyphenylene sulfide (PPS) having a thickness of 0.45 mm was used.
  • PPS polyphenylene sulfide
  • a stainless steel sealing plate having a resin gasket containing polypropylene at the peripheral edge portion was prepared, and a counter electrode lithium foil was attached to the inner surface thereof.
  • the opening of the cell case was closed with a sealing plate to complete a coin-shaped cell (A1).
  • the cell size was 20 mm in diameter and 3.2 mm in thickness.
  • the concentration C1 of phosphorus (P) is the direction from the surface side of the first film toward the bonding interface between the first film and the negative electrode active material layer or the bonding interface between the first film and the negative electrode current collector. In each case, the maximum value was observed.
  • the concentration C1max at the maximum value was about twice the concentration C1sr on the surface side of the first coating (15% of the estimated thickness from the outermost surface of the first coating).
  • Example 2 A battery A2 was produced and evaluated in the same manner as in Example 1 except that the first film was formed on the negative electrode active material layer by the following method.
  • a first film of the first lithium compound (first compound) was formed by repeating a series of operations consisting of introduction of the first material, purge, introduction of the second material, and purge 100 times.
  • composition of the first film was analyzed by XPS, IPC or the like, it was lithium silicate having a composition formula of Li 4 SiO 4 .
  • the mass of the first coating per 100 parts by mass of the negative electrode active material determined from the mass of the negative electrode precursor before forming the first coating, the mass of the negative electrode after forming the first coating, etc. is 1.5. Part by mass.
  • the thickness of the first coating is presumed to be in the range of 10 nm to 25 nm from the number of series of operations in ALD.
  • Comparative Example 1 A battery B1 was produced and evaluated in the same manner as in Example 1 except that the first precursor film by ALD was not formed on the negative electrode precursor and was used as it was as the negative electrode.
  • Comparative Example 2 Battery B2 is the same as Comparative Example 1 except that when the negative electrode active material layer is formed, 1 part by mass of lithium phosphate (Li 3 PO 4 ) is blended with 100 parts by mass of the natural graphite particles in the negative electrode slurry. Were prepared and evaluated in the same manner.
  • Li 3 PO 4 lithium phosphate
  • Comparative Example 3 When forming the negative electrode active material layer, the battery B3 was prepared in the same manner as in Comparative Example 1, except that 1 part by mass of lithium silicate (Li 4 SiO 4 ) was blended with 100 parts by mass of the natural graphite particles in the negative electrode slurry. Fabricated and evaluated similarly.
  • Li 4 SiO 4 lithium silicate
  • Table 1 shows the results of Examples 1-2 and Comparative Examples 1-3.
  • the initial efficiency and the residual capacity ratio were improved by forming the negative electrode active material layer and then covering the surface with the first film having lithium ion permeability.
  • Example 3 A non-aqueous electrolyte secondary battery was produced by the following procedure.
  • Negative Electrode Natural graphite particles (average particle diameter (D50) 50 ⁇ m) as a negative electrode active material and a binder were mixed with an appropriate amount of water to prepare a negative electrode slurry.
  • SBR and CMC were used in combination. 1 part by mass of SBR and 1 part by mass of CMC were blended with 100 parts by mass of natural graphite particles to prepare a negative electrode slurry.
  • coating the obtained negative electrode slurry to both surfaces of copper foil (negative electrode electrical power collector, thickness 10 micrometers) it dried and rolled the coating film of the negative electrode compound material using the roller.
  • the obtained laminate of the negative electrode current collector and the negative electrode mixture was cut into a predetermined electrode size, and a negative electrode precursor having negative electrode mixture layers on both sides of the negative electrode current collector was produced.
  • a first film was formed on the surface of the obtained negative electrode precursor in the same manner as in Example 1.
  • the obtained wound electrode group was inserted into a bottomed cylindrical battery case having an opening formed of a nickel-plated iron plate.
  • the other end of the negative electrode lead was connected to the inner wall of the battery case, and the other end of the positive electrode lead was connected to the bottom surface of the sealing plate.
  • a ring-shaped insulating gasket was attached to the peripheral edge of the sealing plate.
  • a predetermined amount of nonaqueous electrolyte was injected into the battery case.
  • a nickel-plated iron sealing plate was placed in the opening of the battery case, and with the gasket interposed, the opening end of the battery case was caulked against the peripheral edge of the sealing plate to seal it. In this way, a nonaqueous electrolyte secondary battery X1 (diameter 18 mm, height 65 mm) was obtained.
  • Example 4 A second film having the same composition and thickness as the first film is formed on the surface of the positive electrode obtained in Example 3 by using the same raw materials and method as the first film of Example 1, and the second film The positive electrode provided with was produced.
  • a nonaqueous electrolyte secondary battery X2 was produced and evaluated in the same manner as in Example 3 except that this positive electrode was used.
  • Comparative Example 4 A nonaqueous electrolyte secondary battery Y1 was produced and evaluated in the same manner as in Example 3 except that the first coating was not formed on the negative electrode precursor and was used as it was as the negative electrode.
  • the initial efficiency of the battery X1 whose surface was covered with the first film having lithium ion permeability was improved as compared with the battery Y1. Furthermore, the initial efficiency of the battery X2 in which the surface of the positive electrode active material layer was coated with the second coating was improved more than that of the battery X1 and the battery Y1.
  • the negative electrode according to the present invention is a power source for driving personal computers, mobile phones, mobile devices, personal digital assistants (PDAs), portable game devices, video cameras, etc., hybrid electric vehicles, fuel cell vehicles, plug-in HEVs, etc. It is useful as a negative electrode for a non-aqueous electrolyte secondary battery used for a main power source or auxiliary power source for driving a motor, a power source for driving a power tool, a vacuum cleaner, a robot, or the like.
  • Non-aqueous electrolyte secondary battery 10 Winding electrode group 11: Square battery case 12: Sealing plate 13: Negative electrode terminal 14: Positive electrode lead 15: Negative electrode lead 16: Gasket 17: Sealing plug 17a: Injection hole 18 : Frame

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

負極集電体と、負極集電体の表面に設けられた負極活物質層と、負極活物質層の表面の少なくとも一部を被覆するとともに負極集電体の表面を部分的に被覆するリチウムイオン透過性を有する第1の被膜とを具備する非水電解質二次電池用負極である。第1の被膜は、元素Mと元素Aとリチウムとを含む第1のリチウム化合物を含むことが好ましい。ここで、Mは、P、Si、B、V、Nb、W、Ti、Zr、Al、Ba、LaおよびTaよりなる群から選択された少なくとも1種であり、Aは、F、S、O、NおよびBrよりなる群から選択された少なくとも1種である。

Description

非水電解質二次電池用負極、非水電解質二次電池及び非水電解質二次電池用負極の製造方法
 本発明は、非水電解質二次電池用負極の改良に関する。
 リチウムイオン電池に代表される非水電解質二次電池の負極活物質の表面では、充放電に伴って、非水溶媒とリチウム塩を含む非水電解質の一部が不可逆的に反応する。このとき、負極活物質の表面を被覆するように固体電解質界面(SEI)が生成する。通常は、組み立て直後の非水電解質二次電池を充電する際に、最も多くのSEIが生成する。SEIの生成量が多いほど、不可逆容量が多くなり、電池容量は低下する。
 そこで、SEIの生成を抑制する観点から、炭素を主とする負極材料の表面をLixSiyz(100y/(x+y)=10~80)で表されるリチウム化合物で被覆することが提案されている(特許文献1)。
特開2000-67865号公報
 特許文献1では、具体的には、炭素材料とリチウム化合物と結着剤とを混合してペースト化し、ペーストを負極集電体に塗布して乾燥させることにより負極が作製されている。しかし、リチウム化合物は、ほとんど電子伝導性を有さないため、炭素材料の表面がリチウム化合物で被覆されるほど、負極活物質層の内部抵抗が大きくなる。そのため、炭素材料の表面を十分にリチウム化合物で被覆することができず、SEIの生成を抑制する効果は限定的である。
 上記に鑑み、本開示の一側面は、負極集電体と、前記負極集電体の表面に設けられた負極活物質層と、前記負極活物質層の表面の少なくとも一部を被覆するとともに前記負極集電体の表面を部分的に被覆するリチウムイオン透過性を有する第1の被膜と、を具備する、非水電解質二次電池用負極に関する。
 また、本開示の別の側面は、正極と、上記負極と、リチウムイオン伝導性の非水電解質を含む、非水電解質二次電池に関する。
 本開示の非水電解質二次電池用負極によれば、電池容量の減少を抑制しながらSEIの生成量を低減することができる。
本発明の一実施形態に係る非水電解質二次電池の一部を切り欠いた斜視図である。
 本発明の実施形態に係る非水電解質二次電池用負極は、負極集電体と、負極集電体の表面に設けられた負極活物質層と、負極活物質層の表面の少なくとも一部を被覆するとともに負極集電体の表面を部分的に被覆するリチウムイオン透過性を有する第1の被膜とを具備する。リチウムイオン透過性を有する第1の被膜で負極活物質層の表面を被覆する場合、既に形成されている電子伝導経路を分断するような被膜形成は起こらず、負極活物質層の表面の非水電解質の分解の起点となる部位を選択的に被覆することができる。よって、SEIの生成量を効果的に低減することができるとともに、負極活物質層の内部抵抗の増大も抑制される。
 負極活物質層の表面とは、セパレータを介して正極と対向する側の負極活物質層の表面に限られず、負極活物質層の表面には、多孔質な負極活物質層内の空隙の内壁も含まれる。負極活物質層の表面を被覆する第1の被膜は、負極活物質層内の空隙の内部にまで侵入し、内壁を被覆していることが好ましい。
 負極活物質層が形成された後に第1の被膜を形成する場合、第1の被膜は、負極集電体の表面を部分的に被覆することができる。負極集電体の表面は、微視的に見ると、完全に負極活物質やバインダーで覆われているわけではなく、微小な露出表面を有している。また、負極集電体の切断端面やリード取り付け部が露出している場合もある。そのような露出表面を第1の被膜で被覆することで、負極集電体の表面を起点とする非水電解質の分解も抑制される。
 負極活物質層が、負極活物質、バインダーなどを含む混合物(合剤)である場合、負極活物質層の表面を被覆する第1の被膜は、負極活物質粒子とバインダーとが混合され、負極活物質層が形成された後に、その表面に対して形成される。よって、負極活物質粒子に対して予め第1の被膜を形成する場合とは異なり、負極活物質粒子とバインダーとの接着界面には、第1の被膜が介在しない領域が存在し得る。同様に、負極活物質粒子と負極集電体との接触界面にも第1の被膜が介在しない領域が存在し得る。更に、互いに隣接する負極活物質粒子どうしの接触界面にも第1の被膜が介在しない領域が存在し得る。
 負極活物質層が形成された後に第1の被膜を形成する場合には、第1の被膜は、バインダーの表面を部分的に被覆することができる。また、負極活物質層が導電剤を含む場合、第1の被膜は、導電剤の表面を部分的に被覆することができる。これにより、バインダーや導電剤を起点とする非水電解質の分解も抑制される。
 ただし、バインダーの表面を第1の被膜で被覆するためには、バインダーの耐熱温度よりも低い温度で第1の被膜を生成させる必要がある。バインダーの耐熱温度は、バインダーの種類によって相違するが、第1の被膜を生成させる温度の目安としては、200℃以下が好ましく、より好ましくは120℃以下である。
 負極活物質層の表面を被覆する第1の被膜は、リチウムイオン透過性を有し、SEIの生成を抑制できるものであればよい。このような第1の被膜を構成する材料として、元素Mと、元素Aと、リチウムと、を含む第1のリチウム化合物(以下、第1化合物とも称する。)を挙げることができる。ここで、元素Mは、P、Si、B、V、Nb、W、Ti、Zr、Al、Ba、LaおよびTaよりなる群から選択された少なくとも1種であり、元素Aは、F、S、O、NおよびBrよりなる群から選択された少なくとも1種である。また、元素Mの中では、P、SiおよびBよりなる群から選択された少なくとも1種が、原料が安価である点で特に好ましい。中でも、元素Mは、少なくともPを含むことが好ましい。
 負極活物質層の表面が第1化合物で被覆されている場合でも、電池内で進行する非水電解質の分解を完全に防止することは困難である。よって、第1化合物の外側に、更に、SEIが生成する場合がある。この場合、内層と外層とを具備する第1の被膜により、負極活物質層の表面が被覆される。通常、内層と外層の構成元素の組成は相違し、内層および外層の一方には、内層および外層の他方には含まれない元素が含まれている。すなわち、内層は、主として第1化合物を含み、外層は、第1化合物とは異なる化合物(以下、第3化合物とも称する。)を含む。第3化合物は、非水電解質に含まれる成分に由来する元素を含む。
 第1の被膜が内層と外層とを具備する場合、第1の被膜の構造を被膜の厚さ方向において分析すると、第1化合物(もしくは、第1化合物の構成元素である元素M、元素Aおよびリチウムから選択される少なくとも1種)の濃度C1は、第1の被膜の表面側(外層側)で少なく、第1の被膜と負極活物質層との接合界面側もしくは第1の被膜と負極集電体との接合界面側(内層側)で高くなっている。第1の被膜の表面側(外層側)とは、第1の被膜の負極活物質粒子もしくは負極集電体との接合界面とは反対側の表面である。濃度C1は、第1の被膜と負極活物質粒子もしくは負極集電体との接合界面付近を境界にして、負極活物質粒子もしくは負極集電体に向かって減少する。よって、第1の被膜の表面側から第1の被膜と負極活物質粒子もしくは負極集電体との接合界面に向かう方向において、濃度C1は極大値を有している。なお、このような分析は、XPS、EPMAなどにより行うことができる。
 第1化合物(もしくは元素M、元素Aおよびリチウムから選択される少なくとも1種)の極大値における濃度C1maxは、第1の被膜の表面側における濃度C1srの1.5倍以上であることが好ましく、2倍以上であることがより好ましく、5倍以上であることが更に好ましい。この場合、負極活物質層の表面が十分に第1化合物で被覆されており、これによってSEIの生成が抑制されているといえるからである。なお、第1の被膜の表面側とは、第1の被膜の最表面から第1の被膜の厚さの15%以内の深さ領域であればよい。
 第1化合物としては、ポリアニオンのリチウム塩が好ましい。ポリアニオンとは、例えば組成式(1):[M y1x1-で表される分子状のイオン種をいう。ただし、中心原子Mの個数は1つに限られず、中心原子Mは1種とは限らない。組成式(1):Lix1 y1で表される元素Mと元素Aとを含むポリアニオンのリチウム塩は、イオン結合性を有するA-Li結合(例えばO-Li結合)を含み、Aサイトをリチウムイオンがホッピングすることでリチウムイオン伝導性を発現する。中でも第1化合物は、ポリオキシメタレート化合物であることが、安定性の点で好ましい。なお、x1、y1の範囲は、例えば0.5≦x1≦4、1≦y1≦6が好ましい。
 ポリオキシメタレート化合物としては、Li3PO4、Li4SiO4、Li2Si25、Li2SiO3、Li3BO3、Li3VO4、Li3NbO4、LiZr2(PO4)、LiTaO3、Li4Ti512、Li7La3Zr212、Li5La3Ta212、Li0.35La0.55TiO3、Li9SiAlO8、Li1.3Al0.3Ti1.7(PO43などを、1種または任意の組み合わせで用いることができる。中でも、リチウムイオン透過性に優れる点で、Li3PO4、Li4SiO4、Li2Si25、Li2SiO3、Li3BO3、Li3VO4およびLi3NbO4よりなる群から選択される少なくとも1種を用いることが好ましく、少なくともLi3PO4を含むことがより好ましい。
 また、Li4SiO4、Li2Si25、Li2SiO3などのリチウムシリケートは、ケイ素を含む合金系の負極活物質(ケイ素酸化物、ケイ素合金など)との相性がよい。中でもLi4SiO4は、ガス発生を伴う副反応を生じにくく、かつ比較的安価である点でも好ましい。リチウム含有量が多いLi4SiO4は、リチウムイオンを取り込む副反応を生じにくいものと考えられる。ポリオキシメタレート化合物は、少なくともLi4SiO4を含むことが好ましい。
 以下、捲回型電極群または積層型電極群を構成するシート状負極の一例について更に説明する。
 (負極)
 シート状負極は、シート状の負極集電体と、負極集電体の表面に形成された負極活物質層と、負極活物質層の表面に形成された第1の被膜とを具備する。負極活物質層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 (負極集電体)
 負極集電体としては、金属箔、金属シート、メッシュ体、パンチングシート、エキスパンドメタルなどが例示できる。負極集電体の材料には、ステンレス鋼、ニッケル、銅、銅合金などを用いることができる。負極集電体の厚さは、例えば3~50μmの範囲から選択できる。
 (負極活物質層)
 負極活物質層が、負極活物質粒子を含む混合物(合剤)である場合について説明する。負極活物質層は、必須成分として負極活物質およびバインダーを含み、任意成分として導電剤を含んでもよい。負極活物質層に含まれるバインダー量は、負極活物質100質量部に対して、0.1~20質量部が好ましく、1~5質量部がより好ましい。負極活物質層の厚さは、例えば10~100μmである。
 負極活物質は、非炭素系材料でもよく、炭素材料でもよく、これらの組み合わせでもよい。炭素材料は、通常、金属リチウムに対して1V以下の電位でリチウムイオンを吸蔵または放出する。この電位領域では、炭素材料の表面で非水電解質の構成要素の還元分解が進行しやすく、SEIが生成し易い。負極活物質層の表面をリチウムイオン透過性の第1の被膜で被覆する場合、炭素材料と非水電解質との接触が抑制されるため、SEIの生成も抑制される。
 負極活物質として用いる炭素材料は、特に限定されないが、例えば、黒鉛およびハードカーボンよりなる群から選択される少なくとも1種が好ましい。中でも、黒鉛は、高容量で不可逆容量が小さく、有望である。また、黒鉛は、非水電解質の還元分解に対する活性が高いため、負極活物質層の表面を第1の被膜で被覆することによる効果も顕著となる。
 黒鉛とは、黒鉛構造を有する炭素材料の総称であり、天然黒鉛、人造黒鉛、膨張黒鉛、黒鉛化メソフェーズカーボン粒子などが含まれる。天然黒鉛としては、鱗片状黒鉛、土状黒鉛などが例示できる。通常、X線回折スペクトルから計算される黒鉛構造の002面の面間隔d002が3.35~3.44オングストロームである炭素材料は黒鉛に分類される。一方、ハードカーボンは、微小な黒鉛の結晶がランダム方向に配置され、それ以上の黒鉛化がほとんど進行しない炭素材料であり、002面の面間隔d002は3.44オングストロームより大きい。
 負極活物質として用いる非炭素系材料としては合金系材料が好ましい。合金系材料は、ケイ素や錫を含むことが好ましく、中でもケイ素単体やケイ素化合物が好ましい。ケイ素化合物には、ケイ素酸化物やケイ素合金が包含される。
 負極活物質層への負極活物質の充填性を高める観点から、負極活物質粒子の平均粒径(D50)は、負極活物質層の厚さに対して、十分に小さいことが望ましい。負極活物質粒子の平均粒径(D50)は、例えば5~30μmが好ましく、10~25μmがより好ましい。なお、平均粒径(D50)とは、体積基準の粒度分布における累積体積が50%となるメジアン径を意味する。平均粒径は、例えばレーザ回折/散乱式の粒度分布測定装置を用いて測定される。
 バインダーとしては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(HFP)などのフッ素樹脂;ポリアクリル酸メチル、エチレン-メタクリル酸メチル共重合体などのアクリル樹脂;スチレン-ブタジエンゴム(SBR)、アクリルゴムなどのゴム状材料、カルボキシメチルセルロース(CMC)、ポリビニルピロリドンなどの水溶性高分子などが例示できる。
 導電剤としては、アセチレンブラック、ケッチェンブラックなどのカーボンブラックが好ましい。
 負極活物質層は、負極活物質粒子、バインダーなどを分散媒とともに混合して負極スラリーを調製し、負極スラリーを負極集電体の表面に塗布し、乾燥後、圧延することにより形成することができる。分散媒としては、水、エタノールなどのアルコール、テトラヒドロフランなどのエーテル、N-メチル-2-ピロリドン(NMP)などが用いられる。分散媒として水を用いる場合には、バインダーとして、ゴム状材料と水溶性高分子とを併用することが好ましい。
 (リチウムイオン透過性を有する第1の被膜)
 負極活物質層の表面を被覆するリチウムイオン透過性を有する第1の被膜は、例えば、第1の被膜の原料を含む200℃以下の雰囲気に、負極集電体とその表面に設けられた負極活物質層とを具備する負極前駆体を暴露することにより形成される。
 負極活物質層の表面を被覆する第1の被膜の厚さは、負極活物質と非水電解質との接触を抑制できる厚さであればよい。第1の被膜は、必要十分量で負極活物質層の表面を被覆する均質な層を形成していることが望ましい。そのためには、第1の被膜の厚さが、負極活物質の粒子の平均粒径よりも小さいことが望ましく、例えば0.1μm(100nm)以下が好ましく、0.03μm(30nm)以下がより好ましい。ただし、第1の被膜の厚さが過度に小さくなると、例えばトンネル効果による電子移動が進行し、非水電解質の還元分解が進行する場合がある。電子移動を抑制するとともにリチウムイオンをスムーズに移動させる観点から、第1の被膜の厚さは0.5nm以上が好ましい。
 第1の被膜は、負極活物質層の形成後に生成するものである。よって、負極活物質粒子どうしの接触界面、負極活物質粒子とバインダーとの接着界面などには、第1の被膜が形成されない領域が存在し得る。
 第1の被膜のリチウムイオン透過性は、負極活物質の粒子の近傍に存在するリチウムイオンが負極活物質の粒子に出入りできる程度であればよく、高度なリチウムイオン伝導性までは要求されない。第1の被膜は、例えば1.0×10-9S/cm以上のリチウムイオン伝導率を有する材料であればよいが、1.0×10-8S/cm以上が好ましい。一方、非水電解質の還元分解を極力抑制する観点から、第1の被膜の電子導電性は小さいことが望ましく、電子伝導率は1.0×10-2S/cmより小さいことが望ましい。
 負極の容量を確保する観点からは、負極に占める第1の被膜の含有割合をできるだけ小さくすることが望ましい。また、負極活物質粒子へのリチウムイオンの出入りを容易にする観点からも、できるだけ薄くて均質な第1の被膜を形成することが望ましい。以上より、負極に含まれる第1の被膜の量は、負極活物質100質量部に対して、0.01~10質量部が好ましく、0.05~5質量部がより好ましい。
 次に、本発明の実施形態に係る非水電解質二次電池用負極の製造方法は、(i)負極集電体と、負極集電体の表面に設けられた負極活物質層とを具備する負極前駆体を準備する工程と、(ii)リチウムイオン透過性を有する第1の被膜で、負極活物質層の表面の少なくとも一部とともに負極集電体の表面を部分的に被覆する工程とを具備する。
 工程(ii)においては、第1の被膜の原料を含む200℃以下、好ましくは120℃以下の雰囲気に、負極前駆体を暴露することにより、第1の被膜を形成することが好ましい。これにより、負極活物質層に耐熱温度の低いバインダーが含まれている場合でも、バインダーを劣化させることなく、負極活物質層の表面に第1の被膜を形成することができる。また、バインダーを劣化させることなく、第1の被膜によりバインダーの表面を被覆することができる。第1の被膜は、液相法や気相法で形成することが好ましい。
 液相法としては、析出法、ゾルゲル法などが好ましい。析出法とは、第1の被膜の原料が溶解している120℃よりも十分に低温の溶液中に、負極前駆体を浸漬し、負極活物質層や負極集電体の表面に第1の被膜の構成材料を析出させる方法などをいう。また、ゾルゲル法とは、第1の被膜の原料を含む120℃よりも十分に低温の液体に、負極前駆体を浸漬し、その後、負極活物質層や負極集電体の表面に第1の被膜の中間体粒子を沈着させ、ゲル化させる方法などをいう。
 気相法としては、例えば物理蒸着法(PVD)、化学蒸着法(CVD)、原子層堆積法(ALD)などが挙げられる。PVDやCVDは、通常、200℃を超える高温化で行われる。一方、ALDによれば、第1の被膜の原料を含む200℃以下、更には120℃以下の雰囲気で第1の被膜を形成することができる。
 ALD法では、第1の被膜の原料として、蒸気圧の高い有機化合物が用いられる。このような原料を気化させることで、分子状の原料を負極活物質層や負極集電体の表面と相互作用させることができる。分子状の原料は、負極活物質層の内部の空隙にまで到達させやすく、空隙の内壁にも均質な第1の被膜を形成しやすい。
 ALD法では、例えば、以下の手順により、負極活物質層や負極集電体を被覆する第1の被膜が形成される。
 まず、負極前駆体が収容されている反応室に、気体の第1原料を導入する。これにより、負極前駆体は、第1原料を含む雰囲気に暴露される。その後、負極前駆体の表面が第1原料の単分子層で覆われると、第1原料が有する有機基による自己停止機構が働き、それ以上の第1原料は負極前駆体の表面に吸着しなくなる。余分な第1原料は不活性ガスなどでパージされ、反応室から除去される。
 次に、負極前駆体が収容されている反応室に、気体の第2原料を導入する。これにより、負極前駆体は、第2原料を含む雰囲気に暴露される。このとき、第1原料の単分子層と第2原料との反応が終了すると、それ以上の第2原料は負極前駆体の表面に吸着しなくなる。余分な第2原料は不活性ガスなどでパージされ、反応室から除去される。
 上記のように、第1原料の導入、パージ、第2原料の導入、パージからなる一連の操作を繰り返すことにより、元素M、元素Aおよびリチウムを含む第1のリチウム化合物(第1化合物)が生成し、リチウムイオン透過性を有する第1の被膜が形成される。
 ALD法で第1原料および第2原料として使用する材料は、特に限定されず、所望の第1の被膜に応じて、適切な化合物を選択すればよい。例えば、第1原料としては、元素Mとしてリンを含む材料(リン酸トリメチル、リン酸トリエチル、トリス(ジメチルアミノ)ホスフィン、トリメチルホスフィンなど)、元素Mとしてケイ素を含む材料(オルトケイ酸テトラメチル、オルトケイ酸テトラエチルなど)、元素Mとリチウムの両方を含む材料(リチウム(ビストリメチルシリル)アミドなど)、リチウムの供給源となる材料(リチウムターシャルブトキシド、リチウムシクロペンタジエニルなど)が挙げられる。
 第1原料として元素Mを含む材料を用いたときは、第2原料としてリチウムの供給源となる材料(または元素Mとリチウムの両方を含む材料)が用いられる。第1原料としてリチウムの供給源となる材料を用いたときは、第2原料として元素Mを含む材料(または元素Mとリチウムの両方を含む材料)が用いられる。第1原料として元素Mとリチウムの両方を含む材料を用いたときは、第2原料として酸化剤(酸素、オゾンなど)を用いてもよい。
 更に、一連の操作の任意のタイミングで、各原料の反応を促進するために、酸化剤を反応室に導入して、酸化剤を他の原料と併用してもよい。酸化剤の導入は、一連の操作の繰り返しにおいて、いずれのタイミングで行ってもよく、毎回行ってもよい。
 なお、3種以上の原料を用いてもよい。すなわち、第1原料および第2原料の他に、更に1種以上の原料を用いてもよい。例えば、第1原料の導入、パージ、第2原料の導入、パージ、第1原料とも第2原料とも異なる第3原料の導入、パージからなる一連の操作を繰り返してもよい。
 以下、角型の捲回型電池を例にとって、負極以外の各構成要素について、詳細に説明する。ただし、非水電解質二次電池のタイプ、形状等は、特に限定されない。
 図1は、本発明の一実施形態に係る角型の非水電解質二次電池を模式的に示す斜視図である。図1では、非水電解質二次電池1の要部の構成を示すために、その一部を切り欠いて示している。角型電池ケース11内には、扁平状の捲回型電極群10および非水電解質(図示せず)が収容されている。
 電極群10に含まれる正極の正極集電体には、正極リード14の一端部が接続されている。正極リード14の他端部は、正極端子として機能する封口板12と接続されている。負極集電体には、負極リード15の一端部が接続され、負極リード15の他端部は、封口板12の概ね中央に設けられた負極端子13と接続されている。封口板12と負極端子13との間には、ガスケット16が配置され、両者を絶縁している。封口板12と電極群10との間には、絶縁性材料で形成された枠体18が配置され、負極リード15と封口板12とを絶縁している。封口板12は、角型電池ケース11の開口端に接合され、角型電池ケース11を封口している。封口板12には、注液孔17aが形成されており、注液孔17aから非水電解質が角型電池ケース11内に注液される。その後、注液孔17aは封栓17により塞がれる。
 (正極)
 シート状正極は、シート状の正極集電体と、正極集電体の表面に担持された正極活物質層とを具備する。正極集電体としても、金属箔、金属シートなどが例示できる。正極集電体の材料には、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどを用いることができる。正極活物質層は、正極活物質、結着剤および分散媒を含む正極スラリーを用いて、負極活物質層の製造に準じた方法で形成できる。正極活物質層は、必要に応じて、導電剤などの任意成分を含んでもよい。
 正極活物質としては、リチウム含有遷移金属酸化物が好ましい。遷移金属元素としては、Sc、Y、Mn、Fe、Co、Ni、Cu、Crなどを挙げることができる。中でも、Mn、Co、Niなどが好ましく、特にNiが好ましい。リチウム含有遷移金属酸化物は、LiとNiと他の金属とを含むリチウムニッケル複合酸化物であることがより好ましい。
 リチウムニッケル複合酸化物は、例えば、組成式(2):LiNi 1-b(Mは、Mn、CoおよびAlよりなる群から選択された少なくとも1種であり、0<a≦1.2であり、0.3≦b≦1である。)で表される。中でも、高容量化の観点から、0.85<b≦1を満たすことが好ましい。さらに、結晶構造の安定性の観点から、組成式(3):LiaNiCo 2(Mは、MnおよびAlの少なくとも1種であり、0<a≦1.2、0.85<b<1、0<c<0.15、0<d≦0.1、b+c+d=1)で表されるリチウムニッケル複合酸化物が好ましい。
 リチウムニッケル複合酸化物の具体例としては、リチウム-ニッケル-コバルト-マンガン複合酸化物(LiNi0.5Co0.2Mn0.3、LiNi1/3Co1/3Mn1/3、LiNi0.4Co0.2Mn0.4等)、リチウム-ニッケル-マンガン複合酸化物(LiNi0.5Mn0.5等)、リチウム-ニッケル-コバルト複合酸化物(LiNi0.8Co0.2等)、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05、LiNi0.8Co0.18Al0.02、LiNi0.88Co0.09Al0.03等)等が挙げられる。
 正極活物質層の表面の少なくとも一部は、リチウムイオン透過性を有する第2の被膜で覆われていてもよい。第2の被膜は、例えば、正極活物質層が形成された後に形成される。この場合、第2の被膜は、正極活物質層の表面とともに、正極集電体の表面を部分的に被覆し得る。正極に含まれる第2の被膜の量は、正極活物質100質量部に対して、0.05~10質量部が好ましく、0.1~5質量部がより好ましい。
 第2の被膜を構成する材料としては、第1の被膜と同様の材料が挙げられる。第2の被膜は、例えば、下記組成式(4):
  Lix2 y2
(式中、Mは、P、Si、B、V、Nb、W、Ti、Zr、Al、Ba、LaおよびTaよりなる群から選択された少なくとも1種であり、Aは、F、S、O、NおよびBrよりなる群から選択された少なくとも1種であり、0.5≦x2≦4であり、1≦y2≦6である。)で表される第2のリチウム化合物を含む。ただし、中心原子Mの個数は1つに限られず、中心原子Mは1種とは限らない。
 第1の被膜に含まれる第1のリチウム化合物と第2の被膜に含まれる第2のリチウム化合物とは、同じであってもよいし、異なっていてもよい。第2の被膜を形成する方法としては、第1の被膜と同様の方法が挙げられる。
 (セパレータ)
 セパレータとしては、樹脂製の微多孔フィルム、不織布、織布などが用いられる。樹脂には、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン、ポリアミド、ポリアミドイミドなどが用いられる。
 (非水電解質)
 非水電解質は、非水溶媒と、非水溶媒に溶解する溶質とを含む。溶質には様々なリチウム塩が用いられる。非水電解質中のリチウム塩の濃度は、例えば0.5~1.5mol/Lである。
 非水溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状炭酸エステル;ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などの鎖状炭酸エステル;γ-ブチロラクトン、γ-バレロラクトンなどの環状カルボン酸エステルなどが例示できる。非水溶媒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 リチウム塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(SO2F)2、LiN(SO2CF32などが挙げられる。リチウム塩は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 [実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 《実施例1》
 下記の手順により、金属リチウムを対極とするコイン形セルを作製した。
 (1)負極の作製
 負極活物質である天然黒鉛粒子(平均粒径(D50)15μm)とバインダーとを、適量の水と混合して、負極スラリーを調製した。バインダーとしては、SBRとCMCとを併用した。天然黒鉛粒子100質量部に対し、SBRは1質量部、CMCは1質量部を配合した。
 負極スラリーを、厚さ10μmの銅箔(負極集電体)の片面に塗布し、塗膜を乾燥後、圧延し、負極前駆体を作製した。負極活物質層と負極集電体との合計厚さは150μmであった。負極前駆体は、直径9mmの円盤型に打ち抜いた。
 負極前駆体を所定の反応室に収容し、下記手順により、リチウムイオン透過性の第1の被膜を負極前駆体の表面に形成した。
 (i)負極前駆体が収容されている反応室に、元素M(リン:P)と元素A(酸素:O)の供給源となる第1原料(リン酸トリメチル)を気化させて導入した。第1原料を含む雰囲気の温度は120℃、圧力は260Paに制御した。30秒後、負極前駆体の表面が第1原料の単分子層で覆われたものとして、余分な第1原料を窒素ガスでパージした。
 (ii)次に、負極前駆体が収容されている反応室に、リチウムの供給源となる第2原料(リチウム(ビストリメチルシリル)アミド)を気化させて導入した。第2原料を含む雰囲気の温度は120℃、圧力は260Paに制御した。30秒後、第1原料の単分子層が第2原料と反応したものとして、余分な第2原料を窒素ガスでパージした。
 (iii)第1原料の導入、パージ、第2原料の導入、パージからなる一連の操作を100回繰り返すことにより第1のリチウム化合物(第1化合物)の第1の被膜を形成した。
 第1の被膜の組成をXPS、IPC等で分析したところ、Li3PO4の組成式を有するリン酸リチウムであった。
 第1の被膜を形成する前の負極前駆体の質量、第1の被膜を形成した後の負極の質量、負極活物質層の組成と各材料の比重から求めた負極活物質100質量部あたりの第1の被膜の質量は、1.5質量部であった。
 第1の被膜の厚さは、ALDにおける一連の操作の回数から、10nm~25nmの範囲内であると推測される。
 (2)対極の作製
 厚さ300μmの金属リチウム箔を直径14mmの円盤型に打ち抜いて対極に用いた。
 (3)非水電解質の調製
 ECとEMCとを質量比1:3で含む混合液100質量部に、ビニレンカーボネート1質量部を添加し、非水溶媒を得た。非水溶媒に濃度1.0mol/LでLiPF6を溶解させて、非水電解質を調製した。
 (4)コイン形セルの組み立て
 開口を有するステンレス鋼製の有底のセルケースを準備し、その内側に負極とセパレータをこの順に配置した。セパレータには、厚み0.45mmのポリフェニレンサルファイド(PPS)製の不織布を用いた。一方、周縁部にポリプロピレンを含む樹脂製のガスケットが配されたステンレス鋼製の封口板を準備し、その内面に対極のリチウム箔を貼り付けた。セルケースの内部に非水電解質を注入した後、セルケースの開口を封口板で塞いでコイン形セル(A1)を完成させた。セルサイズは直径20mm、厚さ3.2mmとした。
 [評価1]
 組み立て直後のコイン形セルに対し、25℃で、0.1mAで、0Vまで負極に充電を行い、引き続き1.5Vまで負極を放電させた。こうして第1回目の充電容量C1と第1回目の放電容量D1を得た。そして、初期効率(E1)を、E1(%)=100×D1/C1により求めた。
 [評価2]
 初期効率(E1)を測定後のコイン形セルに対し、再び0.1mAで0Vまで負極に充電を行い、セル電圧0Vの状態で、60℃で5日間保存した。引き続き1.5Vまで負極を放電させ、2回目の放電容量F1を得た。そして、残存容量率(E2)を、E2(%)=100×F1/D1により求めた。
 [評価3]
 残存容量率(E2)を測定後のコイン形セルを分解し、負極を取り出し、EMCで洗浄後、30℃で24時間乾燥させ、第1の被膜の負極活物質層および負極集電体の表面を被覆する部分において、XPSにより厚さ方向の分析を行った。分析条件は下記の通りである。
 線源:Al Kα
 エッチングイオン:Ar(2keV)
 その結果、リン(P)の濃度C1は、第1の被膜の表面側から第1の被膜と負極活物質層との接合界面または第1の被膜と負極集電体との接合界面に向かう方向において、いずれも極大値を有していた。極大値における濃度C1maxは、第1の被膜の表面側(第1の被膜の最表面から推定厚さの15%の深さ)における濃度C1srの約2倍であった。
 《実施例2》
 以下の方法により、負極活物質層に第1の被膜を形成したこと以外、実施例1と同様に、電池A2を作製し、同様に評価した。
 (i)負極前駆体が収容されている反応室に、第1原料として、元素M(ケイ素:Si)とリチウムの供給源であるリチウム(ビストリメチルシリル)アミドを気化させて導入した。原料を含む雰囲気の温度は120℃、圧力は260Paに制御した。30秒後、負極前駆体の表面が第1原料の単分子層で覆われたものとして、余分な原料を窒素ガスでパージした。
 (ii)次に、負極前駆体が収容されている反応室に、第2原料として、酸化剤となるオゾンを導入した。酸化剤を含む雰囲気の温度は120℃、圧力は260Paに制御した。30秒後、第1原料の単分子層が酸化剤と反応したものとして、余分な酸化剤を窒素ガスでパージした。
 (iii)第1原料の導入、パージ、第2原料の導入およびパージからなる一連の操作を100回繰り返すことにより第1のリチウム化合物(第1化合物)の第1の被膜を形成した。
 第1の被膜の組成をXPS、IPC等で分析したところ、Li4SiO4の組成式を有するリチウムシリケートであった。
 第1の被膜を形成する前の負極前駆体の質量、第1の被膜を形成した後の負極の質量等から求めた負極活物質100質量部あたりの第1の被膜の質量は、1.5質量部であった。
 第1の被膜の厚さは、ALDにおける一連の操作の回数から、10nm~25nmの範囲内であると推測される。
 《比較例1》
 負極前駆体にALDによる第1の被膜を形成することなく、そのまま負極として用いたこと以外、実施例1と同様に、電池B1を作製し、同様に評価した。
 《比較例2》
 負極活物質層を形成する際に、負極スラリーに、天然黒鉛粒子100質量部に対し、リン酸リチウム(Li3PO4)を1質量部配合したこと以外、比較例1と同様に、電池B2を作製し、同様に評価した。
 《比較例3》
 負極活物質層を形成する際に、負極スラリーに、天然黒鉛粒子100質量部に対し、リチウムシリケート(Li4SiO4)を1質量部配合したこと以外、比較例1と同様に、電池B3を作製し、同様に評価した。
 実施例1~2および比較例1~3の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、負極活物質層を形成してから、その表面を、リチウムイオン透過性を有する第1の被膜で被覆することにより、初期効率および残存容量率が改善した。
 《実施例3》
 下記の手順により、非水電解質二次電池を作製した。
 (1)負極の作製
 負極活物質である天然黒鉛粒子(平均粒径(D50)50μm)とバインダーとを、適量の水と混合して、負極スラリーを調製した。バインダーとしては、SBRとCMCとを併用した。天然黒鉛粒子100質量部に対し、SBRは1質量部、CMCは1質量部を配合し、負極スラリーを調製した。次に、得られた負極スラリーを銅箔(負極集電体、厚み10μm)の両面に塗布した後、乾燥して、ローラーを用いて負極合材の塗膜を圧延した。最後に、得られた負極集電体と負極合材との積層体を所定の電極サイズに切断し、負極集電体の両面に負極合材層を備える負極前駆体を作製した。
 得られた負極前駆体の表面に、実施例1と同様にして第1の被膜を形成した。
 (2)正極の作製
 Li、Ni、CoおよびAlを含有するリチウム含有遷移金属酸化物(LiNi0.88Co0.09Al0.03(NCA);正極活物質)と、アセチレンブラック(AB;導電材)と、ポリフッ化ビニリデン(PVdF;結着材)とを、NCA:AB:PVdF=100:1:0.9の質量比で混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて撹拌して、正極スラリーを調製した。次に、得られた正極スラリーをアルミニウム箔(正極集電体)の両面に塗布した後、乾燥して、ローラーを用いて正極合材の塗膜を圧延した。最後に、得られた正極集電体と正極合材との積層体を所定の電極サイズに切断し、正極集電体の両面に正極合材層を備える正極を作製した。
 (3)非水電解質の調製
 実施例1と同様にして、非水電解質を調製した。
 (4)電池の作製
 上記で得られた正極に、Al製の正極リードを取り付けた。上記で得られた負極に、Ni製の負極リードを取り付けた。正極と負極とを、厚み0.015mmのPPおよびPEを含むセパレータを介して渦巻状に捲回し、捲回型電極群を作製した。
 得られた捲回型電極群を、ニッケルめっき鉄板で形成された開口部を有する有底円筒形の電池ケースに挿入した。負極リードの他端部を電池ケースの内側壁に接続し、正極リードの他端部を封口板の底面に接続した。封口板の周縁部には、リング状の絶縁性ガスケットを装着した。電池ケース内に、非水電解質を所定量注液した。ニッケルめっきを施した鉄製の封口板を、電池ケースの開口部に配し、ガスケットが介在した状態で、電池ケースの開口端部を封口板の周縁部に対してかしめて、封口した。このようにして、非水電解質二次電池X1(直径18mm、高さ65mm)を得た。
 [評価4]
 組み立て直後の非水電解質二次電池を容量の50%まで充電した後、45℃で72時間静置してエージングした。次いで、電池の閉路電圧が4.2Vに達するまで0.02Cの定電流で充電した後、電池の閉路電圧が2.5Vに達するまで、0.2Cの定電流で放電した後、0.05Cで放電した。充放電は25℃の環境で行った。こうして第1回目の充電容量C2と第1回目の放電容量D2を得た。なお、放電容量D2は、0.2Cで放電した際の放電容量および0.05Cで放電した際の放電容量の合計とした。そして、初期効率(E2)を、E2(%)=100×D2/C2により求めた。結果を表2に示す。
 《実施例4》
 実施例3で得られた正極の表面に、実施例1の第1の被膜と同様の原料および方法により、第1の被膜と同じ組成および厚みの第2の被膜を形成し、第2の被膜を備える正極を作製した。この正極を用いたこと以外は実施例3と同様にして、非水電解質二次電池X2を作製し、評価した。
 《比較例4》
 負極前駆体に第1の被膜を形成することなく、そのまま負極として用いたこと以外、実施例3と同様にして非水電解質二次電池Y1を作製し、評価した。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、負極活物質層を形成してから、その表面を、リチウムイオン透過性を有する第1の被膜で被覆した電池X1は、電池Y1よりも初期効率が改善した。さらに、正極活物質層の表面を第2の被膜で被覆した電池X2は、電池X1および電池Y1よりも初期効率がより改善した。
 本発明に係る負極は、パーソナルコンピュータ、携帯電話、モバイル機器、携帯情報端末(PDA)、携帯用ゲーム機器、ビデオカメラなどの駆動用電源、ハイブリッド電気自動車、燃料電池自動車、プラグインHEVなどにおける電気モータ駆動用の主電源または補助電源、電動工具、掃除機、ロボットなどの駆動用電源などに用いる非水電解質二次電池の負極として有用である。
 1 :非水電解質二次電池
10 :捲回型電極群
11 :角型電池ケース
12 :封口板
13 :負極端子
14 :正極リード
15 :負極リード
16 :ガスケット
17 :封栓
17a:注液孔
18 :枠体

Claims (12)

  1.  負極集電体と、前記負極集電体の表面に設けられた負極活物質層と、前記負極活物質層の表面の少なくとも一部を被覆するとともに前記負極集電体の表面を部分的に被覆するリチウムイオン透過性を有する第1の被膜と、を具備する、非水電解質二次電池用負極。
  2.  前記第1の被膜が、元素Mと、元素Aと、リチウムと、を含む第1のリチウム化合物を含み、
     Mは、P、Si、B、V、Nb、W、Ti、Zr、Al、Ba、LaおよびTaよりなる群から選択された少なくとも1種であり、
     Aは、F、S、O、NおよびBrよりなる群から選択された少なくとも1種である、請求項1に記載の非水電解質二次電池用負極。
  3.  前記第1の被膜において、前記第1のリチウム化合物の濃度が、前記第1の被膜の表面側で低く、前記第1の被膜と前記負極活物質層との接合界面側または前記第1の被膜と前記負極集電体との接合界面側で高くなっている、請求項2に記載の非水電解質二次電池用負極。
  4.  前記負極活物質層が、負極活物質粒子と、バインダーと、を含み、
     前記第1の被膜が、更に、前記バインダーの表面を部分的に被覆している、請求項1~3のいずれか1項に記載の非水電解質二次電池用負極。
  5.  前記負極活物質粒子と前記バインダーとの接着界面に、前記第1の被膜が介在しない領域を有する、請求項4に記載の非水電解質二次電池用負極。
  6.  前記負極活物質粒子と前記負極集電体との接触界面、または、互いに隣接する前記負極活物質粒子どうしの接触界面に、前記第1の被膜が介在しない領域を有する、請求項1~5のいずれか1項に記載の非水電解質二次電池用負極。
  7.  正極と、請求項1~6のいずれか1項に記載の負極と、リチウムイオン伝導性の非水電解質を含む、非水電解質二次電池。
  8.  前記正極が、正極集電体と、前記正極集電体の表面に設けられた正極活物質層と、前記正極活物質層の表面の少なくとも一部を被覆するとともに前記正極集電体の表面を部分的に被覆するリチウムイオン透過性を有する第2の被膜と、を具備する、請求項7に記載の非水電解質二次電池。
  9.  前記第2の被膜が、下記組成式:
      Lix2 y2
    (式中、Mは、P、Si、B、V、Nb、W、Ti、Zr、Al、Ba、LaおよびTaよりなる群から選択された少なくとも1種であり、Aは、F、S、O、NおよびBrよりなる群から選択された少なくとも1種であり、0.5≦x2≦4であり、1≦y2≦6である。)で表される第2のリチウム化合物を含む、請求項8に記載の非水電解質二次電池。
  10.  前記正極活物質層が、正極活物質粒子と、バインダーと、を含み、
     前記正極活物質粒子が、下記組成式:
     LiNi 1-b
    (式中、Mは、Mn、CoおよびAlよりなる群から選択された少なくとも1種であり、0<a≦1.2であり、0.85<b≦1である。)で表される、請求項8または9に記載の非水電解質二次電池。
  11.  負極集電体と、前記負極集電体の表面に設けられた負極活物質層と、を具備する負極前駆体を準備する工程と、
     リチウムイオン透過性を有する第1の被膜で、前記負極活物質層の表面の少なくとも一部を被覆するとともに前記負極集電体の表面を部分的に被覆する工程と、を具備し、
     前記第1の被膜が、前記第1の被膜の原料を含む200℃以下の雰囲気に、前記負極前駆体を暴露することにより形成される、非水電解質二次電池用負極の製造方法。
  12.  原子層堆積法により、前記第1の被膜が形成される、請求項11に記載の非水電解質二次電池用負極の製造方法。
PCT/JP2017/032763 2016-09-23 2017-09-12 非水電解質二次電池用負極、非水電解質二次電池及び非水電解質二次電池用負極の製造方法 WO2018056107A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780049714.3A CN109565032B (zh) 2016-09-23 2017-09-12 非水电解质二次电池用负极、非水电解质二次电池及非水电解质二次电池用负极的制造方法
JP2018540979A JP7029676B2 (ja) 2016-09-23 2017-09-12 非水電解質二次電池用負極、非水電解質二次電池及び非水電解質二次電池用負極の製造方法
US16/357,517 US11069886B2 (en) 2016-09-23 2019-03-19 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary battery
US17/336,566 US20210296632A1 (en) 2016-09-23 2021-06-02 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016185957 2016-09-23
JP2016-185957 2016-09-23
JP2017167582 2017-08-31
JP2017-167582 2017-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/357,517 Continuation US11069886B2 (en) 2016-09-23 2019-03-19 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2018056107A1 true WO2018056107A1 (ja) 2018-03-29

Family

ID=61689916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032763 WO2018056107A1 (ja) 2016-09-23 2017-09-12 非水電解質二次電池用負極、非水電解質二次電池及び非水電解質二次電池用負極の製造方法

Country Status (4)

Country Link
US (2) US11069886B2 (ja)
JP (1) JP7029676B2 (ja)
CN (1) CN109565032B (ja)
WO (1) WO2018056107A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230073596A1 (en) * 2020-01-31 2023-03-09 Sanyo Electric Co., Ltd. Non-aqueous electrolytic secondary battery
WO2021156867A1 (en) * 2020-02-06 2021-08-12 Bar-Ilan University Method for production of lixsiyoz coatings using a single source for li and si and resultant coated products
CN113422022A (zh) * 2021-06-25 2021-09-21 洛阳月星新能源科技有限公司 一种快充石墨负极材料及其制备方法
CN115842103A (zh) * 2021-11-02 2023-03-24 宁德时代新能源科技股份有限公司 负极极片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173770A (ja) * 2001-12-04 2003-06-20 Japan Storage Battery Co Ltd 非水電解質電池および非水電解質電池の製造法
JP2013143375A (ja) * 2012-01-06 2013-07-22 National Taiwan Univ Of Science & Technology リチウムイオン電池のアノードプロテクタ及びその製造方法
WO2016051656A1 (ja) * 2014-09-30 2016-04-07 三洋電機株式会社 非水電解質二次電池
JP2017097999A (ja) * 2015-11-19 2017-06-01 株式会社デンソー 蓄電素子及びその製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724217B2 (ja) 1998-08-20 2005-12-07 トヨタ自動車株式会社 リチウムイオン2次電池用負極
JP2002083602A (ja) 2000-06-29 2002-03-22 Sony Corp 非水電解液二次電池及びその製造方法
JP4967321B2 (ja) 2005-11-21 2012-07-04 ソニー株式会社 リチウムイオン二次電池
JP5127706B2 (ja) 2006-05-31 2013-01-23 三洋電機株式会社 高電圧充電型非水電解質二次電池
JP5298558B2 (ja) 2007-08-30 2013-09-25 ソニー株式会社 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電子機器
US8367251B2 (en) 2007-08-30 2013-02-05 Sony Corporation Anode with lithium containing ionic polymer coat, method of manufacturing same, secondary battery, and method of manufacturing same
JP5262085B2 (ja) 2007-11-28 2013-08-14 ソニー株式会社 負極、二次電池および電子機器
JP5234247B2 (ja) 2007-12-28 2013-07-10 ソニー株式会社 負極、二次電池、スルホン化合物および電子機器
EP2225407B1 (en) 2007-12-28 2017-05-31 Universitetet I Oslo Formation of a lithium comprising structure on a substrate by ald
JP2009193696A (ja) 2008-02-12 2009-08-27 Sony Corp 負極、二次電池およびそれらの製造方法
JP5922410B2 (ja) 2009-01-06 2016-05-24 エルジー・ケム・リミテッド リチウム二次電池用カソード活物質
US20120321965A1 (en) * 2010-02-25 2012-12-20 Masato Fujikawa Lithium ion secondary battery
US9196901B2 (en) 2010-06-14 2015-11-24 Lee Se-Hee Lithium battery electrodes with ultra-thin alumina coatings
US8735003B2 (en) 2010-06-16 2014-05-27 Alliance For Sustainable Energy, Llc Lithium-ion batteries having conformal solid electrolyte layers
KR101978726B1 (ko) * 2011-06-03 2019-05-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치 및 그 제작 방법
US20120315534A1 (en) * 2011-06-09 2012-12-13 Wildcat Discovery Technologies, Inc. Materials for Battery Electrolytes and Methods for Use
US20120315551A1 (en) * 2011-06-09 2012-12-13 Wildcat Discovery Technologies, Inc. Materials for Battery Electrolytes and Methods for Use
JP6015591B2 (ja) 2012-10-26 2016-10-26 トヨタ自動車株式会社 非水電解液二次電池
JP2014116149A (ja) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd リチウムイオン二次電池及びリチウム二次電池用正極活物質の製造方法
US9034519B2 (en) 2013-01-18 2015-05-19 GM Global Technology Operations LLC Ultrathin surface coating on negative electrodes to prevent transition metal deposition and methods for making and use thereof
WO2015050254A1 (ja) * 2013-10-04 2015-04-09 旭化成株式会社 リチウムイオン二次電池及びその製造方法
CN103730683B (zh) * 2013-12-27 2015-08-19 惠州亿纬锂能股份有限公司 一种锂电池及其制备方法
US20160351973A1 (en) 2015-06-01 2016-12-01 Energy Power Systems LLC Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings
CN105428631A (zh) * 2016-01-20 2016-03-23 宁德新能源科技有限公司 一种锂电池正极材料,其制备方法及含有该材料的锂离子电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173770A (ja) * 2001-12-04 2003-06-20 Japan Storage Battery Co Ltd 非水電解質電池および非水電解質電池の製造法
JP2013143375A (ja) * 2012-01-06 2013-07-22 National Taiwan Univ Of Science & Technology リチウムイオン電池のアノードプロテクタ及びその製造方法
WO2016051656A1 (ja) * 2014-09-30 2016-04-07 三洋電機株式会社 非水電解質二次電池
JP2017097999A (ja) * 2015-11-19 2017-06-01 株式会社デンソー 蓄電素子及びその製造方法

Also Published As

Publication number Publication date
US20210296632A1 (en) 2021-09-23
CN109565032A (zh) 2019-04-02
US20190214630A1 (en) 2019-07-11
JPWO2018056107A1 (ja) 2019-07-11
CN109565032B (zh) 2022-01-11
JP7029676B2 (ja) 2022-03-04
US11069886B2 (en) 2021-07-20

Similar Documents

Publication Publication Date Title
US10873076B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery
US11870053B2 (en) Secondary-battery negative electrode and manufacturing method thereof, and secondary battery
JP6070966B2 (ja) リチウム二次電池用負極活物質及びこれを含むリチウム二次電池
US11063254B2 (en) Negative electrode including lithium and fluorine containing coating film covering negative electrode active material layer
CN111095614B (zh) 二次电池用正极、二次电池和二次电池用正极的制造方法
WO2013018182A1 (ja) リチウムイオン二次電池
CN105576279B (zh) 锂二次电池
US11069886B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary battery
JP7182305B2 (ja) 二次電池用正極、二次電池および二次電池用正極の製造方法
JP2015162356A (ja) 被覆正極活物質、被覆正極活物質の製造方法およびリチウム電池
CN111033871B (zh) 水系二次电池
JPWO2015025887A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
US20220359871A1 (en) Secondary battery
CN112018342A (zh) 正极活性物质和使用该正极活性物质的二次电池
JP2011108498A (ja) 非水二次電池用正極、非水二次電池および前記非水二次電池を有する機器
JP5610031B1 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
CN112018389A (zh) 正极活性物质和使用该正极活性物质的二次电池
JP2012243485A (ja) 非水二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540979

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852884

Country of ref document: EP

Kind code of ref document: A1