WO2018044129A1 - Gel polymer electrolyte and lithium secondary battery including same - Google Patents

Gel polymer electrolyte and lithium secondary battery including same Download PDF

Info

Publication number
WO2018044129A1
WO2018044129A1 PCT/KR2017/009622 KR2017009622W WO2018044129A1 WO 2018044129 A1 WO2018044129 A1 WO 2018044129A1 KR 2017009622 W KR2017009622 W KR 2017009622W WO 2018044129 A1 WO2018044129 A1 WO 2018044129A1
Authority
WO
WIPO (PCT)
Prior art keywords
integer
formula
carbon atoms
polymer electrolyte
gel polymer
Prior art date
Application number
PCT/KR2017/009622
Other languages
French (fr)
Korean (ko)
Inventor
안경호
이정훈
오정우
이철행
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL17847054.8T priority Critical patent/PL3361546T3/en
Priority to EP17847054.8A priority patent/EP3361546B1/en
Priority to CN201780003933.8A priority patent/CN108352569B/en
Priority to ES17847054T priority patent/ES2950099T3/en
Priority to US15/771,773 priority patent/US10714791B2/en
Priority claimed from KR1020170112055A external-priority patent/KR102133384B1/en
Publication of WO2018044129A1 publication Critical patent/WO2018044129A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a gel polymer electrolyte and a lithium secondary battery comprising the same.
  • lithium secondary batteries having high energy density and voltage have been commercialized and widely used.
  • the lithium secondary battery may be coated with a positive electrode active material and a negative electrode active material to a current collector with an appropriate thickness, or the active material itself may be formed into a film of an appropriate length, and then wound or laminated together with a separator, which is an insulator, to prepare an electrode assembly. After putting the electrode assembly in a similar container, it is prepared by the process of injecting the electrolyte.
  • Lithium metal oxide is used as the positive electrode active material, and lithium metal, lithium alloy, crystalline or amorphous carbon or carbon composite material is used as the negative electrode active material.
  • a liquid electrolyte particularly an ion conductive liquid electrolyte in which salts are dissolved in a non-aqueous organic solvent, has been mainly used.
  • the gel polymer electrolyte has a disadvantage in that the conductivity of lithium ions is lower than that of a liquid electrolyte composed only of an electrolyte solution.
  • a method of reducing the thickness of the gel polymer electrolyte has been proposed.
  • the first technical problem to be solved by the present invention is to provide a gel polymer electrolyte that can implement a high voltage stability increase and battery resistance reduction effect.
  • a second object of the present invention is to provide a composition for the gel polymer electrolyte.
  • Another object of the present invention is to provide a lithium secondary battery including the gel polymer electrolyte.
  • the matrix polymer provides a gel polymer electrolyte in which a first oligomer including a unit A represented by Formula 1 and a unit B represented by Formula 2 is polymerized to form a three-dimensional network structure.
  • R 1 and R 2 are each independently an alkylene group having 1 to 4 carbon atoms unsubstituted or substituted with fluorine,
  • M, n and o are the number of repeating units
  • n is an integer of any one of 1 to 10,
  • n is an integer of any one of 1 to 10,
  • o is an integer of any one of 1 to 500.
  • R 3 is hydrogen or an alkyl group having 1 to 6 carbon atoms
  • R 4 is an alkylene group having 1 to 6 carbon atoms, -CH 2 -R 6 -CH 2- , or -CH 2 -R 7 -OR 8 -CH 2-, wherein R 6 , R 7 and R 8 are at least 1
  • the above acrylate group is a substituted alkylene group having 1 to 3 carbon atoms
  • R 5 is an alkylene group having 1 to 5 carbon atoms or-(CO-R 9 -O-) r -CO-NH-R 10 -NH-CO-O-, wherein R 9 is an alkylene group having 1 to 10 carbon atoms R 10 is an aliphatic, alicyclic or aromatic hydrocarbon group,
  • r is an integer of any one of 0-3.
  • the aliphatic hydrocarbon group is an alkylene group having 1 to 20 carbon atoms; C1-C20 alkylene group containing an isocyanate group (NCO); An alkoxylene group having 1 to 20 carbon atoms; Alkenylene groups having 2 to 20 carbon atoms; Or an alkynylene group having 2 to 20 carbon atoms, wherein the alicyclic hydrocarbon group is a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms; A substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms containing an isocyanate group (NCO); A cycloalkenylene group having 4 to 20 carbon atoms; Or a heterocycloalkylene group having 2 to 20 carbon atoms, wherein the aromatic hydrocarbon group is a substituted or unsubstituted arylene group having 6 to 20 carbon atoms; Or a heteroarylene group having 2 to 20 carbon atoms.
  • NCO
  • Unit A represented by Formula 1 may be at least one selected from the group consisting of those represented by Formula 1a to Formula 1c.
  • M, n and o are the number of repeating units
  • n is an integer of any one of 1 to 10,
  • n is an integer of any one of 1 to 10,
  • o is an integer of any one of 1 to 500.
  • Unit B represented by Formula 2 may include at least one selected from the group consisting of those represented by Formulas 2a to 2l.
  • r1 is an integer of any one of 1-3.
  • r2 is an integer of any one of 1-3.
  • r3 is an integer of any one of 1-3.
  • r4 is an integer of any one of 1-3.
  • r5 is an integer of any one of 1-3.
  • r6 is an integer of any one of 1-3.
  • r7 is an integer of any one of 1-3.
  • r8 is an integer of any one of 1-3.
  • the molar ratio of unit A to unit B may be 1:90 to 90: 1.
  • the first oligomer may be a compound represented by the following formula (3).
  • R 1 and R 2 are each independently an alkylene group having 1 to 4 carbon atoms unsubstituted or substituted with fluorine,
  • R 3 is hydrogen or an alkyl group having 1 to 6 carbon atoms
  • R 4 is an alkylene group having 1 to 6 carbon atoms, -CH 2 -R 6 -CH 2- , or -CH 2 -R 7 -OR 8 -CH 2-, wherein R 6 , R 7 and R 8 are at least 1
  • the above acrylate group is a substituted alkylene group having 1 to 3 carbon atoms
  • R 5 is an alkylene group having 1 to 5 carbon atoms or-(CO-R 9 -O-) r -CO-NH-R 10 -NH-CO-O-, wherein R 9 is an alkylene group having 1 to 10 carbon atoms R 10 is an aliphatic, alicyclic or aromatic hydrocarbon group,
  • M1, n1, and o1 are the number of repeating units
  • n 1 to 10
  • n1 is an integer of any one of 1 to 10,
  • o1 is an integer of any one of 1 to 500
  • r is an integer of any one of 0-3.
  • the oligomer represented by Formula 3 may be at least one compound selected from the group consisting of compounds represented by Formulas 3a to 3f.
  • n2, o2 are the number of repeat units
  • n2 is an integer of any one of 1 to 10,
  • n2 is an integer of any one of 1 to 10,
  • o2 is an integer of any one of 1-500.
  • n3, n3, and o3 are the number of repeat units
  • n3 is an integer of any one of 1 to 10,
  • n3 is an integer of any one of 1 to 10,
  • o3 is an integer of any one of 1-500.
  • n4, n4, and o4 are the number of repeat units
  • n4 is an integer of any one of 1 to 10,
  • n4 is an integer of any one of 1 to 10,
  • o4 is an integer of any one of 1 to 500
  • r9 is an integer of any one of 1-3.
  • n5 and o5 are the number of repeat units
  • n 1 to 10
  • n5 is an integer of any one of 1 to 10,
  • o5 is an integer of any one of 1 to 500
  • r10 is an integer of any one of 1-3.
  • n6 and o6 are the number of repeat units
  • n 1 to 10
  • n6 is an integer of any one of 1 to 10,
  • o6 is an integer of any one of 1 to 500
  • r11 is an integer of any one of 1-3.
  • n7, n7 and o7 are the number of repeat units
  • n 1 to 10
  • n7 is an integer of any one of 1 to 10,
  • o7 is an integer of any one of 1 to 500,
  • r12 is an integer of any one of 1-3.
  • the gel polymer electrolyte may be methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl methacrylate, hexyl acrylate, hexyl methacrylate.
  • the unit C may be included in less than 50% by weight based on the total content of the first oligomer.
  • the gel polymer electrolyte may further include inorganic particles.
  • Lithium salts Lithium salts, electrolyte solvents, polymerization initiators, and
  • composition for a gel polymer electrolyte of the present invention comprising a first oligomer comprising a unit A represented by the formula (1) and a unit B represented by the formula (2).
  • the first oligomer may be included in an amount of 0.5% to 20% by weight based on the total weight of the composition for gel polymer electrolyte.
  • the gel polymer electrolyte provides a lithium secondary battery including the gel polymer electrolyte of the present invention.
  • the gel polymer electrolyte of the present invention includes a matrix polymer composed of a fluorine-substituted polyether unit and an oligomer including at least one acrylate unit at its end, thereby increasing the degree of freedom of Li ions by anion immobilization and stabilization, thereby improving battery resistance. Higher lithium ion conductivity can be achieved by reducing the effect.
  • a lithium secondary battery having improved stability at high voltage and high temperature may be manufactured.
  • a "repeating unit” means the unit derived from the monomer formed by superposing
  • the repeating unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
  • the gel polymer electrolyte has a high voltage safety and mechanical properties are weak compared to the solid polymer electrolyte, the battery resistance and the resulting ionic conductivity is lower than the liquid electrolyte.
  • studies have been conducted to improve Li + ion conductivity while at the same time securing high voltage stability using a copolymer such as an oligomer.
  • a copolymer such as an oligomer.
  • the oligomeric compound is used, not only is it difficult to control physical properties, but it is difficult to form a uniform polymer in the battery, which makes it difficult to apply to high capacity and large batteries.
  • the present invention has been made to solve these problems by providing a gel polymer electrolyte comprising a matrix polymer formed by oligomer compounds prepared by polymerizing compounds having physical properties that can complement the electrochemical and mechanical properties.
  • the matrix polymer provides a gel polymer electrolyte in which a first oligomer including a unit A represented by Formula 1 and a unit B represented by Formula 2 is polymerized to form a three-dimensional network structure.
  • R 1 and R 2 are each independently an alkylene group having 1 to 4 carbon atoms unsubstituted or substituted with fluorine,
  • M, n and o are the number of repeating units
  • n is an integer of any one of 1 to 10,
  • n is an integer of any one of 1 to 10,
  • o is an integer of either 1 or 500.
  • R 3 is hydrogen or an alkyl group having 1 to 6 carbon atoms
  • R 4 is an alkylene group having 1 to 6 carbon atoms, -CH 2 -R 6 -CH 2- , or -CH 2 -R 7 -OR 8 -CH 2-, wherein R 6 , R 7 and R 8 are at least 1
  • the above acrylate group is a substituted alkylene group having 1 to 3 carbon atoms
  • R 5 is an alkylene group having 1 to 5 carbon atoms or-(CO-R 9 -O-) r -CO-NH-R 10 -NH-CO-O-, wherein R 9 is an alkylene group having 1 to 10 carbon atoms R 10 is an aliphatic, alicyclic or aromatic hydrocarbon group,
  • r is an integer of any one of 0-3.
  • the aliphatic hydrocarbon group is an alkylene group having 1 to 20 carbon atoms; C1-C20 alkylene group containing an isocyanate group (NCO); An alkoxylene group having 1 to 20 carbon atoms; Alkenylene groups having 2 to 20 carbon atoms; Or an alkynylene group having 2 to 20 carbon atoms;
  • the alicyclic hydrocarbon group is a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms; A substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms containing an isocyanate group (NCO); A cycloalkenylene group having 4 to 20 carbon atoms; Or a heterocycloalkylene group having 2 to 20 carbon atoms,
  • the aromatic hydrocarbon group is substituted or unsubstituted arylene group having 6 to 20 carbon atoms; Or a heteroarylene group having 2 to 20 carbon atoms.
  • the first oligomer comprises the unit A derived from a monomer containing a fluorine-substituted ether in the structure, thereby improving the anion stabilization and oxidative safety High voltage safety and battery resistance can be reduced and the ion conductivity can be improved.
  • the unit represented by Formula 1 may be at least one selected from the group consisting of those represented by Formula 1a to Formula 1c as a representative example.
  • M, n and o are the number of repeating units
  • n is an integer of any one of 1 to 10,
  • n is an integer of any one of 1 to 10,
  • o is an integer of any one of 1 to 500, specifically o is an integer of any one of 1 to 100.
  • n, m and o respectively mean the number of repetitions, and the repeating units n, m and o each have a predetermined rule or alternately with no rule. ), Or may be arranged in a graft form or randomly.
  • the first oligomer includes a unit B represented by Chemical Formula 2 in order to improve the mechanical properties by forming a matrix polymer through a polymerization reaction. can do.
  • the unit B represented by Formula 2 may be at least one selected from the group consisting of those represented by Formulas 2a to 2l.
  • r1 is an integer of any one of 1-3.
  • r2 is an integer of any one of 1-3.
  • r3 is an integer of any one of 1-3.
  • r4 is an integer of any one of 1-3.
  • r5 is an integer of any one of 1-3.
  • r6 is an integer of any one of 1-3.
  • r7 is an integer of any one of 1-3.
  • r8 is an integer of any one of 1-3.
  • the first oligomer may include a compound represented by the following Chemical Formula 3 as a representative example.
  • R 1 and R 2 are each independently an alkylene group having 1 to 4 carbon atoms unsubstituted or substituted with fluorine,
  • R 3 is hydrogen or an alkyl group having 1 to 6 carbon atoms
  • R 4 is an alkylene group having 1 to 6 carbon atoms, -CH 2 -R 6 -CH 2- , or -CH 2 -R 7 -OR 8 -CH 2-, wherein R 6 , R 7 and R 8 are at least 1
  • the above acrylate group is a substituted alkylene group having 1 to 3 carbon atoms
  • R 5 is an alkylene group having 1 to 5 carbon atoms or-(CO-R 9 -O-) r -CO-NH-R 10 -NH-CO-O-, wherein R 9 is an alkylene group having 1 to 10 carbon atoms R 10 is an aliphatic, alicyclic or aromatic hydrocarbon group,
  • M1, n1, and o1 are the number of repeating units
  • n 1 to 10
  • n1 is an integer of any one of 1 to 10,
  • o1 is an integer of any one of 1 to 500
  • r is an integer of any one of 1-3.
  • the oligomer represented by Chemical Formula 3 may include at least one compound selected from the group consisting of compounds represented by the following Chemical Formulas 3a to 3f as a representative example.
  • n2, o2 are the number of repeat units
  • n2 is an integer of any one of 1 to 10,
  • n2 is an integer of any one of 1 to 10,
  • o2 is an integer of any one of 1-500.
  • n3, n3, and o3 are the number of repeat units
  • n3 is an integer of any one of 1 to 10,
  • n3 is an integer of any one of 1 to 10,
  • o3 is an integer of any one of 1-500.
  • n4, n4, and o4 are the number of repeat units
  • n4 is an integer of any one of 1 to 10,
  • n4 is an integer of any one of 1 to 10,
  • o4 is an integer of any one of 1 to 500
  • r9 is an integer of any one of 1-3.
  • n5 and o5 are the number of repeat units
  • n 1 to 10
  • n5 is an integer of any one of 1 to 10,
  • o5 is an integer of any one of 1 to 500
  • r10 is an integer of any one of 1-3.
  • n6 and o6 are the number of repeat units
  • n 1 to 10
  • n6 is an integer of any one of 1 to 10,
  • o6 is an integer of any one of 1 to 500
  • r11 is an integer of any one of 1-3.
  • n7, n7 and o7 are the number of repeat units
  • n 1 to 10
  • n7 is an integer of any one of 1 to 10,
  • o7 is an integer of any one of 1 to 500,
  • r12 is an integer of any one of 1-3.
  • the ratio of unit B: unit A for forming the matrix polymer in the oligomer is not particularly limited, but specifically, the molar ratio of unit B: unit A is 1:90 to 90: 1 days. Can be.
  • the weight average molecular weight of the oligomer for forming the gel polymer electrolyte of the present invention may be about 1,000 g / mol to 100,000 g / mol, specifically 1,000 g / mol to 50,000 g / mol.
  • the weight average molecular weight of the oligomer is in the above range, it is possible to effectively improve the mechanical strength of the battery comprising the same.
  • the weight average molecular weight may be measured using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the GPC measurement system alliance 4 instrument is stabilized. Once the instrument is stabilized, inject the standard sample and the sample sample into the instrument to obtain a chromatogram and calculate the molecular weight according to the analytical method (System: Alliance 4, Column: Ultrahydrogel linear x 2, eluent: 0.1M NaNO 3 (pH 7.0) phosphate buffer, flow rate: 0.1 mL / min, temp: 40 °C, injection: 100 ⁇ L)
  • the gel polymer electrolyte of the present invention methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate to further improve the mechanical strength and curing effect ,
  • Butyl methacrylate, hexyl acrylate, hexyl methacrylate, ethylhexyl acrylate, ethylhexyl methacrylate, 2,2,2-trifluoroethyl acrylate, 2,2,2-trifluoroethyl meta Further comprise unit C derived from at least one selected from the group consisting of acrylate, 2,2,3,3-tetrafluoropropyl acrylate, and 2,2,3,3-tetrafluoropropyl methacrylate Can be.
  • the unit C is preferably included in 50 wt% or less, specifically 20 wt% or less based on the total content of the first oligomer. If the content of the unit C exceeds 50% by weight, since the oligomer is contained in an excessive amount to increase resistance, a disadvantage may occur in that the cycle characteristics and the like decrease.
  • the matrix polymer is added to the inorganic particles in the range of 5 to 700 parts by weight, specifically 100 to 400 parts by weight based on 100 parts by weight of the first oligomer. It may contain.
  • the inorganic particles are included in an amount of 700 parts by weight or less in order to effectively improve the electrode and the interface resistance.
  • the inorganic particles are included in an amount of more than 700 parts by weight, pores are formed in the electrolyte, thereby decreasing the ion conductivity effect. If the inorganic particle content is less than 5 parts by weight, the effect of improving the mechanical properties and improving the electrochemical stability is insignificant.
  • the inorganic particles may be impregnated into the matrix polymer to allow the high viscosity solvent to penetrate well through the pores formed by the void space between the inorganic particles. That is, by including the inorganic particles, it is possible to obtain an effect of further improving the wettability to a high viscosity solvent by affinity between the polar substances and capillary phenomenon.
  • inorganic particles having a high dielectric constant and which do not generate an oxidation and / or reduction reaction in an operating voltage range of the lithium secondary battery (for example, 0 to 5V based on Li / Li + ) may be used.
  • the inorganic particles may be BaTiO 3 , BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1 - x La x Zr 1 - y Ti y O 3 (PLZT, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC, Lithium Phosphate (Li 3 PO 4 ), Lithium Titanium Phosphate (Li x1 Ti y1 (PO 4 ) 3 , 0 ⁇ x1 ⁇ 2, 0 ⁇ y1 ⁇ 3), lithium aluminum titanium phosphate (Li
  • inorganic particles or a mixture thereof may be further included.
  • the average particle diameter of the inorganic particles is preferably in the range of about 0.001 to 10 ⁇ m in order to have a proper porosity in a uniform thickness in the gel polymer electrolyte. If the average particle size is less than 0.001 ⁇ m dispersibility may be lowered, if the average particle diameter is more than 10 ⁇ m not only can increase the thickness of the porous coating layer, but also agglomeration of inorganic particles occurs gel polymer electrolyte Exposure to the outside can lower the mechanical strength.
  • the gel polymer electrolyte of the present invention may realize Li + ion conductivity of 2.5 ⁇ 10 ⁇ 4 S / cm or more when measured by an impedance measurement analysis system at a temperature of 25 ° C.
  • the ion conductivity was sandwiched between the prepared gel polymer electrolyte between a pair of platinum electrode disc of 1cm in diameter.
  • the ionic conductivity of the gel polymer electrolyte was measured by AC impedance measurement.
  • the measuring instrument is Bio Logic's VMP3 model and the measurement conditions were performed at room temperature under 10,000-0.1Hz and 10mV amplitude conditions.
  • the gel polymer electrolyte may have a Li + ion migration coefficient of 0.3 or more based on the NMR measurement method at a temperature of 25 °C.
  • the Li + ion mobility factor is Li + ion diffusion also / can be defined as (Li + ion diffusivity + anion diffusivity), in which the Li + ion diffusivity and anion diffusivity is the following equipment and methods Can be measured.
  • a Varian 500 MHz NMR / dual probe was used, and Li + cation diffusion constant was measured by 7 Li diffusion NMR, and anion diffusion constant (anion diffusion constant) was measured by 19 F diffusion NMR.
  • the solvent used was acetone-d 6
  • the inner tube acetone-d 6
  • the pulse sequence was stimulated echo with gradient pulse. Gradient amplitude was adjusted so that the peak intensity at the highest gradient power was about 2 to 5% of the peak intensity at the lowest gradient power. This section was divided into 16 steps in the same way as the solution NMR. Different amplitudes were applied.
  • the gel polymer electrolyte may have a gel content of about 1% by weight or more, specifically about 20% by weight or more at 25 ° C.
  • the gel polymer electrolyte preferably has an unreacted oligomer content of 20 wt% or less relative to the total amount of the reactive oligomer at 25 ° C.
  • the content of the unreacted oligomer may be implemented by implementing a gel polymer electrolyte, then extracting the gel polymer electrolyte with a solvent (acetone), and then checking the extracted solvent through NMR measurement.
  • the electrolyte solution impregnated on the matrix polymer is composed of a conventional lithium salt-containing non-aqueous solvent, wherein the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 , LiC 4 BO 8 , LiTFSI, LiFSI, and LiClO 4 It may include any one selected from the group consisting of or a mixture of two or more thereof, but is not limited thereto.
  • the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 , LiC 4 BO 8 ,
  • the lithium salt may be included in the electrolyte solution in 1M to 2M, or may be included in 10% by weight to 50% by weight relative to the total content of the oligomer.
  • a non-aqueous solvent commonly used in a lithium secondary battery electrolyte may be used.
  • a cyclic carbonate compound, a linear carbonate compound, an alkyl ether compound, or an alkyl acetate compound may be used. It may include at least one or more of the alkyl propionate compound, and the nitrile compound.
  • the cyclic carbonate-based compound may include at least one selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and fluoroethylene carbonate (FEC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • FEC fluoroethylene carbonate
  • the linear carbonate compound is at least selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate It may include one or more.
  • the alkyl ether compound may include at least one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, and ethylpropyl ether.
  • the alkyl acetate-based compound may include at least one selected from the group consisting of methyl acetate, ethyl acetate and propyl acetate.
  • the alkyl propionate compound may include at least one selected from the group consisting of methyl propionate, ethyl propionate, propyl propionate, and butyl propionate.
  • the nitrile compound is acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzonitrile, 4-fluorobenzonitrile And at least one selected from the group consisting of difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile.
  • propylene carbonate and ethylene carbonate which are cyclic carbonates in the carbonate electrolyte solvent, may be preferably used because they have high dielectric constants and dissociate lithium salts in the electrolyte well, such as ethylmethyl carbonate and diethyl carbonate.
  • a low viscosity, low dielectric constant linear carbonate such as dimethyl carbonate is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be made, and thus it can be used more preferably.
  • the electrolyte solvent may improve the performance by adding a conventional additive used in the electrolyte solution.
  • a conventional additive used in the electrolyte solution for example, vinylene carbonate (VC), 1,3-propane sultone (PS), succinitrile (SN), ethylene sulfate (ESa), 1,3-propenesultone (PRS), fluoroethylene carbonate (FEC) Adiponitrile (ADN), LiPO 2 F 2 , lithium difluoro bis (oxalato) phosphate (LiODFB), lithium bis (oxalato) borate (LiBOB), (trimethylsilyl) propyl phosphate (TMSPa), General additives such as (trimethylsilyl) propyl phosphite (TMSPi), TFEPa, and TFEPi may be further included without limitation.
  • the gel polymer electrolyte of the present invention includes a matrix polymer formed by the oligomer, thereby increasing not only mechanical properties but also high voltage safety and reducing battery resistance and thus The ion conductivity improvement effect can be ensured. Therefore, a lithium secondary battery having improved lifespan characteristics and capacity characteristics can be manufactured.
  • a protective layer composed of a polymer on the surface of the positive electrode and the negative electrode or by using a polymer structure to suppress side reactions through anion stabilization and to increase the adhesion between the electrodes can suppress the gas generation inside the battery at high temperature.
  • stability improvement effects such as overcharging through strengthening the separator through the gel polymer polymer, thereby improving penetration stability, flame retardancy, and volatility.
  • composition for a gel polymer electrolyte comprising a first oligomer comprising a unit A represented by the formula (1) and a unit B represented by the formula (2).
  • the first oligomer may be included in an amount of 0.5 wt% to 20 wt%, more preferably 0.5 wt% to 10 wt%, based on the total weight of the composition for gel polymer electrolyte. If less than 0.5% by weight of the gel polymer is difficult to be difficult to express the characteristics of the gel polymer electrolyte, if it exceeds 20% by weight may increase the resistance due to the excessive content of the oligomer may lower the battery performance.
  • the gel polymer electrolyte of the present invention can be produced from the gel polymer electrolyte composition using a polymerization method known in the art.
  • the polymerization initiator used for this reaction may be used conventional polymerization initiator known in the art.
  • Non-limiting examples of the polymerization initiator are benzoyl peroxide, acetyl peroxide, dilauryl peroxide, Di-tert-butyl peroxide, t-butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide And organic peroxides such as hydrogen peroxide, hydroperoxides, 2,2'-azobis (2-cyanobutane), 2,2'-azobis (methylbutyronitrile), AIBN ( Azo compounds such as 2,2'-Azobis (iso-butyronitrile) and AMVN (2,2'-Azobisdimethyl-Valeronitrile), and the like, but are not limited thereto.
  • organic peroxides such as hydrogen peroxide, hydroperoxides, 2,2'-azobis (2-cyanobutane), 2,2'-azobis (methylbutyronitrile), AIBN ( Azo compounds such as 2,2'-Azobis (iso-but
  • the polymerization initiator is decomposed by heat in a battery, such as, but not limited to, 30 ° C. to 100 ° C., or decomposed at room temperature (5 ° C. to 30 ° C.) to form radicals, and the polymerizable oligomer is acrylate by free radical polymerization.
  • the gel polymer electrolyte may be formed by reacting with the compound.
  • the polymerization initiator may be used in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of the oligomer. If the polymerization initiator exceeds 20 parts by weight, gelation may occur too quickly or the unreacted initiator remains after the gel polymer electrolyte composition is injected into the battery, which adversely affects battery performance. Conversely, if the polymerization initiator is less than 0.01 part by weight. There is a problem that gelation does not work well.
  • the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO It may include any one selected from the group consisting of 3 Li, LiC (CF 3 SO 2 ) 3 , LiC 4 BO 8 , LiTFSI, LiFSI, and LiClO 4 or a mixture of two or more thereof, but is not limited thereto. .
  • the solvent for the electrolyte may be a non-aqueous solvent commonly used in electrolytes for lithium secondary batteries, and examples thereof include cyclic carbonate compounds, linear carbonate compounds, alkyl ether compounds, and alkyl acetate compounds. It may include at least one or more of the alkyl propionate compound, and the nitrile compound.
  • carbonate compounds which are typically cyclic carbonates, linear carbonates or mixtures thereof may be included.
  • composition for a gel polymer electrolyte according to an embodiment of the present invention can implement such physical properties known in the art, in addition to the components described above, in order to further impart a performance such as an efficiency increase and a resistance reduction effect of the gel reaction. And other additives may optionally be further contained.
  • general additives such as VC, VEC, PS, SN, AdN, ESa, PRS, FEC, LiPO 2 F 2 , LiODFB, LiBOB, TMSPa, TMSPi, TFEPa, and TFEPi may be applied.
  • It provides a lithium secondary battery comprising the gel polymer electrolyte of the present invention as the polymer electrolyte.
  • the gel polymer electrolyte is formed by polymerizing the composition for gel polymer electrolyte according to a conventional method known in the art.
  • the gel polymer electrolyte may be formed by in-situ polymerization of the composition for gel polymer electrolyte in the secondary battery.
  • Injecting the composition for the gel polymer electrolyte according to the polymerization may include the step of forming a gel polymer electrolyte.
  • thermo polymerization reaction in the lithium secondary battery is possible through the E-BEAM, gamma rays, room temperature / high temperature aging process, according to one embodiment of the present invention can be carried out through thermal polymerization.
  • the polymerization time takes about 2 minutes to 12 hours, the thermal polymerization temperature may be 30 to 100 °C.
  • the in-situ polymerization reaction in a lithium secondary battery is added to a predetermined amount of the polymerization initiator and the oligomer in an electrolyte solution containing a lithium salt, and then injected into a battery cell.
  • the polymerization is carried out by heating to 40 to 80 °C for 1 to 20 hours, the gel polymer electrolyte contained in the form of a gel is prepared when the lithium salt-containing electrolyte is subjected to gelation.
  • the lithium secondary battery according to an embodiment of the present invention has a charge voltage of 3.0V to 5.0V, excellent capacity characteristics of the lithium secondary battery in both the normal voltage and the high voltage region.
  • the electrode constituting the lithium secondary battery can be manufactured by a conventional method known in the art.
  • a slurry may be prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersant in an electrode active material, and then applying the coating (coating) to a current collector of a metal material, compressing, and drying the electrode to prepare an electrode.
  • the positive electrode may be manufactured by forming a positive electrode mixture layer on a positive electrode current collector.
  • the cathode mixture layer may be formed by coating a cathode slurry including a cathode active material, a binder, a conductive material, a solvent, and the like on a cathode current collector, followed by drying and rolling.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and may specifically include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel or aluminum. have. More specifically, the lithium composite metal oxide is a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxide (eg, LiCoO 2, etc.), lithium-nickel oxide (for example, LiNiO 2 and the like), lithium-nickel-manganese-based oxide (for example, LiNi 1-Y9 Mn Y9 O 2 (here, 0 ⁇ Y9 ⁇ 1), LiMn 2-z4 Ni z4 O 4 ( here, 0 ⁇ Z4 ⁇ 2) and the like), lithium-nickel-cobalt oxide (e.g., LiNi 1-Y10 Co Y10 O 2 (here, 0 ⁇ Y10 ⁇ 1) and the like), lithium-man
  • the lithium composite metal oxide may be LiCoO 2 , LiMnO 2 , LiNiO 2 , or lithium nickel manganese cobalt oxide (for example, Li (Ni 1/3 Mn 1/3 Co 1). / 3) O 2, Li ( Ni 0.6 Mn 0.2 Co 0.2) O 2, Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2, and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 , or the like, or lithium nickel cobalt aluminum oxide (eg, Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2 , and the like.
  • Li ( Ni 0.6 Mn 0.2 Co 0.2) O 2 Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2
  • the cathode active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of solids in the cathode slurry.
  • the binder is a component that assists in bonding the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of solids in the positive electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene terpolymer
  • EPDM ethylene-propylene-diene terpolymer
  • the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of solids in the positive electrode slurry.
  • Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • Specific examples of commercially available conductive materials include Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, Ketjenblack, and EC, which are acetylene black series. (Armak Company), Vulcan XC-72 (manufactured by Cabot Company), and Super P (manufactured by Timcal).
  • the solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that becomes a desirable viscosity when including the positive electrode active material and optionally a binder and a conductive material.
  • NMP N-methyl-2-pyrrolidone
  • the concentration of the solids in the positive electrode active material and, optionally, the slurry including the binder and the conductive material may be 40 wt% to 60 wt%, preferably 40 wt% to 50 wt%.
  • the negative electrode may be prepared by forming a negative electrode mixture layer on the negative electrode current collector.
  • the negative electrode mixture layer may be formed by coating a negative electrode slurry including a negative electrode active material, a binder, a conductive material, a solvent, and the like on a negative electrode current collector, followed by drying and rolling.
  • the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode active material is lithium-containing titanium composite oxide (LTO); Carbon-based materials such as hardly graphitized carbon and graphite carbon; Li x10 Fe 2 O 3 (0 ⁇ x10 ⁇ 1 ), Li x11 WO 2 (0 ⁇ x11 ⁇ 1), Sn x12 Me 1 - x12 Me 'y12 O z (Me: Mn, Fe, Pb, Ge; Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 ⁇ x12 ⁇ 1;1 ⁇ y12 ⁇ 3; 1 ⁇ z12 ⁇ 8) Metal complex oxides such as these; Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4
  • the negative active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of solids in the negative electrode slurry.
  • the binder is a component that assists the bonding between the conductive material, the active material and the current collector, and is typically added in an amount of 1 to 30 wt% based on the total weight of solids in the negative electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20 wt% based on the total weight of solids in the negative electrode slurry.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the solvent may include an organic solvent such as water or NMP, alcohol, etc., and may be used in an amount that becomes a desirable viscosity when including the negative electrode active material and optionally a binder and a conductive material.
  • concentration of the solids in the slurry including the negative electrode active material and, optionally, the binder and the conductive material may be 50 wt% to 75 wt%, preferably 50 wt% to 65 wt%.
  • a separator is selectively introduced between the anode and the cathode.
  • the separator serves to block internal short circuits of both electrodes and to impregnate an electrolyte, to prepare a separator composition by mixing a polymer resin, a filler, and a solvent, and then directly coating and separating the separator composition on an electrode to separate the separator film.
  • the separator film separated from the support may be formed by laminating on the electrode.
  • the said polymer resin is not specifically limited, For example, Olefin type polymers, such as a chemical resistance and hydrophobic polypropylene; A composite porous separator in which an inorganic material is added to the porous separator substrate; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • Olefin type polymers such as a chemical resistance and hydrophobic polypropylene
  • a composite porous separator in which an inorganic material is added to the porous separator substrate Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • the pore diameter of the porous separator is generally 0.01 to 50 ⁇ m, porosity may be 5 to 95%.
  • the thickness of the porous separator may generally be in the range of 5 to 300 ⁇ m.
  • the external shape of the lithium secondary battery according to an embodiment of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • electrochromic device comprising the gel polymer electrolyte of the present invention.
  • the first electrode and the second electrode may have a structure in which a transparent conductive layer is formed on a substrate
  • the electrochromic device may include a flexible substrate and a rigid substrate on opposite surfaces of the electrolyte.
  • the gel polymer electrolyte of the present invention when applied for flexibility and durability of the color change device and freedom of design, it is possible to secure ion conductivity and durability required for driving the device.
  • the substrate and the transparent conductive layer are not particularly limited as long as they are known in the art.
  • the substrate include glass and transparent plastics (polymer), and conductive materials for forming the transparent conductive layer include indium doped tin oxide (ITO), antimony doped tin oxide (ATO), and fluorine doped tin oxide (FTO). ), IZO (Indium doped zinc oxide), ZnO and the like.
  • the conductive material may be deposited on the substrate by a known method such as sputtering, electron beam deposition, chemical vapor deposition, or sol-gel coating to form a transparent conductive layer.
  • the kind of electrochromic material is not particularly limited, and inorganic metal oxides such as WO 3 , MoO 3 , V 2 O 5 , TiO 2 , NiO; Conductive polymers such as polypyrrole, polyaniline, polyazulene, polypyridine, polyindole, polycarbazole, polyazine and polythiophene; Organic discoloring substances, such as viologen, anthraquinone, and phenocyazine, etc. are mentioned.
  • the method of laminating the electrochromic material on the electrode is not particularly limited as long as it can form a thin film at a constant height from the base surface along the surface profile, and examples thereof include vacuum deposition methods such as sputtering.
  • WO 3 is a material that is colored by a reduction reaction
  • NiO is a material that is colored by an oxidation reaction.
  • the electrochemical mechanism in which the electrochromic device occurs in the electrochromic device including the inorganic metal oxide is described as in Scheme 1. Specifically, when voltage is applied to the electrochromic device, protons (H + ) or lithium ions (Li + ) contained in the electrolyte are inserted into or desorbed from the electrochromic material according to the polarity of the current. In order to satisfy, by changing the oxidation number of the transition metal contained in the electrochromic material, the optical properties of the electrochromic material itself, such as transmittance (color), is changed.
  • M is a proton or an alkali metal cation such as Li + ).
  • the electrochromic device configured as described above may be manufactured according to a conventional method known in the art, such as (a) preparing a first electrode and a second electrode; (b) injecting and then sealing the gel polymer electrolyte composition according to the present invention between the prepared first and second electrodes; And (c) polymerizing the injected electrolyte composition to form a gel polymer electrolyte.
  • Ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 3: 7, 1.0 M of LiPF 6 was added to prepare a mixed solvent, and then 94 g of the mixed solvent prepared above was prepared with an oligomer of Formula 3a (weight average The molar ratio of molecular weight 7,800, unit B: unit A is 1: 2) 5g and 0.5g of AIBN and 0.5% by weight of VC were added as a polymerization initiator to prepare a composition for a gel polymer electrolyte.
  • EC Ethylene carbonate
  • EMC ethyl methyl carbonate
  • a cathode active material LiNi 1/3 Co 1/ 3 Mn 1/3 O 2; NCM
  • the conductive material of carbon black carbon black
  • a solvent N- methyl PVDF 3% by weight of a binder
  • a positive electrode mixture slurry was prepared by adding to 2-pyrrolidone (NMP).
  • NMP 2-pyrrolidone
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
  • a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVDF as a binder, and carbon black as a conductive material at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent.
  • the negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
  • Cu copper
  • the battery was assembled using a separator composed of the positive electrode, the negative electrode, and three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), and 2 days after injecting the prepared gel polymer electrolyte composition into the assembled battery. After standing for 24 hours at 60 °C to prepare a secondary battery containing a gel polymer electrolyte.
  • a separator composed of the positive electrode, the negative electrode, and three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), and 2 days after injecting the prepared gel polymer electrolyte composition into the assembled battery. After standing for 24 hours at 60 °C to prepare a secondary battery containing a gel polymer electrolyte.
  • Example 1 In the same manner as the secondary battery including a gel polymer electrolyte was prepared.
  • a secondary battery including a gel polymer electrolyte was manufactured in the same manner as in Example 1, except that 24g of inorganic particles (LLZO) was further included in the preparation of the gel polymer electrolyte composition in Example 1.
  • LLZO inorganic particles
  • Example 1 A method similar to that of Example 1 except for using an acrylate oligomer made of dipentaerythritol pentaacrylate instead of the oligomer of Formula 3a in preparing the gel polymer electrolyte composition in Example 1 As a secondary battery comprising a gel polymer electrolyte was prepared.
  • a secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1 except that the oligomer of Formula 3a was used instead of the oligomer of Formula 3a in preparing the composition for the gel polymer electrolyte in Example 1. .
  • a secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that 22 g of the oligomer of Formula 3a was used in 77 g of the mixed solution in preparing the gel polymer electrolyte composition in Example 1.
  • a secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that 0.1g of the oligomer of Formula 3a was used to prepare the gel polymer electrolyte composition in Example 1.
  • the gel polymer electrolytes of Examples 1 to 7 and Comparative Examples 1 to 4 prepared by thermal polymerization at 60 ° C. for 24 hours were sandwiched between a pair of platinum electrode discs having a diameter of 1 cm. In this state, the Li + ion conductivity of the gel polymer electrolyte was measured by AC impedance measurement.
  • the measuring equipment is Bio Logic's VMP3 model, and the measurement conditions were performed at room temperature under 10,000-0.1Hz and 10mV amplitude conditions.
  • the gel polymer electrolyte composition prepared in Examples 1 to 7 and Comparative Examples 1 to 4 was placed outside the inner tube, and then Li + ion transfer coefficient was measured. It was measured using the method. The results are shown in Table 1 below.
  • Li + ion migration coefficient Li + ion diffusivity / (Li + ion diffusivity + anion diffusivity)
  • Solvent used acetone-d 6 (At this time, the inner tube (acetone-d 6 ) was used to prevent mixing of the sample and the deuterium solvent to measure the diffusion value in the sample itself.)
  • Pulse sequence Stimulated echo with gradient pulse
  • Gradient amplitude The peak intensity at the highest gradient power was adjusted to be about 2% to 5% of the peak intensity at the lowest gradient power. In each step, 16 different amplitudes were applied to each sample.
  • the constant current was charged at 60 ° C. until the voltage reached 4.35 V at 1.0 ° C., and then the current at the voltage.
  • the constant voltage charge was performed until the reduction decreased to reach 1 / 20C. It then discharged with constant current at 1.0C until the voltage reached 3.0V.
  • the charging and discharging was repeated 100 times.
  • the capacity retention rate was calculated from the result obtained above using the following formula, and the value is shown in Table 1 below.
  • Capacity maintenance rate at 100th cycle 100th cycle discharge capacity / 1st cycle discharge capacity
  • the ion conductivity of the gel polymer electrolyte of Comparative Example 1 was 6.1 ⁇ 10 ⁇ 4
  • the ion conductivity of the gel polymer electrolyte of Comparative Example 2 was 4.8 ⁇ 10 ⁇ 4
  • the present invention was practiced. It can be seen that the ion conductivity of the gel polymer electrolytes of Examples 1 to 7 is mostly improved by about 10% or more to 6.9 ⁇ 10 ⁇ 4 or more.
  • the Li + ion transfer coefficients of the secondary batteries of Examples 1 to 7 of the present invention are all 0.415 or more, and the Li + ion transfer coefficients of the secondary batteries of Comparative Example 1 are 0.375 and 0.410 of the secondary batteries of Comparative Example 2. It can be seen that compared with the improvement.
  • the 100 th cycle discharge capacity (mAh) of the secondary battery of Comparative Example 1 was 617
  • the capacity retention rate (%) at 100 th cycle was 82.5%
  • the 100 th cycle discharge capacity (mAh) of the secondary battery of Comparative Example 2 ) Is 430
  • the capacity retention rate (%) at 100 th cycle is 61.4%
  • the 100 th cycle discharge capacity (mAh) of the secondary batteries of Examples 1 to 7 of the present invention is 698 or more and 100 th cycle It can be seen that the capacity retention rate (%) at is better than 94.5%.
  • Li + ion transfer coefficient is 0.550 by anion immobilization, while the ion conductivity is 2.5 ⁇ 10 by increasing the resistance - it can be seen that as low as 4.
  • the 100 th cycle discharge capacity (mAh) was 117 and the capacity retention rate (100%) at 100 th cycle was significantly poor due to the kinetic degradation caused by low ion conductivity. Able to know.

Abstract

The present invention relates to a gel polymer electrolyte and a lithium secondary battery including same. The gel polymer electrolyte includes: a matrix polymer; and an electrolyte solution impregnated on the matrix polymer, wherein the matrix polymer is formed as a three-dimensional network structure obtained by polymerizing a first oligomer including unit A, which is represented by Formula 1, and unit B, which has a crosslinking functional group derived from a compound including at least one copolymerizable acrylate group.

Description

젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지Gel polymer electrolyte and lithium secondary battery comprising same
관련 출원(들)과의 상호 인용Cross Citation with Related Application (s)
본 출원은 2016년 9월 2일자 한국 특허 출원 제2016-113355호 및 2017년 9월 1일자 한국 특허 출원 제2017-0112055호에 기초한 우선권 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 2016-113355 of September 2, 2016 and Korean Patent Application No. 2017-0112055 of September 1, 2017, and all the contents disclosed in the literature of that Korean Patent Application. Is included as part of this specification.
기술분야Field of technology
본 발명은 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a gel polymer electrolyte and a lithium secondary battery comprising the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있으며, 이러한 이차전지 중에서도 높은 에너지 밀도와 전압을 가지는 리튬 이차전지가 상용화되어 널리 사용되고 있다.As the development and demand for mobile devices increases, the demand for secondary batteries as energy sources is rapidly increasing. Among these secondary batteries, lithium secondary batteries having high energy density and voltage have been commercialized and widely used.
리튬 이차전지는 양극 활물질 및 음극 활물질을 적당한 두께로 집전체에 도포하거나, 또는 활물질 자체를 적당한 길이의 필름 형상으로 형성한 다음, 절연체인 세퍼레이터와 함께 감거나 적층하여 전극조립체를 제조하고, 캔 또는 이와 유사한 용기에 전극조립체를 넣은 후, 전해질을 주입하는 공정에 의해 제조된다.The lithium secondary battery may be coated with a positive electrode active material and a negative electrode active material to a current collector with an appropriate thickness, or the active material itself may be formed into a film of an appropriate length, and then wound or laminated together with a separator, which is an insulator, to prepare an electrode assembly. After putting the electrode assembly in a similar container, it is prepared by the process of injecting the electrolyte.
상기 양극 활물질로는 리튬 금속 산화물이 사용되고 있고, 음극 활물질로는 리튬 금속, 리튬 합금, 결정질 또는 비정질 탄소 또는 탄소 복합체가 사용되고 있다. 또한, 상기 전해질로는 액체 상태의 전해질, 특히 비수계 유기 용매에 염을 용해한 이온 전도성 액체 전해질이 주로 사용되어 왔다. Lithium metal oxide is used as the positive electrode active material, and lithium metal, lithium alloy, crystalline or amorphous carbon or carbon composite material is used as the negative electrode active material. As the electrolyte, a liquid electrolyte, particularly an ion conductive liquid electrolyte in which salts are dissolved in a non-aqueous organic solvent, has been mainly used.
그러나 에너지 저장 기술에 대한 관심이 갈수록 높아지면서, 소형 경량화 및 고용량으로 충방전이 가능할 뿐만 아니라, 고온 고전압 안전성을 가지는 이차전지의 개발을 요구되고 있다. 이에 따라, 최근 액체 전해질보다 젤 폴리머로 이루어진 젤 폴리머 전해질을 이용한 전지 개발이 주목받고 있다.However, with increasing interest in energy storage technology, it is required to develop a secondary battery having a small size, light weight, high capacity, charge and discharge, and high temperature, high voltage safety. Accordingly, the development of a battery using a gel polymer electrolyte made of a gel polymer rather than a liquid electrolyte has recently attracted attention.
일반적으로, 전지의 안전성은 액체 전해질 < 젤 폴리머 전해질 < 고체 고분자 전해질 순서로 향상되는 반면에, 전지 성능은 오히려 감소하는 것으로 알려져 있다. In general, battery safety is known to be improved in the order of liquid electrolyte <gel polymer electrolyte <solid polymer electrolyte, while battery performance is rather reduced.
즉, 상기 젤 폴리머 전해질은 전해액으로만 이루어진 액체 전해질에 비해, 리튬 이온의 전도성이 낮다는 단점이 있다. 이를 개선하기 위하여, 상기 젤 폴리머 전해질의 두께를 얇게 하는 방법이 제안되었다. 하지만, 이 경우 기계적 강도가 감소하고, 전지 제조 시에 양극 및 음극과 젤 폴리머 전해질이 단락되는 문제가 발생하는 등 전지 성능 및 안전성 향상에 문제가 있다.That is, the gel polymer electrolyte has a disadvantage in that the conductivity of lithium ions is lower than that of a liquid electrolyte composed only of an electrolyte solution. In order to improve this, a method of reducing the thickness of the gel polymer electrolyte has been proposed. However, in this case, there is a problem in improving battery performance and safety, such as a decrease in mechanical strength and a short circuit between the positive electrode, the negative electrode, and the gel polymer electrolyte during battery manufacture.
따라서, 전지 안전성 및 전지 성능이 모두 개선된 젤 폴리머 전해질에 대한 개발이 필요한 실정이다. Accordingly, there is a need for development of a gel polymer electrolyte having improved battery safety and battery performance.
선행기술문헌Prior art literature
대한민국 특허공개공보 제10-2015-0139827호 Republic of Korea Patent Publication No. 10-2015-0139827
본 발명에서 해결하고자 하는 제1 기술적 과제는 고전압 안정성 증대 및 전지저항 감소 효과를 구현할 수 있는 젤 폴리머 전해질을 제공하는 것을 목적으로 한다.The first technical problem to be solved by the present invention is to provide a gel polymer electrolyte that can implement a high voltage stability increase and battery resistance reduction effect.
또한, 본 발명의 제2 기술적 과제는 상기 젤 폴리머 전해질용 조성물을 제공하는 것을 목적으로 한다.In addition, a second object of the present invention is to provide a composition for the gel polymer electrolyte.
또한, 본 발명의 제3 기술적 과제는 상기 젤 폴리머 전해질을 포함하는 리튬 이차전지를 제공하는 것을 목적으로 한다.In addition, another object of the present invention is to provide a lithium secondary battery including the gel polymer electrolyte.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에서는In order to solve the above problems, in one embodiment of the present invention
매트릭스 폴리머; 및Matrix polymers; And
상기 매트릭스 폴리머 상에 함침되어 있는 전해액을 포함하며,An electrolyte solution impregnated on the matrix polymer,
상기 매트릭스 폴리머는 하기 화학식 1로 표시되는 단위 A 및 하기 화학식 2로 표시되는 단위 B를 포함하는 제1 올리고머가 중합하여 3차원 네트워크 구조로 형성되어 있는 것인 젤 폴리머 전해질을 제공한다.The matrix polymer provides a gel polymer electrolyte in which a first oligomer including a unit A represented by Formula 1 and a unit B represented by Formula 2 is polymerized to form a three-dimensional network structure.
[화학식 1][Formula 1]
Figure PCTKR2017009622-appb-I000001
Figure PCTKR2017009622-appb-I000001
상기 화학식 1에서,In Chemical Formula 1,
R1 및 R2는 각각 독립적으로 불소로 치환 또는 비치환된 탄소수 1 내지 4의 알킬렌기이고,R 1 and R 2 are each independently an alkylene group having 1 to 4 carbon atoms unsubstituted or substituted with fluorine,
상기 m, n 및 o는 반복 단위수이며,M, n and o are the number of repeating units,
m은 1 내지 10 중 어느 하나의 정수이고,m is an integer of any one of 1 to 10,
n은 1 내지 10 중 어느 하나의 정수이며,n is an integer of any one of 1 to 10,
o는 1 내지 500 중 어느 하나의 정수다.o is an integer of any one of 1 to 500.
[화학식 2][Formula 2]
Figure PCTKR2017009622-appb-I000002
Figure PCTKR2017009622-appb-I000002
상기 화학식 2에서,In Chemical Formula 2,
R3은 수소, 또는 탄소수 1 내지 6의 알킬기이고, R 3 is hydrogen or an alkyl group having 1 to 6 carbon atoms,
R4는 탄소수 1 내지 6의 알킬렌기, -CH2-R6-CH2-, 또는 -CH2-R7-O-R8-CH2-이며, 이때 R6, R7 및 R8은 적어도 1 이상의 아크릴레이트기가 치환된 탄소수 1 내지 3의 알킬렌기이고,R 4 is an alkylene group having 1 to 6 carbon atoms, -CH 2 -R 6 -CH 2- , or -CH 2 -R 7 -OR 8 -CH 2-, wherein R 6 , R 7 and R 8 are at least 1 The above acrylate group is a substituted alkylene group having 1 to 3 carbon atoms,
R5는 탄소수 1 내지 5의 알킬렌기, 또는 -(CO-R9-O-)r-CO-NH-R10-NH-CO-O-이고, 이때 R9는 탄소수 1 내지 10의 알킬렌기이고, R10은 지방족, 지환족 또는 방향족 탄화수소기이고,R 5 is an alkylene group having 1 to 5 carbon atoms or-(CO-R 9 -O-) r -CO-NH-R 10 -NH-CO-O-, wherein R 9 is an alkylene group having 1 to 10 carbon atoms R 10 is an aliphatic, alicyclic or aromatic hydrocarbon group,
r은 0 내지 3 중 어느 하나의 정수이다.r is an integer of any one of 0-3.
구체적으로, 상기 지방족 탄화수소기는 탄소수 1 내지 20의 알킬렌기; 이소시아네이트기(NCO)를 함유하는 탄소수 1 내지 20의 알킬렌기; 탄소수 1 내지 20의 알콕실렌기; 탄소수 2 내지 20의 알케닐렌기; 또는 탄소수 2 내지 20의 알키닐렌기;이고, 상기 지환족 탄화수소기는 치환 또는 비치환된 탄소수 4 내지 20의 사이클로알킬렌기; 이소시아네이트기(NCO)를 함유하는 치환 또는 비치환된 탄소수 4 내지 20의 사이클로알킬렌기; 탄소수 4 내지 20의 사이클로알케닐렌기; 또는 탄소수 2 내지 20의 헤테로사이클로알킬렌기;이며, 상기 방향족 탄화수소기는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기; 또는 탄소수 2 내지 20의 헤테로아릴렌기일 수 있다.Specifically, the aliphatic hydrocarbon group is an alkylene group having 1 to 20 carbon atoms; C1-C20 alkylene group containing an isocyanate group (NCO); An alkoxylene group having 1 to 20 carbon atoms; Alkenylene groups having 2 to 20 carbon atoms; Or an alkynylene group having 2 to 20 carbon atoms, wherein the alicyclic hydrocarbon group is a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms; A substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms containing an isocyanate group (NCO); A cycloalkenylene group having 4 to 20 carbon atoms; Or a heterocycloalkylene group having 2 to 20 carbon atoms, wherein the aromatic hydrocarbon group is a substituted or unsubstituted arylene group having 6 to 20 carbon atoms; Or a heteroarylene group having 2 to 20 carbon atoms.
상기 화학식 1로 표시되는 단위 A는 하기 화학식 1a 내지 화학식 1c로 표시되는 것들로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.Unit A represented by Formula 1 may be at least one selected from the group consisting of those represented by Formula 1a to Formula 1c.
[화학식 1a][Formula 1a]
Figure PCTKR2017009622-appb-I000003
Figure PCTKR2017009622-appb-I000003
[화학식 1b][Formula 1b]
Figure PCTKR2017009622-appb-I000004
Figure PCTKR2017009622-appb-I000004
[화학식 1c][Formula 1c]
Figure PCTKR2017009622-appb-I000005
Figure PCTKR2017009622-appb-I000005
상기 화학식 1a 내지 1c에서,In Chemical Formulas 1a to 1c,
상기 m, n 및 o는 반복 단위수이며,M, n and o are the number of repeating units,
m은 1 내지 10 중 어느 하나의 정수이고,m is an integer of any one of 1 to 10,
n은 1 내지 10 중 어느 하나의 정수이며,n is an integer of any one of 1 to 10,
o는 1 내지 500 중 어느 하나의 정수이다.o is an integer of any one of 1 to 500.
상기 화학식 2로 표시되는 단위 B는 하기 화학식 2a 내지 2l로 표시되는 것들로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.Unit B represented by Formula 2 may include at least one selected from the group consisting of those represented by Formulas 2a to 2l.
[화학식 2a][Formula 2a]
Figure PCTKR2017009622-appb-I000006
Figure PCTKR2017009622-appb-I000006
[화학식 2b][Formula 2b]
Figure PCTKR2017009622-appb-I000007
Figure PCTKR2017009622-appb-I000007
[화학식 2c][Formula 2c]
Figure PCTKR2017009622-appb-I000008
Figure PCTKR2017009622-appb-I000008
상기 화학식 2c에서,In Chemical Formula 2c,
r1은 1 내지 3 중 어느 하나의 정수이다.r1 is an integer of any one of 1-3.
[화학식 2d][Formula 2d]
Figure PCTKR2017009622-appb-I000009
Figure PCTKR2017009622-appb-I000009
상기 화학식 2d에서,In Chemical Formula 2d,
r2는 1 내지 3 중 어느 하나의 정수이다.r2 is an integer of any one of 1-3.
[화학식 2e][Formula 2e]
Figure PCTKR2017009622-appb-I000010
Figure PCTKR2017009622-appb-I000010
상기 화학식 2e에서,In Chemical Formula 2e,
r3는 1 내지 3 중 어느 하나의 정수이다.r3 is an integer of any one of 1-3.
[화학식 2f][Formula 2f]
Figure PCTKR2017009622-appb-I000011
Figure PCTKR2017009622-appb-I000011
상기 화학식 2f에서,In Chemical Formula 2f,
r4는 1 내지 3 중 어느 하나의 정수이다.r4 is an integer of any one of 1-3.
[화학식 2g] [Formula 2g]
Figure PCTKR2017009622-appb-I000012
Figure PCTKR2017009622-appb-I000012
상기 화학식 2g에서,In Chemical Formula 2g,
r5는 1 내지 3 중 어느 하나의 정수이다.r5 is an integer of any one of 1-3.
[화학식 2h][Formula 2h]
Figure PCTKR2017009622-appb-I000013
Figure PCTKR2017009622-appb-I000013
상기 화학식 2h에서,In Chemical Formula 2h,
r6는 1 내지 3 중 어느 하나의 정수이다.r6 is an integer of any one of 1-3.
[화학식 2i][Formula 2i]
Figure PCTKR2017009622-appb-I000014
Figure PCTKR2017009622-appb-I000014
상기 화학식 2i에서,In Chemical Formula 2i,
r7은 1 내지 3 중 어느 하나의 정수이다.r7 is an integer of any one of 1-3.
[화학식 2j][Formula 2j]
Figure PCTKR2017009622-appb-I000015
Figure PCTKR2017009622-appb-I000015
상기 화학식 2j에서,In Chemical Formula 2j,
r8은 1 내지 3 중 어느 하나의 정수이다. r8 is an integer of any one of 1-3.
[화학식 2k][Formula 2k]
Figure PCTKR2017009622-appb-I000016
Figure PCTKR2017009622-appb-I000016
[화학식 2l][Formula 2l]
Figure PCTKR2017009622-appb-I000017
Figure PCTKR2017009622-appb-I000017
상기 제1 올리고머에서, 단위 A : 단위 B의 몰비는 1:90 내지 90:1일 수 있다.In the first oligomer, the molar ratio of unit A to unit B may be 1:90 to 90: 1.
상기 본 발명의 젤 폴리머 전해질에서, 상기 제1 올리고머는 하기 화학식 3으로 표시되는 화합물일 수 있다.In the gel polymer electrolyte of the present invention, the first oligomer may be a compound represented by the following formula (3).
[화학식 3][Formula 3]
Figure PCTKR2017009622-appb-I000018
Figure PCTKR2017009622-appb-I000018
상기 화학식 3에서,In Chemical Formula 3,
R1 및 R2는 각각 독립적으로 불소로 치환 또는 비치환된 탄소수 1 내지 4의 알킬렌기이고, R 1 and R 2 are each independently an alkylene group having 1 to 4 carbon atoms unsubstituted or substituted with fluorine,
R3은 수소, 또는 탄소수 1 내지 6의 알킬기이고, R 3 is hydrogen or an alkyl group having 1 to 6 carbon atoms,
R4는 탄소수 1 내지 6의 알킬렌기, -CH2-R6-CH2-, 또는 -CH2-R7-O-R8-CH2-이며, 이때 R6, R7 및 R8은 적어도 1 이상의 아크릴레이트기가 치환된 탄소수 1 내지 3의 알킬렌기이고,R 4 is an alkylene group having 1 to 6 carbon atoms, -CH 2 -R 6 -CH 2- , or -CH 2 -R 7 -OR 8 -CH 2-, wherein R 6 , R 7 and R 8 are at least 1 The above acrylate group is a substituted alkylene group having 1 to 3 carbon atoms,
R5는 탄소수 1 내지 5의 알킬렌기, 또는 -(CO-R9-O-)r-CO-NH-R10-NH-CO-O-이고, 이때 R9는 탄소수 1 내지 10의 알킬렌기이고, R10은 지방족, 지환족 또는 방향족 탄화수소기이고,R 5 is an alkylene group having 1 to 5 carbon atoms or-(CO-R 9 -O-) r -CO-NH-R 10 -NH-CO-O-, wherein R 9 is an alkylene group having 1 to 10 carbon atoms R 10 is an aliphatic, alicyclic or aromatic hydrocarbon group,
상기 m1, n1 및 o1는 반복 단위수이며,M1, n1, and o1 are the number of repeating units,
m1은 1 내지 10 중 어느 하나의 정수이고,m1 is an integer of any one of 1 to 10,
n1은 1 내지 10 중 어느 하나의 정수이며,n1 is an integer of any one of 1 to 10,
o1는 1 내지 500 중 어느 하나의 정수이고,o1 is an integer of any one of 1 to 500,
r은 0 내지 3 중 어느 하나의 정수이다.r is an integer of any one of 0-3.
구체적으로, 상기 화학식 3으로 표시되는 올리고머는 하기 화학식 3a 내지 3f로 표시되는 화합물로 이루어진 군으로부터 선택된 적어도 하나의 화합물일 수 있다.Specifically, the oligomer represented by Formula 3 may be at least one compound selected from the group consisting of compounds represented by Formulas 3a to 3f.
[화학식 3a][Formula 3a]
Figure PCTKR2017009622-appb-I000019
Figure PCTKR2017009622-appb-I000019
상기 화학식 3a에서,In Chemical Formula 3a,
m2, n2, 및 o2는 반복 단위수이며,m2, n2, and o2 are the number of repeat units,
m2는 1 내지 10 중 어느 하나의 정수이고,m2 is an integer of any one of 1 to 10,
n2는 1 내지 10 중 어느 하나의 정수이며,n2 is an integer of any one of 1 to 10,
o2는 1 내지 500 중 어느 하나의 정수이다.o2 is an integer of any one of 1-500.
[화학식 3b][Formula 3b]
Figure PCTKR2017009622-appb-I000020
Figure PCTKR2017009622-appb-I000020
상기 화학식 3b에서,In Chemical Formula 3b,
m3, n3 및 o3는 반복 단위수이며,m3, n3, and o3 are the number of repeat units,
m3는 1 내지 10 중 어느 하나의 정수이고,m3 is an integer of any one of 1 to 10,
n3는 1 내지 10 중 어느 하나의 정수이며,n3 is an integer of any one of 1 to 10,
o3는 1 내지 500 중 어느 하나의 정수이다.o3 is an integer of any one of 1-500.
[화학식 3c][Formula 3c]
Figure PCTKR2017009622-appb-I000021
Figure PCTKR2017009622-appb-I000021
상기 화학식 3c에서,In Chemical Formula 3c,
m4, n4 및 o4는 반복 단위수이며,m4, n4, and o4 are the number of repeat units,
m4는 1 내지 10 중 어느 하나의 정수이고,m4 is an integer of any one of 1 to 10,
n4는 1 내지 10 중 어느 하나의 정수이며,n4 is an integer of any one of 1 to 10,
o4는 1 내지 500 중 어느 하나의 정수이고,o4 is an integer of any one of 1 to 500,
r9는 1 내지 3 중 어느 하나의 정수이다.r9 is an integer of any one of 1-3.
[화학식 3d][Formula 3d]
Figure PCTKR2017009622-appb-I000022
Figure PCTKR2017009622-appb-I000022
상기 화학식 3d에서,In Chemical Formula 3d,
m5, n5 및 o5는 반복 단위수이며,m5, n5 and o5 are the number of repeat units,
m5는 1 내지 10 중 어느 하나의 정수이고,m5 is an integer of any one of 1 to 10,
n5는 1 내지 10 중 어느 하나의 정수이며,n5 is an integer of any one of 1 to 10,
o5는 1 내지 500 중 어느 하나의 정수이고,o5 is an integer of any one of 1 to 500,
r10는 1 내지 3 중 어느 하나의 정수이다.r10 is an integer of any one of 1-3.
[화학식 3e][Formula 3e]
Figure PCTKR2017009622-appb-I000023
Figure PCTKR2017009622-appb-I000023
상기 화학식 3e에서,In Chemical Formula 3e,
m6, n6 및 o6는 반복 단위수이며,m6, n6 and o6 are the number of repeat units,
m6은 1 내지 10 중 어느 하나의 정수이고,m6 is an integer of any one of 1 to 10,
n6은 1 내지 10 중 어느 하나의 정수이며,n6 is an integer of any one of 1 to 10,
o6은 1 내지 500 중 어느 하나의 정수이고,o6 is an integer of any one of 1 to 500,
r11은 1 내지 3 중 어느 하나의 정수이다.r11 is an integer of any one of 1-3.
[화학식 3f][Formula 3f]
Figure PCTKR2017009622-appb-I000024
Figure PCTKR2017009622-appb-I000024
상기 화학식 3f에서,In Chemical Formula 3f,
m7, n7 및 o7은 반복 단위수이며,m7, n7 and o7 are the number of repeat units,
m7은 1 내지 10 중 어느 하나의 정수이고,m7 is an integer of any one of 1 to 10,
n7은 1 내지 10 중 어느 하나의 정수이며,n7 is an integer of any one of 1 to 10,
o7은 1 내지 500 중 어느 하나의 정수이고,o7 is an integer of any one of 1 to 500,
r12는 1 내지 3 중 어느 하나의 정수이다.r12 is an integer of any one of 1-3.
또한, 상기 젤 폴리머 전해질은 메틸 아크릴레이트, 메틸 메타크릴레이트, 에틸 아크릴레이트, 에틸 메타크릴레이트, 프로필 아크릴레이트, 프로필 메타크릴레이트, 부틸 아크릴레이트, 부틸 메타크릴레이트, 헥실 아크릴레이트, 헥실 메타크릴레이트, 에틸헥실 아크릴레이트, 에틸헥실 메타크릴레이트, 2,2,2-트리플루오로에틸 아크릴레이트, 2,2,2-트리플루오로에틸 메타크릴레이트, 2,2,3,3-테트라플루오로프로필 아크릴레이트, 및 2,2,3,3-테트라플루오로프로필 메타크릴레이트로 이루어진 군으로부터 선택된 적어도 하나로부터 유도된 단위 C를 추가로 포함할 수 있다.In addition, the gel polymer electrolyte may be methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl methacrylate, hexyl acrylate, hexyl methacrylate. Latex, ethylhexyl acrylate, ethylhexyl methacrylate, 2,2,2-trifluoroethyl acrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,3,3-tetrafluoro Unit C derived from at least one selected from the group consisting of ropropyl acrylate, and 2,2,3,3-tetrafluoropropyl methacrylate.
이때, 상기 단위 C는 제1 올리고머의 전체 함량을 기준으로 50 중량% 이하로 포함될 수 있다.At this time, the unit C may be included in less than 50% by weight based on the total content of the first oligomer.
또한, 상기 젤 폴리머 전해질은 무기물 입자를 추가로 포함할 수 있다.In addition, the gel polymer electrolyte may further include inorganic particles.
또한, 본 발명의 일 실시예는In addition, an embodiment of the present invention
리튬염, 전해액 용매, 중합개시제, 및 Lithium salts, electrolyte solvents, polymerization initiators, and
상기 화학식 1로 표시되는 단위 A 및 상기 화학식 2로 표시되는 단위 B를 포함하는 제1 올리고머를 포함하는 본 발명의 젤 폴리머 전해질용 조성물을 제공한다.It provides a composition for a gel polymer electrolyte of the present invention comprising a first oligomer comprising a unit A represented by the formula (1) and a unit B represented by the formula (2).
상기 제1 올리고머는 젤 폴리머 전해질용 조성물 전체 중량을 기준으로 0.5 중량% 내지 20 중량%로 포함될 수 있다.The first oligomer may be included in an amount of 0.5% to 20% by weight based on the total weight of the composition for gel polymer electrolyte.
또한, 본 발명의 일 실시예는In addition, an embodiment of the present invention
양극과 음극, 및 상기 양극과 음극 사이에 배치되는 젤 폴리머 전해질을 포함하며,A positive electrode and a negative electrode, and a gel polymer electrolyte disposed between the positive electrode and the negative electrode,
상기 젤 폴리머 전해질로 본 발명의 젤 폴리머 전해질을 포함하는 리튬 이차전지를 제공한다.The gel polymer electrolyte provides a lithium secondary battery including the gel polymer electrolyte of the present invention.
본 발명의 젤 폴리머 전해질은 불소 치환된 폴리에테르 단위 및 말단에 적어도 하나 이상의 아크릴레이트 단위를 포함하는 올리고머로 이루어진 매트릭스 폴리머를 포함함으로써, 음이온 고정화 및 안정화에 의해 Li 이온의 자유도가 증가하여 전지저항이 감소하는 효과를 구현하여 높은 리튬 이온전도도를 구현할 수 있다. 또한, 상기 젤 고분자 전해질 내의 매트릭스 폴리머 구조물에 의한 고온 내구성 증가로 인하여 고전압 및 고온에서 안정성이 보다 향상된 리튬 이차전지를 제조할 수 있다.The gel polymer electrolyte of the present invention includes a matrix polymer composed of a fluorine-substituted polyether unit and an oligomer including at least one acrylate unit at its end, thereby increasing the degree of freedom of Li ions by anion immobilization and stabilization, thereby improving battery resistance. Higher lithium ion conductivity can be achieved by reducing the effect. In addition, due to the increase in high temperature durability by the matrix polymer structure in the gel polymer electrolyte, a lithium secondary battery having improved stability at high voltage and high temperature may be manufactured.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
한편, 본 발명의 명세서 내에서 "반복 단위"는, 모노머를 중합함으로써 형성된, 그 모노머에서 유래하는 단위를 의미한다. 반복 단위는, 중합 반응에 의해 직접 형성된 단위이어도 되고, 폴리머를 처리함으로써 그 단위의 일부가 다른 구조로 변환된 단위이어도 된다.In addition, within the specification of this invention, a "repeating unit" means the unit derived from the monomer formed by superposing | polymerizing a monomer. The repeating unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
또한, 본 발명에서 특별한 언급이 없는 한 " * "는 동일하거나, 상이한 원자 또는 화학식의 말단부 간의 연결된 부분을 의미한다.In addition, unless otherwise indicated in the present invention, "*" means a moiety connected between the same or different atoms or terminal ends of the formula.
일반적으로 젤형 폴리머 전해질은 고체 고분자 전해질에 비하여 고전압 안전성 및 기계적 물성은 취약하고, 액체 전해질에 비하여 전지 저항 및 이에 따른 이온전도도 등은 낮다는 단점이 있다. 이에, 최근에는 올리고머와 같은 공중합체를 사용하여 고전압 안정성을 확보함과 동시에, Li+ 이온전도도를 향상시키려는 연구가 진행되고 있다. 그러나 올리고머 화합물을 사용하는 경우에는 물성의 조절이 용이하지 않을 뿐만 아니라, 전지 내에 균일한 고분자 형성이 어려워 고용량 및 대형 전지에 적용함에 어려움이 있다.In general, the gel polymer electrolyte has a high voltage safety and mechanical properties are weak compared to the solid polymer electrolyte, the battery resistance and the resulting ionic conductivity is lower than the liquid electrolyte. In recent years, studies have been conducted to improve Li + ion conductivity while at the same time securing high voltage stability using a copolymer such as an oligomer. However, when the oligomeric compound is used, not only is it difficult to control physical properties, but it is difficult to form a uniform polymer in the battery, which makes it difficult to apply to high capacity and large batteries.
이에, 본 발명에서는 전기화학적 특성과 기계적 특성을 상호 보완할 수 있는 물성을 가지는 화합물들을 중합하여 제조된 올리고머 화합물에 의해 형성된 매트릭스 폴리머를 포함하는 젤 폴리머 전해질을 제공함으로써, 이러한 문제들을 해결하고자 하였다. Accordingly, the present invention has been made to solve these problems by providing a gel polymer electrolyte comprising a matrix polymer formed by oligomer compounds prepared by polymerizing compounds having physical properties that can complement the electrochemical and mechanical properties.
구체적으로 본 발명의 일 실시예는Specifically, one embodiment of the present invention
매트릭스 폴리머; 및Matrix polymers; And
상기 매트릭스 폴리머 상에 함침되어 있는 전해액을 포함하며,An electrolyte solution impregnated on the matrix polymer,
상기 매트릭스 폴리머는 하기 화학식 1로 표시되는 단위 A 및 하기 화학식 2로 표시되는 단위 B를 포함하는 제1 올리고머가 중합하여 3차원 네트워크 구조로 형성되어 있는 젤 폴리머 전해질을 제공한다.The matrix polymer provides a gel polymer electrolyte in which a first oligomer including a unit A represented by Formula 1 and a unit B represented by Formula 2 is polymerized to form a three-dimensional network structure.
[화학식 1][Formula 1]
Figure PCTKR2017009622-appb-I000025
Figure PCTKR2017009622-appb-I000025
상기 화학식 1에서,In Chemical Formula 1,
R1 및 R2는 각각 독립적으로 불소로 치환 또는 비치환된 탄소수 1 내지 4의 알킬렌기이고, R 1 and R 2 are each independently an alkylene group having 1 to 4 carbon atoms unsubstituted or substituted with fluorine,
상기 m, n 및 o는 반복 단위수이며,M, n and o are the number of repeating units,
m은 1 내지 10 중 어느 하나의 정수이고,m is an integer of any one of 1 to 10,
n은 1 내지 10 중 어느 하나의 정수이며,n is an integer of any one of 1 to 10,
o는 1 또는 500 중 어느 하나의 정수이다. o is an integer of either 1 or 500.
[화학식 2][Formula 2]
Figure PCTKR2017009622-appb-I000026
Figure PCTKR2017009622-appb-I000026
상기 화학식 2에서,In Chemical Formula 2,
R3은 수소, 또는 탄소수 1 내지 6의 알킬기이고, R 3 is hydrogen or an alkyl group having 1 to 6 carbon atoms,
R4는 탄소수 1 내지 6의 알킬렌기, -CH2-R6-CH2-, 또는 -CH2-R7-O-R8-CH2-이며, 이때 R6, R7 및 R8은 적어도 1 이상의 아크릴레이트기가 치환된 탄소수 1 내지 3의 알킬렌기이고,R 4 is an alkylene group having 1 to 6 carbon atoms, -CH 2 -R 6 -CH 2- , or -CH 2 -R 7 -OR 8 -CH 2-, wherein R 6 , R 7 and R 8 are at least 1 The above acrylate group is a substituted alkylene group having 1 to 3 carbon atoms,
R5는 탄소수 1 내지 5의 알킬렌기, 또는 -(CO-R9-O-)r-CO-NH-R10-NH-CO-O-이고, 이때 R9는 탄소수 1 내지 10의 알킬렌기이고, R10은 지방족, 지환족 또는 방향족 탄화수소기이고,R 5 is an alkylene group having 1 to 5 carbon atoms or-(CO-R 9 -O-) r -CO-NH-R 10 -NH-CO-O-, wherein R 9 is an alkylene group having 1 to 10 carbon atoms R 10 is an aliphatic, alicyclic or aromatic hydrocarbon group,
r은 0 내지 3 중 어느 하나의 정수이다.r is an integer of any one of 0-3.
구체적으로, 상기 지방족 탄화수소기는 탄소수 1 내지 20의 알킬렌기; 이소시아네이트기(NCO)를 함유하는 탄소수 1 내지 20의 알킬렌기; 탄소수 1 내지 20의 알콕실렌기; 탄소수 2 내지 20의 알케닐렌기; 또는 탄소수 2 내지 20의 알키닐렌기;이고, Specifically, the aliphatic hydrocarbon group is an alkylene group having 1 to 20 carbon atoms; C1-C20 alkylene group containing an isocyanate group (NCO); An alkoxylene group having 1 to 20 carbon atoms; Alkenylene groups having 2 to 20 carbon atoms; Or an alkynylene group having 2 to 20 carbon atoms;
상기 지환족 탄화수소기는 치환 또는 비치환된 탄소수 4 내지 20의 사이클로알킬렌기; 이소시아네이트기(NCO)를 함유하는 치환 또는 비치환된 탄소수 4 내지 20의 사이클로알킬렌기; 탄소수 4 내지 20의 사이클로알케닐렌기; 또는 탄소수 2 내지 20의 헤테로사이클로알킬렌기;이며, The alicyclic hydrocarbon group is a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms; A substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms containing an isocyanate group (NCO); A cycloalkenylene group having 4 to 20 carbon atoms; Or a heterocycloalkylene group having 2 to 20 carbon atoms,
상기 방향족 탄화수소기는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기; 또는 탄소수 2 내지 20의 헤테로아릴렌기일 수 있다.The aromatic hydrocarbon group is substituted or unsubstituted arylene group having 6 to 20 carbon atoms; Or a heteroarylene group having 2 to 20 carbon atoms.
먼저, 본 발명의 일 실시예에 따른 젤 폴리머 전해질에 있어서, 상기 제1 올리고머는 구조 내에 불소 치환된 에테르를 포함하는 단량체로부터 유도된 상기 단위 A를 포함함으로써, 음이온 안정화 및 산화 안전성 증가 효과에 의하여 고전압 안전성 및 전지 저항 감소와 이에 따른 이온전도도 향상 효과를 구현할 수 있다.First, in the gel polymer electrolyte according to an embodiment of the present invention, the first oligomer comprises the unit A derived from a monomer containing a fluorine-substituted ether in the structure, thereby improving the anion stabilization and oxidative safety High voltage safety and battery resistance can be reduced and the ion conductivity can be improved.
상기 화학식 1로 표시되는 단위는 그 대표적인 예로 하기 화학식 1a 내지 화학식 1c로 표시되는 것들로 이루어진 군으로부터 선택된 적어도 하나 이상일 수 있다.The unit represented by Formula 1 may be at least one selected from the group consisting of those represented by Formula 1a to Formula 1c as a representative example.
[화학식 1a][Formula 1a]
Figure PCTKR2017009622-appb-I000027
Figure PCTKR2017009622-appb-I000027
[화학식 1b][Formula 1b]
Figure PCTKR2017009622-appb-I000028
Figure PCTKR2017009622-appb-I000028
[화학식 1c][Formula 1c]
Figure PCTKR2017009622-appb-I000029
Figure PCTKR2017009622-appb-I000029
상기 화학식 1a 내지 1c에서,In Chemical Formulas 1a to 1c,
상기 m, n 및 o는 반복 단위수이며,M, n and o are the number of repeating units,
m은 1 내지 10 중 어느 하나의 정수이고,m is an integer of any one of 1 to 10,
n은 1 내지 10 중 어느 하나의 정수이며,n is an integer of any one of 1 to 10,
o는 1 내지 500 중 어느 하나의 정수, 구체적으로 o는 1 내지 100 중 어느 하나의 정수이다.o is an integer of any one of 1 to 500, specifically o is an integer of any one of 1 to 100.
이때, 상기 화학식 1로 표시되는 단위 A에서, n, m 및 o는 각각 반복 회수를 의미하는 것으로, 상기 반복 단위 n, m 및 o는 서로 일정한 규칙을 가지거나 또는 규칙을 가지지 않고 교대로(alternating), 그라프트(graft) 형태로 또는 임의로(randomly) 배열될 수 있다.In this case, in unit A represented by Chemical Formula 1, n, m and o respectively mean the number of repetitions, and the repeating units n, m and o each have a predetermined rule or alternately with no rule. ), Or may be arranged in a graft form or randomly.
또한, 본 발명의 일 실시예에 따른 젤 폴리머 전해질에 있어서, 상기 제1 올리고머는 중합 반응을 통해 매트릭스 폴리머를 형성하는 역할을 수행하여 기계적 물성을 향상시키기 위하여 상기 화학식 2로 표시되는 단위 B를 포함할 수 있다. In addition, in the gel polymer electrolyte according to an embodiment of the present invention, the first oligomer includes a unit B represented by Chemical Formula 2 in order to improve the mechanical properties by forming a matrix polymer through a polymerization reaction. can do.
구체적으로, 상기 화학식 2로 표시되는 단위 B는 하기 화학식 2a 내지 2l로 표시되는 것들로 이루어진 군으로부터 선택된 적어도 하나 이상일 수 있다. Specifically, the unit B represented by Formula 2 may be at least one selected from the group consisting of those represented by Formulas 2a to 2l.
[화학식 2a][Formula 2a]
Figure PCTKR2017009622-appb-I000030
Figure PCTKR2017009622-appb-I000030
[화학식 2b][Formula 2b]
Figure PCTKR2017009622-appb-I000031
Figure PCTKR2017009622-appb-I000031
[화학식 2c][Formula 2c]
Figure PCTKR2017009622-appb-I000032
Figure PCTKR2017009622-appb-I000032
상기 화학식 2c에서,In Chemical Formula 2c,
r1은 1 내지 3 중 어느 하나의 정수이다.r1 is an integer of any one of 1-3.
[화학식 2d][Formula 2d]
Figure PCTKR2017009622-appb-I000033
Figure PCTKR2017009622-appb-I000033
상기 화학식 2d에서,In Chemical Formula 2d,
r2는 1 내지 3 중 어느 하나의 정수이다.r2 is an integer of any one of 1-3.
[화학식 2e][Formula 2e]
Figure PCTKR2017009622-appb-I000034
Figure PCTKR2017009622-appb-I000034
상기 화학식 2e에서,In Chemical Formula 2e,
r3는 1 내지 3 중 어느 하나의 정수이다.r3 is an integer of any one of 1-3.
[화학식 2f][Formula 2f]
Figure PCTKR2017009622-appb-I000035
Figure PCTKR2017009622-appb-I000035
상기 화학식 2f에서,In Chemical Formula 2f,
r4는 1 내지 3 중 어느 하나의 정수이다.r4 is an integer of any one of 1-3.
[화학식 2g] [Formula 2g]
Figure PCTKR2017009622-appb-I000036
Figure PCTKR2017009622-appb-I000036
상기 화학식 2g에서,In Chemical Formula 2g,
r5는 1 내지 3 중 어느 하나의 정수이다.r5 is an integer of any one of 1-3.
[화학식 2h][Formula 2h]
Figure PCTKR2017009622-appb-I000037
Figure PCTKR2017009622-appb-I000037
상기 화학식 2h에서,In Chemical Formula 2h,
r6는 1 내지 3 중 어느 하나의 정수이다.r6 is an integer of any one of 1-3.
[화학식 2i][Formula 2i]
Figure PCTKR2017009622-appb-I000038
Figure PCTKR2017009622-appb-I000038
상기 화학식 2i에서,In Chemical Formula 2i,
r7은 1 내지 3 중 어느 하나의 정수이다.r7 is an integer of any one of 1-3.
[화학식 2j][Formula 2j]
Figure PCTKR2017009622-appb-I000039
Figure PCTKR2017009622-appb-I000039
상기 화학식 2j에서,In Chemical Formula 2j,
r8은 1 내지 3 중 어느 하나의 정수이다. r8 is an integer of any one of 1-3.
[화학식 2k][Formula 2k]
Figure PCTKR2017009622-appb-I000040
Figure PCTKR2017009622-appb-I000040
[화학식 2l][Formula 2l]
Figure PCTKR2017009622-appb-I000041
Figure PCTKR2017009622-appb-I000041
상기 본 발명의 젤 폴리머 전해질에서 상기 제1 올리고머는 그 대표적인 예로서 하기 화학식 3으로 표시되는 화합물을 포함할 수 있다.In the gel polymer electrolyte of the present invention, the first oligomer may include a compound represented by the following Chemical Formula 3 as a representative example.
[화학식 3][Formula 3]
Figure PCTKR2017009622-appb-I000042
Figure PCTKR2017009622-appb-I000042
상기 화학식 3에서,In Chemical Formula 3,
R1 및 R2는 각각 독립적으로 불소로 치환 또는 비치환된 탄소수 1 내지 4의 알킬렌기이고, R 1 and R 2 are each independently an alkylene group having 1 to 4 carbon atoms unsubstituted or substituted with fluorine,
R3은 수소, 또는 탄소수 1 내지 6의 알킬기이고, R 3 is hydrogen or an alkyl group having 1 to 6 carbon atoms,
R4는 탄소수 1 내지 6의 알킬렌기, -CH2-R6-CH2-, 또는 -CH2-R7-O-R8-CH2-이며, 이때 R6, R7 및 R8은 적어도 1 이상의 아크릴레이트기가 치환된 탄소수 1 내지 3의 알킬렌기이고,R 4 is an alkylene group having 1 to 6 carbon atoms, -CH 2 -R 6 -CH 2- , or -CH 2 -R 7 -OR 8 -CH 2-, wherein R 6 , R 7 and R 8 are at least 1 The above acrylate group is a substituted alkylene group having 1 to 3 carbon atoms,
R5는 탄소수 1 내지 5의 알킬렌기, 또는 -(CO-R9-O-)r-CO-NH-R10-NH-CO-O-이고, 이때 R9는 탄소수 1 내지 10의 알킬렌기이고, R10은 지방족, 지환족 또는 방향족 탄화수소기이고,R 5 is an alkylene group having 1 to 5 carbon atoms or-(CO-R 9 -O-) r -CO-NH-R 10 -NH-CO-O-, wherein R 9 is an alkylene group having 1 to 10 carbon atoms R 10 is an aliphatic, alicyclic or aromatic hydrocarbon group,
상기 m1, n1 및 o1는 반복 단위수이며,M1, n1, and o1 are the number of repeating units,
m1은 1 내지 10 중 어느 하나의 정수이고,m1 is an integer of any one of 1 to 10,
n1은 1 내지 10 중 어느 하나의 정수이며,n1 is an integer of any one of 1 to 10,
o1는 1 내지 500 중 어느 하나의 정수이고,o1 is an integer of any one of 1 to 500,
r은 1 내지 3 중 어느 하나의 정수이다. r is an integer of any one of 1-3.
구체적으로, 상기 화학식 3으로 표시되는 올리고머는 그 대표적인 예로서 하기 화학식 3a 내지 3f로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나의 화합물을 포함할 수 있다. Specifically, the oligomer represented by Chemical Formula 3 may include at least one compound selected from the group consisting of compounds represented by the following Chemical Formulas 3a to 3f as a representative example.
[화학식 3a][Formula 3a]
Figure PCTKR2017009622-appb-I000043
Figure PCTKR2017009622-appb-I000043
상기 화학식 3a에서,In Chemical Formula 3a,
m2, n2, 및 o2는 반복 단위수이며,m2, n2, and o2 are the number of repeat units,
m2는 1 내지 10 중 어느 하나의 정수이고,m2 is an integer of any one of 1 to 10,
n2는 1 내지 10 중 어느 하나의 정수이며,n2 is an integer of any one of 1 to 10,
o2는 1 내지 500 중 어느 하나의 정수이다.o2 is an integer of any one of 1-500.
[화학식 3b][Formula 3b]
Figure PCTKR2017009622-appb-I000044
Figure PCTKR2017009622-appb-I000044
상기 화학식 3b에서,In Chemical Formula 3b,
m3, n3 및 o3는 반복 단위수이며,m3, n3, and o3 are the number of repeat units,
m3는 1 내지 10 중 어느 하나의 정수이고,m3 is an integer of any one of 1 to 10,
n3는 1 내지 10 중 어느 하나의 정수이며,n3 is an integer of any one of 1 to 10,
o3는 1 내지 500 중 어느 하나의 정수이다.o3 is an integer of any one of 1-500.
[화학식 3c][Formula 3c]
Figure PCTKR2017009622-appb-I000045
Figure PCTKR2017009622-appb-I000045
상기 화학식 3c에서,In Chemical Formula 3c,
m4, n4 및 o4는 반복 단위수이며,m4, n4, and o4 are the number of repeat units,
m4는 1 내지 10 중 어느 하나의 정수이고,m4 is an integer of any one of 1 to 10,
n4는 1 내지 10 중 어느 하나의 정수이며,n4 is an integer of any one of 1 to 10,
o4는 1 내지 500 중 어느 하나의 정수이고,o4 is an integer of any one of 1 to 500,
r9는 1 내지 3 중 어느 하나의 정수이다.r9 is an integer of any one of 1-3.
[화학식 3d][Formula 3d]
Figure PCTKR2017009622-appb-I000046
Figure PCTKR2017009622-appb-I000046
상기 화학식 3d에서,In Chemical Formula 3d,
m5, n5 및 o5는 반복 단위수이며,m5, n5 and o5 are the number of repeat units,
m5는 1 내지 10 중 어느 하나의 정수이고,m5 is an integer of any one of 1 to 10,
n5는 1 내지 10 중 어느 하나의 정수이며,n5 is an integer of any one of 1 to 10,
o5는 1 내지 500 중 어느 하나의 정수이고,o5 is an integer of any one of 1 to 500,
r10는 1 내지 3 중 어느 하나의 정수이다.r10 is an integer of any one of 1-3.
[화학식 3e][Formula 3e]
Figure PCTKR2017009622-appb-I000047
Figure PCTKR2017009622-appb-I000047
상기 화학식 3e에서,In Chemical Formula 3e,
m6, n6 및 o6는 반복 단위수이며,m6, n6 and o6 are the number of repeat units,
m6은 1 내지 10 중 어느 하나의 정수이고,m6 is an integer of any one of 1 to 10,
n6은 1 내지 10 중 어느 하나의 정수이며,n6 is an integer of any one of 1 to 10,
o6은 1 내지 500 중 어느 하나의 정수이고,o6 is an integer of any one of 1 to 500,
r11은 1 내지 3 중 어느 하나의 정수이다.r11 is an integer of any one of 1-3.
[화학식 3f][Formula 3f]
Figure PCTKR2017009622-appb-I000048
Figure PCTKR2017009622-appb-I000048
상기 화학식 3f에서,In Chemical Formula 3f,
m7, n7 및 o7은 반복 단위수이며,m7, n7 and o7 are the number of repeat units,
m7은 1 내지 10 중 어느 하나의 정수이고,m7 is an integer of any one of 1 to 10,
n7은 1 내지 10 중 어느 하나의 정수이며,n7 is an integer of any one of 1 to 10,
o7은 1 내지 500 중 어느 하나의 정수이고,o7 is an integer of any one of 1 to 500,
r12는 1 내지 3 중 어느 하나의 정수이다.r12 is an integer of any one of 1-3.
본 발명의 젤 폴리머 전해질을 형성함에 있어, 상기 올리고머 중에서 매트릭스 폴리머를 형성하는 단위 B : 단위 A의 비율은 특별히 제한하지 않으나, 구체적으로 단위 B: 단위 A의 몰비는 1:90 내지 90:1일 수 있다. In forming the gel polymer electrolyte of the present invention, the ratio of unit B: unit A for forming the matrix polymer in the oligomer is not particularly limited, but specifically, the molar ratio of unit B: unit A is 1:90 to 90: 1 days. Can be.
상기 본 발명의 젤 폴리머 전해질을 형성하기 위한 올리고머의 중량평균분자량은 약 1,000 g/mol 내지 100,000 g/mol, 구체적으로 1,000 g/mol 내지 50,000 g/mol일 수 있다. 상기 올리고머의 중량평균분자량이 상기 범위 내인 경우, 이를 포함하는 전지의 기계적 강도를 효과적으로 개선할 수 있다.The weight average molecular weight of the oligomer for forming the gel polymer electrolyte of the present invention may be about 1,000 g / mol to 100,000 g / mol, specifically 1,000 g / mol to 50,000 g / mol. When the weight average molecular weight of the oligomer is in the above range, it is possible to effectively improve the mechanical strength of the battery comprising the same.
상기 공중합체의 중량평균분자량이 상기 범위 내인 경우, 기계적 물성과 가공성(성형성) 및 전기화학적 안정성 등을 확보할 수 있다. 이때, 상기 화학식 1로 표시되는 단위 A에 있어서, m, n 및 o는 상기 범위 내에서 공중합체의 중량평균분자량에 따라 적절히 변경할 수 있다.When the weight average molecular weight of the copolymer is within the above range, it is possible to secure mechanical properties, processability (formability) and electrochemical stability. At this time, in the unit A represented by the formula (1), m, n and o can be appropriately changed according to the weight average molecular weight of the copolymer within the above range.
이때, 상기 중량평균분자량은 젤투과크로마토그래피(Gel Permeation Chromatography: GPC)를 이용하여 측정할 수 있다. 예컨대, 일정 농도의 샘플 시료를 준비한 후, GPC 측정 시스템 alliance 4 기기를 안정화시킨다. 기기가 안정화되면 기기에 표준 시료와 샘플 시료를 주입하여 크로마토그램을 얻어낸 다음, 분석 방법에 따라 분자량을 계산한다 (시스템: Alliance 4, 컬럼: Ultrahydrogel linear x 2, eluent: 0.1M NaNO3 (pH 7.0 phosphate buffer, flow rate: 0.1 mL/min, temp: 40℃, injection: 100μL)In this case, the weight average molecular weight may be measured using gel permeation chromatography (GPC). For example, after preparing a sample sample of a certain concentration, the GPC measurement system alliance 4 instrument is stabilized. Once the instrument is stabilized, inject the standard sample and the sample sample into the instrument to obtain a chromatogram and calculate the molecular weight according to the analytical method (System: Alliance 4, Column: Ultrahydrogel linear x 2, eluent: 0.1M NaNO 3 (pH 7.0) phosphate buffer, flow rate: 0.1 mL / min, temp: 40 ℃, injection: 100μL)
또한, 본 발명의 젤 폴리머 전해질은 기계적 강도 및 경화 효과를 보다 향상시키기 위하여, 메틸 아크릴레이트, 메틸 메타크릴레이트, 에틸 아크릴레이트, 에틸 메타크릴레이트, 프로필 아크릴레이트, 프로필 메타크릴레이트, 부틸 아크릴레이트, 부틸 메타크릴레이트, 헥실 아크릴레이트, 헥실 메타크릴레이트, 에틸헥실 아크릴레이트, 에틸헥실 메타크릴레이트, 2,2,2-트리플루오로에틸 아크릴레이트, 2,2,2-트리플루오로에틸 메타크릴레이트, 2,2,3,3-테트라플루오로프로필 아크릴레이트, 및 2,2,3,3-테트라플루오로프로필 메타크릴레이트로 이루어진 군으로부터 선택된 적어도 하나로부터 유도된 단위 C를 더 포함할 수 있다.In addition, the gel polymer electrolyte of the present invention, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate to further improve the mechanical strength and curing effect , Butyl methacrylate, hexyl acrylate, hexyl methacrylate, ethylhexyl acrylate, ethylhexyl methacrylate, 2,2,2-trifluoroethyl acrylate, 2,2,2-trifluoroethyl meta Further comprise unit C derived from at least one selected from the group consisting of acrylate, 2,2,3,3-tetrafluoropropyl acrylate, and 2,2,3,3-tetrafluoropropyl methacrylate Can be.
이때, 상기 단위 C는 제1 올리고머의 전체 함량을 기준으로 50 중량% 이하, 구체적으로 20 중량% 이하로 포함되는 것이 바람직하다. 만약, 상기 단위 C의 함량이 50 중량%를 초과하는 경우, 올리고머가 과량 함유되어 저항이 증가하므로, 사이클 특성 등이 저하되는 단점이 발생할 수 있다.At this time, the unit C is preferably included in 50 wt% or less, specifically 20 wt% or less based on the total content of the first oligomer. If the content of the unit C exceeds 50% by weight, since the oligomer is contained in an excessive amount to increase resistance, a disadvantage may occur in that the cycle characteristics and the like decrease.
한편, 본 발명의 젤 폴리머 전해질은 코팅형 젤 폴리머 전해질을 구현하는 경우, 상기 매트릭스 폴리머는 제1 올리고머 100 중량부에 대하여 5 내지 700 중량부, 구체적으로 100 내지 400 중량부 범위의 무기물 입자를 추가로 함유할 수 있다. On the other hand, when the gel polymer electrolyte of the present invention implements a coated gel polymer electrolyte, the matrix polymer is added to the inorganic particles in the range of 5 to 700 parts by weight, specifically 100 to 400 parts by weight based on 100 parts by weight of the first oligomer. It may contain.
상기 무기물 입자는 전극과 계면 저항 증가를 효과적으로 개선하기 위하여 700 중량부 이하로 포함되는 것이 보다 바람직하다. 상기 무기물 입자가 700 중량부를 초과하여 포함되는 경우 전해질 내부에 생성되는 공극(pore)이 형성되어 이온전도도 효과가 저하될 수 있다. 만약, 상기 무기물 입자 함량이 5 중량부 미만인 경우, 기계적 물성 확보와 동시에 전기화학적 안정성 개선 효과가 미미하다.More preferably, the inorganic particles are included in an amount of 700 parts by weight or less in order to effectively improve the electrode and the interface resistance. When the inorganic particles are included in an amount of more than 700 parts by weight, pores are formed in the electrolyte, thereby decreasing the ion conductivity effect. If the inorganic particle content is less than 5 parts by weight, the effect of improving the mechanical properties and improving the electrochemical stability is insignificant.
상기 무기물 입자는 매트릭스 폴리머에 함침되어, 무기물 입자 간의 빈공간에 의해 형성된 기공들을 통하여 고점도 용매가 잘 스며들도록 할 수 있다. 즉, 무기물 입자를 포함함으로써, 극성 물질 간의 친화력과 모세관 현상에 의해 고점도 용매에 대한 습윤성을 보다 향상되는 효과를 얻을 수 있다.The inorganic particles may be impregnated into the matrix polymer to allow the high viscosity solvent to penetrate well through the pores formed by the void space between the inorganic particles. That is, by including the inorganic particles, it is possible to obtain an effect of further improving the wettability to a high viscosity solvent by affinity between the polar substances and capillary phenomenon.
이러한 무기물 입자로는 유전율이 높고, 리튬 이차전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0 내지 5V)에서 산화 및/또는 환원 반응이 일어나지 않는 무기물 입자를 사용할 수 있다.As such inorganic particles, inorganic particles having a high dielectric constant and which do not generate an oxidation and / or reduction reaction in an operating voltage range of the lithium secondary battery (for example, 0 to 5V based on Li / Li + ) may be used.
구체적으로, 상기 무기물 입자는 그 대표적인 예로서 BaTiO3, BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1 - xLaxZr1 - yTiyO3 (PLZT, 여기서, 0<x<1, 0<y<1임), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC, 리튬포스페이트 (Li3PO4), 리튬티타늄포스페이트 (Lix1Tiy1(PO4)3, 0<x1<2, 0<y1<3), 리튬알루미늄티타늄포스페이트 (Lix2Aly2Tiz2(PO4)3, 0<x2<2, 0<y2<1, 0<z2<3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)x3Oy3 계열 glass (0<x3<4, 0<y3<13), 리튬란탄티타네이트 (Lix4Lay4TiO3, 0<x4<2, 0<y4<3), Li3 . 25Ge0 .25P0. 75S4 등과 같은 리튬게르마늄티오포스페이트 (Lix5Gey5PzSw, 0<x5<4, 0<y5<1, 0<z<1, 0<w<5), Li3N 등과 같은 리튬나이트라이드 (Lix6Ny6, 0<x6<4, 0<y6<2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass (Lix7Siy7Sz2, 0<x7<3, 0<y7<2, 0<z3<4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 glass (Lix8Py8Sz3, 0<x8<3, 0<y8<3, 0<z3<7), 및 리튬 란타늄 지르코늄 옥사이드 (Li7La3Zr2O12, LLZO)로부터 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 들 수 있다. 구체적으로, 상기 무기물 입자는 LLZO를 포함할 수 있다.Specifically, the inorganic particles may be BaTiO 3 , BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1 - x La x Zr 1 - y Ti y O 3 (PLZT, where 0 < x <1, 0 <y <1), Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC, Lithium Phosphate (Li 3 PO 4 ), Lithium Titanium Phosphate (Li x1 Ti y1 (PO 4 ) 3 , 0 <x1 <2, 0 <y1 <3), lithium aluminum titanium phosphate (Li x2 Al y2 Ti z2 (PO 4 ) 3 , 0 <x2 <2, 0 <y2 <1, 0 <z2 <3), 14Li 2 (LiAlTiP) x3 O y3 series glass (0 <x3 <4, 0 <y3 <13), such as O-9Al 2 O 3 -38 TiO 2 -39P 2 O 5 , lithium lanthanum titanate (Li x4 La y4 TiO 3 , 0 <x4 <2, 0 <y4 <3), Li 3 . 25 Ge 0 .25 P 0. 75 S 4 lithium such as germanium thiophosphate (Li x5 Ge y5 P z S w, 0 <x5 <4, 0 <y5 <1, 0 <z <1, 0 <w <5 ), Lithium nitride such as Li 3 N (Li x6 N y6 , 0 <x6 <4, 0 <y6 <2), SiS 2 series glass (Li x7 Si, such as Li 3 PO 4 -Li 2 S-SiS 2, etc.) P 2 S 5 series glass (Li x8 P y8 S z3 , 0 <x8) such as y7 S z2 , 0 <x7 <3, 0 <y7 <2, 0 <z3 <4), LiI-Li 2 SP 2 S 5 And single or mixtures of two or more selected from the group consisting of <3, 0 <y8 <3, 0 <z3 <7), and lithium lanthanum zirconium oxide (Li 7 La 3 Zr 2 O 12 , LLZO). Specifically, the inorganic particles may include LLZO.
또한, 상기 무기물 입자 외에도 또는 이들의 혼합물 등을 더 포함할 수 있다.In addition, in addition to the inorganic particles or a mixture thereof may be further included.
상기 무기물 입자들의 평균 입경은 젤 폴리머 전해질 내에 균일한 두께로 적절한 공극률을 가지도록 형성하기 위하여, 약 0.001 내지 10㎛ 범위인 것이 바람직하다. 만약, 평균 입경이 0.001㎛ 미만인 경우 분산성이 저하될 수 있고, 평균 입경이 10㎛를 초과하는 경우 다공성 코팅층의 두께가 증가할 수 있을 뿐만 아니라, 무기물 입자가 뭉치는 현상이 발생하여 젤 폴리머 전해질 밖으로 노출되면서 기계적 강도가 저하될 수 있다. The average particle diameter of the inorganic particles is preferably in the range of about 0.001 to 10 ㎛ in order to have a proper porosity in a uniform thickness in the gel polymer electrolyte. If the average particle size is less than 0.001㎛ dispersibility may be lowered, if the average particle diameter is more than 10㎛ not only can increase the thickness of the porous coating layer, but also agglomeration of inorganic particles occurs gel polymer electrolyte Exposure to the outside can lower the mechanical strength.
상술한 바와 같은, 본 발명의 젤 폴리머 전해질은 25℃ 온도에서 임피던스 측정 분석 시스템으로 측정하는 경우에 2.5×10-4S/cm 이상의 Li+ 이온전도도를 구현할 수 있다.As described above, the gel polymer electrolyte of the present invention may realize Li + ion conductivity of 2.5 × 10 −4 S / cm or more when measured by an impedance measurement analysis system at a temperature of 25 ° C.
이때, 상기 이온전도도는 제작된 젤 폴리머 전해질을 직경 1cm의 1쌍의 백금전극원판의 사이에 협지시켰다. 그리고 이 상태에서 젤 폴리머 전해질의 이온전도도를 교류 임피던스 (Impedance) 측정법을 통해 측정하였다. 측정장비는 Bio Logic사의 VMP3 모델로 측정조건은 10,000-0.1Hz, 10mV의 amplitude 조건으로 상온에서 진행되었다.In this case, the ion conductivity was sandwiched between the prepared gel polymer electrolyte between a pair of platinum electrode disc of 1cm in diameter. In this state, the ionic conductivity of the gel polymer electrolyte was measured by AC impedance measurement. The measuring instrument is Bio Logic's VMP3 model and the measurement conditions were performed at room temperature under 10,000-0.1Hz and 10mV amplitude conditions.
또한, 상기 젤 폴리머 전해질은 25℃ 온도에서 NMR 측정법 기준으로 0.3 이상의 Li+ 이온이동계수를 가질 수 있다. 이때, 상기 Li+ 이온 이동계수는 Li+ 이온확산도 / (Li+ 이온확산도 + 음이온 확산도)로 정의할 수 있으며, 이때 상기 Li+ 이온확산도 및 음이온 확산도는 다음과 같은 장비와 방법을 통하여 측정할 수 있다.In addition, the gel polymer electrolyte may have a Li + ion migration coefficient of 0.3 or more based on the NMR measurement method at a temperature of 25 ℃. In this case, the Li + ion mobility factor is Li + ion diffusion also / can be defined as (Li + ion diffusivity + anion diffusivity), in which the Li + ion diffusivity and anion diffusivity is the following equipment and methods Can be measured.
예컨대, Varian 500MHz NMR/ dual probe를 사용하였으며, Li+ 이온확산도(cation diffusion constant)는 7Li diffusion NMR로 측정하였고, 음이온확산도는 (anion diffusion constant 측정)는 19F diffusion NMR로 측정하였다. 이때 사용된 용매(solvent)는 acetone-d6이며, 시료 자체 내에서의 확산(diffusion) 값을 측정하기 위하여 inner tube(acetone-d6)를 사용하여 시료와 deuterium solvent가 섞이지 않도록 하였다. 또한, 이 측정 실험에서 pulse sequence는 stimulated echo with gradient pulse를 사용하였다. Gradient amplitude는 최고 gradient power 일 때의 peak intensity가 최저 gradient power 일 때의 peak intensity 대비 약 2~5% 정도 수준이 되도록 조절하였으며 이 구간을 solution NMR과 동일하게 16단계로 나누어 각 시료에 대해 16번의 다른 amplitude를 적용하였다.For example, a Varian 500 MHz NMR / dual probe was used, and Li + cation diffusion constant was measured by 7 Li diffusion NMR, and anion diffusion constant (anion diffusion constant) was measured by 19 F diffusion NMR. The solvent used was acetone-d 6 , and the inner tube (acetone-d 6 ) was used to prevent the sample and the deuterium solvent from mixing in order to measure the diffusion value in the sample itself. In addition, the pulse sequence was stimulated echo with gradient pulse. Gradient amplitude was adjusted so that the peak intensity at the highest gradient power was about 2 to 5% of the peak intensity at the lowest gradient power. This section was divided into 16 steps in the same way as the solution NMR. Different amplitudes were applied.
또한, 상기 젤 폴리머 전해질은 25℃ 온도에서 젤 함량이 약 1 중량% 이상, 구체적으로 약 20 중량% 이상일 수 있다.In addition, the gel polymer electrolyte may have a gel content of about 1% by weight or more, specifically about 20% by weight or more at 25 ° C.
또한, 상기 젤 폴리머 전해질은 25℃ 온도에서 반응성 올리고머 전체 투입량 대비 미반응 올리고머의 함량이 20 중량% 이하인 것이 바람직하다.In addition, the gel polymer electrolyte preferably has an unreacted oligomer content of 20 wt% or less relative to the total amount of the reactive oligomer at 25 ° C.
이때, 상기 미반응 올리고머의 함량은 젤 폴리머 전해질을 구현한 다음, 젤 폴리머 전해질을 용매 (아세톤) 추출하고, 이어서 추출된 용매를 NMR 측정을 통해 확인할 수 있다.In this case, the content of the unreacted oligomer may be implemented by implementing a gel polymer electrolyte, then extracting the gel polymer electrolyte with a solvent (acetone), and then checking the extracted solvent through NMR measurement.
한편, 본 발명의 젤 폴리머 전해질에 있어서, 상기 매트릭스 폴리머 상에 함침되어 있는 전해액은 통상적인 리튬염 함유 비수용매로 이루어진 것으로, 이때 상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3, LiC4BO8, LiTFSI, LiFSI, 및 LiClO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있으며, 이에 한정되는 것은 아니다. On the other hand, in the gel polymer electrolyte of the present invention, the electrolyte solution impregnated on the matrix polymer is composed of a conventional lithium salt-containing non-aqueous solvent, wherein the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 , LiC 4 BO 8 , LiTFSI, LiFSI, and LiClO 4 It may include any one selected from the group consisting of or a mixture of two or more thereof, but is not limited thereto.
상기 리튬염은 전해액 내에 1M 내지 2M로 포함될 수 있고, 또는 상기 올리고머의 전체 함량에 대해 10 중량% 내지 50 중량%로 포함될 수 있다.The lithium salt may be included in the electrolyte solution in 1M to 2M, or may be included in 10% by weight to 50% by weight relative to the total content of the oligomer.
또한, 본 발명의 전해액 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 비수용매를 사용할 수 있으며, 예를 들면 그 대표적인 예로 환형 카보네이트계 화합물, 선형 카보네이트계 화합물, 알킬 에테르계 화합물, 알킬 아세테이트계 화합물, 알킬 프로피오네이트계 화합물, 및 니트릴계 화합물 중 적어도 하나 이상의 화합물을 포함할 수 있다.In addition, as the electrolyte solvent of the present invention, a non-aqueous solvent commonly used in a lithium secondary battery electrolyte may be used. For example, a cyclic carbonate compound, a linear carbonate compound, an alkyl ether compound, or an alkyl acetate compound may be used. It may include at least one or more of the alkyl propionate compound, and the nitrile compound.
이때, 상기 환형 카보네이트계 화합물 예로는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC), 및 플루오르에틸렌 카보네이트(FEC) 로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있다.In this case, the cyclic carbonate-based compound may include at least one selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and fluoroethylene carbonate (FEC).
상기 선형 카보네이트계 화합물은 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있다.The linear carbonate compound is at least selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate It may include one or more.
상기 알킬 에테르계 화합물은 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있다.The alkyl ether compound may include at least one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, and ethylpropyl ether.
상기 알킬 아세테이트계 화합물은 메틸 아세테이트, 에틸 아세테이트 및 프로필 아세테이트로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있다.The alkyl acetate-based compound may include at least one selected from the group consisting of methyl acetate, ethyl acetate and propyl acetate.
상기 알킬 프로피오네이트계 화합물은 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트 및 부틸 프로피오네이트로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.The alkyl propionate compound may include at least one selected from the group consisting of methyl propionate, ethyl propionate, propyl propionate, and butyl propionate.
상기 니트릴계 화합물은 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.The nitrile compound is acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzonitrile, 4-fluorobenzonitrile And at least one selected from the group consisting of difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile.
특히, 상기 카보네이트계 전해액 용매 중 환형 카보네이트인 프로필렌 카보네이트 및 에틸렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 전해액 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트에 에틸메틸 카보네이트, 디에틸 카보네이트 또는 디메틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 가지는 전해액을 만들 수 있어서 더욱 바람직하게 사용될 수 있다. In particular, propylene carbonate and ethylene carbonate, which are cyclic carbonates in the carbonate electrolyte solvent, may be preferably used because they have high dielectric constants and dissociate lithium salts in the electrolyte well, such as ethylmethyl carbonate and diethyl carbonate. Alternatively, when a low viscosity, low dielectric constant linear carbonate such as dimethyl carbonate is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be made, and thus it can be used more preferably.
또한, 상기 전해액 용매는 전해액에서 사용하는 통상적인 첨가제를 추가하여 성능을 개선할 수 있다. 예를 들면 비닐렌카보네이트(VC), 1,3-프로판 설톤(PS), 숙신니트릴(SN), 에틸렌 설페이트(ESa), 1,3-프로펜설톤(PRS), 플루오로에틸렌 카보네이트(FEC), 아디포니트릴(ADN), LiPO2F2, 리튬 디플루오로 비스(옥살라토)포스페이트(LiODFB), 리튬 비스(옥살라토)보레이트(LiBOB), (트리메틸실릴)프로필 포스페이트(TMSPa), (트리메틸실릴)프로필 포스파이트(TMSPi), TFEPa, TFEPi 등 일반적인 첨가제를 제한 없이 더 포함할 수 있다.In addition, the electrolyte solvent may improve the performance by adding a conventional additive used in the electrolyte solution. For example, vinylene carbonate (VC), 1,3-propane sultone (PS), succinitrile (SN), ethylene sulfate (ESa), 1,3-propenesultone (PRS), fluoroethylene carbonate (FEC) Adiponitrile (ADN), LiPO 2 F 2 , lithium difluoro bis (oxalato) phosphate (LiODFB), lithium bis (oxalato) borate (LiBOB), (trimethylsilyl) propyl phosphate (TMSPa), General additives such as (trimethylsilyl) propyl phosphite (TMSPi), TFEPa, and TFEPi may be further included without limitation.
종래 일반 전해액이 양극에서 용출된 금속이온이 음극에서 석출되는 반면, 본 발명의 젤 폴리머 전해질은 올리고머에 의해 형성된 매트릭스 폴리머를 포함함으로써, 기계적 물성뿐만 아니라, 고전압 안전성 증대 및 전지 저항 감소 효과와 이에 따른 이온전도도 향상 효과를 확보할 수 있다. 따라서, 수명 특성 및 용량 특성이 향상된 리튬 이차전지를 제조할 수 있다. 뿐만 아니라, 양극과 음극 표면에 고분자로 구성되는 보호층을 형성하거나, 고분자 구조를 이용하여 음이온 안정화를 통한 부반응 억제 및 전극 간의 밀착력을 증대시켜 고온에서의 전지 내부의 gas 발생을 억제할 수 있다. 또한, 젤 폴리머 고분자를 통한 세퍼레이터 강화와, 이에 따른 관통 안정성 향상, 난연성 및 휘발성 감소를 통한 과충전 등의 안정성 개선 효과를 구현할 수도 있다.While the metal ions eluted from the positive electrode of the conventional general electrolyte is precipitated from the negative electrode, the gel polymer electrolyte of the present invention includes a matrix polymer formed by the oligomer, thereby increasing not only mechanical properties but also high voltage safety and reducing battery resistance and thus The ion conductivity improvement effect can be ensured. Therefore, a lithium secondary battery having improved lifespan characteristics and capacity characteristics can be manufactured. In addition, by forming a protective layer composed of a polymer on the surface of the positive electrode and the negative electrode, or by using a polymer structure to suppress side reactions through anion stabilization and to increase the adhesion between the electrodes can suppress the gas generation inside the battery at high temperature. In addition, it is also possible to implement stability improvement effects such as overcharging through strengthening the separator through the gel polymer polymer, thereby improving penetration stability, flame retardancy, and volatility.
또한, 본 발명의 다른 일 구현예에서는In addition, in another embodiment of the present invention
리튬염, Lithium Salt,
전해액 용매, Electrolyte solvent,
중합개시제, 및 Polymerization initiator, and
상기 화학식 1로 표시되는 단위 A 및 상기 화학식 2로 표시되는 단위 B를 포함하는 제1 올리고머를 포함하는 젤 폴리머 전해질용 조성물을 제공할 수 있다.It can provide a composition for a gel polymer electrolyte comprising a first oligomer comprising a unit A represented by the formula (1) and a unit B represented by the formula (2).
상기 제1 올리고머는 젤 폴리머 전해질용 조성물 전체 중량에 대해 0.5 중량% 내지 20 중량%, 보다 바람직하게는 0.5 중량% 내지 10 중량%로 포함될 수 있다. 만약, 0.5 중량% 미만이면 젤화되기 어려워 젤 폴리머 전해질의 특성이 발현되기 어려울 수 있고, 20 중량%를 초과하면 올리고머의 과량 함유로 인해 저항이 증가하여 전지 성능이 저하될 수 있다. The first oligomer may be included in an amount of 0.5 wt% to 20 wt%, more preferably 0.5 wt% to 10 wt%, based on the total weight of the composition for gel polymer electrolyte. If less than 0.5% by weight of the gel polymer is difficult to be difficult to express the characteristics of the gel polymer electrolyte, if it exceeds 20% by weight may increase the resistance due to the excessive content of the oligomer may lower the battery performance.
또한, 본 발명에서는 종래에 알려진 중합 방법을 이용하여 상기 젤 폴리머 전해질용 조성물로부터 본 발명의 젤 폴리머 전해질을 제조할 수 있다. In addition, in the present invention, the gel polymer electrolyte of the present invention can be produced from the gel polymer electrolyte composition using a polymerization method known in the art.
이러한 반응을 위해 사용되는 중합개시제는 당 업계에 알려진 통상적인 중합개시제가 사용될 수 있다.The polymerization initiator used for this reaction may be used conventional polymerization initiator known in the art.
상기 중합개시제의 비제한적인 예로는 벤조일 퍼옥사이드(benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), 디라우릴 퍼옥사이드(dilauryl peroxide), 디-tert-부틸 퍼옥사이드(di-tert-butyl peroxide), t-부틸 퍼옥시-2-에틸-헥사노에이트(t-butyl peroxy-2-ethyl-hexanoate), 큐밀 하이드로퍼옥사이드(cumyl hydroperoxide) 및 하이드로겐 퍼옥사이드(hydrogen peroxide) 등의 유기과산화물류나 히드로과산화물류와 2,2'-아조비스(2-시아노부탄), 2,2'-아조비스(메틸부티로니트릴), AIBN(2,2'-Azobis(iso-butyronitrile)) 및 AMVN(2,2'-Azobisdimethyl-Valeronitrile) 등의 아조 화합물류 등이 있으나, 이에 한정하지 않는다.Non-limiting examples of the polymerization initiator are benzoyl peroxide, acetyl peroxide, dilauryl peroxide, Di-tert-butyl peroxide, t-butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide And organic peroxides such as hydrogen peroxide, hydroperoxides, 2,2'-azobis (2-cyanobutane), 2,2'-azobis (methylbutyronitrile), AIBN ( Azo compounds such as 2,2'-Azobis (iso-butyronitrile) and AMVN (2,2'-Azobisdimethyl-Valeronitrile), and the like, but are not limited thereto.
상기 중합개시제는 전지 내에서 열, 비제한적인 예로 30℃ 내지 100℃의 열에 의해 분해되거나 상온(5℃ 내지 30℃)에서 분해되어 라디칼을 형성하고, 자유라디칼 중합에 의해 중합성 올리고머가 아크릴레이트계 화합물과 반응하여 젤 폴리머 전해질을 형성할 수 있다.The polymerization initiator is decomposed by heat in a battery, such as, but not limited to, 30 ° C. to 100 ° C., or decomposed at room temperature (5 ° C. to 30 ° C.) to form radicals, and the polymerizable oligomer is acrylate by free radical polymerization. The gel polymer electrolyte may be formed by reacting with the compound.
또한, 상기 중합개시제는 올리고머 100 중량부에 대해 0.01 중량부 내지 20 중량부의 양으로 사용될 수 있다. 중합개시제가 20 중량부를 초과하면 젤 폴리머 전해질용 조성물을 전지 내에 주액하는 도중 젤화가 너무 빨리 일어나거나 미반응 개시제가 남아 나중에 전지 성능에 악영향을 미치는 단점이 있고, 반대로 중합개시제가 0.01 중량부 미만이면 젤화가 잘 이루어지지 않는 문제가 있다.In addition, the polymerization initiator may be used in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of the oligomer. If the polymerization initiator exceeds 20 parts by weight, gelation may occur too quickly or the unreacted initiator remains after the gel polymer electrolyte composition is injected into the battery, which adversely affects battery performance. Conversely, if the polymerization initiator is less than 0.01 part by weight. There is a problem that gelation does not work well.
한편, 상기 리튬염은 앞서 전술한 바와 같이, LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3, LiC4BO8, LiTFSI, LiFSI, 및 LiClO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있으며, 이에 한정되는 것은 아니다. Meanwhile, as described above, the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO It may include any one selected from the group consisting of 3 Li, LiC (CF 3 SO 2 ) 3 , LiC 4 BO 8 , LiTFSI, LiFSI, and LiClO 4 or a mixture of two or more thereof, but is not limited thereto. .
또한, 상기 전해액 용매는 앞서 전술한 바와 같이, 리튬 이차전지용 전해액에 통상적으로 사용되는 비수용매를 사용할 수 있으며, 예를 들면 환형 카보네이트계 화합물, 선형 카보네이트계 화합물, 알킬 에테르계 화합물, 알킬 아세테이트계 화합물, 알킬 프로피오네이트계 화합물, 및 니트릴계 화합물 중 적어도 하나 이상의 화합물을 포함할 수 있다.In addition, as described above, the solvent for the electrolyte may be a non-aqueous solvent commonly used in electrolytes for lithium secondary batteries, and examples thereof include cyclic carbonate compounds, linear carbonate compounds, alkyl ether compounds, and alkyl acetate compounds. It may include at least one or more of the alkyl propionate compound, and the nitrile compound.
그 중에서 대표적으로 환형 카보네이트, 선형 카보네이트 또는 이들의 혼합물인 카보네이트 화합물을 포함할 수 있다. Among them, carbonate compounds which are typically cyclic carbonates, linear carbonates or mixtures thereof may be included.
또한, 본 발명의 일 실시예에 따른 젤 폴리머 전해질용 조성물은 상기 기재된 성분들 이외에, 젤 반응의 효율성 증대와 저항 감소 효과와 같은 성능을 추가적으로 부여하기 위하여, 당 업계에 알려진 이러한 물성을 구현할 수 있는 기타 첨가제 등을 선택적으로 더 함유할 수 있다.In addition, the composition for a gel polymer electrolyte according to an embodiment of the present invention can implement such physical properties known in the art, in addition to the components described above, in order to further impart a performance such as an efficiency increase and a resistance reduction effect of the gel reaction. And other additives may optionally be further contained.
상기 첨가제는 앞서 전술한 바와 같이, VC, VEC, PS, SN, AdN, ESa, PRS, FEC, LiPO2F2, LiODFB, LiBOB, TMSPa, TMSPi, TFEPa, TFEPi 등 일반적인 첨가제를 모두 적용 가능하다.As described above, as described above, general additives such as VC, VEC, PS, SN, AdN, ESa, PRS, FEC, LiPO 2 F 2 , LiODFB, LiBOB, TMSPa, TMSPi, TFEPa, and TFEPi may be applied.
본 발명의 또 다른 일 실시예에서는In another embodiment of the present invention
양극과 음극, 및Anode and cathode, and
상기 양극과 음극 사이에 배치되는 폴리머 전해질을 포함하며,A polymer electrolyte disposed between the positive electrode and the negative electrode,
상기 폴리머 전해질로서 본 발명의 젤 폴리머 전해질을 포함하는 리튬 이차전지를 제공한다.It provides a lithium secondary battery comprising the gel polymer electrolyte of the present invention as the polymer electrolyte.
상기 젤 폴리머 전해질은 당 업계에 알려진 통상적인 방법에 따라 젤 폴리머 전해질용 조성물을 중합시켜 형성된 것이다. 예를 들면, 젤 폴리머 전해질은 이차전지의 내부에서 상기 젤 폴리머 전해질용 조성물을 in-situ 중합하여 형성될 수 있다.The gel polymer electrolyte is formed by polymerizing the composition for gel polymer electrolyte according to a conventional method known in the art. For example, the gel polymer electrolyte may be formed by in-situ polymerization of the composition for gel polymer electrolyte in the secondary battery.
보다 바람직한 일 실시 형태를 들면, (a) 양극, 음극, 및 상기 양극과 음극 사이에 개재(介在)된 세퍼레이터로 이루어진 전극 조립체를 전지 케이스에 삽입하는 단계 및 (b) 상기 전지 케이스에 본 발명에 따른 젤 폴리머 전해질용 조성물을 주입한 후 중합시켜 젤 폴리머 전해질을 형성하는 단계를 포함할 수 있다.For a more preferred embodiment, (a) inserting an electrode assembly comprising a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode in the battery case and (b) the present invention in the battery case Injecting the composition for the gel polymer electrolyte according to the polymerization may include the step of forming a gel polymer electrolyte.
리튬 이차전지 내 in-situ 중합 반응은 E-BEAM, 감마선, 상온/고온 에이징 공정을 통하여 가능하며, 본 발명의 일 실시예에 따르면 열 중합을 통해 진행될 수 있다. 이때, 중합 시간은 대략 2분 내지 12시간 정도 소요되며, 열 중합 온도는 30 내지 100℃ 가 될 수 있다.In -situ polymerization reaction in the lithium secondary battery is possible through the E-BEAM, gamma rays, room temperature / high temperature aging process, according to one embodiment of the present invention can be carried out through thermal polymerization. At this time, the polymerization time takes about 2 minutes to 12 hours, the thermal polymerization temperature may be 30 to 100 ℃.
보다 구체적으로 리튬 이차전지 내 in-situ 중합 반응은 리튬염이 포함되어 있는 전해액에 중합개시제와 상기 올리고머를 소정량 첨가하여 혼합한 후 전지셀에 주액한다. 그러한 전지셀의 주액구를 밀봉한 후, 40 내지 80℃로 1 내지 20 시간 동안 가열하여 중합을 행하면, 리튬염 함유 전해액이 젤화를 거치게 되면 젤의 형태로 포함된 젤 폴리머 전해질이 제조된다. More specifically, the in-situ polymerization reaction in a lithium secondary battery is added to a predetermined amount of the polymerization initiator and the oligomer in an electrolyte solution containing a lithium salt, and then injected into a battery cell. After sealing the injection port of such a battery cell, the polymerization is carried out by heating to 40 to 80 ℃ for 1 to 20 hours, the gel polymer electrolyte contained in the form of a gel is prepared when the lithium salt-containing electrolyte is subjected to gelation.
본 발명의 일 실시예에 따른 상기 리튬 이차전지는 충전 전압이 3.0V 내지 5.0V 범위로, 일반전압 및 고전압 영역 모두에서 리튬 이차전지의 용량 특성이 우수하다.The lithium secondary battery according to an embodiment of the present invention has a charge voltage of 3.0V to 5.0V, excellent capacity characteristics of the lithium secondary battery in both the normal voltage and the high voltage region.
한편, 본 발명의 일 실시예에 따르면, 상기 리튬 이차전지를 구성하는 전극은 당 분야에 알려진 통상적인 방법으로 제조할 수 있다. 예를 들면, 전극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 전극을 제조할 수 있다.On the other hand, according to an embodiment of the present invention, the electrode constituting the lithium secondary battery can be manufactured by a conventional method known in the art. For example, a slurry may be prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersant in an electrode active material, and then applying the coating (coating) to a current collector of a metal material, compressing, and drying the electrode to prepare an electrode. have.
상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다. 상기 양극 합제층은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.The positive electrode may be manufactured by forming a positive electrode mixture layer on a positive electrode current collector. The cathode mixture layer may be formed by coating a cathode slurry including a cathode active material, a binder, a conductive material, a solvent, and the like on a cathode current collector, followed by drying and rolling.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. The positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery. For example, the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1 - Y9MnY9O2(여기에서, 0<Y9<1), LiMn2 - z4Niz4O4(여기에서, 0<Z4<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - Y10CoY10O2(여기에서, 0<Y10<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1 - Y11MnY11O2(여기에서, 0<Y11<1), LiMn2 - z5Coz5O4(여기에서, 0<Z5<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NiaCobMnc)O2(여기에서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1) 또는 Li(Nia1Cob1Mnc1)O4(여기에서, 0<a1<2, 0<b1<2, 0<c1<2, a1+b1+c1=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nia2Cob2Mnc2Md)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, a2, b2, c2 및 d는 각각 자립적인 원소들의 원자분율로서, 0<a2<1, 0<b2<1, 0<c2<1, 0<d<1, a2+b2+c2+d=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. The positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and may specifically include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel or aluminum. have. More specifically, the lithium composite metal oxide is a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxide (eg, LiCoO 2, etc.), lithium-nickel oxide (for example, LiNiO 2 and the like), lithium-nickel-manganese-based oxide (for example, LiNi 1-Y9 Mn Y9 O 2 (here, 0 <Y9 <1), LiMn 2-z4 Ni z4 O 4 ( here, 0 <Z4 <2) and the like), lithium-nickel-cobalt oxide (e.g., LiNi 1-Y10 Co Y10 O 2 (here, 0 <Y10 <1) and the like), lithium-manganese-cobalt oxide (e. g., LiCo 1-Y11 Mn Y11 O 2 (here, 0 <Y11 <1), LiMn 2 - z5 Co z5 O 4 ( here, 0 <z5 <2) and the like), lithium-nickel Manganese-cobalt-based oxides (e.g., Li (Ni a Co b Mn c ) O 2 , where 0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1) or Li (Ni a1 Co b1 Mn c1 ) O 4 (where 0 <a1 <2, 0 <b1 <2, 0 <c1 <2, a1 + b1 + c1 = 2, etc.), or lithium- Nickel-cobalt-transition metal (M) oxide (e.g. Li (Ni a2 Co b2 Mn c2 M d ) O 2 (wherein M is selected from the group consisting of Al, Fe, V, Cr, Ti, Ta, Mg and Mo, and a2, b2, c2 and d are atomic fractions of freestanding elements, respectively, where 0 <a2 < 1, 0 <b2 <1, 0 <c2 <1, 0 <d <1, a2 + b2 + c2 + d = 1), etc.), and any one or two or more of these compounds may be included. have.
이 중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물 (예를 들면 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있다.Among them, the lithium composite metal oxide may be LiCoO 2 , LiMnO 2 , LiNiO 2 , or lithium nickel manganese cobalt oxide (for example, Li (Ni 1/3 Mn 1/3 Co 1). / 3) O 2, Li ( Ni 0.6 Mn 0.2 Co 0.2) O 2, Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2, and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 , or the like, or lithium nickel cobalt aluminum oxide (eg, Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2 , and the like.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다. The cathode active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of solids in the cathode slurry.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of solids in the positive electrode slurry. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
상기 도전재는 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. The conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of solids in the positive electrode slurry.
이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케첸 블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다.Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used. Specific examples of commercially available conductive materials include Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, Ketjenblack, and EC, which are acetylene black series. (Armak Company), Vulcan XC-72 (manufactured by Cabot Company), and Super P (manufactured by Timcal).
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 40 중량% 내지 60 중량%, 바람직하게 40 중량% 내지 50 중량%가 되도록 포함될 수 있다.The solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that becomes a desirable viscosity when including the positive electrode active material and optionally a binder and a conductive material. For example, the concentration of the solids in the positive electrode active material and, optionally, the slurry including the binder and the conductive material may be 40 wt% to 60 wt%, preferably 40 wt% to 50 wt%.
또한, 상기 음극은 음극 집전체 상에 음극 합제층을 형성하여 제조할 수 있다. 상기 음극 합제층은 음극 집전체 상에 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.In addition, the negative electrode may be prepared by forming a negative electrode mixture layer on the negative electrode current collector. The negative electrode mixture layer may be formed by coating a negative electrode slurry including a negative electrode active material, a binder, a conductive material, a solvent, and the like on a negative electrode current collector, followed by drying and rolling.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector generally has a thickness of 3 to 500 μm. Such a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface, aluminum-cadmium alloy and the like can be used. In addition, like the positive electrode current collector, fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
또한, 상기 음극활물질은 리튬 함유 티타늄 복합 산화물(LTO); 난흑연화 탄소, 흑연계 탄소 등의 탄소계 물질; Lix10Fe2O3(0≤≤x10≤≤1), Lix11WO2(0≤≤x11≤≤1), Snx12Me1 - x12Me'y12Oz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x12≤≤1; 1≤≤y12≤≤3; 1≤≤z12≤≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, 및 Bi2O5 등의 금속 산화물; 및 폴리아세틸렌 등의 도전성 고분자로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수도 있다.In addition, the negative electrode active material is lithium-containing titanium composite oxide (LTO); Carbon-based materials such as hardly graphitized carbon and graphite carbon; Li x10 Fe 2 O 3 (0≤≤x10≤≤1 ), Li x11 WO 2 (0≤≤x11≤≤1), Sn x12 Me 1 - x12 Me 'y12 O z (Me: Mn, Fe, Pb, Ge; Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 <x12≤≤1;1≤≤y12≤≤3; 1≤≤z12≤≤8) Metal complex oxides such as these; Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , And metal oxides such as Bi 2 O 5 ; And a single substance or a mixture of two or more kinds selected from the group consisting of conductive polymers such as polyacetylene.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.The negative active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of solids in the negative electrode slurry.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder is a component that assists the bonding between the conductive material, the active material and the current collector, and is typically added in an amount of 1 to 30 wt% based on the total weight of solids in the negative electrode slurry. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20 wt% based on the total weight of solids in the negative electrode slurry. Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 75 중량%, 바람직하게 50 중량% 내지 65 중량%가 되도록 포함될 수 있다.The solvent may include an organic solvent such as water or NMP, alcohol, etc., and may be used in an amount that becomes a desirable viscosity when including the negative electrode active material and optionally a binder and a conductive material. For example, the concentration of the solids in the slurry including the negative electrode active material and, optionally, the binder and the conductive material may be 50 wt% to 75 wt%, preferably 50 wt% to 65 wt%.
그 다음으로, 상기 양극과 음극 사이에 선택적으로 분리막을 도입한다.Next, a separator is selectively introduced between the anode and the cathode.
상기 분리막은 양 전극의 내부 단락을 차단하고 전해질을 함침하는 역할을 하는 것으로, 고분자 수지, 충진제 및 용매를 혼합하여 분리막 조성물을 제조한 다음, 상기 분리막 조성물을 전극 상부에 직접 코팅 및 건조하여 분리막 필름을 형성하거나, 상기 분리막 조성물을 지지체 상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리된 분리막 필름을 전극 상부에 라미네이션하여 형성할 수 있다.The separator serves to block internal short circuits of both electrodes and to impregnate an electrolyte, to prepare a separator composition by mixing a polymer resin, a filler, and a solvent, and then directly coating and separating the separator composition on an electrode to separate the separator film. After forming or by casting and drying the separator composition on the support, the separator film separated from the support may be formed by laminating on the electrode.
상기 고분자 수지는 특별히 한정되지 않으며, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 다공성 분리막 기재에 무기물 재료가 첨가된 복합 다공성 분리막; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다.The said polymer resin is not specifically limited, For example, Olefin type polymers, such as a chemical resistance and hydrophobic polypropylene; A composite porous separator in which an inorganic material is added to the porous separator substrate; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
상기 다공성 분리막의 기공 직경은 일반적으로 0.01 내지 50㎛이고, 기공도는 5 내지 95%일 수 있다. 또한 상기 다공성 분리막의 두께는 일반적으로 5 내지 300㎛ 범위일 수 있다.The pore diameter of the porous separator is generally 0.01 to 50㎛, porosity may be 5 to 95%. In addition, the thickness of the porous separator may generally be in the range of 5 to 300㎛.
본 발명의 일 실시예에 따른 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등이 될 수 있다.The external shape of the lithium secondary battery according to an embodiment of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
한편, 본 발명의 또 다른 일 실시예에서는 On the other hand, in another embodiment of the present invention
제1전극, 제2전극, 전기 변색 물질 및A first electrode, a second electrode, an electrochromic material, and
본 발명의 젤 폴리머 전해질을 포함하는 전기 변색 소자를 추가로 제공할 수도 있다.It is also possible to further provide an electrochromic device comprising the gel polymer electrolyte of the present invention.
이때, 상기 제1전극 및 제2전극은 기재 상에 투명 도전층이 형성된 구조이며, 상기 전기 변색 소자는 전해질의 마주보는 면들 상에 유연성 기판 및 강성 기판을 포함할 수도 있다.In this case, the first electrode and the second electrode may have a structure in which a transparent conductive layer is formed on a substrate, and the electrochromic device may include a flexible substrate and a rigid substrate on opposite surfaces of the electrolyte.
이와 같이, 변색소자의 유연성과 내구성 및 디자인의 자유도를 위해 본 발명의 젤 폴리머 전해질을 적용하는 경우, 소자 구동에 필요한 이온전도도 확보 및 내구성 확보가 가능하다.As such, when the gel polymer electrolyte of the present invention is applied for flexibility and durability of the color change device and freedom of design, it is possible to secure ion conductivity and durability required for driving the device.
이때, 상기 기재 및 투명 도전층은 당 분야에서 공지된 것이라면 특별히 한정되지 않는다. 기재로는 유리, 투명 플리스틱 (고분자) 등을 들 수 있으며, 투명 도전층을 형성하기 위한 도전성 물질로는 ITO(indium doped tin oxide), ATO(antimony doped tin oxide), FTO(fluorine doped tin oxide), IZO(Indium doped zinc oxide), ZnO 등을 들 수 있다. 기재 상에 도전성 물질을 스퍼터링, 전자빔 증착, 화학기상증착, 졸-젤 코팅법 등의 공지된 방법으로 증착하여 투명 도전층을 형성할 수 있다.In this case, the substrate and the transparent conductive layer are not particularly limited as long as they are known in the art. Examples of the substrate include glass and transparent plastics (polymer), and conductive materials for forming the transparent conductive layer include indium doped tin oxide (ITO), antimony doped tin oxide (ATO), and fluorine doped tin oxide (FTO). ), IZO (Indium doped zinc oxide), ZnO and the like. The conductive material may be deposited on the substrate by a known method such as sputtering, electron beam deposition, chemical vapor deposition, or sol-gel coating to form a transparent conductive layer.
또한, 전기 변색 물질의 종류는 특별히 한정되지 않으며, WO3, MoO3, V2O5, TiO2, NiO 등의 무기 금속산화물; 폴리피롤, 폴리아닐린, 폴리아줄렌, 폴리피리딘, 폴리인돌, 폴리카바졸, 폴리아진, 폴리티오펜 등의 전도성 고분자; 비올로겐, 안트라퀴논, 페노사이아진 등의 유기 변색 물질 등을 들 수 있다.In addition, the kind of electrochromic material is not particularly limited, and inorganic metal oxides such as WO 3 , MoO 3 , V 2 O 5 , TiO 2 , NiO; Conductive polymers such as polypyrrole, polyaniline, polyazulene, polypyridine, polyindole, polycarbazole, polyazine and polythiophene; Organic discoloring substances, such as viologen, anthraquinone, and phenocyazine, etc. are mentioned.
상기 전기 변색 물질을 전극 상에 적층하는 방법은 표면 프로파일을 따라 기저면으로부터 일정한 높이로 박막을 형성할 수 있는 방법이라면 특별히 한정되지 않으며, 예컨대 스퍼터링 등의 진공증착 방법을 들 수 있다.The method of laminating the electrochromic material on the electrode is not particularly limited as long as it can form a thin film at a constant height from the base surface along the surface profile, and examples thereof include vacuum deposition methods such as sputtering.
상기 전기 변색 물질 중에서 예컨대 WO3는 환원반응에 의해 착색되는 물질이고, NiO는 산화반응에 의해 착색되는 물질이다. 이와 같은 무기 금속 산화물을 포함하는 전기 변색 소자에서 전기 변색이 일어나는 전기화학적 메커니즘은 반응식 1과 같이 설명된다. 구체적으로, 전기 변색 소자에 전압을 인가하면 전해질 내에 포함되어 있는 양성자(H+) 또는 리튬 이온(Li+)이 전류의 극성에 따라 전기 변색 물질로 삽입 또는 탈리되며, 이때 화합물 내의 전하 중성 조건을 만족시키기 위하여 전기 변색 물질에 포함된 전이금속의 산화수가 변화함으로써 전기 변색 물질자체의 광학적 특성, 예컨대 투과도(색상)가 변화하게 된다.Among the electrochromic materials, for example, WO 3 is a material that is colored by a reduction reaction, and NiO is a material that is colored by an oxidation reaction. The electrochemical mechanism in which the electrochromic device occurs in the electrochromic device including the inorganic metal oxide is described as in Scheme 1. Specifically, when voltage is applied to the electrochromic device, protons (H + ) or lithium ions (Li + ) contained in the electrolyte are inserted into or desorbed from the electrochromic material according to the polarity of the current. In order to satisfy, by changing the oxidation number of the transition metal contained in the electrochromic material, the optical properties of the electrochromic material itself, such as transmittance (color), is changed.
[반응식 1]Scheme 1
WO3(투명) + xe + xM MxWO3(진한 청색)WO 3 (transparent) + xe + xM M x WO 3 (dark blue)
(반응식 중, M은 양성자 또는 알칼리금속 양이온, 예컨대 Li+ 임).(Wherein M is a proton or an alkali metal cation such as Li + ).
이와 같이 구성된 전기 변색 소자는 당업계에 알려진 통상적인 방법에 따라 제조될 수 있으며, 예컨대 (a) 제1 전극 및 제2전극을 제조하는 단계; (b) 제조된 제1전극 및 제2전극 사이에 본 발명에 따른 젤 폴리머 전해질 조성물을 주입한 후 봉합하는 단계; 및 (c) 주입된 전해질 조성물을 중합시켜 젤 폴리머 전해질을 형성하는 단계를 포함할 수 있다.The electrochromic device configured as described above may be manufactured according to a conventional method known in the art, such as (a) preparing a first electrode and a second electrode; (b) injecting and then sealing the gel polymer electrolyte composition according to the present invention between the prepared first and second electrodes; And (c) polymerizing the injected electrolyte composition to form a gel polymer electrolyte.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
실시예Example
실시예Example 1. One.
(젤 폴리머 전해질용 조성물 제조)(Manufacture of composition for gel polymer electrolyte)
에틸렌 카보네이트(EC)와 에틸메틸 카보네이트(EMC)를 3:7 부피비로 혼합하고, LiPF6를 1.0M을 투입하여 혼합 용매를 제조한 다음, 상기 제조된 혼합 용매 94g에 화학식 3a의 올리고머 (중량평균분자량 7,800, 단위 B : 단위 A의 몰비는 1:2) 5g 및 중합개시제로서 AIBN 0.5 g, VC 0.5 중량%를 첨가하여 젤 폴리머 전해질용 조성물을 제조하였다.Ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 3: 7, 1.0 M of LiPF 6 was added to prepare a mixed solvent, and then 94 g of the mixed solvent prepared above was prepared with an oligomer of Formula 3a (weight average The molar ratio of molecular weight 7,800, unit B: unit A is 1: 2) 5g and 0.5g of AIBN and 0.5% by weight of VC were added as a polymerization initiator to prepare a composition for a gel polymer electrolyte.
(이차전지 제조)(Secondary Battery Manufacturing)
양극 활물질로 (LiNi1 / 3Co1 / 3Mn1 / 3O2; NCM) 94 중량%, 도전재로 카본 블랙(carbon black) 3 중량%, 바인더로 PVDF 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.As a cathode active material (LiNi 1/3 Co 1/ 3 Mn 1/3 O 2; NCM) 94 % by weight, the conductive material of carbon black (carbon black) as a 3% by weight, of a solvent N- methyl PVDF 3% by weight of a binder A positive electrode mixture slurry was prepared by adding to 2-pyrrolidone (NMP). The positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 μm, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
음극 활물질로 탄소 분말, 바인더로 PVDF, 도전재로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.A negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVDF as a binder, and carbon black as a conductive material at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent. The negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 μm, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 세퍼레이터를 이용하여 전지를 조립하였으며, 조립된 전지에 상기 제조된 젤 폴리머 전해질용 조성물을 주입한 후 2일 방치 후 60℃로 24시간 가열하여 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.The battery was assembled using a separator composed of the positive electrode, the negative electrode, and three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), and 2 days after injecting the prepared gel polymer electrolyte composition into the assembled battery. After standing for 24 hours at 60 ℃ to prepare a secondary battery containing a gel polymer electrolyte.
실시예Example 2. 2.
상기 실시예 1에서 젤 폴리머 전해질용 조성물 제조 시에 화학식 3a의 올리고머 대신 화학식 3b의 올리고머 (중량평균분자량 7,800, 단위 B : 단위 A의 몰비는 1:4)를 사용하는 것을 제외하고는 실시예 1과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.Except for using the oligomer of formula 3b (weight average molecular weight 7,800, unit B: unit A molar ratio of 1: 4) instead of the oligomer of formula 3a in preparing the gel polymer electrolyte in Example 1 Example 1 In the same manner as the secondary battery including a gel polymer electrolyte was prepared.
실시예Example 3. 3.
상기 실시예 1에서 젤 폴리머 전해질용 조성물 제조 시에 혼합 용매 87g에 상기 화학식 3c의 올리고머 (중량평균분자량 7,800, 단위 B : 단위 A의 몰비는 1:4) 12g을 혼합하는 것을 제외하고는 실시예 1과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.Except for mixing 12 g of the oligomer of Formula 3c (weight average molecular weight 7,800, unit B: unit A molar ratio of 1: 4) to 87 g of the mixed solvent when preparing the composition for gel polymer electrolyte in Example 1 A secondary battery including a gel polymer electrolyte was prepared in the same manner as in 1.
실시예Example 4. 4.
상기 실시예 1에서 젤 폴리머 전해질용 조성물 제조 시에 혼합 용매 87g에 상기 화학식 3d의 올리고머 (중량평균분자량 7,800, 단위 B : 단위 A의 몰비는 1:4) 12g을 혼합하는 것을 제외하고는 실시예 1과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.Except for mixing 12 g of the oligomer of the formula 3d (weight average molecular weight 7,800, unit B: unit A molar ratio of 1: 4) to 87 g of the mixed solvent when preparing the gel polymer electrolyte composition in Example 1 A secondary battery including a gel polymer electrolyte was prepared in the same manner as in 1.
실시예Example 5. 5.
상기 실시예 1에서 젤 폴리머 전해질용 조성물 제조 시에 혼합 용매 87g에 상기 화학식 3e의 올리고머 (중량평균분자량 7,800, 단위 B : 단위 A의 몰비는 1:4) 12g을 혼합하는 것을 제외하고는 실시예 1과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.Except for mixing 12 g of the oligomer of Formula 3e (weight average molecular weight 7,800, unit B: unit A molar ratio of 1: 4) to 87 g of the mixed solvent when preparing a composition for a gel polymer electrolyte in Example 1 A secondary battery including a gel polymer electrolyte was prepared in the same manner as in 1.
실시예Example 6. 6.
상기 실시예 1에서 젤 폴리머 전해질용 조성물 제조 시에 혼합 용매 87g에 상기 화학식 3f의 올리고머 (중량평균분자량 7,800, 단위 B : 단위 A의 몰비는 1:4) 12g을 혼합하는 것을 제외하고는 실시예 1과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.Except for mixing 12 g of the oligomer of Formula 3f (weight average molecular weight 7,800, unit B: unit A molar ratio of 1: 4) to 87 g of the mixed solvent when preparing the composition for gel polymer electrolyte in Example 1 A secondary battery including a gel polymer electrolyte was prepared in the same manner as in 1.
실시예Example 7. 7.
상기 실시예 1에서 젤 폴리머 전해질용 조성물 제조 시에 무기 입자 (LLZO) 24g을 추가로 포함하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.A secondary battery including a gel polymer electrolyte was manufactured in the same manner as in Example 1, except that 24g of inorganic particles (LLZO) was further included in the preparation of the gel polymer electrolyte composition in Example 1.
비교예Comparative example 1. One.
상기 실시예 1에서 젤 폴리머 전해질용 조성물 제조 시에 화학식 3a의 올리고머 대신 디펜타에리트리톨 펜타아크릴레이트(dipentaerythritol pentaacrylate)로 이루어진 아크릴레이트계 올리고머를 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.A method similar to that of Example 1 except for using an acrylate oligomer made of dipentaerythritol pentaacrylate instead of the oligomer of Formula 3a in preparing the gel polymer electrolyte composition in Example 1 As a secondary battery comprising a gel polymer electrolyte was prepared.
비교예Comparative example 2. 2.
상기 실시예 1에서 젤 폴리머 전해질용 조성물 제조 시에 화학식 3a의 올리고머 대신 하기 화학식 4의 올리고머를 포함하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.A secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1 except that the oligomer of Formula 3a was used instead of the oligomer of Formula 3a in preparing the composition for the gel polymer electrolyte in Example 1. .
[화학식 4] [Formula 4]
Figure PCTKR2017009622-appb-I000049
Figure PCTKR2017009622-appb-I000049
상기 화학식 4에서, In Chemical Formula 4,
R' 및 R"는 메틸, S1 및 S2는 각각 50이다.R 'and R "are methyl and S1 and S2 are each 50.
비교예Comparative example 3. 3.
상기 실시예 1에서 젤 폴리머 전해질용 조성물 제조 시에 혼합 용액 77g에 화학식 3a의 올리고머 22g을 사용하는 것을 제외하고는 실시예 1과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.A secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that 22 g of the oligomer of Formula 3a was used in 77 g of the mixed solution in preparing the gel polymer electrolyte composition in Example 1.
비교예Comparative example 4. 4.
상기 실시예 1에서 젤 폴리머 전해질용 조성물 제조 시에 화학식 3a의 올리고머 0.1g을 사용하는 것을 제외하고는 실시예 1과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.A secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that 0.1g of the oligomer of Formula 3a was used to prepare the gel polymer electrolyte composition in Example 1.
실험예Experimental Example
실험예Experimental Example 1. 이온전도도 측정 1.Ion Conductivity Measurement
60℃, 24 시간 열중합을 실시하여 제조된 실시예 1 내지 7 및 비교예 1 내지 4의 젤 폴리머 전해질을 직경 1cm의 1쌍의 백금전극원판의 사이에 협지시켰다. 그리고 이 상태에서 젤 폴리머 전해질의 Li+ 이온전도도를 교류 임피던스 (Impedance) 측정법을 통해 측정하였다. 측정장비는 Bio Logic사의 VMP3 모델로 측정조건은 10,000-0.1Hz, 10mV의 amplitude 조건으로 상온에서 진행 되었다.The gel polymer electrolytes of Examples 1 to 7 and Comparative Examples 1 to 4 prepared by thermal polymerization at 60 ° C. for 24 hours were sandwiched between a pair of platinum electrode discs having a diameter of 1 cm. In this state, the Li + ion conductivity of the gel polymer electrolyte was measured by AC impedance measurement. The measuring equipment is Bio Logic's VMP3 model, and the measurement conditions were performed at room temperature under 10,000-0.1Hz and 10mV amplitude conditions.
그 결과를 하기 표 1에 나타내었다.The results are shown in Table 1 below.
실험예Experimental Example 2.  2. LiLi 양이온이동계수 측정 Cation transfer coefficient measurement
NMR 측정용 inner tube 안쪽에 acetone-d6를 넣은 다음, inner tube 바깥쪽에 상기 실시예 1 내지 7 및 비교예 1 내지 4에서 제조된 젤 폴리머 전해질용 조성물을 배치시킨 후 Li+ 이온이동계수를 하기 측정 방법을 이용하여 측정하였다. 그 결과 값을 하기 표 1에 나타내었다.After putting acetone-d6 inside the inner tube for NMR measurement, the gel polymer electrolyte composition prepared in Examples 1 to 7 and Comparative Examples 1 to 4 was placed outside the inner tube, and then Li + ion transfer coefficient was measured. It was measured using the method. The results are shown in Table 1 below.
[측정 방법][How to measure]
상기 Li+ 이온이동계수= Li+ 이온확산도 / (Li+ 이온확산도 + 음이온 확산도)Li + ion migration coefficient = Li + ion diffusivity / (Li + ion diffusivity + anion diffusivity)
NMR 장비: Varian 500MHz NMR/ dual probeNMR Instruments: Varian 500MHz NMR / dual probe
Li+ 이온확산도: 7Li diffusion NMR로 측정Li + ion diffusion: measured by 7 Li diffusion NMR
<7Li diffusion NMR 실험 조건>< 7 Li diffusion NMR experimental conditions>
-Diffusion gradient length: 4.0 msecDiffusion gradient length: 4.0 msec
-Diffusion delay: 200.0 msec-Diffusion delay: 200.0 msec
-Lowest gradient value: 100-Lowest gradient value: 100
-Highest gradient value: 30000Highest gradient value: 30000
-Number of increments: 16-Number of increments: 16
음이온확산도: 19F diffusion NMR로 측정. Anion Diffusion: Measured by 19 F diffusion NMR.
<19F diffusion NMR 실험 조건>< 19 F diffusion NMR test conditions>
-Diffusion gradient length: 3.0 msecDiffusion gradient length: 3.0 msec
-Diffusion delay: 70.0 msec-Diffusion delay: 70.0 msec
-Lowest gradient value: 1000-Lowest gradient value: 1000
-Highest gradient value: 23000Highest gradient value: 23000
-Number of increments: 16-Number of increments: 16
사용된 용매(solvent): acetone-d6 (이때, 시료 자체 내에서의 확산(diffusion ) 값을 측정하기 위하여 inner tube(acetone-d6)를 사용하여 시료와 deuterium solvent가 섞이지 않도록 하였다.)Solvent used: acetone-d 6 (At this time, the inner tube (acetone-d 6 ) was used to prevent mixing of the sample and the deuterium solvent to measure the diffusion value in the sample itself.)
pulse sequence: stimulated echo with gradient pulse Gradient amplitude: 최고 gradient power 일 때의 peak intensity가 최저 gradient power 일 때의 peak intensity 대비 약 2% 내지 5% 정도 수준이 되도록 조절하였으며 이 구간을 solution NMR과 동일하게 16단계로 나누어 각 시료에 대해 16번의 다른 amplitude를 적용하였다.Pulse sequence: Stimulated echo with gradient pulse Gradient amplitude: The peak intensity at the highest gradient power was adjusted to be about 2% to 5% of the peak intensity at the lowest gradient power. In each step, 16 different amplitudes were applied to each sample.
실험예Experimental Example 3.  3. 충방전Charging and discharging 측정 Measure
상기 실시예 1 내지 6 및 비교예 1 내지 4에서 제조된 이차전지 셀(설계용량 760mAh)에 대하여 60℃에서, 1.0C로 전압이 4.35V에 도달할 때까지 정전류 충전하고 이어서, 상기 전압에서 전류가 감소하여 1/20C에 도달할 때까지 정전압 충전을 실시하였다. 그런 다음 1.0C로 전압이 3.0V에 이를 때까지 정전류로 방전하였다. 상기 충방전을 100회 반복하였다. For the secondary battery cells (design capacity 760mAh) manufactured in Examples 1 to 6 and Comparative Examples 1 to 4, the constant current was charged at 60 ° C. until the voltage reached 4.35 V at 1.0 ° C., and then the current at the voltage. The constant voltage charge was performed until the reduction decreased to reach 1 / 20C. It then discharged with constant current at 1.0C until the voltage reached 3.0V. The charging and discharging was repeated 100 times.
하기 식을 이용하여 상기에서 얻어진 결과로부터 용량유지율을 계산하고, 그 값을 하기 표 1에 나타내었다.The capacity retention rate was calculated from the result obtained above using the following formula, and the value is shown in Table 1 below.
<식><Expression>
100번째 사이클에서의 용량유지율 = 100번째 사이클 방전용량 / 첫 번째 사이클 방전용량Capacity maintenance rate at 100th cycle = 100th cycle discharge capacity / 1st cycle discharge capacity
Figure PCTKR2017009622-appb-T000001
Figure PCTKR2017009622-appb-T000001
상기 표 1에 나타낸 바와 같이, 비교예 1의 젤 폴리머 전해질의 이온전도도는 6.1×10-4이고, 비교예 2의 젤 폴리머 전해질의 이온전도도는 4.8×10-4인 반면에, 본원발명의 실시예 1 내지 7의 젤 폴리머 전해질의 이온전도도는 대부분 6.9×10-4 이상으로 대부분 약 10% 이상 개선된 것을 알 수 있다.As shown in Table 1, the ion conductivity of the gel polymer electrolyte of Comparative Example 1 was 6.1 × 10 −4 , and the ion conductivity of the gel polymer electrolyte of Comparative Example 2 was 4.8 × 10 −4 , whereas the present invention was practiced. It can be seen that the ion conductivity of the gel polymer electrolytes of Examples 1 to 7 is mostly improved by about 10% or more to 6.9 × 10 −4 or more.
또한, 본원발명의 실시예 1 내지 7의 이차전지의 Li+ 이온이동계수는 모두 0.415 이상으로, 비교예 1의 이차전지의 Li+ 이온이동계수 0.375 및 비교예 2의 이차전지의 이동계수 0.410 에 비하여 개선된 것을 알 수 있다.In addition, the Li + ion transfer coefficients of the secondary batteries of Examples 1 to 7 of the present invention are all 0.415 or more, and the Li + ion transfer coefficients of the secondary batteries of Comparative Example 1 are 0.375 and 0.410 of the secondary batteries of Comparative Example 2. It can be seen that compared with the improvement.
또한, 비교예 1의 이차전지의 100th 사이클 방전 용량(mAh)은 617이고, 100th 사이클에서의 용량 유지율(%)은 82.5%이며, 비교예 2의 이차전지의 100th 사이클 방전 용량(mAh)은 430이고, 100th 사이클에서의 용량 유지율(%)은 61.4%인 반면에, 본원발명의 실시예 1 내지 7의 이차전지의 100th 사이클 방전 용량(mAh)은 698 이상이고, 100th 사이클에서의 용량 유지율(%)은 94.5% 이상으로 보다 우수한 것을 알 수 있다.In addition, the 100 th cycle discharge capacity (mAh) of the secondary battery of Comparative Example 1 was 617, the capacity retention rate (%) at 100 th cycle was 82.5%, and the 100 th cycle discharge capacity (mAh) of the secondary battery of Comparative Example 2 ) Is 430, and the capacity retention rate (%) at 100 th cycle is 61.4%, whereas the 100 th cycle discharge capacity (mAh) of the secondary batteries of Examples 1 to 7 of the present invention is 698 or more and 100 th cycle It can be seen that the capacity retention rate (%) at is better than 94.5%.
한편, 제1 올리고머를 과량 포함하는 젤 폴리머 전해질을 구비한 비교예 3의 이차전지의 경우, 음이온 고정화에 의하여 Li+ 이온이동계수는 0.550으로 높은 반면에, 저항 증가에 의해 이온전도도가 2.5×10- 4으로 낮은 것을 알 수 있다. 특히, 낮은 이온전도도에 의한 키네틱 (kinetic) 저하로 인해 음극 Li 석출 반응에 의하여 100th 사이클 방전 용량(mAh)은 117이고, 100th 사이클에서의 용량 유지율(%)은 21.4%로 현저히 열위한 것을 알 수 있다.On the other hand, in the secondary battery of Comparative Example 3 having a gel polymer electrolyte containing an excessive amount of the first oligomer, Li + ion transfer coefficient is 0.550 by anion immobilization, while the ion conductivity is 2.5 × 10 by increasing the resistance - it can be seen that as low as 4. In particular, the 100 th cycle discharge capacity (mAh) was 117 and the capacity retention rate (100%) at 100 th cycle was significantly poor due to the kinetic degradation caused by low ion conductivity. Able to know.
또한, 제1 올리고머를 미량 포함하는 젤 폴리머 전해질을 구비한 비교예 4의 이차전지의 경우, 액상 전해질 물성에 의하여 이온전도도는 8.7×10- 4으로 가장 우수한 반면에, Li+ 이온이동계수는 0.370으로 열위한 것을 알 수 있다. 특히, 안정한 매트릭스 폴리머 형성이 어려워 100th 사이클 방전 용량(mAh)은 101이고, 100th 사이클에서의 용량 유지율(%)은 13.4%로 현저히 열위한 것을 알 수 있다.In the case of the secondary battery of Comparative Example 4 having a gel polymer electrolyte trace comprises a first oligomer, by a liquid electrolyte properties ion conductivity is 8.7 × 10 - the 4 most excellent while, Li + ion mobility coefficient 0.370 You can see that it is inferior. In particular, it is difficult to form a stable matrix polymer so that the 100 th cycle discharge capacity (mAh) is 101, and the capacity retention rate (%) at 100 th cycle is 13.4%.

Claims (12)

  1. 매트릭스 폴리머; 및Matrix polymers; And
    상기 매트릭스 폴리머 상에 함침되어 있는 전해액을 포함하며,An electrolyte solution impregnated on the matrix polymer,
    상기 매트릭스 폴리머는 하기 화학식 1로 표시되는 단위 A 및 하기 화학식 2로 표시되는 단위 B를 포함하는 제1 올리고머가 중합하여 3차원 네트워크 구조로 형성되어 있는 것인 젤 폴리머 전해질:The matrix polymer is a gel polymer electrolyte in which a first oligomer including a unit A represented by Formula 1 and a unit B represented by Formula 2 is polymerized to form a three-dimensional network structure:
    [화학식 1][Formula 1]
    Figure PCTKR2017009622-appb-I000050
    Figure PCTKR2017009622-appb-I000050
    상기 화학식 1에서,In Chemical Formula 1,
    R1 및 R2는 각각 독립적으로 불소로 치환 또는 비치환된 탄소수 1 내지 4의 알킬렌기이고, R 1 and R 2 are each independently an alkylene group having 1 to 4 carbon atoms unsubstituted or substituted with fluorine,
    상기 m, n 및 o는 반복 단위수이며,M, n and o are the number of repeating units,
    m은 1 내지 10 중 어느 하나의 정수이고,m is an integer of any one of 1 to 10,
    n은 1 내지 10 중 어느 하나의 정수이며,n is an integer of any one of 1 to 10,
    o는 1 내지 500 중 어느 하나의 정수다.o is an integer of any one of 1 to 500.
    [화학식 2][Formula 2]
    Figure PCTKR2017009622-appb-I000051
    Figure PCTKR2017009622-appb-I000051
    상기 화학식 2에서,In Chemical Formula 2,
    R3은 수소, 또는 탄소수 1 내지 6의 알킬기이고, R 3 is hydrogen or an alkyl group having 1 to 6 carbon atoms,
    R4는 탄소수 1 내지 6의 알킬렌기, -CH2-R6-CH2-, 또는 -CH2-R7-O-R8-CH2-이며, 이때 R6, R7 및 R8은 적어도 1 이상의 아크릴레이트기가 치환된 탄소수 1 내지 5의 알킬렌기이고,R 4 is an alkylene group having 1 to 6 carbon atoms, -CH 2 -R 6 -CH 2- , or -CH 2 -R 7 -OR 8 -CH 2-, wherein R 6 , R 7 and R 8 are at least 1 The above acrylate group is a substituted alkylene group having 1 to 5 carbon atoms,
    R5는 탄소수 1 내지 5의 알킬렌기, 또는 -(CO-R9-O-)r-CO-NH-R10-NH-CO-O-이고, 이때 R9는 탄소수 1 내지 10의 알킬렌기이고, R10은 지방족, 지환족 또는 방향족 탄화수소기이고,R 5 is an alkylene group having 1 to 5 carbon atoms or-(CO-R 9 -O-) r -CO-NH-R 10 -NH-CO-O-, wherein R 9 is an alkylene group having 1 to 10 carbon atoms R 10 is an aliphatic, alicyclic or aromatic hydrocarbon group,
    r은 0 내지 3 중 어느 하나의 정수이다.r is an integer of any one of 0-3.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 1로 표시되는 단위 A는 하기 화학식 1a 내지 화학식 1c로 표시되는 것들로 이루어진 군으로부터 선택된 적어도 하나인 것인 젤 폴리머 전해질:Unit A represented by Formula 1 is at least one selected from the group consisting of those represented by Formula 1a to Formula 1c gel polymer electrolyte:
    [화학식 1a][Formula 1a]
    Figure PCTKR2017009622-appb-I000052
    Figure PCTKR2017009622-appb-I000052
    [화학식 1b][Formula 1b]
    Figure PCTKR2017009622-appb-I000053
    Figure PCTKR2017009622-appb-I000053
    [화학식 1c][Formula 1c]
    Figure PCTKR2017009622-appb-I000054
    Figure PCTKR2017009622-appb-I000054
    상기 화학식 1a 내지 1c에서,In Chemical Formulas 1a to 1c,
    상기 m, n 및 o는 반복 단위수이며,M, n and o are the number of repeating units,
    m은 1 내지 10 중 어느 하나의 정수이고,m is an integer of any one of 1 to 10,
    n은 1 내지 10 중 어느 하나의 정수이며,n is an integer of any one of 1 to 10,
    o는 1 내지 500 중 어느 하나의 정수이다.o is an integer of any one of 1 to 500.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 2로 표시되는 단위 B는 하기 화학식 2a 내지 2l로 표시되는 것들로 이루어진 군으로부터 선택된 적어도 하나 이상인 것인 젤 폴리머 전해질.Unit B represented by the formula (2) is at least one selected from the group consisting of those represented by the formula 2a to 2l gel polymer electrolyte.
    [화학식 2a][Formula 2a]
    Figure PCTKR2017009622-appb-I000055
    Figure PCTKR2017009622-appb-I000055
    [화학식 2b][Formula 2b]
    Figure PCTKR2017009622-appb-I000056
    Figure PCTKR2017009622-appb-I000056
    [화학식 2c][Formula 2c]
    Figure PCTKR2017009622-appb-I000057
    Figure PCTKR2017009622-appb-I000057
    상기 화학식 2c에서,In Chemical Formula 2c,
    r1은 1 내지 3 중 어느 하나의 정수이다.r1 is an integer of any one of 1-3.
    [화학식 2d][Formula 2d]
    Figure PCTKR2017009622-appb-I000058
    Figure PCTKR2017009622-appb-I000058
    상기 화학식 2d에서,In Chemical Formula 2d,
    r2는 1 내지 3 중 어느 하나의 정수이다.r2 is an integer of any one of 1-3.
    [화학식 2e][Formula 2e]
    Figure PCTKR2017009622-appb-I000059
    Figure PCTKR2017009622-appb-I000059
    상기 화학식 2e에서,In Chemical Formula 2e,
    r3는 1 내지 3 중 어느 하나의 정수이다.r3 is an integer of any one of 1-3.
    [화학식 2f][Formula 2f]
    Figure PCTKR2017009622-appb-I000060
    Figure PCTKR2017009622-appb-I000060
    상기 화학식 2f에서,In Chemical Formula 2f,
    r4는 1 내지 3 중 어느 하나의 정수이다.r4 is an integer of any one of 1-3.
    [화학식 2g] [Formula 2g]
    Figure PCTKR2017009622-appb-I000061
    Figure PCTKR2017009622-appb-I000061
    상기 화학식 2g에서,In Chemical Formula 2g,
    r5는 1 내지 3 중 어느 하나의 정수이다.r5 is an integer of any one of 1-3.
    [화학식 2h][Formula 2h]
    Figure PCTKR2017009622-appb-I000062
    Figure PCTKR2017009622-appb-I000062
    상기 화학식 2h에서,In Chemical Formula 2h,
    r6는 1 내지 3 중 어느 하나의 정수이다.r6 is an integer of any one of 1-3.
    [화학식 2i][Formula 2i]
    Figure PCTKR2017009622-appb-I000063
    Figure PCTKR2017009622-appb-I000063
    상기 화학식 2i에서,In Chemical Formula 2i,
    r7은 1 내지 3 중 어느 하나의 정수이다.r7 is an integer of any one of 1-3.
    [화학식 2j][Formula 2j]
    Figure PCTKR2017009622-appb-I000064
    Figure PCTKR2017009622-appb-I000064
    상기 화학식 2j에서,In Chemical Formula 2j,
    r8은 1 내지 3 중 어느 하나의 정수이다. r8 is an integer of any one of 1-3.
    [화학식 2k][Formula 2k]
    Figure PCTKR2017009622-appb-I000065
    Figure PCTKR2017009622-appb-I000065
    [화학식 2l][Formula 2l]
    Figure PCTKR2017009622-appb-I000066
    Figure PCTKR2017009622-appb-I000066
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 제1 올리고머에서, 단위 A : 단위 B의 몰비는 1:90 내지 90:1인 것인 젤 폴리머 전해질.Wherein, in the first oligomer, the molar ratio of unit A to unit B is from 1:90 to 90: 1.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 올리고머는 하기 화학식 3으로 표시되는 화합물인 것인 젤 폴리머 전해질:Gel polymer electrolyte is the first oligomer is a compound represented by the formula
    [화학식 3][Formula 3]
    Figure PCTKR2017009622-appb-I000067
    Figure PCTKR2017009622-appb-I000067
    상기 화학식 3에서,In Chemical Formula 3,
    R1 및 R2는 각각 독립적으로 불소로 치환 또는 비치환된 탄소수 1 내지 4의 알킬렌기이고, R 1 and R 2 are each independently an alkylene group having 1 to 4 carbon atoms unsubstituted or substituted with fluorine,
    R3은 수소, 또는 탄소수 1 내지 6의 알킬기이고, R 3 is hydrogen or an alkyl group having 1 to 6 carbon atoms,
    R4는 탄소수 1 내지 6의 알킬렌기, -CH2-R6-CH2-, 또는 -CH2-R7-O-R8-CH2-이며, 이때 R6, R7 및 R8은 적어도 1 이상의 아크릴레이트기가 치환된 탄소수 1 내지 5의 알킬렌기이고,R 4 is an alkylene group having 1 to 6 carbon atoms, -CH 2 -R 6 -CH 2- , or -CH 2 -R 7 -OR 8 -CH 2-, wherein R 6 , R 7 and R 8 are at least 1 The above acrylate group is a substituted alkylene group having 1 to 5 carbon atoms,
    R5는 탄소수 1 내지 5의 알킬렌기, 또는 -(CO-R9-O-)r-CO-NH-R10-NH-CO-O-이고, 이때 R9는 탄소수 1 내지 10의 알킬렌기이고, R10은 지방족, 지환족 또는 방향족 탄화수소기이고, R 5 is an alkylene group having 1 to 5 carbon atoms or-(CO-R 9 -O-) r -CO-NH-R 10 -NH-CO-O-, wherein R 9 is an alkylene group having 1 to 10 carbon atoms R 10 is an aliphatic, alicyclic or aromatic hydrocarbon group,
    상기 m1, n1 및 o1는 반복 단위수이며,M1, n1, and o1 are the number of repeating units,
    m1은 1 내지 10 중 어느 하나의 정수이고,m1 is an integer of any one of 1 to 10,
    n1은 1 내지 10 중 어느 하나의 정수이며,n1 is an integer of any one of 1 to 10,
    o1는 1 내지 500 중 어느 하나의 정수이고,o1 is an integer of any one of 1 to 500,
    r은 0 내지 3 중 어느 하나의 정수이다.r is an integer of any one of 0-3.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 화학식 3으로 표시되는 올리고머는 하기 화학식 3a 내지 3f로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나의 화합물인 것인 젤 폴리머 전해질.The oligomer represented by Formula 3 is at least one compound selected from the group consisting of compounds represented by Formulas 3a to 3f.
    [화학식 3a][Formula 3a]
    Figure PCTKR2017009622-appb-I000068
    Figure PCTKR2017009622-appb-I000068
    상기 화학식 3a에서,In Chemical Formula 3a,
    m2, n2, 및 o2는 반복 단위수이며,m2, n2, and o2 are the number of repeat units,
    m2는 1 내지 10 중 어느 하나의 정수이고,m2 is an integer of any one of 1 to 10,
    n2는 1 내지 10 중 어느 하나의 정수이며,n2 is an integer of any one of 1 to 10,
    o2는 1 내지 500 중 어느 하나의 정수이다.o2 is an integer of any one of 1-500.
    [화학식 3b][Formula 3b]
    Figure PCTKR2017009622-appb-I000069
    Figure PCTKR2017009622-appb-I000069
    상기 화학식 3b에서,In Chemical Formula 3b,
    m3, n3 및 o3는 반복 단위수이며,m3, n3, and o3 are the number of repeat units,
    m3는 1 내지 10 중 어느 하나의 정수이고,m3 is an integer of any one of 1 to 10,
    n3는 1 내지 10 중 어느 하나의 정수이며,n3 is an integer of any one of 1 to 10,
    o3는 1 내지 500 중 어느 하나의 정수이다.o3 is an integer of any one of 1-500.
    [화학식 3c][Formula 3c]
    Figure PCTKR2017009622-appb-I000070
    Figure PCTKR2017009622-appb-I000070
    상기 화학식 3c에서,In Chemical Formula 3c,
    m4, n4 및 o4는 반복 단위수이며,m4, n4, and o4 are the number of repeat units,
    m4는 1 내지 10 중 어느 하나의 정수이고,m4 is an integer of any one of 1 to 10,
    n4는 1 내지 10 중 어느 하나의 정수이며,n4 is an integer of any one of 1 to 10,
    o4는 1 내지 500 중 어느 하나의 정수이고,o4 is an integer of any one of 1 to 500,
    r9는 1 내지 3 중 어느 하나의 정수이다.r9 is an integer of any one of 1-3.
    [화학식 3d][Formula 3d]
    Figure PCTKR2017009622-appb-I000071
    Figure PCTKR2017009622-appb-I000071
    상기 화학식 3d에서,In Chemical Formula 3d,
    m5, n5 및 o5는 반복 단위수이며,m5, n5 and o5 are the number of repeat units,
    m5는 1 내지 10 중 어느 하나의 정수이고,m5 is an integer of any one of 1 to 10,
    n5는 1 내지 10 중 어느 하나의 정수이며,n5 is an integer of any one of 1 to 10,
    o5는 1 내지 500 중 어느 하나의 정수이고,o5 is an integer of any one of 1 to 500,
    r10는 1 내지 3 중 어느 하나의 정수이다.r10 is an integer of any one of 1-3.
    [화학식 3e][Formula 3e]
    Figure PCTKR2017009622-appb-I000072
    Figure PCTKR2017009622-appb-I000072
    상기 화학식 3e에서,In Chemical Formula 3e,
    m6, n6 및 o6는 반복 단위수이며,m6, n6 and o6 are the number of repeat units,
    m6은 1 내지 10 중 어느 하나의 정수이고,m6 is an integer of any one of 1 to 10,
    n6은 1 내지 10 중 어느 하나의 정수이며,n6 is an integer of any one of 1 to 10,
    o6은 1 내지 500 중 어느 하나의 정수이고,o6 is an integer of any one of 1 to 500,
    r11은 1 내지 3 중 어느 하나의 정수이다.r11 is an integer of any one of 1-3.
    [화학식 3f][Formula 3f]
    Figure PCTKR2017009622-appb-I000073
    Figure PCTKR2017009622-appb-I000073
    상기 화학식 3f에서,In Chemical Formula 3f,
    m7, n7 및 o7은 반복 단위수이며,m7, n7 and o7 are the number of repeat units,
    m7은 1 내지 10 중 어느 하나의 정수이고,m7 is an integer of any one of 1 to 10,
    n7은 1 내지 10 중 어느 하나의 정수이며,n7 is an integer of any one of 1 to 10,
    o7은 1 내지 500 중 어느 하나의 정수이고,o7 is an integer of any one of 1 to 500,
    r12는 1 내지 3 중 어느 하나의 정수이다.r12 is an integer of any one of 1-3.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 젤 폴리머 전해질은 메틸 아크릴레이트, 메틸 메타크릴레이트, 에틸 아크릴레이트, 에틸 메타크릴레이트, 프로필 아크릴레이트, 프로필 메타크릴레이트, 부틸 아크릴레이트, 부틸 메타크릴레이트, 헥실 아크릴레이트, 헥실 메타크릴레이트, 에틸헥실 아크릴레이트, 에틸헥실 메타크릴레이트, 2,2,2-트리플루오로에틸 아크릴레이트, 2,2,2-트리플루오로에틸 메타크릴레이트, 2,2,3,3-테트라플루오로프로필 아크릴레이트, 및 2,2,3,3-테트라플루오로프로필 메타크릴레이트로 이루어진 군으로부터 선택된 적어도 하나로부터 유도된 단위 C를 추가로 포함하는 젤 폴리머 전해질.The gel polymer electrolyte may be methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl methacrylate, hexyl acrylate, hexyl methacrylate, Ethylhexyl acrylate, ethylhexyl methacrylate, 2,2,2-trifluoroethyl acrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,3,3-tetrafluoropropyl A gel polymer electrolyte further comprising unit C derived from acrylate, and at least one selected from the group consisting of 2,2,3,3-tetrafluoropropyl methacrylate.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 단위 C는 제1 올리고머의 전체 함량을 기준으로 50 중량% 이하로 포함되는 것인 젤 폴리머 전해질.The unit C is a gel polymer electrolyte is contained in less than 50% by weight based on the total content of the first oligomer.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 젤 폴리머 전해질은 무기물 입자를 추가로 포함하는 것인 젤 폴리머 전해질.The gel polymer electrolyte is a gel polymer electrolyte further comprises inorganic particles.
  10. 리튬염, Lithium Salt,
    전해액 용매, Electrolyte solvent,
    중합개시제, 및 Polymerization initiator, and
    하기 화학식 1로 표시되는 단위 A 및 하기 화학식 2로 표시되는 단위 B를 포함하는 제1 올리고머를 포함하며,It includes a first oligomer comprising a unit A represented by the formula (1) and a unit B represented by the formula (2),
    상기 제1 올리고머는 젤 폴리머 전해질용 조성물 전체 중량을 기준으로 0.5 중량% 내지 20 중량%로 포함되는 청구항 1의 젤 폴리머 전해질용 조성물:The composition for a gel polymer electrolyte of claim 1, wherein the first oligomer is included in an amount of 0.5 wt% to 20 wt% based on the total weight of the composition for gel polymer electrolyte:
    [화학식 1][Formula 1]
    Figure PCTKR2017009622-appb-I000074
    Figure PCTKR2017009622-appb-I000074
    상기 화학식 1에서,In Chemical Formula 1,
    R1 및 R2는 각각 독립적으로 불소로 치환 또는 비치환된 탄소수 1 내지 4의 알킬렌기이고, R 1 and R 2 are each independently an alkylene group having 1 to 4 carbon atoms unsubstituted or substituted with fluorine,
    상기 m, n 및 o는 반복 단위수이며,M, n and o are the number of repeating units,
    m은 1 내지 10 중 어느 하나의 정수이고,m is an integer of any one of 1 to 10,
    n은 1 내지 10 중 어느 하나의 정수이며,n is an integer of any one of 1 to 10,
    o는 1 내지 500 중 어느 하나의 정수다.o is an integer of any one of 1 to 500.
    [화학식 2][Formula 2]
    Figure PCTKR2017009622-appb-I000075
    Figure PCTKR2017009622-appb-I000075
    상기 화학식 2에서,In Chemical Formula 2,
    R3은 수소, 또는 탄소수 1 내지 6의 알킬기이고, R 3 is hydrogen or an alkyl group having 1 to 6 carbon atoms,
    R4는 탄소수 1 내지 6의 알킬렌기, -CH2-R6-CH2-, 또는 -CH2-R7-O-R8-CH2-이며, 이때 R6, R7 및 R8은 적어도 1 이상의 아크릴레이트기가 치환된 탄소수 1 내지 5의 알킬렌기이고,R 4 is an alkylene group having 1 to 6 carbon atoms, -CH 2 -R 6 -CH 2- , or -CH 2 -R 7 -OR 8 -CH 2-, wherein R 6 , R 7 and R 8 are at least 1 The above acrylate group is a substituted alkylene group having 1 to 5 carbon atoms,
    R5는 탄소수 1 내지 5의 알킬렌기, 또는 -(CO-R9-O-)r-CO-NH-R10-NH-CO-O-이고, 이때 R9는 탄소수 1 내지 10의 알킬렌기이고, R10은 지방족, 지환족 또는 방향족 탄화수소기이고,R 5 is an alkylene group having 1 to 5 carbon atoms or-(CO-R 9 -O-) r -CO-NH-R 10 -NH-CO-O-, wherein R 9 is an alkylene group having 1 to 10 carbon atoms R 10 is an aliphatic, alicyclic or aromatic hydrocarbon group,
    r은 0 내지 3 중 어느 하나의 정수이다.r is an integer of any one of 0-3.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 제1 올리고머는 하기 화학식 3으로 표시되는 화합물인 것인 젤 폴리머 전해질용 조성물:The first oligomer is a gel polymer electrolyte composition which is a compound represented by the following formula (3):
    [화학식 3][Formula 3]
    Figure PCTKR2017009622-appb-I000076
    Figure PCTKR2017009622-appb-I000076
    상기 화학식 3에서,In Chemical Formula 3,
    R1 및 R2는 각각 독립적으로 불소로 치환 또는 비치환된 탄소수 1 내지 4의 알킬렌기이고, R 1 and R 2 are each independently an alkylene group having 1 to 4 carbon atoms unsubstituted or substituted with fluorine,
    R3은 수소, 또는 탄소수 1 내지 6의 알킬기이고, R 3 is hydrogen or an alkyl group having 1 to 6 carbon atoms,
    R4는 탄소수 1 내지 6의 알킬렌기, -CH2-R6-CH2-, 또는 -CH2-R7-O-R8-CH2-이며, 이때 R6, R7 및 R8은 적어도 1 이상의 아크릴레이트기가 치환된 탄소수 1 내지 5의 알킬렌기이고,R 4 is an alkylene group having 1 to 6 carbon atoms, -CH 2 -R 6 -CH 2- , or -CH 2 -R 7 -OR 8 -CH 2-, wherein R 6 , R 7 and R 8 are at least 1 The above acrylate group is a substituted alkylene group having 1 to 5 carbon atoms,
    R5는 탄소수 1 내지 5의 알킬렌기, 또는 -(CO-R9-O-)r-CO-NH-R10-NH-CO-O-이고, 이때 R9는 탄소수 1 내지 10의 알킬렌기이고, R10은 지방족, 지환족 또는 방향족 탄화수소기이고, R 5 is an alkylene group having 1 to 5 carbon atoms or-(CO-R 9 -O-) r -CO-NH-R 10 -NH-CO-O-, wherein R 9 is an alkylene group having 1 to 10 carbon atoms R 10 is an aliphatic, alicyclic or aromatic hydrocarbon group,
    상기 m1, n1 및 o1는 반복 단위수이며,M1, n1, and o1 are the number of repeating units,
    m1은 1 내지 10 중 어느 하나의 정수이고,m1 is an integer of any one of 1 to 10,
    n1은 1 내지 10 중 어느 하나의 정수이며,n1 is an integer of any one of 1 to 10,
    o1는 1 내지 500 중 어느 하나의 정수이고,o1 is an integer of any one of 1 to 500,
    r은 0 내지 3 중 어느 하나의 정수이다.r is an integer of any one of 0-3.
  12. 양극과 음극, Anode and cathode,
    상기 양극과 음극 사이에 개재된 세퍼레이터, 및A separator interposed between the positive electrode and the negative electrode, and
    상기 양극과 음극 및 세퍼레이터 사이에 배치되는 청구항 1의 젤 폴리머 전해질을 포함하는 리튬 이차전지.A lithium secondary battery comprising the gel polymer electrolyte of claim 1 disposed between the positive electrode, the negative electrode and the separator.
PCT/KR2017/009622 2016-09-02 2017-09-01 Gel polymer electrolyte and lithium secondary battery including same WO2018044129A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL17847054.8T PL3361546T3 (en) 2016-09-02 2017-09-01 Gel polymer electrolyte and lithium secondary battery including the same
EP17847054.8A EP3361546B1 (en) 2016-09-02 2017-09-01 Gel polymer electrolyte and lithium secondary battery including the same
CN201780003933.8A CN108352569B (en) 2016-09-02 2017-09-01 Gel polymer electrolyte and lithium secondary battery including the same
ES17847054T ES2950099T3 (en) 2016-09-02 2017-09-01 Gel polymer electrolyte and secondary lithium battery that includes it
US15/771,773 US10714791B2 (en) 2016-09-02 2017-09-01 Gel polymer electrolyte and lithium secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160113355 2016-09-02
KR10-2016-0113355 2016-09-02
KR1020170112055A KR102133384B1 (en) 2016-09-02 2017-09-01 Gel polymer electrolyte and lithium secondary battery comprising the same
KR10-2017-0112055 2017-09-01

Publications (1)

Publication Number Publication Date
WO2018044129A1 true WO2018044129A1 (en) 2018-03-08

Family

ID=61301024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009622 WO2018044129A1 (en) 2016-09-02 2017-09-01 Gel polymer electrolyte and lithium secondary battery including same

Country Status (1)

Country Link
WO (1) WO2018044129A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210036365A1 (en) * 2018-07-02 2021-02-04 Lg Chem, Ltd. Lithium Secondary Battery Having Improved High-Temperature Characteristics
JP2021510448A (en) * 2018-06-07 2021-04-22 エルジー・ケム・リミテッド Lithium secondary battery with improved low temperature and high temperature characteristics
US20210151799A1 (en) * 2018-03-06 2021-05-20 Lg Chem, Ltd. Non-Aqueous Electrolyte Solution and Lithium Secondary Battery Including the Same
JP2021513188A (en) * 2018-09-28 2021-05-20 エルジー・ケム・リミテッド Non-aqueous electrolyte solution and lithium secondary battery containing it
US20210384558A1 (en) * 2018-11-20 2021-12-09 Nippon Telegraph And Telephone Corporation Sodium Secondary Battery and Manufacturing Method Thereof
US20210399295A1 (en) * 2018-11-20 2021-12-23 Nippon Telegraph And Telephone Corporation Lithium Secondary Battery and Manufacturing Method Thereof
US11581577B2 (en) * 2017-11-30 2023-02-14 Lg Energy Solution, Ltd. Composition for gel polymer electrolyte including fluoroalkylene oligomer, lithium salt, and phosphate or boran-based additive, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the gel polymer electrolyte

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110010516A (en) * 2009-07-24 2011-02-01 주식회사 엘지화학 Perfluorinated phosphate crosslinker for gel polymer electrolyte, gel polymer electrolyte prepared from the same and electrochemical device comprising the electolyte
JP2015167126A (en) * 2014-02-17 2015-09-24 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for battery and whole solid secondary battery using the same, and method for producing them
KR20160040127A (en) * 2014-10-02 2016-04-12 주식회사 엘지화학 Gel polymer electrolyte and lithium secondary battery comprising the same
KR20160040128A (en) * 2014-10-02 2016-04-12 주식회사 엘지화학 Gel polymer electrolyte and lithium secondary battery comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110010516A (en) * 2009-07-24 2011-02-01 주식회사 엘지화학 Perfluorinated phosphate crosslinker for gel polymer electrolyte, gel polymer electrolyte prepared from the same and electrochemical device comprising the electolyte
JP2015167126A (en) * 2014-02-17 2015-09-24 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for battery and whole solid secondary battery using the same, and method for producing them
KR20160040127A (en) * 2014-10-02 2016-04-12 주식회사 엘지화학 Gel polymer electrolyte and lithium secondary battery comprising the same
KR20160040128A (en) * 2014-10-02 2016-04-12 주식회사 엘지화학 Gel polymer electrolyte and lithium secondary battery comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3361546A4 *
WONG, H. C.: "PERFLUOROPOLYETHER -BASED ELECTROLYTES FOR LITHIUM BATTERY APPLICATIONS", DEPARTMENT OF CHEMISTRY, 2015, pages 1 - 160, XP009505534 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11581577B2 (en) * 2017-11-30 2023-02-14 Lg Energy Solution, Ltd. Composition for gel polymer electrolyte including fluoroalkylene oligomer, lithium salt, and phosphate or boran-based additive, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the gel polymer electrolyte
US11658342B2 (en) * 2018-03-06 2023-05-23 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution and lithium secondary battery including the same
US20210151799A1 (en) * 2018-03-06 2021-05-20 Lg Chem, Ltd. Non-Aqueous Electrolyte Solution and Lithium Secondary Battery Including the Same
US11600860B2 (en) 2018-06-07 2023-03-07 Lg Energy Solution, Ltd. Lithium secondary battery having improved low-temperature characteristics and high-temperature characteristics
JP7048857B2 (en) 2018-06-07 2022-04-06 エルジー エナジー ソリューション リミテッド Lithium secondary battery with improved low temperature and high temperature characteristics
JP2021510448A (en) * 2018-06-07 2021-04-22 エルジー・ケム・リミテッド Lithium secondary battery with improved low temperature and high temperature characteristics
US20210036365A1 (en) * 2018-07-02 2021-02-04 Lg Chem, Ltd. Lithium Secondary Battery Having Improved High-Temperature Characteristics
US11870036B2 (en) * 2018-07-02 2024-01-09 Lg Energy Solution, Ltd. Lithium secondary battery having improved high-temperature characteristics
JP7055884B2 (en) 2018-09-28 2022-04-18 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte solution and lithium secondary battery containing it
JP2021513188A (en) * 2018-09-28 2021-05-20 エルジー・ケム・リミテッド Non-aqueous electrolyte solution and lithium secondary battery containing it
JP7408215B2 (en) 2018-09-28 2024-01-05 エルジー エナジー ソリューション リミテッド Nonaqueous electrolyte and lithium secondary battery containing it
US20210384558A1 (en) * 2018-11-20 2021-12-09 Nippon Telegraph And Telephone Corporation Sodium Secondary Battery and Manufacturing Method Thereof
US20210399295A1 (en) * 2018-11-20 2021-12-23 Nippon Telegraph And Telephone Corporation Lithium Secondary Battery and Manufacturing Method Thereof

Similar Documents

Publication Publication Date Title
WO2018044129A1 (en) Gel polymer electrolyte and lithium secondary battery including same
WO2016053064A1 (en) Gel polymer electrolyte and lithium secondary battery comprising same
WO2016053065A1 (en) Gel polymer electrolyte and lithium secondary battery comprising same
WO2019108032A1 (en) Gel polymer electrolyte composition and lithium secondary battery comprising same
WO2018106078A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021025521A1 (en) Copolymer for polymer electrolyte, gel polymer electrolyte comprising same, and lithium secondary battery
WO2019203622A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2020009436A1 (en) Lithium secondary battery with improved high temperature characteristics
WO2019107921A1 (en) Gel polymer electrolyte composition, and gel polymer electrolyte and lithium secondary battery which comprise same
WO2019135624A1 (en) Gel polymer electrolyte composition, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising same
WO2019013501A1 (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive
WO2020060295A1 (en) Composition for gel polymer electrolyte, and lithium secondary battery including gel polymer electrolyte formed therefrom
WO2020096343A1 (en) Composition for gel polymer electrolyte, and lithium secondary battery comprising gel polymer electrolyte formed therefrom
WO2020036336A1 (en) Electrolyte for lithium secondary battery
WO2020036337A1 (en) Electrolyte for lithium secondary battery
WO2017171449A1 (en) Gel polymer electrolyte composition, and gel polymer electrolyte
WO2019108031A1 (en) Composition for gel polymer electrolyte, gel polymer electrolyte prepared by means of same, and lithium secondary battery comprising same
WO2020060293A1 (en) Composition for gel polymer electrolyte and lithium secondary battery comprising gel polymer electrolyte formed therefrom
WO2019039903A2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021015535A1 (en) Lithium secondary battery
WO2020036444A1 (en) Method for preparing negative electrode for lithium secondary battery, and negative electrode for lithium secondary battery, prepared using same
WO2019088733A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019108024A1 (en) Composition for gel polymer electrolyte, gel polymer electrolyte prepared by means of same, and lithium secondary battery comprising same
WO2018080259A1 (en) Polymer electrolyte for secondary battery and secondary battery comprising same
WO2021025535A1 (en) Copolymer for polymer electrolyte, gel polymer electrolyte comprising same, and lithium secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15771773

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017847054

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE