WO2018051845A1 - Synthetic polymer film having surface provided with bactericidal action, and method for producing synthetic polymer film - Google Patents

Synthetic polymer film having surface provided with bactericidal action, and method for producing synthetic polymer film Download PDF

Info

Publication number
WO2018051845A1
WO2018051845A1 PCT/JP2017/031949 JP2017031949W WO2018051845A1 WO 2018051845 A1 WO2018051845 A1 WO 2018051845A1 JP 2017031949 W JP2017031949 W JP 2017031949W WO 2018051845 A1 WO2018051845 A1 WO 2018051845A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic polymer
polymer film
film
nitrogen element
aluminum
Prior art date
Application number
PCT/JP2017/031949
Other languages
French (fr)
Japanese (ja)
Inventor
隆裕 中原
美穂 山田
箕浦 潔
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2018539642A priority Critical patent/JP6674554B2/en
Priority to CN201780056684.9A priority patent/CN109790305A/en
Publication of WO2018051845A1 publication Critical patent/WO2018051845A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a synthetic polymer film having a surface having a bactericidal action, a sterilization method using the surface of the synthetic polymer film, a mold for producing the synthetic polymer film, and a method for producing the mold.
  • the “mold” here includes molds used in various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
  • Non-Patent Document 1 The physical structure of the nanopillars of black silicon, cicada and dragonfly wings is said to exert bactericidal action.
  • black silicon has the strongest bactericidal action against Gram-negative bacteria, and becomes weaker in the order of dragonfly wings and cicada wings.
  • Black silicon has nanopillars with a height of 500 nm, and semi and dragonfly wings have nanopillars with a height of 240 nm.
  • the static contact angle of water on these surfaces (hereinafter sometimes simply referred to as “contact angle”) is 80 ° for black silicon, whereas 153 ° for dragonfly, 159 °.
  • Black silicon is mainly formed from silicon, and the wings of cicada and dragonfly are considered to be formed from chitin.
  • the composition of the surface of black silicon is approximately silicon oxide, and the composition of the surfaces of semi- and dragonfly wings is lipid.
  • Non-Patent Document 1 From the results described in Non-Patent Document 1, the mechanism by which bacteria are killed by nanopillars is not clear. In addition, the reason why black silicon has a stronger bactericidal action than dragonflies and cicada wings is due to the difference in height and shape of nanopillars, the difference in surface free energy (which can be evaluated by contact angle), nanopillars It is unclear whether it is in the constituent material or the chemical nature of the surface.
  • black silicon has a problem that it is poor in mass productivity and has low formability because it is hard and brittle.
  • the present invention has been made to solve the above-mentioned problems, and its main object is to provide a synthetic polymer film having a surface having a bactericidal action and a method for producing the same.
  • a synthetic polymer film according to an embodiment of the present invention is a synthetic polymer film having a surface having a plurality of protrusions, and when viewed from the normal direction of the synthetic polymer film, the plurality of protrusions
  • the two-dimensional size is in the range of more than 20 nm and less than 500 nm, the surface has a bactericidal effect, and the total concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is It is 0.29 at% or more, and the number of moles of ethylene oxide units contained in 1 g is more than 0.0020.
  • the number of moles of ethylene oxide units contained in 1 g is 0.0070 or more.
  • the total concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is 0.33 at% or more.
  • the synthetic polymer film includes a urethane acrylate structure.
  • the urethane acrylate structure includes a repeating structure of ethylene oxide units.
  • the repeating number of the repeating structure is N, and N is 2 or more.
  • the urethane acrylate structure includes a polymer of urethane acrylate monomers having three or more functions.
  • the urethane acrylate monomer includes a heterocyclic ring containing a nitrogen element.
  • the heterocycle is a cyanuric ring.
  • a method for producing a synthetic polymer film according to an embodiment of the present invention includes an inverted moth-eye structure having a plurality of recesses having a two-dimensional size of 20 nm or more and less than 500 nm when viewed from the normal direction of the surface.
  • a method for producing a synthetic polymer film using a mold having a porous alumina layer on the surface thereof comprising: (a) a step of preparing the mold and a workpiece; and (b) an ethylene oxide unit A step of preparing a resin composition containing a urethane acrylate having a repeating structure and a primary or secondary amine and a reactive diluent and not containing a solvent; and (c) the resin composition on the surface of the workpiece. And (d) curing the resin composition by irradiating the resin composition with ultraviolet rays in a state where the resin composition is disposed between the mold and the surface of the workpiece. Including the step of.
  • a synthetic polymer film having a surface having a bactericidal action and a method for producing the same are provided.
  • (A) And (b) is typical sectional drawing of the synthetic polymer membranes 34A and 34B by embodiment of this invention, respectively.
  • (A)-(e) is a figure for demonstrating the manufacturing method of the moth-eye type
  • (A)-(c) is a figure for demonstrating the manufacturing method of the moth-eye type
  • (A) shows the SEM image of the surface of an aluminum base material
  • (b) shows the SEM image of the surface of an aluminum film
  • (c) shows the SEM image of the cross section of an aluminum film.
  • (A) is a typical top view of the type
  • (b) is typical sectional drawing
  • (c) is a figure which shows the SEM image of the prototype
  • (A) And (b) is a figure which shows the SEM image which observed the Pseudomonas aeruginosa dead on the surface which has a moth-eye structure with SEM (scanning electron microscope). It is a graph which shows the evaluation result of bactericidal property. It is a graph which shows the evaluation result of bactericidal property. It is a graph which shows the evaluation result of bactericidal property. It is a graph which shows the evaluation result of bactericidal property. It is a graph which shows the evaluation result of bactericidal property.
  • “Sterilization (microbicidal)” refers to reducing the effective number of objects such as objects and liquids and the number of proliferating microorganisms contained in a limited space.
  • Microorganism includes viruses, bacteria, and fungi.
  • Antimicrobial broadly includes inhibiting and preventing the growth of microorganisms, and includes inhibiting darkening and slimming caused by microorganisms.
  • the present applicant has developed a method of manufacturing an antireflection film (antireflection surface) having a moth-eye structure using an anodized porous alumina layer.
  • anodized porous alumina layer By using the anodized porous alumina layer, a mold having an inverted moth-eye structure can be manufactured with high mass productivity (for example, Patent Documents 1 to 4).
  • Patent Documents 1 to 4 For reference, the entire disclosure of Patent Documents 1 to 4 is incorporated herein by reference.
  • the present inventor has developed a synthetic polymer film having a bactericidal effect on the surface by applying the above technique.
  • FIGS. 1A and 1B are schematic cross-sectional views of synthetic polymer membranes 34A and 34B according to an embodiment of the present invention, respectively.
  • the synthetic polymer films 34A and 34B exemplified here are both formed on the base films 42A and 42B, respectively, but of course not limited thereto.
  • Synthetic polymer films 34A and 34B can be formed directly on the surface of any object.
  • a film 50A shown in FIG. 1A includes a base film 42A and a synthetic polymer film 34A formed on the base film 42A.
  • the synthetic polymer film 34A has a plurality of convex portions 34Ap on the surface, and the plurality of convex portions 34Ap constitutes a moth-eye structure.
  • the two-dimensional size D p of the convex portion 34Ap is in the range of more than 20 nm and less than 500 nm.
  • the “two-dimensional size” of the protrusion 34Ap refers to the area equivalent circle diameter of the protrusion 34Ap when viewed from the normal direction of the surface.
  • the two-dimensional size of the convex portion 34Ap corresponds to the diameter of the bottom surface of the cone.
  • a typical inter-adjacent distance D int of the convex portion 34Ap is more than 20 nm and not more than 1000 nm.
  • the two-dimensional size D p of the portion 34Ap is equal to the inter-adjacent distance D int .
  • a typical height D h of the convex portion 34Ap is not less than 50 nm and less than 500 nm. As will be described later, even if the height D h of the convex portion 34Ap is 150 nm or less, the bactericidal action is exhibited. There is no particular limitation on the thickness t s of the synthetic polymer film 34A, be greater than the height D h of the convex portion 34Ap.
  • the synthetic polymer film 34A shown in FIG. 1A has a moth-eye structure similar to that of the antireflection film described in Patent Documents 1 to 4.
  • the surface has no flat portion and the convex portions 34Ap are densely arranged.
  • the convex portion 34Ap has a shape in which a cross-sectional area (a cross section parallel to the plane orthogonal to the incident light beam, for example, a cross section parallel to the surface of the base film 42A) increases from the air side toward the base film 42A side, for example, A conical shape is preferred.
  • the protrusions 34Ap preferably randomly so as not to have regularity.
  • the convex portions 34A need not be densely arranged, and may be regularly arranged.
  • the shape and arrangement of the convex portions 34Ap are preferably selected so as to effectively act on microorganisms.
  • the 1B includes a base film 42B and a synthetic polymer film 34B formed on the base film 42B.
  • the synthetic polymer film 34B has a plurality of protrusions 34Bp on the surface, and the plurality of protrusions 34Bp constitutes a moth-eye structure.
  • the structure of the convex part 34Bp of the synthetic polymer film 34B is different from the structure of the convex part 34Ap of the synthetic polymer film 34A of the film 50A. Description of features common to the film 50A may be omitted.
  • the two-dimensional size D p of the convex portion 34Bp is in the range of more than 20 nm and less than 500 nm.
  • a typical inter-adjacent distance D int of the convex portion 34Bp is more than 20 nm and not more than 1000 nm, and D p ⁇ D int . That is, in the synthetic polymer film 34B, there is a flat portion between the adjacent convex portions 34Bp.
  • the convex portion 34Bp has a cylindrical shape having a conical portion on the air side, and a typical height D h of the convex portion 34Bp is 50 nm or more and less than 500 nm.
  • the convex portions 34Bp may be regularly arranged or irregularly arranged. When the convex portions 34Bp are regularly arranged, D int also represents the period of the arrangement. Of course, the same applies to the synthetic polymer film 34A.
  • the “moth eye structure” is a convex having a shape in which the cross-sectional area (cross section parallel to the film surface) increases like the convex portion 34Ap of the synthetic polymer film 34A shown in FIG.
  • the cross-sectional area (cross section parallel to the film surface) is similar to the convex part 34Bp of the synthetic polymer film 34B shown in FIG.
  • the conical tip does not necessarily have a nano surface structure, and may have a roundness (about 60 nm) that is about the size of a nano pillar that constitutes the nano surface structure of a semi-wing.
  • a mold for forming a moth-eye structure as illustrated in FIGS. 1A and 1B on the surface (hereinafter referred to as “moth-eye mold”) is an inverted moth-eye structure obtained by inverting the moth-eye structure.
  • the moth-eye structure can be manufactured at low cost.
  • a moth-eye structure can be efficiently manufactured by a roll-to-roll method.
  • Such moth-eye molds can be manufactured by the methods described in Patent Documents 2 to 4.
  • an aluminum substrate 12 As a mold substrate, an aluminum substrate 12, an inorganic material layer 16 formed on the surface of the aluminum substrate 12, and aluminum deposited on the inorganic material layer 16 are used.
  • a mold substrate 10 having a film 18 is prepared.
  • a relatively rigid aluminum substrate having an aluminum purity of 99.50 mass% or more and less than 99.99 mass% is used.
  • impurities contained in the aluminum substrate 12 iron (Fe), silicon (Si), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), titanium (Ti), lead (Pb) It is preferable that at least one element selected from the group consisting of tin (Sn) and magnesium (Mg) is included, and Mg is particularly preferable.
  • the mechanism by which pits (dents) are formed in the etching process is a local cell reaction, and therefore ideally contains no noble elements than aluminum and is a base metal, Mg (standard electrode potential ⁇ It is preferable to use an aluminum substrate 12 containing 2.36V) as an impurity element. If the content of an element nobler than aluminum is 10 ppm or less, it can be said that the said element is not included substantially from an electrochemical viewpoint.
  • the Mg content is preferably 0.1% by mass or more, and more preferably in the range of about 3.0% by mass or less. If the Mg content is less than 0.1 mass%, sufficient rigidity cannot be obtained. On the other hand, when the content rate increases, Mg segregation easily occurs.
  • Mg forms an anodic oxide film having a form different from that of aluminum, which causes defects.
  • the content rate of an impurity element according to the rigidity required according to the shape of the aluminum base material 12, thickness, and a magnitude
  • an appropriate Mg content is about 3.0 mass%, and the aluminum substrate 12 having a three-dimensional structure such as a cylinder is produced by extrusion.
  • the content rate of Mg is 2.0 mass% or less. If the Mg content exceeds 2.0 mass%, extrusion processability generally decreases.
  • a cylindrical aluminum tube formed of JIS A1050, Al—Mg alloy (for example, JIS A5052), or Al—Mg—Si alloy (for example, JIS A6063) is used as the aluminum substrate 12.
  • the surface of the aluminum substrate 12 is preferably subjected to cutting by cutting. If, for example, abrasive grains remain on the surface of the aluminum base 12, electrical conduction between the aluminum film 18 and the aluminum base 12 is facilitated in a portion where the abrasive grains exist. In addition to the abrasive grains, where there are irregularities, local conduction between the aluminum film 18 and the aluminum substrate 12 is likely to occur. When local conduction is made between the aluminum film 18 and the aluminum base 12, there is a possibility that a battery reaction occurs locally between the impurities in the aluminum base 12 and the aluminum film 18.
  • the inorganic material layer 16 for example, tantalum oxide (Ta 2 O 5 ) or silicon dioxide (SiO 2 ) can be used.
  • the inorganic material layer 16 can be formed by sputtering, for example.
  • the thickness of the tantalum oxide layer is, for example, 200 nm.
  • the thickness of the inorganic material layer 16 is preferably 100 nm or more and less than 500 nm. If the thickness of the inorganic material layer 16 is less than 100 nm, defects (mainly voids, that is, gaps between crystal grains) may occur in the aluminum film 18 in some cases. Further, when the thickness of the inorganic material layer 16 is 500 nm or more, the aluminum base 12 and the aluminum film 18 are easily insulated from each other depending on the surface state of the aluminum base 12. In order to anodize the aluminum film 18 by supplying current to the aluminum film 18 from the aluminum substrate 12 side, it is necessary that a current flow between the aluminum substrate 12 and the aluminum film 18.
  • the aluminum film 18 can be uniformly anodized over the entire surface without causing a problem that it is difficult to be supplied.
  • the thick inorganic material layer 16 it is generally necessary to lengthen the film formation time.
  • the film formation time is lengthened, the surface temperature of the aluminum base 12 is unnecessarily increased. As a result, the film quality of the aluminum film 18 is deteriorated, and defects (mainly voids) may occur. If the thickness of the inorganic material layer 16 is less than 500 nm, the occurrence of such a problem can be suppressed.
  • the aluminum film 18 is, for example, a film formed of aluminum having a purity of 99.99 mass% or more (hereinafter, also referred to as “high-purity aluminum film”) as described in Patent Document 3. .
  • the aluminum film 18 is formed using, for example, a vacuum deposition method or a sputtering method.
  • the thickness of the aluminum film 18 is preferably in the range of about 500 nm or more and about 1500 nm or less, for example, about 1 ⁇ m.
  • an aluminum alloy film described in Patent Document 4 may be used instead of the high-purity aluminum film.
  • the aluminum alloy film described in Patent Document 4 includes aluminum, a metal element other than aluminum, and nitrogen.
  • the “aluminum film” includes not only a high-purity aluminum film but also an aluminum alloy film described in Patent Document 4.
  • the average grain size of the crystal grains constituting the aluminum alloy film as viewed from the normal direction of the aluminum alloy film is, for example, 100 nm or less, and the maximum surface roughness Rmax of the aluminum alloy film is 60 nm or less.
  • the content rate of nitrogen contained in the aluminum alloy film is, for example, not less than 0.5 mass% and not more than 5.7 mass%.
  • the absolute value of the difference between the standard electrode potential of a metal element other than aluminum contained in the aluminum alloy film and the standard electrode potential of aluminum is 0.64 V or less, and the content of the metal element in the aluminum alloy film is 1.0 mass. % Or more and 1.9 mass% or less is preferable.
  • the metal element is, for example, Ti or Nd.
  • the metal element is not limited to this, and other metal elements whose absolute value of the difference between the standard electrode potential of the metal element and the standard electrode potential of aluminum is 0.64 V or less (for example, Mn, Mg, Zr, V, and Pb).
  • the metal element may be Mo, Nb, or Hf.
  • the aluminum alloy film may contain two or more of these metal elements.
  • the aluminum alloy film is formed by, for example, a DC magnetron sputtering method.
  • the thickness of the aluminum alloy film is also preferably in the range of about 500 nm to about 1500 nm, for example, about 1 ⁇ m.
  • the surface 18s of the aluminum film 18 is anodized to form a porous alumina layer 14 having a plurality of recesses (pores) 14p.
  • the porous alumina layer 14 has a porous layer having a recess 14p and a barrier layer (the bottom of the recess (pore) 14p). It is known that the interval between the adjacent recesses 14p (center-to-center distance) corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization. This relationship also holds for the final porous alumina layer 14 shown in FIG.
  • the porous alumina layer 14 is formed, for example, by anodizing the surface 18s in an acidic electrolytic solution.
  • the electrolytic solution used in the step of forming the porous alumina layer 14 is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, sulfuric acid, chromic acid, citric acid, and malic acid.
  • the porous alumina layer 14 is formed by anodizing the surface 18 s of the aluminum film 18 using an oxalic acid aqueous solution (concentration 0.3 mass%, liquid temperature 10 ° C.) at an applied voltage of 80 V for 55 seconds.
  • the porous alumina layer 14 is brought into contact with an alumina etchant and etched by a predetermined amount to enlarge the opening of the recess 14p.
  • the amount of etching (that is, the size and depth of the recess 14p) can be controlled by adjusting the type / concentration of the etching solution and the etching time.
  • an etchant for example, 10 mass% phosphoric acid, an organic acid such as formic acid, acetic acid, or citric acid, an aqueous solution of sulfuric acid, or a mixed aqueous solution of chromic phosphoric acid can be used.
  • etching is performed for 20 minutes using a phosphoric acid aqueous solution (10 mass%, 30 ° C.).
  • the aluminum film 18 is partially anodized again to grow the recesses 14p in the depth direction and to thicken the porous alumina layer 14.
  • the side surface of the recess 14p is stepped.
  • the porous alumina layer 14 is further etched by bringing it into contact with an alumina etchant to further enlarge the hole diameter of the recess 14p.
  • an alumina etchant it is preferable to use the above-described etchant, and in practice, the same etch bath may be used.
  • anodizing step and etching step were alternately repeated a plurality of times (for example, 5 times: anodizing 5 times and etching 4 times), thereby being inverted as shown in FIG.
  • a moth-eye mold 100A having a porous alumina layer 14 having a moth-eye structure is obtained.
  • the bottom of the recess 14p can be pointed. That is, a mold capable of forming a convex part with a sharp tip is obtained.
  • the porous alumina layer 14 (thickness t p ) shown in FIG. 2 (e) has a porous layer (thickness corresponds to the depth D d of the recess 14p) and a barrier layer (thickness t b ). Since the porous alumina layer 14 has a structure obtained by inverting the moth-eye structure of the synthetic polymer film 34A, the same symbol may be used for the corresponding parameter characterizing the size.
  • the concave portion 14p of the porous alumina layer 14 is, for example, conical and may have stepped side surfaces.
  • Two-dimensional size of the recess 14p is D p (area equivalent circle diameter of the recess when viewed from the direction normal to the surface) is less than 20nm ultra 500 nm, the depth D d in the order of less than 50nm over 1000 nm (1 [mu] m) Preferably there is.
  • the bottom part of the recessed part 14p is pointed (the bottom is a point).
  • the adjacent circles overlap with each other, and a flange portion is formed between the adjacent recesses 14p. It is formed.
  • two-dimensional size D p of the concave portion 14p is equal to the distance between adjacent D int.
  • the thickness t p of the porous alumina layer 14 is, for example, about 1 ⁇ m or less.
  • an aluminum remaining layer 18r that has not been anodized in the aluminum film 18 is present.
  • the aluminum film 18 may be anodized substantially completely so that the remaining aluminum layer 18r does not exist.
  • the inorganic material layer 16 is thin, current can be easily supplied from the aluminum substrate 12 side.
  • the moth-eye mold manufacturing method exemplified here can manufacture a mold for producing an antireflection film described in Patent Documents 2 to 4.
  • Anti-reflective coatings used in high-definition display panels are required to have high uniformity. Therefore, as described above, the selection of the aluminum base material, mirror finishing of the aluminum base, and control of the purity and composition of the aluminum film.
  • the above-described mold manufacturing method can be simplified. For example, the surface of the aluminum substrate may be directly anodized.
  • a mold having a low regularity of the arrangement of the concave portions suitable for the production of the antireflection film can be manufactured.
  • the regularity of the arrangement of the convex portions does not affect.
  • a mold for forming a moth-eye structure having regularly arranged convex portions can be manufactured as follows, for example.
  • the produced porous alumina layer is removed by etching, and then anodization is performed under conditions for producing the porous alumina layer described above.
  • the porous alumina layer having a thickness of 10 ⁇ m is formed by increasing the anodic oxidation time.
  • the porous alumina layer is regularly arranged without being affected by irregularities or processing strain caused by grains present on the surface of the aluminum film or the aluminum substrate.
  • a porous alumina layer having a concave portion can be formed.
  • liquid mixture of chromic acid and phosphoric acid for the removal of a porous alumina layer.
  • galvanic corrosion may occur, but a mixed solution of chromic acid and phosphoric acid has an effect of suppressing galvanic corrosion.
  • the moth-eye mold for forming the synthetic polymer film 34B shown in FIG. 1B can also be basically manufactured by combining the above-described anodizing step and etching step. With reference to FIGS. 3A to 3C, a method of manufacturing the moth-eye mold 100B for forming the synthetic polymer film 34B will be described.
  • the mold base 10 is prepared, and the surface 18s of the aluminum film 18 is anodized, whereby a plurality of recesses (pores) are prepared.
  • a porous alumina layer 14 having 14p is formed.
  • the porous alumina layer 14 is brought into contact with an alumina etchant to be etched by a predetermined amount to enlarge the opening of the recess 14p.
  • the etching amount is reduced as compared with the etching process described with reference to FIG. That is, the size of the opening of the recess 14p is reduced.
  • etching is performed for 10 minutes using a phosphoric acid aqueous solution (10 mass%, 30 ° C.).
  • the aluminum film 18 is partially anodized again to grow the recesses 14p in the depth direction and to thicken the porous alumina layer 14.
  • the recess 14p is grown deeper than in the anodic oxidation step described with reference to FIG.
  • anodic oxidation is performed for 165 seconds at an applied voltage of 80 V using an oxalic acid aqueous solution (concentration: 0.3 mass%, liquid temperature: 10 ° C. (55 seconds in FIG. 2D)).
  • the etching process and the anodic oxidation process are alternately repeated a plurality of times.
  • a moth-eye mold 100B having a porous alumina layer 14 having an inverted moth-eye structure is obtained as shown in FIG. It is done.
  • the two-dimensional size D p of the recess 14p is smaller than the inter-adjacent distance D int (D p ⁇ D int ).
  • the size of microorganisms varies depending on the type.
  • the size of Pseudomonas aeruginosa is about 1 ⁇ m, but some bacteria have a size of several hundred nm to about 5 ⁇ m, and fungi are several ⁇ m or more.
  • a convex portion having a two-dimensional size of about 200 nm is considered to have a bactericidal action against microorganisms having a size of about 0.5 ⁇ m or more, but for bacteria having a size of several hundred nm.
  • the convex part is too large, and there is a possibility that a sufficient bactericidal action is not exhibited.
  • the size of the virus is several tens nm to several hundreds nm, and many of them are 100 nm or less.
  • the virus does not have a cell membrane, but has a protein shell called a capsid that surrounds the viral nucleic acid.
  • Viruses can be divided into viruses having a membrane-like envelope outside the shell and viruses not having an envelope.
  • the envelope is mainly composed of lipid, it is considered that the convex portion acts on the envelope in the same manner.
  • examples of the virus having an envelope include influenza virus and Ebola virus.
  • viruses that do not have an envelope it is thought that the convex portion acts on the protein shell called capsid in the same manner.
  • affinity with a protein composed of amino acids may be increased.
  • the convex portion of the synthetic polymer film exemplified above having a two-dimensional size in the range of more than 20 nm and less than 500 nm is referred to as a first convex portion.
  • the convex part formed so as to overlap the first convex part is called a second convex part
  • the two-dimensional size of the second convex part is the two-dimensional size of the first convex part. Smaller than 100 nm and not exceeding 100 nm.
  • the concave portion of the mold corresponding to the first convex portion is referred to as a first concave portion
  • the concave portion of the mold corresponding to the second convex portion is referred to as a second concave portion.
  • the method for forming the first concave portion having a predetermined size and shape is applied as it is by alternately performing the above-described anodizing step and etching step, the second concave portion cannot be formed.
  • FIG. 4A shows an SEM image of the surface of the aluminum base (reference numeral 12 in FIG. 2)
  • FIG. 4B shows an SEM image of the surface of the aluminum film (reference numeral 18 in FIG. 2).
  • FIG. 4C shows an SEM image of a cross section of the aluminum film (reference numeral 18 in FIG. 2).
  • grains are present on the surface of the aluminum substrate and the surface of the aluminum film.
  • the grain of the aluminum film forms irregularities on the surface of the aluminum film. The unevenness on the surface affects the formation of the recess during anodic oxidation, thus preventing the formation of the second recess with D p or D int smaller than 100 nm.
  • a mold manufacturing method includes: (a) a step of preparing an aluminum film deposited on an aluminum substrate or support; and (b) an electrolysis of the surface of the aluminum substrate or aluminum film.
  • the first level is above 40V and the second level is below 20V.
  • a first recess having a size that is not affected by the grain of the aluminum base material or the aluminum film is formed in the anodizing process at the first level voltage, and then the thickness of the barrier layer is reduced by etching.
  • the second recess is formed in the first recess by an anodic oxidation step at a second level voltage lower than the first level.
  • FIG. 5A is a schematic plan view of a porous alumina layer of the mold
  • FIG. 5B is a schematic cross-sectional view
  • FIG. 5C shows an SEM image of the prototype mold.
  • the surface of the mold according to the present embodiment has a plurality of first recesses 14pa whose two-dimensional size is in the range of more than 20 nm and less than 500 nm, and a plurality of It further has a plurality of second recesses 14pb formed so as to overlap the first recess 14pa.
  • the two-dimensional size of the plurality of second recesses 14pb is smaller than the two-dimensional size of the plurality of first recesses 14pa and does not exceed 100 nm.
  • the height of the second recess 14pb is, for example, more than 20 nm and not more than 100 nm.
  • the second recess 14pb preferably includes a substantially conical portion.
  • the porous alumina layer shown in FIG. 5 (c) was manufactured as follows.
  • an aluminum film containing 1 mass% of Ti was used as the aluminum film.
  • An oxalic acid aqueous solution (concentration 0.3 mass%, temperature 10 ° C.) was used as the anodizing solution, and an phosphoric acid aqueous solution (concentration 10 mass%, temperature 30 ° C.) was used as the etching solution.
  • etching was performed for 25 minutes, followed by anodic oxidation at a voltage of 80 V for 52 seconds and etching for 25 minutes. Thereafter, anodic oxidation at 20 V was performed for 52 seconds, etching was performed for 5 minutes, and anodic oxidation at 20 V was further performed for 52 seconds.
  • Figure 5 (c) As can be seen from, among D p is in the first recess of about 200 nm, a second recess of D p is about 50nm is formed.
  • the first level voltage is changed from 80 V to 45 V to form a porous alumina layer
  • the first recess having D p of about 100 nm is formed in the first recess having D p of about 50 nm. Two recesses were formed.
  • a synthetic polymer film When a synthetic polymer film is produced using such a mold, a synthetic polymer having a convex portion obtained by inverting the structure of the first concave portion 14pa and the second concave portion 14pb shown in FIGS. 5 (a) and (b). A membrane is obtained. That is, a synthetic polymer film further having a plurality of second protrusions formed so as to overlap with the plurality of first protrusions is obtained.
  • the synthetic polymer film having the first convex portion and the second convex portion formed so as to overlap the first convex portion is made from a relatively small microorganism of about 100 nm to a relatively large size of 5 ⁇ m or more. Can have bactericidal action against microorganisms.
  • a mold for forming such a convex portion can be manufactured as follows, for example.
  • Anodic oxidation using neutral salt aqueous solution such as ammonium borate, ammonium citrate, etc.
  • neutral salt aqueous solution such as ammonium tartrate aqueous solution and organic acids (maleic acid, malonic acid, phthalic acid, citric acid, tartaric acid, etc.) with low ion dissociation
  • the barrier type anodic oxide film is formed, the barrier type anodic oxide film is removed by etching, and then anodized at a predetermined voltage (the second level voltage described above).
  • Recesses in the range of more than 20 nm and less than 100 nm can be formed.
  • an aluminum film containing 1 mass% of Ti is used as the aluminum film, and an anodization is performed at 100 V for 2 minutes using an aqueous tartaric acid solution (concentration: 0.1 mol / l, temperature: 23 ° C.). Form. Thereafter, the barrier type anodic oxide film is removed by etching for 25 minutes using a phosphoric acid aqueous solution (concentration: 10 mass%, temperature: 30 ° C.). Thereafter, in the same manner as described above, an oxalic acid aqueous solution (concentration: 0.3 mass%, temperature: 10 ° C.) was used as the anodizing solution.
  • Anodizing at 20 V was performed for 52 seconds, and etching using the etching solution was alternately performed for 5 minutes. By repeating the anodic oxidation 5 times and the etching 4 times, it is possible to uniformly form a recess having a two-dimensional size of about 50 nm.
  • moth-eye molds capable of forming various moth-eye structures can be manufactured.
  • FIG. 6 is a schematic cross-sectional view for explaining a method for producing a synthetic polymer film by a roll-to-roll method.
  • a method for producing a synthetic polymer film on the surface of a base film as a workpiece using the above roll mold will be described.
  • a method for producing a synthetic polymer film according to an embodiment of the present invention is described below.
  • the synthetic polymer film can be manufactured on the surface of various workpieces using other shapes.
  • a cylindrical moth-eye mold 100 is prepared.
  • the cylindrical moth-eye mold 100 is manufactured, for example, by the manufacturing method described with reference to FIG.
  • ultraviolet curing is performed by irradiating ultraviolet curing resin 34 ′ with ultraviolet rays (UV) in a state in which base film 42 provided with ultraviolet curing resin 34 ′ is pressed against moth-eye mold 100. Resin 34 'is cured.
  • the ultraviolet curable resin 34 ′ for example, an acrylic resin can be used.
  • the base film 42 is, for example, a PET (polyethylene terephthalate) film or a TAC (triacetyl cellulose) film.
  • the base film 42 is unwound from an unillustrated unwinding roller, and then an ultraviolet curable resin 34 'is applied to the surface by, for example, a slit coater. As shown in FIG.
  • the base film 42 is supported by support rollers 46 and 48.
  • the support rollers 46 and 48 have a rotation mechanism and convey the base film 42.
  • the cylindrical moth-eye mold 100 is rotated in a direction indicated by an arrow in FIG. 6 at a rotational speed corresponding to the transport speed of the base film 42.
  • the synthetic polymer film 34 to which the inverted moth-eye structure of the moth-eye mold 100 is transferred is formed on the surface of the base film 42.
  • the base film 42 having the synthetic polymer film 34 formed on the surface is wound up by a winding roller (not shown).
  • the surface of the synthetic polymer film 34 has a moth-eye structure obtained by inverting the nano-surface structure of the moth-eye mold 100.
  • the synthetic polymer films 34A and 34B shown in FIGS. 1A and 1B can be produced.
  • the material for forming the synthetic polymer film 34 is not limited to an ultraviolet curable resin, and a photocurable resin that can be cured with visible light can be used, and a thermosetting resin can also be used.
  • the bactericidal properties of a synthetic polymer film having a moth-eye structure on the surface correlate not only with the physical structure of the synthetic polymer film but also with the chemical properties of the synthetic polymer film.
  • the applicant of the present application as a chemical property, the contact angle of the surface of the synthetic polymer film (Patent Publication 1: Patent No. 5788128) and the concentration of nitrogen element contained in the surface (International Publication No. 2: International Publication No. 2). Correlation with No. 2016/080245) was found.
  • the nitrogen element concentration on the surface is preferably 0.7 at% or more.
  • the entire contents of the above-mentioned Patent Publication 1 and International Publication 2 are incorporated herein by reference.
  • FIG. 7 shows the SEM image shown in International Publication 2 (FIG. 8).
  • FIGS. 7A and 7B are views showing SEM images of Pseudomonas aeruginosa dying on the surface having the moth eye structure shown in FIG. 1A, observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • An opening may be formed in a portion close to the convex portion, and the convex portion may have entered the opening.
  • the convex part may be taken in by the mechanism (endocytosis) which takes in the substance (including a nutrient source) which has polarity which a cell has.
  • the composition of the resin forming the synthetic polymer film 34A was changed, and the relationship between antibacterial properties and bactericidal properties was examined.
  • acrylic resin having ultraviolet curability
  • acrylic resin having ultraviolet curability
  • the urethane acrylate is mixed with an acrylic resin having a different content of ethylene oxide group or ethylene oxide unit (which is a structural unit in which ethylene oxide is ring-opened; hereinafter referred to as “EO unit”),
  • EO unit ethylene oxide unit
  • CH 2 CH 2 O ethylene oxide unit
  • the proportion of EO units (CH 2 CH 2 O) contained in the entire acrylic resin was adjusted.
  • the synthetic polymer film 34A becomes a film rich in flexibility and hydrophilicity.
  • the repeating structure of the EO unit may be referred to as a polyethylene glycol chain (PEG chain).
  • the number of repeating EO units may be referred to as the chain length of the PEG chain.
  • [Synthetic polymer membrane] A sample film having the same structure as the film 50A shown in FIG. Ten types of resins A1 to A5, B, C1 to C2, D, and E shown in Table 1 below are used as acrylic resins (acrylate monomers or acrylate oligomers) for producing a synthetic polymer film 34A having a moth-eye structure on the surface. It was. Hereinafter, the name of the sample film will be specified by attaching the same A1 to A5, B, C1 to C2, D and E as the resin. Table 1 shows the composition of each resin (% in Table 1 is% by mass). The chemical structural formulas of the acrylic resins I to V are shown in [Chemical Formula 1] to [Chemical Formula 5], respectively.
  • Table 1 shows the molecular weight (MW) of each of the acrylic resins I to V and the number of EO units contained in one molecule, and 1 g of each of the resins A1 to A5, B, C1 to C2, D and E. The number of moles of EO units contained is shown. Table 1 describes in order from the smallest number of moles of EO units.
  • Table 1 shows nitrogen element at% calculated based on the composition and chemical formula for each of the resins A1 to A5, B, C1 to C2, D, and E. Table 1 includes the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine, and all the nitrogen elements (ie, the nitrogen element forming the tertiary amine). The calculated nitrogen element concentration is also shown.
  • each of the resins A1 to E is dissolved in MEK (manufactured by Maruzen Petrochemical Co., Ltd.) to form a solution having a solid content of 70% by mass, applied onto the base film 42A, and the MEK is removed by heating to obtain a thickness of about 25 ⁇ m.
  • a film of ⁇ 50 ⁇ m was obtained (sample film C2 only 3 ⁇ m thick).
  • As the base film 42A a PET film having a thickness of 50 ⁇ m (A4300 manufactured by Toyobo Co., Ltd.) was used.
  • a synthetic polymer film 34A having a moth-eye structure on the surface was produced using the moth-eye mold 100A by the same method as described with reference to FIG. The exposure amount was about 200 mJ / cm 2 .
  • D p is about 200nm in each sample film, D int of about 200nm, D h is about 150 nm.
  • Acrylic resin I is urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: trade name UA-7100) and contains nitrogen element.
  • the chemical formula shown in [Chemical Formula 1] is estimated.
  • the acrylic resin I includes a repeating structure of EO units (the number of repetitions is 9).
  • the acrylic resin I is a trifunctional urethane acrylate.
  • the acrylic resin I contains a cyanuric ring that is a heterocyclic ring (heterocycle) containing a nitrogen element.
  • the acrylic resin II is ⁇ -caprolactone-modified tris- (2-acryloxyethyl) isocyanurate (manufactured by Shin-Nakamura Chemical Co., Ltd .: trade name A93001CL) and contains nitrogen element.
  • the acrylic resin II contains EO units, but does not contain a repeating structure of EO units (PEG chain).
  • Acrylic resin II is a trifunctional acrylate.
  • the acrylic resin II contains a cyanuric ring that is a heterocyclic ring containing a nitrogen element.
  • Acrylic resins III to V do not contain nitrogen elements.
  • Acrylic resin III is ethoxylated pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: trade name ATM-35E)
  • acrylic resin IV is 4-hydroxybutyl acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: abbreviation 4-HBA)
  • acrylic Resin V is pentaerythritol triacrylate (57% triester) (manufactured by Shin-Nakamura Chemical Co., Ltd .: A-TMM-3LM-N).
  • the acrylic resin III includes a repeating structure of EO units (the number of repetitions is 35 or less and the chain length of PEG chain is 35 or less).
  • Acrylic resin III is a tetrafunctional acrylate.
  • Acrylic resins IV and V do not have EO units.
  • Acrylic resin IV is a monofunctional acrylate.
  • Acrylic resin IV is a monofunctional acrylate.
  • the acrylic resin V is a trifunctional acrylate.
  • the acrylic resins III to V do not contain a cyclic structure.
  • the bactericidal property of the sample film was evaluated for Pseudomonas aeruginosa as follows.
  • NB medium (Eiken Chemical Co., Ltd., normal bouillon medium E-MC35) was added to the bacterial dilution A as a nutrient source to a concentration of 1/500, and the bacterial dilution B (bacteria) diluted 10 times The number is on the order of 1E + 05 CFU / mL) (according to JISZ2801 5.4a)) Bacterial dilution B: Bacterial dilution A1 mL + sterile water 8.98 mL + NB medium 20 ⁇ L 8).
  • the bacterial dilution B 400 ⁇ L of the bacterial dilution B (the number of bacteria in the bacterial dilution B at this time may be referred to as “initial bacterial count”) is dropped on each sample film, and a cover (eg, a cover glass) is placed on the bacterial dilution B. And adjusting the amount of the bacterial dilution B per unit area
  • the initial bacterial count was 3.5E + 05 CFU / mL.
  • the washing solution in the filter bag is obtained by diluting the bacterium dilution solution B 25 times.
  • This washing solution may be referred to as a bacteria dilution solution B2.
  • the bacterial dilution B2 is in the order of 1E + 04 CFU / mL. 11.
  • a bacterial dilution C is prepared by diluting the bacterial dilution B2 10 times.
  • the washing solution (bacterial dilution solution B2) is prepared in 1.08 mL of sterilized water.
  • the bacterial dilution C is in the order of 1E + 03 CFU / mL when the bacterial count in the bacterial dilution B does not increase or decrease.
  • the bacterial dilution C is diluted 10 times to prepare the bacterial dilution D.
  • the bacterial dilution D is in the order of 1E + 02 CFU / mL when the number of bacteria in the bacterial dilution B does not increase or decrease.
  • the bacterial dilution D is prepared by diluting the bacterial dilution D ten times.
  • the bacterial dilution E is in the order of 1E + 01 CFU / mL when the bacterial count in the bacterial dilution B is not increased or decreased.
  • 13 mL of Bacteria Diluent B2 and Bacteria Diluents C to E are dropped into Petrifilm (registered trademark) medium (manufactured by 3M, product name: AC plate for measuring viable cell count) at 37 ° C. and relative humidity of 100%. 48 hours after culturing, the number of bacteria in the dilution B2 is counted.
  • Petrifilm registered trademark
  • phosphate buffered saline is used when preparing the diluted solution, but here sterilized water was used. It has been confirmed that even if sterilized water is used, the bactericidal effect due to the physical structure and chemical properties of the surface of the sample film can be examined.
  • the antibacterial activity value determined from the number of bacteria after 24 hours of culture was 2.0 or more (99% or more killing rate), and it was assumed that there was an antibacterial effect against Pseudomonas aeruginosa.
  • a base film (PET film) was used as the reference film.
  • the antibacterial activity value is a logarithmic value of a number obtained by dividing the number of bacteria after 24-hour culture of PET film by the number of bacteria after 24-hour culture of each sample film.
  • FIG. 8 is a graph showing the evaluation results of bactericidal properties.
  • the horizontal axis represents the standing time (hours), and the vertical axis represents the number of bacteria (CFU / mL) in the bacteria dilution B2.
  • CFU / mL the number of bacteria
  • Table 2 shows the number of bacteria and the antibacterial activity value after culturing.
  • the data of PET2 was used for calculation of the antibacterial activity value of the sample film C1, and the data of PET1 was used for the other sample films.
  • the samples other than the sample film C1 have an antibacterial activity value of 2.0 or more and have antibacterial properties.
  • the antibacterial activity values of the sample films C2 and B are 2.6 and 3.2, respectively.
  • the sample films A1, A2 and A3 have an antibacterial activity value of 6.2 and can be said to have bactericidal properties.
  • the antibacterial activity value is 6.0 or more, it is assumed to have bactericidal properties.
  • Table 1 The results of evaluating the antibacterial and bactericidal properties in this way are shown in Table 1 by ⁇ / x. ⁇ indicates antibacterial or bactericidal properties, and ⁇ indicates antibacterial or no bactericidal properties, respectively.
  • antibacterial property and bactericidal property it has at least antibacterial property except the film using resin C1. From the viewpoint of antibacterial properties, it is considered preferable to contain more than 0.0020 EO units. Resins A4, A5, D, and E have not been evaluated this time. However, based on the evaluation results of resins having the same or similar compositions so far, these resins have antibacterial and bactericidal properties. it seems to do.
  • Table 1 includes the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine, and all the nitrogen elements (ie, the nitrogen element forming the tertiary amine). The calculated nitrogen element concentration is also shown.
  • the evaluation results for antibacterial and bactericidal properties correlate with the nitrogen element concentration of the nitrogen element forming the primary amine or the secondary amine as compared to the nitrogen element concentration including the nitrogen element forming the tertiary amine. Seems to have a relationship. The reason is considered as follows. Since the nitrogen element forming the tertiary amine has low basicity, it is considered that the contribution to the bactericidal property of the synthetic polymer film is low.
  • the nitrogen element forming the tertiary amine forms a ring.
  • the nitrogen element forming the ring is present at a position relatively far from the surface of the synthetic polymer film and has a large distance from the microorganism, and therefore, the contribution to the bactericidal properties of the synthetic polymer film is considered to be low.
  • the nitrogen element concentration on the surface is preferably 0.7 at% or more, but this time, a resin having a lower nitrogen element concentration is used.
  • bactericidal properties can be obtained. If the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is at least 0.293 at% (resin C2), it can be said that it can have antibacterial properties. By rounding off the third digit after the decimal point, if the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is 0.29 at% or more, it may have antibacterial properties. It can be said.
  • the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is preferably 0.327 at% or more (resin A1).
  • the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is 0.33 at% or more in order to have bactericidal properties. It is preferable. At this time, it is considered that the number of moles of EO units contained in 1 g of the resin is preferably 0.0040 or more.
  • a resin containing EO units at an appropriate ratio has hydrophilicity, it is possible to wipe off dirt with water spray. Further, since it has flexibility, it has excellent scratch resistance.
  • the convex part to which Pseudomonas aeruginosa is not attached is substantially parallel to the normal direction of the synthetic polymer film, whereas the convex part to which Pseudomonas aeruginosa is attached.
  • Some parts are tilted toward the direction of Pseudomonas aeruginosa. More convex portions can come into contact with microorganisms by tilting the convex portion.
  • a synthetic polymer film having convex portions on the surface that can tilt (become) in the direction of microorganisms can have a more excellent bactericidal effect.
  • the resin containing the EO unit moderately exhibits a bactericidal effect due to this bending.
  • sample films F, G, and H having the same structure as the film 50A shown in FIG.
  • Three types of resins F, G, and G shown in Table 3 below were used as acrylic resins (acrylate monomers or acrylate oligomers) for producing the synthetic polymer film 34A having a moth-eye structure on the surface.
  • the name of the sample film is specified by attaching F, G and H which are the same as those of the resin.
  • Table 3 shows the composition of each resin (% in Table 3 is% by mass).
  • the chemical structural formula of acrylic resin I ′ is shown in [Chemical Formula 6].
  • the chemical formula shown in [Chemical Formula 6] is estimated.
  • the acrylic resin I ′ includes a repeating structure of EO units (the number of repetitions is 4 or 5).
  • Acrylic resin I ′ differs from acrylic resin I in that the number of EO units is about half that of acrylic resin I.
  • the acrylic resin I ′ is urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) and contains nitrogen element.
  • the acrylic resin I ′ is a trifunctional urethane acrylate.
  • the acrylic resin I ′ includes a cyanuric ring that is a heterocyclic ring (heterocycle) containing a nitrogen element.
  • Table 3 shows the molecular weight (MW) of each acrylic resin and the number of EO units contained in one molecule, as in Table 1.
  • MW molecular weight
  • Table 3 shows the number of moles of EO units contained in 1 g of each resin F, G, and H calculated based on the composition and chemical formula.
  • Table 3 shows the nitrogen element at% calculated based on the composition and the chemical formula for each of the resins F, G, and H.
  • Table 3 includes the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine, and all the nitrogen elements (that is, the nitrogen element forming the tertiary amine). And the calculated nitrogen element concentration (including the nitrogen element that does not form amine).
  • the concentration of the nitrogen element forming the primary amine or secondary amine of the resin G containing the acrylic resin I ′ that is, the nitrogen element and the secondary amine forming the primary amine are The total nitrogen element concentration of nitrogen elements to be formed) is considered to be 1.461 at% or more and 1.629 at% or less.
  • the concentration of the nitrogen element forming the primary amine or secondary amine of the resin G containing the acrylic resin I ′ is considered to be 1.46 at% or more and 1.63 at% or less. .
  • Each of the resins F, G and H is dissolved in MEK (manufactured by Maruzen Petrochemical Co., Ltd.) to give a solution having a solid content of 70% by mass, applied onto the base film 42A, and the thickness of the MEK is removed by heating. A membrane of about 25-50 ⁇ m was obtained.
  • a PET film having a thickness of 50 ⁇ m (A4300 manufactured by Toyobo Co., Ltd.) was used.
  • a synthetic polymer film 34A having a moth-eye structure on the surface was produced using the moth-eye mold 100A by the same method as described with reference to FIG. The exposure amount was about 1500 mJ / cm 2 .
  • UV irradiation a UV lamp (manufactured by Fusion UV Systems: Light Hammer6 J6P3, maximum output 200 W / cm) was used, and irradiation was performed at an output level of 45% (50 mW / cm 2 ) for 30 seconds.
  • IRGACURE OXE 01 (1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], molecular weight 445.6) manufactured by BASF was used.
  • D p is about 200nm in each sample film, D int of about 200nm, D h is about 150 nm.
  • the size of each sample film was a square (5.1 cm square) with a side length of 5.1 cm.
  • bactericidal and antibacterial properties were evaluated by the same method as that performed for the sample films A to E.
  • the method for evaluating the bactericidal properties of the sample films F, G and H is different from the method for evaluating the bactericidal properties of the sample films A to E in the following points.
  • the washing solution in the filter bag is a solution obtained by diluting the bacteria diluent B 26 times.
  • This washing solution may be referred to as a bacteria dilution solution B3.
  • SCDLP medium was prepared as follows. ⁇ Add 38 g of SCDLP agar medium “DAIGO” (manufactured by Nippon Pharmaceutical Co., Ltd.) to 1 L of purified water, shake well, and then heat dissolve at 90 ° C. ⁇ After dispensing into containers, autoclaving at 121 ° C for 15 minutes. ⁇ After sterilization, shake well immediately to make the polysorbate layer uniform.
  • the washout solution (bacterial dilution solution B3) was diluted 10 times by putting 1 ml of the washout solution (bacterial dilution solution B3) in 9 mL of phosphate buffered saline (PBS).
  • a “quasi-antibacterial activity value (6h)” is defined according to the antibacterial activity value.
  • the antibacterial activity value is a logarithmic value of the number obtained by dividing the number of bacteria after 24-hour culture of PET film by the number of bacteria after 24-hour culture of each sample film.
  • the logarithmic value of the number obtained by dividing the number of bacteria after 6-hour culture of PET film by the number of bacteria after 6-hour culture of each sample film is defined as “quasi-antibacterial activity value (6h)”.
  • 9 to 11 are graphs showing the evaluation results of bactericidal properties.
  • the horizontal axis represents the standing time (hour)
  • the vertical axis represents the number of bacteria (CFU / mL) in the bacterial dilution B3.
  • CFU / mL the number of bacteria in the bacterial dilution B3.
  • Table 4 shows the number of bacteria, the antibacterial activity value, and the quasi-antibacterial activity value (6h) after culturing.
  • the data of PET3 is used, and for the calculation of the antibacterial activity value and the quasi-antibacterial activity value (6h) of the sample film H, PET4 data was used.
  • the liquid can be sterilized by bringing the liquid into contact with the surface of the synthetic polymer film according to the embodiment of the present invention.
  • the gas can be sterilized by bringing the gas into contact with the surface of the synthetic polymer film.
  • Microorganisms generally have a surface structure that tends to adhere to the surface of an object in order to increase the probability of contact with organic matter that is a nutrient source. Therefore, when a gas or liquid containing microorganisms is brought into contact with the bactericidal surface of the synthetic polymer film according to the embodiment of the present invention, the microorganisms try to adhere to the surface of the synthetic polymer film. It will be sterilized.
  • the bactericidal action of the synthetic polymer membrane according to the embodiment of the present invention has been described for Pseudomonas aeruginosa, which is a gram-negative bacterium, but is not limited to gram-negative bacteria, and also sterilizes against gram-positive bacteria and other microorganisms. It is considered to have an action.
  • Gram-negative bacteria have one feature in that they have a cell wall containing an outer membrane, but Gram-positive bacteria and other microorganisms (including those that do not have a cell wall) also have a cell membrane, and the cell membrane is also outside of Gram-negative bacteria. Like the membrane, it is composed of a lipid bilayer membrane. Therefore, the interaction between the convex portions on the surface of the synthetic polymer membrane according to the embodiment of the present invention and the cell membrane is considered to be basically the same as the interaction with the outer membrane.
  • Staphylococcus aureus which is a Gram-positive bacterium, was used for evaluation of bactericidal and antibacterial properties. Since S. aureus is infected by contact, the stamp method was employed to evaluate whether the synthetic polymer membrane according to the embodiment of the present invention has an effect of suppressing contact infection. In the stamp method, after culturing a bacterial solution on the surface of a synthetic polymer membrane for a certain period of time, the bacteria are copied to a medium (here, a petan check) and evaluated by the number of bacteria after culturing under certain conditions.
  • a medium here, a petan check
  • a resin I having the same composition as the resin G, a resin J using a reactive diluent, and a resin K are prepared, and the film 50A shown in FIG. A sample film similar to the above was prepared.
  • the name of the sample film is specified by attaching the same I to K as the resin.
  • Resin I The compositions of Resin I, Resin J and Resin K are shown in Table 5 below.
  • acryloylmorpholine KMO Chemicals, Inc., ACMO (registered trademark)
  • Resin K includes the above acrylic resin V and 1,9-nonanediol diacrylate represented by the following [Chemical Formula 8] (ND-DA, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., referred to as “acrylic resin VI”). And were used.
  • the acrylic resin VI is a low-viscosity bifunctional acrylate monomer, and the resin K, like the resin J, was prepared as a sample film without using a solvent (MEK).
  • the sample film I is dissolved in MEK to form a solution having a solid content of 70% by mass, and then applied onto the base film 42A, and the thickness of the sample film I is reduced by heating and removing the MEK.
  • a film of 25 ⁇ m to 50 ⁇ m was obtained.
  • resin J and resin K themselves were applied onto base film 42A to obtain a film having a thickness of about 25 ⁇ m to 50 ⁇ m. Since the resin J and the resin K do not contain a solvent (MEK), the step of heating and removing MEK in the method for producing the resins A to H is not necessary.
  • a synthetic polymer film 34A having a moth-eye structure on the surface was produced using the moth-eye mold 100A by the same method as described with reference to FIG.
  • the exposure amount was about 1200 mJ / cm 2 (200 mW ⁇ 6 sec).
  • a UV lamp manufactured by Fusion UV Systems: Light Hammer6 J6P3, maximum output 200 W / cm
  • D p is about 200nm in each sample film
  • D h is about 150 nm.
  • the size of each sample film was a square (5.1 cm square) with a side length of 5.1 cm.
  • Bactericidal and antibacterial evaluation was performed according to the following procedure.
  • a bacterial solution is prepared so that the initial number of bacteria is 1E + 04 CFU / mL order, and the bacterial solution is dropped onto each sample film at 3 ⁇ 3 points at 1 cm intervals at 1 cm intervals.
  • the bacterial solution was dissolved in phosphate buffered saline (Phosphate buffered saline).
  • phosphate buffered saline Phosphate buffered saline
  • sample film to which the bacterial solution has been dropped is placed in a sealed container maintained at a relative humidity of 100% and left at room temperature for 24 hours.
  • the bacteria on the surface of the sample film are attached to the standard agar medium by stamping with a petan check (registered trademark, product name: PT1025, manufactured by Eiken Chemical Co., Ltd.).
  • Bacteria attached to standard agar medium are cultured at 37 ° C for 24 hours, and then checked for colonies
  • the synthetic polymer membrane according to the embodiment of the present invention has bactericidal and antibacterial properties not only against Gram-negative bacteria but also against Gram-positive bacteria.
  • the sample film K having no ethylene oxide unit and nitrogen element does not have bactericidal and antibacterial properties.
  • the total concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is 0.29 at% or more, and the number of moles of ethylene oxide units contained in 1 g is If it exceeds 0.0020, it is considered that a synthetic polymer film having bactericidal and antibacterial properties can be obtained even if it is prepared using a reactive diluent. It may be preferable that the number of moles of ethylene oxide units contained in 1 g is 0.0070 or more.
  • a synthetic polymer film having a sterilizing effect on the surface can be produced without using a solvent. Since equipment and time can be omitted for removal, mass productivity can be improved.
  • the synthetic polymer film according to the embodiment of the present invention has an effect of preventing contact infection. Therefore, for example, by covering the surface of a part such as a door knob, handrail, or hanging leather that is touched by a hand with the synthetic polymer film according to the embodiment of the present invention, contact infection can be prevented / suppressed.
  • the synthetic polymer film having a bactericidal surface according to the embodiment of the present invention can be used in various applications such as a use of sterilizing the surface such as suppression and prevention of contact infection.
  • a synthetic polymer film having a bactericidal surface according to an embodiment of the present invention can be manufactured at low cost.
  • 34A, 34B Synthetic polymer film 34Ap, 34Bp Convex part 42A, 42B Base film 50A, 50B Film 100, 100A, 100B Moss eye mold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

These synthetic polymer films (34A) , (34B) are provided with surfaces having a plurality of projections (34Ap), (34Bp), wherein when viewed from a normal direction of the synthetic polymer film, the two-dimensional size of the plurality of projections is within a range of more than 20 nm to less than 500 nm, the surface has a bactericidal effect, the total concentration of nitrogen element forming primary amines and nitrogen element forming secondary amines is 0.29 at% or higher, and the number of moles of ethylene oxide units contained in 1 g is more than 0.0020. The synthetic polymer film can be produced using a resin composition that contains a reactive diluent and is free of solvent.

Description

殺菌作用を備えた表面を有する合成高分子膜およびその製造方法Synthetic polymer film having surface with bactericidal action and method for producing the same
 本発明は、殺菌作用を備えた表面を有する合成高分子膜、合成高分子膜の表面を用いた殺菌方法、合成高分子膜を製造するための型および型の製造方法に関する。ここでいう「型」は、種々の加工方法(スタンピングやキャスティング)に用いられる型を包含し、スタンパということもある。また、印刷(ナノプリントを含む)にも用いられ得る。 The present invention relates to a synthetic polymer film having a surface having a bactericidal action, a sterilization method using the surface of the synthetic polymer film, a mold for producing the synthetic polymer film, and a method for producing the mold. The “mold” here includes molds used in various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
 最近、ブラックシリコン、セミやトンボの羽が有するナノ表面構造が殺菌作用を有することが発表された(非特許文献1)。ブラックシリコン、セミやトンボの羽が有するナノピラーの物理的な構造が、殺菌作用を発現するとされている。 Recently, it has been announced that the nano-surface structure of black silicon, cicada and dragonfly wings has a bactericidal action (Non-Patent Document 1). The physical structure of the nanopillars of black silicon, cicada and dragonfly wings is said to exert bactericidal action.
 非特許文献1によると、グラム陰性菌に対する殺菌作用は、ブラックシリコンが最も強く、トンボの羽、セミの羽の順に弱くなる。ブラックシリコンは、高さが500nmのナノピラーを有し、セミやトンボの羽は、高さが240nmのナノピラーを有している。また、これらの表面の水に対する静的接触角(以下、単に「接触角」ということがある。)は、ブラックシリコンが80°であるのに対し、トンボの羽は153°、セミの羽は159°である。また、ブラックシリコンは主にシリコンから形成され、セミやトンボの羽はキチン質から形成されていると考えられる。非特許文献1によると、ブラックシリコンの表面の組成はほぼ酸化シリコン、セミおよびトンボの羽の表面の組成は脂質である。 According to Non-Patent Document 1, black silicon has the strongest bactericidal action against Gram-negative bacteria, and becomes weaker in the order of dragonfly wings and cicada wings. Black silicon has nanopillars with a height of 500 nm, and semi and dragonfly wings have nanopillars with a height of 240 nm. In addition, the static contact angle of water on these surfaces (hereinafter sometimes simply referred to as “contact angle”) is 80 ° for black silicon, whereas 153 ° for dragonfly, 159 °. Black silicon is mainly formed from silicon, and the wings of cicada and dragonfly are considered to be formed from chitin. According to Non-Patent Document 1, the composition of the surface of black silicon is approximately silicon oxide, and the composition of the surfaces of semi- and dragonfly wings is lipid.
特許第4265729号公報Japanese Patent No. 4265729 特開2009-166502号公報JP 2009-166502 A 国際公開第2011/125486号International Publication No. 2011/125486 国際公開第2013/183576号International Publication No. 2013/183576
 非特許文献1に記載の結果からは、ナノピラーによって細菌が殺されるメカニズムは明らかではない。さらに、ブラックシリコンがトンボやセミの羽よりも強い殺菌作用を有する理由が、ナノピラーの高さや形状の違いにあるのか、表面自由エネルギー(接触角で評価され得る)の違いにあるのか、ナノピラーを構成する物質にあるのか、表面の化学的性質にあるのか、不明である。 From the results described in Non-Patent Document 1, the mechanism by which bacteria are killed by nanopillars is not clear. In addition, the reason why black silicon has a stronger bactericidal action than dragonflies and cicada wings is due to the difference in height and shape of nanopillars, the difference in surface free energy (which can be evaluated by contact angle), nanopillars It is unclear whether it is in the constituent material or the chemical nature of the surface.
 また、ブラックシリコンの殺菌作用を利用するにしても、ブラックシリコンは、量産性に乏しく、また、硬く脆いので、形状加工性が低いという問題がある。 Also, even if the sterilizing action of black silicon is used, black silicon has a problem that it is poor in mass productivity and has low formability because it is hard and brittle.
 本発明は、上記の課題を解決するためになされたものであり、その主な目的は、殺菌作用を備えた表面を有する合成高分子膜およびその製造方法を提供することにある。 The present invention has been made to solve the above-mentioned problems, and its main object is to provide a synthetic polymer film having a surface having a bactericidal action and a method for producing the same.
 本発明のある実施形態による合成高分子膜は、複数の凸部を有する表面を備える合成高分子膜であって、前記合成高分子膜の法線方向から見たとき、前記複数の凸部の2次元的な大きさは20nm超500nm未満の範囲内にあり、前記表面が殺菌効果を有し、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の濃度は0.29at%以上であり、1gに含まれるエチレンオキサイド単位のモル数は0.0020超である。 A synthetic polymer film according to an embodiment of the present invention is a synthetic polymer film having a surface having a plurality of protrusions, and when viewed from the normal direction of the synthetic polymer film, the plurality of protrusions The two-dimensional size is in the range of more than 20 nm and less than 500 nm, the surface has a bactericidal effect, and the total concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is It is 0.29 at% or more, and the number of moles of ethylene oxide units contained in 1 g is more than 0.0020.
 ある実施形態において、1gに含まれるエチレンオキサイド単位のモル数は0.0070以上である。 In an embodiment, the number of moles of ethylene oxide units contained in 1 g is 0.0070 or more.
 ある実施形態において、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の濃度は、0.33at%以上である。 In one embodiment, the total concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is 0.33 at% or more.
 ある実施形態において、前記合成高分子膜は、ウレタンアクリレート構造を含む。 In one embodiment, the synthetic polymer film includes a urethane acrylate structure.
 ある実施形態において、前記ウレタンアクリレート構造は、エチレンオキサイド単位の繰り返し構造を含む。前記繰り返し構造の繰り返し数をNとする、Nは2以上である。 In one embodiment, the urethane acrylate structure includes a repeating structure of ethylene oxide units. The repeating number of the repeating structure is N, and N is 2 or more.
 ある実施形態において、前記ウレタンアクリレート構造は、3官能以上のウレタンアクリレートモノマーの重合体を含む。 In one embodiment, the urethane acrylate structure includes a polymer of urethane acrylate monomers having three or more functions.
 ある実施形態において、前記ウレタンアクリレートモノマーは、窒素元素を含む複素環を含む。 In one embodiment, the urethane acrylate monomer includes a heterocyclic ring containing a nitrogen element.
 ある実施形態において、前記複素環は、シアヌル環である。 In one embodiment, the heterocycle is a cyanuric ring.
 本発明のある実施形態による合成高分子膜の製造方法は、表面の法線方向から見たときの2次元的な大きさが20nm以上500nm未満である複数の凹部を有する、反転されたモスアイ構造を表面に有するポーラスアルミナ層を有する型を用いて、合成高分子膜を製造する方法であって、(a)前記型と、被加工物とを用意する工程と、(b)エチレンオキサイド単位の繰り返し構造および第1級または第2級アミンを有するウレタンアクリレートと反応性希釈剤を含み、溶剤を含まない樹脂組成物を用意する工程と、(c)前記被加工物の表面に前記樹脂組成物を付与する工程と、(d)前記型と前記被加工物の表面との間に、前記樹脂組成物を配置した状態で、前記樹脂組成物に紫外線を照射することによって前記樹脂組成物を硬化させる工程とを包含する。 A method for producing a synthetic polymer film according to an embodiment of the present invention includes an inverted moth-eye structure having a plurality of recesses having a two-dimensional size of 20 nm or more and less than 500 nm when viewed from the normal direction of the surface. A method for producing a synthetic polymer film using a mold having a porous alumina layer on the surface thereof, comprising: (a) a step of preparing the mold and a workpiece; and (b) an ethylene oxide unit A step of preparing a resin composition containing a urethane acrylate having a repeating structure and a primary or secondary amine and a reactive diluent and not containing a solvent; and (c) the resin composition on the surface of the workpiece. And (d) curing the resin composition by irradiating the resin composition with ultraviolet rays in a state where the resin composition is disposed between the mold and the surface of the workpiece. Including the step of.
 本発明の実施形態によると、殺菌作用を備えた表面を有する合成高分子膜およびその製造方法が提供される。 According to an embodiment of the present invention, a synthetic polymer film having a surface having a bactericidal action and a method for producing the same are provided.
(a)および(b)は、それぞれ本発明の実施形態による合成高分子膜34Aおよび34Bの模式的な断面図である。(A) And (b) is typical sectional drawing of the synthetic polymer membranes 34A and 34B by embodiment of this invention, respectively. (a)~(e)は、モスアイ用型100Aの製造方法およびモスアイ用型100Aの構造を説明するための図である。(A)-(e) is a figure for demonstrating the manufacturing method of the moth-eye type | mold 100A, and the structure of the moth-eye type | mold 100A. (a)~(c)は、モスアイ用型100Bの製造方法およびモスアイ用型100Bの構造を説明するための図である。(A)-(c) is a figure for demonstrating the manufacturing method of the moth-eye type | mold 100B, and the structure of the moth-eye type | mold 100B. (a)はアルミニウム基材の表面のSEM像を示し、(b)はアルミニウム膜の表面のSEM像を示し、(c)はアルミニウム膜の断面のSEM像を示す。(A) shows the SEM image of the surface of an aluminum base material, (b) shows the SEM image of the surface of an aluminum film, (c) shows the SEM image of the cross section of an aluminum film. (a)は型のポーラスアルミナ層の模式的な平面図であり、(b)は模式的な断面図であり、(c)は試作した型のSEM像を示す図である。(A) is a typical top view of the type | mold porous alumina layer, (b) is typical sectional drawing, (c) is a figure which shows the SEM image of the prototype | mold type | mold. モスアイ用型100を用いた合成高分子膜の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the synthetic polymer film | membrane using the type | mold 100 for moth eyes. (a)および(b)は、モスアイ構造を有する表面で死に至った緑膿菌をSEM(走査型電子顕微鏡)で観察したSEM像を示す図である。(A) And (b) is a figure which shows the SEM image which observed the Pseudomonas aeruginosa dead on the surface which has a moth-eye structure with SEM (scanning electron microscope). 殺菌性の評価結果を示すグラフである。It is a graph which shows the evaluation result of bactericidal property. 殺菌性の評価結果を示すグラフである。It is a graph which shows the evaluation result of bactericidal property. 殺菌性の評価結果を示すグラフである。It is a graph which shows the evaluation result of bactericidal property. 殺菌性の評価結果を示すグラフである。It is a graph which shows the evaluation result of bactericidal property.
 以下、図面を参照して、本発明の実施形態による、表面が殺菌効果を有する合成高分子膜および合成高分子膜の表面を用いた殺菌方法、さらには、合成高分子膜を製造するための型および型の製造方法を説明する。 Hereinafter, with reference to the drawings, according to an embodiment of the present invention, a synthetic polymer film having a sterilizing effect on the surface, a sterilization method using the surface of the synthetic polymer film, and a method for producing the synthetic polymer film A mold and a method for manufacturing the mold will be described.
 なお、本明細書においては、以下の用語を用いることにする。 In this specification, the following terms will be used.
 「殺菌(sterilization(microbicidal))」は、物体や液体といった対象物や、限られた空間に含まれる、増殖可能な微生物(microorganism)の数を、有効数減少させることをいう。 “Sterilization (microbicidal)” refers to reducing the effective number of objects such as objects and liquids and the number of proliferating microorganisms contained in a limited space.
 「微生物」は、ウィルス、細菌(バクテリア)、真菌(カビ)を包含する。 “Microorganism” includes viruses, bacteria, and fungi.
 「抗菌(antimicrobial)」は、微生物の繁殖を抑制・防止することを広く含み、微生物に起因する黒ずみやぬめりを抑制することを含む。 “Antimicrobial” broadly includes inhibiting and preventing the growth of microorganisms, and includes inhibiting darkening and slimming caused by microorganisms.
 本出願人は、陽極酸化ポーラスアルミナ層を用いて、モスアイ構造を有する反射防止膜(反射防止表面)を製造する方法を開発した。陽極酸化ポーラスアルミナ層を用いることによって、反転されたモスアイ構造を有する型を高い量産性で製造することができる(例えば、特許文献1~4)。参考のために、特許文献1~4の開示内容のすべてを本明細書に援用する。 The present applicant has developed a method of manufacturing an antireflection film (antireflection surface) having a moth-eye structure using an anodized porous alumina layer. By using the anodized porous alumina layer, a mold having an inverted moth-eye structure can be manufactured with high mass productivity (for example, Patent Documents 1 to 4). For reference, the entire disclosure of Patent Documents 1 to 4 is incorporated herein by reference.
 本発明者は、上記の技術を応用することによって、表面が殺菌効果を有する合成高分子膜を開発するに至った。 The present inventor has developed a synthetic polymer film having a bactericidal effect on the surface by applying the above technique.
 図1(a)および(b)を参照して、本発明の実施形態による合成高分子膜の構造を説明する。 1A and 1B, the structure of the synthetic polymer film according to the embodiment of the present invention will be described.
 図1(a)および(b)は、本発明の実施形態による合成高分子膜34Aおよび34Bの模式的な断面図をそれぞれ示す。ここで例示する合成高分子膜34Aおよび34Bは、いずれもベースフィルム42Aおよび42B上にそれぞれ形成されているが、もちろんこれに限られない。合成高分子膜34Aおよび34Bは、任意の物体の表面に直接形成され得る。 FIGS. 1A and 1B are schematic cross-sectional views of synthetic polymer membranes 34A and 34B according to an embodiment of the present invention, respectively. The synthetic polymer films 34A and 34B exemplified here are both formed on the base films 42A and 42B, respectively, but of course not limited thereto. Synthetic polymer films 34A and 34B can be formed directly on the surface of any object.
 図1(a)に示すフィルム50Aは、ベースフィルム42Aと、ベースフィルム42A上に形成された合成高分子膜34Aとを有している。合成高分子膜34Aは、表面に複数の凸部34Apを有しており、複数の凸部34Apは、モスアイ構造を構成している。合成高分子膜34Aの法線方向から見たとき、凸部34Apの2次元的な大きさDpは20nm超500nm未満の範囲内にある。ここで、凸部34Apの「2次元的な大きさ」とは、表面の法線方向から見たときの凸部34Apの面積円相当径を指す。例えば、凸部34Apが円錐形の場合、凸部34Apの2次元的な大きさは、円錐の底面の直径に相当する。また、凸部34Apの典型的な隣接間距離Dintは20nm超1000nm以下である。図1(a)に例示するように、凸部34Apが密に配列されており、隣接する凸部34Ap間に間隙が存在しない(例えば、円錐の底面が部分的に重なる)場合には、凸部34Apの2次元的な大きさDpは隣接間距離Dintと等しい。凸部34Apの典型的な高さDhは、50nm以上500nm未満である。後述するように、凸部34Apの高さDhが150nm以下であっても殺菌作用を発現する。合成高分子膜34Aの厚さtsに特に制限はなく、凸部34Apの高さDhより大きければよい。 A film 50A shown in FIG. 1A includes a base film 42A and a synthetic polymer film 34A formed on the base film 42A. The synthetic polymer film 34A has a plurality of convex portions 34Ap on the surface, and the plurality of convex portions 34Ap constitutes a moth-eye structure. When viewed from the normal direction of the synthetic polymer film 34A, the two-dimensional size D p of the convex portion 34Ap is in the range of more than 20 nm and less than 500 nm. Here, the “two-dimensional size” of the protrusion 34Ap refers to the area equivalent circle diameter of the protrusion 34Ap when viewed from the normal direction of the surface. For example, when the convex portion 34Ap is conical, the two-dimensional size of the convex portion 34Ap corresponds to the diameter of the bottom surface of the cone. Further, a typical inter-adjacent distance D int of the convex portion 34Ap is more than 20 nm and not more than 1000 nm. As illustrated in FIG. 1A, when the protrusions 34Ap are densely arranged and there is no gap between the adjacent protrusions 34Ap (for example, the bottom surfaces of the cones partially overlap), The two-dimensional size D p of the portion 34Ap is equal to the inter-adjacent distance D int . A typical height D h of the convex portion 34Ap is not less than 50 nm and less than 500 nm. As will be described later, even if the height D h of the convex portion 34Ap is 150 nm or less, the bactericidal action is exhibited. There is no particular limitation on the thickness t s of the synthetic polymer film 34A, be greater than the height D h of the convex portion 34Ap.
 図1(a)に示した合成高分子膜34Aは、特許文献1~4に記載されている反射防止膜と同様のモスアイ構造を有している。反射防止機能を発現させるためには、表面に平坦な部分がなく、凸部34Apが密に配列されていることが好ましい。また、凸部34Apは、空気側からベースフィルム42A側に向かって、断面積(入射光線に直交する面に平行な断面、例えばベースフィルム42Aの面に平行な断面)が増加する形状、例えば、円錐形であることが好ましい。また、光の干渉を抑制するために、凸部34Apを規則性がないように、好ましくはランダムに、配列することが好ましい。しかしながら、合成高分子膜34Aの殺菌作用をもっぱら利用する場合には、これらの特徴は必要ではない。例えば、凸部34Apは密に配列される必要はなく、また、規則的に配列されてもよい。ただし、凸部34Apの形状や配置は、微生物に効果的に作用するように選択されることが好ましい。 The synthetic polymer film 34A shown in FIG. 1A has a moth-eye structure similar to that of the antireflection film described in Patent Documents 1 to 4. In order to develop the antireflection function, it is preferable that the surface has no flat portion and the convex portions 34Ap are densely arranged. Further, the convex portion 34Ap has a shape in which a cross-sectional area (a cross section parallel to the plane orthogonal to the incident light beam, for example, a cross section parallel to the surface of the base film 42A) increases from the air side toward the base film 42A side, for example, A conical shape is preferred. Moreover, in order to suppress light interference, it is preferable to arrange the protrusions 34Ap preferably randomly so as not to have regularity. However, these characteristics are not necessary when the bactericidal action of the synthetic polymer membrane 34A is exclusively used. For example, the convex portions 34A need not be densely arranged, and may be regularly arranged. However, the shape and arrangement of the convex portions 34Ap are preferably selected so as to effectively act on microorganisms.
 図1(b)に示すフィルム50Bは、ベースフィルム42Bと、ベースフィルム42B上に形成された合成高分子膜34Bとを有している。合成高分子膜34Bは、表面に複数の凸部34Bpを有しており、複数の凸部34Bpは、モスアイ構造を構成している。フィルム50Bは、合成高分子膜34Bが有する凸部34Bpの構造が、フィルム50Aの合成高分子膜34Aが有する凸部34Apの構造と異なっている。フィルム50Aと共通の特徴については説明を省略することがある。 1B includes a base film 42B and a synthetic polymer film 34B formed on the base film 42B. The synthetic polymer film 34B has a plurality of protrusions 34Bp on the surface, and the plurality of protrusions 34Bp constitutes a moth-eye structure. In the film 50B, the structure of the convex part 34Bp of the synthetic polymer film 34B is different from the structure of the convex part 34Ap of the synthetic polymer film 34A of the film 50A. Description of features common to the film 50A may be omitted.
 合成高分子膜34Bの法線方向から見たとき、凸部34Bpの2次元的な大きさDpは20nm超500nm未満の範囲内にある。また、凸部34Bpの典型的な隣接間距離Dintは20nm超1000nm以下であり、かつ、Dp<Dintである。すなわち、合成高分子膜34Bでは、隣接する凸部34Bpの間に平坦部が存在する。凸部34Bpは、空気側に円錐形の部分を有する円柱状であり、凸部34Bpの典型的な高さDhは、50nm以上500nm未満である。また、凸部34Bpは、規則的に配列されていてもよいし、不規則に配列されていてもよい。凸部34Bpが規則的に配列されている場合、Dintは配列の周期をも表すことになる。このことは、当然ながら、合成高分子膜34Aについても同じである。 When viewed from the normal direction of the synthetic polymer film 34B, the two-dimensional size D p of the convex portion 34Bp is in the range of more than 20 nm and less than 500 nm. In addition, a typical inter-adjacent distance D int of the convex portion 34Bp is more than 20 nm and not more than 1000 nm, and D p <D int . That is, in the synthetic polymer film 34B, there is a flat portion between the adjacent convex portions 34Bp. The convex portion 34Bp has a cylindrical shape having a conical portion on the air side, and a typical height D h of the convex portion 34Bp is 50 nm or more and less than 500 nm. The convex portions 34Bp may be regularly arranged or irregularly arranged. When the convex portions 34Bp are regularly arranged, D int also represents the period of the arrangement. Of course, the same applies to the synthetic polymer film 34A.
 なお、本明細書において、「モスアイ構造」は、図1(a)に示した合成高分子膜34Aの凸部34Apの様に、断面積(膜面に平行な断面)が増加する形状の凸部で構成される、優れた反射機能を有するナノ表面構造だけでなく、図1(b)に示した合成高分子膜34Bの凸部34Bpの様に、断面積(膜面に平行な断面)が一定の部分を有する凸部で構成されるナノ表面構造も包含する。なお、微生物の細胞壁および/または細胞膜を破壊するためには、円錐形の部分を有することが好ましい。ただし、円錐形の先端は、ナノ表面構造である必要は必ずしもなく、セミの羽が有するナノ表面構造を構成するナノピラー程度の丸み(約60nm)を有していてもよい。 In the present specification, the “moth eye structure” is a convex having a shape in which the cross-sectional area (cross section parallel to the film surface) increases like the convex portion 34Ap of the synthetic polymer film 34A shown in FIG. In addition to the nano-surface structure having an excellent reflecting function, the cross-sectional area (cross section parallel to the film surface) is similar to the convex part 34Bp of the synthetic polymer film 34B shown in FIG. Includes a nano-surface structure composed of convex portions having a certain portion. In addition, in order to destroy the cell wall and / or cell membrane of a microorganism, it is preferable to have a conical portion. However, the conical tip does not necessarily have a nano surface structure, and may have a roundness (about 60 nm) that is about the size of a nano pillar that constitutes the nano surface structure of a semi-wing.
 図1(a)および(b)に例示したようなモスアイ構造を表面に形成するための型(以下、「モスアイ用型」という。)は、モスアイ構造を反転させた、反転されたモスアイ構造を有する。反転されたモスアイ構造を有する陽極酸化ポーラスアルミナ層をそのまま型として利用すると、モスアイ構造を安価に製造することができる。特に、円筒状のモスアイ用型を用いると、ロール・ツー・ロール方式によりモスアイ構造を効率良く製造することができる。このようなモスアイ用型は、特許文献2~4に記載されている方法で製造することができる。 A mold for forming a moth-eye structure as illustrated in FIGS. 1A and 1B on the surface (hereinafter referred to as “moth-eye mold”) is an inverted moth-eye structure obtained by inverting the moth-eye structure. Have. If an anodized porous alumina layer having an inverted moth-eye structure is used as a mold as it is, the moth-eye structure can be manufactured at low cost. In particular, when a cylindrical moth-eye mold is used, a moth-eye structure can be efficiently manufactured by a roll-to-roll method. Such moth-eye molds can be manufactured by the methods described in Patent Documents 2 to 4.
 図2(a)~(e)を参照して、合成高分子膜34Aを形成するための、モスアイ用型100Aの製造方法を説明する。 2A to 2E, a method for manufacturing the moth-eye mold 100A for forming the synthetic polymer film 34A will be described.
 まず、図2(a)に示すように、型基材として、アルミニウム基材12と、アルミニウム基材12の表面に形成された無機材料層16と、無機材料層16の上に堆積されたアルミニウム膜18とを有する型基材10を用意する。 First, as shown in FIG. 2A, as a mold substrate, an aluminum substrate 12, an inorganic material layer 16 formed on the surface of the aluminum substrate 12, and aluminum deposited on the inorganic material layer 16 are used. A mold substrate 10 having a film 18 is prepared.
 アルミニウム基材12としては、アルミニウムの純度が99.50mass%以上99.99mass%未満である比較的剛性の高いアルミニウム基材を用いる。アルミニウム基材12に含まれる不純物としては、鉄(Fe)、ケイ素(Si)、銅(Cu)、マンガン(Mn)、亜鉛(Zn)、ニッケル(Ni)、チタン(Ti)、鉛(Pb)、スズ(Sn)およびマグネシウム(Mg)からなる群から選択された少なくとも1つの元素を含むことが好ましく、特にMgが好ましい。エッチング工程におけるピット(窪み)が形成されるメカニズムは、局所的な電池反応であるので、理想的にはアルミニウムよりも貴な元素を全く含まず、卑な金属であるMg(標準電極電位が-2.36V)を不純物元素として含むアルミニウム基材12を用いることが好ましい。アルミニウムよりも貴な元素の含有率が10ppm以下であれば、電気化学的な観点からは、当該元素を実質的に含んでいないと言える。Mgの含有率は、全体の0.1mass%以上であることが好ましく、約3.0mass%以下の範囲であることがさらに好ましい。Mgの含有率が0.1mass%未満では十分な剛性が得られない。一方、含有率が大きくなると、Mgの偏析が起こり易くなる。モスアイ用型を形成する表面付近に偏析が生じても電気化学的には問題とならないが、Mgはアルミニウムとは異なる形態の陽極酸化膜を形成するので、不良の原因となる。不純物元素の含有率は、アルミニウム基材12の形状、厚さおよび大きさに応じて、必要とされる剛性に応じて適宜設定すればよい。例えば圧延加工によって板状のアルミニウム基材12を作製する場合には、Mgの含有率は約3.0mass%が適当であるし、押出加工によって円筒などの立体構造を有するアルミニウム基材12を作製する場合には、Mgの含有率は2.0mass%以下であることが好ましい。Mgの含有率が2.0mass%を超えると、一般に押出加工性が低下する。 As the aluminum substrate 12, a relatively rigid aluminum substrate having an aluminum purity of 99.50 mass% or more and less than 99.99 mass% is used. As impurities contained in the aluminum substrate 12, iron (Fe), silicon (Si), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), titanium (Ti), lead (Pb) It is preferable that at least one element selected from the group consisting of tin (Sn) and magnesium (Mg) is included, and Mg is particularly preferable. The mechanism by which pits (dents) are formed in the etching process is a local cell reaction, and therefore ideally contains no noble elements than aluminum and is a base metal, Mg (standard electrode potential − It is preferable to use an aluminum substrate 12 containing 2.36V) as an impurity element. If the content of an element nobler than aluminum is 10 ppm or less, it can be said that the said element is not included substantially from an electrochemical viewpoint. The Mg content is preferably 0.1% by mass or more, and more preferably in the range of about 3.0% by mass or less. If the Mg content is less than 0.1 mass%, sufficient rigidity cannot be obtained. On the other hand, when the content rate increases, Mg segregation easily occurs. Even if segregation occurs in the vicinity of the surface forming the moth-eye mold, there is no electrochemical problem. However, Mg forms an anodic oxide film having a form different from that of aluminum, which causes defects. What is necessary is just to set suitably the content rate of an impurity element according to the rigidity required according to the shape of the aluminum base material 12, thickness, and a magnitude | size. For example, when the plate-shaped aluminum substrate 12 is produced by rolling, an appropriate Mg content is about 3.0 mass%, and the aluminum substrate 12 having a three-dimensional structure such as a cylinder is produced by extrusion. When it does, it is preferable that the content rate of Mg is 2.0 mass% or less. If the Mg content exceeds 2.0 mass%, extrusion processability generally decreases.
 アルミニウム基材12として、例えば、JIS A1050、Al-Mg系合金(例えばJIS A5052)、またはAl-Mg-Si系合金(例えばJIS A6063)で形成された円筒状のアルミニウム管を用いる。 As the aluminum substrate 12, for example, a cylindrical aluminum tube formed of JIS A1050, Al—Mg alloy (for example, JIS A5052), or Al—Mg—Si alloy (for example, JIS A6063) is used.
 アルミニウム基材12の表面は、バイト切削が施されていることが好ましい。アルミニウム基材12の表面に、例えば砥粒が残っていると、砥粒が存在する部分において、アルミニウム膜18とアルミニウム基材12との間で導通しやすくなる。砥粒以外にも、凹凸が存在するところでは、アルミニウム膜18とアルミニウム基材12との間で局所的に導通しやすくなる。アルミニウム膜18とアルミニウム基材12との間で局所的に導通すると、アルミニウム基材12内の不純物とアルミニウム膜18との間で局所的に電池反応が起こる可能性がある。 The surface of the aluminum substrate 12 is preferably subjected to cutting by cutting. If, for example, abrasive grains remain on the surface of the aluminum base 12, electrical conduction between the aluminum film 18 and the aluminum base 12 is facilitated in a portion where the abrasive grains exist. In addition to the abrasive grains, where there are irregularities, local conduction between the aluminum film 18 and the aluminum substrate 12 is likely to occur. When local conduction is made between the aluminum film 18 and the aluminum base 12, there is a possibility that a battery reaction occurs locally between the impurities in the aluminum base 12 and the aluminum film 18.
 無機材料層16の材料としては、例えば酸化タンタル(Ta25)または二酸化シリコン(SiO2)を用いることができる。無機材料層16は、例えばスパッタ法により形成することができる。無機材料層16として、酸化タンタル層を用いる場合、酸化タンタル層の厚さは、例えば、200nmである。 As a material of the inorganic material layer 16, for example, tantalum oxide (Ta 2 O 5 ) or silicon dioxide (SiO 2 ) can be used. The inorganic material layer 16 can be formed by sputtering, for example. When a tantalum oxide layer is used as the inorganic material layer 16, the thickness of the tantalum oxide layer is, for example, 200 nm.
 無機材料層16の厚さは、100nm以上500nm未満であることが好ましい。無機材料層16の厚さが100nm未満であると、アルミニウム膜18に欠陥(主にボイド、すなわち結晶粒間の間隙)が生じることがある。また、無機材料層16の厚さが500nm以上であると、アルミニウム基材12の表面状態によって、アルミニウム基材12とアルミニウム膜18との間が絶縁されやすくなる。アルミニウム基材12側からアルミニウム膜18に電流を供給することによってアルミニウム膜18の陽極酸化を行うためには、アルミニウム基材12とアルミニウム膜18との間に電流が流れる必要がある。円筒状のアルミニウム基材12の内面から電流を供給する構成を採用すると、アルミニウム膜18に電極を設ける必要がないので、アルミニウム膜18を全面にわたって陽極酸化できるとともに、陽極酸化の進行に伴って電流が供給され難くなるという問題も起こらず、アルミニウム膜18を全面にわたって均一に陽極酸化することができる。 The thickness of the inorganic material layer 16 is preferably 100 nm or more and less than 500 nm. If the thickness of the inorganic material layer 16 is less than 100 nm, defects (mainly voids, that is, gaps between crystal grains) may occur in the aluminum film 18 in some cases. Further, when the thickness of the inorganic material layer 16 is 500 nm or more, the aluminum base 12 and the aluminum film 18 are easily insulated from each other depending on the surface state of the aluminum base 12. In order to anodize the aluminum film 18 by supplying current to the aluminum film 18 from the aluminum substrate 12 side, it is necessary that a current flow between the aluminum substrate 12 and the aluminum film 18. If a configuration is adopted in which current is supplied from the inner surface of the cylindrical aluminum substrate 12, it is not necessary to provide an electrode on the aluminum film 18, so that the aluminum film 18 can be anodized over the entire surface, and the current is increased as the anodization proceeds. Therefore, the aluminum film 18 can be uniformly anodized over the entire surface without causing a problem that it is difficult to be supplied.
 また、厚い無機材料層16を形成するためには、一般的には成膜時間を長くする必要がある。成膜時間が長くなると、アルミニウム基材12の表面温度が不必要に上昇し、その結果、アルミニウム膜18の膜質が悪化し、欠陥(主にボイド)が生じることがある。無機材料層16の厚さが500nm未満であれば、このような不具合の発生を抑制することもできる。 Further, in order to form the thick inorganic material layer 16, it is generally necessary to lengthen the film formation time. When the film formation time is lengthened, the surface temperature of the aluminum base 12 is unnecessarily increased. As a result, the film quality of the aluminum film 18 is deteriorated, and defects (mainly voids) may occur. If the thickness of the inorganic material layer 16 is less than 500 nm, the occurrence of such a problem can be suppressed.
 アルミニウム膜18は、例えば、特許文献3に記載されているように、純度が99.99mass%以上のアルミニウムで形成された膜(以下、「高純度アルミニウム膜」ということがある。」)である。アルミニウム膜18は、例えば、真空蒸着法またはスパッタ法を用いて形成される。アルミニウム膜18の厚さは、約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。 The aluminum film 18 is, for example, a film formed of aluminum having a purity of 99.99 mass% or more (hereinafter, also referred to as “high-purity aluminum film”) as described in Patent Document 3. . The aluminum film 18 is formed using, for example, a vacuum deposition method or a sputtering method. The thickness of the aluminum film 18 is preferably in the range of about 500 nm or more and about 1500 nm or less, for example, about 1 μm.
 また、アルミニウム膜18として、高純度アルミニウム膜に代えて、特許文献4に記載されている、アルミニウム合金膜を用いてもよい。特許文献4に記載のアルミニウム合金膜は、アルミニウムと、アルミニウム以外の金属元素と、窒素とを含む。本明細書において、「アルミニウム膜」は、高純度アルミニウム膜だけでなく、特許文献4に記載のアルミニウム合金膜を含むものとする。 As the aluminum film 18, an aluminum alloy film described in Patent Document 4 may be used instead of the high-purity aluminum film. The aluminum alloy film described in Patent Document 4 includes aluminum, a metal element other than aluminum, and nitrogen. In the present specification, the “aluminum film” includes not only a high-purity aluminum film but also an aluminum alloy film described in Patent Document 4.
 上記アルミニウム合金膜を用いると、反射率が80%以上の鏡面を得ることができる。アルミニウム合金膜を構成する結晶粒の、アルミニウム合金膜の法線方向から見たときの平均粒径は、例えば、100nm以下であり、アルミニウム合金膜の最大表面粗さRmaxは60nm以下である。アルミニウム合金膜に含まれる窒素の含有率は、例えば、0.5mass%以上5.7mass%以下である。アルミニウム合金膜に含まれるアルミニウム以外の金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値は0.64V以下であり、アルミニウム合金膜中の金属元素の含有率は、1.0mass%以上1.9mass%以下であることが好ましい。金属元素は、例えば、TiまたはNdである。但し、金属元素はこれに限られず、金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値が0.64V以下である他の金属元素(例えば、Mn、Mg、Zr、VおよびPb)であってもよい。さらに、金属元素は、Mo、NbまたはHfであってもよい。アルミニウム合金膜は、これらの金属元素を2種類以上含んでもよい。アルミニウム合金膜は、例えば、DCマグネトロンスパッタ法で形成される。アルミニウム合金膜の厚さも約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。 When using the aluminum alloy film, a mirror surface with a reflectance of 80% or more can be obtained. The average grain size of the crystal grains constituting the aluminum alloy film as viewed from the normal direction of the aluminum alloy film is, for example, 100 nm or less, and the maximum surface roughness Rmax of the aluminum alloy film is 60 nm or less. The content rate of nitrogen contained in the aluminum alloy film is, for example, not less than 0.5 mass% and not more than 5.7 mass%. The absolute value of the difference between the standard electrode potential of a metal element other than aluminum contained in the aluminum alloy film and the standard electrode potential of aluminum is 0.64 V or less, and the content of the metal element in the aluminum alloy film is 1.0 mass. % Or more and 1.9 mass% or less is preferable. The metal element is, for example, Ti or Nd. However, the metal element is not limited to this, and other metal elements whose absolute value of the difference between the standard electrode potential of the metal element and the standard electrode potential of aluminum is 0.64 V or less (for example, Mn, Mg, Zr, V, and Pb). Furthermore, the metal element may be Mo, Nb, or Hf. The aluminum alloy film may contain two or more of these metal elements. The aluminum alloy film is formed by, for example, a DC magnetron sputtering method. The thickness of the aluminum alloy film is also preferably in the range of about 500 nm to about 1500 nm, for example, about 1 μm.
 次に、図2(b)に示すように、アルミニウム膜18の表面18sを陽極酸化することによって、複数の凹部(細孔)14pを有するポーラスアルミナ層14を形成する。ポーラスアルミナ層14は、凹部14pを有するポーラス層と、バリア層(凹部(細孔)14pの底部)とを有している。隣接する凹部14pの間隔(中心間距離)は、バリア層の厚さのほぼ2倍に相当し、陽極酸化時の電圧にほぼ比例することが知られている。この関係は、図2(e)に示す最終的なポーラスアルミナ層14についても成立する。 Next, as shown in FIG. 2B, the surface 18s of the aluminum film 18 is anodized to form a porous alumina layer 14 having a plurality of recesses (pores) 14p. The porous alumina layer 14 has a porous layer having a recess 14p and a barrier layer (the bottom of the recess (pore) 14p). It is known that the interval between the adjacent recesses 14p (center-to-center distance) corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization. This relationship also holds for the final porous alumina layer 14 shown in FIG.
 ポーラスアルミナ層14は、例えば、酸性の電解液中で表面18sを陽極酸化することによって形成される。ポーラスアルミナ層14を形成する工程で用いられる電解液は、例えば、蓚酸、酒石酸、燐酸、硫酸、クロム酸、クエン酸、リンゴ酸からなる群から選択される酸を含む水溶液である。例えば、アルミニウム膜18の表面18sを、蓚酸水溶液(濃度0.3mass%、液温10℃)を用いて、印加電圧80Vで55秒間陽極酸化を行うことにより、ポーラスアルミナ層14を形成する。 The porous alumina layer 14 is formed, for example, by anodizing the surface 18s in an acidic electrolytic solution. The electrolytic solution used in the step of forming the porous alumina layer 14 is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, sulfuric acid, chromic acid, citric acid, and malic acid. For example, the porous alumina layer 14 is formed by anodizing the surface 18 s of the aluminum film 18 using an oxalic acid aqueous solution (concentration 0.3 mass%, liquid temperature 10 ° C.) at an applied voltage of 80 V for 55 seconds.
 次に、図2(c)に示すように、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによって所定の量だけエッチングすることにより凹部14pの開口部を拡大する。エッチング液の種類・濃度、およびエッチング時間を調整することによって、エッチング量(すなわち、凹部14pの大きさおよび深さ)を制御することができる。エッチング液としては、例えば10mass%の燐酸や、蟻酸、酢酸、クエン酸などの有機酸や硫酸の水溶液やクロム酸燐酸混合水溶液を用いることができる。例えば、燐酸水溶液(10mass%、30℃)を用いて20分間エッチングを行う。 Next, as shown in FIG. 2 (c), the porous alumina layer 14 is brought into contact with an alumina etchant and etched by a predetermined amount to enlarge the opening of the recess 14p. The amount of etching (that is, the size and depth of the recess 14p) can be controlled by adjusting the type / concentration of the etching solution and the etching time. As an etchant, for example, 10 mass% phosphoric acid, an organic acid such as formic acid, acetic acid, or citric acid, an aqueous solution of sulfuric acid, or a mixed aqueous solution of chromic phosphoric acid can be used. For example, etching is performed for 20 minutes using a phosphoric acid aqueous solution (10 mass%, 30 ° C.).
 次に、図2(d)に示すように、再び、アルミニウム膜18を部分的に陽極酸化することにより、凹部14pを深さ方向に成長させるとともにポーラスアルミナ層14を厚くする。ここで凹部14pの成長は、既に形成されている凹部14pの底部から始まるので、凹部14pの側面は階段状になる。 Next, as shown in FIG. 2D, the aluminum film 18 is partially anodized again to grow the recesses 14p in the depth direction and to thicken the porous alumina layer 14. Here, since the growth of the recess 14p starts from the bottom of the already formed recess 14p, the side surface of the recess 14p is stepped.
 さらにこの後、必要に応じて、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによってさらにエッチングすることにより凹部14pの孔径をさらに拡大する。エッチング液としては、ここでも上述したエッチング液を用いることが好ましく、現実的には、同じエッチング浴を用いればよい。 Further thereafter, if necessary, the porous alumina layer 14 is further etched by bringing it into contact with an alumina etchant to further enlarge the hole diameter of the recess 14p. As the etchant, it is preferable to use the above-described etchant, and in practice, the same etch bath may be used.
 このように、上述した陽極酸化工程およびエッチング工程を交互に複数回(例えば5回:陽極酸化を5回とエッチングを4回)繰り返すことによって、図2(e)に示すように、反転されたモスアイ構造を有するポーラスアルミナ層14を有するモスアイ用型100Aが得られる。陽極酸化工程で終わることによって、凹部14pの底部を点にできる。すなわち、先端が尖った凸部を形成することができる型が得られる。 In this way, the above-described anodizing step and etching step were alternately repeated a plurality of times (for example, 5 times: anodizing 5 times and etching 4 times), thereby being inverted as shown in FIG. A moth-eye mold 100A having a porous alumina layer 14 having a moth-eye structure is obtained. By finishing with the anodizing step, the bottom of the recess 14p can be pointed. That is, a mold capable of forming a convex part with a sharp tip is obtained.
 図2(e)に示すポーラスアルミナ層14(厚さtp)は、ポーラス層(厚さは凹部14pの深さDdに相当)とバリア層(厚さtb)とを有する。ポーラスアルミナ層14は、合成高分子膜34Aが有するモスアイ構造を反転した構造を有するので、その大きさを特徴づける対応するパラメータに同じ記号を用いることがある。 The porous alumina layer 14 (thickness t p ) shown in FIG. 2 (e) has a porous layer (thickness corresponds to the depth D d of the recess 14p) and a barrier layer (thickness t b ). Since the porous alumina layer 14 has a structure obtained by inverting the moth-eye structure of the synthetic polymer film 34A, the same symbol may be used for the corresponding parameter characterizing the size.
 ポーラスアルミナ層14が有する凹部14pは、例えば円錐形であり、階段状の側面を有してもよい。凹部14pの二次元的な大きさ(表面の法線方向から見たときの凹部の面積円相当径)Dpは20nm超500nm未満で、深さDdは50nm以上1000nm(1μm)未満程度であることが好ましい。また、凹部14pの底部は尖っている(最底部は点になっている)ことが好ましい。凹部14pは密に充填されている場合、ポーラスアルミナ層14の法線方向から見たときの凹部14pの形状を円と仮定すると、隣接する円は互いに重なり合い、隣接する凹部14pの間に鞍部が形成される。なお、略円錐形の凹部14pが鞍部を形成するように隣接しているときは、凹部14pの二次元的な大きさDpは隣接間距離Dintと等しい。ポーラスアルミナ層14の厚さtpは、例えば、約1μm以下である。 The concave portion 14p of the porous alumina layer 14 is, for example, conical and may have stepped side surfaces. Two-dimensional size of the recess 14p is D p (area equivalent circle diameter of the recess when viewed from the direction normal to the surface) is less than 20nm ultra 500 nm, the depth D d in the order of less than 50nm over 1000 nm (1 [mu] m) Preferably there is. Moreover, it is preferable that the bottom part of the recessed part 14p is pointed (the bottom is a point). When the recesses 14p are densely packed, assuming that the shape of the recesses 14p when viewed from the normal direction of the porous alumina layer 14 is a circle, the adjacent circles overlap with each other, and a flange portion is formed between the adjacent recesses 14p. It is formed. Incidentally, when the concave portion 14p of the substantially conical adjacent so as to form a saddle, two-dimensional size D p of the concave portion 14p is equal to the distance between adjacent D int. The thickness t p of the porous alumina layer 14 is, for example, about 1 μm or less.
 なお、図2(e)に示すポーラスアルミナ層14の下には、アルミニウム膜18のうち、陽極酸化されなかったアルミニウム残存層18rが存在している。必要に応じて、アルミニウム残存層18rが存在しないように、アルミニウム膜18を実質的に完全に陽極酸化してもよい。例えば、無機材料層16が薄い場合には、アルミニウム基材12側から容易に電流を供給することができる。 Note that, under the porous alumina layer 14 shown in FIG. 2 (e), an aluminum remaining layer 18r that has not been anodized in the aluminum film 18 is present. If necessary, the aluminum film 18 may be anodized substantially completely so that the remaining aluminum layer 18r does not exist. For example, when the inorganic material layer 16 is thin, current can be easily supplied from the aluminum substrate 12 side.
 ここで例示したモスアイ用型の製造方法は、特許文献2~4に記載の反射防止膜を作製するための型を製造することができる。高精細な表示パネルに用いられる反射防止膜には、高い均一性が要求されるので、上記のようにアルミニウム基材の材料の選択、アルミニウム基材の鏡面加工、アルミニウム膜の純度や成分の制御を行うことが好ましいが、殺菌作用に高い均一性は求められないので、上記の型の製造方法を簡略化することができる。例えば、アルミニウム基材の表面を直接、陽極酸化してもよい。また、このときアルミニウム基材に含まれる不純物の影響でピットが形成されても、最終的に得られる合成高分子膜34Aのモスアイ構造に局所的な構造の乱れが生じるだけで、殺菌作用に与える影響はほとんどないと考えられる。 The moth-eye mold manufacturing method exemplified here can manufacture a mold for producing an antireflection film described in Patent Documents 2 to 4. Anti-reflective coatings used in high-definition display panels are required to have high uniformity. Therefore, as described above, the selection of the aluminum base material, mirror finishing of the aluminum base, and control of the purity and composition of the aluminum film However, since high uniformity is not required for the bactericidal action, the above-described mold manufacturing method can be simplified. For example, the surface of the aluminum substrate may be directly anodized. At this time, even if pits are formed due to the influence of impurities contained in the aluminum base material, only a local structural disorder occurs in the moth-eye structure of the finally obtained synthetic polymer film 34A, which has a sterilizing effect. There is little impact.
 また、上述の型の製造方法によると、反射防止膜の作製に好適な、凹部の配列の規則性が低い型を製造することができる。モスアイ構造の殺菌性を利用する場合には、凸部の配列の規則性は影響しないと考えられる。規則的に配列された凸部を有するモスアイ構造を形成するための型は、例えば、以下のようにして製造することができる。 Further, according to the above-described mold manufacturing method, a mold having a low regularity of the arrangement of the concave portions suitable for the production of the antireflection film can be manufactured. When utilizing the bactericidal property of the moth-eye structure, it is considered that the regularity of the arrangement of the convex portions does not affect. A mold for forming a moth-eye structure having regularly arranged convex portions can be manufactured as follows, for example.
 例えば厚さが約10μmのポーラスアルミナ層を形成した後、生成されたポーラスアルミナ層をエッチングにより除去してから、上述のポーラスアルミナ層を生成する条件で陽極酸化を行えばよい。厚さが10μmのポーラスアルミナ層は、陽極酸化時間を長くすることによって形成される。このように比較的厚いポーラスアルミナ層を生成し、このポーラスアルミナ層を除去すると、アルミニウム膜またはアルミニウム基材の表面に存在するグレインによる凹凸や加工ひずみの影響を受けることなく、規則的に配列された凹部を有するポーラスアルミナ層を形成することができる。なお、ポーラスアルミナ層の除去には、クロム酸と燐酸との混合液を用いることが好ましい。長時間にわたるエッチングを行うとガルバニック腐食が発生することがあるが、クロム酸と燐酸との混合液はガルバニック腐食を抑制する効果がある。 For example, after a porous alumina layer having a thickness of about 10 μm is formed, the produced porous alumina layer is removed by etching, and then anodization is performed under conditions for producing the porous alumina layer described above. The porous alumina layer having a thickness of 10 μm is formed by increasing the anodic oxidation time. When a relatively thick porous alumina layer is generated in this way and this porous alumina layer is removed, the porous alumina layer is regularly arranged without being affected by irregularities or processing strain caused by grains present on the surface of the aluminum film or the aluminum substrate. A porous alumina layer having a concave portion can be formed. In addition, it is preferable to use the liquid mixture of chromic acid and phosphoric acid for the removal of a porous alumina layer. When etching is performed for a long time, galvanic corrosion may occur, but a mixed solution of chromic acid and phosphoric acid has an effect of suppressing galvanic corrosion.
 図1(b)に示した合成高分子膜34Bを形成するためのモスアイ用型も、基本的に、上述した陽極酸化工程とエッチング工程とを組み合わせることによって製造することができる。図3(a)~(c)を参照して、合成高分子膜34Bを形成するための、モスアイ用型100Bの製造方法を説明する。 The moth-eye mold for forming the synthetic polymer film 34B shown in FIG. 1B can also be basically manufactured by combining the above-described anodizing step and etching step. With reference to FIGS. 3A to 3C, a method of manufacturing the moth-eye mold 100B for forming the synthetic polymer film 34B will be described.
 まず、図2(a)および(b)を参照して説明したのと同様に、型基材10を用意し、アルミニウム膜18の表面18sを陽極酸化することによって、複数の凹部(細孔)14pを有するポーラスアルミナ層14を形成する。 First, in the same manner as described with reference to FIGS. 2A and 2B, the mold base 10 is prepared, and the surface 18s of the aluminum film 18 is anodized, whereby a plurality of recesses (pores) are prepared. A porous alumina layer 14 having 14p is formed.
 次に、図3(a)に示すように、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによって所定の量だけエッチングすることにより凹部14pの開口部を拡大する。このとき、図2(c)を参照して説明したエッチング工程よりも、エッチング量を少なくする。すなわち、凹部14pの開口部の大きさを小さくする。例えば、燐酸水溶液(10mass%、30℃)を用いて10分間エッチングを行う。 Next, as shown in FIG. 3 (a), the porous alumina layer 14 is brought into contact with an alumina etchant to be etched by a predetermined amount to enlarge the opening of the recess 14p. At this time, the etching amount is reduced as compared with the etching process described with reference to FIG. That is, the size of the opening of the recess 14p is reduced. For example, etching is performed for 10 minutes using a phosphoric acid aqueous solution (10 mass%, 30 ° C.).
 次に、図3(b)に示すように、再び、アルミニウム膜18を部分的に陽極酸化することにより、凹部14pを深さ方向に成長させるとともにポーラスアルミナ層14を厚くする。このとき、図2(d)を参照して説明した陽極酸化工程よりも、凹部14pを深く成長させる。例えば、蓚酸水溶液(濃度0.3mass%、液温10℃)を用いて、印加電圧80Vで165秒間陽極酸化を行う(図2(d)では55秒間)。 Next, as shown in FIG. 3 (b), the aluminum film 18 is partially anodized again to grow the recesses 14p in the depth direction and to thicken the porous alumina layer 14. At this time, the recess 14p is grown deeper than in the anodic oxidation step described with reference to FIG. For example, anodic oxidation is performed for 165 seconds at an applied voltage of 80 V using an oxalic acid aqueous solution (concentration: 0.3 mass%, liquid temperature: 10 ° C. (55 seconds in FIG. 2D)).
 その後、図2(e)を参照して説明したのと同様に、エッチング工程および陽極酸化工程を交互に複数回くり返す。例えば、エッチング工程を3回、陽極酸化工程を3回、交互に繰り返すことによって、図3(c)に示すように、反転されたモスアイ構造を有するポーラスアルミナ層14を有するモスアイ用型100Bが得られる。このとき、凹部14pの二次元的な大きさDpは隣接間距離Dintより小さい(Dp<Dint)。 Thereafter, as described with reference to FIG. 2E, the etching process and the anodic oxidation process are alternately repeated a plurality of times. For example, by alternately repeating the etching process three times and the anodic oxidation process three times, a moth-eye mold 100B having a porous alumina layer 14 having an inverted moth-eye structure is obtained as shown in FIG. It is done. At this time, the two-dimensional size D p of the recess 14p is smaller than the inter-adjacent distance D int (D p <D int ).
 微生物の大きさはその種類によって異なる。例えば緑膿菌の大きさは約1μmであるが、細菌には、数100nm~約5μmの大きさのものがあり、真菌は数μm以上である。例えば、2次元的な大きさが約200nmの凸部は、約0.5μm以上の大きさの微生物に対しては殺菌作用を有すると考えられるが、数100nmの大きさの細菌に対しては、凸部が大きすぎるために十分な殺菌作用を発現しない可能性がある。また、ウィルスの大きさは数10nm~数100nmであり、100nm以下のものも多い。なお、ウィルスは細胞膜を有しないが、ウィルス核酸を取り囲むカプシドと呼ばれるタンパク質の殻を有している。ウィルスは、この殻の外側に膜状のエンベロープを有するウィルスと、エンベロープを有しないウィルスとに分けられる。エンベロープを有するウィルスにおいては、エンベロープは主として脂質からなるので、エンベロープに対して凸部が同様に作用すると考えられる。エンベロープを有するウィルスとして、例えば、インフルエンザウィルスやエボラウィルスが挙げられる。エンベロープを有しないウィルスにおいては、このカプシドと呼ばれるタンパク質の殻に対して凸部が同様に作用すると考えられる。凸部が窒素元素を有すると、アミノ酸から構成されるタンパク質との親和性が強くなり得る。 ∙ The size of microorganisms varies depending on the type. For example, the size of Pseudomonas aeruginosa is about 1 μm, but some bacteria have a size of several hundred nm to about 5 μm, and fungi are several μm or more. For example, a convex portion having a two-dimensional size of about 200 nm is considered to have a bactericidal action against microorganisms having a size of about 0.5 μm or more, but for bacteria having a size of several hundred nm. The convex part is too large, and there is a possibility that a sufficient bactericidal action is not exhibited. Further, the size of the virus is several tens nm to several hundreds nm, and many of them are 100 nm or less. The virus does not have a cell membrane, but has a protein shell called a capsid that surrounds the viral nucleic acid. Viruses can be divided into viruses having a membrane-like envelope outside the shell and viruses not having an envelope. In a virus having an envelope, since the envelope is mainly composed of lipid, it is considered that the convex portion acts on the envelope in the same manner. Examples of the virus having an envelope include influenza virus and Ebola virus. In viruses that do not have an envelope, it is thought that the convex portion acts on the protein shell called capsid in the same manner. When the convex part has a nitrogen element, affinity with a protein composed of amino acids may be increased.
 そこで、数100nm以下の微生物に対しても殺菌作用を発現し得る凸部を有する合成高分子膜の構造およびその製造方法を以下に説明する。 Therefore, the structure of a synthetic polymer film having a convex portion capable of exhibiting a bactericidal action even for microorganisms of several hundred nm or less and a manufacturing method thereof will be described below.
 以下では、上記で例示した合成高分子膜が有する、2次元的な大きさが20nm超500nm未満の範囲にある凸部を第1の凸部という。また、第1の凸部に重畳して形成された凸部を第2の凸部といい、第2の凸部の2次元的な大きさは、第1の凸部の2次元的な大きさよりも小さく、かつ、100nmを超えない。なお、第1の凸部の2次元的な大きさが100nm未満、特に50nm未満の場合には、第2の凸部を設ける必要はない。また、第1の凸部に対応する型の凹部を第1の凹部といい、第2の凸部に対応する型の凹部を第2の凹部という。 Hereinafter, the convex portion of the synthetic polymer film exemplified above having a two-dimensional size in the range of more than 20 nm and less than 500 nm is referred to as a first convex portion. Moreover, the convex part formed so as to overlap the first convex part is called a second convex part, and the two-dimensional size of the second convex part is the two-dimensional size of the first convex part. Smaller than 100 nm and not exceeding 100 nm. In addition, when the two-dimensional size of the first protrusion is less than 100 nm, particularly less than 50 nm, it is not necessary to provide the second protrusion. Further, the concave portion of the mold corresponding to the first convex portion is referred to as a first concave portion, and the concave portion of the mold corresponding to the second convex portion is referred to as a second concave portion.
 上述の陽極酸化工程とエッチング工程とを交互に行うことによって、所定の大きさおよび形状の第1の凹部を形成する方法をそのまま適用しても、第2の凹部を形成することができない。 Even if the method for forming the first concave portion having a predetermined size and shape is applied as it is by alternately performing the above-described anodizing step and etching step, the second concave portion cannot be formed.
 図4(a)にアルミニウム基材(図2中の参照符号12)の表面のSEM像を示し、図4(b)にアルミニウム膜(図2中の参照符号18)の表面のSEM像を示し、図4(c)にアルミニウム膜(図2中の参照符号18)の断面のSEM像を示す。これらのSEM像からわかるように、アルミニウム基材の表面およびアルミニウム膜の表面に、グレイン(結晶粒)が存在している。アルミニウム膜のグレインは、アルミニウム膜の表面に凹凸を形成している。この表面の凹凸は、陽極酸化時の凹部の形成に影響を与えるので、DpまたはDintが100nmよりも小さい第2の凹部の形成を妨げる。 4A shows an SEM image of the surface of the aluminum base (reference numeral 12 in FIG. 2), and FIG. 4B shows an SEM image of the surface of the aluminum film (reference numeral 18 in FIG. 2). FIG. 4C shows an SEM image of a cross section of the aluminum film (reference numeral 18 in FIG. 2). As can be seen from these SEM images, grains (crystal grains) are present on the surface of the aluminum substrate and the surface of the aluminum film. The grain of the aluminum film forms irregularities on the surface of the aluminum film. The unevenness on the surface affects the formation of the recess during anodic oxidation, thus preventing the formation of the second recess with D p or D int smaller than 100 nm.
 そこで、本発明の実施形態による型の製造方法は、(a)アルミニウム基材または支持体の上に堆積されたアルミニウム膜を用意する工程と、(b)アルミニウム基材またはアルミニウム膜の表面を電解液に接触させた状態で、第1のレベルの電圧を印加することによって、第1の凹部を有するポーラスアルミナ層を形成する陽極酸化工程と、(c)工程(b)の後に、ポーラスアルミナ層をエッチング液に接触させることによって、第1の凹部を拡大させるエッチング工程と、(d)工程(c)の後に、ポーラスアルミナ層を電解液に接触させた状態で、第1のレベルよりも低い第2のレベルの電圧を印加することによって、第1の凹部内に、第2の凹部を形成する工程とを包含する。例えば、第1のレベルは、40V超であり、第2のレベルは、20V以下である。 Therefore, a mold manufacturing method according to an embodiment of the present invention includes: (a) a step of preparing an aluminum film deposited on an aluminum substrate or support; and (b) an electrolysis of the surface of the aluminum substrate or aluminum film. An anodic oxidation step of forming a porous alumina layer having a first recess by applying a first level voltage in contact with the liquid; and (c) after step (b), the porous alumina layer. An etching process for enlarging the first recess by contacting the etching solution, and (d) after the step (c), the porous alumina layer is in contact with the electrolytic solution and lower than the first level. Forming a second recess in the first recess by applying a second level voltage. For example, the first level is above 40V and the second level is below 20V.
 すなわち、第1のレベルの電圧での陽極酸化工程で、アルミニウム基材またはアルミニウム膜のグレインの影響を受けない大きさを有する第1の凹部を形成し、その後、エッチングによってバリア層の厚さを小さくしてから、第1のレベルよりも低い第2のレベルの電圧での陽極酸化工程で、第1の凹部内に第2の凹部を形成する。このような方法で、第2の凹部を形成すると、グレインによる影響が排除される。 That is, a first recess having a size that is not affected by the grain of the aluminum base material or the aluminum film is formed in the anodizing process at the first level voltage, and then the thickness of the barrier layer is reduced by etching. After the reduction, the second recess is formed in the first recess by an anodic oxidation step at a second level voltage lower than the first level. When the second concave portion is formed by such a method, the influence of grains is eliminated.
 図5を参照して、第1の凹部14paと、第1の凹部14pa内に形成された第2の凹部14pbとを有する型を説明する。図5(a)は型のポーラスアルミナ層の模式的な平面図であり、図5(b)は模式的な断面図であり、図5(c)は試作した型のSEM像を示す。 Referring to FIG. 5, a mold having a first recess 14pa and a second recess 14pb formed in the first recess 14pa will be described. FIG. 5A is a schematic plan view of a porous alumina layer of the mold, FIG. 5B is a schematic cross-sectional view, and FIG. 5C shows an SEM image of the prototype mold.
 図5(a)および(b)に示すように、本実施形態による型の表面は、2次元的な大きさは20nm超500nm未満の範囲内にある複数の第1の凹部14paと、複数の第1の凹部14paに重畳して形成された複数の第2の凹部14pbをさらに有している。複数の第2の凹部14pbの2次元的な大きさは、複数の第1の凹部14paの2次元的な大きさよりも小さく、かつ、100nmを超えない。第2の凹部14pbの高さは、例えば、20nm超100nm以下である。第2の凹部14pbも、第1の凹部14paと同様に、略円錐形の部分を含むことが好ましい。 As shown in FIGS. 5A and 5B, the surface of the mold according to the present embodiment has a plurality of first recesses 14pa whose two-dimensional size is in the range of more than 20 nm and less than 500 nm, and a plurality of It further has a plurality of second recesses 14pb formed so as to overlap the first recess 14pa. The two-dimensional size of the plurality of second recesses 14pb is smaller than the two-dimensional size of the plurality of first recesses 14pa and does not exceed 100 nm. The height of the second recess 14pb is, for example, more than 20 nm and not more than 100 nm. Similarly to the first recess 14pa, the second recess 14pb preferably includes a substantially conical portion.
 図5(c)に示すポーラスアルミナ層は、以下の様にして製造した。 The porous alumina layer shown in FIG. 5 (c) was manufactured as follows.
 アルミニウム膜として、Tiを1mass%含むアルミニウム膜を用いた。陽極酸化液には蓚酸水溶液(濃度0.3mass%、温度10℃)を使用して、エッチング液には、燐酸水溶液(濃度10mass%、温度30℃)を使用した。電圧80Vにおける陽極酸化を52秒間行った後、エッチングを25分間、続いて、電圧80Vにおける陽極酸化を52秒間、エッチング25分間を行った。この後、20Vにおける陽極酸化を52秒間、エッチングを5分間、さらに、20Vにおける陽極酸化を52秒間行った。 As the aluminum film, an aluminum film containing 1 mass% of Ti was used. An oxalic acid aqueous solution (concentration 0.3 mass%, temperature 10 ° C.) was used as the anodizing solution, and an phosphoric acid aqueous solution (concentration 10 mass%, temperature 30 ° C.) was used as the etching solution. After performing anodic oxidation at a voltage of 80 V for 52 seconds, etching was performed for 25 minutes, followed by anodic oxidation at a voltage of 80 V for 52 seconds and etching for 25 minutes. Thereafter, anodic oxidation at 20 V was performed for 52 seconds, etching was performed for 5 minutes, and anodic oxidation at 20 V was further performed for 52 seconds.
 図5(c)からわかるように、Dpが約200nmの第1の凹部の中に、Dpが約50nmの第2の凹部が形成されている。上記の製造方法において、第1のレベルの電圧を80Vから45Vに変更して、ポーラスアルミナ層を形成したところ、Dpが約100nmの第1の凹部の中に、Dpが約50nmの第2の凹部が形成された。 Figure 5 (c) As can be seen from, among D p is in the first recess of about 200 nm, a second recess of D p is about 50nm is formed. In the above manufacturing method, when the first level voltage is changed from 80 V to 45 V to form a porous alumina layer, the first recess having D p of about 100 nm is formed in the first recess having D p of about 50 nm. Two recesses were formed.
 このような型を用いて合成高分子膜を作製すると、図5(a)および(b)に示した第1の凹部14paおよび第2の凹部14pbの構造を反転した凸部を有する合成高分子膜が得られる。すなわち、複数の第1の凸部に重畳して形成された複数の第2の凸部をさらに有する合成高分子膜が得られる。 When a synthetic polymer film is produced using such a mold, a synthetic polymer having a convex portion obtained by inverting the structure of the first concave portion 14pa and the second concave portion 14pb shown in FIGS. 5 (a) and (b). A membrane is obtained. That is, a synthetic polymer film further having a plurality of second protrusions formed so as to overlap with the plurality of first protrusions is obtained.
 このように第1の凸部と、第1の凸部に重畳して形成された第2の凸部を有する合成高分子膜は、100nm程度の比較的小さな微生物から、5μm以上の比較的大きな微生物に対して殺菌作用を有し得る。 As described above, the synthetic polymer film having the first convex portion and the second convex portion formed so as to overlap the first convex portion is made from a relatively small microorganism of about 100 nm to a relatively large size of 5 μm or more. Can have bactericidal action against microorganisms.
 もちろん、対象とする微生物の大きさに応じて、2次元的な大きさが20nm超100nm未満の範囲内にある凹部だけを形成してもよい。このような凸部を形成するための型は、例えば、以下の様にして作製することができる。 Of course, depending on the size of the target microorganism, only a recess having a two-dimensional size in the range of more than 20 nm and less than 100 nm may be formed. A mold for forming such a convex portion can be manufactured as follows, for example.
 酒石酸アンモニウム水溶液などの中性塩水溶液(ホウ酸アンモニウム、クエン酸アンモニウムなど)や、イオン解離度の小さい有機酸(マレイン酸、マロン酸、フタル酸、クエン酸、酒石酸など)を用いて陽極酸化を行い、バリア型陽極酸化膜を形成し、バリア型陽極酸化膜をエッチングによって除去した後、所定の電圧(上記の第2のレベルの電圧)で陽極酸化することによって、2次元的な大きさが20nm超100nm未満の範囲内にある凹部を形成することができる。 Anodic oxidation using neutral salt aqueous solution (ammonium borate, ammonium citrate, etc.) such as ammonium tartrate aqueous solution and organic acids (maleic acid, malonic acid, phthalic acid, citric acid, tartaric acid, etc.) with low ion dissociation The barrier type anodic oxide film is formed, the barrier type anodic oxide film is removed by etching, and then anodized at a predetermined voltage (the second level voltage described above). Recesses in the range of more than 20 nm and less than 100 nm can be formed.
 例えば、アルミニウム膜として、Tiを1mass%含むアルミニウム膜を用い、酒石酸水溶液(濃度0.1mol/l、温度23℃)を用いて、100Vにおいて2分間、陽極酸化を行うことによってバリア型陽極酸化膜を形成する。この後、燐酸水溶液(濃度10mass%、温度30℃)を用いて25分間、エッチングすることによって、バリア型陽極酸化膜を除去する。その後、上記と同様に、陽極酸化液には蓚酸水溶液(濃度0.3mass%、温度10℃)を使用し、20Vにおける陽極酸化を52秒間、上記エッチング液を用いたエッチングを5分間、交互に、陽極酸化を5回、エッチングを4回繰り返すことによって、2次元的な大きさが約50nmの凹部を均一に形成することができる。 For example, an aluminum film containing 1 mass% of Ti is used as the aluminum film, and an anodization is performed at 100 V for 2 minutes using an aqueous tartaric acid solution (concentration: 0.1 mol / l, temperature: 23 ° C.). Form. Thereafter, the barrier type anodic oxide film is removed by etching for 25 minutes using a phosphoric acid aqueous solution (concentration: 10 mass%, temperature: 30 ° C.). Thereafter, in the same manner as described above, an oxalic acid aqueous solution (concentration: 0.3 mass%, temperature: 10 ° C.) was used as the anodizing solution. Anodizing at 20 V was performed for 52 seconds, and etching using the etching solution was alternately performed for 5 minutes. By repeating the anodic oxidation 5 times and the etching 4 times, it is possible to uniformly form a recess having a two-dimensional size of about 50 nm.
 上述のようにして、種々のモスアイ構造を形成することができるモスアイ用型を製造することができる。 As described above, moth-eye molds capable of forming various moth-eye structures can be manufactured.
 次に、図6を参照して、モスアイ用型100を用いた合成高分子膜の製造方法を説明する。図6は、ロール・ツー・ロール方式により合成高分子膜を製造する方法を説明するための模式的な断面図である。以下では、上記のロール型を用い、被加工物としてのベースフィルムの表面に合成高分子膜を製造する方法を説明するが、本発明の実施形態による合成高分子膜を製造する方法は、これに限られず、他の形状の形を用いて種々の被加工物の表面上に合成高分子膜を製造することができる。 Next, a method for manufacturing a synthetic polymer film using the moth-eye mold 100 will be described with reference to FIG. FIG. 6 is a schematic cross-sectional view for explaining a method for producing a synthetic polymer film by a roll-to-roll method. Hereinafter, a method for producing a synthetic polymer film on the surface of a base film as a workpiece using the above roll mold will be described. However, a method for producing a synthetic polymer film according to an embodiment of the present invention is described below. The synthetic polymer film can be manufactured on the surface of various workpieces using other shapes.
 まず、円筒状のモスアイ用型100を用意する。なお、円筒状のモスアイ用型100は、例えば図2を参照して説明した製造方法で製造される。 First, a cylindrical moth-eye mold 100 is prepared. The cylindrical moth-eye mold 100 is manufactured, for example, by the manufacturing method described with reference to FIG.
 図6に示すように、紫外線硬化樹脂34'が表面に付与されたベースフィルム42を、モスアイ用型100に押し付けた状態で、紫外線硬化樹脂34'に紫外線(UV)を照射することによって紫外線硬化樹脂34'を硬化する。紫外線硬化樹脂34'としては、例えばアクリル系樹脂を用いることができる。ベースフィルム42は、例えば、PET(ポリエチレンテレフタレート)フィルムまたはTAC(トリアセチルセルロース)フィルムである。ベースフィルム42は、図示しない巻き出しローラから巻き出され、その後、表面に、例えばスリットコータ等により紫外線硬化樹脂34'が付与される。ベースフィルム42は、図6に示すように、支持ローラ46および48によって支持されている。支持ローラ46および48は、回転機構を有し、ベースフィルム42を搬送する。また、円筒状のモスアイ用型100は、ベースフィルム42の搬送速度に対応する回転速度で、図6に矢印で示す方向に回転される。 As shown in FIG. 6, ultraviolet curing is performed by irradiating ultraviolet curing resin 34 ′ with ultraviolet rays (UV) in a state in which base film 42 provided with ultraviolet curing resin 34 ′ is pressed against moth-eye mold 100. Resin 34 'is cured. As the ultraviolet curable resin 34 ′, for example, an acrylic resin can be used. The base film 42 is, for example, a PET (polyethylene terephthalate) film or a TAC (triacetyl cellulose) film. The base film 42 is unwound from an unillustrated unwinding roller, and then an ultraviolet curable resin 34 'is applied to the surface by, for example, a slit coater. As shown in FIG. 6, the base film 42 is supported by support rollers 46 and 48. The support rollers 46 and 48 have a rotation mechanism and convey the base film 42. The cylindrical moth-eye mold 100 is rotated in a direction indicated by an arrow in FIG. 6 at a rotational speed corresponding to the transport speed of the base film 42.
 その後、ベースフィルム42からモスアイ用型100を分離することによって、モスアイ用型100の反転されたモスアイ構造が転写された合成高分子膜34がベースフィルム42の表面に形成される。表面に合成高分子膜34が形成されたベースフィルム42は、図示しない巻き取りローラにより巻き取られる。 Thereafter, by separating the moth-eye mold 100 from the base film 42, the synthetic polymer film 34 to which the inverted moth-eye structure of the moth-eye mold 100 is transferred is formed on the surface of the base film 42. The base film 42 having the synthetic polymer film 34 formed on the surface is wound up by a winding roller (not shown).
 合成高分子膜34の表面は、モスアイ用型100のナノ表面構造を反転したモスアイ構造を有する。用いるモスアイ用型100のナノ表面構造に応じて、図1(a)および(b)に示した合成高分子膜34Aおよび34Bを作製することができる。合成高分子膜34を形成する材料は、紫外線硬化性樹脂に限られず、可視光で硬化可能な光硬化性樹脂を用いることもできるし、熱硬化性樹脂を用いることもできる。 The surface of the synthetic polymer film 34 has a moth-eye structure obtained by inverting the nano-surface structure of the moth-eye mold 100. Depending on the nano-surface structure of the moth-eye mold 100 to be used, the synthetic polymer films 34A and 34B shown in FIGS. 1A and 1B can be produced. The material for forming the synthetic polymer film 34 is not limited to an ultraviolet curable resin, and a photocurable resin that can be cured with visible light can be used, and a thermosetting resin can also be used.
 表面にモスアイ構造を有する合成高分子膜の殺菌性は、合成高分子膜の物理的構造のみならず、合成高分子膜の化学的性質とも相関関係を有する。例えば、本願出願人は、化学的な性質として、合成高分子膜の表面の接触角(特許公報1:特許第5788128号)や表面に含まれる窒素元素の濃度(国際公開公報2:国際公開第2016/080245号)との相関関係を見出した。国際公開公報2に記載されているように、表面における窒素元素の濃度は0.7at%以上であることが好ましい。参考のために、上記特許公報1および国際公開公報2の開示内容の全てを本明細書に援用する。 The bactericidal properties of a synthetic polymer film having a moth-eye structure on the surface correlate not only with the physical structure of the synthetic polymer film but also with the chemical properties of the synthetic polymer film. For example, the applicant of the present application, as a chemical property, the contact angle of the surface of the synthetic polymer film (Patent Publication 1: Patent No. 5788128) and the concentration of nitrogen element contained in the surface (International Publication No. 2: International Publication No. 2). Correlation with No. 2016/080245) was found. As described in International Publication No. 2, the nitrogen element concentration on the surface is preferably 0.7 at% or more. For the purpose of reference, the entire contents of the above-mentioned Patent Publication 1 and International Publication 2 are incorporated herein by reference.
 図7に上記国際公開公報2(図8)に示されているSEM像を示す。図7(a)および(b)は、図1(a)に示したモスアイ構造を有する表面で死に至った緑膿菌をSEM(走査型電子顕微鏡)で観察したSEM像を示す図である。 FIG. 7 shows the SEM image shown in International Publication 2 (FIG. 8). FIGS. 7A and 7B are views showing SEM images of Pseudomonas aeruginosa dying on the surface having the moth eye structure shown in FIG. 1A, observed with a scanning electron microscope (SEM).
 これらのSEM像を見ると、凸部の先端部分が緑膿菌の細胞壁(外膜)内に侵入している様子が見て取れる。また、図7(a)および図7(b)を見ると、凸部が細胞壁を突き破ったように見えず、凸部が細胞壁に取り込まれたかのように見える。これは、非特許文献1のSupplemental Informationにおいて示唆されているメカニズムで説明されるかもしれない。すなわち、グラム陰性菌の外膜(脂質二重膜)が凸部と近接して変形することによって、脂質二重膜が局所的に1次の相転移に似た転移(自発的な再配向)を起こし、凸部に近接する部分に開口が形成され、この開口に凸部が侵入したのかもしれない。あるいは、細胞が有する、極性を有する物質(栄養源を含む)を取り込む機構(エンドサイトーシス)によって、凸部が取り込まれたのかもしれない。 Referring to these SEM images, it can be seen that the tip of the convex portion has entered the cell wall (outer membrane) of Pseudomonas aeruginosa. 7A and 7B, it does not appear that the convex portion has broken through the cell wall, and it appears as if the convex portion has been taken into the cell wall. This may be explained by the mechanism suggested in Supplemental Information of Non-Patent Document 1. That is, when the outer membrane (lipid bilayer) of Gram-negative bacteria deforms close to the convex part, the lipid bilayer locally undergoes a transition similar to the first-order phase transition (spontaneous reorientation). An opening may be formed in a portion close to the convex portion, and the convex portion may have entered the opening. Or the convex part may be taken in by the mechanism (endocytosis) which takes in the substance (including a nutrient source) which has polarity which a cell has.
 本発明による実施形態では、合成高分子膜34Aを形成する樹脂の組成を変えて、抗菌性・殺菌性との関係を調べた。以下でも、合成高分子膜34Aを形成する材料としてアクリル樹脂(紫外線硬化性を有する)を用いた。 In the embodiment according to the present invention, the composition of the resin forming the synthetic polymer film 34A was changed, and the relationship between antibacterial properties and bactericidal properties was examined. In the following, acrylic resin (having ultraviolet curability) was used as a material for forming the synthetic polymer film 34A.
 ここでは、ウレタンアクリレートと、エチレンオキサイド基またはエチレンオキサイド単位(エチレンオキサイドが開環した構造単位を言う。以下、「EO単位」ということがある。)の含有率が異なるアクリル樹脂とを混合し、アクリル樹脂全体に含まれるEO単位(CH2CH2O)の割合を調整した。EO単位が多いと、合成高分子膜34Aは可撓性および親水性に富む膜になる。なお、EO単位の繰り返し構造をポリエチレングリコール鎖(PEG鎖)ということがある。このとき、EO単位の繰り返し数をPEG鎖の鎖長ということがある。 Here, the urethane acrylate is mixed with an acrylic resin having a different content of ethylene oxide group or ethylene oxide unit (which is a structural unit in which ethylene oxide is ring-opened; hereinafter referred to as “EO unit”), The proportion of EO units (CH 2 CH 2 O) contained in the entire acrylic resin was adjusted. When the number of EO units is large, the synthetic polymer film 34A becomes a film rich in flexibility and hydrophilicity. In addition, the repeating structure of the EO unit may be referred to as a polyethylene glycol chain (PEG chain). At this time, the number of repeating EO units may be referred to as the chain length of the PEG chain.
 [合成高分子膜]
 図1(a)に示したフィルム50Aと同様の構造を有する試料フィルムを用意した。モスアイ構造を表面に有する合成高分子膜34Aを作製するアクリル樹脂(アクリレートモノマーまたはアクリレートオリゴマー)として、下記の表1に示す樹脂A1~A5、B、C1~C2、DおよびEの10種類を用いた。以下、試料フィルムの名称にも樹脂と同じA1~A5、B、C1~C2、DおよびEを付して特定することにする。表1に各樹脂の組成を示す(表1中の%は質量%)。アクリル樹脂I~Vの化学構造式を[化1]~[化5]にそれぞれ示す。表1には、アクリル樹脂I~Vのそれぞれの分子量(MW)と1分子中に含まれるEO単位の数を示すとともに、樹脂A1~A5、B、C1~C2、DおよびEのそれぞれ1gに含まれるEO単位のモル数を示す。表1は、EO単位のモル数が少ないものから順に記載している。また、表1には、樹脂A1~A5、B、C1~C2、DおよびEのそれぞれについて、組成と化学式に基づいて算出した窒素元素at%を示している。表1には、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度と、窒素元素全てを含めて(すなわち、第3級アミンを形成する窒素元素も含めて)計算した窒素元素濃度とを併記している。
[Synthetic polymer membrane]
A sample film having the same structure as the film 50A shown in FIG. Ten types of resins A1 to A5, B, C1 to C2, D, and E shown in Table 1 below are used as acrylic resins (acrylate monomers or acrylate oligomers) for producing a synthetic polymer film 34A having a moth-eye structure on the surface. It was. Hereinafter, the name of the sample film will be specified by attaching the same A1 to A5, B, C1 to C2, D and E as the resin. Table 1 shows the composition of each resin (% in Table 1 is% by mass). The chemical structural formulas of the acrylic resins I to V are shown in [Chemical Formula 1] to [Chemical Formula 5], respectively. Table 1 shows the molecular weight (MW) of each of the acrylic resins I to V and the number of EO units contained in one molecule, and 1 g of each of the resins A1 to A5, B, C1 to C2, D and E. The number of moles of EO units contained is shown. Table 1 describes in order from the smallest number of moles of EO units. Table 1 shows nitrogen element at% calculated based on the composition and chemical formula for each of the resins A1 to A5, B, C1 to C2, D, and E. Table 1 includes the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine, and all the nitrogen elements (ie, the nitrogen element forming the tertiary amine). The calculated nitrogen element concentration is also shown.
 各樹脂A1~Eは、MEK(丸善石油化学株式会社製)に溶解し、固形分70質量%の溶液とし、ベースフィルム42A上に付与し、MEKを加熱除去することによって、厚さが約25μm~50μmの膜を得た(試料フィルムC2だけ厚さ3μm)。なお、ベースフィルム42Aとしては、厚さが50μmのPETフィルム(東洋紡株式会社製A4300)を用いた。その後、図6を参照して説明したのと同様の方法で、モスアイ用型100Aを用いて、表面にモスアイ構造を有する合成高分子膜34Aを作製した。露光量は約200mJ/cm2とした。各試料フィルムにおけるDpは約200nm、Dintは約200nm、Dhは約150nmであった。 Each of the resins A1 to E is dissolved in MEK (manufactured by Maruzen Petrochemical Co., Ltd.) to form a solution having a solid content of 70% by mass, applied onto the base film 42A, and the MEK is removed by heating to obtain a thickness of about 25 μm. A film of ˜50 μm was obtained (sample film C2 only 3 μm thick). As the base film 42A, a PET film having a thickness of 50 μm (A4300 manufactured by Toyobo Co., Ltd.) was used. Thereafter, a synthetic polymer film 34A having a moth-eye structure on the surface was produced using the moth-eye mold 100A by the same method as described with reference to FIG. The exposure amount was about 200 mJ / cm 2 . D p is about 200nm in each sample film, D int of about 200nm, D h is about 150 nm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 アクリル樹脂Iは、ウレタンアクリレート(新中村化学株式会社製:商品名UA-7100)であり、窒素元素を含む。[化1]に示した化学式は推定による。アクリル樹脂Iは、EO単位の繰り返し構造(繰り返し数は9)を含む。アクリル樹脂Iは、3官能ウレタンアクリレートである。アクリル樹脂Iは、窒素元素を含む複素環(ヘテロ環)であるシアヌル環を含む。 Acrylic resin I is urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: trade name UA-7100) and contains nitrogen element. The chemical formula shown in [Chemical Formula 1] is estimated. The acrylic resin I includes a repeating structure of EO units (the number of repetitions is 9). The acrylic resin I is a trifunctional urethane acrylate. The acrylic resin I contains a cyanuric ring that is a heterocyclic ring (heterocycle) containing a nitrogen element.
 アクリル樹脂IIは、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート(新中村化学株式会社製:商品名A93001CL)で、窒素元素を含む。アクリル樹脂IIは、EO単位を含むが、EO単位の繰り返し構造(PEG鎖)を含まない。アクリル樹脂IIは、3官能アクリレートである。アクリル樹脂IIは、窒素元素を含む複素環であるシアヌル環を含む。 The acrylic resin II is ε-caprolactone-modified tris- (2-acryloxyethyl) isocyanurate (manufactured by Shin-Nakamura Chemical Co., Ltd .: trade name A93001CL) and contains nitrogen element. The acrylic resin II contains EO units, but does not contain a repeating structure of EO units (PEG chain). Acrylic resin II is a trifunctional acrylate. The acrylic resin II contains a cyanuric ring that is a heterocyclic ring containing a nitrogen element.
 アクリル樹脂III~Vは窒素元素を含まない。アクリル樹脂IIIは、エトキシ化ペンタエリスリトールテトラアクリレート(新中村化学株式会社製:商品名ATM-35E)、アクリル樹脂IVは4-ヒドロキシブチルアクリレート(新中村化学株式会社製:略称4-HBA)、アクリル樹脂Vは、ペンタエリスリトールトリアクリレート(トリエステル57%)(新中村化学株式会社製:A-TMM-3LM-N)である。 Acrylic resins III to V do not contain nitrogen elements. Acrylic resin III is ethoxylated pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: trade name ATM-35E), acrylic resin IV is 4-hydroxybutyl acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: abbreviation 4-HBA), acrylic Resin V is pentaerythritol triacrylate (57% triester) (manufactured by Shin-Nakamura Chemical Co., Ltd .: A-TMM-3LM-N).
 アクリル樹脂IIIは、EO単位の繰り返し構造(繰り返し数は35以下、PEG鎖の鎖長が35以下)を含む。アクリル樹脂IIIは、4官能アクリレートである。アクリル樹脂IVおよびVは、EO単位を有しない。アクリル樹脂IVは、1官能アクリレートである。アクリル樹脂IVは、1官能アクリレートである。アクリル樹脂Vは、3官能アクリレートである。アクリル樹脂III~Vは、環状構造を含まない。 The acrylic resin III includes a repeating structure of EO units (the number of repetitions is 35 or less and the chain length of PEG chain is 35 or less). Acrylic resin III is a tetrafunctional acrylate. Acrylic resins IV and V do not have EO units. Acrylic resin IV is a monofunctional acrylate. Acrylic resin IV is a monofunctional acrylate. The acrylic resin V is a trifunctional acrylate. The acrylic resins III to V do not contain a cyclic structure.
 アクリル樹脂I~Vのそれぞれを用いて合成高分子膜34Aを作製する際には、重合開始剤として、BASF社製のIRGACURE819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、分子量418.5)を用いた。 When the synthetic polymer film 34A is prepared using each of the acrylic resins I to V, as a polymerization initiator, IRGACURE819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, A molecular weight of 418.5) was used.
 各試料フィルムA~Eについて、以下の様に評価した。 Each sample film A to E was evaluated as follows.
 [殺菌性の評価]
 試料フィルムの殺菌性は緑膿菌について以下の様にして評価した。
[Evaluation of bactericidal properties]
The bactericidal property of the sample film was evaluated for Pseudomonas aeruginosa as follows.
 1.冷凍保存された緑膿菌付きのビーズ(独立行政法人 製品評価技術基盤機構から購入)を37℃の培養液中に24時間浸漬することによって解凍
 2.遠心分離(3000rpm、10分間)
 3.培養液の上澄み液を捨てる
 4.滅菌水を入れて撹拌した後、再び遠心分離
 5.上記2~4の操作を3回繰り返すことによって菌原液(菌数は1E+08CFU/mLのオーダー)を得る
 6.菌希釈液A(菌数は1E+06CFU/mLのオーダー)を調製
  菌希釈液A:菌原液100μL+滅菌水9.9mL
 7.菌希釈液Aに、栄養源としてNB培地(栄研化学株式会社製、普通ブイヨン培地E-MC35)を1/500の濃度になるように添加し、10倍に希釈した菌希釈液B(菌数は1E+05CFU/mLのオーダー)を調製(JISZ2801の5.4a)に準拠)
  菌希釈液B:菌希釈液A1mL+滅菌水8.98mL+NB培地20μL
 8.菌希釈液B(この時の菌希釈液B中の菌数を「初期菌数」ということがある)を各試料フィルム上に400μLを滴下し、菌希釈液B上にカバー(例えばカバーガラス)を配置し、単位面積当たりの菌希釈液Bの量を調整
 ここでは、初期菌数を3.5E+05CFU/mLとした。
 9.一定時間37℃、相対湿度100%の環境で放置する(放置時間:4時間、24時間)
 10.菌希釈液Bが付いた試料フィルム全体と滅菌水9.6mLとを濾過袋に入れ、濾過袋の上から手で揉んで、試料フィルムの菌を十分に洗い流す。濾過袋の中の洗い出し液は、菌希釈液Bが25倍に希釈されたものである。この洗い出し液を菌希釈液B2ということがある。菌希釈液B2は、菌希釈液B中の菌数の増減がない場合は、菌数1E+04CFU/mLのオーダーとなる。
 11.菌希釈液B2を10倍希釈して菌希釈液Cを調製する。具体的には、洗い出し液(菌希釈液B2)120μLを滅菌水1.08mLに入れて調製する。菌希釈液Cは、菌希釈液B中の菌数の増減がない場合は、菌数1E+03CFU/mLのオーダーとなる。
 12.菌希釈液Cの調製と同じ方法で、菌希釈液Cを10倍希釈して菌希釈液Dを調製する。菌希釈液Dは、菌希釈液B中の菌数の増減がない場合は、菌数1E+02CFU/mLのオーダーとなる。さらに、菌希釈液Dを10倍希釈して菌希釈液Eを調製する。菌希釈液Eは、菌希釈液B中の菌数の増減がない場合は、菌数1E+01CFU/mLのオーダーとなる。
 13.菌希釈液B2および菌希釈液C~Eをペトリフィルム(登録商標)培地(3M社製、製品名:生菌数測定用ACプレート)に1mLを滴下して、37℃、相対湿度100%で培養して48時間後に菌希釈液B2中の菌数をカウントする。
 なお、JISZ2801の5.6h)では、希釈液を調製する際にリン酸緩衝生理食塩水を用いるが、ここでは滅菌水を用いた。滅菌水を用いても、試料フィルムの表面の物理的構造および化学的性質による殺菌効果を調べられることを確認している。
1. 1. Thawed frozen frozen beads with Pseudomonas aeruginosa (purchased from the National Institute of Technology and Evaluation Technology) for 24 hours in a 37 ° C. culture medium. Centrifugation (3000 rpm, 10 minutes)
3. 3. Discard the culture supernatant. 4. Add sterile water and stir, then centrifuge again. 5. Repeat the above steps 2-4 three times to obtain a bacterial stock solution (the number of bacteria is on the order of 1E + 08 CFU / mL). Prepare bacterial dilution A (the number of bacteria is on the order of 1E + 06 CFU / mL) Bacterial dilution A: 100 μL of bacterial stock solution + 9.9 mL of sterile water
7). NB medium (Eiken Chemical Co., Ltd., normal bouillon medium E-MC35) was added to the bacterial dilution A as a nutrient source to a concentration of 1/500, and the bacterial dilution B (bacteria) diluted 10 times The number is on the order of 1E + 05 CFU / mL) (according to JISZ2801 5.4a))
Bacterial dilution B: Bacterial dilution A1 mL + sterile water 8.98 mL + NB medium 20 μL
8). 400 μL of the bacterial dilution B (the number of bacteria in the bacterial dilution B at this time may be referred to as “initial bacterial count”) is dropped on each sample film, and a cover (eg, a cover glass) is placed on the bacterial dilution B. And adjusting the amount of the bacterial dilution B per unit area Here, the initial bacterial count was 3.5E + 05 CFU / mL.
9. Leave in an environment with a constant temperature of 37 ° C and relative humidity of 100% (Leave time: 4 hours, 24 hours)
10. Put the entire sample film with the bacterium dilution solution B and 9.6 mL of sterilized water into a filter bag, and rub it by hand from above the filter bag to thoroughly wash away the bacteria on the sample film. The washing solution in the filter bag is obtained by diluting the bacterium dilution solution B 25 times. This washing solution may be referred to as a bacteria dilution solution B2. When there is no increase / decrease in the number of bacteria in the bacterial dilution B, the bacterial dilution B2 is in the order of 1E + 04 CFU / mL.
11. A bacterial dilution C is prepared by diluting the bacterial dilution B2 10 times. Specifically, 120 μL of the washing solution (bacterial dilution solution B2) is prepared in 1.08 mL of sterilized water. The bacterial dilution C is in the order of 1E + 03 CFU / mL when the bacterial count in the bacterial dilution B does not increase or decrease.
12 In the same manner as the preparation of the bacterial dilution C, the bacterial dilution C is diluted 10 times to prepare the bacterial dilution D. The bacterial dilution D is in the order of 1E + 02 CFU / mL when the number of bacteria in the bacterial dilution B does not increase or decrease. Furthermore, the bacterial dilution D is prepared by diluting the bacterial dilution D ten times. The bacterial dilution E is in the order of 1E + 01 CFU / mL when the bacterial count in the bacterial dilution B is not increased or decreased.
13. 1 mL of Bacteria Diluent B2 and Bacteria Diluents C to E are dropped into Petrifilm (registered trademark) medium (manufactured by 3M, product name: AC plate for measuring viable cell count) at 37 ° C. and relative humidity of 100%. 48 hours after culturing, the number of bacteria in the dilution B2 is counted.
In JISZ2801, 5.6h), phosphate buffered saline is used when preparing the diluted solution, but here sterilized water was used. It has been confirmed that even if sterilized water is used, the bactericidal effect due to the physical structure and chemical properties of the surface of the sample film can be examined.
 [抗菌性の評価]
 JIS Z 2801にならい、24時間培養後の菌数から求めた抗菌活性値が2.0以上(99%以上の死滅率)で、緑膿菌に対する抗菌効果があるとした。参照フィルムとしては、ベースフィルム(PETフィルム)を用いた。抗菌活性値は、PETフィルムの24時間培養後菌数を各試料フィルムの24時間培養後菌数で除した数の対数値である。
[Evaluation of antibacterial properties]
According to JIS Z 2801, the antibacterial activity value determined from the number of bacteria after 24 hours of culture was 2.0 or more (99% or more killing rate), and it was assumed that there was an antibacterial effect against Pseudomonas aeruginosa. A base film (PET film) was used as the reference film. The antibacterial activity value is a logarithmic value of a number obtained by dividing the number of bacteria after 24-hour culture of PET film by the number of bacteria after 24-hour culture of each sample film.
 図8は殺菌性の評価結果を示すグラフである。図8において、横軸は放置時間(時間)であり、縦軸は菌希釈液B2中の菌数(CFU/mL)を示す。なお、図8では、見やすさのために、菌数が0(N.D.)の場合は0.1としてプロットしている。また、下記の表2に培養後の菌数と抗菌活性値とを示す。なお、試料フィルムC1の抗菌活性値の算出には、PET2のデータを用い、それ以外の試料フィルムにはPET1のデータを用いた。 FIG. 8 is a graph showing the evaluation results of bactericidal properties. In FIG. 8, the horizontal axis represents the standing time (hours), and the vertical axis represents the number of bacteria (CFU / mL) in the bacteria dilution B2. In FIG. 8, for ease of viewing, when the number of bacteria is 0 (ND), it is plotted as 0.1. Table 2 below shows the number of bacteria and the antibacterial activity value after culturing. In addition, the data of PET2 was used for calculation of the antibacterial activity value of the sample film C1, and the data of PET1 was used for the other sample films.
 図8および表2からわかるように、試料フィルムC1以外は2.0以上の抗菌活性値を有しており、抗菌性を有している。試料フィルムC2、Bの抗菌活性値はそれぞれ2.6と3.2である。試料フィルムA1、A2およびA3の抗菌活性値は6.2であり、殺菌性を有していると言える。ここでは、抗菌活性値が6.0以上のとき、殺菌性を有するということにする。このようにして抗菌性および殺菌性を評価した結果を表1に○/×で示している。○は抗菌性または殺菌性あり、×は抗菌性または殺菌性なしをそれぞれ示す。 As can be seen from FIG. 8 and Table 2, the samples other than the sample film C1 have an antibacterial activity value of 2.0 or more and have antibacterial properties. The antibacterial activity values of the sample films C2 and B are 2.6 and 3.2, respectively. The sample films A1, A2 and A3 have an antibacterial activity value of 6.2 and can be said to have bactericidal properties. Here, when the antibacterial activity value is 6.0 or more, it is assumed to have bactericidal properties. The results of evaluating the antibacterial and bactericidal properties in this way are shown in Table 1 by ○ / x. ○ indicates antibacterial or bactericidal properties, and × indicates antibacterial or no bactericidal properties, respectively.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 抗菌性および殺菌性については、樹脂C1を用いたフィルム以外は、少なくとも抗菌性を有している。抗菌性の観点からは、EO単位を0.0020超含むことが好ましいと考えられる。なお、樹脂A4、A5、DおよびEについては、今回評価を行っていないが、これまでの同様のまたは類似した組成の樹脂の評価結果から、これらの樹脂はいずれも抗菌性および殺菌性を有していると考えられる。 About antibacterial property and bactericidal property, it has at least antibacterial property except the film using resin C1. From the viewpoint of antibacterial properties, it is considered preferable to contain more than 0.0020 EO units. Resins A4, A5, D, and E have not been evaluated this time. However, based on the evaluation results of resins having the same or similar compositions so far, these resins have antibacterial and bactericidal properties. it seems to do.
 表1には、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度と、窒素元素全てを含めて(すなわち、第3級アミンを形成する窒素元素も含めて)計算した窒素元素濃度とを併記している。抗菌性および殺菌性についての評価結果は、第3級アミンを形成する窒素元素を含めた窒素元素濃度に比べて、第1級アミンまたは第2級アミンを形成する窒素元素の窒素元素濃度と相関関係を有するように見える。この理由は、以下のように考えられる。第3級アミンを形成する窒素元素は、塩基性が低いので、合成高分子膜の殺菌性への寄与は低いと考えられる。また、窒素元素を含むアクリル樹脂IおよびIIにおいて、第3級アミンを形成する窒素元素は、環を形成している。環を形成する窒素元素は、合成高分子膜の表面から比較的遠い位置に存在し、微生物との距離が大きいので、合成高分子膜の殺菌性への寄与は低いと考えられる。 Table 1 includes the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine, and all the nitrogen elements (ie, the nitrogen element forming the tertiary amine). The calculated nitrogen element concentration is also shown. The evaluation results for antibacterial and bactericidal properties correlate with the nitrogen element concentration of the nitrogen element forming the primary amine or the secondary amine as compared to the nitrogen element concentration including the nitrogen element forming the tertiary amine. Seems to have a relationship. The reason is considered as follows. Since the nitrogen element forming the tertiary amine has low basicity, it is considered that the contribution to the bactericidal property of the synthetic polymer film is low. Further, in the acrylic resins I and II containing nitrogen element, the nitrogen element forming the tertiary amine forms a ring. The nitrogen element forming the ring is present at a position relatively far from the surface of the synthetic polymer film and has a large distance from the microorganism, and therefore, the contribution to the bactericidal properties of the synthetic polymer film is considered to be low.
 なお、上記国際公開公報2では、殺菌性の観点からは、表面における窒素元素の濃度は0.7at%以上であることが好ましいとしたが、今回、これよりも窒素元素濃度が低い樹脂を用いても殺菌性が得られることがわかった。少なくとも、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度が0.293at%以上であれば(樹脂C2)、抗菌性を有し得ると言える。小数点以下3桁目を四捨五入すると、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度が0.29at%以上であれば、抗菌性を有し得ると言える。殺菌性を有するためには、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度は0.327at%以上であることが好ましい(樹脂A1)。小数点以下3桁目を四捨五入すると、殺菌性を有するためには、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度が0.33at%以上であることが好ましい。このとき、樹脂1gに含まれるEO単位のモル数は0.0040以上であることが好ましいと考えられる。 In the above-mentioned International Publication No. 2, from the viewpoint of bactericidal properties, the nitrogen element concentration on the surface is preferably 0.7 at% or more, but this time, a resin having a lower nitrogen element concentration is used. However, it was found that bactericidal properties can be obtained. If the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is at least 0.293 at% (resin C2), it can be said that it can have antibacterial properties. By rounding off the third digit after the decimal point, if the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is 0.29 at% or more, it may have antibacterial properties. It can be said. In order to have bactericidal properties, the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is preferably 0.327 at% or more (resin A1). When the third digit after the decimal point is rounded off, the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is 0.33 at% or more in order to have bactericidal properties. It is preferable. At this time, it is considered that the number of moles of EO units contained in 1 g of the resin is preferably 0.0040 or more.
 適度な割合でEO単位を含んでいる樹脂は、親水性を有しているので、水ぶきで汚れをふき取ることができる。また、柔軟性を備えているので、優れた耐擦傷性を有する。 Since a resin containing EO units at an appropriate ratio has hydrophilicity, it is possible to wipe off dirt with water spray. Further, since it has flexibility, it has excellent scratch resistance.
 また、図7のSEM像からわかるように、緑膿菌が付着していない凸部は、合成高分子膜の法線方向にほぼ平行であるのに対し、緑膿菌が付着している凸部には、緑膿菌の方向へ傾いて(しなって)いるものもある。凸部が傾く(しなる)ことによって、より多くの凸部が微生物に接することができる。微生物の方向へ傾く(しなる)ことができる凸部を表面に有する合成高分子膜は、より優れた殺菌効果を有し得ると考えられる。EO単位を適度に含む樹脂は、このしなりによって、殺菌効果を発現している可能性も考えられる。 In addition, as can be seen from the SEM image of FIG. 7, the convex part to which Pseudomonas aeruginosa is not attached is substantially parallel to the normal direction of the synthetic polymer film, whereas the convex part to which Pseudomonas aeruginosa is attached. Some parts are tilted toward the direction of Pseudomonas aeruginosa. More convex portions can come into contact with microorganisms by tilting the convex portion. It is considered that a synthetic polymer film having convex portions on the surface that can tilt (become) in the direction of microorganisms can have a more excellent bactericidal effect. There is a possibility that the resin containing the EO unit moderately exhibits a bactericidal effect due to this bending.
 次に、図1(a)に示したフィルム50Aと同様の構造を有する試料フィルムF、G、Hを用意した。モスアイ構造を表面に有する合成高分子膜34Aを作製するアクリル樹脂(アクリレートモノマーまたはアクリレートオリゴマー)として、下記の表3に示す樹脂F、GおよびGの3種類を用いた。以下、試料フィルムの名称にも樹脂と同じF、GおよびHを付して特定する。表3に各樹脂の組成を示す(表3中の%は質量%)。 Next, sample films F, G, and H having the same structure as the film 50A shown in FIG. Three types of resins F, G, and G shown in Table 3 below were used as acrylic resins (acrylate monomers or acrylate oligomers) for producing the synthetic polymer film 34A having a moth-eye structure on the surface. Hereinafter, the name of the sample film is specified by attaching F, G and H which are the same as those of the resin. Table 3 shows the composition of each resin (% in Table 3 is% by mass).
 アクリル樹脂I'の化学構造式を[化6]に示す。[化6]に示した化学式は推定による。アクリル樹脂I'は、EO単位の繰り返し構造(繰り返し数は4または5)を含む。アクリル樹脂I'は、EO単位の数がアクリル樹脂Iのおよそ半分程度である点において、アクリル樹脂Iと異なる。アクリル樹脂I'は、ウレタンアクリレート(新中村化学株式会社製)であり、窒素元素を含む。アクリル樹脂I'は、3官能ウレタンアクリレートである。アクリル樹脂I'は、窒素元素を含む複素環(ヘテロ環)であるシアヌル環を含む。 The chemical structural formula of acrylic resin I ′ is shown in [Chemical Formula 6]. The chemical formula shown in [Chemical Formula 6] is estimated. The acrylic resin I ′ includes a repeating structure of EO units (the number of repetitions is 4 or 5). Acrylic resin I ′ differs from acrylic resin I in that the number of EO units is about half that of acrylic resin I. The acrylic resin I ′ is urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) and contains nitrogen element. The acrylic resin I ′ is a trifunctional urethane acrylate. The acrylic resin I ′ includes a cyanuric ring that is a heterocyclic ring (heterocycle) containing a nitrogen element.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 表3には、表1と同様に、アクリル樹脂のそれぞれの分子量(MW)と1分子中に含まれるEO単位の数を示す。アクリル樹脂I'の分子量(MW)と1分子中に含まれるEO単位の数については、EO単位の繰り返し構造の繰り返し数が全て4(化学構造式中、l=m=n=4)とした場合(上段)と、EO単位の繰り返し構造の繰り返し数が全て5(化学構造式中、l=m=n=5)とした場合(下段)とを併記している。また、表3には、樹脂F、GおよびHのそれぞれについて、組成と化学式に基づいて算出したそれぞれの樹脂1gに含まれるEO単位のモル数を示す。アクリル樹脂I'を含む樹脂Gの1gに含まれるEO単位のモル数は、l=m=n=4の場合(上段)と、l=m=n=5の場合(下段)とを併記している。表3に示すように、アクリル樹脂I'を含む樹脂Gの1gに含まれるEO単位のモル数は、0.0095以上0.0108以下であると考えられる。 Table 3 shows the molecular weight (MW) of each acrylic resin and the number of EO units contained in one molecule, as in Table 1. Regarding the molecular weight (MW) of the acrylic resin I ′ and the number of EO units contained in one molecule, the number of repetitions of the repeating structure of the EO units was all 4 (in the chemical structural formula, l = m = n = 4). The case (upper stage) and the case where the number of repeating structures of the EO unit is all 5 (in the chemical structural formula, l = m = n = 5) are shown together. Table 3 shows the number of moles of EO units contained in 1 g of each resin F, G, and H calculated based on the composition and chemical formula. The number of moles of EO units contained in 1 g of the resin G containing the acrylic resin I ′ is shown both when l = m = n = 4 (upper) and when l = m = n = 5 (lower). ing. As shown in Table 3, the number of moles of EO units contained in 1 g of the resin G containing the acrylic resin I ′ is considered to be 0.0095 or more and 0.0108 or less.
 表3には、樹脂F、GおよびHのそれぞれについて、組成と化学式に基づいて算出した窒素元素at%を示している。表3には、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度と、窒素元素全てを含めて(すなわち、第3級アミンを形成する窒素元素およびアミンを形成しない窒素元素も含めて)計算した窒素元素濃度とを併記している。表3に示すように、アクリル樹脂I'を含む樹脂Gの第1級アミンまたは第2級アミンを形成する窒素元素の濃度(すなわち、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度)は1.461at%以上1.629at%以下であると考えられる。小数点以下3桁目を四捨五入すると、アクリル樹脂I'を含む樹脂Gの第1級アミンまたは第2級アミンを形成する窒素元素の濃度は1.46at%以上1.63at%以下であると考えられる。 Table 3 shows the nitrogen element at% calculated based on the composition and the chemical formula for each of the resins F, G, and H. Table 3 includes the total nitrogen element concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine, and all the nitrogen elements (that is, the nitrogen element forming the tertiary amine). And the calculated nitrogen element concentration (including the nitrogen element that does not form amine). As shown in Table 3, the concentration of the nitrogen element forming the primary amine or secondary amine of the resin G containing the acrylic resin I ′ (that is, the nitrogen element and the secondary amine forming the primary amine are The total nitrogen element concentration of nitrogen elements to be formed) is considered to be 1.461 at% or more and 1.629 at% or less. When the third digit after the decimal point is rounded off, the concentration of the nitrogen element forming the primary amine or secondary amine of the resin G containing the acrylic resin I ′ is considered to be 1.46 at% or more and 1.63 at% or less. .
 各樹脂F、GおよびHは、MEK(丸善石油化学株式会社製)に溶解し、固形分70質量%の溶液とし、ベースフィルム42A上に付与し、MEKを加熱除去することによって、厚さが約25μm~50μmの膜を得た。なお、ベースフィルム42Aとしては、厚さが50μmのPETフィルム(東洋紡株式会社製A4300)を用いた。その後、図6を参照して説明したのと同様の方法で、モスアイ用型100Aを用いて、表面にモスアイ構造を有する合成高分子膜34Aを作製した。露光量は約1500mJ/cm2とした。紫外線照射には、UVランプ(Fusion UV Systems社製:Light Hammer6 J6P3、最大出力200W/cm)を用い、出力レベル45%(50mW/cm2)で30秒間照射した。重合開始剤として、BASF社製のIRGACURE OXE 01(1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、分子量445.6)を用いた。各試料フィルムにおけるDpは約200nm、Dintは約200nm、Dhは約150nmであった。各試料フィルムのサイズは、各辺の長さが5.1cmである正方形(5.1cm角)とした。 Each of the resins F, G and H is dissolved in MEK (manufactured by Maruzen Petrochemical Co., Ltd.) to give a solution having a solid content of 70% by mass, applied onto the base film 42A, and the thickness of the MEK is removed by heating. A membrane of about 25-50 μm was obtained. As the base film 42A, a PET film having a thickness of 50 μm (A4300 manufactured by Toyobo Co., Ltd.) was used. Thereafter, a synthetic polymer film 34A having a moth-eye structure on the surface was produced using the moth-eye mold 100A by the same method as described with reference to FIG. The exposure amount was about 1500 mJ / cm 2 . For UV irradiation, a UV lamp (manufactured by Fusion UV Systems: Light Hammer6 J6P3, maximum output 200 W / cm) was used, and irradiation was performed at an output level of 45% (50 mW / cm 2 ) for 30 seconds. As the polymerization initiator, IRGACURE OXE 01 (1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], molecular weight 445.6) manufactured by BASF was used. D p is about 200nm in each sample film, D int of about 200nm, D h is about 150 nm. The size of each sample film was a square (5.1 cm square) with a side length of 5.1 cm.
 このようにして得られた各試料フィルムF、GおよびHについて、試料フィルムA~Eについて行ったのと同様の方法で、殺菌性および抗菌性を評価した。ただし、試料フィルムF、GおよびHの殺菌性の評価方法は、以下の点において、試料フィルムA~Eの殺菌性の評価方法と異なる。 For each of the sample films F, G, and H thus obtained, bactericidal and antibacterial properties were evaluated by the same method as that performed for the sample films A to E. However, the method for evaluating the bactericidal properties of the sample films F, G and H is different from the method for evaluating the bactericidal properties of the sample films A to E in the following points.
 試料フィルムF、GおよびHの殺菌性の評価方法においては、菌希釈液B上のカバーとして、4cm角のPETフィルムを用いた。また、試料フィルムF、GおよびHの菌は、SCDLP培地10mLを用いて洗い出した。従って、濾過袋中の洗い出し液は菌希釈液Bが26倍に希釈されたものである。この洗い出し液を菌希釈液B3ということがある。SCDLP培地は、以下のように調製した。
・SCDLP寒天培地「ダイゴ」(日本製薬株式会社製)38gを精製水1Lに加え、よく振りまぜた後、90℃以上で加熱溶解。
・容器に分注後、121℃、15分間オートクレーブ滅菌。
・滅菌後、直ちによく振り混ぜ、ポリソルベート層を均一化。
In the method for evaluating the bactericidal properties of the sample films F, G, and H, a 4 cm square PET film was used as the cover on the bacterial dilution B. Moreover, the bacteria of the sample films F, G, and H were washed out using 10 mL of SCDLP medium. Therefore, the washing solution in the filter bag is a solution obtained by diluting the bacteria diluent B 26 times. This washing solution may be referred to as a bacteria dilution solution B3. SCDLP medium was prepared as follows.
・ Add 38 g of SCDLP agar medium “DAIGO” (manufactured by Nippon Pharmaceutical Co., Ltd.) to 1 L of purified water, shake well, and then heat dissolve at 90 ° C.
・ After dispensing into containers, autoclaving at 121 ° C for 15 minutes.
・ After sterilization, shake well immediately to make the polysorbate layer uniform.
 洗い出し液(菌希釈液B3)を希釈する工程においては、リン酸緩衝生理食塩水(PBS)を用いた。例えば、洗い出し液(菌希釈液B3)1mLをリン酸緩衝生理食塩水(PBS)9mLに入れることによって、洗い出し液(菌希釈液B3)を10倍に希釈した。 In the step of diluting the washing solution (bacterial dilution solution B3), phosphate buffered saline (PBS) was used. For example, the washout solution (bacterial dilution solution B3) was diluted 10 times by putting 1 ml of the washout solution (bacterial dilution solution B3) in 9 mL of phosphate buffered saline (PBS).
 試料フィルムF、GおよびHの緑膿菌に対する抗菌性の評価のために、抗菌活性値に準じて、「準抗菌活性値(6h)」を定義する。既に説明したように、抗菌活性値は、PETフィルムの24時間培養後菌数を各試料フィルムの24時間培養後菌数で除した数の対数値である。これに準じて、PETフィルムの6時間培養後菌数を各試料フィルムの6時間培養後菌数で除した数の対数値を「準抗菌活性値(6h)」として定義する。 In order to evaluate the antibacterial activity of the sample films F, G and H against Pseudomonas aeruginosa, a “quasi-antibacterial activity value (6h)” is defined according to the antibacterial activity value. As already explained, the antibacterial activity value is a logarithmic value of the number obtained by dividing the number of bacteria after 24-hour culture of PET film by the number of bacteria after 24-hour culture of each sample film. In accordance with this, the logarithmic value of the number obtained by dividing the number of bacteria after 6-hour culture of PET film by the number of bacteria after 6-hour culture of each sample film is defined as “quasi-antibacterial activity value (6h)”.
 図9~図11は、殺菌性の評価結果を示すグラフである。図9~図11において、横軸は放置時間(時間)であり、縦軸は菌希釈液B3中の菌数(CFU/mL)を示す。なお、図9~図11では、見やすさのために、菌数が0(N.D.)の場合は0.1としてプロットしている。また、下記の表4に培養後の菌数と抗菌活性値と準抗菌活性値(6h)とを示す。なお、試料フィルムFおよびGの抗菌活性値および準抗菌活性値(6h)の算出には、PET3のデータを用い、試料フィルムHの抗菌活性値および準抗菌活性値(6h)の算出には、PET4のデータを用いた。 9 to 11 are graphs showing the evaluation results of bactericidal properties. 9 to 11, the horizontal axis represents the standing time (hour), and the vertical axis represents the number of bacteria (CFU / mL) in the bacterial dilution B3. 9 to 11, for ease of viewing, when the number of bacteria is 0 (ND), it is plotted as 0.1. Table 4 below shows the number of bacteria, the antibacterial activity value, and the quasi-antibacterial activity value (6h) after culturing. In addition, for the calculation of the antibacterial activity value and the quasi-antibacterial activity value (6h) of the sample films F and G, the data of PET3 is used, and for the calculation of the antibacterial activity value and the quasi-antibacterial activity value (6h) of the sample film H, PET4 data was used.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上述したように、本発明の実施形態による合成高分子膜の表面に液体を接触させることによって、液体を殺菌することができる。同様に、合成高分子膜の表面に気体を接触させることによって、気体を殺菌することもできる。微生物は一般に栄養源である有機物と接触する確率を増やすために、物体の表面に付着しやすい表面構造を有している。したがって、本発明の実施形態による合成高分子膜の殺菌性を有する表面に、微生物を含む気体や液体を接触させると、微生物は合成高分子膜の表面に付着しようとするので、その際に、殺菌作用を受けることになる。 As described above, the liquid can be sterilized by bringing the liquid into contact with the surface of the synthetic polymer film according to the embodiment of the present invention. Similarly, the gas can be sterilized by bringing the gas into contact with the surface of the synthetic polymer film. Microorganisms generally have a surface structure that tends to adhere to the surface of an object in order to increase the probability of contact with organic matter that is a nutrient source. Therefore, when a gas or liquid containing microorganisms is brought into contact with the bactericidal surface of the synthetic polymer film according to the embodiment of the present invention, the microorganisms try to adhere to the surface of the synthetic polymer film. It will be sterilized.
 ここでは、グラム陰性菌である緑膿菌について、本発明の実施形態による合成高分子膜の殺菌作用を説明したが、グラム陰性菌に限られず、グラム陽性菌や他の微生物に対しても殺菌作用を有すると考えられる。グラム陰性菌は、外膜を含む細胞壁を有する点に1つの特徴を有するが、グラム陽性菌や他の微生物(細胞壁を有しないものを含む)も細胞膜を有し、細胞膜もグラム陰性菌の外膜と同様に脂質二重膜で構成されている。したがって、本発明の実施形態による合成高分子膜の表面の凸部と細胞膜との相互作用は、基本的には、外膜との相互作用と同様であると考えられる。 Here, the bactericidal action of the synthetic polymer membrane according to the embodiment of the present invention has been described for Pseudomonas aeruginosa, which is a gram-negative bacterium, but is not limited to gram-negative bacteria, and also sterilizes against gram-positive bacteria and other microorganisms. It is considered to have an action. Gram-negative bacteria have one feature in that they have a cell wall containing an outer membrane, but Gram-positive bacteria and other microorganisms (including those that do not have a cell wall) also have a cell membrane, and the cell membrane is also outside of Gram-negative bacteria. Like the membrane, it is composed of a lipid bilayer membrane. Therefore, the interaction between the convex portions on the surface of the synthetic polymer membrane according to the embodiment of the present invention and the cell membrane is considered to be basically the same as the interaction with the outer membrane.
 次に、合成高分子膜の製造方法として、溶剤を用いない製造方法を検討した。溶剤を用いると、溶剤を除去するために設備および時間を要するので、量産性に劣る。溶剤の代わりに、反応性モノマー(単官能アクリレート)を用いる製造方法を検討した。 Next, as a method for producing a synthetic polymer film, a production method using no solvent was examined. When a solvent is used, equipment and time are required to remove the solvent, which is inferior in mass productivity. A production method using a reactive monomer (monofunctional acrylate) instead of a solvent was examined.
 また、殺菌性・抗菌性の評価には、グラム陽性菌である黄色ブドウ球菌を用いた。黄色ブドウ球菌は、接触によって感染するので、本発明の実施形態による合成高分子膜が、接触感染を抑制する効果を有するか否かを評価するために、スタンプ法を採用した。スタンプ法は、合成高分子膜の表面上で一定時間菌液を培養した後、菌を培地(ここでは、ぺたんチェック)に写し取り、一定条件で培養した後の菌数で評価する。 In addition, Staphylococcus aureus, which is a Gram-positive bacterium, was used for evaluation of bactericidal and antibacterial properties. Since S. aureus is infected by contact, the stamp method was employed to evaluate whether the synthetic polymer membrane according to the embodiment of the present invention has an effect of suppressing contact infection. In the stamp method, after culturing a bacterial solution on the surface of a synthetic polymer membrane for a certain period of time, the bacteria are copied to a medium (here, a petan check) and evaluated by the number of bacteria after culturing under certain conditions.
 試料フィルムとしては、参照用試料として、樹脂Gと同様の組成を有する樹脂Iと、反応性希釈剤を用いた樹脂Jと、樹脂Kとを用意し、図1(a)に示したフィルム50Aと同様の試料フィルムを作製した。先と同様に、試料フィルムの名称にも樹脂と同じI~Kを付して特定することにする。 As a sample film, as a reference sample, a resin I having the same composition as the resin G, a resin J using a reactive diluent, and a resin K are prepared, and the film 50A shown in FIG. A sample film similar to the above was prepared. As before, the name of the sample film is specified by attaching the same I to K as the resin.
 樹脂I、樹脂Jおよび樹脂Kの組成を下記の表5に示す。なお、反応性希釈剤としては、下記[化7]に示すアクリロイルモルフォリン(KJケミカルズ株式会社製、ACMO(登録商標))を用いた。樹脂Kには、上記のアクリル樹脂Vと、下記の[化8]に示す1,9‐ノナンジオールジアクリラート(第一工業製薬株式会社製、ND-DA、「アクリル樹脂VI」という。)とを用いた。アクリル樹脂VIは低粘度の2官能アクリレートモノマーであり、樹脂Kは、樹脂Jと同様に、溶剤(MEK)を用いずに試料フィルムを作製した。 The compositions of Resin I, Resin J and Resin K are shown in Table 5 below. As the reactive diluent, acryloylmorpholine (KMO Chemicals, Inc., ACMO (registered trademark)) shown in the following [Chemical Formula 7] was used. Resin K includes the above acrylic resin V and 1,9-nonanediol diacrylate represented by the following [Chemical Formula 8] (ND-DA, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., referred to as “acrylic resin VI”). And were used. The acrylic resin VI is a low-viscosity bifunctional acrylate monomer, and the resin K, like the resin J, was prepared as a sample film without using a solvent (MEK).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 試料フィルムIは、試料フィルムA~Hと同様に、MEKに溶解し、固形分70質量%の溶液とした後、ベースフィルム42A上に付与し、MEKを加熱除去することによって、厚さが約25μm~50μmの膜を得た。試料フィルムJおよびKについては、樹脂Jおよび樹脂Kそのものをベースフィルム42A上に付与し、厚さが約25μm~50μmの膜を得た。樹脂Jおよび樹脂Kは、溶剤(MEK)を含まないので、樹脂A~Hの製造方法における、MEKを加熱除去する工程が不要である。その後、図6を参照して説明したのと同様の方法で、モスアイ用型100Aを用いて、表面にモスアイ構造を有する合成高分子膜34Aを作製した。 Similar to the sample films A to H, the sample film I is dissolved in MEK to form a solution having a solid content of 70% by mass, and then applied onto the base film 42A, and the thickness of the sample film I is reduced by heating and removing the MEK. A film of 25 μm to 50 μm was obtained. For sample films J and K, resin J and resin K themselves were applied onto base film 42A to obtain a film having a thickness of about 25 μm to 50 μm. Since the resin J and the resin K do not contain a solvent (MEK), the step of heating and removing MEK in the method for producing the resins A to H is not necessary. Thereafter, a synthetic polymer film 34A having a moth-eye structure on the surface was produced using the moth-eye mold 100A by the same method as described with reference to FIG.
 露光量は約1200mJ/cm2(200mW×6sec)とした。紫外線照射には、UVランプ(Fusion UV Systems社製:Light Hammer6 J6P3、最大出力200W/cm)を用い、出力レベル45%(50mW/cm2)で30秒間照射した。各試料フィルムにおけるDpは約200nm、Dintは約200nm、Dhは約150nmであった。各試料フィルムのサイズは、各辺の長さが5.1cmである正方形(5.1cm角)とした。 The exposure amount was about 1200 mJ / cm 2 (200 mW × 6 sec). For UV irradiation, a UV lamp (manufactured by Fusion UV Systems: Light Hammer6 J6P3, maximum output 200 W / cm) was used, and irradiation was performed at an output level of 45% (50 mW / cm 2 ) for 30 seconds. D p is about 200nm in each sample film, D int of about 200nm, D h is about 150 nm. The size of each sample film was a square (5.1 cm square) with a side length of 5.1 cm.
 殺菌性・抗菌性の評価は、以下の手順で行った。 Bactericidal and antibacterial evaluation was performed according to the following procedure.
 1.初期菌数1E+04CFU/mLオーダーとなるように菌液を調製し、菌液をピペットにて各試料フィルムに1μLの1cm間隔で3×3の9点滴下する。菌液は、リン酸緩衝生理食塩水(Phosphate buffered saline, 略称:PBS)に溶解させた。試料フィルムIおよびKについて、初期菌数は4.3E+04CFU/mLで、試料フィルムJについては、初期菌数は6.3E+03CFU/mLであった。 1. A bacterial solution is prepared so that the initial number of bacteria is 1E + 04 CFU / mL order, and the bacterial solution is dropped onto each sample film at 3 × 3 points at 1 cm intervals at 1 cm intervals. The bacterial solution was dissolved in phosphate buffered saline (Phosphate buffered saline). For sample films I and K, the initial bacterial count was 4.3E + 04 CFU / mL, and for sample film J, the initial bacterial count was 6.3E + 03 CFU / mL.
 2.菌液を滴下した試料フィルムを相対湿度100%に保った密閉容器に入れて、室温で24h放置する。 2. The sample film to which the bacterial solution has been dropped is placed in a sealed container maintained at a relative humidity of 100% and left at room temperature for 24 hours.
 3.ぺたんチェック(栄研化学株式会社製、登録商標、製品名:PT1025)でスタンプすることによって、試料フィルム表面の菌を標準寒天培地に付着させる。 3. The bacteria on the surface of the sample film are attached to the standard agar medium by stamping with a petan check (registered trademark, product name: PT1025, manufactured by Eiken Chemical Co., Ltd.).
 4.標準寒天培地に付着した菌を、37℃で24時間培養した後、コロニーの有無を確認 4. Bacteria attached to standard agar medium are cultured at 37 ° C for 24 hours, and then checked for colonies
 上述の評価の結果、試料フィルムIおよび試料フィルムJでは、コロニーは観察されなかった。一方、試料フィルムKでは、コロニー数は21であった。大腸菌に対しても同様な実験を行い、同様な結果を得た。このことから、本発明の実施形態による合成高分子膜は、グラム陰性菌だけでなく、グラム陽性菌に対しても、殺菌性・抗菌性を有することがわかる。一方、エチレンオキサイド単位および窒素元素を有しない試料フィルムKは、殺菌性・抗菌性を有しない。したがって、上述したように、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の濃度が0.29at%以上であり、1gに含まれるエチレンオキサイド単位のモル数が0.0020超であれば、反応性希釈剤を用いて作製しても、殺菌性・抗菌性を有する合成高分子膜が得られると考えられる。1gに含まれるエチレンオキサイド単位のモル数は0.0070以上であることが好ましいかもしれない。 As a result of the above evaluation, no colonies were observed in the sample film I and the sample film J. On the other hand, in the sample film K, the number of colonies was 21. Similar experiments were performed on E. coli and similar results were obtained. From this, it can be seen that the synthetic polymer membrane according to the embodiment of the present invention has bactericidal and antibacterial properties not only against Gram-negative bacteria but also against Gram-positive bacteria. On the other hand, the sample film K having no ethylene oxide unit and nitrogen element does not have bactericidal and antibacterial properties. Therefore, as described above, the total concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is 0.29 at% or more, and the number of moles of ethylene oxide units contained in 1 g is If it exceeds 0.0020, it is considered that a synthetic polymer film having bactericidal and antibacterial properties can be obtained even if it is prepared using a reactive diluent. It may be preferable that the number of moles of ethylene oxide units contained in 1 g is 0.0070 or more.
 試料フィルムJの様に、本発明の実施形態によると、反応性希釈剤を用いことによって、溶剤を用いることなく、表面が殺菌効果を有する合成高分子膜を製造することができるので、溶剤を除去するために設備および時間を省略することができるので、量産性を向上させることができる。 Like sample film J, according to the embodiment of the present invention, by using a reactive diluent, a synthetic polymer film having a sterilizing effect on the surface can be produced without using a solvent. Since equipment and time can be omitted for removal, mass productivity can be improved.
 また、本発明の実施形態による合成高分子膜は、接触感染を防止する効果を有する。したがって、例えば、ドアノブ、手摺、吊革等、多くの人が手で触れる部品の表面を本発明の実施形態による合成高分子膜で被覆することによって、接触感染を防止・抑制することができる。 In addition, the synthetic polymer film according to the embodiment of the present invention has an effect of preventing contact infection. Therefore, for example, by covering the surface of a part such as a door knob, handrail, or hanging leather that is touched by a hand with the synthetic polymer film according to the embodiment of the present invention, contact infection can be prevented / suppressed.
 本発明の実施形態による殺菌性表面を有する合成高分子膜は、例えば、接触感染の抑制・防止など、表面を殺菌する用途など、種々の用途に用いられ得る。本発明の実施形態による殺菌性表面を有する合成高分子膜は、安価に製造され得る。 The synthetic polymer film having a bactericidal surface according to the embodiment of the present invention can be used in various applications such as a use of sterilizing the surface such as suppression and prevention of contact infection. A synthetic polymer film having a bactericidal surface according to an embodiment of the present invention can be manufactured at low cost.
 34A、34B  合成高分子膜
 34Ap、34Bp  凸部
 42A、42B  ベースフィルム
 50A、50B  フィルム
 100、100A、100B モスアイ用型
34A, 34B Synthetic polymer film 34Ap, 34Bp Convex part 42A, 42B Base film 50A, 50B Film 100, 100A, 100B Moss eye mold

Claims (9)

  1.  複数の凸部を有する表面を備える合成高分子膜であって、前記合成高分子膜の法線方向から見たとき、前記複数の凸部の2次元的な大きさは20nm超500nm未満の範囲内にあり、前記表面が殺菌効果を有し、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の濃度は0.29at%以上であり、1gに含まれるエチレンオキサイド単位のモル数は0.0020超である、合成高分子膜。 A synthetic polymer film having a surface having a plurality of convex portions, wherein the two-dimensional size of the plurality of convex portions is in the range of more than 20 nm and less than 500 nm when viewed from the normal direction of the synthetic polymer film. The total concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is 0.29 at% or more, and the ethylene contained in 1 g A synthetic polymer film in which the number of moles of oxide units is more than 0.0020.
  2.  1gに含まれるエチレンオキサイド単位のモル数は0.0070以上である、請求項1に記載の合成高分子膜。 The synthetic polymer film according to claim 1, wherein the number of moles of ethylene oxide units contained in 1 g is 0.0070 or more.
  3.  第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の濃度は、0.33at%以上である、請求項1または2に記載の合成高分子膜。 The synthetic polymer film according to claim 1 or 2, wherein the total concentration of the nitrogen element forming the primary amine and the nitrogen element forming the secondary amine is 0.33 at% or more.
  4.  前記合成高分子膜は、ウレタンアクリレート構造を含む、請求項1から3のいずれかに記載の合成高分子膜。 The synthetic polymer film according to any one of claims 1 to 3, wherein the synthetic polymer film includes a urethane acrylate structure.
  5.  前記ウレタンアクリレート構造は、エチレンオキサイド単位の繰り返し構造を含む、請求項4に記載の合成高分子膜。 The synthetic polymer film according to claim 4, wherein the urethane acrylate structure includes a repeating structure of ethylene oxide units.
  6.  前記ウレタンアクリレート構造は、3官能以上のウレタンアクリレートモノマーの重合体を含む、請求項4または5に記載の合成高分子膜。 The synthetic polymer film according to claim 4 or 5, wherein the urethane acrylate structure contains a polymer of urethane acrylate monomer having three or more functions.
  7.  前記ウレタンアクリレートモノマーは、窒素元素を含む複素環を含む、請求項6に記載の合成高分子膜。 The synthetic polymer film according to claim 6, wherein the urethane acrylate monomer contains a heterocyclic ring containing a nitrogen element.
  8.  前記複素環は、シアヌル環である、請求項7に記載の合成高分子膜。 The synthetic polymer film according to claim 7, wherein the heterocyclic ring is a cyanuric ring.
  9.  表面の法線方向から見たときの2次元的な大きさが20nm以上500nm未満である複数の凹部を有する、反転されたモスアイ構造を表面に有するポーラスアルミナ層を有する型を用いて、合成高分子膜を製造する方法であって、
    (a)前記型と、被加工物とを用意する工程と、
    (b)エチレンオキサイド単位の繰り返し構造および第1級または第2級アミンを有するウレタンアクリレートと反応性希釈剤を含み、溶剤を含まない樹脂組成物を用意する工程と、
    (c)前記被加工物の表面に前記樹脂組成物を付与する工程と、
    (d)前記型と前記被加工物の表面との間に、前記樹脂組成物を配置した状態で、前記樹脂組成物に紫外線を照射することによって前記樹脂組成物を硬化させる工程と
    を包含する、合成高分子膜の製造方法。
    Using a mold having a porous alumina layer having an inverted moth-eye structure on the surface, having a plurality of recesses having a two-dimensional size of 20 nm or more and less than 500 nm when viewed from the normal direction of the surface, A method for producing a molecular film comprising:
    (A) preparing the mold and a workpiece;
    (B) preparing a resin composition containing a urethane acrylate having a repeating structure of ethylene oxide units and a primary or secondary amine and a reactive diluent and no solvent;
    (C) applying the resin composition to the surface of the workpiece;
    (D) including a step of curing the resin composition by irradiating the resin composition with ultraviolet rays in a state where the resin composition is disposed between the mold and the surface of the workpiece. A method for producing a synthetic polymer film.
PCT/JP2017/031949 2016-09-14 2017-09-05 Synthetic polymer film having surface provided with bactericidal action, and method for producing synthetic polymer film WO2018051845A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018539642A JP6674554B2 (en) 2016-09-14 2017-09-05 Method for producing synthetic polymer membrane having surface having bactericidal action
CN201780056684.9A CN109790305A (en) 2016-09-14 2017-09-05 Synthetic polymeric membrane and its manufacturing method with the surface for having bactericidal effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-179848 2016-09-14
JP2016179848 2016-09-14

Publications (1)

Publication Number Publication Date
WO2018051845A1 true WO2018051845A1 (en) 2018-03-22

Family

ID=61619437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031949 WO2018051845A1 (en) 2016-09-14 2017-09-05 Synthetic polymer film having surface provided with bactericidal action, and method for producing synthetic polymer film

Country Status (3)

Country Link
JP (1) JP6674554B2 (en)
CN (1) CN109790305A (en)
WO (1) WO2018051845A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015031956A1 (en) * 2013-09-05 2015-03-12 Swinburne University Of Technology A synthetic biocidal surface comprising an array of nanospikes
JP2015137313A (en) * 2014-01-22 2015-07-30 シャープ株式会社 Film body having fine uneven structure on surface, structure having film body on surface, and polymerizable composition that forms film body
WO2015163018A1 (en) * 2014-04-22 2015-10-29 シャープ株式会社 Synthetic polymer membrane having surface with sterilizing activity, laminate equipped with synthetic polymer membrane, sterilization method utilizing surface of synthetic polymer membrane, method for reactivating surface of synthetic polymer membrane, mold for use in production of synthetic polymer membrane, and method for producing mold
JP2016093939A (en) * 2014-11-13 2016-05-26 大日本印刷株式会社 Antibacterial article
WO2016080245A1 (en) * 2014-11-20 2016-05-26 シャープ株式会社 Synthetic polymer film having surface provided with bactericidal activity
WO2016208540A1 (en) * 2015-06-23 2016-12-29 シャープ株式会社 Synthetic polymer film provided with surface having sterilizing activity
WO2017014086A1 (en) * 2015-07-17 2017-01-26 シャープ株式会社 Synthetic polymer film having surface that is provided with bactericidal action, and film comprising same
WO2017047344A1 (en) * 2015-09-17 2017-03-23 シャープ株式会社 Synthetic polymer film provided with surface having sterilizing effect, method for manufacturing synthetic polymer film and sterilization method using surface of synthetic polymer film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150239022A1 (en) * 2012-07-19 2015-08-27 Nissan Chemical Industries, Ltd. Structure having antifouling properties and having concave-convex shaped surface, and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015031956A1 (en) * 2013-09-05 2015-03-12 Swinburne University Of Technology A synthetic biocidal surface comprising an array of nanospikes
JP2015137313A (en) * 2014-01-22 2015-07-30 シャープ株式会社 Film body having fine uneven structure on surface, structure having film body on surface, and polymerizable composition that forms film body
WO2015163018A1 (en) * 2014-04-22 2015-10-29 シャープ株式会社 Synthetic polymer membrane having surface with sterilizing activity, laminate equipped with synthetic polymer membrane, sterilization method utilizing surface of synthetic polymer membrane, method for reactivating surface of synthetic polymer membrane, mold for use in production of synthetic polymer membrane, and method for producing mold
JP2016093939A (en) * 2014-11-13 2016-05-26 大日本印刷株式会社 Antibacterial article
WO2016080245A1 (en) * 2014-11-20 2016-05-26 シャープ株式会社 Synthetic polymer film having surface provided with bactericidal activity
WO2016208540A1 (en) * 2015-06-23 2016-12-29 シャープ株式会社 Synthetic polymer film provided with surface having sterilizing activity
WO2017014086A1 (en) * 2015-07-17 2017-01-26 シャープ株式会社 Synthetic polymer film having surface that is provided with bactericidal action, and film comprising same
WO2017047344A1 (en) * 2015-09-17 2017-03-23 シャープ株式会社 Synthetic polymer film provided with surface having sterilizing effect, method for manufacturing synthetic polymer film and sterilization method using surface of synthetic polymer film

Also Published As

Publication number Publication date
CN109790305A (en) 2019-05-21
JPWO2018051845A1 (en) 2019-06-27
JP6674554B2 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
JP6470410B2 (en) Synthetic polymer membrane having a surface with bactericidal action
JP5851076B1 (en) Bactericidal filter
JP5933151B1 (en) Synthetic polymer membrane having surface with bactericidal action and method for sterilization using surface of synthetic polymer membrane
JP2019143042A (en) Synthetic polymer membrane and manufacturing method of synthetic polymer membrane
JP6449996B2 (en) Synthetic polymer membrane having a surface with bactericidal action
JP6470413B2 (en) Synthetic polymer film having surface with bactericidal action and film having the same
JP6581296B2 (en) Synthetic polymer membrane having a surface with bactericidal action
JP6605612B2 (en) Synthetic polymer membrane having surface with bactericidal action, method for producing synthetic polymer membrane, and bactericidal method using surface of synthetic polymer membrane
JP6761405B2 (en) A synthetic polymer membrane having a surface having a bactericidal action and a sterilization method using the surface of the synthetic polymer membrane
WO2018051845A1 (en) Synthetic polymer film having surface provided with bactericidal action, and method for producing synthetic polymer film
JP6581159B2 (en) Method for producing a plastic product comprising a synthetic polymer film having a surface with bactericidal action
CN109676833B (en) Synthetic polymer film, method for producing same, method for sterilization, and photocurable resin composition
WO2018168697A1 (en) Hand dryer
JP7042278B2 (en) A synthetic polymer membrane having a surface having a bactericidal action and a sterilization method using the surface of the synthetic polymer membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850748

Country of ref document: EP

Kind code of ref document: A1