WO2018049673A1 - 传输信号的方法和基站 - Google Patents

传输信号的方法和基站 Download PDF

Info

Publication number
WO2018049673A1
WO2018049673A1 PCT/CN2016/099307 CN2016099307W WO2018049673A1 WO 2018049673 A1 WO2018049673 A1 WO 2018049673A1 CN 2016099307 W CN2016099307 W CN 2016099307W WO 2018049673 A1 WO2018049673 A1 WO 2018049673A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
baseband signal
processing
base station
baseband
Prior art date
Application number
PCT/CN2016/099307
Other languages
English (en)
French (fr)
Inventor
陈帅
陈卫
朱孝龙
吴俣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/099307 priority Critical patent/WO2018049673A1/zh
Priority to KR1020197010574A priority patent/KR102232041B1/ko
Priority to JP2019515326A priority patent/JP6808026B2/ja
Priority to CN201680088955.4A priority patent/CN109644032B/zh
Priority to EP16916053.8A priority patent/EP3506523A4/en
Publication of WO2018049673A1 publication Critical patent/WO2018049673A1/zh
Priority to US16/358,301 priority patent/US10897289B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0465Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking power constraints at power amplifier or emission constraints, e.g. constant modulus, into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • Embodiments of the present invention relate to the field of wireless communications, and more particularly, to a method and base station for transmitting signals.
  • Multi-antenna transmission technology uses multiple antennas for transmitting and receiving data at the transmitting end and the receiving end.
  • Multi-antenna transmission technology can make full use of space resources, increase the effective bandwidth of the wireless channel, greatly increase the capacity of the communication system, and speed up the transmission rate of the local area network.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • the power of the 2T (Transmit) 2R (Received) to the 4T4R is not doubled, for example, the 2T2R is 2 ⁇ 40W and the 4T4R is evolved to 4 ⁇ 40W because the cost cannot be 4 ⁇ 40W. It can be configured as 4 ⁇ 20W.
  • PA power amplifier
  • CRS Cell-Specific Reference Signal
  • Embodiments of the present invention provide a method and a base station for transmitting signals, which can improve pilot coverage capability in a multi-antenna technology.
  • a method for transmitting a signal comprising: using, by a base station, a virtual antenna mapping (VAM) matrix for a first baseband signal, a second baseband signal, a third baseband signal, and a fourth path
  • the baseband signal is processed to obtain a four-way processed signal, where the four-way processed signal includes a first processed signal, a second processed signal, a third processed signal, and a fourth processed signal, wherein the first processed The signal is the same as the third processing signal, the second processing signal is the same as the fourth processing signal, and the first processing signal is the first baseband signal and the third path
  • the baseband signal is superimposed, and the second processing The signal is obtained by superposing the second baseband signal and the fourth baseband signal; the base station performs precoding processing on the four processed signals to obtain four encoded signals; the base station moves to the four radio frequency ports.
  • the terminal sends the four-way encoded signal, wherein the four radio frequency ports are in one-to-one correspondence with the four-way encode
  • the embodiment of the present invention performs virtual antenna mapping processing and precoding processing on the four baseband signals, and transmits a corresponding one-way encoded signal to each mobile terminal through each radio frequency port, so that the cell reference signal does not need to be reduced when multi-antenna evolution occurs.
  • the power is used to ensure that the power of the RF channel transmission signal does not exceed the standard, thereby improving the pilot coverage capability of the multi-antenna technology.
  • the VAM matrix is:
  • the VAM matrix is any one of the following matrices:
  • the power of the RF channel output signal may exceed the standard and the signal may not be transmitted normally.
  • the power of each processed coded signal transmitted to the mobile terminal through the radio frequency port can satisfy the requirement, thereby ensuring normal transmission of the signal.
  • processing the first baseband signal, the second baseband signal, the third baseband signal, and the fourth baseband signal by using the VAM matrix may be: multiplying by a 4 ⁇ 4 VAM matrix A 4 ⁇ 1 matrix composed of four baseband signals obtains a 4 ⁇ 1 matrix corresponding to four processed signals.
  • the base station is an evolved base station eNB in Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the method further includes: determining, by the base station, the using the VAM matrix pair according to the configuration information and the power that the radio frequency channel can provide.
  • the first baseband signal, the second baseband signal, the third baseband signal, and the fourth baseband signal are processed.
  • the configuration information can be used to calculate the power of each baseband signal transmitted through the RF port when the baseband signal is not processed using the VAM matrix. If the power of each baseband signal transmitted by the RF port is greater than the power that the RF channel can provide, then the existing The technology cannot transmit signals normally, and the baseband signals can be processed and transmitted using the scheme of the present invention. Conversely, the baseband signal can be processed and transmitted using an existing scheme.
  • each of the four baseband signals is transmitted using the same VAM matrix on all channels.
  • the N baseband signals may also be processed by using the solution of the present invention, so that the power of each RF port output signal satisfies the power that the RF channel can provide, and N may be an integer greater than 4.
  • each row in the VAM matrix includes at least two non-zero elements, so that each baseband signal can be output from at least two ports.
  • the non-zero elements of each column in the VAM matrix are the same or opposite to each other. This allows each baseband signal to be evenly distributed to four or N RF output ports.
  • a base station including: a virtual antenna mapping VAM processing unit, configured to process a first baseband signal, a second baseband signal, a third baseband signal, and a fourth baseband signal by using a VAM matrix Obtaining a four-way processing signal, where the four-way processing signal includes a first way processing signal, a second way processing signal, a third way processing signal, and a fourth way processing signal, wherein the first way processing signal and the The third processing signal is the same, the second processing signal is the same as the fourth processing signal, and the first processing signal is to superimpose the first baseband signal and the third baseband signal.
  • the second processing signal is obtained by superposing the second baseband signal and the fourth baseband signal; and the precoding processing unit is configured to obtain the fourth obtained by the VAM processing unit
  • the path processing signal is pre-coded to obtain a four-way coded signal, and the sending unit is configured to send, by using four radio frequency ports, the four-way coded signal obtained by the pre-coding processing unit to the mobile terminal. , Wherein the four RF ports-one correspondence with the four encoded signal.
  • the embodiment of the present invention performs virtual antenna mapping processing and precoding processing on the four baseband signals, and transmits a corresponding one-way encoded signal to each mobile terminal through each radio frequency port, so that the cell reference signal does not need to be reduced when multi-antenna evolution occurs.
  • the power is used to ensure that the power of the RF channel transmission signal does not exceed the standard, thereby improving the pilot coverage capability of the multi-antenna technology.
  • the VAM matrix is:
  • the VAM matrix is any one of the following matrices:
  • the base station is an evolved base station eNB in Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the base station includes: a determining unit, configured to determine, according to the configuration information and the power that the radio frequency channel can provide, use the VAM matrix pair
  • the first baseband signal, the second baseband signal, the third baseband signal, and the fourth baseband signal are processed.
  • the baseband signal can be processed and transmitted using the scheme of the present invention by adding a control switch. If the determining unit calculates the baseband signal by using the VAM matrix through the configuration information, the power of each baseband signal transmitted through the radio frequency port is greater than the power that the radio frequency channel can provide, and then the baseband signal can be processed by using the scheme of the present invention. transmission. Conversely, the baseband signal can be processed and transmitted using an existing scheme.
  • the base station provided in the second aspect of the embodiments of the present invention may be used to perform the foregoing first aspect or the first A method in any possible implementation of the aspect.
  • the base station includes units required for performing the method in any of the foregoing first aspect or any possible implementation manner of the first aspect, and the beneficial effects of each unit also correspond to the beneficial effects of the steps of the first aspect, Avoid repetition and we will not go into details here.
  • FIG. 1 is a schematic flow chart of a method of transmitting a signal according to an embodiment of the present invention.
  • 2 is a pilot pattern of different ports of a four antenna according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a transmission signal according to another embodiment of the present invention.
  • FIG. 4 is a block diagram of a base station in accordance with an embodiment of the present invention.
  • FIG. 5 is a block diagram of a base station in accordance with another embodiment of the present invention.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • the user equipment in the embodiment of the present invention may be referred to as a terminal, a mobile station (Mobile Station, MS), or a mobile terminal (Mobile Terminal), etc., and the user equipment may be connected to the radio access network (
  • the Radio Access Network (RAN) communicates with one or more core networks, for example, the user equipment may be a mobile phone (or "cellular" phone) or a computer with a mobile terminal, etc., for example, the user device may also be portable, Pocket, Handheld, computer built-in or in-vehicle mobile devices that exchange voice and/or data with a wireless access network.
  • the base station in the embodiment of the present invention may be an Evolved Node B (eNB) in LTE, or may be a base station in a future wireless communication system.
  • eNB Evolved Node B
  • FIG. 1 is a schematic flow chart of a method of transmitting a signal according to an embodiment of the present invention.
  • the base station processes the first baseband signal, the second baseband signal, the third baseband signal, and the fourth baseband signal by using a VAM matrix to obtain four processed signals.
  • the four-way processing signal includes a first processing signal, a second processing signal, a third processing signal, and a fourth processing signal.
  • the first processing signal is the same as the third processing signal
  • the second processing signal is the same as the fourth processing signal
  • the first processing signal is obtained by superposing the first baseband signal and the third baseband signal
  • the two-way processing signal is obtained by superposing the second baseband signal and the fourth baseband signal.
  • the baseband signal in the embodiment of the present invention may be a Cell-Specific Reference Signal (CRS), a signal transmitted on a Physical Downlink Shared Channel (PDSCH), or a Packet Broadcast Control Channel (Packet Broadcast Control Channel).
  • CRS Cell-Specific Reference Signal
  • PDSCH Physical Downlink Shared Channel
  • Packet Broadcast Control Channel Packet Broadcast Control Channel
  • PBCCH transmitted signals
  • PHICH Physical Hybrid ARQ Indicator Channel
  • PCFICH Physical control format indication channels
  • the transmitted signal Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), etc.
  • a Type-A symbol indicates a Resource Element (RE) symbol for a non-pilot signal in a symbol column that does not contain a pilot bit
  • a Type-B symbol indicates a symbol column that includes a pilot bit.
  • the signal power of the baseband signal transmitted through the radio frequency channel can be calculated from the configuration information, which can include the bandwidth, the CRS power, and the values of Pa and Pb.
  • the power of the radio frequency signal generated by the modulating oscillating circuit is small, and after a series of power amplification is required, after obtaining sufficient RF power, Can be fed to the antenna to launch.
  • an RF power amplifier In order to obtain a sufficiently large RF output power, an RF power amplifier must be used.
  • the base station can determine whether to use the VAM matrix to process the four baseband signals according to the configuration information and the power that the radio frequency channel can provide.
  • the control switch can be added. If the baseband signal is processed without using the VAM matrix through the configuration information, the power of each baseband signal transmitted through the RF port is greater than the power that the RF channel can provide.
  • the baseband signal can be processed and transmitted using the scheme of the present invention for normal transmission of signals. Conversely, the baseband signal can be processed and transmitted using an existing scheme.
  • the power that the RF channel can provide in the embodiment of the present invention can be less than or equal to the maximum output power of the RF power amplifier.
  • the time-frequency transmission resource may be a single carrier or a multi-carrier.
  • the maximum output power that the RF channel can provide can be equal to the maximum output power of the RF power amplifier.
  • the frequency resource is multi-carrier, the sum of the maximum output power that the RF power amplifier can provide for each RF channel can be equal to the maximum output power of the RF power amplifier. In other words, the maximum power that each RF channel can provide when multi-carrier is less than The maximum output power of the RF power amplifier.
  • the baseband signal is processed by using a VAM matrix, which may be a 4 ⁇ 1 matrix formed by multiplying a 4 ⁇ 4 VAM matrix by 4 baseband signals to obtain a 4 ⁇ 1 matrix composed of 4 processed signals.
  • a VAM matrix which may be a 4 ⁇ 1 matrix formed by multiplying a 4 ⁇ 4 VAM matrix by 4 baseband signals to obtain a 4 ⁇ 1 matrix composed of 4 processed signals.
  • each of the four baseband signals is transmitted using the same VAM matrix on all channels.
  • each baseband signal can be represented as a corresponding signal power of the radio frequency channel when the VAM process is not performed, multiplied by the corresponding signal sequence.
  • Four baseband signals are available To form a 4 ⁇ 1 matrix.
  • the power of each baseband signal transmitted through the radio frequency port may be greater than the non-satisfying transmission requirement, and the signal cannot be transmitted by using the existing scheme.
  • the technical solution of the present invention can be utilized, and the VAM processing is performed on the baseband signal so that the power when transmitting the signal through the radio frequency port satisfies the transmission requirement, so that the normal transmission of the signal can be ensured.
  • the method before step 101, further includes: acquiring the first baseband signal, the second baseband signal, the third baseband signal, and the fourth baseband signal.
  • the base station performs precoding processing on the four processed signals to obtain four encoded signals.
  • the precoding process on the four processed signals may be to multiply the four processed signals by a corresponding precoding matrix.
  • the precoding matrix may be a codebook that is used according to Precoding Matrix Indication (PMI) information.
  • PMI Precoding Matrix Indication
  • the base station sends four coded signals to the mobile terminal through four radio frequency ports, where the four radio frequency ports are in one-to-one correspondence with the four coded signals.
  • each coded signal is obtained by at least two baseband signals, that is, each RF port transmits at least two baseband signals.
  • the embodiment of the present invention performs virtual antenna mapping processing and precoding processing on the four baseband signals, and transmits a corresponding one-way encoded signal to each mobile terminal through each radio frequency port, so that the cell reference signal does not need to be reduced when multi-antenna evolution occurs.
  • the power is used to ensure that the power of the RF channel transmission signal does not exceed the standard, thereby improving the pilot coverage capability of the multi-antenna technology.
  • the CRS can be reduced to ensure that the RF channel does not exceed the RF power amplifier capability.
  • Such a configuration may cause the LTE pilot coverage to shrink, thereby reducing the multi-antenna technology. Medium pilot coverage capability.
  • the CRS setting can be ensured while ensuring that the RF channel does not exceed the capability of the RF power amplifier, that is, the coverage capability in the multi-day technology is unchanged.
  • the coverage capability in the multi-day technology can be kept unchanged; the multi-antenna (for example, 4T) technology according to the technical solution of the present invention is relatively multi-antenna through the existing scheme (for example 4T) technology can improve the mid-frequency coverage.
  • the multi-antenna for example, 4T
  • the existing scheme for example 4T
  • the base station may be an eNB in LTE, and may also be a base station in a wireless communication system to which the present invention is applicable in the future.
  • the existing solution can modify the configuration of Pa and Pb so that the power when transmitting signals through the RF port does not exceed the capability of the RF power amplifier. For example, when the bandwidth is 20M and the 2T is upgraded to 4T, the power is the same as 20W, and the CRS configuration can be kept unchanged at 18.2dBm.
  • such configuration modification causes the power of the Type-B symbol to decrease, so that the power of the control signal or the physical downlink shared channel on the Type-B symbol decreases, resulting in a decrease in the network performance index.
  • the embodiment of the present invention can be upgraded to 4T in 2T, and the values of the configured CRS and Pb are kept unchanged, and the normal transmission of the signal is still performed. When the power is not exceeded, the configuration can be unchanged, that is, the performance is not affected.
  • the baseband signal may be N ways, and N may be an integer greater than 4, in which case each row of the VAM matrix includes at least two non-zero elements. This allows each baseband signal to be split into at least two RF ports for transmission. In the embodiment of the present invention, only four baseband signals are taken as an example for exemplary description.
  • 2 is a pilot pattern of different ports of a four antenna according to an embodiment of the present invention.
  • a Type-A symbol indicates an RE symbol for transmitting a non-pilot signal in a symbol column not containing a pilot
  • a Type-B symbol indicates a non-pilot for transmitting in a symbol column containing a pilot.
  • Ports 0, port 1, port 2, and port 3 respectively represent four antenna ports.
  • Figure 2-1, Figure 2-2, Figure 2-3, and Figure 2-4 show the pilots of the four antenna ports. pattern.
  • one small square is an RE.
  • the small black square indicates that the RE is a pilot bit and is used to transmit a pilot in the baseband signal; the shaded small square indicates that the RE is a pilot bit, but is not used for transmission in the baseband signal.
  • a small white square indicates that the RE is used to transmit a Type-A or Type-B signal.
  • Each small square in Figure 2 represents one RE, one RB includes 12 REs, and each column is 1 RB.
  • a small square horizontally represents an Orthogonal Frequency Division Multiplexing (OFDM) symbol, and OFDM symbols are numbered sequentially starting from 0.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the black box is used to indicate that the RE is used to transmit the pilot, and the shaded portion indicates that the RE neither transmits the non-pilot signal nor the pilot, and the white box indicates that the RE is used to transmit the pilot.
  • Pilot signal of According to the protocol, at any one of the four pilot signals, at least one of the four baseband signals transmits a pilot, and the other signals neither transmit a non-pilot signal nor transmit a pilot.
  • the first and second baseband signals may not be used to transmit pilots in the same symbol including the pilot bits, as shown in the second column of FIG. 2-1 and FIG. 2-2.
  • the third and fourth baseband signals may be used to transmit pilot signals in pilot bits, such as OFDM symbols numbered 1 in the second column of FIGS. 2-3 and 2-4.
  • the subcarriers of the symbols of the first and second baseband signals for transmitting pilots are different from each other, and the first basebandband signal is used to transmit the subcarriers of the symbols of the pilots and The subcarriers on which the second baseband signal is used to transmit the pilot symbols together form all of the subcarriers on the symbol for the pilot bits.
  • pilot bits RE that can be used to transmit pilots, and two REs in the first baseband signal of Figure 2-1 are sent. Pilot, there are also two REs in the second baseband signal of Figure 2-2 to transmit pilots, but the positions of the REs used to transmit the pilots in the two baseband signals do not overlap.
  • One RB on each symbol is transmitted through different RF ports without using the VAM matrix to process the signal.
  • the power configuration of the CRS is 18.2 dBm, that is, the signal power when transmitting one RE transmission signal of the pilot is 18.2 dBm.
  • the four baseband signals are represented by flow0, flow1, flow2, and flow3, respectively.
  • Use Figure 2-1 to transmit the resource numbered 0 in the time domain (that is, the first symbol) and the first RB in the frequency domain (that is, the first column in Figure 2-1) through the first RF port.
  • the total power of the transmitted signal when the first RF port is not subjected to VAM processing on 14 symbols is: 26.49dBm, 13.28dBm, 19.92dBm, 19.92dBm, 26.49dBm, 19.92dBm , 19.92dBm, 26.49dBm, 13.28dBm, 19.92dB m, 19.92dBm, 26.49dBm, 19.92dBm, 19.92dBm.
  • the calculation process of other symbols and other RF ports is the same.
  • the baseband signal is not VAM processed, it is transmitted through each symbol.
  • the power at the time of the signal is as shown in Table 1 below, and the numbers 0 to 13 are the numbers of the symbols, which are the first, second, third, ..., and 14 symbols, respectively.
  • the RF channel can provide a maximum output power of 20W, then some of the power in Table 1 exceeds the RF power amplifier capability. According to the prior art, the corresponding baseband signal cannot be transmitted directly.
  • the VAM processing in the embodiment of the present invention can reduce the processed power to be less than the maximum output power that the RF channel can provide, thereby ensuring normal transmission of signals.
  • FIG. 3 is a schematic diagram of a transmission signal according to another embodiment of the present invention.
  • the method of Figure 3 can be performed by a base station.
  • Port 0, port 1, port 2, and port 3 respectively represent four antenna ports, and flow0, flow1, flow2, and flow3 respectively represent four baseband signals, and A, B, C, and D respectively represent four ends.
  • Port 0, port 1, port 2, port 3 correspond to the RF output signal when transmitting signals to the mobile terminal.
  • a 4 ⁇ 1 matrix composed of four baseband signals is multiplied by a 4 ⁇ 4 VAM matrix to obtain a four-way processed signal corresponding to a 4 ⁇ 1 matrix.
  • the VAM matrix can be pre-configured to determine different VAM matrices based on phase rotation of the four baseband signals. For example, for a four-way baseband signal that does not rotate, the VAM matrix can be:
  • the four processing signals corresponding to the four RF ports A, B, C, and D in FIG. 3 are: In the four-way VAM processed signal after the VAM matrix product shown in the schematic diagram of FIG. 3, two of them are a combination of flow0 and flow2, and two paths are a combination of flow1 and flow3.
  • the VAM matrix is In the four-way VAM processing signal, two paths are a combination of flow0 and flow3, and two paths are a combination of flow1 and flow2.
  • the VAM matrix is In the four-way VAM processing signal, the two paths are the combination of flow0 and flow2, and the two paths are the combination of flow1 and flow3.
  • the power output from the RF port corresponding to the VAM processed signal obtained by using the VAM matrix is as shown in Table 2, and it can be seen that the power in Table 2 is smaller than the maximum output power that the RF channel can provide.
  • the rate is 20W, which ensures the normal transmission of the signal.
  • the VAM matrix when the phase of the four-baseband signal is rotated by 45 degrees, the VAM matrix can be expressed as:
  • the VAM matrix can be expressed as:
  • the VAM matrix when the phase of the four-baseband signal is rotated by 90 degrees, the VAM matrix can be expressed as:
  • the VAM matrix can be expressed as:
  • the VAM matrix in the foregoing embodiment is only for the sake of illustration.
  • the present invention does not limit the VAM matrix to only the specific example given above, as long as the power of each signal after the VAM processing is satisfied is smaller than that of the RF channel.
  • the maximum output power is enough.
  • the phase rotation of the baseband signal is also described by way of example of no rotation, 45 degrees of rotation, 60 degrees of rotation, and 90 degrees of rotation.
  • the rotation angle of the baseband signal is not limited.
  • the VAM matrix in the embodiment of the present invention can satisfy the transmission mode (TM) 4, the TM9 and the TM10, and the time division duplex (Time Division). Duplexing, TDD) TM7, TM8.
  • the precoding matrix may be pre-configured, and there may be multiple precoding matrices available. In actual product design, a suitable precoding matrix can be selected according to the pre-coded signal power in combination with a preset VAM matrix.
  • the embodiment of the present invention performs virtual antenna mapping processing and precoding processing on the four baseband signals, and sends four encoded signals to the mobile terminal through four radio frequency ports, so that the power of the signal transmitted by the radio frequency port does not exceed the capability of the radio frequency power amplifier. It is not necessary to reduce the power of the radio frequency channel transmission signal to reduce the power of the radio frequency channel transmission signal when the multi-antenna evolution is performed, thereby improving the pilot coverage capability in the multi-antenna technology.
  • FIGS. 1 through 3 A method of transmitting a signal according to an embodiment of the present invention is described in detail above with reference to FIGS. 1 through 3.
  • an apparatus for transmitting a signal that is, a base station, according to an embodiment of the present invention will be described with reference to FIGS. 4 and 5.
  • the base station 10 of FIG. 4 includes an acquisition unit 11, a VAM processing unit 12, a precoding processing unit 13, and a transmitting unit 14.
  • the virtual antenna mapping VAM processing unit 11 is configured to process the first baseband signal, the second baseband signal, the third baseband signal, and the fourth baseband signal by using a VAM matrix to obtain four processed signals, and the four processed signals include The first processing signal, the second processing signal, the third processing signal, and the fourth processing signal, wherein the first processing signal and the third processing signal are the same, the second processing signal and the fourth processing signal Similarly, the first processing signal is obtained by superposing the first baseband signal and the third baseband signal, and the second processing signal is obtained by superposing the second baseband signal and the fourth baseband signal.
  • the precoding processing unit 12 is configured to perform precoding processing on the four processed signals obtained by the VAM processing unit to obtain four encoded signals.
  • the sending unit 13 is configured to send, by using four radio frequency ports, four encoded signals obtained by the precoding processing unit to the mobile terminal, where the four radio frequency ports are in one-to-one correspondence with the four encoded signals.
  • the embodiment of the present invention performs virtual antenna mapping processing and precoding processing on the four baseband signals, and sends a corresponding one-way encoded signal to each mobile terminal through each radio frequency port, so that It is necessary to reduce the power of the radio frequency channel transmission signal to reduce the power of the radio frequency channel transmission signal when the multi-antenna evolution is performed, thereby improving the pilot coverage capability in the multi-antenna technology.
  • a base station may correspond to a method for transmitting a signal according to an embodiment of the present invention, and each unit/module in the base station and the other operations and/or functions described above are respectively implemented to implement the methods shown in FIGS. 1 and 3. The corresponding process, for the sake of brevity, will not be described here.
  • FIG. 5 is a block diagram of a base station in accordance with another embodiment of the present invention.
  • the base station 20 of FIG. 5 includes a transmitter 21, a processor 22, and a memory 23.
  • Processor 22 controls the operation of base station 20 and can be used to process signals.
  • Memory 23 can include read only memory and random access memory and provides instructions and data to processor 22.
  • the various components of base station 20 are coupled together by a bus system 24, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as the bus system 24 in the figure.
  • the method disclosed in the above embodiments of the present invention can be applied to the transmitter 21 and the processor 22, or can be implemented by the transmitter 21 and the processor 22.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 22 or an instruction in the form of software.
  • the processor 22 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can be implemented or executed in an embodiment of the invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 23, and the processor 22 reads the information in the memory 23 and performs the steps of the above method in combination with its hardware.
  • the processor 22 can process the first baseband signal, the second baseband signal, the third baseband signal, and the fourth baseband signal by using a VAM matrix to obtain four processed signals, and preprocess the four processed signals.
  • the encoding process results in a four-way encoded signal.
  • the four-way processing signal includes a first processing signal, a second processing signal, a third processing signal, and a fourth processing signal, wherein the first processing signal is the same as the third processing signal, and the second processing is performed.
  • the signal is the same as the fourth processed signal, and the first processed signal is obtained by superposing the first baseband signal and the third baseband signal, and the second processed signal is the second baseband signal and the fourth baseband signal. Superimposed.
  • the transmitter 21 can send four encoded signals to the mobile terminal through four radio frequency ports, wherein the four radio frequency ports are in one-to-one correspondence with the four encoded signals.
  • the embodiment of the present invention performs virtual antenna mapping processing and precoding processing on the four baseband signals, and transmits a corresponding one-way encoded signal to each mobile terminal through each radio frequency port, so that the cell reference signal does not need to be reduced when multi-antenna evolution occurs.
  • the power is used to ensure that the power of the RF channel transmission signal does not exceed the standard, thereby improving the pilot coverage capability of the multi-antenna technology.
  • a base station may correspond to a method for transmitting a signal according to an embodiment of the present invention, and each unit/module in the base station and the other operations and/or functions described above are respectively implemented to implement the methods shown in FIGS. 1 and 3. The corresponding process, for the sake of brevity, will not be described here.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种传输信号的方法和装置。该方法包括基站利用VAM矩阵对第一路基带信号、第二路基带信号、第三路基带信号和第四路基带信号进行处理得到四路处理信号,对四路处理信号进行预编码处理得到四路编码信号,并通过四个射频端口向终端设备发送四路编码信号,四个射频端口与四路编码信号一一对应,第一路处理信号和第三路处理信号相同,第二路处理信号和第四路处理信号相同,第一路处理信号为对第一路基带信号和第三路基带信号进行叠加得到,第二路处理信号为对第二路基带信号和第四路基带信号进行叠加得到。本发明实施例可以在射频通道传输信号的功率不超标时,能够提高多天线技术中导频覆盖能力。

Description

传输信号的方法和基站 技术领域
本发明实施例涉及无线通信领域,并且更具体地,涉及传输信号的方法和基站。
背景技术
多天线传输技术即在发送端和接收端使用多根天线进行数据的发送和接收。多天线传输技术能够充分利用空间资源,增加无线信道的有效带宽,大大提升通信***的容量,加快局域网的传输速率。目前,多天线技术已经作为一个重要特性引入第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)长期演进(Long Term Evolution,LTE)技术规范中。在网络应用日益发展的今天,选择多天线的无线网络设备是一种更好选择。
现有技术方案在2T(发射,Transmit)2R(接收,Receive)向4T4R演进过程中功率如果不能做到翻倍,例如2T2R为2×40W演进到4T4R由于成本不能做到4×40W,而只能配置为4×20W,这时为了确保输出信号的功率不超过射频功放(Power Amplifier,PA)能力,需要将小区参考信号(Cell-Specific Reference Signal,CRS)的功率降低,这样会出现导频覆盖下降,从而导致LTE的用户切换或重选到周围邻区,或者导致脱网掉话,最终影响终端的用户体验。
发明内容
本发明实施例提供一种传输信号的方法和基站,能够提高多天线技术中导频覆盖能力。
第一方面,提供了一种传输信号的方法,包括:基站利用虚拟天线映射(Virtual Antenna Mapping,VAM)矩阵对第一路基带信号、第二路基带信号、第三路基带信号和第四路基带信号进行处理,得到四路处理信号,所述四路处理信号包括第一路处理信号、第二路处理信号、第三路处理信号和第四路处理信号,其中,所述第一路处理信号和所述第三路处理信号相同,所述第二路处理信号和所述第四路处理信号相同,所述第一路处理信号为对所述第一路基带信号和所述第三路基带信号进行叠加得到的,所述第二路处理 信号为对所述第二路基带信号和所述第四路基带信号进行叠加得到的;基站对所述四路处理信号进行预编码处理,得到四路编码信号;基站通过四个射频端口向移动终端发送所述四路编码信号,其中,所述四个射频端口与所述四路编码信号一一对应。
本发明实施例通过对四路基带信号进行虚拟天线映射处理和预编码处理,并通过每个射频端口向移动终端发送对应的一路编码信号,这样可以不需要在多天线演进时通过降低小区参考信号的功率来保证射频通道传输信号的功率不超标,从而能够提高多天线技术中导频覆盖能力。
结合第一方面,在第一方面的一种实现方式中,所述VAM矩阵为:
Figure PCTCN2016099307-appb-000001
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述VAM矩阵为下列矩阵中的任一个:
Figure PCTCN2016099307-appb-000002
Figure PCTCN2016099307-appb-000003
Figure PCTCN2016099307-appb-000004
在配置信息和射频通道能够提供的功率一定时,如果不利用VAM矩阵对基带信号进行处理,可能射频通道输出信号的功率超标导致信号无法正常传输。本发明实施例通过对基带信号进行VAM处理,可以使得处理后的每路编码信号通过射频端口向移动终端传输时的功率能够满足要求,从而能够保证信号正常传输。
在本发明的一个实施例中,利用VAM矩阵对第一路基带信号、第二路基带信号、第三路基带信号和第四路基带信号进行处理可以为:利用4×4的VAM矩阵乘以四路基带信号构成的4×1矩阵,得到四路处理信号对应的4×1矩阵。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述基站为长期演进LTE中的演进型基站eNB。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述方法还包括:所述基站根据配置信息和射频通道能够提供的功率确定使用所述VAM矩阵对所述第一路基带信号、所述第二路基带信号、所述第三路基带信号和所述第四路基带信号进行处理。
通过配置信息可以计算得到不使用VAM矩阵对基带信号进行处理时,通过射频端口传输每路基带信号的功率,如果射频端口传输每路基带信号的功率大于射频通道能够提供的功率,那么使用现有技术无法正常传输信号,可以使用本发明的方案对基带信号进行处理并传输。反之,可以选用现有方案对基带信号进行处理并传输。
在本发明的一个实施例中,四路基带信号中的每路基带信号在所有信道上传输时使用的VAM矩阵都相同。
在本发明的一个实施例中,还可使用本发明的方案对N路基带信号进行处理,使得每个射频端口输出信号的功率都满足射频通道能够提供的功率,N可以为大于4的整数。这时,VAM矩阵中的每一行至少包括两个非0的元素,这样可以将每路基带信号都从至少两个端口输出。
在本发明的一个实施例中,VAM矩阵中每一列的非零元素相同或互为相反数。这样可以将每路基带信号平均分配到四个或N个射频输出端口。
第二方面,提供了一种基站,包括:虚拟天线映射VAM处理单元,用于利用VAM矩阵对第一路基带信号、第二路基带信号、第三路基带信号和第四路基带信号进行处理,得到四路处理信号,所述四路处理信号包括第一路处理信号、第二路处理信号、第三路处理信号和第四路处理信号,其中,所述第一路处理信号和所述第三路处理信号相同,所述第二路处理信号和所述第四路处理信号相同,所述第一路处理信号为对所述第一路基带信号和所述第三路基带信号进行叠加得到的,所述第二路处理信号为对所述第二路基带信号和所述第四路基带信号进行叠加得到的;预编码处理单元,用于对所述VAM处理单元得到的所述四路处理信号进行预编码处理,得到四路编码信号;发送单元,用于通过四个射频端口向移动终端发送所述预编码处理单元得到的所述四路编码信号,其中,所述四个射频端口与所述四路编码信号一一对应。
本发明实施例通过对四路基带信号进行虚拟天线映射处理和预编码处理,并通过每个射频端口向移动终端发送对应的一路编码信号,这样可以不需要在多天线演进时通过降低小区参考信号的功率来保证射频通道传输信号的功率不超标,从而能够提高多天线技术中导频覆盖能力。
结合第二方面,在第二方面的一种实现方式中,所述VAM矩阵为:
Figure PCTCN2016099307-appb-000005
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述VAM矩阵为下列矩阵中的任一个:
Figure PCTCN2016099307-appb-000006
Figure PCTCN2016099307-appb-000007
Figure PCTCN2016099307-appb-000008
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述基站为长期演进LTE中的演进型基站eNB。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述基站包括:确定单元,用于根据配置信息和射频通道能够提供的功率确定使用所述VAM矩阵对所述第一路基带信号、所述第二路基带信号、所述第三路基带信号和所述第四路基带信号进行处理。
在本发明的一个实施例中,可以通过增加一个控制开关,控制是否使用本发明的方案对基带信号进行处理并传输。如果确定单元通过配置信息计算得到不使用VAM矩阵对基带信号进行处理时,通过射频端口传输每路基带信号的功率大于射频通道能够提供的功率,那么可以使用本发明的方案对基带信号进行处理并传输。反之,可以选用现有方案对基带信号进行处理并传输。
本发明实施例第二方面提供的基站,可以用于执行上述第一方面或第一 方面的任意可能的实现方式中的方法。具体地,该基站包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法所需的单元,各单元的有益效果也与第一方面各步骤的有益效果相对应,为避免重复,在此不再详细赘述。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的传输信号的方法的示意性流程图。
图2是本发明一个实施例的四天线的不同端口的导频图案。
图3是本发明另一实施例的传输信号的示意图。
图4是本发明一个实施例的基站的框图。
图5是本发明另一实施例的基站的框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于下列通信***,例如:长期演进(Long Term Evolution,LTE)***和未来无线通信***等。LTE***包括LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)***等。本发明实施例以LTE***为了进行示例性说明。
本发明实施例中的用户设备(User Equipment,UE)可称之为终端(Terminal)、移动台(Mobile Station,MS)或移动终端(Mobile Terminal)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)或具有移动终端的计算机等,例如,用户设备还可以是便携式、袖珍式、 手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
本发明实施例中的基站可以是LTE中的演进型基站(Evolved Node B,eNB),还可以是未来无线通信***中的基站。
图1是本发明一个实施例的传输信号的方法的示意性流程图。
101,基站利用VAM矩阵对第一路基带信号、第二路基带信号、第三路基带信号和第四路基带信号进行处理得到四路处理信号。四路处理信号包括第一路处理信号、第二路处理信号、第三路处理信号和第四路处理信号。第一路处理信号和第三路处理信号相同,第二路处理信号和第四路处理信号相同,第一路处理信号为对第一路基带信号和第三路基带信号进行叠加得到的,第二路处理信号为对第二路基带信号和第四路基带信号进行叠加得到的。
本发明实施例中的基带信号可以为小区参考信号(Cell-Specific Reference Signal,CRS)、在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输的信号、在分组广播控制信道(Packet broadcast Control Channel PBCCH)传输的信号、在物理下行控制信道(Physical Downlink Control Channel PDCCH)传输的信号、在物理混合重传指示信道(Physical Hybrid ARQ Indicator Channel,PHICH)传输的信号、在物理控制格式指示信道(Physical Control Format Indicator Channel PCFICH)传输的信号、主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)等。
在3GPP LTE协议中,Type-A符号表示不含有导频位的符号列中的用于非导频信号的资源单元(Resource Element,RE)符号,Type-B符号表示含有导频位的符号列中的用于发送非导频信号的RE符号。Pa表示Type-A符号发送非导频信号的RE相对发送导频信号的RE的信号功率偏置。例如,Pa=0表示用于发送非导频信号的RE的信号功率与发送导频信号的RE的信号功率相等。Pa=-3表示用于发送非导频信号的RE的信号功率相对用于发送导频信号的RE的信号功率低3dBm。Pb表示Type-A符号与Type-B符号分别传输信号时的功率之比的指示值。例如,Type-A符号与Type-B符号分别传输信号时的功率之比为2时,对应的指示值Pb=3;Type-A符号与Type-B符号分别传输信号时的功率之比为4/3时,对应的指示值Pb=2;Type-A符 号与Type-B符号分别传输信号时的功率之比为1时,对应的指示值Pb=1;Type-A符号与Type-B符号分别传输信号时的功率之比为1.25时,对应的指示值Pb=0。
如果基带信号不经过VAM矩阵处理,那么通过射频通道传输基带信号的信号功率可以由配置信息计算得到,配置信息可以包括带宽、CRS功率、以及Pa和Pb的值。
在基带信号经过一系列处理并向接收端发送之前,即在发射机的前级电路中,调制振荡电路产生的射频信号功率很小,需要经过一系列的功率放大,获得足够的射频功率后,才能馈送到天线上发射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。
在本发明的一个实施例中,可以首先确定使用VAM矩阵对第一路基带信号、第二路基带信号、第三路基带信号和第四路基带信号进行处理。具体地,基站可以根据配置信息和射频通道能够提供的功率确定是否使用VAM矩阵对四路基带信号进行处理。实际设计时,可以增加控制开关,如果通过配置信息计算得到不使用VAM矩阵对基带信号进行处理时,通过射频端口传输每路基带信号的功率大于射频通道能够提供的功率,那么使用现有技术无法正常传输信号,可以使用本发明的方案对基带信号进行处理并传输。反之,可以选用现有方案对基带信号进行处理并传输。
本发明实施例中射频通道能提供的功率,即射频通道能提供的最大输出功率可以小于或者等于射频功放的最大输出功率。例如,时频传输资源可能为单载波,也可以为多载波。当时频资源为单载波时,射频通道能提供的最大输出功率可以等于射频功放的最大输出功率。当时频资源为多载波时,射频功放能为各个射频通道提供的最大输出功率之和可以等于射频功放的最大输出功率,换句话说,多载波时的每个射频通道能提供的最大功率会小于射频功放的最大输出功率。
在本发明的一个实施例中,利用VAM矩阵对基带信号进行处理可以是用4×4的VAM矩阵乘以4路基带信号构成的4×1矩阵,得到4路处理信号构成的4×1矩阵。在本发明的一个实施例中,四路基带信号中的每路基带信号在所有信道上传输时使用的VAM矩阵都相同。
在本发明的一个实施例中,每路基带信号可以表示为对应的不进行VAM处理时的射频通道的信号功率乘以相应的信号序列。四路基带信号可 以构成4×1的矩阵。
在本发明的一个实施例中,对基带信号不进行VAM处理时,通过射频端口传输每路基带信号的功率可能大于不满足发射要求,利用现有方案无法对信号进行传输。这时可以利用本发明的技术方案,对基带信号进行VAM处理使得通过射频端口传输信号时的功率满足发射要求,这样能够保证信号的正常传输。
在本发明的一个实施例中,在步骤101之前,还可以包括:获取第一路基带信号、第二路基带信号、第三路基带信号和第四路基带信号。
102,基站对四路处理信号进行预编码处理得到四路编码信号。
对四路处理信号进行预编码处理可以是对四路处理信号乘以相应的预编码矩阵。预编码矩阵可以是根据预编码矩阵指示(Precoding Matrix Indication,PMI)信息得到使用的码本。
103,基站通过四个射频端口向移动终端发送四路编码信号,其中,四个射频端口与四路编码信号一一对应。
通过四个射频端口向移动终端发送四路编码信号,一个射频端口发送一路编码信号,而每路编码信号是由至少两路基带信号得到的,即每个射频端口发送至少两路基带信号中每路基带信号的一部分,这样将每路基带信号通过至少两个射频端口发送,从而能够实现功率不满足传输要求的基带信号的正常传输。
本发明实施例通过对四路基带信号进行虚拟天线映射处理和预编码处理,并通过每个射频端口向移动终端发送对应的一路编码信号,这样可以不需要在多天线演进时通过降低小区参考信号的功率来保证射频通道传输信号的功率不超标,从而能够提高多天线技术中导频覆盖能力。
现有技术方案在2T升级到4T过程中功率无法翻倍的情况下,可以通过降低CRS来保证射频通道不超过射频功放能力,这样的配置会导致LTE的导频覆盖收缩,从而降低多天线技术中导频覆盖能力。通过本发明的技术方案,在2T升级到4T过程中,可以在确保射频通道不超过射频功放能力的同时保证CRS设置不变,即,多天技术中的覆盖能力不变。换句话说,通过本发明技术方案2T升级到4T时,多天技术中的覆盖能力可以保持不变;通过本发明技术方案的多天线(例如4T)技术相对通过现有方案的多天线(例如4T)技术能够提高中导频覆盖能力。
在本发明的一个实施例中,基站可以为LTE中的eNB,还可以为未来可应用本发明的无线通信***中的基站。
现有方案可以通过修改Pa和Pb的配置使得通过射频端口传输信号时的功率不超过射频功放能力。例如,在带宽为20M,2T升级到4T时,功率相同都为20W无法翻倍的情况下可以保持CRS配置为18.2dBm不变,将2T中的Pa=-3,Pb=1修改为Pa=-6,Pb=3。但是,这样的配置修改导致Type-B符号的功率下降,使得Type-B符号上的控制信号或物理下行共享信道等的功率下降,导致网络性能指标下降。通过本发明实施例可以在2T升级到4T,且保持配置的CRS和Pb的值不变,仍然进行信号的正常传输,在功率不超标时配置可以不变,即保证性能不受影响。
在本发明的一个实施例中,基带信号可以为N路,N可以为大于4的整数,这时VAM矩阵的每一行至少包括两个非0的元素。这样可以将每一路基带信号分到至少通过两个射频端口进行发送。本发明实施例中仅以四路基带信号为例进行示例性说明。
下面结合具体例子更加详细地描述本发明的实施例。应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
图2是本发明一个实施例的四天线的不同端口的导频图案。
在3GPP LTE协议中,Type-A符号表示不含有导频的符号列中的用于发送非导频信号的RE符号,Type-B符号表示含有导频的符号列中的用于发送非导频信号的RE符号。用端口(port)0,port1,port2和port3分别表示四个天线端口(antenna port),图2-1、图2-2、图2-3和图2-4分别表示四天线端口的导频图案。在图2的两个时隙中,一个小方格为一个RE。用黑色小方格表示该RE为导频位,且在所在的基带信号中用于发送导频;带阴影的小方格表示该RE为导频位,但在该路基带信号中不用于发送导频;白色小方格表示该RE用于发送Type-A或Type-B的信号。图2中每个小方格表示一个RE,1个RB包括12个RE,每一列为1个RB。一个小方格的横向表示一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,OFDM符号从0开始依次编号。
在图2中,用黑色方框表示该RE用于发送导频,用阴影部分表示该RE既不发送非导频的信号,也不发送导频,用白色方框表示该RE用于发送非导频 的信号。根据协议,在任一个导频位,四路基带信号中至少有一路信号发送导频,其他路信号既不发送非导频的信号,也不发送导频。
在包括导频位的同一符号,第一路和第二路基带信号可以都不用于发送导频,如图2-1和图2-2的第二列编号为1的OFDM符号。此时第三和第四路基带信号可以在导频位用于发送导频信号,如图2-3和图2-4的第二列编号为1的OFDM符号。另外,在包括导频位的同一符号,第一路和第二路基带信号发送导频的符号的子载波互不相同,且第一路基带信号用于发送导频的符号所在的子载波和第二路基带信号用于发送导频的符号所在的子载波共同构成该符号上所有用于导频位的子载波。例如,如图2-1和图2-2中每个图的第一列共有四个可用于发送导频的导频位RE,图2-1的第一路基带信号中有两个RE发送导频,图2-2的第二路基带信号中也有两个RE发送导频,但这两路基带信号中用于发送导频的RE的位置不重叠。
这样,编号为0的OFDM符号,在图2-1中第一列有2个RE用于发送导频,8个RE用于发送非导频的Type-B信号,2个RE既不发送非导频的信号,也不发送导频。同理,编号为0的OFDM符号,在图2-2中第一列有2个RE用于发送导频,8个RE用于发送非导频的Type-B信号,2个RE既不发送非导频的信号,也不发送导频。这样,在编号为0的OFDM符号上,图2-1和图2-2在不同射频端口传输信号时的功率相同。同理,在编号为0的OFDM符号上,图2-3和图2-4在不同射频端口传输信号时的功率也相同。
下面以4T4R,配置信息中带宽为20M,CRS的功率为18.2dBm,Pa=-6,Pb=1为例举例说明各个符号上1个RB通过不同的射频端口传输不利用VAM矩阵对信号进行处理时的信号功率。CRS的功率配置为18.2dBm即发送导频的一个RE传输信号时的信号功率为18.2dBm,结合Pa=-6,则发送非导频的Type-A信号的一个RE传输信号时的信号功率为12.2dBm。Pb=1,则Type-A和Type-B的符号传输信号时的功率相同,都为12.2dBm。用flow0、flow1、flow2、flow3分别表示四路基带信号。用图2-1通过第一个射频端口在时域上编号为0的符号(即第一个符号)、频域上1个RB(即图2-1中第一列)的资源传输不经过VAM处理的时信号的信号功率为:18.2dBm×2+8×12.2dBm=24.2dBm,考虑到带宽为20M,需要用100个RB,那么用图2-1通过第一个射频端口A、通过第一个符号传输信号的总功率为44.2dBm=26.49W。注意,单位dBm不能直接相加,相加时需要先转换为毫 瓦,相加的结果在转换成W。
同理,图2-1通过第一个射频端口在第二个符号、1个RB的资源传输不经过VAM处理的信号时的信号功率为:8×12.2dBm=21.2dBm,再考虑20M带宽共用100个RB,即100倍的21.2dBm,这样用图2-1通过第一个射频端口A、通过第二个符号传输信号的总功率是41.2dBm,转换单位后为13.28W。
图2-1通过第一个射频端口在第三个符号、1个RB的资源传输不经过VAM处理的信号时的信号功率为:12*12.2dBm=22.99dBm,再考虑20M带宽共用100个RB,即100倍的22.99dBm,这样用图2-1通过第一个射频端口A、通过第三个符号传输信号的总功率是42.99dBm,转换单位后为19.92W
依次类推,带宽20M时,通过第一个射频端口在14个符号上不经过VAM处理的信号时传输信号的总功率分别为:26.49dBm,13.28dBm,19.92dBm,19.92dBm,26.49dBm,19.92dBm,19.92dBm,26.49dBm,13.28dBm,19.92dB m,19.92dBm,26.49dBm,19.92dBm,19.92dBm.其它符号和其它射频端口的计算过程也是一样,对基带信号不进行VAM处理时通过各个符号传输信号时的功率如下表1所示,编号0至13为符号的编号,分别依次为第1、2、3、…14个符号。
表1
功率 0 1 2 3 4 5 6 7 8 9 10 11 12 13
port0 26.49 13.28 19.92 19.92 26.49 19.92 19.92 26.49 13.28 19.92 19.92 26.49 19.92 19.92
Port1 26.49 13.28 19.92 19.92 26.49 19.92 19.92 26.49 13.28 19.92 19.92 26.49 19.92 19.92
Port2 13.28 26.49 19.92 19.92 13.28 19.92 19.92 13.28 26.49 19.92 19.92 13.28 19.92 19.92
Port3 13.28 26.49 19.92 19.92 13.28 19.92 19.92 13.28 26.49 19.92 19.92 13.28 19.92 19.92
如果射频通道能提供的最大输出功率为20W,那么表1中的部分功率超过了射频功放能力。按照现有技术不能直接传输相应的基带信号。通过本发明实施例的VAM处理可以将处理后的功率都小于射频通道能提供的最大输出功率,从而保证信号的正常传输。
图3是本发明另一实施例的传输信号的示意图。图3的方法可以由基站执行。
用port 0、port 1、port 2、port 3分别表示四个天线端口,flow0、flow1、flow2、flow3分别表示四路基带信号,A、B、C、D分别表示通过四个端 口port 0、port 1、port 2、port 3向移动终端发送信号时对应的射频输出信号。
301,获取四路基带信号flow0、flow1、flow2、flow3。
四路基带信号flow0、flow1、flow2、flow3构成4×1的矩阵
Figure PCTCN2016099307-appb-000009
302,用4×4的VAM矩阵乘以四路基带信号构成的4×1的矩阵,得到4×1的矩阵对应的四路处理信号。
VAM矩阵可以是预先配置的,可以根据对四路基带信号的相位旋转确定不同的VAM矩阵。例如,对四路基带信号不旋转时VAM矩阵可以为:
Figure PCTCN2016099307-appb-000010
这时对应的四路处理信号为:
Figure PCTCN2016099307-appb-000011
即,与图3中的A、B、C、D四个射频端口对应的四路处理信号依次为:
Figure PCTCN2016099307-appb-000012
图3的示意图中给出的经过VAM矩阵乘积后的四路VAM处理信号中两路为flow0和flow2的结合,两路为flow1和flow3的结合。应理解,也可以采用其他的VAM矩阵,例如,VAM矩阵为
Figure PCTCN2016099307-appb-000013
时,四路VAM处理信号中两路为flow0和flow3的结合,两路为flow1和flow2的结合。再如,VAM矩阵为
Figure PCTCN2016099307-appb-000014
时,四路VAM处理信号中两路为flow0和flow2的结合,两路为flow1和flow3的结合。
利用上述VAM矩阵得到的VAM处理信号对应的从射频端口输出的功率如下表2所示,可以看出,表2中的功率都小于射频通道能提供的最大输出功 率20W,这样能够保证信号的正常传输。
表2
功率 0 1 2 3 4 5 6 7 8 9 10 11 12 13
port0 19.88 19.88 19.92 19.92 19.88 19.92 19.92 19.88 19.88 19.92 19.92 19.88 19.92 19.92
Port1 19.88 19.88 19.92 19.92 19.88 19.92 19.92 19.88 19.88 19.92 19.92 19.88 19.92 19.92
Port2 19.88 19.88 19.92 19.92 19.88 19.92 19.92 19.88 19.88 19.92 19.92 19.88 19.92 19.92
Port3 19.88 19.88 19.92 19.92 19.88 19.92 19.92 19.88 19.88 19.92 19.92 19.88 19.92 19.92
又如,对四路基带信号的相位旋转45度时,VAM矩阵可以表示为:
Figure PCTCN2016099307-appb-000015
再如,对四路基带信号的相位旋转60度时,VAM矩阵可以表示为:
Figure PCTCN2016099307-appb-000016
再如,对四路基带信号的相位旋转90度时,VAM矩阵可以表示为:
Figure PCTCN2016099307-appb-000017
再如,对四路基带信号的相位旋转30度时,VAM矩阵可以表示为:
Figure PCTCN2016099307-appb-000018
应理解,上述实施例中的VAM矩阵仅仅为了说明进行举例,本发明并不限定VAM矩阵只能是上述给出的具体例子,只要能够满足VAM处理后的每路信号的功率小于射频通道能提供的最大输出功率即可。基带信号的相位旋转也仅以上述不旋转,旋转45度,旋转60度和旋转90度为例进行说明,但不发明并不限定基带信号的旋转角度。
本发明实施例中的VAM矩阵既可以满足传输模式(Transmission Mode,TM)4,也可以满足TM9、TM10,还可以满足时分双工(Time Division  Duplexing,TDD)的TM7、TM8。
303,用4×4的预编码矩阵乘以四路处理信号对应的4×1的矩阵,得到4×1的矩阵对应的四路编码信号。
预编码矩阵可以是预先配置的,且可用的预编码矩阵可以为多个。在实际产品设计时,可以结合预设的VAM矩阵根据预编码处理后的信号功率选择合适的预编码矩阵。
304,通过4个射频端口向移动终端发送4路编码信号,其中,4个射频端口与4路编码信号一一对应。
本发明实施例通过对四路基带信号进行虚拟天线映射处理和预编码处理,并通过四个射频端口向移动终端发送四路编码信号,使射频端口传输的信号的功率不超过射频功放能力,这样可以不需要在多天线演进时通过降低小区参考信号的功率来保证射频通道传输信号的功率不超标,从而能够提高多天线技术中导频覆盖能力。
上文中结合图1至图3,详细描述了根据本发明实施例的传输信号的方法,下面将结合图4和图5描述根据本发明实施例的传输信号的装置,即基站。
图4是本发明一个实施例的基站的框图。图4的基站10包括获取单元11、VAM处理单元12、预编码处理单元13和发送单元14。
虚拟天线映射VAM处理单元11用于利用VAM矩阵对第一路基带信号、第二路基带信号、第三路基带信号和第四路基带信号进行处理,得到四路处理信号,四路处理信号包括第一路处理信号、第二路处理信号、第三路处理信号和第四路处理信号,其中,第一路处理信号和第三路处理信号相同,第二路处理信号和第四路处理信号相同,第一路处理信号为对第一路基带信号和第三路基带信号进行叠加得到的,第二路处理信号为对第二路基带信号和第四路基带信号进行叠加得到的。
预编码处理单元12用于对VAM处理单元得到的四路处理信号进行预编码处理得到四路编码信号。
发送单元13用于通过四个射频端口向移动终端发送预编码处理单元得到的四路编码信号,其中,四个射频端口与四路编码信号一一对应。
本发明实施例通过对四路基带信号进行虚拟天线映射处理和预编码处理,并通过每个射频端口向移动终端发送对应的一路编码信号,这样可以不 需要在多天线演进时通过降低小区参考信号的功率来保证射频通道传输信号的功率不超标,从而能够提高多天线技术中导频覆盖能力。
根据本发明实施例的基站可对应于本发明实施例的传输信号的方法,并且,该基站中的各个单元/模块和上述其他操作和/或功能分别为了实现图1和图3所示方法的相应流程,为了简洁,在此不再赘述。
图5是本发明另一实施例的基站的框图。图5的基站20包括发射机21、处理器22和存储器23。处理器22控制基站20的操作,并可用于处理信号。存储器23可以包括只读存储器和随机存取存储器,并向处理器22提供指令和数据。基站20的各个组件通过总线***24耦合在一起,其中总线***24除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线***24。
上述本发明实施例揭示的方法可以应用于发射机21和处理器22中,或者由发射机21和处理器22实现。在实现过程中,上述方法的各步骤可以通过处理器22中的硬件的集成逻辑电路或者软件形式的指令完成。处理器22可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器23,处理器22读取存储器23中的信息,结合其硬件完成上述方法的步骤。
具体地,处理器22可以利用VAM矩阵对第一路基带信号、第二路基带信号、第三路基带信号和第四路基带信号进行处理得到四路处理信号,并对四路处理信号进行预编码处理得到四路编码信号。其中,四路处理信号包括第一路处理信号、第二路处理信号、第三路处理信号和第四路处理信号,其中,第一路处理信号和第三路处理信号相同,第二路处理信号和第四路处理信号相同,第一路处理信号为对第一路基带信号和第三路基带信号进行叠加得到的,第二路处理信号为对第二路基带信号和第四路基带信号进行叠加得到的。
发射机21可以通过四个射频端口向移动终端发送四路编码信号,其中,四个射频端口与四路编码信号一一对应。
本发明实施例通过对四路基带信号进行虚拟天线映射处理和预编码处理,并通过每个射频端口向移动终端发送对应的一路编码信号,这样可以不需要在多天线演进时通过降低小区参考信号的功率来保证射频通道传输信号的功率不超标,从而能够提高多天线技术中导频覆盖能力。
根据本发明实施例的基站可对应于本发明实施例的传输信号的方法,并且,该基站中的各个单元/模块和上述其他操作和/或功能分别为了实现图1和图3所示方法的相应流程,为了简洁,在此不再赘述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应 过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种传输信号的方法,其特征在于,包括:
    基站利用虚拟天线映射VAM矩阵对第一路基带信号、第二路基带信号、第三路基带信号和第四路基带信号进行处理,得到四路处理信号,所述四路处理信号包括第一路处理信号、第二路处理信号、第三路处理信号和第四路处理信号,其中,所述第一路处理信号和所述第三路处理信号相同,所述第二路处理信号和所述第四路处理信号相同,所述第一路处理信号为对所述第一路基带信号和所述第三路基带信号进行叠加得到的,所述第二路处理信号为对所述第二路基带信号和所述第四路基带信号进行叠加得到的;
    基站对所述四路处理信号进行预编码处理,得到四路编码信号;
    基站通过四个射频端口向移动终端发送所述四路编码信号,其中,所述四个射频端口与所述四路编码信号一一对应。
  2. 如权利要求1所述的方法,其特征在于,所述VAM矩阵为:
    Figure PCTCN2016099307-appb-100001
  3. 如权利要求1所述的方法,其特征在于,所述VAM矩阵为下列矩阵中的任一个:
    Figure PCTCN2016099307-appb-100002
    Figure PCTCN2016099307-appb-100003
  4. 如权利要求1-3中任一项所述的方法,其特征在于,所述基站为长期演进LTE中的演进型基站eNB。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述基站根据配置信息和射频通道能够提供的功率确定使用所述VAM矩阵对所述第一路基带信号、所述第二路基带信号、所述第三路基带信号和所述第四路基带信号进行处理。
  6. 一种基站,其特征在于,包括:
    虚拟天线映射VAM处理单元,用于利用VAM矩阵对第一路基带信号、第二路基带信号、第三路基带信号和第四路基带信号进行处理,得到四路处理信号,所述四路处理信号包括第一路处理信号、第二路处理信号、第三路处理信号和第四路处理信号,其中,所述第一路处理信号和所述第三路处理信号相同,所述第二路处理信号和所述第四路处理信号相同,所述第一路处理信号为对所述第一路基带信号和所述第三路基带信号进行叠加得到的,所述第二路处理信号为对所述第二路基带信号和所述第四路基带信号进行叠加得到的;
    预编码处理单元,用于对所述VAM处理单元得到的所述四路处理信号进行预编码处理,得到四路编码信号;
    发送单元,用于通过四个射频端口向移动终端发送所述预编码处理单元得到的所述四路编码信号,其中,所述四个射频端口与所述四路编码信号一一对应。
  7. 如权利要求6所述的基站,其特征在于,所述VAM矩阵为:
    Figure PCTCN2016099307-appb-100004
  8. 如权利要求6所述的基站,其特征在于,所述VAM矩阵为下列矩阵中的任一个:
    Figure PCTCN2016099307-appb-100005
    Figure PCTCN2016099307-appb-100006
  9. 如权利要求6-8中任一项所述的基站,其特征在于,所述基站为长期演进LTE中的演进型基站eNB。
  10. 如权利要求6-9中任一项所述的基站,其特征在于,所述基站包括:
    确定单元,用于根据配置信息和射频通道能够提供的功率确定使用所述VAM矩阵对所述第一路基带信号、所述第二路基带信号、所述第三路基带信号和所述第四路基带信号进行处理。
PCT/CN2016/099307 2016-09-19 2016-09-19 传输信号的方法和基站 WO2018049673A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2016/099307 WO2018049673A1 (zh) 2016-09-19 2016-09-19 传输信号的方法和基站
KR1020197010574A KR102232041B1 (ko) 2016-09-19 2016-09-19 신호 전송 방법 및 기지국
JP2019515326A JP6808026B2 (ja) 2016-09-19 2016-09-19 信号伝送方法および基地局
CN201680088955.4A CN109644032B (zh) 2016-09-19 2016-09-19 传输信号的方法和基站
EP16916053.8A EP3506523A4 (en) 2016-09-19 2016-09-19 SIGNAL TRANSMISSION METHOD, AND BASE STATION
US16/358,301 US10897289B2 (en) 2016-09-19 2019-03-19 Signal transmission method and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099307 WO2018049673A1 (zh) 2016-09-19 2016-09-19 传输信号的方法和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/358,301 Continuation US10897289B2 (en) 2016-09-19 2019-03-19 Signal transmission method and base station

Publications (1)

Publication Number Publication Date
WO2018049673A1 true WO2018049673A1 (zh) 2018-03-22

Family

ID=61619843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099307 WO2018049673A1 (zh) 2016-09-19 2016-09-19 传输信号的方法和基站

Country Status (6)

Country Link
US (1) US10897289B2 (zh)
EP (1) EP3506523A4 (zh)
JP (1) JP6808026B2 (zh)
KR (1) KR102232041B1 (zh)
CN (1) CN109644032B (zh)
WO (1) WO2018049673A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391128A (zh) * 2012-05-07 2013-11-13 华为技术有限公司 一种虚拟天线映射方法及装置
CN104170478A (zh) * 2013-03-20 2014-11-26 华为技术有限公司 混合组网中数据的发送方法、装置和***
US9065515B2 (en) * 2010-10-04 2015-06-23 Vodafone Ip Licensing Limited Method and system for enhanced transmission in mobile communication networks
US20160149619A1 (en) * 2014-11-11 2016-05-26 Electronics And Telecommunications Research Institute Method and apparatus for mapping virtual antenna to physical antenna

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8780771B2 (en) * 2007-02-06 2014-07-15 Qualcomm Incorporated Cyclic delay diversity and precoding for wireless communication
KR20100099038A (ko) * 2009-03-02 2010-09-10 엘지전자 주식회사 4 안테나 시스템에서 상향링크 프리코딩 수행 방법
US10218481B2 (en) * 2009-04-22 2019-02-26 Lg Electronics Inc. Apparatus and method for transmitting a reference signal in a wireless communication system
CN101854712A (zh) * 2010-06-18 2010-10-06 华为技术有限公司 天线间功率平衡方法及装置、基站
CN103891152B (zh) * 2011-08-19 2016-04-27 昆特尔科技有限公司 用于提供垂直平面空间波束成形的方法和装置
TWI617148B (zh) * 2012-09-28 2018-03-01 內數位專利控股公司 用於報告回饋的無線發射/接收單元及方法
CN103718475B (zh) * 2013-09-18 2017-04-26 华为技术有限公司 多入多出信号处理方法、装置和基站
US9608707B2 (en) * 2014-05-07 2017-03-28 Qualcomm Incorporated Hybrid virtual antenna mapping for multiple-input multiple-output system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9065515B2 (en) * 2010-10-04 2015-06-23 Vodafone Ip Licensing Limited Method and system for enhanced transmission in mobile communication networks
CN103391128A (zh) * 2012-05-07 2013-11-13 华为技术有限公司 一种虚拟天线映射方法及装置
CN104170478A (zh) * 2013-03-20 2014-11-26 华为技术有限公司 混合组网中数据的发送方法、装置和***
US20160149619A1 (en) * 2014-11-11 2016-05-26 Electronics And Telecommunications Research Institute Method and apparatus for mapping virtual antenna to physical antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3506523A4 *

Also Published As

Publication number Publication date
CN109644032B (zh) 2021-02-05
EP3506523A1 (en) 2019-07-03
US10897289B2 (en) 2021-01-19
US20190215042A1 (en) 2019-07-11
CN109644032A (zh) 2019-04-16
JP6808026B2 (ja) 2021-01-06
JP2019530340A (ja) 2019-10-17
KR20190053896A (ko) 2019-05-20
KR102232041B1 (ko) 2021-03-24
EP3506523A4 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
EP3627941B1 (en) Random access method, terminal and network device
WO2019137057A1 (zh) 资源指示方法、终端设备和网络设备
WO2019136723A1 (zh) 上行数据传输方法及相关设备
WO2019127199A1 (zh) 用于上行数据传输的方法和终端设备
US9647808B2 (en) Bandwidth in wireless communications
WO2018113618A1 (zh) 参考信号的发送和接收方法,接入网设备和终端设备
CN111867038B (zh) 一种通信方法及装置
WO2019214559A1 (zh) 通信的方法和通信装置
EP3565155B1 (en) Data transmission method and apparatus
US10912036B2 (en) Downlink transmission method, base station, and terminal device
JP2021503210A (ja) リソース構成方法、端末装置及びネットワーク装置
CN109565364B (zh) 空间复用mimo通信中的信号处理
WO2019137299A1 (zh) 通信的方法和通信设备
US20230345465A1 (en) Repetition Indication for Physical Uplink Control Channel Enhancement
WO2017173961A1 (zh) 一种确定dmrs的端口映射的方法、基站和终端
EP4190076A1 (en) Method and apparatus for downlink transmission in physical downlink control channel
WO2018049673A1 (zh) 传输信号的方法和基站
EP3840281A1 (en) Communication method and apparatus
WO2018137516A1 (en) Method and apparatus for transmitting signals
KR102249124B1 (ko) 신호 송신 방법 및 기지국
WO2024093267A1 (en) Control resource set transimission
WO2022206271A1 (zh) 一种确定资源的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016916053

Country of ref document: EP

Effective date: 20190325

ENP Entry into the national phase

Ref document number: 20197010574

Country of ref document: KR

Kind code of ref document: A