WO2019136723A1 - 上行数据传输方法及相关设备 - Google Patents

上行数据传输方法及相关设备 Download PDF

Info

Publication number
WO2019136723A1
WO2019136723A1 PCT/CN2018/072501 CN2018072501W WO2019136723A1 WO 2019136723 A1 WO2019136723 A1 WO 2019136723A1 CN 2018072501 W CN2018072501 W CN 2018072501W WO 2019136723 A1 WO2019136723 A1 WO 2019136723A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
user equipment
uplink
dmrs
transmission parameter
Prior art date
Application number
PCT/CN2018/072501
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP21194428.5A priority Critical patent/EP3961961A1/en
Priority to JP2019567277A priority patent/JP2021516459A/ja
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CA3064481A priority patent/CA3064481C/en
Priority to SG11201911387RA priority patent/SG11201911387RA/en
Priority to RU2019144140A priority patent/RU2761404C1/ru
Priority to CN201911296718.9A priority patent/CN110913490B/zh
Priority to EP18899475.0A priority patent/EP3618542A4/en
Priority to BR112020000312-3A priority patent/BR112020000312A2/pt
Priority to AU2018401513A priority patent/AU2018401513A1/en
Priority to KR1020197036105A priority patent/KR20200108237A/ko
Priority to PCT/CN2018/072501 priority patent/WO2019136723A1/zh
Priority to CN201880005464.8A priority patent/CN110268773A/zh
Publication of WO2019136723A1 publication Critical patent/WO2019136723A1/zh
Priority to US16/703,627 priority patent/US20200106591A1/en
Priority to IL271338A priority patent/IL271338A/en
Priority to PH12019502856A priority patent/PH12019502856A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an uplink data transmission method and related devices.
  • one carrier can contain multiple bandwidth parts (BWP).
  • BWP bandwidth parts
  • DCI Downlink Control Information
  • Which BWP is currently activated by the user equipment is indicated by Downlink Control Information (DCI), and the BWP used by the user equipment transmission can be dynamically switched in multiple BWPs within one carrier.
  • DCI Downlink Control Information
  • PUSCH physical uplink shared channel
  • the embodiment of the present application provides an uplink data transmission method and related equipment, which are used to improve flexibility of transmitting a PUSCH.
  • an uplink data transmission method including:
  • the user equipment determines an uplink BWP for transmitting the PUSCH
  • the user equipment transmits the PUSCH on the uplink BWP according to the PUSCH transmission parameter.
  • an embodiment of the present application provides a user equipment, including a processing unit and a communication unit, where:
  • the processing unit is configured to determine an uplink BWP for transmitting a PUSCH
  • the processing unit is further configured to determine a PUSCH transmission parameter corresponding to the uplink BWP;
  • the processing unit is further configured to transmit the PUSCH on the uplink BWP by using the communication unit according to the PUSCH transmission parameter.
  • an embodiment of the present application provides a user equipment, including one or more processors, one or more memories, one or more transceivers, and one or more programs, where the one or more programs are Stored in the memory and configured to be executed by the one or more processors, the program comprising instructions for performing the steps in the method of the first aspect.
  • an embodiment of the present application provides a computer readable storage medium storing a computer program for electronic data exchange, wherein the computer program causes a computer to perform the portion described by the method of the first aspect or All steps.
  • an embodiment of the present application provides a computer program product, where the computer program product includes a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform the first aspect Some or all of the steps described in the method described.
  • the computer program product can be a software installation package.
  • the network device can separately configure a set of PUSCH transmission parameters for each BWP of the user equipment; and then, when the user equipment is dynamically switched to a BWP to transmit the PUSCH, the user equipment may The PUSCH transmission parameter corresponding to the certain BWP is used as the PUSCH transmission parameter used for the PUSCH transmission. Finally, the user equipment transmits the PUSCH on the certain BWP based on the PUSCH transmission parameter corresponding to the certain BWP. In this way, different PUSCH transmission parameters can be adopted for transmitting the PUSCH on different BWPs, thereby improving the flexibility of transmitting the PUSCH.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a user equipment according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an uplink data transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another user equipment according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another user equipment according to an embodiment of the present application.
  • FIG. 1 shows a wireless communication system to which the present application relates.
  • the wireless communication system is not limited to a Long Term Evolution (LTE) system, and may be a fifth-generation mobile communication (the 5th Generation, 5G) system, a new air interface (NR) system, and machine-to-machine communication ( Machine to Machine, M2M) system, etc.
  • LTE Long Term Evolution
  • 5G fifth-generation mobile communication
  • NR new air interface
  • M2M machine-to-machine communication
  • wireless communication system 100 can include one or more network devices 101 and one or more user devices 102. among them:
  • the network device 101 may be a base station, and the base station may be used to communicate with one or more user equipments, or may be used to communicate with one or more base stations having partial user equipment functions (such as a macro base station and a micro base station, such as access). Point, communication between).
  • the base station may be a Base Transceiver Station (BTS) in a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system, or may be an evolved base station in an LTE system (Evolutional Node B). , eNB), and base stations in 5G systems, new air interface (NR) systems.
  • the base station may also be an Access Point (AP), a TransNode (Trans TRP), a Central Unit (CU), or other network entity, and may include some or all of the functions of the above network entities. .
  • User equipment 102 may be distributed throughout wireless communication system 100, either stationary or mobile.
  • terminal 102 may be a mobile device, a mobile station, a mobile unit, an M2M terminal, a wireless unit, a remote unit, a user agent, a mobile client, and the like.
  • network device 101 can be used to communicate with user device 102 over wireless interface 103 under the control of a network device controller (not shown).
  • the network device controller may be part of the core network or may be integrated into the network device 101.
  • the network device 101 and the network device 101 can also communicate with each other directly or indirectly via a blackhaul interface 104 (such as an X2 interface).
  • one carrier can contain multiple BWPs.
  • For a user equipment 102 only one upstream BWP can be activated for uplink transmission at a time. Only one downstream BWP can be activated for downlink transmission at a time.
  • Which BWP is currently activated by the user equipment 102 is indicated by the network device 101 through the DCI, and the BWP used by the user equipment 102 to transmit is dynamically switchable among a plurality of BWPs within one carrier. If the PUSCH transmission can be dynamically switched on multiple BWPs, how to transmit the parameter configuration of the PUSCH is a technical problem to be solved.
  • the network device 101 can separately configure a set of PUSCH transmission parameters for each BWP of the user equipment 102; then, in the case that the user equipment 102 is dynamically switched to transmit a PUSCH on a BWP, the user equipment The PUSCH transmission parameter corresponding to the certain BWP may be used as the PUSCH transmission parameter used for PUSCH transmission. Finally, the user equipment 102 transmits the PUSCH on the certain BWP based on the PUSCH transmission parameter corresponding to the certain BWP. In this way, different PUSCH transmission parameters can be adopted for transmitting the PUSCH on different BWPs, thereby improving the flexibility of transmitting the PUSCH.
  • the wireless communication system 100 shown in FIG. 1 is only for the purpose of more clearly explaining the technical solutions of the present application, and does not constitute a limitation of the present application.
  • Those skilled in the art may know that with the evolution of the network architecture and new services, The appearance of the scenario, the technical solution provided by the present application is equally applicable to similar technical problems.
  • user equipment 200 can include: one or more user equipment processors 201, memory 202, communication interface 203, receiver 205, transmitter 206, coupler 207, antenna 208, user interface 202, and inputs.
  • the output module (including the audio input and output module 210, the key input module 211, the display 212, and the like). These components can be connected by bus 204 or other means, and FIG. 2 is exemplified by a bus connection. among them:
  • Communication interface 203 can be used for user equipment 200 to communicate with other communication devices, such as network devices.
  • the network device may be the network device 300 shown in FIG. 3.
  • the communication interface 203 may be a Long Term Evolution (LTE) (4G) communication interface, or may be a 5G or a future communication interface of a new air interface.
  • LTE Long Term Evolution
  • 5G Fifth Generation
  • the user equipment 200 may also be configured with a wired communication interface 203, such as a Local Access Network (LAN) interface.
  • LAN Local Access Network
  • Transmitter 206 can be used to perform transmission processing, such as signal modulation, on signals output by user equipment processor 201.
  • Receiver 205 can be used to perform reception processing, such as signal demodulation, on the mobile communication signals received by antenna 208.
  • transmitter 206 and receiver 205 can be viewed as a wireless modem. In the user equipment 200, the number of the transmitter 206 and the receiver 205 may each be one or more.
  • the antenna 208 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the coupler 207 is configured to divide the mobile communication signal received by the antenna 308 into multiple channels and distribute it to a plurality of receivers 205.
  • the user equipment 200 may also include other communication components such as a GPS module, a Bluetooth module, a Wireless Fidelity (Wi-Fi) module, and the like. Without being limited to the wireless communication signals described above, the user equipment 200 may also support other wireless communication signals, such as satellite signals, short wave signals, and the like. Not limited to wireless communication, the user equipment 200 may also be configured with a wired network interface (such as a LAN interface) to support wired communication.
  • a wired network interface such as a LAN interface
  • the input and output module can be used to implement interaction between the household device 200 and the user/external environment, and can mainly include an audio input and output module 210, a key input module 211, a display 212, and the like. Specifically, the input and output module may further include: a camera, a touch screen, a sensor, and the like. The input and output modules communicate with the user equipment processor 201 through the user interface 209.
  • Memory 202 is coupled to terminal processor 201 for storing various software programs and/or sets of instructions.
  • memory 202 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 202 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 202 can also store a network communication program that can be used to communicate with one or more additional devices, one or more user devices, one or more network devices.
  • the memory 202 can also store a user interface program, which can realistically display the content of the application through a graphical operation interface, and receive user control operations on the application through input controls such as menus, dialog boxes, and keys. .
  • the memory 202 can be used to store an implementation program of the uplink data transmission method provided by one or more embodiments of the present application on the user equipment 200 side.
  • the uplink data transmission method provided by one or more embodiments of the present application please refer to the following method embodiments.
  • user device processor 201 is operable to read and execute computer readable instructions.
  • the user equipment processor 201 can be used to invoke a program stored in the memory 212, such as an implementation program of the uplink data transmission method provided by one or more embodiments of the present application on the user equipment 200 side, and execute the program instruction.
  • the user equipment 200 can be implemented as a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, a user agent, a mobile client, and the like.
  • the user equipment 200 shown in FIG. 2 is only one implementation of the embodiment of the present application. In an actual application, the user equipment 200 may further include more or fewer components, which are not limited herein.
  • FIG. 3 illustrates a network device 300 provided by some embodiments of the present application.
  • network device 300 can include one or more network device processors 301, memory 302, communication interface 303, transmitter 305, receiver 306, coupler 307, and antenna 308. These components can be connected via bus 304 or other types, and FIG. 4 is exemplified by a bus connection. among them:
  • Communication interface 303 can be used by network device 300 to communicate with other communication devices, such as user devices or other network devices.
  • the user equipment may be the user equipment 200 shown in FIG. 2.
  • the communication interface 303 may be a Long Term Evolution (LTE) (4G) communication interface, or may be a 5G or a future communication interface of a new air interface.
  • LTE Long Term Evolution
  • the network device 300 may also be configured with a wired communication interface 303 to support wired communication.
  • the backhaul link between one network device 300 and other network devices 300 may be a wired communication connection.
  • Transmitter 305 can be used to perform transmission processing, such as signal modulation, on signals output by network device processor 301.
  • Receiver 306 can be used to perform reception processing on the mobile communication signals received by antenna 308. For example, signal demodulation.
  • transmitter 305 and receiver 306 can be viewed as a wireless modem. In the network device 300, the number of the transmitter 305 and the receiver 306 may each be one or more.
  • the antenna 308 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • Coupler 307 can be used to divide the mobile pass signal into multiple channels and distribute it to multiple receivers 306.
  • Memory 302 is coupled to network device processor 301 for storing various software programs and/or sets of instructions.
  • memory 302 may include high speed random access memory, and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 302 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as uCOS, VxWorks, or RTLinux.
  • the memory 402 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the network device processor 301 can be used to perform wireless channel management, implement call and communication link establishment and teardown, and provide cell handover control and the like for users in the control area.
  • the network device processor 301 may include: an Administration Module/Communication Module (AM/CM) (a center for voice exchange and information exchange), and a Basic Module (BM). Complete call processing, signaling processing, radio resource management, radio link management and circuit maintenance functions, Transcoder and SubMultiplexer (TCSM) (for multiplexing demultiplexing and code conversion) Function) and so on.
  • AM/CM Administration Module/Communication Module
  • BM Basic Module
  • TCSM Transcoder and SubMultiplexer
  • the memory 302 can be used to store an implementation program of the uplink data transmission method provided by one or more embodiments of the present application on the network device 300 side.
  • the uplink data transmission method provided by one or more embodiments of the present application please refer to the following method embodiments.
  • the network device processor 301 can be used to read and execute computer readable instructions. Specifically, the network device processor 301 can be used to invoke a program stored in the memory 302, for example, an implementation of the uplink data transmission method provided by one or more embodiments of the present application on the network device 300 side, and execute the program instruction.
  • the network device 300 can be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), an extended service set (ESS), a NodeB, an eNodeB, an access point or a TRP, and the like.
  • BSS basic service set
  • ESS extended service set
  • NodeB NodeB
  • eNodeB an access point or a TRP, and the like.
  • the network device 300 shown in FIG. 3 is only one implementation of the embodiment of the present application. In actual applications, the network device 300 may further include more or fewer components, which are not limited herein.
  • the embodiment of the present application provides an uplink data transmission method.
  • FIG. 4 is a schematic flowchart of an uplink data transmission method according to an embodiment of the present application, including the following steps:
  • Step 401 The user equipment determines an uplink BWP for transmitting the PUSCH.
  • the foregoing step 401 is performed.
  • step 401 the specific implementation manner of the foregoing step 401 is:
  • the user equipment determines an uplink BWP for transmitting the foregoing PUSCH according to the BWP indication information, and the DCI for scheduling the PUSCH transmission includes the foregoing BWP indication information.
  • the network device first pre-configures the multiple BWPs to the user equipment by using the high-layer signaling, and then indicates, by using the BWP indication information in the DCI, that one of the multiple BWPs is used to transmit the PUSCH.
  • the high layer signaling may include Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, and the like.
  • the network device first configures the BWP and the bandwidth corresponding to the four BWPs in advance by the RRC signaling, and then the network device passes the DCI, where the DCI includes 2-bit BWP indication information, and the 2 bits.
  • the BWP indication information is used to indicate a BWP in which the PUSCH is transmitted. For example, if the 4 BWPs are BWP1, BWP2, BWP3, and BWP4, if the 2 bits of the BWP indication information is 00, then the current BWP for transmitting the PUSCH is BWP1, and if the 2 bits of the BWP indication information Is 11, then the current BWP currently used to transmit the PUSCH is BWP4, and so on.
  • the DCI can be used simultaneously to trigger an aperiodic SRS transmission on the activated uplink BWP.
  • Step 402 The user equipment determines a PUSCH transmission parameter corresponding to the uplink BWP.
  • the method further includes:
  • the user equipment determines, according to the high layer signaling, a PUSCH transmission parameter corresponding to the uplink BWP.
  • the high layer information may include RRC signaling, MAC signaling, and the like.
  • the network device first configures the bandwidth corresponding to the four BWPs to the user equipment in advance through a high-level signaling, and then configures the corresponding PUSCH transmission parameters for the four BWPs through another high-layer signaling.
  • the network device configures, in advance, the bandwidth corresponding to the four BWPs by the user equipment and the corresponding PUSCH transmission parameters for the four BWPs.
  • the four BWPs are BWP1, BWP2, BWP3, and BWP4. It is assumed that the network device configures the PUSCH transmission parameter for the BWP1 through the high layer signaling, the network device allocates the PUSCH transmission parameter to the BWP2, and the network device configures the PUSCH transmission parameter for the BWP3. 3. The network device configures the PUSCH transmission parameter 4 for the BWP4. If the uplink BWP for transmitting the foregoing PUSCH is the BWP1, the user equipment can obtain the PUSCH transmission parameter corresponding to the BWP1 as the PUSCH transmission parameter 1 according to the higher layer signaling, and so on.
  • Step 403 The user equipment transmits the PUSCH on the uplink BWP according to the PUSCH transmission parameter to perform uplink data transmission.
  • the foregoing PUSCH transmission parameter includes at least one of the following: an uplink transmission mode, a codebook subset constraint configuration, an uplink maximum transmission layer number, a frequency selective precoding configuration, and a demodulation reference signal (Demodulation Reference) Signal, DMRS) configuration.
  • the uplink transmission manner includes a codebook based transmission and/or a non-codebook based transmission.
  • the codebook subset constraint is configured to indicate, from the agreed codebook, a codebook subset that is available to the PUSCH.
  • the uplink maximum transmission layer number is used to determine a Rank and/or an available precoding matrix available for the PUSCH.
  • the frequency selective precoding configuration includes indication information indicating whether frequency selective precoding is allowed, and/or a subband size or number configuration used for frequency selective precoding.
  • the DMRS configuration is used to indicate parameter configuration of a DMRS of the PUSCH.
  • the DMRS of the PUSCH refers to a DMRS used to perform demodulation of the PUSCH.
  • the foregoing DMRS configuration includes at least one of the following: a DMRS type configuration, a DMRS time-frequency resource configuration, a DMRS sequence configuration, and a DMRS frequency hopping configuration.
  • the DMRS type configuration may be type 1 or type 2, and different types of DMRSs may use different time domain, frequency domain, or code domain resources.
  • the DMRS time-frequency resource configuration includes a DMRS symbol configuration, for example, an additional DMRS configuration or a comb configuration.
  • the DMRS sequence configuration includes a configuration such as a scrambling ID of the DMRS.
  • the DMRS frequency hopping configuration includes a configuration of group hopping or sequence hopping.
  • the specific implementation manner that the user equipment transmits the PUSCH on the uplink BWP according to the foregoing PUSCH transmission parameter is:
  • the user equipment transmits the PUSCH on the uplink BWP according to the PUSCH transmission parameter and the scheduling information included in the DCI for scheduling the PUSCH.
  • the scheduling information included in the DCI includes at least one of the following: a Transmitted Precoding Matrix Indicator (TPMI) information, a Transmitted Rank Indication (TRI) information, and a Precoding Matrix Indicator (Precoding Matrix Indicator).
  • TPMI Transmitted Precoding Matrix Indicator
  • TRI Transmitted Rank Indication
  • Precoding Matrix Indicator Precoding Matrix Indicator
  • PMI SRS resource indication
  • SRI SRS resource indication
  • DMRS port indication information DMRS scrambling sequence ID indication information.
  • the foregoing PUSCH transmission parameter includes an uplink transmission mode
  • the specific implementation manner of the user equipment transmitting the PUSCH on the uplink BWP according to the PUSCH transmission parameter and the scheduling information included in the DCI is:
  • the user equipment transmits the PUSCH on the uplink BWP according to the determined TRI information and the TPMI.
  • the uplink transmission mode is a codebook-based transmission, indicating that the DCI includes TRI information and TPMI information
  • the user equipment needs to determine the number of transmission layers of the PUSCH and the precoding used according to the TRI information and the TPMI information.
  • the matrix then transmits the PUSCH on the uplink BWP according to the determined number of transmission layers and the precoding matrix used.
  • the user equipment needs to determine the number of transmission layers of the PUSCH and the pre-use used according to the SRI indication information in the DCI. Encoding the matrix, and then transmitting the PUSCH on the uplink BWP according to the determined number of transmission layers and the precoding matrix used.
  • the PUSCH transmission parameter includes a codebook subset constraint configuration
  • the user equipment transmits the PUSCH on the uplink BWP according to the foregoing PUSCH transmission parameter and the scheduling information included in the DCI.
  • the user equipment transmits the PUSCH on the uplink BWP according to the determined precoding matrix.
  • the agreed codebook can obtain three codebook subsets, such as codebook subset 1, codebook subset 2, and codebook subset 3, which correspond to full correlation, partial correlation, and non-correlation, respectively.
  • UE antenna related capabilities If the codebook subset constraint configuration indicates codebook subset 1, then the user equipment determines codebook subset 1 as the target codebook subset. It is assumed that the target codebook subset includes four precoding matrices, and the four precoding matrices have a precoding matrix 1, a precoding matrix 2, a precoding matrix 3, and a precoding matrix 4. If the PMI information indicates the precoding matrix 4, the user equipment determines the precoding matrix 4 as the precoding matrix used to transmit the PUSCH. Finally, the user equipment transmits the PUSCH on the uplink BWP according to the precoding matrix 4.
  • the PUSCH transmission parameter includes an uplink maximum transmission layer
  • the user equipment transmits the PUSCH on the uplink BWP according to the foregoing PUSCH transmission parameter and the scheduling information included in the DCI.
  • the user equipment determines, according to the uplink maximum transmission layer number and the TRI information included in the DCI, the number of transmission layers used for transmitting the PUSCH; or, the user equipment determines, according to the uplink maximum transmission layer number and the SRI information included in the DCI.
  • the user equipment transmits the PUSCH on the uplink BWP according to the determined number of the transmission layers.
  • the PUSCH transmission parameter includes a frequency selective precoding configuration
  • the user equipment transmits the PUSCH on the uplink BWP according to the PUSCH transmission parameter and the scheduling information included in the DCI.
  • the user equipment transmits the PUSCH on the uplink BWP according to the determined precoding matrix.
  • the frequency selective precoding configuration includes indication information indicating whether frequency selective precoding is allowed, and indicates that the user equipment determines, according to the indication information of whether the frequency selective precoding is allowed, whether the PMI information included in the DCI is used for indication.
  • the bandwidth PMI is also a subband PMI; the user equipment determines a precoding matrix from the agreed codebook according to the broadband PMI or the subband PMI included in the PMI indication information, and the determined precoding matrix is used to transmit the PUSCH on the uplink BWP.
  • the terminal determines that the PMI information included in the DCI is used to indicate a subband PMI; if the indication information indicates that frequency selective precoding is not allowed, the terminal determines The PMI information included in the above DCI is used to indicate the wideband PMI.
  • the frequency selective precoding configuration includes a subband size or quantity configuration used for frequency selective precoding, and indicates a subband size or quantity configuration used by the user equipment according to the frequency selective precoding to determine a PMI information included in the DCI. Instructed subband PMI; the user equipment determines a precoding matrix on each subband from the agreed codebook according to the subband PMI, and the determined precoding matrix on each subband is used to transmit the precoding matrix on the uplink BWP. PUSCH.
  • the PUSCH transmission parameter includes indication information about whether frequency selective precoding is allowed, and the user equipment transmits the PUSCH on the uplink BWP according to the PUSCH transmission parameter and the scheduling information included in the DCI.
  • the specific implementation methods are:
  • the user equipment transmits the PUSCH on the uplink BWP according to the determined result.
  • the user equipment determines whether it is required to be in the PUSCH according to the indication information of whether the frequency selective precoding is allowed.
  • the data is frequency selective precoded.
  • the user equipment transmits the PUSCH on the uplink BWP based on the determined result, for example, the result of the determination is that the data in the PUSCH needs to be frequency-selectively pre-coded, and then the user equipment first transmits the PUSCH before transmitting the PUSCH.
  • the data in the PUSCH is frequency selective precoded, then the PUSCH is transmitted, and so on.
  • the result of the determination is that the data in the PUSCH does not need to be frequency-selectively pre-coded, and then the user equipment performs broadband pre-coding on the data in the PUSCH before transmitting the PUSCH, and then transmits the PUSCH. And so on
  • the user equipment determines that frequency selective precoding of the data in the PUSCH is not required, as long as the data in the PUSCH is broadband. Precoding and then transmitting the PUSCH.
  • the PUSCH transmission parameter includes a DMRS configuration
  • the specific implementation manner of the user equipment transmitting the PUSCH on the uplink BWP according to the PUSCH transmission parameter and the scheduling information included in the DCI is:
  • the user equipment determines the physical resource occupied by the DMRS according to the DMRS configuration and the DMRS port indication information included in the DCI, and the user equipment transmits the DMRS of the PUSCH on the uplink BWP according to the determined physical resource.
  • the foregoing DMRS configuration includes a DMRS type configuration, and the specific implementation manner of determining, by the user equipment, the physical resources occupied by the DMRS according to the foregoing DMRS configuration and the DMRS port indication information included in the DCI is:
  • the user equipment determines the DMRS type according to the DMRS type configuration, and the user equipment determines the antenna port used by the DMRS and the occupied physical resource according to the DMRS indication information mapping table corresponding to the DMRS type and the DMRS port indication information.
  • the foregoing DMRS configuration includes a time-frequency resource configuration
  • the specific implementation manners for the user equipment to determine the physical resources occupied by the DMRS according to the foregoing DMRS configuration and the DMRS port indication information included in the DCI are:
  • the user equipment determines the maximum number of DMRS symbols according to the time-frequency resource configuration.
  • the user equipment determines the antenna port used by the DMRS and the occupied physical resources according to the DMRS indication information mapping table corresponding to the maximum number of DMRS symbols and the DMRS port indication information.
  • the PUSCH transmission parameter includes a DMRS sequence configuration
  • the specific implementation manner of the user equipment transmitting the PUSCH on the uplink BWP according to the PUSCH transmission parameter and the scheduling information included in the DCI is:
  • the user equipment transmits the DMRS of the PUSCH on the uplink BWP according to the determined sequence.
  • the foregoing DMRS sequence configuration includes two candidate scrambling sequence IDs, where the DCI includes 1-bit scrambling sequence ID indication information, and the 1-bit scrambling sequence ID indication information is used for adding from the two candidates.
  • a scrambling sequence ID is determined in the scrambling sequence ID for generating a DMRS sequence.
  • the foregoing PUSCH transmission parameter includes an uplink transmission mode
  • the specific implementation manner of the user equipment transmitting the PUSCH on the uplink BWP according to the PUSCH transmission parameter and the scheduling information included in the DCI is:
  • the user equipment transmits the PUSCH on the uplink BWP according to the determined beam or the precoding matrix.
  • the uplink transmission mode is a codebook-based transmission
  • the SRI information included in the DCI is used to indicate one SRS resource in a pre-configured SRS resource set, and the user equipment transmits the SRS resource on the SRS resource.
  • the used transmit beam is used as a transmit beam used for transmitting the PUSCH, and then the PUSCH is transmitted on the uplink BWP according to the determined transmit beam.
  • the SRI information included in the DCI is used to indicate one or more SRS resources in a pre-configured SRS resource set, and the user equipment is in the one or more SRSs. Transmitting a transmit beam and/or a precoding matrix used by the SRS as a transmit beam and/or a precoding matrix used for transmitting the PUSCH, and then on the uplink BWP according to the determined transmit beam and/or precoding matrix Transmitting the PUSCH.
  • the PUSCH transmission parameter includes a frequency selective precoding configuration
  • the specific implementation manner of the user equipment transmitting the PUSCH on the uplink BWP according to the PUSCH transmission parameter is:
  • the user equipment determines, according to the frequency selective precoding configuration, whether to perform frequency selective precoding on the data in the PUSCH, and the user equipment transmits the PUSCH on the uplink BWP according to the determined result.
  • the PUSCH transmission parameter includes a DMRS configuration
  • the specific implementation manner of the user equipment transmitting the PUSCH on the uplink BWP according to the PUSCH transmission parameter is:
  • the user equipment determines, according to the foregoing DMRS configuration, a physical resource occupied by the DMRS and/or a sequence used by the DMRS, and transmits the DMRS of the PUSCH on the uplink BWP according to the determined physical resource and/or the sequence adopted by the DMRS. For example, the user equipment determines the OFDM symbol occupied by the DMRS according to the symbol number configuration in the foregoing DMRS configuration.
  • the network device can separately configure a set of PUSCH transmission parameters for each BWP of the user equipment; and then, when the user equipment is dynamically switched to a BWP to transmit the PUSCH, the user equipment may The PUSCH transmission parameter corresponding to the certain BWP is used as the PUSCH transmission parameter used for the PUSCH transmission. Finally, the user equipment transmits the PUSCH on the certain BWP based on the PUSCH transmission parameter corresponding to the certain BWP. In this way, different PUSCH transmission parameters can be adopted for transmitting the PUSCH on different BWPs, thereby improving the flexibility of transmitting the PUSCH.
  • FIG. 5 is a user equipment 500 according to an embodiment of the present application.
  • the user equipment 500 includes: one or more processors, one or more memories, one or more transceivers, and one or more Program
  • the one or more programs are stored in the memory and configured to be executed by the one or more processors;
  • the program includes instructions for performing the following steps:
  • the program in determining an uplink BWP for transmitting a PUSCH, includes instructions specifically for performing the following steps:
  • the program includes instructions that are also used to perform the following steps:
  • the program includes instructions specifically for performing the following steps:
  • the PUSCH transmission parameter includes at least one of the following: an uplink transmission mode, a codebook subset constraint configuration, an uplink maximum transmission layer number, a frequency selective precoding configuration, and a DMRS configuration.
  • the uplink transmission mode includes codebook based transmission and/or non-codebook based transmission.
  • the codebook subset constraint is configured to indicate, from the agreed codebook, a codebook subset that is available to the PUSCH.
  • the uplink maximum transmission layer number is used to determine a Rank and/or an available precoding matrix available for the PUSCH.
  • the frequency selective precoding configuration includes indication information as to whether frequency selective precoding is allowed, and/or a subband size or number configuration used for frequency selective precoding.
  • the DMRS is configured to indicate a parameter configuration of a DMRS of the PUSCH, where the DMRS configuration includes at least one of the following: a DMRS type configuration, a DMRS time-frequency resource configuration, a DMRS sequence configuration, and a DMRS. Frequency hopping configuration.
  • the program in transmitting the PUSCH on the uplink BWP according to the PUSCH transmission parameter, includes an instruction specifically for performing the following steps:
  • the PUSCH transmission parameter includes the uplink transmission mode, and the PUSCH is transmitted on the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the program includes instructions specifically for performing the following steps:
  • the PUSCH is transmitted on the uplink BWP according to the determined TRI and TPMI information.
  • the PUSCH transmission parameter includes the codebook subset constraint configuration, and the foregoing is transmitted on the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the program includes instructions specifically for performing the following steps:
  • the PUSCH transmission parameter includes the uplink maximum transmission layer number
  • the PUSCH is transmitted on the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the program includes instructions specifically for performing the following steps:
  • the PUSCH transmission parameter includes the frequency selective precoding configuration, and transmitting, on the uplink BWP, according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the program includes instructions specifically for performing the following steps:
  • the PUSCH transmission parameter includes indication information about whether to allow frequency selective precoding, in the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the program includes instructions specifically for performing the following steps:
  • the PUSCH transmission parameter includes the DMRS configuration, and the PUSCH is transmitted on the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the program includes instructions specifically for performing the following steps:
  • the PUSCH transmission parameter includes the DMRS sequence configuration, and the PUSCH is transmitted on the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the program includes instructions specifically for performing the following steps:
  • the PUSCH transmission parameter includes the uplink transmission mode, and the PUSCH is transmitted on the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the program includes instructions specifically for performing the following steps:
  • the PUSCH transmission parameter includes the frequency selective precoding configuration
  • the program includes specifically used to transmit the PUSCH on the uplink BWP according to the PUSCH transmission parameter. Instructions that perform the following steps:
  • the PUSCH transmission parameter includes the DMRS configuration
  • the program includes, in performing, transmitting the PUSCH on the uplink BWP according to the PUSCH transmission parameter, where the program is specifically configured to perform the following steps. instruction:
  • FIG. 6 is a user equipment 600 provided by an embodiment of the present application.
  • the user equipment 600 includes a processing unit 601, a communication unit 602, and a storage unit 603, where:
  • the processing unit 601 is configured to determine an uplink BWP for transmitting the PUSCH;
  • the processing unit 601 is further configured to determine a PUSCH transmission parameter corresponding to the uplink BWP.
  • the processing unit 601 is further configured to transmit, by using the communication unit 602, the PUSCH on the uplink BWP according to the PUSCH transmission parameter.
  • the processing unit 601 in determining an uplink BWP for transmitting a PUSCH, is specifically configured to:
  • the processing unit 601 is further configured to receive a high layer signaling that is sent by the network device, where the high layer signaling is used to configure a corresponding PUSCH transmission parameter for each uplink BWP of the user equipment;
  • the processing unit 601 is specifically configured to:
  • the PUSCH transmission parameter includes at least one of the following: an uplink transmission mode, a codebook subset constraint configuration, an uplink maximum transmission layer number, a frequency selective precoding configuration, and a DMRS configuration.
  • the uplink transmission mode includes codebook based transmission and/or non-codebook based transmission.
  • the codebook subset constraint is configured to indicate, from the agreed codebook, a codebook subset that is available to the PUSCH.
  • the uplink maximum transmission layer number is used to determine a Rank and/or an available precoding matrix available for the PUSCH.
  • the frequency selective precoding configuration includes indication information as to whether frequency selective precoding is allowed, and/or a subband size or number configuration used for frequency selective precoding.
  • the DMRS is configured to indicate a parameter configuration of a DMRS of the PUSCH, where the DMRS configuration includes at least one of the following: a DMRS type configuration, a DMRS time-frequency resource configuration, a DMRS sequence configuration, and a DMRS. Frequency hopping configuration.
  • the processing unit 601 in the transmitting the PUSCH on the uplink BWP according to the PUSCH transmission parameter, is specifically configured to:
  • the PUSCH transmission parameter includes the uplink transmission mode, and the PUSCH is transmitted on the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the processing unit 601 is specifically configured to:
  • the PUSCH is transmitted on the uplink BWP according to the determined TRI and TPMI information.
  • the PUSCH transmission parameter includes the codebook subset constraint configuration, and the foregoing is transmitted on the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the processing unit 601 is specifically configured to:
  • the PUSCH transmission parameter includes the uplink maximum transmission layer number, and the PUSCH is transmitted on the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the processing unit 601 is specifically configured to:
  • the PUSCH transmission parameter includes the frequency selective precoding configuration, and transmitting, on the uplink BWP, according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the processing unit 601 is specifically configured to:
  • the PUSCH transmission parameter includes indication information about whether to allow frequency selective precoding, in the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the processing unit 601 is specifically configured to:
  • the PUSCH transmission parameter includes the DMRS configuration
  • the PUSCH is transmitted on the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI, and is processed.
  • Unit 601 is specifically used to:
  • the PUSCH transmission parameter includes the DMRS sequence configuration, and the PUSCH is transmitted on the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the processing unit 601 is specifically configured to:
  • the PUSCH transmission parameter includes the uplink transmission mode, and the PUSCH is transmitted on the uplink BWP according to the PUSCH transmission parameter and scheduling information included in the DCI.
  • the processing unit 601 is specifically configured to:
  • the PUSCH transmission parameter includes the frequency selective precoding configuration
  • the processing unit 601 is specifically configured to: when the PUSCH is transmitted on the uplink BWP according to the PUSCH transmission parameter, the processing unit 601 is specifically configured to:
  • the PUSCH transmission parameter includes the DMRS configuration
  • the processing unit 601 is specifically configured to: when the PUSCH is transmitted on the uplink BWP according to the PUSCH transmission parameter, the processing unit 601 is specifically configured to:
  • the processing unit 601 may be a processor or a controller, and may be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit (Application- Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof, which may be implemented or executed in conjunction with the present disclosure.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC Application- Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 602 can be a transceiver, a transceiver circuit, a radio frequency chip, a communication interface, etc.
  • the storage unit 603 can be a memory.
  • the processing unit 601 is a processor
  • the communication unit 602 is a communication interface
  • the storage unit 603 is a memory
  • the user equipment involved in the embodiment of the present application may be the user equipment shown in FIG. 5.
  • the embodiment of the present application further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the method in the method embodiment as described above Some or all of the steps described in a network device.
  • the embodiment of the present application further provides a computer program product, wherein the computer program product comprises a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform the method as described above Some or all of the steps described in a network device.
  • the computer program product can be a software installation package.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in an access network device, a target network device, or a core network device. Of course, the processor and the storage medium may also exist as discrete components in the access network device, the target network device, or the core network device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)). )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (DVD)
  • DVD digital video disc
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种上行数据传输方法及相关设备,方法包括:用户设备确定用于传输物理上行共享信道PUSCH的上行带宽部分BWP;所述用户设备确定所述上行BWP对应的PUSCH传输参数;所述用户设备根据所述PUSCH传输参数在所述上行BWP上传输所述PUSCH。采用本申请实施例可提升传输PUSCH的灵活性。

Description

上行数据传输方法及相关设备 技术领域
本申请涉及通信技术领域,具体涉及一种上行数据传输方法及相关设备。
背景技术
在新空口(NR,New radio)中,一个载波可以包含多个带宽部分(Bandwidth Part,BWP)。对于一个用户设备(User Equipment,UE)来说,在一个时刻只有一个上行BWP可以被激活用于上行传输。同样的,在一个时刻只有一个下行BWP可以被激活用于下行传输。用户设备当前被激活哪个BWP是通过下行控制信息(Downlink Control Information,DCI)指示的,用户设备传输所使用的BWP是可以在一个载波内的多个BWP中动态切换的。如果物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输可以在多个BWP上动态切换,那么如何传输PUSCH的参数配置是需要解决的技术问题。
发明内容
本申请实施例提供了一种上行数据传输方法及相关设备,用于提高传输PUSCH的灵活性。
第一方面,本申请实施例提供一种上行数据传输方法,包括:
用户设备确定用于传输PUSCH的上行BWP;
所述用户设备确定所述上行BWP对应的PUSCH传输参数;
所述用户设备根据所述PUSCH传输参数在所述上行BWP上传输所述PUSCH。
第二方面,本申请实施例提供一种用户设备,包括处理单元和通信单元,其中:
所述处理单元,用于确定用于传输PUSCH的上行BWP;
所述处理单元,还用于确定所述上行BWP对应的PUSCH传输参数;
所述处理单元,还用于根据所述PUSCH传输参数通过所述通信单元在所述上行BWP上传输所述PUSCH。
第三方面,本申请实施例提供一种用户设备,包括一个或多个处理器、一个或多个存储器、一个或多个收发器,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述一个或多个处理器执行,所述程序包括用于执行如第一方面所述的方法中的步骤的指令。
第四方面,本申请实施例提供一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如第一方面所述的方法所描述的部分或全部步骤。
第五方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如第一方面所述的方法所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
可见,本申请中,首先,网络设备可以给用户设备的每个BWP分别配置一套PUSCH传输参数;然后,在用户设备被动态切换到某个BWP上传输所述PUSCH的情况下,用户设备可将该某个BWP对应的PUSCH传输参数作为PUSCH传输所用的PUSCH传输参数;最后,用户设备基于该某个BWP对应的PUSCH传输参数在该某个BWP上传输所述PUSCH。这样可实现在不同BWP上传输所述PUSCH可以采用不同的PUSCH传输参数,进而提升了传输PUSCH的灵活性。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种无线通信***的架构示意图;
图2是本申请实施例提供的一种用户设备的结构示意图;
图3是本申请实施例提供的一种网络设备的结构示意图;
图4是本申请实施例提供的一种上行数据传输方法的流程示意图;
图5是本申请实施例提供的另一种用户设备的结构示意图;
图6是本申请实施例提供的另一种用户设备的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
图1示出了本申请涉及的无线通信***。所述无线通信***不限于长期演进(Long Term Evolution,LTE)***,还可以是未来演进的第五代移动通信(the 5th Generation,5G)***、新空口(NR)***,机器与机器通信(Machine to Machine,M2M)***等。如图1所示,无线通信***100可包括:一个或多个网络设备101和一个或多个用户设备102。其中:
网络设备101可以为基站,基站可以用于与一个或多个用户设备进行通信,也可以用于与一个或多个具有部分用户设备功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)***中的基站收发台(Base Transceiver Station,BTS),也可以是LTE***中的演进型基站(Evolutional Node B,eNB),以及5G***、新空口(NR)***中的基站。另外,基站也可以为接入点(Access Point,AP)、传输节点(Trans TRP)、中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
用户设备102可以分布在整个无线通信***100中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端102可以是移动设备、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、用户代理、移动客户端等等。
具体的,网络设备101可用于在网络设备控制器(未示出)的控制下,通过无线接口103与用户设备102通信。在一些实施例中,所述网络设备控制器可以是核心网的一部分,也可以集成到网络设备101中。网络设备101与网络设备101之间也可以通过回程(blackhaul)接口104(如X2接口),直接地或者间接地,相互通信。
在NR现有的讨论中,一个载波可以包含多个BWP。对于一个用户设备102来说,在一个时刻只有一个上行BWP可以被激活用于上行传输。在一个时刻只有一个下行BWP可以被激活用于下行传输。用户设备102当前被激活哪个BWP是网络设备101通过DCI指示的,用户设备102传输所使用的BWP是可以在一个载波内的多个BWP中动态切换的。如果PUSCH传输可以在多个BWP上动态切换,那么如何传输PUSCH的参数配置是需要解决的技术问题。
可见,本申请中,首先,网络设备101可以给用户设备102的每个BWP分别配置一套PUSCH传输参数;然后,在用户设备102被动态切换到某个BWP上传输PUSCH的情况下,用户设备102可将该某个BWP对应的PUSCH传输参数作为PUSCH传输所用的 PUSCH传输参数;最后,用户设备102基于该某个BWP对应的PUSCH传输参数在该某个BWP上传输PUSCH。这样可实现在不同BWP上传输PUSCH可以采用不同的PUSCH传输参数,进而提升了传输PUSCH的灵活性。
需要说明的,图1示出的无线通信***100仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
参考图2,图2示出了本申请的一些实施例提供的用户设备200。如图2所示,用户设备200可包括:一个或多个用户设备处理器201、存储器202、通信接口203、接收器205、发射器206、耦合器207、天线208、用户接口202,以及输入输出模块(包括音频输入输出模块210、按键输入模块211以及显示器212等)。这些部件可通过总线204或者其他方式连接,图2以通过总线连接为例。其中:
通信接口203可用于用户设备200与其他通信设备,例如网络设备,进行通信。具体的,所述网络设备可以是图3所示的网络设备300。具体的,通信接口203可以是长期演进(LTE)(4G)通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,用户设备200还可以配置有有线的通信接口203,例如局域接入网(Local Access Network,LAN)接口。
发射器206可用于对用户设备处理器201输出的信号进行发射处理,例如信号调制。接收器205可用于对天线208接收的移动通信信号进行接收处理,例如信号解调。在本申请的一些实施例中,发射器206和接收器205可看作一个无线调制解调器。在用户设备200中,发射器206和接收器205的数量均可以是一个或者多个。天线208可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器207用于将天线308接收到的移动通信信号分成多路,分配给多个的接收器205。
除了图2所示的发射器206和接收器205,用户设备200还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,用户设备200还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,用户设备200还可以配置有有线网络接口(如LAN接口)来支持有线通信。
所述输入输出模块可用于实现户设备200和用户/外部环境之间的交互,可主要包括音频输入输出模块210、按键输入模块211以及显示器212等。具体的,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过用户接口209与用户设备处理器201进行通信。
存储器202与终端处理器201耦合,用于存储各种软件程序和/或多组指令。具体的,存储器202可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器202可以存储操作***(下述简称***),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作***。存储器202还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个用户设备,一个或多个网络设备进行通信。存储器202还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请的一些实施例中,存储器202可用于存储本申请的一个或多个实施例提供的上行数据传输方法在用户设备200侧的实现程序。关于本申请的一个或多个实施例提供的上行数据传输方法的实现,请参考下述方法实施例。
在本申请的一些实施例中,用户设备处理器201可用于读取和执行计算机可读指令。具体的,用户设备处理器201可用于调用存储于存储器212中的程序,例如本申请的一个或多个实施例提供的上行数据传输方法在用户设备200侧的实现程序,并执行该程序包含 的指令。
可以理解的,用户设备200可实施为移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
需要说明的,图2所示的用户设备200仅仅是本申请实施例的一种实现方式,实际应用中,用户设备200还可以包括更多或更少的部件,这里不作限制。
参考图3,图3示出了本申请的一些实施例提供的网络设备300。如图3所示,网络设备300可包括:一个或多个网络设备处理器301、存储器302、通信接口303、发射器305、接收器306、耦合器307和天线308。这些部件可通过总线304或者其他式连接,图4以通过总线连接为例。其中:
通信接口303可用于网络设备300与其他通信设备,例如用户设备或其他网络设备,进行通信。具体的,所述用户设备可以是图2所示的用户设备200。具体的,通信接口303可以是长期演进(LTE)(4G)通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,网络设备300还可以配置有有线的通信接口303来支持有线通信,例如一个网络设备300与其他网络设备300之间的回程链接可以是有线通信连接。
发射器305可用于对网络设备处理器301输出的信号进行发射处理,例如信号调制。接收器306可用于对天线308接收的移动通信信号进行接收处理。例如信号解调。在本申请的一些实施例中,发射器305和接收器306可看作一个无线调制解调器。在网络设备300中,发射器305和接收器306的数量均可以是一个或者多个。天线308可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器307可用于将移动通信号分成多路,分配给多个的接收器306。
存储器302与网络设备处理器301耦合,用于存储各种软件程序和/或多组指令。具体的,存储器302可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器302可以存储操作***(下述简称***),例如uCOS、VxWorks、RTLinux等嵌入式操作***。存储器402还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
网络设备处理器301可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内的用户提供小区切换控制等。具体的,网络设备处理器301可包括:管理/通信模块(Administration Module/Communicat ion Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
在本申请的实施例中,存储器302可用于存储本申请的一个或多个实施例提供的上行数据传输方法在网络设备300侧的实现程序。关于本申请的一个或多个实施例提供的上行数据传输方法的实现,请参考下述方法实施例。
本申请实施例中,网络设备处理器301可用于读取和执行计算机可读指令。具体的,网络设备处理器301可用于调用存储于存储器302中的程序,例如本申请的一个或多个实施例提供的上行数据传输方法在网络设备300侧的实现程序,并执行该程序包含的指令。
可以理解的,网络设备300可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB,接入点或TRP等等。
需要说明的,图3所示的网络设备300仅仅是本申请实施例的一种实现方式,实际应用中,网络设备300还可以包括更多或更少的部件,这里不作限制。
基于前述无线通信***100、用户设备200以及网络设备300分别对应的实施例,本申请实施例提供了一种上行数据传输方法。
请参见图4,图4为本申请实施例提供的一种上行数据传输方法的流程示意图,包括以下步骤:
步骤401:用户设备确定用于传输PUSCH的上行BWP。
在本申请的一实施例中,在用户设备被动态切换到某一BWP上传输上述PUSCH的情况下,执行上述步骤401。
在本申请的一实施例中,上述步骤401的具体实现方式有:
用户设备根据BWP指示信息确定用于传输上述PUSCH的上行BWP,用于调度PUSCH传输的DCI包含上述BWP指示信息。
具体地,网络设备先通过高层信令给用户设备预先配置多个BWP,然后再通过DCI中的BWP指示信息指示这多个BWP中的其中一个BWP用于传输所述PUSCH。其中,高层信令可以包括无线资源控制协议(Radio Resource Control,RRC)信令,介质访问控制(Medium Access Control,MAC)信令等等。
举例来说,假设网络设备首先通过RRC信令预先给用户设备配置了4个BWP和这4个BWP对应的带宽,然后网络设备再通过DCI,该DCI包括2比特的BWP指示信息,这2比特的BWP指示信息用来指示其中用于传输所述PUSCH的BWP。比如,假设这4个BWP为BWP1、BWP2、BWP3和BWP4,假如这2比特的BWP指示信息为00,那么当前用于传输所述PUSCH的上行BWP为BWP1,又假如这2比特的BWP指示信息为11,那么当前用于传输所述PUSCH的上行BWP为BWP4,以此类推。
在本申请的一实施例中,DCI可以同时用于触发激活的上行BWP上的非周期SRS传输。
步骤402:用户设备确定上述上行BWP对应的PUSCH传输参数。
在本申请的一实施例中,所述方法还包括:
用户设备接收网络设备发送的高层信令,该高层信令用于为用户设备的每个上行BWP配置对应的PUSCH传输参数;
上述步骤402的具体实现方式有:
用户设备根据该高层信令确定上述上行BWP对应的PUSCH传输参数。
其中,该高层信息可以包括RRC信令,MAC信令等等。
具体地,网络设备先通过一高层信令预先给用户设备配置了4个BWP对应的带宽,然后再通过另一高层信令为这4个BWP分别配置对应的PUSCH传输参数。或者,网络设备仅通过一高层信令预先给用户设备配置了4个BWP对应的带宽以及为这4个BWP分别配置对应的PUSCH传输参数。
举例来说,这4个BWP为BWP1、BWP2、BWP3和BWP4,假设网络设备通过高层信令给BWP1配置PUSCH传输参数1、网络设备给BWP2配置PUSCH传输参数2、网络设备给BWP3配置PUSCH传输参数3、网络设备给BWP4配置PUSCH传输参数4。假如上述用于传输上述PUSCH的上行BWP为BWP1,那么用户设备根据该高层信令可得到BWP1对应的PUSCH传输参数为PUSCH传输参数1,以此类推。
步骤403:用户设备根据上述PUSCH传输参数在上述上行BWP上传输所述PUSCH,以进行上行数据传输。
在本申请的一实施例中,上述PUSCH传输参数包括以下至少一种:上行传输方式、码本子集约束配置、上行最大传输层数、频率选择性预编码配置和解调参考信号(Demodulation Reference Signal,DMRS)配置。
在本申请的一实施例中,上述上行传输方式包括基于码本的传输和/或基于非码本的传输。
在本申请的一实施例中,上述码本子集约束配置用于从约定的码本中指示所述PUSCH可用的码本子集。
在本申请的一实施例中,上述上行最大传输层数用于确定所述PUSCH可用的Rank和/或可用的预编码矩阵。
在本申请的一实施例中,上述频率选择性预编码配置包括是否允许频率选择性预编码的指示信息,和/或频率选择性预编码所用的子带大小或数量配置。
在本申请的一实施例中,上述DMRS配置用于指示所述PUSCH的DMRS的参数配置。在本申请中,所述PUSCH的DMRS是指用于进行所述PUSCH的解调的DMRS。
在本申请的一实施例中,上述DMRS配置包括以下至少一种:DMRS类型配置、DMRS时频资源配置、DMRS序列配置和DMRS跳频配置。
其中,上述DMRS类型配置可以是type 1或者type 2,不同type的DMRS可以采用不同的时域、频域或码域资源。
其中,上述DMRS时频资源配置包括DMRS符号配置,比如,additional DMRS配置或comb配置等。
其中,上述DMRS序列配置包括DMRS的加扰ID等配置。
其中,上述DMRS跳频配置包括组跳频或序列跳频等配置。
在本申请的一实施例中,用户设备根据上述PUSCH传输参数在上述上行BWP上传输所述PUSCH的具体实现方式有:
用户设备根据上述PUSCH传输参数和用于调度所述PUSCH的DCI中包含的调度信息,在上述上行BWP上传输所述PUSCH。
其中,DCI中包含的调度信息包括以下至少一种:发射预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)信息、发射秩指示符(Transmitted Rank Indication,TRI)信息、预编码矩阵指示(Precoding Matrix Indicator,PMI)信息、SRS资源指示(SRS resource indication,SRI)信息、DMRS端口指示信息、DMRS加扰序列ID指示信息。
在本申请的一实施例中,上述PUSCH传输参数包括上行传输方式,用户设备根据上述PUSCH传输参数和上述DCI中包含的调度信息,在上述上行BWP上传输所述PUSCH的具体实现方式有:
用户设备根据上述上行传输方式确定上述DCI中是否包含TRI信息和TPMI信息;
在上述DCI包含上述TRI信息和上述TPMI信息的情况下,用户设备根据确定的上述TRI信息和上述TPMI在上述上行BWP上传输所述PUSCH。
具体地,假如上述上行传输方式为基于码本的传输,表示上述DCI中包含TRI信息和TPMI信息,用户设备需要根据上述TRI信息和上述TPMI信息确定所述PUSCH的传输层数和所用的预编码矩阵,然后再根据确定的传输层数和所用的预编码矩阵在所述上行BWP上传输所述PUSCH。
又假如上述上行传输方式为基于非码本的传输,表示上述DCI中不包含TRI信息和TPMI信息,用户设备需要根据上述DCI中的SRI指示信息来确定所述PUSCH的传输层数和所用的预编码矩阵,然后再根据确定的传输层数和所用的预编码矩阵在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,上述PUSCH传输参数包括码本子集约束配置,用户设备根据上述PUSCH传输参数和上述DCI中包含的调度信息,在上述上行BWP上传输所述PUSCH的具体实现方式有:
用户设备根据上述码本子集约束配置从约定的码本中确定目标码本子集;
用户设备根据上述DCI中包含的PMI信息,从上述目标码本子集中确定传输所述PUSCH所用的预编码矩阵;
用户设备根据确定的上述预编码矩阵在所述上行BWP上传输所述PUSCH。
举例来说,假设约定的码本可以得到3个码本子集,比如码本子集1、码本子集2和码本子集3,分别对应于全相关,部分相关和非相关三种UE天线相关能力。假如码本子 集约束配置指示码本子集1,那么用户设备将码本子集1确定为目标码本子集。假设目标码本子集包括4个预编码矩阵,这4个预编码矩阵有预编码矩阵1、预编码矩阵2、预编码矩阵3和预编码矩阵4。假如PMI信息指示预编码矩阵4,那么用户设备将预编码矩阵4确定为传输所述PUSCH所用的预编码矩阵。最后用户设备根据预编码矩阵4在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,上述PUSCH传输参数包括上行最大传输层数,用户设备根据上述PUSCH传输参数和上述DCI中包含的调度信息,在上述上行BWP上传输所述PUSCH的具体实现方式有:
用户设备根据上述上行最大传输层数和上述DCI中包含的TRI信息确定传输所述PUSCH所用的传输层数;或者,用户设备根据上述上行最大传输层数和所述DCI中包含的SRI信息确定传输所述PUSCH所用的传输层数;
用户设备根据确定的上述传输层数在上述上行BWP上传输所述PUSCH。
在本申请的一实施例中,上述PUSCH传输参数包括频率选择性预编码配置,用户设备根据上述PUSCH传输参数和上述DCI中包含的调度信息,在上述上行BWP上传输所述PUSCH的具体实现方式有:
用户设备根据上述频率选择性预编码配置和上述DCI中包含的PMI信息确定,传输所述PUSCH所用的预编码矩阵;
用户设备根据确定的上述预编码矩阵在上述上行BWP上传输所述PUSCH。
具体地,上述频率选择性预编码配置包含是否允许频率选择性预编码的指示信息,表示用户设备根据该是否允许频率选择性预编码的指示信息,确定上述DCI中包含的PMI信息是用于指示带宽PMI还是子带PMI;然后用户设备根据该PMI指示信息包含的宽带PMI或子带PMI,从约定的码本中确定预编码矩阵,确定的预编码矩阵用于在上述上行BWP上传输PUSCH。例如,如果所述指示信息指示允许频率选择性预编码,则终端确定上述DCI中包含的PMI信息是用于指示子带PMI;如果所述指示信息指示不允许频率选择性预编码,则终端确定上述DCI中包含的PMI信息是用于指示宽带PMI。
上述频率选择性预编码配置包含频率选择性预编码所用的子带大小或数量配置,表示用户设备根据该频率选择性预编码所用的子带大小或数量配置,确定上述DCI中包含的PMI信息所指示的子带PMI;然后用户设备根据该子带PMI从约定的码本中确定各个子带上的预编码矩阵,确定的各个子带上的预编码矩阵用于在上述上行BWP上传输所述PUSCH。
在本申请的一实施例中,上述PUSCH传输参数包括是否允许频率选择性预编码的指示信息,用户设备根据上述PUSCH传输参数和上述DCI中包含的调度信息,在上述上行BWP上传输所述PUSCH的具体实现方式有:
用户设备根据上述DCI中包含的SRI信息和上述是否允许频率选择性预编码的指示信息,确定是否需要对所述PUSCH中的数据进行频率选择性预编码;
用户设备根据确定的结果在上述上行BWP上传输所述PUSCH。
具体地,假如上述DCI中包含的SRI指示信息所指示的SRS资源的端口数大于或等于4,那么用户设备根据上述是否允许频率选择性预编码的指示信息,确定是否需要对所述PUSCH中的数据进行频率选择性预编码。最后用户设备基于确定的结果在上述上行BWP上传输所述PUSCH,比如确定的结果是需要对所述PUSCH中的数据进行频率选择性预编码,那么用户设备在传输所述PUSCH之前,先对所述PUSCH中的数据进行频率选择性预编码,然后再传输所述PUSCH,以此类推。比如确定的结果是不需要对所述PUSCH中的数据进行频率选择性预编码,那么用户设备在传输所述PUSCH之前,先对所述PUSCH中的数据进行宽带预编码,然后再传输所述PUSCH,以此类推
又假设上述DCI中包含的SRI信息所指示的SRS资源的端口数小于4,那么用户设 备确定不需要对所述PUSCH中的数据进行频率选择性预编码,只要对所述PUSCH中的数据进行宽带预编码,然后再传输所述PUSCH。
在本申请的一实施例中,上述PUSCH传输参数包括DMRS配置,用户设备根据上述PUSCH传输参数和上述DCI中包含的调度信息,在上述上行BWP上传输所述PUSCH的具体实现方式有:
用户设备根据上述DMRS配置和上述DCI中包含的DMRS端口指示信息,确定DMRS占用的物理资源;用户设备根据确定的上述物理资源在上述上行BWP上传输所述PUSCH的DMRS。
进一步地,上述DMRS配置包括DMRS类型配置,用户设备根据上述DMRS配置和上述DCI中包含的DMRS端口指示信息,确定DMRS占用的物理资源的具体实现方式有:
用户设备根据上述DMRS类型配置确定DMRS类型;用户设备根据该DMRS类型对应的DMRS指示信息映射表格,以及所述DMRS端口指示信息,确定DMRS使用的天线端口和占用的物理资源。
进一步地,上述DMRS配置包括时频资源配置,用户设备根据上述DMRS配置和上述DCI中包含的DMRS端口指示信息确定DMRS占用的物理资源的具体实现方式有:
用户设备根据上述时频资源配置确定DMRS最大符号数;用户设备根据该DMRS最大符号数对应的DMRS指示信息映射表格,以及所述DMRS端口指示信息,确定DMRS使用的天线端口和占用的物理资源。
在本申请的一实施例中,上述PUSCH传输参数包括DMRS序列配置,用户设备根据上述PUSCH传输参数和上述DCI中包含的调度信息,在上述上行BWP上传输所述PUSCH的具体实现方式有:
用户设备根据上述DMRS序列配置和上述DCI中包含的DMRS加扰序列ID指示信息,确定DMRS所采用的序列;
用户设备根据确定的上述序列在所述上行BWP上传输所述PUSCH的DMRS。
具体地,上述DMRS序列配置包括两个候选的加扰序列ID,上述DCI中包含1比特的加扰序列ID指示信息,该1比特的加扰序列ID指示信息用于从这两个候选的加扰序列ID中确定一个加扰序列ID,用于生成DMRS序列。
在本申请的一实施例中,上述PUSCH传输参数包括上行传输方式,用户设备根据上述PUSCH传输参数和上述DCI中包含的调度信息,在上述上行BWP上传输所述PUSCH的具体实现方式有:
用户设备根据上述上行传输方式确定上述DCI包含的SRI信息所指示的SRS资源;
用户设备根据确定的上述SRS资源所用的波束或者预编码矩阵确定传输所述PUSCH所用的波束或者预编码矩阵;
用户设备根据确定的上述波束或者上述预编码矩阵在上述上行BWP上传输所述PUSCH。
具体地,假如上述上行传输方式为基于码本的传输,那么上述DCI中包含的SRI信息用于指示一个预配置的SRS资源集合中的一个SRS资源,用户设备将在该SRS资源上传输SRS所使用的发送波束,作为传输所述PUSCH所使用的发送波束,然后根据确定的发送波束在上述上行BWP上传输所述PUSCH。
假如上述上行传输方式为基于非码本的传输,那么上述DCI中包含的SRI信息用于指示一个预配置的SRS资源集合中的一个或多个SRS资源,用户设备将在该一个或多个SRS资源上传输SRS所使用的发送波束和/或预编码矩阵,作为传输所述PUSCH所使用的发送波束和/或预编码矩阵,然后根据确定的发送波束和/或预编码矩阵在上述上行BWP上传输所述PUSCH。
在本申请的一实施例中,上述PUSCH传输参数包括频率选择性预编码配置,用户设 备根据上述PUSCH传输参数在上述上行BWP上传输所述PUSCH的具体实现方式有:
用户设备根据上述频率选择性预编码配置确定是否需要对所述PUSCH中的数据进行频率选择性预编码;用户设备根据确定的结果在上述上行BWP上传输所述PUSCH。
在本申请的一实施例中,上述PUSCH传输参数包括DMRS配置,用户设备根据上述PUSCH传输参数在上述上行BWP上传输所述PUSCH的具体实现方式有:
用户设备根据上述DMRS配置确定DMRS占用的物理资源和/或DMRS采用的序列;以及根据确定的上述物理资源和/或上述DMRS采用的序列在上述上行BWP上传输所述PUSCH的DMRS。比如用户设备根据上述DMRS配置中的符号数配置,确定DMRS占用的OFDM符号。
可见,本申请中,首先,网络设备可以给用户设备的每个BWP分别配置一套PUSCH传输参数;然后,在用户设备被动态切换到某个BWP上传输所述PUSCH的情况下,用户设备可将该某个BWP对应的PUSCH传输参数作为PUSCH传输所用的PUSCH传输参数;最后,用户设备基于该某个BWP对应的PUSCH传输参数在该某个BWP上传输所述PUSCH。这样可实现在不同BWP上传输所述PUSCH可以采用不同的PUSCH传输参数,进而提升了传输PUSCH的灵活性。
需要说明的,本申请中所述的示例仅仅用于解释,不应构成限定。
请参见图5,图5是本申请实施例提供的一种用户设备500,该用户设备500包括:一个或多个处理器、一个或多个存储器、一个或多个收发器,以及一个或多个程序;
所述一个或多个程序被存储在所述存储器中,并且被配置由所述一个或多个处理器执行;
所述程序包括用于执行以下步骤的指令:
确定用于传输PUSCH的上行BWP;
确定所述上行BWP对应的PUSCH传输参数;
根据所述PUSCH传输参数在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,在确定用于传输PUSCH的上行BWP方面,所述程序包括具体用于执行以下步骤的指令:
根据BWP指示信息确定用于传输所述PUSCH的上行BWP,用于调度所述PUSCH的DCI包含所述BWP指示信息。
在本申请的一实施例中,所述程序包括还用于执行以下步骤的指令:
接收网络设备发送的高层信令,所述高层信令用于为所述用户设备的每个上行BWP配置对应的PUSCH传输参数;
在确定所述上行BWP对应的PUSCH传输参数方面,所述程序包括具体用于执行以下步骤的指令:
根据所述高层信令确定所述上行BWP对应的PUSCH传输参数。
在本申请的一实施例中,所述PUSCH传输参数包括以下至少一种:上行传输方式、码本子集约束配置、上行最大传输层数、频率选择性预编码配置和DMRS配置。
在本申请的一实施例中,所述上行传输方式包括基于码本的传输和/或基于非码本的传输。
在本申请的一实施例中,所述码本子集约束配置用于从约定的码本中指示所述PUSCH可用的码本子集。
在本申请的一实施例中,述上行最大传输层数用于确定所述PUSCH可用的Rank和/或可用的预编码矩阵。
在本申请的一实施例中,所述频率选择性预编码配置包括是否允许频率选择性预编码的指示信息,和/或频率选择性预编码所用的子带大小或数量配置。
在本申请的一实施例中,所述DMRS配置用于指示所述PUSCH的DMRS的参数配置,所述DMRS配置包括以下至少一种:DMRS类型配置、DMRS时频资源配置、DMRS序列配置和DMRS跳频配置。
在本申请的一实施例中,在根据所述PUSCH传输参数在所述上行BWP上传输所述PUSCH方面,所述程序包括具体用于执行以下步骤的指令:
根据所述PUSCH传输参数和用于调度所述PUSCH的DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述上行传输方式,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,所述程序包括具体用于执行以下步骤的指令:
根据所述上行传输方式确定所述DCI中是否包含TRI信息和TPMI信息;
在所述DCI包含所述TRI和TPMI信息的情况下,根据确定的所述TRI和TPMI信息在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述码本子集约束配置,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,所述程序包括具体用于执行以下步骤的指令:
根据所述码本子集约束配置从约定的码本中确定目标码本子集;
根据所述DCI中包含的PMI信息,从所述目标码本子集中确定传输所述PUSCH所用的预编码矩阵;
根据确定的所述预编码矩阵在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述上行最大传输层数,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,所述程序包括具体用于执行以下步骤的指令:
根据所述上行最大传输层数和所述DCI中包含的TRI信息确定传输所述PUSCH所用的传输层数;或者,根据所述上行最大传输层数和所述DCI中包含的SRI信息确定传输所述PUSCH所用的传输层数;
根据确定的所述传输层数在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述频率选择性预编码配置,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,所述程序包括具体用于执行以下步骤的指令:
根据所述频率选择性预编码配置和所述DCI中包含的PMI信息,确定传输所述PUSCH所用的预编码矩阵;
根据确定的所述预编码矩阵在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述是否允许频率选择性预编码的指示信息,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,所述程序包括具体用于执行以下步骤的指令:
根据所述是否允许频率选择性预编码的指示信息和所述DCI中包含的SRI信息,确定是否需要对所述PUSCH中的数据进行频率选择性预编码;
根据确定的结果在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述DMRS配置,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,所述程序包括具体用于执行以下步骤的指令:
根据所述DMRS配置和所述DCI中包含的DMRS端口指示信息,确定DMRS占用的物理资源;
根据确定的所述物理资源在所述上行BWP上传输所述PUSCH的DMRS。
在本申请的一实施例中,所述PUSCH传输参数包括所述DMRS序列配置,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,所述程序包括具体用于执行以下步骤的指令:
根据所述DMRS序列配置和所述DCI中包含的DMRS加扰序列ID指示信息,确定DMRS所采用的序列;
根据确定的所述序列在所述上行BWP上传输所述PUSCH的DMRS。
在本申请的一实施例中,所述PUSCH传输参数包括所述上行传输方式,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,所述程序包括具体用于执行以下步骤的指令:
根据所述上行传输方式确定所述DCI包含的SRI信息所指示的SRS资源;
根据确定的所述SRS资源所用的波束或者预编码矩阵确定传输所述PUSCH所用的波束或者预编码矩阵;
根据确定的所述波束或者所述预编码矩阵在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述频率选择性预编码配置,在根据所述PUSCH传输参数在所述上行BWP上传输所述PUSCH方面,所述程序包括具体用于执行以下步骤的指令:
根据所述频率选择性预编码配置确定是否需要对所述PUSCH中的数据进行频率选择性预编码;
根据确定的结果在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述DMRS配置,在根据所述PUSCH传输参数在所述上行BWP上传输所述PUSCH方面,所述程序包括具体用于执行以下步骤的指令:
根据所述DMRS配置确定DMRS占用的物理资源和/或DMRS采用的序列;
根据确定的所述物理资源和/或所述DMRS采用的序列在所述上行BWP上传输所述PUSCH的DMRS。
需要说明的是,本实施例所述的内容的具体实现方式可参见上述方法,在此不再叙述。
请参阅图6,图6是本申请实施例提供的一种用户设备600,用户设备600包括处理单元601、通信单元602和存储单元603,其中:
处理单元601,用于确定用于传输PUSCH的上行BWP;
处理单元601,还用于确定所述上行BWP对应的PUSCH传输参数;
处理单元601,还用于根据所述PUSCH传输参数通过通信单元602在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,在确定用于传输PUSCH的上行BWP方面,处理单元601具体用于:
根据BWP指示信息确定用于传输所述PUSCH的上行BWP,用于调度所述PUSCH的DCI包含所述BWP指示信息。
在本申请的一实施例中,处理单元601,还用于接收网络设备发送的高层信令,所述高层信令用于为所述用户设备的每个上行BWP配置对应的PUSCH传输参数;
在确定所述上行BWP对应的PUSCH传输参数方面,处理单元601具体用于:
根据所述高层信令确定所述上行BWP对应的PUSCH传输参数。
在本申请的一实施例中,所述PUSCH传输参数包括以下至少一种:上行传输方式、码本子集约束配置、上行最大传输层数、频率选择性预编码配置和DMRS配置。
在本申请的一实施例中,所述上行传输方式包括基于码本的传输和/或基于非码本的传输。
在本申请的一实施例中,所述码本子集约束配置用于从约定的码本中指示所述PUSCH可用的码本子集。
在本申请的一实施例中,述上行最大传输层数用于确定所述PUSCH可用的Rank和/或可用的预编码矩阵。
在本申请的一实施例中,所述频率选择性预编码配置包括是否允许频率选择性预编码的指示信息,和/或频率选择性预编码所用的子带大小或数量配置。
在本申请的一实施例中,所述DMRS配置用于指示所述PUSCH的DMRS的参数配置,所述DMRS配置包括以下至少一种:DMRS类型配置、DMRS时频资源配置、DMRS序列配置和DMRS跳频配置。
在本申请的一实施例中,在根据所述PUSCH传输参数在所述上行BWP上传输所述PUSCH方面,处理单元601具体用于:
根据所述PUSCH传输参数和用于调度所述PUSCH的DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述上行传输方式,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,处理单元601具体用于:
根据所述上行传输方式确定所述DCI中是否包含TRI信息和TPMI信息;
在所述DCI包含所述TRI和TPMI信息的情况下,根据确定的所述TRI和TPMI信息在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述码本子集约束配置,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,处理单元601具体用于:
根据所述码本子集约束配置从约定的码本中确定目标码本子集;
根据所述DCI中包含的PMI信息,从所述目标码本子集中确定传输所述PUSCH所用的预编码矩阵;
根据确定的所述预编码矩阵在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述上行最大传输层数,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,处理单元601具体用于:
根据所述上行最大传输层数和所述DCI中包含的TRI信息确定传输所述PUSCH所用的传输层数;或者,根据所述上行最大传输层数和所述DCI中包含的SRI信息确定传输所述PUSCH所用的传输层数;
根据确定的所述传输层数在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述频率选择性预编码配置,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,处理单元601具体用于:
根据所述频率选择性预编码配置和所述DCI中包含的PMI信息,确定传输所述PUSCH所用的预编码矩阵;
根据确定的所述预编码矩阵在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述是否允许频率选择性预编码的指示信息,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,处理单元601具体用于:
根据所述是否允许频率选择性预编码的指示信息和所述DCI中包含的SRI信息,确定是否需要对所述PUSCH中的数据进行频率选择性预编码;
根据确定的结果在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述DMRS配置,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,处理单元601具体用于:
根据所述DMRS配置和所述DCI中包含的DMRS端口指示信息,确定DMRS占用的物理资源;
根据确定的所述物理资源在所述上行BWP上传输所述PUSCH的DMRS。
在本申请的一实施例中,所述PUSCH传输参数包括所述DMRS序列配置,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,处理单元601具体用于:
根据所述DMRS序列配置和所述DCI中包含的DMRS加扰序列ID指示信息,确定DMRS所采用的序列;
根据确定的所述序列在所述上行BWP上传输所述PUSCH的DMRS。
在本申请的一实施例中,所述PUSCH传输参数包括所述上行传输方式,在根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH方面,处理单元601具体用于:
根据所述上行传输方式确定所述DCI包含的SRI信息所指示的SRS资源;
根据确定的所述SRS资源所用的波束或者预编码矩阵确定传输所述PUSCH所用的波束或者预编码矩阵;
根据确定的所述波束或者所述预编码矩阵在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述频率选择性预编码配置,在根据所述PUSCH传输参数在所述上行BWP上传输所述PUSCH方面,处理单元601具体用于:
根据所述频率选择性预编码配置确定是否需要对所述PUSCH中的数据进行频率选择性预编码;
根据确定的结果在所述上行BWP上传输所述PUSCH。
在本申请的一实施例中,所述PUSCH传输参数包括所述DMRS配置,在根据所述PUSCH传输参数在所述上行BWP上传输所述PUSCH方面,处理单元601具体用于:
根据所述DMRS配置确定DMRS占用的物理资源和/或DMRS采用的序列;
根据确定的所述物理资源和/或所述DMRS采用的序列在所述上行BWP上传输所述PUSCH的DMRS。
其中,处理单元601可以是处理器或控制器,(例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等)。通信单元602可以是收发器、收发电路、射频芯片、通信接口等,存储单元603可以是存储器。
当处理单元601为处理器,通信单元602为通信接口,存储单元603为存储器时,本申请实施例所涉及的用户设备可以为图5所示的用户设备。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中第一网络设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了 计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法中第一网络设备所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (23)

  1. 一种上行数据传输方法,其特征在于,包括:
    用户设备确定用于传输物理上行共享信道PUSCH的上行带宽部分BWP;
    所述用户设备确定所述上行BWP对应的PUSCH传输参数;
    所述用户设备根据所述PUSCH传输参数在所述上行BWP上传输所述PUSCH。
  2. 根据权利要求1所述的方法,其特征在于,所述用户设备确定用于传输PUSCH的上行BWP,包括:
    所述用户设备根据BWP指示信息确定用于传输所述PUSCH的上行BWP,用于调度所述PUSCH的下行控制信息DCI包含所述BWP指示信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述用户设备接收网络设备发送的高层信令,所述高层信令用于为所述用户设备的每个上行BWP配置对应的PUSCH传输参数;
    所述用户设备确定所述上行BWP对应的PUSCH传输参数,包括:
    所述用户设备根据所述高层信令确定所述上行BWP对应的PUSCH传输参数。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述PUSCH传输参数包括以下至少一种:上行传输方式、码本子集约束配置、上行最大传输层数、频率选择性预编码配置和解调参考信号DMRS配置。
  5. 根据权利要求4所述的方法,其特征在于,所述上行传输方式包括基于码本的传输和/或基于非码本的传输。
  6. 根据权利要求4或5所述的方法,其特征在于,所述码本子集约束配置用于从约定的码本中指示所述PUSCH可用的码本子集。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,所述上行最大传输层数用于确定所述PUSCH可用的秩Rank和/或可用的预编码矩阵。
  8. 根据权利要求4-7任一项所述的方法,其特征在于,所述频率选择性预编码配置包括是否允许频率选择性预编码的指示信息,和/或频率选择性预编码所用的子带大小或数量配置。
  9. 根据权利要求4-7任一项所述的方法,其特征在于,所述DMRS配置用于指示所述PUSCH的DMRS的参数配置,所述DMRS配置包括以下至少一种:DMRS类型配置、DMRS时频资源配置、DMRS序列配置和DMRS跳频配置。
  10. 根据权利要求2-9任一项所述的方法,其特征在于,所述用户设备根据所述PUSCH传输参数在所述上行BWP上传输所述PUSCH,包括:
    所述用户设备根据所述PUSCH传输参数和用于调度所述PUSCH的DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH。
  11. 根据权利要求10所述的方法,其特征在于,所述PUSCH传输参数包括所述上行传输方式,所述用户设备根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH,包括:
    所述用户设备根据所述上行传输方式确定所述DCI中是否包含发射秩指示符TRI信息和发射预编码矩阵指示TPMI信息;
    在所述DCI包含所述TRI和TPMI信息的情况下,所述用户设备根据确定的所述TRI和TPMI信息在所述上行BWP上传输所述PUSCH。
  12. 根据权利要求10或11所述的方法,其特征在于,所述PUSCH传输参数包括所述码本子集约束配置,所述用户设备根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH,包括:
    所述用户设备根据所述码本子集约束配置从约定的码本中确定目标码本子集;
    所述用户设备根据所述DCI中包含的PMI信息,从所述目标码本子集中确定传输所述PUSCH所用的预编码矩阵;
    所述用户设备根据确定的所述预编码矩阵在所述上行BWP上传输所述PUSCH。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述PUSCH传输参数包括所述上行最大传输层数,所述用户设备根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH,包括:
    所述用户设备根据所述上行最大传输层数和所述DCI中包含的TRI信息确定传输所述PUSCH所用的传输层数;或者,所述用户设备根据所述上行最大传输层数和所述DCI中包含的SRS资源指示SRI信息确定传输所述PUSCH所用的传输层数;
    所述用户设备根据确定的所述传输层数在所述上行BWP上传输所述PUSCH。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述PUSCH传输参数包括所述频率选择性预编码配置,所述用户设备根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH,包括:
    所述用户设备根据所述频率选择性预编码配置和所述DCI中包含的PMI信息,确定传输所述PUSCH所用的预编码矩阵;以及根据确定的所述预编码矩阵在所述上行BWP上传输所述PUSCH。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述PUSCH传输参数包括所述是否允许频率选择性预编码的指示信息,所述用户设备根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH,包括:
    所述用户设备根据所述是否允许频率选择性预编码的指示信息和所述DCI中包含的SRI信息,确定是否需要对所述PUSCH中的数据进行频率选择性预编码;根据确定的结果在所述上行BWP上传输所述PUSCH。
  16. 根据权利要求10-15任一项所述的方法,其特征在于,所述PUSCH传输参数包括所述DMRS配置,所述用户设备根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH,包括:
    所述用户设备根据所述DMRS配置和所述DCI中包含的DMRS端口指示信息,确定DMRS占用的物理资源;以及根据确定的所述物理资源在所述上行BWP上传输所述PUSCH的DMRS。
  17. 根据权利要求10-15任一项所述的方法,其特征在于,所述PUSCH传输参数包括所述DMRS序列配置,所述用户设备根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH,包括:
    所述用户设备根据所述DMRS序列配置和所述DCI中包含的DMRS加扰序列ID指示信息,确定DMRS所采用的序列;以及根据确定的所述序列在所述上行BWP上传输所述PUSCH的DMRS。
  18. 根据权利要求10-17任一项所述的方法,其特征在于,所述PUSCH传输参数包括所述上行传输方式,所述用户设备根据所述PUSCH传输参数和所述DCI中包含的调度信息,在所述上行BWP上传输所述PUSCH,包括:
    所述用户设备根据所述上行传输方式确定所述DCI包含的SRI信息所指示的SRS资源;
    所述用户设备根据确定的所述SRS资源所用的波束或者预编码矩阵确定传输所述PUSCH所用的波束或者预编码矩阵;
    所述用户设备根据确定的所述波束或者所述预编码矩阵在所述上行BWP上传输所述PUSCH。
  19. 根据权利要求4-18任一项所述的方法,其特征在于,所述PUSCH传输参数包括 所述频率选择性预编码配置,所述用户设备根据所述PUSCH传输参数在所述上行BWP上传输所述PUSCH,包括:
    所述用户设备根据所述频率选择性预编码配置确定是否需要对所述PUSCH中的数据进行频率选择性预编码;以及根据确定的结果在所述上行BWP上传输所述PUSCH。
  20. 根据权利要求4-19任一项所述的方法,其特征在于,所述PUSCH传输参数包括所述DMRS配置,所述用户设备根据所述PUSCH传输参数在所述上行BWP上传输所述PUSCH,包括:
    所述用户设备根据所述DMRS配置确定DMRS占用的物理资源和/或DMRS采用的序列;以及根据确定的所述物理资源和/或所述DMRS采用的序列在所述上行BWP上传输所述PUSCH的DMRS。
  21. 一种用户设备,其特征在于,包括处理单元和通信单元,其中:
    所述处理单元,用于确定用于传输物理上行共享信道PUSCH的上行带宽部分BWP;
    所述处理单元,还用于确定所述上行BWP对应的PUSCH传输参数;
    所述处理单元,还用于根据所述PUSCH传输参数通过所述通信单元在所述上行BWP上传输所述PUSCH。
  22. 一种用户设备,其特征在于,包括一个或多个处理器、一个或多个存储器、一个或多个收发器,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述一个或多个处理器执行,所述程序包括用于执行如权利要求1-20任一项所述的方法中的步骤的指令。
  23. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-20任一项所述的方法中的步骤的指令。
PCT/CN2018/072501 2018-01-12 2018-01-12 上行数据传输方法及相关设备 WO2019136723A1 (zh)

Priority Applications (15)

Application Number Priority Date Filing Date Title
AU2018401513A AU2018401513A1 (en) 2018-01-12 2018-01-12 Uplink data transmission method, and related devices
BR112020000312-3A BR112020000312A2 (pt) 2018-01-12 2018-01-12 método de transmissão de dados de enlace ascendente
CA3064481A CA3064481C (en) 2018-01-12 2018-01-12 Uplink data transmission method and related device
JP2019567277A JP2021516459A (ja) 2018-01-12 2018-01-12 アップリンクデータ伝送方法及び関連装置
RU2019144140A RU2761404C1 (ru) 2018-01-12 2018-01-12 Способ передачи данных по восходящему каналу и соответствующее устройство
CN201911296718.9A CN110913490B (zh) 2018-01-12 2018-01-12 上行数据传输方法及相关设备
KR1020197036105A KR20200108237A (ko) 2018-01-12 2018-01-12 업링크 데이터 전송 방법 및 관련 장비
EP21194428.5A EP3961961A1 (en) 2018-01-12 2018-01-12 Uplink data transmission method and related devices
SG11201911387RA SG11201911387RA (en) 2018-01-12 2018-01-12 Uplink data transmission method and related device
EP18899475.0A EP3618542A4 (en) 2018-01-12 2018-01-12 UPLINK DATA TRANSMISSION METHOD, AND ASSOCIATED DEVICES
PCT/CN2018/072501 WO2019136723A1 (zh) 2018-01-12 2018-01-12 上行数据传输方法及相关设备
CN201880005464.8A CN110268773A (zh) 2018-01-12 2018-01-12 上行数据传输方法及相关设备
US16/703,627 US20200106591A1 (en) 2018-01-12 2019-12-04 Uplink data transmission method and related device
IL271338A IL271338A (en) 2018-01-12 2019-12-11 A method of transmitting data to a satellite and related device
PH12019502856A PH12019502856A1 (en) 2018-01-12 2019-12-18 Uplink data transmission method, and related devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/072501 WO2019136723A1 (zh) 2018-01-12 2018-01-12 上行数据传输方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/703,627 Continuation US20200106591A1 (en) 2018-01-12 2019-12-04 Uplink data transmission method and related device

Publications (1)

Publication Number Publication Date
WO2019136723A1 true WO2019136723A1 (zh) 2019-07-18

Family

ID=67218417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072501 WO2019136723A1 (zh) 2018-01-12 2018-01-12 上行数据传输方法及相关设备

Country Status (13)

Country Link
US (1) US20200106591A1 (zh)
EP (2) EP3961961A1 (zh)
JP (1) JP2021516459A (zh)
KR (1) KR20200108237A (zh)
CN (2) CN110913490B (zh)
AU (1) AU2018401513A1 (zh)
BR (1) BR112020000312A2 (zh)
CA (1) CA3064481C (zh)
IL (1) IL271338A (zh)
PH (1) PH12019502856A1 (zh)
RU (1) RU2761404C1 (zh)
SG (1) SG11201911387RA (zh)
WO (1) WO2019136723A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021026679A1 (en) * 2019-08-09 2021-02-18 Qualcomm Incorporated Sub-band specific sounding reference signal resource indicator indication for non-codebook based frequency-selective uplink precoding

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999185B (zh) * 2017-06-09 2022-08-05 Lg电子株式会社 在无线通信***中发送/接收参考信号的方法及其装置
BR112019027825A2 (pt) 2017-11-03 2020-07-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método de determinação de parâmetro de transmissão, dispositivo de terminal, e dispositivo de rede
CN110418380A (zh) * 2018-04-26 2019-11-05 中兴通讯股份有限公司 资源分配方法、测量方法、频域资源的确定方法、传输方法及相应装置、设备和存储介质
US20210288700A1 (en) * 2018-08-01 2021-09-16 Lenovo (Beijing) Limited Method and apparatus for pusch transmissions
US11743936B2 (en) * 2018-10-29 2023-08-29 Apple Inc. Random access procedures in new radio unlicensed spectrum (NR- U)
JP2023538487A (ja) * 2020-07-14 2023-09-08 オッポ広東移動通信有限公司 アップリンク伝送パラメータの決定方法及び端末デバイス
CN115175161A (zh) * 2021-04-02 2022-10-11 华为技术有限公司 通信方法及装置
CN115333702A (zh) * 2021-05-11 2022-11-11 大唐移动通信设备有限公司 信号传输方法、装置、终端及基站
WO2023013023A1 (ja) * 2021-08-06 2023-02-09 株式会社Nttドコモ 端末、無線通信方法及び基地局
CN118235355A (zh) * 2021-11-17 2024-06-21 高通股份有限公司 用于空分复用通信的探测参考信号资源指示符信令
WO2024122035A1 (ja) * 2022-12-08 2024-06-13 株式会社Nttドコモ 端末、無線通信方法及び基地局

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553532A (zh) * 2010-07-19 2016-05-04 Lg电子株式会社 在无线通信***中发射控制信息的方法和设备
CN106134124A (zh) * 2014-01-31 2016-11-16 高通股份有限公司 用于信道状态反馈和传输点选择的csi‑rs的联合传输
US20170201308A1 (en) * 2014-07-16 2017-07-13 Lg Electronics Inc. Method for transmitting/receiving channel state information in wireless communication system and device therefor
CN107040354A (zh) * 2016-02-04 2017-08-11 中兴通讯股份有限公司 上行dmrs的配置方法、网元、上行dmrs的传输方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645868B (zh) * 2009-08-31 2014-12-10 中兴通讯股份有限公司 一种参考信号的发送方法和装置
US9559820B2 (en) * 2011-02-18 2017-01-31 Qualcomm Incorporated Feedback reporting based on channel state information reference signal (CSI-RS) groups
CN103797865A (zh) * 2011-06-17 2014-05-14 瑞典爱立信有限公司 无线设备、网络节点以及其中的方法
CN102858016B (zh) * 2011-06-29 2017-03-15 中兴通讯股份有限公司 数据处理方法及装置
CN103024807B (zh) * 2011-09-23 2015-08-19 华为技术有限公司 传输控制信息的方法、用户设备和基站
CN104767594A (zh) * 2014-01-03 2015-07-08 北京三星通信技术研究有限公司 Lte***中上行传输的方法和设备
EP4250814A3 (en) * 2017-06-16 2023-11-01 Electronics and Telecommunications Research Institute Method for configuring bandwidth for supporting broadband carrier in communication system
CN107396386B (zh) * 2017-08-30 2021-05-18 宇龙计算机通信科技(深圳)有限公司 信道检测方法及信道检测设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553532A (zh) * 2010-07-19 2016-05-04 Lg电子株式会社 在无线通信***中发射控制信息的方法和设备
CN106134124A (zh) * 2014-01-31 2016-11-16 高通股份有限公司 用于信道状态反馈和传输点选择的csi‑rs的联合传输
US20170201308A1 (en) * 2014-07-16 2017-07-13 Lg Electronics Inc. Method for transmitting/receiving channel state information in wireless communication system and device therefor
CN107040354A (zh) * 2016-02-04 2017-08-11 中兴通讯股份有限公司 上行dmrs的配置方法、网元、上行dmrs的传输方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"TP to Support BWP Operation in Stage-3 RRC", 3GPP TSG-RAN WG2 #100, R2-1713942, 1 December 2017 (2017-12-01), pages 1 - 11, XP051372603 *
See also references of EP3618542A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021026679A1 (en) * 2019-08-09 2021-02-18 Qualcomm Incorporated Sub-band specific sounding reference signal resource indicator indication for non-codebook based frequency-selective uplink precoding
WO2021027670A1 (en) * 2019-08-09 2021-02-18 Qualcomm Incorporated Sub-band specific sounding reference signal resource indicator indication for non-codebook based frequency-selective uplink precoding

Also Published As

Publication number Publication date
EP3618542A4 (en) 2020-07-15
US20200106591A1 (en) 2020-04-02
CA3064481A1 (en) 2019-07-18
SG11201911387RA (en) 2020-01-30
EP3961961A1 (en) 2022-03-02
CA3064481C (en) 2022-06-28
BR112020000312A2 (pt) 2020-07-14
CN110268773A (zh) 2019-09-20
PH12019502856A1 (en) 2020-09-28
KR20200108237A (ko) 2020-09-17
IL271338A (en) 2020-01-30
RU2761404C1 (ru) 2021-12-08
JP2021516459A (ja) 2021-07-01
CN110913490B (zh) 2021-03-05
EP3618542A1 (en) 2020-03-04
AU2018401513A1 (en) 2020-01-16
CN110913490A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
WO2019136723A1 (zh) 上行数据传输方法及相关设备
WO2019136724A1 (zh) Srs传输方法及相关设备
WO2020035069A1 (zh) 一种上行传输指示的方法、终端、基站及计算机存储介质
US11005550B2 (en) Method and apparatus for transmitting downlink control information (DCI)
TWI679871B (zh) 資料傳輸方法、裝置、網路側設備和使用者設備
WO2018202154A1 (zh) 传输预编码矩阵的指示方法和设备
US12021795B2 (en) Communication method and network device
WO2020029996A1 (zh) 检测dci的方法、配置pdcch的方法和通信装置
US10420137B2 (en) System and method for signal density reduction in the frequency domain
EP3800945B1 (en) Power allocation method and related device
WO2023226046A1 (zh) Tci状态的指示方法、装置、设备及介质
US11166301B2 (en) Methods and systems for resource configuration of grant-free (GF)transmissions using radio resource control (RRC) signal
US20230094010A1 (en) Control signaling for uplink frequency selective precoding
WO2018145626A1 (zh) 一种参考信号的发送方法、接收方法及相关设备
WO2022205022A1 (zh) 用于传输参考信号的方法和装置
WO2022150484A1 (en) Methods of mapping multiple sd-fd bases per csi-rs port for type ii port selection codebook
CN112106424B (zh) 一种参考信号传输方法及通信设备
CN116057876A (zh) 在不同使用的srs资源集合之间共享srs资源的方法及对应ue
JP2024504144A (ja) サウンディング参照信号を用いる部分周波数サウンディングの方法
WO2018201345A1 (zh) 下行控制信息传输方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3064481

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019567277

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018899475

Country of ref document: EP

Effective date: 20191128

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020000312

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018401513

Country of ref document: AU

Date of ref document: 20180112

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020000312

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200107

NENP Non-entry into the national phase

Ref country code: DE