WO2018047318A1 - 油を水で希釈した燃料の製造方法 - Google Patents

油を水で希釈した燃料の製造方法 Download PDF

Info

Publication number
WO2018047318A1
WO2018047318A1 PCT/JP2016/076725 JP2016076725W WO2018047318A1 WO 2018047318 A1 WO2018047318 A1 WO 2018047318A1 JP 2016076725 W JP2016076725 W JP 2016076725W WO 2018047318 A1 WO2018047318 A1 WO 2018047318A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
oil
fuel
mixing
diluting
Prior art date
Application number
PCT/JP2016/076725
Other languages
English (en)
French (fr)
Inventor
泰弘 山本
Original Assignee
泰弘 山本
Eneco Holdings株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰弘 山本, Eneco Holdings株式会社 filed Critical 泰弘 山本
Publication of WO2018047318A1 publication Critical patent/WO2018047318A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions

Definitions

  • the present invention provides a fuel (hydrofuel) obtained by diluting an oil obtained by adding an additive and water improved by an additive and a natural or artificial ore to a fuel oil brought into contact with the additive and a natural or artificial ore with water. It is about the method.
  • Patent Document 1 there is a limit to the period during which the oil / water separation phenomenon can be prevented, and the oil / water separation phenomenon may occur after two to three months.
  • the transparency of a fuel obtained by diluting oil with water is lower than that of oil.
  • the present invention has been made in view of the circumstances described above, and its purpose is that once it is synthesized, it is never separated into water and oil, and it is highly transparent and can be distinguished from ordinary oil. It is to provide a method for producing a fuel in which not much oil is diluted with water.
  • a method for producing a fuel obtained by diluting an oil of the present invention with water in the method for producing a fuel obtained by diluting an oil that mixes fuel oil and water with water, An ionization step of ionizing and ionizing; Desirably, an additive charging step of adding sodium, magnesium chloride, magnesium as an additive to water; An agitation and mixing step of adding fuel oil to an agitation and mixing tank and mixing and agitating the ionized water added to the additive while circulating the fuel oil by a mixer; and The fuel oil and water mixed with stirring are provided with a fusing step for repeating the stirring and mixing step in a state where a temperature of 15 to 80 ° C. and an atmospheric pressure of 1.5 to 9 Pa are applied.
  • a fuel obtained by diluting an oil with water so that it is not separated from water and oil once and is highly transparent and indistinguishable from ordinary oil is realized once synthesized.
  • the fuel obtained by diluting the oil of the present invention with water has a calorific value per unit amount equal to or higher than that of the existing fuel oil, and further, compared with the existing fuel oil, the combustion chamber and exhaust pipe after combustion There is an effect that there is little deterioration and corrosion.
  • the fuel obtained by diluting the oil of the present invention with water has various effects such as excellent complete combustibility, difficulty in generating carbon monoxide, and low emission of carbon dioxide.
  • FIG. 1 is a flowchart for explaining a method for producing a fuel obtained by diluting oil with water according to a first embodiment of the present invention.
  • the method for producing a fuel obtained by diluting the oil of the present invention with water comprises an ionization step (water reforming step) 1 for subdividing a molecular aggregate of water as a raw material, and preferably water.
  • An additive charging step 2 for charging the additive
  • a stirring and mixing step 3 for mixing and stirring water and fuel oil (hereinafter simply referred to as oil)
  • a fusion step 4 for fusing the stirred water and oil.
  • Ionization process water reforming process
  • the molecular aggregate of water as a raw material is subdivided by various methods. Along with the subdivision, the water is waved so that water molecules are radical and molecular migration is likely to occur.
  • a first method there is a method of subdividing a molecular assembly of water by irradiating water and natural ore with ultrasonic waves.
  • a porous ionized material, natural or artificial ore, and an ion generating material are placed in water so that the material is brought into contact with water in accordance with the convection of the water. Then, the generation of natural or artificial ore and ions is activated by irradiating ultrasonic waves.
  • the redox potential ORP (mv) of water obtained by irradiating this ultrasonic wave is preferably 100 mv to ⁇ 900 mv or less.
  • the redox potential ORP (mv) of ordinary tap water is generally 500 mV to 600 mv.
  • ultrasonic waves of 15 kHz to 35 kHz are irradiated.
  • one of the effects of irradiating with ultrasonic waves is that oxygen is released at the time of ultrasonic irradiation and the hydrogen content is improved.
  • natural ores used for water reforming include those that emit far-infrared rays and waves, so that water subdivision and water resemble a subcritical state in water reforming. An effect is obtained.
  • ORP oxidation-reduction potential
  • the temperature change means that water is repeatedly raised or lowered from the lower limit of 10 ° C. to the upper limit of 100 ° C. or more. It is desirable to do this several times a day. Then, the time required for water reforming is set from one day to one month to determine whether the water is changing. Care must also be taken in the indoor environment where water is reformed.
  • the indoor temperature is preferably 20 ° C. and the humidity is preferably around 30%.
  • PH PH
  • ORP is preferably oxidized and reduced from the tap water at the time of input, and the ORP value is preferably lowered. After the water is reformed, an additive to be added to the water is added.
  • additive sodium is added to water. Addition of sodium sufficiently exhibits the role of an additive at an addition amount of less than 0.001% by weight to 1% by weight with respect to water.
  • Add magnesium chloride as an additive. Addition of magnesium sufficiently exhibits the role as an additive at an arbitrary addition amount with respect to water. 0.01% by weight to 1% by weight is a standard, but may be more.
  • Each additive is added by adding the additive to a stirrable container or tank after the water reforming process in which reforming, ionization and water fragmentation are performed as described above, and stirring and mixing the mixture. Execute.
  • the enzyme is added in an amount of 0.004 wt% to 2 wt% with respect to the respective volumes of fuel oil and water.
  • the aqueous hydrogen peroxide solution is added to less than 0.001% by weight to 0.1% by weight with respect to water.
  • the ultra high-quality hertz band refers to a frequency band of several hundred kHz or more, which is a normal ultrasonic band. For example, irradiation with a terahertz band frequency is also effective. Ultrasonic waves, far infrared rays, high frequency band sound waves, high frequency band light rays, etc. are emitted to the modified water to generate an atmosphere in which the properties of water simulate a subcritical point state. The water becomes hydrophilic with oil that satisfies certain conditions, and its interfacial tension is lost.
  • the temperature condition that makes the modified water effective for oil-water fusion is 4 ° C to 70 ° C.
  • the pressure condition that makes the modified water effective for oil-water fusion is 1 Pa to 5 Pa.
  • stirring and mixing step the water modified as described above is mixed with water and oil after adding a special additive.
  • the operation is performed as follows. First, only the oil is put into the stirring and mixing tank, and this oil is circulated through the stirring and mixing tank OHR mixer. The modified water and the water charged with the additive are added and mixed little by little. At that time, the pressure to the OHR mixer needs to be 1 Pa (atmospheric pressure) or more.
  • the temperature of the oil and water, the environment in the tank, and the OHR mixer are set to 15 ° C to 80 ° C.
  • the fusion process will be described.
  • the water and oil after stirring and mixing are fused as described above.
  • the operation is performed as follows. That is, the stirring and mixing step is repeatedly performed on the mixed oil and water while heating (40 ° C. to 80 ° C.) and pressure (1.5 Pa to 20 Pa) are added.
  • the fuel obtained by diluting the obtained oil with water never separates into water and oil, and exhibits a function as a liquid fuel. This takes about 15 to 30 minutes.
  • Fusion Step Next after stirring and mixing are performed as described above, the process proceeds to a step of circulating through the fusion tank, which is previously installed adjacent to the tank.
  • the adjacent fusion tank is a cylindrical tube that needs to have a certain length and thickness.
  • natural ore is laid in the tube and water and oil are reformed. It also serves to promote the reaction in the fusion process. Oil and water are put into a fusion tank and stirred and circulated, and the agitation tank is stirred and circulated, and the piping path is passed through the cylindrical filter on which the natural ore is placed for 10 to 30 minutes, or The process is performed further.
  • Suitable temperature for the fusion process is 35 ° C-60 ° C.
  • the pressure is 0.5 Pa to 20 Pa.
  • Embodiment 2 As a method different from the reforming step 1 in the first embodiment, condensed mineral extracted from natural ore is added to water as a raw material. By adding ore minerals contained in a plurality of fine components, reforming is promoted and water is refined. Since this ore mineral has the action of promoting the effect of oxygen deficiency for providing water refinement, ionization, and calorific value, it can be selected as one of effective means for ionizing and reforming water. In addition, the water produced
  • a fuel obtained by diluting oil obtained by mixing oil and improved water with water does not separate into water and oil once synthesized, and has high transparency, and is a normal oil. It has characteristics that are indistinguishable from those of other fuels, and is useful for effective use of fossil fuels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

【課題】水と油を合成し、2度と水と油に分離せず、しかも透明度が高い油を水で希釈した燃料の製造方法を提供すること。 【解決手段】燃料油と水とを混合する油を水で希釈した燃料の製造方法において、水の分子集合体を細分化してイオン化するイオン化工程と、 燃料油を撹拌混合タンクに投入し、この燃料油をミキサーにより循環させつつ、前記イオン化され、添加剤を投入された水を混合し且つ撹拌する撹拌混合工程と、 撹拌混合された燃料油及び水に対し、15℃~80℃の温度と1.5Pa~20Paの気圧を加えた状態で撹拌混合工程を繰り返す融合工程とを備えた。 これにより、イオン化工程及び添加剤投入工程により水が大幅に改善され、燃料油との親和性が向上し、燃料油の増大させることができる。

Description

油を水で希釈した燃料の製造方法
本発明は、添加剤及び天然鉱石または人工鉱石に接触させた燃料油に、添加剤及び天然鉱石または人工鉱石等により改善された水を加えた油を水で希釈した燃料(加水燃料)の製造方法に関するものである。
近年、地球温暖化の阻止は世界の課題となり、特に化石燃料の消費によって排出される二酸化炭素(CO2)の低減を図る技術について、種々提案がされている。
このような中で、化石燃料の特長を生かしつつ環境負荷の低減、コスト低下を期待する方法として、従来からあった燃料油と水と界面活性剤とを混合して生成する油を水で希釈した燃料に関する技術が見直されているが、そのような従来技術としては下記特許文献1に記載されたものがある。
この、特許文献1の技術は、酵素を添加した油水に天然鉱石または人工鉱石を接触させ、同時に超音波振動を与えながら攪拌・混合し、さらに撹拌混合された燃料油及び水を30℃~150℃に加熱し、また圧力1.5Pa(気圧)~20Paで加圧するエマルジョン燃料の製造方法である。この製造方法により、加水比率50%以上のエマルジョン燃料の油水分離現象を防止でき、また油水が高度に融合され、エマルジョン状態でも透明にできる上、安定した高カロリーの燃料を実現している。
特許第4682287号公報
しかしながら、上記特許文献1に記載された発明では、油水分離現象を防止できる期間に限度があり、2~3か月を経過すると油水分離現象が生じる可能性がある。また、油を水で希釈した燃料の透明度合いも油の透明度と比較すると低い値になるという問題点があった。
本発明は、上述したような事情に鑑みてなされたものであり、その目的は、1度合成されたら2度と水と油に分離せず、しかも透明度が高く、通常の油と区別がつかないほどの油を水で希釈した燃料の製造方法を提供することである。
すなわち本発明の油を水で希釈した燃料の製造方法は、上記目的を達成するため、燃料油と水とを混合する油を水で希釈した燃料の製造方法において、水の分子集合体を細分化してイオン化するイオン化工程と、
望ましくは水に添加剤として、ナトリウム、塩化マグネシム、マグネシウム、を添加する添加剤投入工程と、
燃料油を撹拌混合タンクに投入し、この燃料油をミキサーにより循環させつつ、前記イオン化され、添加剤投入された水を混合し且つ撹拌する撹拌混合工程と、
撹拌混合された燃料油及び水に対し、15℃~80℃の温度と1.5Pa~9Paの気圧を加えた状態で撹拌混合工程を繰り返す融合工程とを備えたことを特徴とする。
この方法において、上記イオン化工程及び添加剤投入工程により水が大幅に改善されるため、燃料油との親和性が向上し、燃料油の増大化を図ることができる。
前記イオン化工程においては、水に15kHz~35kHzの超音波を照射させる。
また、このイオン化工程においては、水の分子集合体を細分化することが目的である。
また、前記添加剤投入工程においては、水の体積に対して0.004重量%~2重量%添加してもよく、或いは前記ナトリウム、塩化マグネシウムは、水に対して0.001重量%未満~0.1重量%添加してもよい。マグネシウムは任意の数量を投入できる。
本発明によれば、上記構成により、1度合成されたら2度と水と油に分離せず、しかも透明度が高く、通常の油と区別がつかないほどの油を水で希釈した燃料が実現される。また、本発明の油を水で希釈した燃料は既存の燃料油と単位分量当たりの発熱量が同等又はそれ以上であり、さらに既存の燃料油と比較して、燃焼後の燃焼室、排気管等の劣化や腐食が少ないといった効果がある。また本発明の油を水で希釈した燃料は、完全燃焼性に優れ、一酸化炭素が生成されにくく、また二酸化炭素の排出量も少ないなど、種々の効果がある。
本発明の第1の実施の形態に係る油を水で希釈した燃料の製造方法を説明するフローチャートである。
(実施の形態1)
図1は本発明の第1の実施の形態に係る油を水で希釈した燃料の製造方法を説明するフローチャートである。この図に示されるように、本発明の油を水で希釈した燃料の製造方法は、原料となる水の分子集合体を細分化するイオン化工程(水改質工程)1と、望ましくは水に添加剤を投入する添加剤投入工程2と、水と燃料油(以下、単に油という)を混合して撹拌する撹拌混合工程3と、撹拌された水と油を融合させる融合工程4とを有する。
イオン化工程(水改質工程)
イオン化工程(水改質工程)1では、種々の方法で原料となる水の分子集合体を細分化する。細分化とともに、水に波動を与えて水分子がラジカルで分子移動が起き易い状態にする。第1の方法としては、水と天然鉱石に超音波を照射させることにより、水の分子集合体を細分化する方法がある。この方法では、多孔質イオン化物質、天然鉱石または人工鉱石、イオン発生材料、を水の中に入れ水の対流に合わせて上記材料に水を接触させるようにする。その後、超音波を照射させることにより天然鉱石または人工鉱石とイオンの発生を活性させる。この超音波を照射して得られる水の酸化還元電位ORP(mv)は、100mv~-900mv以下が好ましい。ちなみに、通常の水道水の酸化還元電位ORP(mv)は500mv~600mvが一般的である。超音波を照射させる工程では、15kHz~35kHzの超音波を照射させる。またこの超音波を照射する効果の一つに、超音波照射時に酸素が放出されて含有水素比率は向上することになる。
また、水改質に使用する天然鉱石などには、遠赤外線や、波動が放出されるものが含まれて、水の改質における水の細分化や水が亜臨界状態に似た状態になる効果が得られる。
加えて、この水に添加剤として、ナトリウム、塩化マグネシム、マグネシウム、を添加する添加剤投入することにより、水の酸化還元電位(ORP)はマイナス000mv~-900mvになることが望ましい。
水改質工程手順
はじめに、日本における水道水基準の水を改質タンク内に投入し、天然鉱石に水を接触させる。1日に数度の温度変化を設けて、一定の水流を保ちながら水をタンク内で循環させる。
温度変化とは、水が10℃の下限から、100℃以上の上限まで、温度を上げたり下げたりするのを繰り返すことである。
これを、日に数度行うことが望ましい。
そして、水の改質に要する時間を1日から1ヶ月と設けて水が変化しているか判断する。水を改質する室内環境にも注意を図らなければならない。室内温度は20℃、湿度は30%前後が望ましい。
水の改質の変化を判断するには、PH(ペーハー)、ORPの数値を計測して判断する。水道水を基準として、数値の変化が大きく変わることが確認に必要で、PHなら、弱アルカリに変化するか、天然鉱石の配合によっては、弱酸性に変化する。変化はそのどちらでも良いものとする。ORPは、投入時の水道水より酸化還元していてORPの数値は下降するのが望ましい。
水は改質された後は、水に投入する添加剤を投入する。
添加剤としては水にナトリウムを添加する。ナトリウムの添加は、水に対して0.001重量%未満~1重量%の添加量で添加剤としての役目を十分に発揮する。添加剤として塩化マグネシウムを添加する。マグネシウムの添加は、水に対して任意の添加量で添加剤としての役目を十分に発揮する。0.01重量%~1重量%が目安になるが、さらに多くても良い。
それぞれの添加剤の添加方法は、上述のように改質、イオン化及び水細分化が行われた水改質工程の次に撹拌のできる容器又はタンクに添加剤を投入し撹拌混合操作することにより実行する。
前記添加剤投入工程において、前記酵素は、燃料油及び水のそれぞれの体積に対して0.004重量%~2重量%添加するものとする。
また前記添加剤投入工程において、前記過酸化水素水溶液は、水に対して0.001重量%未満~0.1重量%添加するものとする。
水改質工程
添加剤を投入後、PHとORPの数値はさらに変化する。PHは、両極のどちらかの方向に行く。
ORPの数値は、添加剤投入前よりも下降する。
日に何度も低温と高温に水がなるように繰り返しながら、添加剤投入後も水改質工程を数日行う。
水改質工程の完成の目安として、PHは、次第に中性値に戻ることになることを確認することが必要である。
またORPは、-500mv以上降下していることを確認することが必要である。
上記の2つの条件が揃うことが出来て次の工程に進む。
水改質の安定化
前項までの水改質が行われた後は、改質された水の重量30%を上限として、改質されていない水を投入した時に、水が触媒として働きかけて、新規に投入した水、所謂水道水は、瞬時に水の改質が行われるという反応を起こす。
改質された水が、ラジカル反応を起こし、電位が不安定な状態になる。そこに新規の水を投入すると投入された水は、すぐに改質された水に融合しPH、ORPともに改質された水の状態と同じ数値を示す。
改質水に投入してある天然鉱石に向けて超音波を照射する。
天然鉱石は励起し、石の持てる波動や遠赤外線、超高質ヘルツ帯を放射する。超高質ヘルツ帯とは、通常の超音波帯である数100kHz以上の周波数帯のことを指す。
例えば、テラヘルツ帯の周波数を照射することも有効である。
改質された水に超音波や、遠赤外線、高周波帯音波、高周波帯光線などを放射させ、水の性質が亜臨界点状態に擬似するような雰囲気を生成する。
その水は、ある条件を満たした油とは親水性の状態になり、その界面張力はなくなる。
改質した水を油水融合に有効とする温度条件として4℃~70℃である。
改質した水を油水融合に有効とする圧力条件として1Pa~5Paである。
撹拌混合工程
次に撹拌混合工程について説明する。この撹拌混合工程では、上述のように改質された水は、特殊な添加剤投入後に水と、油とを混合する。その操作は次のようにして行う。先ず、油のみを撹拌混合タンクに投入し、この油を撹拌混合タンクOHRミキサーを通し循環させる。そこへ、前記改質された水と、添加剤投入された水を少量ずつ添加混合し融合させていく。その時のOHRミキサーへの圧力は1Pa(気圧)以上が必要である。油水とタンク内環境とOHRミキサーの温度は15℃~80℃に設定する。
融合工程
次に融合工程について説明する。この融合工程では、上述のように撹拌混合後の水と油を融合する。その操作は次のようにして行う。すなわち、加温(40℃~80℃)、加圧(1.5Pa~20Pa)を加えたまま、混合されている油と水に対し撹拌混合工程を繰り返し行う。これにより得られた油を水で希釈した燃料は2度と水と油に分離せず、液体燃料としての機能を発揮する。これに要する時間は15分から30分程度を必要とする。
融合工程
次に前述のように攪拌と混合を繰り化した後に、あらかじめタンクに隣接して設置してある、融合タンクを経由して循環を行う工程に移る。隣接した融合タンクとは、一定の長さと太さが必要な円筒状の筒であり、フィルターのようにその筒の中には天然鉱石が敷き詰められて、水と油が改質された工程における反応を融合工程においても促進させる役目になる。
油と水を融合タンク内に投入し、攪拌、循環させる工程とその融合タンクに攪拌、循環しながら配管経路を、前述した天然鉱石を配置した筒状フィルターを通過させて10分から30分、あるいはそれ以上その工程を行う。
融合工程に適した、温度は35℃~60℃である。
融合工程に適した、圧力は0.5Pa~20Paである。
(実施の形態2)
上記第1の実施の形態における改質工程1とは別の方法として、原料となる水に、天然鉱石より抽出した、凝縮ミネラルを添加する。複数の微細成分が含有する鉱石ミネラルを添加することで、改質の促進と水の微細化も行われる。この鉱石ミネラルには水の微細化、イオン化、発熱量を設けるための酸素欠乏効果を促す作用が存在することから、水のイオン化、改質の有効手段の一つとして選択し得る。なお、上述のようにして生成された水及び蒸留水は、通常、水は通電しないのに対して、鉱石ミネラルの添加により通電性を有する。
そして、原料となる水に、天然鉱石より抽出した凝縮ミネラルを添加することにより、超音波を照射しなくても水のイオン化を十分に促進させることが出来る場合は、超音波の照射によるイオン化、改質工程を省くことが出来る。
本発明において、油と改善された水を混合して得られた油を水で希釈した燃料は、1度合成されたら2度と水と油に分離せず、しかも透明度が高く、通常の油と区別がつかないほどの特性を持ち、化石燃料の有効利用の上で有用である。
1 イオン化工程
2 添加剤投入工程
3 撹拌混合工程
4 融合工程

Claims (9)

  1. 燃料油と水とを混合する油を水で希釈した燃料の製造方法において、水の分子集合体を細分化してイオン化するイオン化工程と、
    燃料油を撹拌混合タンクに投入し、この燃料油をミキサーにより循環させつつ、前記イオン化され、添加剤を投入された水を混合し且つ撹拌する撹拌混合工程と、
    撹拌混合された燃料油及び水に対し、15℃~80℃の温度と1.5Pa~20paの気圧を加えた状態で撹拌混合工程を繰り返す融合工程とを備えたことを特徴とする油を水で希釈した燃料の製造方法。
  2. 燃料油と水とを混合する油を水で希釈した燃料の製造方法において、水の分子集合体を細分化してイオン化するイオン化工程と、
    水に添加剤として酵素、水酸化ナトリウム、水酸化カリウム、塩化マグネシム、ナトリウム、マグネシウム、過酸化水素水溶液を添加する添加剤投入工程と、
    燃料油を撹拌混合タンクに投入し、この燃料油をミキサーにより循環させつつ、前記イオン化され、添加剤投入された水を混合し且つ撹拌する撹拌混合工程と、
    撹拌混合された燃料油及び水に対し、40℃~80℃の温度と3Paの気圧を加えた状態で撹拌混合工程を繰り返す融合工程とを備えたことを特徴とする油を水で希釈した燃料の製造方法。
  3. 前記イオン化工程においては、原料となる水に10kHz~60kHzの超音波を照射させ、また200kHz以上の超音波を照射させる、二つの照射動作を行うことにより、水の分子集合体を細分化することを特徴とする請求項1または2記載の油を水で希釈した燃料の製造方法。
  4. 前記イオン化工程においては、原料となる水にSPG膜乳化技術を加えることにより、水の分子集合体を細分化することを特徴とする請求項1ないし3のいずれかに記載の油を水で希釈した燃料の製造方法。
  5. 前記イオン化工程においては、原料となる水に天然鉱石より抽出した、凝縮ミネラルを添加することを特徴とする請求項1ないし4のいずれかに記載の油を水で希釈した燃料の製造方法。
  6. 前記イオン化工程においては、原子状炭素の粉末と水とを混合して生成されたマイナスイオン水を、原料として用いるか、または原料となる水に添加することを特徴とする請求項1ないし5のいずれかに記載の油を水で希釈した燃料の製造方法。
  7. 前記添加剤投入工程において、前記酵素は、燃料油及び水のそれぞれの体積に対して0.004重量%~2重量%添加することを特徴とする請求項2記載の油を水で希釈した燃料の製造方法。
  8. 前記添加剤投入工程において、前記水酸化ナトリウムは、水に対して0.001重量%未満~0.1重量%添加することを特徴とする請求項2記載の油を水で希釈した燃料の製造方法。
  9. 前記添加剤投入工程において、前記過酸化水素水溶液は、水に対して0.001重量%未満~0.1重量%添加することを特徴とする請求項2記載の油を水で希釈した燃料の製造方法。
PCT/JP2016/076725 2016-09-09 2016-09-10 油を水で希釈した燃料の製造方法 WO2018047318A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-176833 2016-09-09
JP2016176833A JP6434465B2 (ja) 2016-09-09 2016-09-09 油を水で希釈した燃料の製造方法

Publications (1)

Publication Number Publication Date
WO2018047318A1 true WO2018047318A1 (ja) 2018-03-15

Family

ID=61562483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076725 WO2018047318A1 (ja) 2016-09-09 2016-09-10 油を水で希釈した燃料の製造方法

Country Status (2)

Country Link
JP (1) JP6434465B2 (ja)
WO (1) WO2018047318A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477148A (zh) * 2021-07-28 2021-10-08 中改低碳科技(上海)有限公司 一种燃油添加剂在线式太赫兹超声均质器及生产装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355969A (en) * 1980-05-29 1982-10-26 Fnd Company Electrically charged, emulsified carrier-fuel particle combustion
JP2002018439A (ja) * 1995-08-01 2002-01-22 Matsuo Yoshiaki ビタミンc入りアルカリ性電解水
JP2006182890A (ja) * 2004-12-27 2006-07-13 Spg Techno Kk エマルション燃料の生成方法及びその装置または燃料改質装置。
JP2008045022A (ja) * 2006-08-15 2008-02-28 Nobuaki Ando エマルジョン燃料
JP4682287B1 (ja) * 2010-06-11 2011-05-11 佳右 長尾 加水燃料の製造方法及び製造装置
JP2014159538A (ja) * 2013-02-19 2014-09-04 Gtr:Kk 小型化した画期的なエマルジョン燃料装置
WO2015037678A1 (ja) * 2013-09-12 2015-03-19 Hattori Mitsuharu 相溶性透明含水油の製造方法及び相溶性透明含水油製造装置
JP2016003297A (ja) * 2014-06-18 2016-01-12 合同会社ネクストエナジー 加水燃料の製造方法及び加水燃料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355969A (en) * 1980-05-29 1982-10-26 Fnd Company Electrically charged, emulsified carrier-fuel particle combustion
JP2002018439A (ja) * 1995-08-01 2002-01-22 Matsuo Yoshiaki ビタミンc入りアルカリ性電解水
JP2006182890A (ja) * 2004-12-27 2006-07-13 Spg Techno Kk エマルション燃料の生成方法及びその装置または燃料改質装置。
JP2008045022A (ja) * 2006-08-15 2008-02-28 Nobuaki Ando エマルジョン燃料
JP4682287B1 (ja) * 2010-06-11 2011-05-11 佳右 長尾 加水燃料の製造方法及び製造装置
JP2014159538A (ja) * 2013-02-19 2014-09-04 Gtr:Kk 小型化した画期的なエマルジョン燃料装置
WO2015037678A1 (ja) * 2013-09-12 2015-03-19 Hattori Mitsuharu 相溶性透明含水油の製造方法及び相溶性透明含水油製造装置
JP2016003297A (ja) * 2014-06-18 2016-01-12 合同会社ネクストエナジー 加水燃料の製造方法及び加水燃料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477148A (zh) * 2021-07-28 2021-10-08 中改低碳科技(上海)有限公司 一种燃油添加剂在线式太赫兹超声均质器及生产装置

Also Published As

Publication number Publication date
JP6434465B2 (ja) 2018-12-05
JP2018039953A (ja) 2018-03-15

Similar Documents

Publication Publication Date Title
Petrucci et al. On the ability to electrogenerate hydrogen peroxide and to regenerate ferrous ions of three selected carbon-based cathodes for electro-Fenton processes
JP4551944B2 (ja) 油分乳化物
JP4682287B1 (ja) 加水燃料の製造方法及び製造装置
WO2017204255A1 (ja) 液体処理装置
JP6434465B2 (ja) 油を水で希釈した燃料の製造方法
JP2016003297A (ja) 加水燃料の製造方法及び加水燃料
Xue et al. Electrolytic control of hydrogen peroxide release from calcium peroxide in aqueous solution
US20180086997A1 (en) Hydrated Fuel Production Method And Production Apparatus
JP2017119775A (ja) 新燃料、新燃料製造装置及び新燃料の製造方法
WO2018062345A1 (ja) 炭化水素系燃料油に水を添加して炭化水素系合成燃料を製造する方法
JP6541230B2 (ja) 油水融合燃料の製造方法
JP2001019983A (ja) 水と油との混合物であるエマルジョンの製造装置およびエマルジョンの製造方法
Rambeau et al. Management of viscosity of the back produced viscosified water
JPH11140470A (ja) 水−化石燃料混合エマルジョン
JP6128453B1 (ja) 加水燃料の製造方法及び製造装置
JP2019189870A (ja) 加水燃料の製造方法及び製造装置
Zhao et al. Study on the experiment and reaction kinetics of sulfur removal from coal by microorganisms
Hasiri et al. Efficiency of oil separation and demulsification following sonication gel degradation: Influence of Cr (III) ions, NaCl concentrations, and sodium-based retarders
JP2022019473A (ja) 加水融合燃料の製造方法
Feng et al. Contribution of deep sourced carbon from hydrocarbon seeps to sedimentary organic carbon: Evidence from stable and radiocarbon isotopic compositions
WO2022239258A1 (ja) 化石資源増量装置
Tissot Investigation of the Electrochemical Destruction of X-ray Contrast Media using Boron-‐Doped Diamond Electrodes (BDD)
Suzuki et al. Simple processing technology of leaching water using CO2 microbubbles
CN206814701U (zh) 一种重整燃料的制备装置
Idrees et al. Assessment and Upgrading of Preparation Protocols for Emulsified Crude Oils Mimicking Real Produced Water Characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915736

Country of ref document: EP

Kind code of ref document: A1