WO2016053064A1 - Gel polymer electrolyte and lithium secondary battery comprising same - Google Patents

Gel polymer electrolyte and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2016053064A1
WO2016053064A1 PCT/KR2015/010472 KR2015010472W WO2016053064A1 WO 2016053064 A1 WO2016053064 A1 WO 2016053064A1 KR 2015010472 W KR2015010472 W KR 2015010472W WO 2016053064 A1 WO2016053064 A1 WO 2016053064A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
gel polymer
unit
group
formula
Prior art date
Application number
PCT/KR2015/010472
Other languages
French (fr)
Korean (ko)
Inventor
안경호
오정우
이철행
정이진
박솔지
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP15847219.1A priority Critical patent/EP3203565B1/en
Priority to CN201580053571.4A priority patent/CN106797048B/en
Priority to US15/515,547 priority patent/US10243239B1/en
Priority to JP2017517284A priority patent/JP6562568B2/en
Priority claimed from KR1020150139401A external-priority patent/KR101737223B1/en
Publication of WO2016053064A1 publication Critical patent/WO2016053064A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a gel polymer electrolyte and a lithium secondary battery comprising the same.
  • Lithium metal oxide is used as a positive electrode active material of a lithium secondary battery, and lithium metal, a lithium alloy, crystalline or amorphous carbon or a carbon composite material is used as a negative electrode active material.
  • the secondary battery may be coated with a positive electrode and a negative electrode active material to a current collector in a suitable thickness and length, or the active material itself in a film form, and then wound or laminated together with a separator as an insulator to manufacture an electrode assembly in a can or a similar container. After putting, it is manufactured by the method of inject
  • an electrolyte in a liquid state particularly an ion conductive liquid electrolyte in which salts are dissolved in a non-aqueous organic solvent, has been mainly used.
  • liquid electrolyte in this way not only deteriorates the electrode material and volatilizes the organic solvent, but also causes problems in safety due to the combustion caused by an increase in the ambient temperature and the temperature of the battery itself.
  • a lithium secondary battery has a problem in that gas is generated inside the battery due to decomposition of a carbonate organic solvent and / or side reaction between the organic solvent and the electrode during charging and discharging, thereby expanding the thickness of the battery. Thus, the amount of gas generated is further increased.
  • the gas generated continuously causes an increase in the internal pressure of the battery, which causes the rectangular battery to swell in a specific direction and explodes, or to deform the center of a specific surface of the battery, thereby degrading safety. It causes a local difference in the electrode reaction does not occur the same across the entire electrode surface causes a disadvantage of deterioration of the battery performance.
  • the gel polymer electrolyte has a disadvantage in that the conductivity of lithium ions is lower than that of a liquid electrolyte composed only of an electrolyte solution. Therefore, in order to improve this, a method of thinning the thickness of the gel polymer electrolyte has been proposed.
  • a problem in improving battery performance and safety such as a decrease in mechanical strength, a short circuit between the positive electrode and the negative electrode, and a short circuit in the polymer electrolyte.
  • the problem to be solved in the present invention is to provide a gel polymer electrolyte comprising a polymer network consisting of an oligomer comprising a urethane, acrylate and siloxane.
  • the present invention provides a lithium secondary battery including the gel polymer electrolyte.
  • the polymer network is formed by combining an oligomer comprising a unit A derived from a monomer comprising at least one copolymerizable acrylate or an acrylic acid, a unit C including a urethane, and a unit E including a siloxane in a three-dimensional structure.
  • a gel polymer electrolyte is provided.
  • a gel polymer electrolyte comprising a gel polymer electrolyte comprising a unit A derived from a monomer comprising at least one copolymerizable acrylate or acrylic acid, a unit C comprising urethane, and an oligomer comprising unit E comprising siloxane
  • a gel polymer electrolyte comprising a gel polymer electrolyte comprising a unit A derived from a monomer comprising at least one copolymerizable acrylate or acrylic acid, a unit C comprising urethane, and an oligomer comprising unit E comprising siloxane
  • the gel polymer electrolyte provides a lithium secondary battery including the gel polymer electrolyte of the present invention.
  • various embodiments of the present invention provide a gel polymer electrolyte or a lithium secondary battery as follows.
  • polymer network (1) a polymer network; And an electrolyte impregnated on the polymer network, wherein the polymer network comprises unit A derived from monomers comprising at least one copolymerizable acrylate or acrylic acid, unit C comprising urethane, and unit comprising siloxane.
  • k is an integer of 1 to 200.
  • the unit A is a unit derived from at least one compound selected from the group consisting of hydroxymethyl (meth) acrylate, and hydroxyethyl (meth) acrylate, or a compound represented by the following formula (i)
  • R ' is a linear or nonlinear alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 10 carbon atoms, a substituted or unsubstituted bicycloalkylene group having 6 to 20 carbon atoms, or a substituted or substituted carbon group having 6 to 20 carbon atoms or At least one selected from the group consisting of an unsubstituted arylene group, a substituted or unsubstituted biarylene group having 6 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, a naphthalene group and an anthracene group.
  • R 1 and R 2 are linear or nonlinear alkylene groups having 1 to 5 carbon atoms
  • R 3 and R 4 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, and a phenyl group,
  • R 5 to R 10 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, a phenyl group, and fluorine,
  • o is an integer of 0 or 1
  • p is 0 or an integer from 1 to 400
  • r is an integer from 1 to 400
  • the molar ratio of p: r is 0: 100 to 80:20.
  • p is 0 or an integer from 1 to 400
  • r is an integer from 1 to 400
  • the molar ratio of p: r is 0: 100 to 80:20.
  • Unit 1 is 1 mol or 2 mol in 1 mol of the first oligomer
  • R '' is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
  • R '' ' is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
  • n is an integer of 1-30.
  • n is 0 or an integer from 1 to 30,
  • k is an integer from 1 to 200
  • s is 0 or 1.
  • the unit A is 1 mol or 2 mol
  • the molar ratio of the unit B: unit C: unit D: unit E is 0 to 35: 2 to 201: 0 to 35: 1 to 200 (wherein units B and D are not 0 at the same time);
  • k is an integer from 1 to 200
  • n is an integer from 1 to 30,
  • n 1 to 30
  • p is an integer from 1 to 400
  • r is an integer from 1 to 400
  • the molar ratio of p: r is 0: 100 to 80:20.
  • the gel polymer electrolyte is methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl methacrylate, hexyl acrylate, hexyl meta Acrylate, ethylhexyl acrylate, ethylhexyl methacrylate, 2,2,2-trifluoroethyl acrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,3,3-tetra (1) to (14), further comprising a second oligomer comprising a unit derived from fluoropropyl acrylate, and at least one selected from the group consisting of 2,2,3,3-tetrafluoropropyl methacrylate.
  • the gel polymer electrolyte as described in any one of).
  • Unit A derived from monomers comprising at least one copolymerizable acrylate or acrylic acid; Unit C comprising urethane; And unit E comprising siloxane.
  • (24) comprises oligomers containing units comprising siloxanes
  • a gel polymer electrolyte having a Li + ion transfer coefficient of 0.3 or more and a content of unreacted oligomers of 20% or less relative to the total amount of reactive oligomers.
  • composition for gel polymer electrolytes in any one of said (1)-(23) containing 1 oligomer.
  • k is an integer of 1 to 200.
  • the unit A is a unit derived from at least one compound selected from the group consisting of hydroxymethyl (meth) acrylate and hydroxyethyl (meth) acrylate, or a unit represented by the following formula (i)
  • R ' is a linear or nonlinear alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 10 carbon atoms, a substituted or unsubstituted bicycloalkylene group having 6 to 20 carbon atoms, or a substituted or substituted carbon group having 6 to 20 carbon atoms or At least one selected from the group consisting of an unsubstituted arylene group, a substituted or unsubstituted biarylene group having 6 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, a naphthalene group and an anthracene group.
  • R 1 and R 2 are linear or nonlinear alkylene groups having 1 to 5 carbon atoms
  • R 3 and R 4 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, and a phenyl group,
  • R 5 to R 10 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, a phenyl group, and fluorine,
  • o is an integer of 0 or 1
  • p is 0 or an integer from 1 to 400
  • r is an integer from 1 to 400
  • the molar ratio of p: r is 0: 100 to 80:20.
  • R '' is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
  • R '' ' is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
  • n is an integer of 1-30.
  • composition for a gel polymer electrolyte according to any one of (25) to (32), wherein the oligomer is represented by at least one selected from the group consisting of the following Chemical Formulas 6a to 6c.
  • n is 0 or an integer from 1 to 30,
  • k is an integer from 1 to 200
  • s is 0 or 1.
  • unit A In 1 mol of the oligomer, unit A is 1 mol or 2 mol, and the molar ratio of unit B: unit C: unit D: unit E is 0 to 35: 2 to 201: 0 to 35: 1 to 200 (wherein Unit gel and electrolyte according to any one of (25) to (33), wherein units B and D are not 0 at the same time.
  • k is an integer from 1 to 200
  • n is an integer from 1 to 30,
  • n 1 to 30
  • p is an integer from 1 to 400
  • r is an integer from 1 to 400
  • the molar ratio of p: r is 0: 100 to 80:20.
  • composition for gel polymer electrolyte according to any one of (25) to (35), wherein the polymer network further contains inorganic particles on the polymer network.
  • composition for gel polymer electrolyte according to any one of (25) to (36), wherein the weight average molecular weight of the oligomer is 1,000 to 100,000.
  • the polymerization initiator is benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert- butyl peroxide, t- butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide, hydrogen per Oxides, 2,2'-azobis (2-cyanobutane), 2,2'-azobis (methylbutyronitrile), AIBN (2,2'-Azobis (iso-butyronitrile)) and AMVN (2, 2'-Azobisdimethyl-Valeronitrile)
  • the composition for gel polymer electrolytes in any one of said (25)-(37) which is a single substance or mixture of 2 or more types chosen from the group which consists of 2'-Azobisdimethyl-Valeronitrile).
  • composition for gel polymer electrolyte according to any one of (25) to (38), wherein the polymerization initiator is contained in an amount of 0.01% by weight to 2% by weight based on the total content of the oligomer.
  • the lithium salt may be LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC ( The gel according to any one of (25) to (39), which is any one selected from the group consisting of CF 3 SO 2 ) 3 , LiC 4 BO 8 , LiTFSI, LiFSI, and LiClO 4 , or a mixture of two or more thereof. Polymer electrolyte composition.
  • composition for gel polymer electrolyte according to any one of (25) to (41), wherein the electrolyte solvent is a linear carbonate, a cyclic carbonate, or a combination thereof.
  • the linear carbonate includes any one or a mixture of two or more selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylmethyl carbonate, methylpropyl carbonate and ethylpropyl carbonate, wherein the cyclic Carbonates are ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, and halides thereof
  • the composition for gel polymer electrolytes in any one of said (25)-(42) containing any 1 or 2 or more types of these selected from the group which consists of these.
  • Lithium secondary battery comprising a.
  • An electrochromic device comprising a first electrode, a second electrode, an electrochromic material and the gel polymer electrolyte according to any one of (1) to (22).
  • the gel polymer electrolyte of the present invention includes a polymer network composed of an oligomer including urethane, acrylate, and siloxane, thereby improving mechanical strength together with ionic conductivity. Therefore, it is possible to manufacture a lithium secondary battery with improved lifetime characteristics and capacity characteristics.
  • the gel polymer electrolyte of the present invention has the advantage that it can be used in both aqueous and non-aqueous cathode systems.
  • the polymer network comprises a first oligomer comprising unit A derived from a monomer comprising at least one copolymerizable acrylate or acrylic acid, a unit C comprising urethane, and a unit E comprising siloxane in a three-dimensional structure. It provides a gel polymer electrolyte, characterized in that formed.
  • the gel polymer electrolyte is not only weak in safety and mechanical properties compared to the solid polymer electrolyte, but also has a disadvantage in that ionic conductivity is lower than that of the liquid electrolyte. Therefore, recently, studies to improve mechanical properties and ionic conductivity using copolymers such as oligomers have been conducted. However, when the monomers are used alone, there is a problem in that deterioration of cycle characteristics and a desired level of mechanical characteristics cannot be obtained. In the case of using the oligomeric compound alone, it is not easy to control the physical properties, it is difficult to form a homogeneous polymer in the battery may be difficult to apply to the recent high capacity and large cells.
  • the present invention has been made to solve these problems by providing a gel polymer electrolyte comprising a polymer network formed by oligomer compounds prepared by polymerizing compounds having physical properties that can complement the electrochemical and mechanical properties.
  • the present invention provides a gel polymer electrolyte comprising an oligomer in which the ratio of the unit A derived from the monomer containing acrylic acid, the unit C containing urethane, the unit E containing siloxane, and the like is appropriately adjusted. In any situation, such as an aqueous system as well as an aqueous system, it is possible to prevent side reactions from occurring and lower the resistance to improve ion conductivity.
  • the first oligomer included in the gel polymer electrolyte of the present invention may be represented by the following Chemical Formula 1.
  • k is an integer of 1 to 200.
  • the unit A constituting the oligomer is a component that serves to form a gel polymer through a curing reaction in the oligomer, at least one carbon-oxygen single in the molecular structure
  • a derived unit derived from a monomer containing a mono- or polyfunctional (meth) acrylate containing a bond or acrylic acid specifically 1 to 20, preferably 1 to 10 acrylate or methacrylate structures It may be a compound containing.
  • the unit A constituting the oligomer is a unit derived from at least one compound selected from the group consisting of hydroxymethyl (meth) acrylate, and hydroxyethyl (meth) acrylate as a representative example thereof, or It may include a unit represented by).
  • the unit C constituting the oligomer is a component for imparting a function of adjusting the ion transport characteristics, and controlling the mechanical properties and adhesion, specifically, to immobilize the anion of the salt It is a unit structure necessary to form a rigid structure in a molecule so as to secure the flexibility of the polymer.
  • the unit C may be represented by the compound of Formula 2a or Formula 2b.
  • R ' is a linear or nonlinear alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 10 carbon atoms, a substituted or unsubstituted bicycloalkylene group having 6 to 20 carbon atoms, or a substituted or substituted carbon group having 6 to 20 carbon atoms or At least one selected from the group consisting of an unsubstituted arylene group, a substituted or unsubstituted biarylene group having 6 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, a naphthalene group and an anthracene group.
  • R ' may include one selected from the group consisting of the following groups.
  • the unit E constituting the oligomer is a component added to control the affinity between the mechanical properties and the separator, specifically, a rigid structural region by a urethane bond in the polymer structure
  • the affinity with the polyolefin-based membrane fabric is increased, the resistance can be reduced to implement the effect of improving the ion conductivity more.
  • the unit E may be represented by the following formula (3).
  • R 1 and R 2 are linear or nonlinear alkylene groups having 1 to 5 carbon atoms
  • R 3 and R 4 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, and a phenyl group,
  • R 5 to R 10 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, a phenyl group, and fluorine,
  • o is an integer of 0 or 1
  • p is 0 or an integer from 1 to 400
  • r is an integer from 1 to 400
  • the molar ratio of p: r is 0: 100 to 80:20.
  • the unit E may include a compound selected from the group consisting of the following Chemical Formulas 3a to 3g.
  • p is 0 or an integer from 1 to 400
  • r is an integer from 1 to 400
  • the molar ratio of p: r is 0: 100 to 80:20.
  • unit A in one mole of the oligomer, may be 1 mole or 2 moles, and the molar ratio of unit C to unit E may be about 1.005: 1 to 2: 1. .
  • the molar ratio of the unit C: E may be 201: 200, that is, 1.005: 1.
  • the oligomer may further include at least one or more units selected from the group consisting of a unit B represented by the following formula (4) and a unit D represented by the following formula (5). .
  • R '' is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
  • R '' ' is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
  • n is an integer of 1-30.
  • the gel polymer electrolyte of the present invention further includes a unit D derived from the B unit and the oxyalkylene in the oligomer structure, thereby increasing dissociation of the salt in the polymer structure and affinity with the highly polar surface in the battery. You can implement the effect.
  • the unit B is a unit for imparting the impregnation ability and the ion transport ability of the solvent, and may include at least one selected from the group consisting of the following groups.
  • the unit D is a unit for imparting a function for adjusting the impregnation ability, the electrode affinity, and the ion transfer ability of the solvent, and may include at least one selected from the group consisting of the following groups.
  • the oligomer included in the gel polymer electrolyte of the present invention may be represented by at least one selected from the group consisting of the following formulas 6a to 6c.
  • n is 0 or an integer from 1 to 30,
  • k is an integer from 1 to 200
  • s is 0 or 1.
  • unit A is 2 mol
  • the molar ratio of unit B: unit C: unit D: unit E is 0-35: 2-201: 0-35: 1-200
  • the molar ratio of unit D to unit E may be 0 to 35:10 to 100: 0 to 35:20 to 100, and more specifically 0 to 5:10 to 100: 10 to 30:20 to 100. , Units B and D do not go to zero at the same time.
  • the oligomer may be at least one selected from the group consisting of the following Chemical Formulas 7a to 7d.
  • k is an integer from 1 to 200
  • n is an integer from 1 to 30,
  • n 1 to 30
  • p is an integer from 1 to 400
  • r is an integer from 1 to 400
  • the molar ratio of p: r is 0: 100 to 80:20.
  • the weight average molecular weight of the oligomer for forming the gel polymer electrolyte of the present invention may be about 1,000 to 100,000. When the weight average molecular weight of the oligomer is in the above range, it is possible to effectively improve the mechanical strength of the battery comprising the same.
  • the gel polymer electrolyte is methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl to further improve mechanical strength and curing effect.
  • a second oligomer comprising units derived from at least one selected from the group consisting of 2,2,3,3-tetrafluoropropyl acrylate, and 2,2,3,3-tetrafluoropropyl methacrylate. It may further include.
  • the second oligomer is preferably included in less than 50% by weight, specifically 20% by weight based on the total content of the first oligomer. If the content of the second oligomer exceeds 50% by weight, since the oligomer is contained in an excessive amount to increase resistance, a disadvantage may occur in that the cycle characteristics and the like decrease.
  • the gel polymer electrolyte of the present invention includes the unit E containing siloxane in the oligomer structure, thereby ensuring excellent mechanical properties of the gel polymer electrolyte and enhancing affinity with the polyolefin-based membrane fabric. Can be.
  • the affinity with the membrane fabric is improved, the resistance is reduced to improve the ion transfer characteristics, thereby realizing the effect of improving the ion conductivity more.
  • the gel polymer electrolyte of the present invention may include the urethane bond of the unit C, and the unit B and D selectively in the structure, thereby enhancing the effect of further ion transfer properties to realize the effect of improving the ion conductivity, as well as elasticity And by increasing the flexibility and the like can be relieved stress due to volume expansion generated when driving the battery.
  • the gel polymer electrolyte of the present invention has improved ion conductivity and does not need to reduce the thickness of the gel polymer electrolyte, sufficient mechanical strength can be ensured and the life characteristics of the secondary battery including the same can be improved. Can be.
  • the gel polymer electrolyte of the present invention comprises an oligomer in which the ratio of the unit A derived from the monomer containing acrylic acid, the unit C containing urethane, and the unit E containing siloxane, and the ratio of unit B and unit D are properly adjusted.
  • the polymer network may further contain inorganic particles in the range of 10 to 25% by weight based on the total weight of the polymer network.
  • the inorganic particles may be impregnated in the polymer network to allow the high viscosity solvent to penetrate well through the pores formed by the void space between the inorganic particles. That is, by including the inorganic particles, it is possible to obtain an effect of further improving the wettability to a high viscosity solvent by affinity between the polar substances and capillary phenomenon.
  • inorganic particles having a high dielectric constant and which do not generate an oxidation and / or reduction reaction in an operating voltage range of the lithium secondary battery (for example, 0 to 5V based on Li / Li + ) may be used.
  • the inorganic particles are BaTiO 3 , BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1 - x La x Zr 1 - y Ti y O 3 (PLZT) having a dielectric constant of 5 or more as a representative example thereof.
  • inorganic particles having lithium ion transfer ability that is, lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3 ), Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2- (LiAlTiP) such as 39P 2 O 5 x O y series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), Li 3 .
  • lithium phosphate Li 3 PO 4
  • lithium titanium phosphate Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0
  • the average particle diameter of the inorganic particles is preferably in the range of about 0.001 to 10 ⁇ m in order to have a proper porosity in a uniform thickness in the gel polymer electrolyte. If the average particle size is less than 0.001 ⁇ m dispersibility may be lowered, if the average particle diameter is more than 10 ⁇ m not only can increase the thickness of the porous coating layer, but also agglomeration of inorganic particles occurs gel polymer electrolyte Exposure to the outside can lower the mechanical strength.
  • the gel polymer electrolyte of the present invention is 1.0x10 -4 S / cm than in the case of measuring the impedance measurement analysis system at 25 °C temperature, specifically, 1.0x10 -4 S / cm to 2.0x10 -2 S / It may have a Li + ion conductivity of cm.
  • the ion conductivity was measured using the Impedance measurement method in the form of a SUS / GPE / SUS cell to form a gel polymer electrolyte film of 13mm thickness.
  • the measuring equipment is Bio Logic's VMP3 model, and the measurement conditions were performed at room temperature under 10,000-0.1Hz and 10mV amplitude conditions.
  • the gel polymer electrolyte may have a Li + ion transfer coefficient of 0.3 or more based on NMR measurement at a temperature of 25 °C.
  • the Li + ion mobility factor is Li + ion diffusion also / can be defined as (Li + ion diffusivity + anion diffusivity), in which the Li + ion diffusivity and anion diffusivity is the following equipment and methods Can be measured.
  • a Varian 500 MHz NMR / dual probe was used, and Li + cation diffusion constant was measured by 7 Li diffusion NMR, and anion diffusion was measured by 19 F diffusion NMR.
  • the solvent used was acetone-d 6
  • the inner tube (acetone-d 6 ) was used to prevent the sample from mixing with the deuterium solvent to measure the diffusion value in the sample itself.
  • the pulse sequence was stimulated echo with gradient pulse. Gradient amplitude was adjusted so that the peak intensity at the highest gradient power was about 2 to 5% of the peak intensity at the lowest gradient power. This section was divided into 16 steps in the same way as the solution NMR. Different amplitudes were applied.
  • the gel polymer electrolyte may have a gel content of about 1% by weight or more, specifically about 20% by weight or more at 25 ° C.
  • the gel polymer electrolyte preferably has an unreacted oligomer content of 20% or less relative to the total amount of the reactive oligomer at 25 ° C.
  • the content of the unreacted oligomer may be implemented by implementing a gel polymer electrolyte, then extracting the gel polymer electrolyte with a solvent (acetone), and then checking the extracted solvent through NMR measurement.
  • the electrolyte of the present invention is composed of a conventional lithium salt-containing non-aqueous solvent, wherein the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 , LiC 4 BO 8 , LiTFSI, LiFSI, and LiClO 4 Or a mixture of two or more thereof, but is not limited thereto.
  • the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 , LiC 4 BO 8 , LiTFSI, LiFSI, and LiClO 4 Or a
  • the lithium salt may include 10 to 50% by weight based on the total content of the polymerization initiator and the oligomer.
  • a non-aqueous solvent commonly used in a lithium secondary battery electrolyte may be used.
  • ether, ester (Acetate, Propionate), amide, linear carbonate or cyclic carbonate, nitrile (aceto Nitrile, SN, and the like) may be used alone or in combination of two or more thereof.
  • carbonate compounds which are typically cyclic carbonates, linear carbonates or mixtures thereof may be included.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene Carbonate, vinylene carbonate, and halides thereof, any one selected from the group consisting of or mixtures of two or more thereof.
  • linear carbonate compounds include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethylmethyl carbonate (EMC), methylpropyl carbonate (MPC) and ethylpropyl carbonate (EPC). Any one selected from the group consisting of, or a mixture of two or more thereof may be representatively used, but is not limited thereto.
  • propylene carbonate and ethylene carbonate which are cyclic carbonates in the carbonate electrolyte solvent, may be preferably used because they have high dielectric constants and dissociate lithium salts in the electrolyte well, such as ethylmethyl carbonate and diethyl carbonate.
  • a low viscosity, low dielectric constant linear carbonate such as dimethyl carbonate is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be made, and thus it can be used more preferably.
  • ester in the electrolyte solvent is methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone And ⁇ -caprolactone, but any one selected from the group consisting of, or a mixture of two or more thereof may be used, but is not limited thereto.
  • the electrolyte solvent may improve the performance by adding a conventional additive used in the electrolyte solution.
  • VC VEC
  • FEC LiPO 2 F 2 , LiODFB, LiBOB, TMSPa, TMSPi, TFEPa, TFEPi
  • TFEPi may further include without limitation.
  • the metal ions eluted from the positive electrode are precipitated at the negative electrode
  • the gel polymer electrolyte of the present invention includes a polymer network formed by the oligomer, thereby combining with the metal ions eluted at the positive electrode to precipitate the metal at the negative electrode.
  • I can alleviate it. Therefore, the charge and discharge efficiency of the lithium secondary battery can be improved and good cycle characteristics can be exhibited.
  • a protective layer composed of a polymer on the surface of the positive electrode and the negative electrode or by using a polymer structure to suppress side reactions through anion stabilization and to increase the adhesion between the electrodes can suppress the gas generation inside the battery at a high temperature.
  • Unit A derived from monomers comprising at least one copolymerizable acrylate or acrylic acid;
  • Unit C comprising urethane
  • a gel polymer electrolyte comprising unit E comprising siloxane can be provided.
  • An oligomer comprising unit E comprising a siloxane
  • composition for a gel polymer electrolyte of the present invention comprising an oligomer comprising a unit A derived from a monomer comprising at least one copolymerizable acrylate or acrylic acid, a unit C comprising a urethane, and a unit E comprising a siloxane. can do.
  • the oligomer may be included in 0.5% by weight to 20% by weight, more preferably 0.5% by weight to 10% by weight relative to the total weight of the composition for the gel polymer electrolyte. If less than 0.5% by weight of the gel polymer is difficult to be difficult to express the characteristics of the gel polymer electrolyte, if it exceeds 20% by weight may increase the resistance due to the excessive content of the oligomer may lower the battery performance.
  • the gel polymer electrolyte of the present invention can be produced from the gel polymer electrolyte composition using a polymerization method known in the art.
  • the polymerization initiator used for this reaction may be used conventional polymerization initiator known in the art.
  • Non-limiting examples of the polymerization initiator are benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert-butyl peroxide, organic peroxides and hydros such as t-butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide, and hydrogen peroxide Peroxides with 2,2'-azobis (2-cyanobutane), 2,2'-azobis (methylbutyronitrile), AIBN (2,2'-Azobis (iso-butyronitrile)) and AMVN (2 And azo compounds such as 2'-Azobisdimethyl-Valeronitrile), but are not limited thereto.
  • the polymerization initiator is decomposed by heat in a battery, such as, but not limited to, 30 ° C. to 100 ° C., or decomposed at room temperature (5 ° C. to 30 ° C.) to form radicals, and the polymerizable oligomer is acrylate by free radical polymerization.
  • the gel polymer electrolyte may be formed by reacting with the compound.
  • the polymerization initiator may be used in an amount of 0.01% by weight to 2% by weight based on the total content of the oligomer. If the polymerization initiator is more than 2% by weight, gelation may occur too quickly or the unreacted initiator remains after the gel polymer electrolyte composition is injected into the battery, which adversely affects the battery performance. Conversely, the polymerization initiator is less than 0.01 part by weight. There is a problem that the gelation is not made well.
  • Gel polymer electrolyte composition according to an embodiment of the present invention in addition to the components described above, in order to impart an effect of increasing the efficiency and resistance of the gel reaction, and optionally other additives that can implement such properties known in the art It may contain more.
  • the gel polymer electrolyte may be improved by adding a conventional additive used in an electrolyte solution.
  • a conventional additive used in an electrolyte solution.
  • general additives such as VC, VEC, Propane sultone, SN, 'AdN, ESa, PRS, FEC, LiPO 2 F 2 , LiODFB, LiBOB, TMSPa, TMSPi, TFEPa, TFEPi are applicable.
  • It provides a lithium secondary battery comprising the gel polymer electrolyte of the present invention as the polymer electrolyte.
  • the gel polymer electrolyte is formed by polymerizing the composition for gel polymer electrolyte according to a conventional method known in the art.
  • the gel polymer electrolyte may be formed by in-situ polymerization of the composition for gel polymer electrolyte in the secondary battery.
  • Injecting the composition for the gel polymer electrolyte according to the polymerization may include the step of forming a gel polymer electrolyte.
  • thermo polymerization reaction in the lithium secondary battery is possible through the E-BEAM, gamma rays, room temperature / high temperature aging process, according to one embodiment of the present invention can be carried out through thermal polymerization.
  • the polymerization time takes about 2 minutes to 12 hours, the thermal polymerization temperature may be 30 to 100 °C.
  • in-situ polymerization reaction in a lithium secondary battery is added to a predetermined amount of the initiator and the oligomer in an electrolyte solution containing a lithium salt and mixed and then injected into a battery cell.
  • the polymerization is carried out by heating to 40 to 80 °C for 1 to 20 hours, the gel polymer electrolyte contained in the form of a gel is prepared when the lithium salt-containing electrolyte is subjected to gelation.
  • the lithium secondary battery according to an embodiment of the present invention has a charge voltage of 3.0V to 5.0V, excellent capacity characteristics of the lithium secondary battery in both the normal voltage and the high voltage region.
  • the electrode constituting the lithium secondary battery can be manufactured by a conventional method known in the art.
  • a slurry may be prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersant in an electrode active material, and then applying the coating (coating) to a current collector of a metal material, compressing, and drying the electrode to prepare an electrode.
  • the positive electrode active material constituting the positive electrode may be applied to a general voltage or a high voltage, and a compound capable of reversibly intercalating / deintercalating lithium may be used.
  • a carbon material lithium metal, silicon, tin, or the like, into which lithium ions may be inserted and released, may be used.
  • a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the positive electrode and / or negative electrode may be prepared by mixing and stirring a binder, a solvent, a conductive material and a dispersant, which may be commonly used as necessary, to prepare a slurry, and then applying the same to a current collector and compressing the negative electrode.
  • the binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Various kinds of binder polymers such as sulfonated EPDM, styrene butyrene rubber (SBR), fluorine rubber, various copolymers and the like may be used.
  • PVDF-co-HEP polyvinylidene fluoride-hexafluoropropylene copolymer
  • SBR styrene butyrene rubber
  • the lithium secondary battery may have a separator between the positive electrode and the negative electrode according to the type.
  • a separator a conventional porous polymer film, that is, polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, and a polyethylene / polypropylene two-layer separator and a polyethylene / polypropylene / polyethylene three-layer separator
  • a mixed multilayer film such as polypropylene / polyethylene / polypropylene three-layer separator can be used.
  • a conventional porous non-woven fabric for example, a non-woven fabric made of glass fibers of high melting point, polyethylene terephthalate fibers and the like can be used, but is not limited thereto.
  • the external shape of the lithium secondary battery according to an embodiment of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • electrochromic device comprising the gel polymer electrolyte of the present invention.
  • the first electrode and the second electrode may have a structure in which a transparent conductive layer is formed on a substrate
  • the electrochromic device may include a flexible substrate and a rigid substrate on opposite surfaces of the electrolyte.
  • the gel polymer electrolyte of the present invention when applied for flexibility and durability of the color change device and freedom of design, it is possible to secure ion conductivity and durability required for driving the device.
  • the substrate and the transparent conductive layer are not particularly limited as long as they are known in the art.
  • the substrate include glass and transparent plastics (polymer), and conductive materials for forming the transparent conductive layer include indium doped tin oxide (ITO), antimony doped tin oxide (ATO), and fluorine doped tin oxide (FTO). ), IZO (Indium doped zinc oxide), ZnO and the like.
  • the conductive material may be deposited on the substrate by a known method such as sputtering, electron beam deposition, chemical vapor deposition, or sol-gel coating to form a transparent conductive layer.
  • the kind of electrochromic material is not particularly limited, and inorganic metal oxides such as WO 3 , Ir (OH) x, MoO 3 , V 2 O 5 , TiO 2 , NiO; Conductive polymers such as polypyrrole, polyaniline, polyazulene, polypyridine, polyindole, polycarbazole, polyazine and polythiophene; Organic discoloring substances, such as viologen, anthraquinone, and phenocyazine, etc. are mentioned.
  • inorganic metal oxides such as WO 3 , Ir (OH) x, MoO 3 , V 2 O 5 , TiO 2 , NiO
  • Conductive polymers such as polypyrrole, polyaniline, polyazulene, polypyridine, polyindole, polycarbazole, polyazine and polythiophene
  • Organic discoloring substances such as viologen, anthraquinone, and phenocyazine
  • the method of laminating the electrochromic material on the electrode is not particularly limited as long as it can form a thin film at a constant height from the base surface along the surface profile, and examples thereof include vacuum deposition methods such as sputtering.
  • WO 3 is a material that is colored by a reduction reaction
  • NiO is a material that is colored by an oxidation reaction.
  • the electrochemical mechanism in which the electrochromic device occurs in the electrochromic device including the inorganic metal oxide is described as in Scheme 1. Specifically, when voltage is applied to the electrochromic device, protons (H + ) or lithium ions (Li + ) contained in the electrolyte are inserted into or desorbed from the electrochromic material according to the polarity of the current. In order to satisfy, by changing the oxidation number of the transition metal contained in the electrochromic material, the optical properties of the electrochromic material itself, such as transmittance (color), is changed.
  • M is a proton or an alkali metal cation such as Li + .
  • the electrochromic device configured as described above may be manufactured according to a conventional method known in the art, such as (a) preparing a first electrode and a second electrode; (b) injecting and then sealing the gel polymer electrolyte composition according to the present invention between the prepared first and second electrodes; And (c) polymerizing the injected electrolyte composition to form a gel polymer electrolyte.
  • Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) 2: 3: 5 (volume ratio)
  • LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution.
  • the oligomer of Formula 7a molecular weight 7,800, unit A is 2 mol, unit B: unit C: unit D: mole ratio of unit E is 4.7: 33.4: 14.3: 47.6) 5% and AIBN as the polymerization initiator 0.5 to the total content of the oligomer
  • a composition for gel polymer electrolyte was prepared by adding weight% and 0.5% VC.
  • Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) 2: 3: 5 (volume ratio) LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution.
  • 5% of the oligomer of Formula 7b molecular weight 8,500, unit A is 2 mol, unit C: unit D: mole ratio of unit E is 30:26:44
  • VC 0.5 % was added to prepare a gel polymer electrolyte composition.
  • Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) 2: 3: 5 (volume ratio)
  • LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution.
  • 5% of the oligomer of Chemical Formula 7c molecular weight 8,500, unit A is 1 mol, unit C: unit D: molar ratio of unit E is 30: 26:44
  • 0.5 wt% VC 0.5% of the total content of the oligomer as the polymerization initiator was added to prepare a composition for a gel polymer electrolyte.
  • Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) 2: 3: 5 (volume ratio)
  • LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution.
  • the oligomer of Formula 7d molecular weight 8,100, unit A is 2 moles, unit B: unit C: unit D: mole ratio of unit E is 4.7: 33.4: 14.3: 47.6) 5% and AIBN as the polymerization initiator 0.5 to the total content of the oligomer
  • a composition for gel polymer electrolyte was prepared by adding 0.5% by weight of VC.
  • a gel polymer electrolyte composition was prepared in the same manner as in Example 1, except that 12% of the oligomer of Chemical Formula 7a was included.
  • Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) 2: 3: 5 (volume ratio)
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution.
  • Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) 2: 3: 5 (volume ratio) LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution.
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • the unit C containing urethane and the unit E including siloxane instead of the dipentaerythritol containing only unit A derived from the monomer including acrylate
  • a gel polymer electrolyte composition was prepared in the same manner as in Example 1, except that an oligomer made of pentaacrylate (dipentaerythritol pentaacrylate) was used.
  • Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) 2: 3: 5 (volume ratio) LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution.
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • a unit A derived from a monomer containing acrylate and a unit C including urethane are represented by the following Chemical Formula 8 Except for using the oligomer to prepare a composition for a gel polymer electrolyte in the same manner as in Example 1.
  • a positive electrode mixture slurry was prepared by adding to 2-pyrrolidone (NMP).
  • NMP 2-pyrrolidone
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
  • a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive material at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent.
  • the negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
  • Cu copper
  • the battery was assembled using a separator consisting of the positive electrode, the negative electrode, and three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), and the gel polymer electrolyte composition prepared in Example 1 was injected into the assembled battery. After leaving for 2 days and then heated to 70 °C for 5 hours to prepare a secondary battery containing a gel polymer electrolyte.
  • a separator consisting of the positive electrode, the negative electrode, and three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), and the gel polymer electrolyte composition prepared in Example 1 was injected into the assembled battery. After leaving for 2 days and then heated to 70 °C for 5 hours to prepare a secondary battery containing a gel polymer electrolyte.
  • a secondary battery including the gel polymer electrolyte was manufactured in the same manner as in Example 7, except that the gel polymer electrolyte composition of Example 2 was injected instead of the gel polymer electrolyte composition of Example 1.
  • a secondary battery including the gel polymer electrolyte was manufactured in the same manner as in Example 7, except that the gel polymer electrolyte composition of Example 5 was injected instead of the gel polymer electrolyte composition of Example 1.
  • a secondary battery including the gel polymer electrolyte was manufactured in the same manner as in Example 7, except that the gel polymer electrolyte composition of Example 6 was injected instead of the gel polymer electrolyte composition of Example 1.
  • a secondary battery including the gel polymer electrolyte was manufactured in the same manner as in Example 7, except that the gel polymer electrolyte composition of Comparative Example 1 was injected instead of the gel polymer electrolyte composition of Example 1.
  • a secondary battery including a gel polymer electrolyte was manufactured in the same manner as in Comparative Example 3 except that the gel polymer electrolyte composition of Comparative Example 2 was injected instead of the composition for gel polymer electrolyte of Comparative Example 1.
  • the gel polymer electrolyte composition prepared in Examples 1, 2, 5, and 6 and the gel polymer electrolyte composition prepared in Comparative Example 1 were prepared in the form of a film of 13 mm thickness, and then SUS / GPE / SUS cells.
  • Li + ion conductivity was measured using Impedance measurement.
  • the measuring instrument is Bio Logic's VMP3 model, and the measurement conditions were performed at room temperature (25 °C) under 10,000-0.1Hz and 10mV amplitude conditions. The results are shown in Table 1 below.
  • Example 1 8.4mS / cm
  • Example 2 8.1mS / cm
  • Example 5 6.5mS / cm
  • Example 6 4.8mS / cm Comparative
  • Example 1 7.0mS / cm
  • Example 6 it was found that the ionic conductivity is lower than in Example 1.
  • Li + ion migration coefficient Li + ion diffusivity / (Li + ion diffusivity + anion diffusivity)
  • Li + ion diffusivity measured by 7 Li diffusion NMR
  • Solvent used acetone-d 6 (In this case, the inner tube (acetone-d 6 ) was used to prevent the sample from mixing with the deuterium solvent to measure the diffusion value in the sample itself.)
  • pulse sequence stimulated echo with gradient pulse
  • Gradient amplitude The peak intensity at the highest gradient power is adjusted to be about 2 to 5% of the peak intensity at the lowest gradient power. This section is divided into 16 steps in the same manner as the solution NMR. Different amplitudes were applied.
  • Example 6 it can be seen that the Li + ion transfer coefficient is lower than in Example 1.
  • the gel polymer electrolyte was extracted with a solvent (acetone). Then, the extracted solvent was analyzed by the NMR measurement of the remaining amount of unreacted oligomer. The results are shown in Table 3 below.
  • Example 7 N.D
  • Example 8 0.5%
  • Example 9 N.D
  • Example 10 Comparative Example 3 3.0%
  • the content of the unreacted oligomer of the secondary batteries of Examples 7 to 10 is 2% or less, while the content of the unreacted oligomer of the secondary battery of Comparative Example 3 is 3% and the content of the unreacted oligomer is 3%. It is high.
  • Capacity maintenance rate at 100th cycle 100th cycle discharge capacity / 1st cycle discharge capacity
  • Example 7 1 st cycle discharge capacity 100 th cycle discharge capacity Capacity retention at 100 th cycles (%)
  • Example 8 751 mAh 728 mAh 97%
  • Example 9 730 mAh 715 mAh 98%
  • Example 10 683 mAh 417 mAh 61% Comparative Example 3 720 mAh 117 mAh 16.2%
  • Example 5 For each gel polymer electrolyte composition prepared in Example 1 and Comparative Example 2, the surface tension was measured at 25 ° C. using a ring method (a tensiometer K11 model device manufactured by KRUSS). The results are shown in Table 5 below.
  • the comparative example 2 of the comparative example including an oligomer containing an acrylate unit and a urethane unit It can be seen that the surface tension is higher than that of the gel polymer electrolyte.
  • the affinity with the separator can be improved due to the high surface tension, thereby reducing the resistance and improving the ion conductivity. It can be expected that the improvement of cycle life characteristics can be realized.
  • the cell including the gel polymer electrolyte prepared in Example 7 and Comparative Example 4 was decomposed to separate the separator containing the gel polymer electrolyte, and then the separated separator was placed in a chamber at 60 ° C. and 120 ° C. for about 30 minutes. After leaving for a minute, the degree of shrinkage of the membrane before and after the heat treatment was compared. The results (ratios) are shown in Table 6 below.

Abstract

The present invention relates to a gel polymer electrolyte and a lithium secondary battery comprising same, the gel polymer electrolyte comprising a polymer network and an electrolyte solution impregnated on the polymer network, wherein the polymer network is formed having an oligomer bound in a three-dimensional structure, the oligomer comprising: a unit A which is derived from a monomer comprising at least one or more of a copolymerizable acrylate or acrylic acid; a unit C which comprises urethane; and a unit E which comprises siloxane.

Description

젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지Gel polymer electrolyte and lithium secondary battery comprising same
관련 출원(들)과의 상호 인용Cross Citation with Related Application (s)
본 출원은 2014년 10월 2일자 한국 특허 출원 제10-2014-0133433호 및 2015년 10월 2일자 한국 특허 출원 제10-2015-0139401호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. This application claims the benefit of priority based on Korean Patent Application No. 10-2014-0133433 dated October 2, 2014 and Korean Patent Application No. 10-2015-0139401 dated October 2, 2015. All content disclosed in the literature is included as part of this specification.
기술분야Technical Field
본 발명은 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a gel polymer electrolyte and a lithium secondary battery comprising the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지는 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing, and lithium secondary batteries having high energy density and voltage are commercially used.
리튬 이차전지의 양극 활물질로는 리튬 금속 산화물이 사용되고 있고, 음극 활물질로는 리튬 금속, 리튬 합금, 결정질 또는 비정질 탄소 또는 탄소 복합체가 사용되고 있다. 상기 이차전지는 양극 및 음극 활물질을 적당한 두께와 길이로 집전체에 도포하거나 또는 활물질 자체를 필름 형상으로 도포한 다음, 절연체인 분리막과 함께 감거나 적층하여 전극조립체를 제조하여 캔 또는 이와 유사한 용기에 넣은 후, 전해액을 주입하는 방법에 의해 제조된다.Lithium metal oxide is used as a positive electrode active material of a lithium secondary battery, and lithium metal, a lithium alloy, crystalline or amorphous carbon or a carbon composite material is used as a negative electrode active material. The secondary battery may be coated with a positive electrode and a negative electrode active material to a current collector in a suitable thickness and length, or the active material itself in a film form, and then wound or laminated together with a separator as an insulator to manufacture an electrode assembly in a can or a similar container. After putting, it is manufactured by the method of inject | pouring electrolyte solution.
종래 전기 화학 반응을 이용한 전지, 전기 이중층 캐패시터 등의 전기 화학 소자용 전해질로는 액체 상태의 전해질, 특히 비수계 유기 용매에 염을 용해한 이온 전도성 액체 전해질이 주로 사용되어 왔다. Conventionally, as electrolytes for electrochemical devices such as batteries and electric double layer capacitors using an electrochemical reaction, an electrolyte in a liquid state, particularly an ion conductive liquid electrolyte in which salts are dissolved in a non-aqueous organic solvent, has been mainly used.
그러나 이와 같이 액체 상태의 전해질을 사용하면, 전극 물질이 퇴화되고 유기 용매가 휘발될 가능성이 클 뿐만 아니라, 주변 온도 및 전지 자체의 온도 상승에 의한 연소로 안전성에 문제가 있다. 특히, 리튬 이차전지는 충방전 진행시 카보네이트 유기 용매의 분해 및/또는 유기 용매와 전극과의 부반응에 의해 전지 내부에 가스가 발생하여 전지 두께를 팽창시키는 문제점이 있으며, 고온 저장시에는 이러한 반응이 가속화되어 가스 발생량이 더 증가하게 된다. However, the use of the liquid electrolyte in this way not only deteriorates the electrode material and volatilizes the organic solvent, but also causes problems in safety due to the combustion caused by an increase in the ambient temperature and the temperature of the battery itself. In particular, a lithium secondary battery has a problem in that gas is generated inside the battery due to decomposition of a carbonate organic solvent and / or side reaction between the organic solvent and the electrode during charging and discharging, thereby expanding the thickness of the battery. Thus, the amount of gas generated is further increased.
이와 같이 지속적으로 발생된 가스는 전지의 내압 증가를 유발시켜 각형 전지가 특정 방향으로 부풀어올라 폭발하거나, 또는 전지의 특정면의 중심부가 변형되는 등 안전성 저하를 초래할 뿐만 아니라, 전지 내 전극면에서 밀착성에 국부적인 차이점을 발생시켜 전극 반응이 전체 전극면에서 동일하게 일어나지 못해 전지의 성능이 저하되는 단점을 야기하게 된다.The gas generated continuously causes an increase in the internal pressure of the battery, which causes the rectangular battery to swell in a specific direction and explodes, or to deform the center of a specific surface of the battery, thereby degrading safety. It causes a local difference in the electrode reaction does not occur the same across the entire electrode surface causes a disadvantage of deterioration of the battery performance.
한편, 에너지 저장 기술에 대한 관심이 갈수록 높아지면서, 소형 경량화 및 고용량으로 충방전 가능한 이차전지의 개발을 요구되고 있다. 이에 따라, 최근 액체 전해질 보다 폴리머로 이루어진 폴리머 전해질을 이용한 전지 개발이 주목받고 있다.On the other hand, as the interest in energy storage technology increases, there is a demand for the development of a secondary battery that can be charged and discharged with small size, light weight, and high capacity. Accordingly, the development of a battery using a polymer electrolyte made of a polymer rather than a liquid electrolyte has recently attracted attention.
일반적으로, 전지의 안전성은 액체 전해질 < 젤 폴리머 전해질 < 고체 고분자 전해질 순서로 향상되는 것에 반해, 전지 성능은 감소하는 것으로 알려져 있다. Generally, battery performance is known to decrease, whereas battery safety is improved in the order of liquid electrolyte <gel polymer electrolyte <solid polymer electrolyte.
즉, 상기 젤 폴리머 전해질은 전해액으로만 이루어진 액체 전해질에 비해, 리튬 이온의 전도성이 낮다는 단점이 있다. 따라서, 이를 개선하기 위하여, 상기 젤 폴리머 전해질의 두께를 얇게 하는 방법이 제안되었다. 하지만 이 경우 기계적 강도가 감소되고, 전지 제조 시에 양극과 음극이 단락되어 폴리머 전해질이 단락되는 문제가 발생하는 등 전지 성능 및 안전성 향상에 문제가 있다.That is, the gel polymer electrolyte has a disadvantage in that the conductivity of lithium ions is lower than that of a liquid electrolyte composed only of an electrolyte solution. Therefore, in order to improve this, a method of thinning the thickness of the gel polymer electrolyte has been proposed. However, in this case, there is a problem in improving battery performance and safety, such as a decrease in mechanical strength, a short circuit between the positive electrode and the negative electrode, and a short circuit in the polymer electrolyte.
따라서, 전지 안전성 및 전지 성능이 모두 개선된 젤 폴리머 전해질에 대한 개발이 필요한 실정이다. Accordingly, there is a need for development of a gel polymer electrolyte having improved battery safety and battery performance.
선행기술문헌Prior art literature
대한민국 특허공개공보 제10-2013-0058403호Republic of Korea Patent Publication No. 10-2013-0058403
본 발명에서 해결하고자 하는 과제는 우레탄, 아크릴레이트 및 실록산을 포함하는 올리고머로 이루어진 폴리머 네트워크를 포함하는 젤 폴리머 전해질을 제공함에 있다.The problem to be solved in the present invention is to provide a gel polymer electrolyte comprising a polymer network consisting of an oligomer comprising a urethane, acrylate and siloxane.
또한, 본 발명에서는 상기 젤 폴리머 전해질을 포함하는 리튬 이차전지를 제공함에 있다.In addition, the present invention provides a lithium secondary battery including the gel polymer electrolyte.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예는In order to solve the above problems, an embodiment of the present invention
폴리머 네트워크; 및Polymer networks; And
상기 폴리머 네트워크 상에 함침되어 있는 전해액을 포함하며,An electrolyte impregnated on said polymer network,
상기 폴리머 네트워크는 적어도 하나 이상의 공중합성 아크릴레이트 또는 아크릴산을 포함하는 단량체로부터 유도된 단위 A, 우레탄을 포함하는 단위 C, 및 실록산을 포함하는 단위 E를 포함하는 올리고머가 3차원 구조로 결합되어 형성된 것을 특징으로 하는 젤 폴리머 전해질을 제공한다.The polymer network is formed by combining an oligomer comprising a unit A derived from a monomer comprising at least one copolymerizable acrylate or an acrylic acid, a unit C including a urethane, and a unit E including a siloxane in a three-dimensional structure. A gel polymer electrolyte is provided.
또한, 본 발명의 일 실시예는In addition, an embodiment of the present invention
리튬염, Lithium Salt,
전해액 용매, Electrolyte solvent,
중합개시제, 및 Polymerization initiator, and
적어도 하나 이상의 공중합성 아크릴레이트 또는 아크릴산을 포함하는 단량체로부터 유도된 단위 A, 우레탄을 포함하는 단위 C, 및 실록산을 포함하는 단위 E를 포함하는 올리고머를 포함하는 젤 폴리머 전해질을 포함하는 젤 폴리머 전해질용 조성물을 제공한다.For a gel polymer electrolyte comprising a gel polymer electrolyte comprising a unit A derived from a monomer comprising at least one copolymerizable acrylate or acrylic acid, a unit C comprising urethane, and an oligomer comprising unit E comprising siloxane To provide a composition.
또한, 본 발명의 일 실시예는In addition, an embodiment of the present invention
리튬의 흡장·방출이 가능한 양극과 음극, 및 상기 양극과 음극 사이에 배치되는 젤 폴리머 전해질을 포함하며,A positive electrode and a negative electrode capable of occluding and releasing lithium, and a gel polymer electrolyte disposed between the positive electrode and the negative electrode,
상기 젤 폴리머 전해질로 본 발명의 젤 폴리머 전해질을 포함하는 리튬 이차전지를 제공한다.The gel polymer electrolyte provides a lithium secondary battery including the gel polymer electrolyte of the present invention.
즉, 본 발명의 여러 실시예는 다음과 같은 젤 폴리머 전해질 또는 리튬 이차전지를 제공한다.That is, various embodiments of the present invention provide a gel polymer electrolyte or a lithium secondary battery as follows.
(1) 폴리머 네트워크; 및 상기 폴리머 네트워크 상에 함침되어 있는 전해액을 포함하며, 상기 폴리머 네트워크는 적어도 하나 이상의 공중합성 아크릴레이트 또는 아크릴산을 포함하는 단량체로부터 유도된 단위 A, 우레탄을 포함하는 단위 C, 및 실록산을 포함하는 단위 E를 포함하는 제1 올리고머가 3차원 구조로 결합되어 형성된 젤 폴리머 전해질.(1) a polymer network; And an electrolyte impregnated on the polymer network, wherein the polymer network comprises unit A derived from monomers comprising at least one copolymerizable acrylate or acrylic acid, unit C comprising urethane, and unit comprising siloxane. Gel polymer electrolyte formed by combining the first oligomer comprising E in a three-dimensional structure.
(2) 상기 제1 올리고머는 하기 화학식 1로 표시되는 상기 (1)에 기재된 젤 폴리머 전해질: (2) The gel polymer electrolyte according to the above (1), wherein the first oligomer is represented by the following general formula (1):
[화학식 1][Formula 1]
A-[C-E]k-C-AA- [CE] k -CA
상기 식에서, Where
k는 1 내지 200의 정수이다.k is an integer of 1 to 200.
(3) 상기 단위 A는 하이드록시메틸 (메타)아크릴레이트, 및 하이드록시에틸 (메타)아크릴레이트로 이루어진 군으로부터 선택된 적어도 하나의 화합물로부터 유도된 단위, 또는 하기 화학식 (i)로 표시되는 화합물로부터 유도된 단위인 상기 (1) 내지 (2) 중 어느 한 항에 기재된 젤 폴리머 전해질:(3) The unit A is a unit derived from at least one compound selected from the group consisting of hydroxymethyl (meth) acrylate, and hydroxyethyl (meth) acrylate, or a compound represented by the following formula (i) The gel polymer electrolyte according to any one of (1) to (2) above, which is a derived unit:
Figure PCTKR2015010472-appb-I000001
(i).
Figure PCTKR2015010472-appb-I000001
(i).
(4) 상기 단위 C는 하기 화학식 2a 또는 화학식 2b로 표시되는 단위를 포함하는 상기 (1) 내지 (3) 중 어느 한 항에 기재된 젤 폴리머 전해질:(4) The gel polymer electrolyte according to any one of (1) to (3), wherein the unit C comprises a unit represented by the following formula (2a) or (2b):
[화학식 2a][Formula 2a]
Figure PCTKR2015010472-appb-I000002
Figure PCTKR2015010472-appb-I000002
[화학식 2b][Formula 2b]
Figure PCTKR2015010472-appb-I000003
Figure PCTKR2015010472-appb-I000003
상기 식에서,Where
R'은 탄소수 1 내지 10의 선형 또는 비선형 알킬렌기, 탄소수 3 내지 10의 치환 또는 비치환된 사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 바이사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 아릴렌기, 탄소수 6 내지 20의 치환 또는 비치환된 바이아릴렌기, 탄소수 6 내지 20의 치환 또는 비치환된 아릴렌기, 나프탈렌기 및 안트라센기로 이루어진 군으로부터 선택된 적어도 하나이다. R 'is a linear or nonlinear alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 10 carbon atoms, a substituted or unsubstituted bicycloalkylene group having 6 to 20 carbon atoms, or a substituted or substituted carbon group having 6 to 20 carbon atoms or At least one selected from the group consisting of an unsubstituted arylene group, a substituted or unsubstituted biarylene group having 6 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, a naphthalene group and an anthracene group.
(5) 상기 R'은 하기 그룹으로 이루어진 군으로부터 선택된 하나의 화합물인 상기 (1) 내지 (4) 중 어느 한 항에 기재된 젤 폴리머 전해질:(5) The gel polymer electrolyte according to any one of (1) to (4), wherein R 'is one compound selected from the group consisting of:
Figure PCTKR2015010472-appb-I000004
(R-i)
Figure PCTKR2015010472-appb-I000004
(Ri)
Figure PCTKR2015010472-appb-I000005
(R-ii)
Figure PCTKR2015010472-appb-I000005
(R-ii)
Figure PCTKR2015010472-appb-I000006
(R-iii)
Figure PCTKR2015010472-appb-I000006
(R-iii)
Figure PCTKR2015010472-appb-I000007
(R-iv)
Figure PCTKR2015010472-appb-I000007
(R-iv)
Figure PCTKR2015010472-appb-I000008
(R-v)
Figure PCTKR2015010472-appb-I000008
(Rv)
Figure PCTKR2015010472-appb-I000009
(R-vi)
Figure PCTKR2015010472-appb-I000009
(R-vi)
Figure PCTKR2015010472-appb-I000010
(R-vii)
Figure PCTKR2015010472-appb-I000010
(R-vii)
Figure PCTKR2015010472-appb-I000011
(R-viii)
Figure PCTKR2015010472-appb-I000011
(R-viii)
(6) 상기 단위 E는 하기 화학식 3으로 표시되는 단위를 포함하는 상기 (1) 내지 (5) 중 어느 한 항에 기재된 젤 폴리머 전해질:(6) The gel polymer electrolyte according to any one of (1) to (5), wherein the unit E includes a unit represented by the following formula (3):
[화학식 3][Formula 3]
Figure PCTKR2015010472-appb-I000012
Figure PCTKR2015010472-appb-I000012
상기 식에서,Where
R1 및 R2는 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이고,R 1 and R 2 are linear or nonlinear alkylene groups having 1 to 5 carbon atoms,
R3 및 R4는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기 및 페닐기로 이루어진 군으로부터 선택된 하나이며,R 3 and R 4 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, and a phenyl group,
R5 내지 R10는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기, 페닐기, 및 불소로 이루어진 군으로부터 선택된 하나이고,R 5 to R 10 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, a phenyl group, and fluorine,
o는 0 또는 1의 정수이고,o is an integer of 0 or 1,
p는 0 또는 1 내지 400의 정수이고,p is 0 or an integer from 1 to 400,
r은 1 내지 400의 정수이며,r is an integer from 1 to 400,
상기 p:r의 몰비는 0:100 내지 80:20이다.The molar ratio of p: r is 0: 100 to 80:20.
(7) 상기 단위 E는 하기 화학식 3a 내지 3g로 이루어진 군으로부터 선택된 적어도 하나의 화합물을 포함하는 상기 (1) 내지 (6) 중 어느 한 항에 기재된 젤 폴리머 전해질:(7) The gel polymer electrolyte according to any one of (1) to (6), wherein the unit E comprises at least one compound selected from the group consisting of the following Chemical Formulas 3a to 3g:
[화학식 3a] [Formula 3a]
Figure PCTKR2015010472-appb-I000013
Figure PCTKR2015010472-appb-I000013
[화학식 3b][Formula 3b]
Figure PCTKR2015010472-appb-I000014
Figure PCTKR2015010472-appb-I000014
[화학식 3c][Formula 3c]
Figure PCTKR2015010472-appb-I000015
Figure PCTKR2015010472-appb-I000015
[화학식 3d][Formula 3d]
Figure PCTKR2015010472-appb-I000016
Figure PCTKR2015010472-appb-I000016
[화학식 3e][Formula 3e]
Figure PCTKR2015010472-appb-I000017
Figure PCTKR2015010472-appb-I000017
[화학식 3f][Formula 3f]
Figure PCTKR2015010472-appb-I000018
Figure PCTKR2015010472-appb-I000018
[화학식 3g][Formula 3g]
Figure PCTKR2015010472-appb-I000019
Figure PCTKR2015010472-appb-I000019
상기 식에서,Where
p는 0 또는 1 내지 400의 정수이고,p is 0 or an integer from 1 to 400,
r은 1 내지 400의 정수이며,r is an integer from 1 to 400,
상기 p:r의 몰비는 0:100 내지 80:20이다.The molar ratio of p: r is 0: 100 to 80:20.
(8) 상기 제1 올리고머 1몰 중에서 단위 A는 1몰 또는 2몰이고,(8) Unit 1 is 1 mol or 2 mol in 1 mol of the first oligomer,
상기 단위 C : 단위 E의 몰비는 1.005:1 내지 2:1인 상기 (1) 내지 (7) 중 어느 한 항에 기재된 젤 폴리머 전해질.The gel polymer electrolyte according to any one of (1) to (7), wherein the molar ratio of Unit C: E is 1.005: 1 to 2: 1.
(9) 상기 제1 올리고머는 선택적으로 하기 화학식 4로 표시되는 단위 B 및 하기 화학식 5로 표시되는 단위 D로 이루어진 군으로부터 선택된 적어도 하나 이상의 단위를 더 포함하는 상기 (1) 내지 (8) 중 어느 한 항에 기재된 젤 폴리머 전해질.(9) Any of the above (1) to (8), wherein the first oligomer optionally further includes at least one or more units selected from the group consisting of unit B represented by the following formula (4) and unit D represented by the following formula (5): The gel polymer electrolyte according to claim 1.
[화학식 4][Formula 4]
*-CO-R''-O-** -CO-R ''-O- *
[화학식 5][Formula 5]
*-O-[R'''-O]m-** -O- [R '''-O] m- *
상기 식에서, Where
R''는 탄소수 1 내지 10의 치환 또는 비치환된 선형의 알킬렌기, 또는 탄소수 1 내지 10의 치환 또는 비치환된 비선형의 알킬렌기이고,R '' is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
R'''는 탄소수 1 내지 10의 치환 또는 비치환된 선형의 알킬렌기, 또는 탄소수 1 내지 10의 치환 또는 비치환된 비선형의 알킬렌기이고,R '' 'is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
m은 1 내지 30의 정수이다.m is an integer of 1-30.
(10) 상기 단위 B는 하기 그룹으로부터 이루어진 군으로부터 선택된 적어도 하나의 화합물인 상기 (1) 내지 (9) 중 어느 한 항에 기재된 젤 폴리머 전해질.(10) The gel polymer electrolyte according to any one of (1) to (9), wherein the unit B is at least one compound selected from the group consisting of the following groups.
*-CO-CH2CH2-O-* (B-i)* -CO-CH 2 CH 2 -O- * (Bi)
*-CO-CHCH3CH2-O-* (B-ii)* -CO-CHCH 3 CH 2 -O- * (B-ii)
*-CO-CH2CH2CH2CH2 CH2-O-* (B-iii)* -CO-CH 2 CH 2 CH 2 CH 2 CH 2 -O- * (B-iii)
*-CO-CHCH3CH2CH2-O-* (B-iv)* -CO-CHCH 3 CH 2 CH 2 -O- * (B-iv)
(11) 상기 단위 D는 하기 그룹으로부터 이루어진 군으로부터 선택된 적어도 하나의 화합물인 상기 (1) 내지 (10) 중 어느 한 항에 기재된 젤 폴리머 전해질.(11) The gel polymer electrolyte according to any one of (1) to (10), wherein the unit D is at least one compound selected from the group consisting of:
*-O-CH2CH2-O-* (D-i)* -O-CH 2 CH 2 -O- * (Di)
*-O-CHCH3CH2-O-* (D-ii)* -O-CHCH 3 CH 2 -O- * (D-ii)
(12) 상기 제1 올리고머는 하기 화학식 6a 내지 6c로 이루어진 군으로부터 선택된 적어도 하나로 표시되는 상기 (1) 내지 (11) 중 어느 한 항에 기재된 젤 폴리머 전해질.(12) The gel polymer electrolyte according to any one of (1) to (11), wherein the first oligomer is represented by at least one selected from the group consisting of the following Chemical Formulas 6a to 6c.
[화학식 6a][Formula 6a]
[A]s-[B]n-[C-E-]k-C-[B]n-A[A] s- [B] n- [CE-] k -C- [B] n -A
[화학식 6b][Formula 6b]
[A]s-[C-D-E-D]k-C-A[A] s- [CDED] k -CA
[화학식 6c][Formula 6c]
[A]s-[B]n-[C-D-E-D]k-C-[B]n-A.[A] s- [B] n- [CDED] k -C- [B] n -A.
상기 식에서, Where
n은 0 또는 1 내지 30의 정수이고, n is 0 or an integer from 1 to 30,
k는 1 내지 200의 정수이며, k is an integer from 1 to 200,
s는 0 또는 1이다.s is 0 or 1.
(13) 상기 제1 올리고머 1몰 중에서 상기 단위 A는 1몰 또는 2몰이고, (13) In 1 mol of the first oligomer, the unit A is 1 mol or 2 mol,
상기 단위 B : 단위 C : 단위 D : 단위 E의 몰비는 0 내지 35 : 2 내지 201 : 0 내지 35 : 1 내지 200 (이때, 단위 B 및 D는 동시에 0은 아니다)인 상기 (1) 내지 (12) 중 어느 한 항에 기재된 젤 폴리머 전해질.The molar ratio of the unit B: unit C: unit D: unit E is 0 to 35: 2 to 201: 0 to 35: 1 to 200 (wherein units B and D are not 0 at the same time); The gel polymer electrolyte according to any one of 12).
(14) 상기 제1 올리고머는 하기 화학식 7a 내지 7d로 이루어진 군으로부터 선택된 적어도 하나의 화합물인 상기 (1) 내지 (13) 중 어느 한 항에 기재된 젤 폴리머 전해질.(14) The gel polymer electrolyte according to any one of (1) to (13), wherein the first oligomer is at least one compound selected from the group consisting of Formulas 7a to 7d.
[화학식 7a][Formula 7a]
Figure PCTKR2015010472-appb-I000020
Figure PCTKR2015010472-appb-I000020
[화학식 7b][Formula 7b]
Figure PCTKR2015010472-appb-I000021
Figure PCTKR2015010472-appb-I000021
[화학식7c][Formula 7c]
[화학식 7d][Formula 7d]
Figure PCTKR2015010472-appb-I000023
Figure PCTKR2015010472-appb-I000023
상기 식에서,Where
k는 1 내지 200의 정수이고,k is an integer from 1 to 200,
n은 1 내지 30의 정수이고, n is an integer from 1 to 30,
m은 1 내지 30의 정수이며,m is an integer from 1 to 30,
p는 1 내지 400의 정수이고,p is an integer from 1 to 400,
r은 1 내지 400의 정수이며,r is an integer from 1 to 400,
상기 p:r의 몰비는 0:100 내지 80:20이다.The molar ratio of p: r is 0: 100 to 80:20.
(15) 상기 젤 폴리머 전해질은 메틸 아크릴레이트, 메틸 메타크릴레이트, 에틸 아크릴레이트, 에틸 메타크릴레이트, 프로필 아크릴레이트, 프로필 메타크릴레이트, 부틸 아크릴레이트, 부틸 메타크릴레이트, 헥실 아크릴레이트, 헥실 메타크릴레이트, 에틸헥실 아크릴레이트, 에틸헥실 메타크릴레이트, 2,2,2-트리플루오로에틸 아크릴레이트, 2,2,2-트리플루오로에틸 메타크릴레이트, 2,2,3,3-테트라플루오로프로필 아크릴레이트, 및 2,2,3,3-테트라플루오로프로필 메타크릴레이트로 이루어진 군으로부터 선택된 적어도 하나로부터 유도된 단위를 포함하는 제2 올리고머를 더 포함하는 상기 (1) 내지 (14) 중 어느 한 항에 기재된 젤 폴리머 전해질.(15) The gel polymer electrolyte is methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl methacrylate, hexyl acrylate, hexyl meta Acrylate, ethylhexyl acrylate, ethylhexyl methacrylate, 2,2,2-trifluoroethyl acrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,3,3-tetra (1) to (14), further comprising a second oligomer comprising a unit derived from fluoropropyl acrylate, and at least one selected from the group consisting of 2,2,3,3-tetrafluoropropyl methacrylate. The gel polymer electrolyte as described in any one of).
(16) 상기 제2 올리고머는 제1 올리고머의 전체 함량을 기준으로 50중량% 이하로 포함되는 상기 (1) 내지 (15) 중 어느 한 항에 기재된 젤 폴리머 전해질.(16) The gel polymer electrolyte according to any one of (1) to (15), wherein the second oligomer is contained in an amount of 50% by weight or less based on the total content of the first oligomer.
(17) 상기 폴리머 네트워크는 폴리머 네트워크 상에 무기물 입자를 추가로 함유하는 상기 (1) 내지 (16) 중 어느 한 항에 기재된 젤 폴리머 전해질.(17) The gel polymer electrolyte according to any one of (1) to (16), wherein the polymer network further contains inorganic particles on the polymer network.
(18) 상기 제1 올리고머의 중량평균분자량은 1,000 내지 100,000인 것을 상기 (1) 내지 (17) 중 어느 한 항에 기재된 젤 폴리머 전해질.(18) The gel polymer electrolyte according to any one of (1) to (17), wherein the weight average molecular weight of the first oligomer is 1,000 to 100,000.
(19) 상기 젤 폴리머 전해질은 25℃(Celsius) 온도에서 1.0x10-4S/cm 내지 2.0x10-2S/cm의 Li+ 이온전도도를 가지는 상기 (1) 내지 (18) 중 어느 한 항에 기재된 젤 폴리머 전해질.(19) The gel polymer electrolyte according to any one of (1) to (18), wherein the gel polymer electrolyte has Li + ion conductivity of 1.0 × 10 −4 S / cm to 2.0 × 10 −2 S / cm at a temperature of 25 ° C. (Celsius). Described gel polymer electrolyte.
(20) 상기 젤 폴리머 전해질은 25℃ 온도에서 0.3 이상의 Li+ 이온 이동계수를 가지는 상기 (1) 내지 (19) 중 어느 한 항에 기재된 젤 폴리머 전해질.(20) The gel polymer electrolyte according to any one of (1) to (19), wherein the gel polymer electrolyte has a Li + ion transfer coefficient of 0.3 or more at a temperature of 25 ° C.
(21) 상기 젤 폴리머 전해질은 25℃ 온도에서 젤 함량이 1 중량% 이상인 상기 (1) 내지 (20) 중 어느 한 항에 기재된 젤 폴리머 전해질.(21) The gel polymer electrolyte according to any one of (1) to (20), wherein the gel polymer electrolyte has a gel content of 1% by weight or more at a temperature of 25 ° C.
(22) 상기 젤 폴리머 전해질은 25℃ 온도에서 반응성 올리고머 전체 투입량 대비 미반응 올리고머의 함량이 20% 이하인 상기 (1) 내지 (21) 중 어느 한 항에 기재된 젤 폴리머 전해질.(22) The gel polymer electrolyte according to any one of (1) to (21), wherein the gel polymer electrolyte has an unreacted oligomer content of 20% or less relative to the total amount of reactive oligomers charged at 25 ° C.
(23) 적어도 하나 이상의 공중합성 아크릴레이트 또는 아크릴산을 포함하는 단량체로부터 유도된 단위 A; 우레탄을 포함하는 단위 C; 및 실록산을 포함하는 단위 E를 포함하는 젤 폴리머 전해질.(23) Unit A derived from monomers comprising at least one copolymerizable acrylate or acrylic acid; Unit C comprising urethane; And unit E comprising siloxane.
(24) 실록산을 포함하는 단위를 함유하는 올리고머를 포함하며, (24) comprises oligomers containing units comprising siloxanes,
25℃ 온도에서 1.0x10-4S/cm 내지 2.0x10-2S/cm의 Li+ 이온전도도와,Li + ion conductivity of 1.0x10 -4 S / cm to 2.0x10 -2 S / cm at a temperature of 25 ℃,
0.3 이상의 Li+ 이온 이동계수, 및 반응성 올리고머 전체 투입량 대비 미반응 올리고머의 함량이 20% 이하인 젤 폴리머 전해질.A gel polymer electrolyte having a Li + ion transfer coefficient of 0.3 or more and a content of unreacted oligomers of 20% or less relative to the total amount of reactive oligomers.
(25) 리튬염, 전해액 용매, 중합개시제, 및 적어도 하나 이상의 공중합성 아크릴레이트 또는 아크릴산을 포함하는 단량체로부터 유도된 단위 A, 우레탄을 포함하는 단위 C, 및 실록산을 포함하는 단위 E를 포함하는 제1 올리고머를 포함하는 상기 (1) 내지 (23) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물.(25) an agent comprising unit A derived from a lithium salt, an electrolyte solvent, a polymerization initiator, and a monomer comprising at least one copolymerizable acrylate or acrylic acid, a unit C comprising urethane, and a unit E comprising siloxane The composition for gel polymer electrolytes in any one of said (1)-(23) containing 1 oligomer.
(26) 상기 제1 올리고머는 젤 폴리머 전해질용 조성물 전체 중량에 대해 0.5 중량% 내지 20 중량%로 포함되는 상기 (25) 항에 기재된 젤 폴리머 전해질용 조성물.(26) The composition for gel polymer electrolyte according to the above (25), wherein the first oligomer is contained in an amount of 0.5% by weight to 20% by weight based on the total weight of the composition for gel polymer electrolyte.
(27) 상기 제1 올리고머는 하기 화학식 1로 표시되는 상기 (25) 내지 (26) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물:(27) The composition for a gel polymer electrolyte according to any one of (25) to (26), wherein the first oligomer is represented by the following general formula (1):
[화학식 1][Formula 1]
A-[C-E]k-C-AA- [CE] k -CA
상기 식에서, Where
k는 1 내지 200의 정수이다.k is an integer of 1 to 200.
(28) 상기 단위 A는 하이드록시메틸 (메타)아크릴레이트, 및 하이드록시에틸 (메타)아크릴레이트로 이루어진 군으로부터 선택된 적어도 하나의 화합물로부터 유도된 단위, 또는 하기 화학식 (i)로 표시되는 단위인 상기 (25) 내지 (27) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물:(28) The unit A is a unit derived from at least one compound selected from the group consisting of hydroxymethyl (meth) acrylate and hydroxyethyl (meth) acrylate, or a unit represented by the following formula (i) The composition for gel polymer electrolytes in any one of said (25)-(27):
Figure PCTKR2015010472-appb-I000024
(i).
Figure PCTKR2015010472-appb-I000024
(i).
(29) 상기 단위 C는 하기 화학식 2a 또는 화학식 2b로 표시되는 단위인 상기 (25) 내지 (28) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물:(29) The composition for gel polymer electrolyte according to any one of (25) to (28), wherein Unit C is a unit represented by the following Chemical Formula 2a or Chemical Formula 2b:
[화학식 2a][Formula 2a]
Figure PCTKR2015010472-appb-I000025
Figure PCTKR2015010472-appb-I000025
[화학식 2b][Formula 2b]
Figure PCTKR2015010472-appb-I000026
Figure PCTKR2015010472-appb-I000026
상기 식에서,Where
R'은 탄소수 1 내지 10의 선형 또는 비선형 알킬렌기, 탄소수 3 내지 10의 치환 또는 비치환된 사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 바이사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 아릴렌기, 탄소수 6 내지 20의 치환 또는 비치환된 바이아릴렌기, 탄소수 6 내지 20의 치환 또는 비치환된 아릴렌기, 나프탈렌기 및 안트라센기로 이루어진 군으로부터 선택된 적어도 하나이다. R 'is a linear or nonlinear alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 10 carbon atoms, a substituted or unsubstituted bicycloalkylene group having 6 to 20 carbon atoms, or a substituted or substituted carbon group having 6 to 20 carbon atoms or At least one selected from the group consisting of an unsubstituted arylene group, a substituted or unsubstituted biarylene group having 6 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, a naphthalene group and an anthracene group.
(30) 상기 단위 E는 하기 화학식 3으로 표시되는 단위인 상기 (25) 내지 (29) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물:(30) The composition for a gel polymer electrolyte according to any one of (25) to (29), wherein the unit E is a unit represented by the following formula (3):
[화학식 3][Formula 3]
Figure PCTKR2015010472-appb-I000027
Figure PCTKR2015010472-appb-I000027
상기 식에서,Where
R1 및 R2는 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이고,R 1 and R 2 are linear or nonlinear alkylene groups having 1 to 5 carbon atoms,
R3 및 R4는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기 및 페닐기로 이루어진 군으로부터 선택된 하나이며,R 3 and R 4 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, and a phenyl group,
R5 내지 R10는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기, 페닐기, 및 불소로 이루어진 군으로부터 선택된 하나이고,R 5 to R 10 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, a phenyl group, and fluorine,
o는 0 또는 1의 정수이고,o is an integer of 0 or 1,
p는 0 또는 1 내지 400의 정수이고,p is 0 or an integer from 1 to 400,
r은 1 내지 400의 정수이며,r is an integer from 1 to 400,
상기 p:r의 몰비는 0:100 내지 80:20이다.The molar ratio of p: r is 0: 100 to 80:20.
(31) 상기 제1 올리고머 1몰 중에서 단위 A는 1몰 또는 2몰이고, 상기 단위 C : 단위 E의 몰비는 1.005:1 내지 2:1인 상기 (25) 내지 (30) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물.(31) In any one of (25) to (30), wherein unit A is 1 mol or 2 mol in 1 mol of the first oligomer, and the molar ratio of unit C: unit E is 1.005: 1 to 2: 1. The composition for gel polymer electrolytes described.
(32) 상기 제1 올리고머는 선택적으로 하기 화학식 4로 표시되는 단위 B 및 하기 화학식 5로 표시되는 단위 D로 이루어진 군으로부터 선택된 적어도 하나 이상의 단위를 더 포함하는 상기 (25) 내지 (31) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물.(32) Any of (25) to (31), wherein the first oligomer optionally further includes at least one or more units selected from the group consisting of unit B represented by the following formula (4) and unit D represented by the following formula (5): The composition for gel polymer electrolytes of any one of Claims.
[화학식 4][Formula 4]
*-CO-R''-O-** -CO-R ''-O- *
[화학식 5][Formula 5]
*-O-[R'''-O]m-** -O- [R '''-O] m- *
상기 식에서, Where
R''는 탄소수 1 내지 10의 치환 또는 비치환된 선형의 알킬렌기, 또는 탄소수 1 내지 10의 치환 또는 비치환된 비선형의 알킬렌기이고,R '' is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
R'''는 탄소수 1 내지 10의 치환 또는 비치환된 선형의 알킬렌기, 또는 탄소수 1 내지 10의 치환 또는 비치환된 비선형의 알킬렌기이고,R '' 'is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
m은 1 내지 30의 정수이다.m is an integer of 1-30.
(33) 상기 올리고머는 하기 화학식 6a 내지 6c로 이루어진 군으로부터 선택된 적어도 하나로 표시되는 상기 (25) 내지 (32) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물.(33) The composition for a gel polymer electrolyte according to any one of (25) to (32), wherein the oligomer is represented by at least one selected from the group consisting of the following Chemical Formulas 6a to 6c.
[화학식 6a][Formula 6a]
[A]s-[B]n-[C-E-]k-C-[B]n-A[A] s- [B] n- [CE-] k -C- [B] n -A
[화학식 6b][Formula 6b]
[A]s-[C-D-E-D]k-C-A[A] s- [CDED] k -CA
[화학식 6c][Formula 6c]
[A]s-[B]n-[C-D-E-D]k-C-[B]n-A.[A] s- [B] n- [CDED] k -C- [B] n -A.
상기 식에서, Where
n은 0 또는 1 내지 30의 정수이고, n is 0 or an integer from 1 to 30,
k는 1 내지 200의 정수이며, k is an integer from 1 to 200,
s는 0 또는 1이다.s is 0 or 1.
(34) 상기 올리고머 1몰 중에서 단위 A는 1몰 또는 2몰이고, 단위 B : 단위 C : 단위 D : 단위 E의 몰비는 0 내지 35 : 2 내지 201 : 0 내지 35 : 1 내지 200 (이때, 단위 B 및 D는 동시에 0은 아니다)인 상기 (25) 내지 (33) 중 어느 한 항에 기재된 젤 폴리머 전해질.(34) In 1 mol of the oligomer, unit A is 1 mol or 2 mol, and the molar ratio of unit B: unit C: unit D: unit E is 0 to 35: 2 to 201: 0 to 35: 1 to 200 (wherein Unit gel and electrolyte according to any one of (25) to (33), wherein units B and D are not 0 at the same time.
(35) 상기 제1 올리고머는 하기 화학식 7a 내지 7d로 이루어진 군으로부터 선택된 적어도 하나의 화합물인 상기 (25) 내지 (34) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물.(35) The composition for a gel polymer electrolyte according to any one of (25) to (34), wherein the first oligomer is at least one compound selected from the group consisting of the following Formulas 7a to 7d.
[화학식 7a][Formula 7a]
Figure PCTKR2015010472-appb-I000028
Figure PCTKR2015010472-appb-I000028
[화학식 7b][Formula 7b]
Figure PCTKR2015010472-appb-I000029
Figure PCTKR2015010472-appb-I000029
[화학식7c][Formula 7c]
Figure PCTKR2015010472-appb-I000030
Figure PCTKR2015010472-appb-I000030
[화학식 7d][Formula 7d]
Figure PCTKR2015010472-appb-I000031
Figure PCTKR2015010472-appb-I000031
상기 식에서,Where
k는 1 내지 200의 정수이고,k is an integer from 1 to 200,
n은 1 내지 30의 정수이고, n is an integer from 1 to 30,
m은 1 내지 30의 정수이며,m is an integer from 1 to 30,
p는 1 내지 400의 정수이고,p is an integer from 1 to 400,
r은 1 내지 400의 정수이며,r is an integer from 1 to 400,
상기 p:r의 몰비는 0:100 내지 80:20이다.The molar ratio of p: r is 0: 100 to 80:20.
(36) 상기 폴리머 네트워크는 폴리머 네트워크 상에 무기물 입자를 추가로 함유하는 상기 (25) 내지 (35) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물.(36) The composition for gel polymer electrolyte according to any one of (25) to (35), wherein the polymer network further contains inorganic particles on the polymer network.
(37) 상기 올리고머의 중량평균분자량은 1,000 내지 100,000인 상기 (25) 내지 (36) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물.(37) The composition for gel polymer electrolyte according to any one of (25) to (36), wherein the weight average molecular weight of the oligomer is 1,000 to 100,000.
(38) 상기 중합개시제는벤조일 퍼옥사이드, 아세틸 퍼옥사이드, 디라우릴 퍼옥사이드, 디-tert-부틸 퍼옥사이드, t-부틸 퍼옥시-2-에틸-헥사노에이트, 큐밀 하이드로퍼옥사이드, 하이드로겐 퍼옥사이드, 2,2'-아조비스(2-시아노부탄), 2,2'-아조비스(메틸부티로니트릴), AIBN(2,2'-Azobis(iso-butyronitrile)) 및 AMVN(2,2'-Azobisdimethyl-Valeronitrile)로 이루어진 군으로부터 선택되는 단일물 또는 2종 이상의 혼합물인 상기 (25) 내지 (37) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물.(38) The polymerization initiator is benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert- butyl peroxide, t- butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide, hydrogen per Oxides, 2,2'-azobis (2-cyanobutane), 2,2'-azobis (methylbutyronitrile), AIBN (2,2'-Azobis (iso-butyronitrile)) and AMVN (2, 2'-Azobisdimethyl-Valeronitrile) The composition for gel polymer electrolytes in any one of said (25)-(37) which is a single substance or mixture of 2 or more types chosen from the group which consists of 2'-Azobisdimethyl-Valeronitrile).
(39) 상기 중합개시제는 올리고머 전체 함량에 대해 0.01 중량% 내지 2 중량%로 포함되는 상기 (25) 내지 (38) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물.(39) The composition for gel polymer electrolyte according to any one of (25) to (38), wherein the polymerization initiator is contained in an amount of 0.01% by weight to 2% by weight based on the total content of the oligomer.
(40) 상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3, LiC4BO8, LiTFSI, LiFSI, 및 LiClO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 상기 (25) 내지 (39) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물.(40) The lithium salt may be LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC ( The gel according to any one of (25) to (39), which is any one selected from the group consisting of CF 3 SO 2 ) 3 , LiC 4 BO 8 , LiTFSI, LiFSI, and LiClO 4 , or a mixture of two or more thereof. Polymer electrolyte composition.
(41) 상기 리튬염은 상기 중합개시제와 올리고머의 전체 함량에 대해 10 내지 50 중량%를 포함하는 상기 (25) 내지 (40) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물.(41) The composition for gel polymer electrolyte according to any one of (25) to (40), wherein the lithium salt contains 10 to 50% by weight based on the total content of the polymerization initiator and the oligomer.
(42) 상기 전해액 용매는 선형 카보네이트, 환형 카보네이트 또는 이들의 조합인 상기 (25) 내지 (41) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물.(42) The composition for gel polymer electrolyte according to any one of (25) to (41), wherein the electrolyte solvent is a linear carbonate, a cyclic carbonate, or a combination thereof.
(43) 상기 선형 카보네이트는 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 에틸메틸 카보네이트, 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하고, 상기 환형 카보네이트는 에틸렌 카보네이트, 프로필렌 카보네이트, 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 상기 (25) 내지 (42) 중 어느 한 항에 기재된 젤 폴리머 전해질용 조성물.(43) The linear carbonate includes any one or a mixture of two or more selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylmethyl carbonate, methylpropyl carbonate and ethylpropyl carbonate, wherein the cyclic Carbonates are ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, and halides thereof The composition for gel polymer electrolytes in any one of said (25)-(42) containing any 1 or 2 or more types of these selected from the group which consists of these.
(44) 리튬의 흡장·방출이 가능한 양극과 음극, 및 상기 양극과 음극 사이에 배치되는 폴리머 전해질을 포함하며, 상기 폴리머 전해질은 상기 (1) 내지 (22) 중 어느 한 항에 기재된 젤 폴리머 전해질을 포함하는 리튬 이차전지.(44) a positive electrode and a negative electrode capable of occluding and releasing lithium, and a polymer electrolyte disposed between the positive electrode and the negative electrode, wherein the polymer electrolyte is a gel polymer electrolyte according to any one of (1) to (22). Lithium secondary battery comprising a.
(45) 상기 리튬 이차전지의 충전 전압은 2.5V 내지 5.0V인 상기 (44) 항에 기재된 리튬 이차전지.(45) The lithium secondary battery according to the above (44), wherein the charging voltage of the lithium secondary battery is 2.5V to 5.0V.
(46) 제1전극, 제2전극, 전기 변색 물질 및 상기 (1) 내지 (22) 중 어느 한 항에 기재된 젤 폴리머 전해질을 포함하는 전기 변색 소자.(46) An electrochromic device comprising a first electrode, a second electrode, an electrochromic material and the gel polymer electrolyte according to any one of (1) to (22).
본 발명의 젤 폴리머 전해질은 우레탄, 아크릴레이트 및 실록산을 포함하는 올리고머로 이루어진 폴리머 네트워크를 포함함으로써, 이온전도도와 함께 기계적 강도를 향상시킬 수 있다. 따라서, 및 수명 특성 및 용량 특성이 향상된 리튬 이차전지를 제조할 수 있다. 뿐만 아니라, 본 발명의 겔 폴리머 전해질의 경우, 수계 및 비수계 음극 시스템에 모두 사용 가능하다는 장점이 있다. The gel polymer electrolyte of the present invention includes a polymer network composed of an oligomer including urethane, acrylate, and siloxane, thereby improving mechanical strength together with ionic conductivity. Therefore, it is possible to manufacture a lithium secondary battery with improved lifetime characteristics and capacity characteristics. In addition, the gel polymer electrolyte of the present invention has the advantage that it can be used in both aqueous and non-aqueous cathode systems.
도 1은 실험예 4에 따른 충,방전 테스트 결과를 나타낸 그래프이다.1 is a graph showing the charge and discharge test results according to Experimental Example 4.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
한편, 본 발명에서 특별한 언급이 없는 한 " * "는 동일하거나, 상이한 원자 또는 화학식의 말단부 간의 연결된 부분을 의미한다. On the other hand, "*" means the moiety connected between the same or different atoms or terminal ends of the formula, unless otherwise specified in the present invention.
구체적으로 본 발명의 일 실시예는Specifically, one embodiment of the present invention
폴리머 네트워크; 및Polymer networks; And
상기 폴리머 네트워크 상에 함침되어 있는 전해액을 포함하며,An electrolyte impregnated on said polymer network,
상기 폴리머 네트워크는 적어도 하나 이상의 공중합성 아크릴레이트 또는 아크릴산을 포함하는 단량체로부터 유도된 단위 A, 우레탄을 포함하는 단위 C, 및 실록산을 포함하는 단위 E를 포함하는 제1 올리고머가 3차원 구조로 결합되어 형성된 것을 특징으로 하는 젤 폴리머 전해질을 제공한다.The polymer network comprises a first oligomer comprising unit A derived from a monomer comprising at least one copolymerizable acrylate or acrylic acid, a unit C comprising urethane, and a unit E comprising siloxane in a three-dimensional structure. It provides a gel polymer electrolyte, characterized in that formed.
일반적으로 젤형 폴리머 전해질은 안전성 및 기계적 물성이 고체 고분자 전해질에 비하여 취약할 뿐만 아니라, 액체 전해질과 비교하여 이온전도도 등이 낮다는 단점을 가지고 있다. 이에, 최근에는 올리고머와 같은 공중합체를 사용하여 기계적인 물성이나 이온 전도도를 향상시키려는 연구가 진행되고 있다. 그러나, 단량체를 단독으로 사용하는 경우에는 사이클 특성의 악화와 소망하는 수준의 기계적 특성을 얻을 수 없다는 문제점이 있다. 올리고머 화합물을 단독으로 사용하는 경우에는 물성의 조절이 용이하지 않을 뿐만 아니라, 전지 내에 균일한 고분자 형성이 어려워 최근 고용량 및 대형 전지에 적용함에 어려움이 있을 수 있다.In general, the gel polymer electrolyte is not only weak in safety and mechanical properties compared to the solid polymer electrolyte, but also has a disadvantage in that ionic conductivity is lower than that of the liquid electrolyte. Therefore, recently, studies to improve mechanical properties and ionic conductivity using copolymers such as oligomers have been conducted. However, when the monomers are used alone, there is a problem in that deterioration of cycle characteristics and a desired level of mechanical characteristics cannot be obtained. In the case of using the oligomeric compound alone, it is not easy to control the physical properties, it is difficult to form a homogeneous polymer in the battery may be difficult to apply to the recent high capacity and large cells.
본 발명에서는 전기화학적 특성과 기계적 특성을 상호 보완할 수 있는 물성을 가지는 화합물들을 중합하여 제조된 올리고머 화합물에 의해 형성된 폴리머 네트워크를 포함하는 젤 폴리머 전해질을 제공함으로써, 이러한 문제들을 한번에 해결하고자 하였다. The present invention has been made to solve these problems by providing a gel polymer electrolyte comprising a polymer network formed by oligomer compounds prepared by polymerizing compounds having physical properties that can complement the electrochemical and mechanical properties.
특히, 종래 아크릴레이트와 같은 극성의 말단기를 포함하는 겔 폴리머 전해질의 경우, PVDF와 같은 비수계 바인더를 사용하는 비수계 음극 시스템에 적용되었을 때는 큰 무리가 없었으나, CMC나 SBR 등의 수계 바인더를 사용하는 수계 음극 시스템에 사용하는 경우, 저항에 의해 이온전도도가 낮아지는 단점이 발생하고 있다. 이에, 본 발명에서는 상기 아크릴산을 포함하는 단량체로부터 유도된 단위 A, 우레탄을 포함하는 단위 C, 및 실록산을 포함하는 단위 E 등의 비율을 적절히 조절한 올리고머를 포함하는 젤 폴리머 전해질을 제공함으로써, 비수계 뿐만 아니라 수계 음극 시스템과 같은 어떠한 상황에서도 부반응의 발생을 방지하고, 저항을 낮춰 이온전도도를 향상시킬 수 있는 효과를 구현할 수 있다.In particular, in the case of gel polymer electrolytes containing terminal groups having the same polarity as the conventional acrylates, when applied to a non-aqueous negative electrode system using a non-aqueous binder such as PVDF, there is no great problem, but an aqueous binder such as CMC or SBR When used in an aqueous negative electrode system using the, there is a disadvantage that the ion conductivity is lowered by the resistance. Accordingly, the present invention provides a gel polymer electrolyte comprising an oligomer in which the ratio of the unit A derived from the monomer containing acrylic acid, the unit C containing urethane, the unit E containing siloxane, and the like is appropriately adjusted. In any situation, such as an aqueous system as well as an aqueous system, it is possible to prevent side reactions from occurring and lower the resistance to improve ion conductivity.
먼저, 본 발명의 젤 폴리머 전해질에 포함되는 상기 제1 올리고머는 하기 화학식 1로 표시될 수 있다.First, the first oligomer included in the gel polymer electrolyte of the present invention may be represented by the following Chemical Formula 1.
[화학식 1] [Formula 1]
A-[C-E]k-C-AA- [CE] k -CA
상기 식에서, Where
k는 1 내지 200의 정수이다.k is an integer of 1 to 200.
구체적으로, 본 발명의 젤 폴리머 전해질을 구현함에 있어서, 상기 올리고머를 이루는 단위 A는 올리고머 내에서 경화 반응을 통해 젤 고분자를 형성하는 역할을 수행하는 성분으로서, 분자 구조 내에 적어도 하나의 탄소-산소 단일 결합을 함유하는 단관능성 또는 다관능성 (메타)아크릴레이트 또는 아크릴산을 포함하는 단량체로부터 유도된 유도된 단위로서, 구체적으로 1 내지 20 개, 바람직하게는 1 내지 10 개의 아크릴레이트 또는 메타크릴레이트 구조를 포함하는 화합물일 수 있다.Specifically, in the implementation of the gel polymer electrolyte of the present invention, the unit A constituting the oligomer is a component that serves to form a gel polymer through a curing reaction in the oligomer, at least one carbon-oxygen single in the molecular structure As a derived unit derived from a monomer containing a mono- or polyfunctional (meth) acrylate containing a bond or acrylic acid, specifically 1 to 20, preferably 1 to 10 acrylate or methacrylate structures It may be a compound containing.
구체적으로, 상기 올리고머를 이루는 단위 A는 그 대표적인 예로 하이드록시메틸 (메타)아크릴레이트, 및 하이드록시에틸 (메타)아크릴레이트로 이루어진 군으로부터 선택된 적어도 하나의 화합물로부터 유도된 단위, 또는 하기 화학식 (i)로 표시되는 단위를 포함할 수 있다.Specifically, the unit A constituting the oligomer is a unit derived from at least one compound selected from the group consisting of hydroxymethyl (meth) acrylate, and hydroxyethyl (meth) acrylate as a representative example thereof, or It may include a unit represented by).
Figure PCTKR2015010472-appb-I000032
(i) .
Figure PCTKR2015010472-appb-I000032
(i).
또한, 본 발명의 젤 폴리머 전해질을 구현함에 있어서, 상기 올리고머를 이루는 상기 단위 C는 이온 전달 특성을 조절하고, 기계적 물성 및 밀착력을 조절하는 기능을 부여하기 위한 성분으로서, 구체적으로 염의 음이온을 고정화하고, 고분자의 유연성을 확보할 수 있도록 분자 내에 단단한(rigid) 구조를 형성하기 위해 필요한 단위 구조이다. In addition, in the implementation of the gel polymer electrolyte of the present invention, the unit C constituting the oligomer is a component for imparting a function of adjusting the ion transport characteristics, and controlling the mechanical properties and adhesion, specifically, to immobilize the anion of the salt It is a unit structure necessary to form a rigid structure in a molecule so as to secure the flexibility of the polymer.
구체적으로 상기 단위 C는 하기 화학식 2a 또는 화학식 2b의 화합물로 표시될 수 있다.Specifically, the unit C may be represented by the compound of Formula 2a or Formula 2b.
[화학식 2a][Formula 2a]
Figure PCTKR2015010472-appb-I000033
Figure PCTKR2015010472-appb-I000033
[화학식 2b][Formula 2b]
Figure PCTKR2015010472-appb-I000034
Figure PCTKR2015010472-appb-I000034
상기 식에서,Where
R'은 탄소수 1 내지 10의 선형 또는 비선형 알킬렌기, 탄소수 3 내지 10의 치환 또는 비치환된 사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 바이사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 아릴렌기, 탄소수 6 내지 20의 치환 또는 비치환된 바이아릴렌기, 탄소수 6 내지 20의 치환 또는 비치환된 아릴렌기, 나프탈렌기 및 안트라센기로 이루어진 군으로부터 선택된 적어도 하나이다. R 'is a linear or nonlinear alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 10 carbon atoms, a substituted or unsubstituted bicycloalkylene group having 6 to 20 carbon atoms, or a substituted or substituted carbon group having 6 to 20 carbon atoms or At least one selected from the group consisting of an unsubstituted arylene group, a substituted or unsubstituted biarylene group having 6 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, a naphthalene group and an anthracene group.
이때, 상기 화학식 2a 또는 화학식 2b의 화합물에 있어서, 상기 R'은 하기 그룹으로 이루어진 군으로부터 선택된 것을 포함할 수 있다.In this case, in the compound of Formula 2a or Formula 2b, R 'may include one selected from the group consisting of the following groups.
Figure PCTKR2015010472-appb-I000035
(R-i)
Figure PCTKR2015010472-appb-I000035
(Ri)
Figure PCTKR2015010472-appb-I000036
(R-ii)
Figure PCTKR2015010472-appb-I000036
(R-ii)
Figure PCTKR2015010472-appb-I000037
(R-iii)
Figure PCTKR2015010472-appb-I000037
(R-iii)
Figure PCTKR2015010472-appb-I000038
(R-iv)
Figure PCTKR2015010472-appb-I000038
(R-iv)
Figure PCTKR2015010472-appb-I000039
(R-v)
Figure PCTKR2015010472-appb-I000039
(Rv)
Figure PCTKR2015010472-appb-I000040
(R-vi)
Figure PCTKR2015010472-appb-I000040
(R-vi)
Figure PCTKR2015010472-appb-I000041
(R-vii)
Figure PCTKR2015010472-appb-I000041
(R-vii)
Figure PCTKR2015010472-appb-I000042
(R-viii)
Figure PCTKR2015010472-appb-I000042
(R-viii)
또한, 본 발명의 젤 폴리머 전해질을 구현함에 있어서, 상기 올리고머를 이루는 상기 단위 E는 기계적 물성과 분리막과의 친화력을 조절하기 위하여 첨가되는 성분으로서, 구체적으로 고분자 구조내에서 우레탄 결합에 의한 단단한 구조 영역 이외의 유연성을 확보하기 위한 구조를 형성함과 동시에, 낮은 극성을 이용하여 폴리올레핀계 분리막 원단과의 친화력을 높일 수 있다. 특히, 폴리올레핀계 분리막 원단과의 친화력이 향상되는 경우, 저항이 감소되어 이온전도도가 보다 향상되는 효과를 동시에 구현할 수 있다. In addition, in the implementation of the gel polymer electrolyte of the present invention, the unit E constituting the oligomer is a component added to control the affinity between the mechanical properties and the separator, specifically, a rigid structural region by a urethane bond in the polymer structure In addition to forming a structure for securing flexibility, it is possible to increase the affinity with the polyolefin-based membrane fabric by using a low polarity. In particular, when the affinity with the polyolefin-based membrane fabric is improved, the resistance can be reduced to implement the effect of improving the ion conductivity more.
상기 단위 E는 하기 화학식 3으로 표시 될 수 있다.The unit E may be represented by the following formula (3).
[화학식 3][Formula 3]
Figure PCTKR2015010472-appb-I000043
Figure PCTKR2015010472-appb-I000043
상기 식에서,Where
R1 및 R2는 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이고,R 1 and R 2 are linear or nonlinear alkylene groups having 1 to 5 carbon atoms,
R3 및 R4는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기 및 페닐기로 이루어진 군으로부터 선택된 하나이며,R 3 and R 4 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, and a phenyl group,
R5 내지 R10는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기, 페닐기, 및 불소로 이루어진 군으로부터 선택된 하나이고,R 5 to R 10 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, a phenyl group, and fluorine,
o는 0 또는 1의 정수이고,o is an integer of 0 or 1,
p는 0 또는 1 내지 400의 정수이고,p is 0 or an integer from 1 to 400,
r은 1 내지 400의 정수이며,r is an integer from 1 to 400,
상기 p:r의 몰비는 0:100 내지 80:20이다.The molar ratio of p: r is 0: 100 to 80:20.
구체적으로, 상기 단위 E는 그 대표적인 예로 하기 화학식 3a 내지 3g로 이루어진 군으로부터 선택된 화합물을 들 수 있다.Specifically, the unit E may include a compound selected from the group consisting of the following Chemical Formulas 3a to 3g.
[화학식 3a] [Formula 3a]
Figure PCTKR2015010472-appb-I000044
Figure PCTKR2015010472-appb-I000044
[화학식 3b][Formula 3b]
Figure PCTKR2015010472-appb-I000045
Figure PCTKR2015010472-appb-I000045
[화학식 3c][Formula 3c]
Figure PCTKR2015010472-appb-I000046
Figure PCTKR2015010472-appb-I000046
[화학식 3d][Formula 3d]
Figure PCTKR2015010472-appb-I000047
Figure PCTKR2015010472-appb-I000047
[화학식 3e][Formula 3e]
Figure PCTKR2015010472-appb-I000048
Figure PCTKR2015010472-appb-I000048
[화학식 3f][Formula 3f]
Figure PCTKR2015010472-appb-I000049
Figure PCTKR2015010472-appb-I000049
[화학식 3g][Formula 3g]
Figure PCTKR2015010472-appb-I000050
Figure PCTKR2015010472-appb-I000050
상기 식에서,Where
p는 0 또는 1 내지 400의 정수이고,p is 0 or an integer from 1 to 400,
r은 1 내지 400의 정수이며,r is an integer from 1 to 400,
상기 p:r의 몰비는 0:100 내지 80:20이다.The molar ratio of p: r is 0: 100 to 80:20.
또한, 본 발명의 젤 폴리머 전해질을 형성함에 있어, 상기 올리고머 1몰 중에서 단위 A는 1몰 또는 2몰이고, 그 외 상기 단위 C : 단위 E의 몰비는 약 1.005:1 내지 2:1일 수 있다. 예컨대, 상기 k 값이 200인 경우, 상기 단위 C : 단위 E의 몰비는 201:200 , 즉 1.005:1 일 수 있다.In addition, in forming the gel polymer electrolyte of the present invention, in one mole of the oligomer, unit A may be 1 mole or 2 moles, and the molar ratio of unit C to unit E may be about 1.005: 1 to 2: 1. . For example, when the k value is 200, the molar ratio of the unit C: E may be 201: 200, that is, 1.005: 1.
또한, 본 발명의 젤 폴리머 전해질을 구현함에 있어서, 상기 올리고머는 선택적으로 하기 화학식 4로 표시되는 단위 B 및 하기 화학식 5로 표시되는 단위 D로 이루어진 군으로부터 선택된 적어도 하나 이상의 단위를 더 포함할 수 있다.In addition, in implementing the gel polymer electrolyte of the present invention, the oligomer may further include at least one or more units selected from the group consisting of a unit B represented by the following formula (4) and a unit D represented by the following formula (5). .
[화학식 4][Formula 4]
*-CO-R''-O-** -CO-R ''-O- *
[화학식 5][Formula 5]
*-O-[R'''-O]m-** -O- [R '''-O] m- *
상기 식에서, Where
R''는 탄소수 1 내지 10의 치환 또는 비치환된 선형의 알킬렌기, 또는 탄소수 1 내지 10의 치환 또는 비치환된 비선형의 알킬렌기이고,R '' is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
R'''는 탄소수 1 내지 10의 치환 또는 비치환된 선형의 알킬렌기, 또는 탄소수 1 내지 10의 치환 또는 비치환된 비선형의 알킬렌기이고,R '' 'is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
m은 1 내지 30의 정수이다.m is an integer of 1-30.
이때, 본 발명의 젤 폴리머 전해질은 상기 올리고머 구조 내에 상기 B 단위와 옥시알킬렌으로부터 유도된 단위 D를 더 포함함으로써, 고분자 구조 내에서의 염의 해리 및 전지내의 극성이 높은 표면과의 친화력을 증가시키는 효과를 구현할 수 있다.In this case, the gel polymer electrolyte of the present invention further includes a unit D derived from the B unit and the oxyalkylene in the oligomer structure, thereby increasing dissociation of the salt in the polymer structure and affinity with the highly polar surface in the battery. You can implement the effect.
구체적으로, 상기 단위 B는 용매의 함침 능력 및 이온전달 능력 조절 기능을 부여하기 위한 단위로서, 하기 그룹으로부터 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.Specifically, the unit B is a unit for imparting the impregnation ability and the ion transport ability of the solvent, and may include at least one selected from the group consisting of the following groups.
*-CO-CH2CH2-O-* (B-i)* -CO-CH 2 CH 2 -O- * (Bi)
*-CO-CHCH3CH2-O-* (B-ii)* -CO-CHCH 3 CH 2 -O- * (B-ii)
*-CO-CH2CH2CH2CH2 CH2-O-* (B-iii)* -CO-CH 2 CH 2 CH 2 CH 2 CH 2 -O- * (B-iii)
*-CO-CHCH3CH2CH2-O-* (B-iv)* -CO-CHCH 3 CH 2 CH 2 -O- * (B-iv)
또한, 상기 단위 D는 용매의 함침 능력, 전극 친화력 및 이온전달 능력을 조절하기 위한 기능을 부여하기 위한 단위로서, 하기 그룹으로부터 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.In addition, the unit D is a unit for imparting a function for adjusting the impregnation ability, the electrode affinity, and the ion transfer ability of the solvent, and may include at least one selected from the group consisting of the following groups.
*-O-CH2CH2-O-* (D-i)* -O-CH 2 CH 2 -O- * (Di)
*-O-CHCH3CH2-O-* (D-ii)* -O-CHCH 3 CH 2 -O- * (D-ii)
또한, 본 발명의 젤 폴리머 전해질에 포함된 올리고머는 하기 화학식 6a 내지 6c로 이루어진 군으로부터 선택된 적어도 하나로 표시될 수 있다.In addition, the oligomer included in the gel polymer electrolyte of the present invention may be represented by at least one selected from the group consisting of the following formulas 6a to 6c.
[화학식 6a][Formula 6a]
[A]s-[B]n-[C-E-]k-C-[B]n-A[A] s- [B] n- [CE-] k -C- [B] n -A
[화학식 6b][Formula 6b]
[A]s-[C-D-E-D]k-C-A[A] s- [CDED] k -CA
[화학식 6c][Formula 6c]
[A]s-[B]n-[C-D-E-D]k-C-[B]n-A.[A] s- [B] n- [CDED] k -C- [B] n -A.
상기 식에서, Where
n은 0 또는 1 내지 30의 정수이고, n is 0 or an integer from 1 to 30,
k는 1 내지 200의 정수이며, k is an integer from 1 to 200,
s는 0 또는 1이다.s is 0 or 1.
이러한 올리고머 1몰 중에서 단위 A는 2몰이고, 단위 B : 단위 C : 단위 D : 단위 E의 몰비는 0 내지 35 : 2 내지 201 : 0 내지 35 : 1 내지 200, 구체적으로 단위 B : 단위 C : 단위 D : 단위 E의 몰비는 0 내지 35 : 10 내지 100 : 0 내지 35 : 20 내지 100일 수 있고, 보다 구체적으로 0 내지 5 : 10 내지 100 : 0 내지 30 : 20 내지 100일 수 있다(이때, 단위 B 및 D가 동시에 0이 되지는 않는다.)In 1 mol of such oligomer, unit A is 2 mol, and the molar ratio of unit B: unit C: unit D: unit E is 0-35: 2-201: 0-35: 1-200, specifically unit B: unit C: The molar ratio of unit D to unit E may be 0 to 35:10 to 100: 0 to 35:20 to 100, and more specifically 0 to 5:10 to 100: 10 to 30:20 to 100. , Units B and D do not go to zero at the same time.)
또한, 본 발명의 젤 폴리머 전해질에 있어서, 상기 올리고머는 그 대표적인 예로서 하기 화학식 7a 내지 7d로 이루어진 군으로부터 선택된 적어도 하나를 들 수 있다.In the gel polymer electrolyte of the present invention, the oligomer may be at least one selected from the group consisting of the following Chemical Formulas 7a to 7d.
[화학식 7a][Formula 7a]
Figure PCTKR2015010472-appb-I000051
Figure PCTKR2015010472-appb-I000051
[화학식 7b][Formula 7b]
Figure PCTKR2015010472-appb-I000052
Figure PCTKR2015010472-appb-I000052
[화학식7c][Formula 7c]
Figure PCTKR2015010472-appb-I000053
Figure PCTKR2015010472-appb-I000053
[화학식 7d][Formula 7d]
Figure PCTKR2015010472-appb-I000054
Figure PCTKR2015010472-appb-I000054
상기 식에서,Where
k는 1 내지 200의 정수이고,k is an integer from 1 to 200,
n은 1 내지 30의 정수이고, n is an integer from 1 to 30,
m은 1 내지 30의 정수이며,m is an integer from 1 to 30,
p는 1 내지 400의 정수이고,p is an integer from 1 to 400,
r은 1 내지 400의 정수이며,r is an integer from 1 to 400,
상기 p:r의 몰비는 0:100 내지 80:20이다.The molar ratio of p: r is 0: 100 to 80:20.
상기 본 발명의 젤 폴리머 전해질을 형성하기 위한 상기 올리고머의 중량평균분자량은 약 1,000 내지 100,000 일 수 있다. 상기 올리고머의 중량평균분자량이 상기 범위 내인 경우, 이를 포함하는 전지의 기계적 강도를 효과적으로 개선할 수 있다.The weight average molecular weight of the oligomer for forming the gel polymer electrolyte of the present invention may be about 1,000 to 100,000. When the weight average molecular weight of the oligomer is in the above range, it is possible to effectively improve the mechanical strength of the battery comprising the same.
또한, 상기 젤 폴리머 전해질은 기계적 강도 및 경화 효과를 보다 향상시키기 위하여, 메틸 아크릴레이트, 메틸 메타크릴레이트, 에틸 아크릴레이트, 에틸 메타크릴레이트, 프로필 아크릴레이트, 프로필 메타크릴레이트, 부틸 아크릴레이트, 부틸 메타크릴레이트, 헥실 아크릴레이트, 헥실 메타크릴레이트, 에틸헥실 아크릴레이트, 에틸헥실 메타크릴레이트, 2,2,2-트리플루오로에틸 아크릴레이트, 2,2,2-트리플루오로에틸 메타크릴레이트, 2,2,3,3-테트라플루오로프로필 아크릴레이트, 및 2,2,3,3-테트라플루오로프로필 메타크릴레이트로 이루어진 군으로부터 선택된 적어도 하나로부터 유도된 단위를 포함하는 제2 올리고머를 더 포함할 수 있다.In addition, the gel polymer electrolyte is methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl to further improve mechanical strength and curing effect. Methacrylate, hexyl acrylate, hexyl methacrylate, ethylhexyl acrylate, ethylhexyl methacrylate, 2,2,2-trifluoroethyl acrylate, 2,2,2-trifluoroethyl methacrylate A second oligomer comprising units derived from at least one selected from the group consisting of 2,2,3,3-tetrafluoropropyl acrylate, and 2,2,3,3-tetrafluoropropyl methacrylate. It may further include.
이때, 상기 제2 올리고머는 제1 올리고머의 전체 함량을 기준으로 50중량% 이하, 구체적으로 20 중량% 이하로 포함되는 것이 바람직하다. 만약, 상기 제2 올리고머의 함량이 50 중량%를 초과하는 경우, 올리고머가 과량 함유되어 저항이 증가하므로, 사이클 특성 등이 저하되는 단점이 발생할 수 있다.At this time, the second oligomer is preferably included in less than 50% by weight, specifically 20% by weight based on the total content of the first oligomer. If the content of the second oligomer exceeds 50% by weight, since the oligomer is contained in an excessive amount to increase resistance, a disadvantage may occur in that the cycle characteristics and the like decrease.
상기와 같은 본 발명의 젤 고분자 전해질은 상기와 같이 올리고머 구조 내에 실록산을 포함하는 단위 E를 포함함으로써, 겔 폴리머 전해질의 우수한 기계적 물성을 확보할 수 있을 뿐만 아니라, 폴리올레핀계 분리막 원단과의 친화력을 높일 수 있다. 뿐만 아니라, 분리막 원단과의 친화력이 향상됨에 따라, 저항이 감소되어 이온전달 특성이 향상되므로, 이온전도도가 보다 향상되는 효과를 동시에 구현할 수 있다. As described above, the gel polymer electrolyte of the present invention includes the unit E containing siloxane in the oligomer structure, thereby ensuring excellent mechanical properties of the gel polymer electrolyte and enhancing affinity with the polyolefin-based membrane fabric. Can be. In addition, as the affinity with the membrane fabric is improved, the resistance is reduced to improve the ion transfer characteristics, thereby realizing the effect of improving the ion conductivity more.
또한, 본 발명의 젤 고분자 전해질은 구조내에 단위 C의 우레탄 결합과, 단위 B 및 D를 선택적으로 포함함으로써, 추가적인 이온전달 특성을 강화하여 이온전도도가 보다 향상되는 효과를 구현할 수 있고, 뿐만 아니라 탄성 및 유연성 등을 증대시켜 전지 구동시 발생하는 부피 팽창에 의한 스트레스를 완화 할 수 있다. 또한, 말단에 구성되어 있는 단위 A의 아크릴 관능기를 통해 추가적인 내열성을 확보하며, 효과적으로 전해액을 고정화 시킬 수 있다. In addition, the gel polymer electrolyte of the present invention may include the urethane bond of the unit C, and the unit B and D selectively in the structure, thereby enhancing the effect of further ion transfer properties to realize the effect of improving the ion conductivity, as well as elasticity And by increasing the flexibility and the like can be relieved stress due to volume expansion generated when driving the battery. In addition, it is possible to secure additional heat resistance through the acrylic functional group of the unit A configured at the terminal, and effectively fix the electrolyte solution.
이와 같이, 본 발명의 젤 폴리머 전해질은 이온전도도가 향상되어, 젤 폴리머 전해질의 두께를 감축할 필요가 없기 때문에, 충분한 기계적 강도를 확보할 수 있고, 또한 이를 포함하는 이차전지의 수명 특성을 향상시킬 수 있다.As described above, since the gel polymer electrolyte of the present invention has improved ion conductivity and does not need to reduce the thickness of the gel polymer electrolyte, sufficient mechanical strength can be ensured and the life characteristics of the secondary battery including the same can be improved. Can be.
특히, 본 발명의 젤 고분자 전해질은 상기 아크릴산을 포함하는 단량체로부터 유도된 단위 A, 우레탄을 포함하는 단위 C, 및 실록산을 포함하는 단위 E 와, 단위 B 및 단위 D의 비율을 적절히 조절한 올리고머를 포함하는 젤 폴리머 전해질을 제공함으로써, 비수계 음극 시스템 뿐만 아니라 수계 음극 시스템과 같은 어떠한 상황에서도 저항을 낮춰 이온전도도를 향상시킬 수 있는 효과를 구현할 수 있다.In particular, the gel polymer electrolyte of the present invention comprises an oligomer in which the ratio of the unit A derived from the monomer containing acrylic acid, the unit C containing urethane, and the unit E containing siloxane, and the ratio of unit B and unit D are properly adjusted. By providing a gel polymer electrolyte comprising, it is possible to implement the effect of improving the ion conductivity by lowering the resistance in any situation, such as non-aqueous negative electrode system as well as the aqueous negative electrode system.
한편, 본 발명의 젤 폴리머 전해질에서 상기 폴리머 네트워크는 폴리머 네트워크의 전체 중량에 대하여 10 내지 25 중량% 범위의 무기물 입자를 추가로 함유할 수 있다. Meanwhile, in the gel polymer electrolyte of the present invention, the polymer network may further contain inorganic particles in the range of 10 to 25% by weight based on the total weight of the polymer network.
상기 무기물 입자는 폴리머 네트워크에 함침되어, 무기물 입자 간의 빈공간에 의해 형성된 기공들을 통하여 고점도 용매가 잘 스며들도록 할 수 있다. 즉, 무기물 입자를 포함함으로써, 극성 물질 간의 친화력과 모세관 현상에 의해 고점도 용매에 대한 습윤성을 보다 향상되는 효과를 얻을 수 있다.The inorganic particles may be impregnated in the polymer network to allow the high viscosity solvent to penetrate well through the pores formed by the void space between the inorganic particles. That is, by including the inorganic particles, it is possible to obtain an effect of further improving the wettability to a high viscosity solvent by affinity between the polar substances and capillary phenomenon.
이러한 무기물 입자로는 유전율이 높고, 리튬 이차전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0 내지 5V)에서 산화 및/또는 환원 반응이 일어나지 않는 무기물 입자를 사용할 수 있다.As such inorganic particles, inorganic particles having a high dielectric constant and which do not generate an oxidation and / or reduction reaction in an operating voltage range of the lithium secondary battery (for example, 0 to 5V based on Li / Li + ) may be used.
구체적으로, 상기 무기물 입자는 그 대표적인 예로서 유전율 상수가 5 이상인 BaTiO3, BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1 - xLaxZr1 - yTiyO3 (PLZT, 여기서, 0<x<1, 0<y<1임), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC 및 이들의 혼합체로부터 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 들 수 있다.Specifically, the inorganic particles are BaTiO 3 , BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1 - x La x Zr 1 - y Ti y O 3 (PLZT) having a dielectric constant of 5 or more as a representative example thereof. , Where 0 <x <1, 0 <y <1, Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC and a mixture selected from the group consisting of two or more thereof.
또한, 상기 무기물 입자 외에도 리튬 이온 전달 능력을 갖는 무기물 입자, 즉 리튬포스페이트 (Li3PO4), 리튬티타늄포스페이트 (LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트 (LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 glass (0<x<4, 0<y<13), 리튬란탄티타네이트 (LixLayTiO3, 0<x<2, 0<y<3), Li3 . 25Ge0 .25P0. 75S4 등과 같은 리튬게르마니움티오포스페이트 (LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), Li3N 등과 같은 리튬나이트라이드 (LixNy, 0<x< 4, 0<y<2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass (LixSiySz, 0<x<3, 0<y<2, 0<z<4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 glass (LixPySz, 0<x<3, 0<y<3, 0<z<7) 또는 이들의 혼합물 등을 더 포함할 수 있다.In addition, in addition to the inorganic particles, inorganic particles having lithium ion transfer ability, that is, lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 <x <2, 0 <y <3 ), Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 <x <2, 0 <y <1, 0 <z <3), 14Li 2 O-9Al 2 O 3 -38TiO 2- (LiAlTiP) such as 39P 2 O 5 x O y series glass (0 <x <4, 0 <y <13), lithium lanthanum titanate (Li x La y TiO 3, 0 <x <2, 0 <y < 3), Li 3 . 25 Ge 0 .25 P 0. 75 S 4 Mani lithium germanium thiophosphate Titanium (Li x Ge y P z S w, 0 <x <4, 0 <y <1, 0 <z <1, 0 <w such as <5), lithium nitride such as Li 3 N (Li x N y , 0 <x <4, 0 <y <2), SiS 2 series glass such as Li 3 PO 4 -Li 2 S-SiS 2 (Li P 2 S 5 series glass (Li x P y S z , 0, such as x Si y S z , 0 <x <3, 0 <y <2, 0 <z <4), LiI-Li 2 SP 2 S 5, etc. <x <3, 0 <y <3, 0 <z <7) or mixtures thereof, and the like.
상기 무기물 입자들의 평균 입경은 젤 폴리머 전해질 내에 균일한 두께로 적절한 공극률을 가지도록 형성하기 위하여, 약 0.001 내지 10㎛ 범위인 것이 바람직하다. 만약, 평균 입경이 0.001㎛ 미만인 경우 분산성이 저하될 수 있고, 평균 입경이 10㎛를 초과하는 경우 다공성 코팅층의 두께가 증가할 수 있을 뿐만 아니라, 무기물 입자가 뭉치는 현상이 발생하여 젤 폴리머 전해질 밖으로 노출되면서 기계적 강도가 저하될 수 있다. The average particle diameter of the inorganic particles is preferably in the range of about 0.001 to 10 ㎛ in order to have a proper porosity in a uniform thickness in the gel polymer electrolyte. If the average particle size is less than 0.001㎛ dispersibility may be lowered, if the average particle diameter is more than 10㎛ not only can increase the thickness of the porous coating layer, but also agglomeration of inorganic particles occurs gel polymer electrolyte Exposure to the outside can lower the mechanical strength.
상술한 바와 같은, 본 발명의 젤 폴리머 전해질은 25℃ 온도에서 임피던스 측정 분석 시스템으로 측정하는 경우에 1.0x10-4S/cm 초과, 구체적으로 1.0x10-4S/cm 내지 2.0x10-2S/cm의 Li+ 이온전도도를 가질 수 있다.As described above, the gel polymer electrolyte of the present invention is 1.0x10 -4 S / cm than in the case of measuring the impedance measurement analysis system at 25 ℃ temperature, specifically, 1.0x10 -4 S / cm to 2.0x10 -2 S / It may have a Li + ion conductivity of cm.
이때, 상기 이온전도도는 13mm두께의 젤고분자 전해질 필름을 구성하여 SUS/GPE/SUS 셀 형태로 Impedance측정법을 사용하여 측정되었다. 측정장비는 Bio Logic사의 VMP3 모델로 측정조건은 10,000 - 0.1Hz, 10mV의 amplitude 조건으로 상온에서 진행 되었다.At this time, the ion conductivity was measured using the Impedance measurement method in the form of a SUS / GPE / SUS cell to form a gel polymer electrolyte film of 13mm thickness. The measuring equipment is Bio Logic's VMP3 model, and the measurement conditions were performed at room temperature under 10,000-0.1Hz and 10mV amplitude conditions.
또한, 상기 젤 폴리머 전해질은 25℃ 온도에서 NMR측정법 기준으로 0.3 이상의 Li+ 이온이동계수를 가질 수 있다. 이때, 상기 Li+ 이온 이동계수는 Li+ 이온확산도 / (Li+ 이온확산도 + 음이온 확산도)로 정의할 수 있으며, 이때 상기 Li+ 이온확산도 및 음이온 확산도는 다음과 같은 장비와 방법을 통하여 측정할 수 있다.In addition, the gel polymer electrolyte may have a Li + ion transfer coefficient of 0.3 or more based on NMR measurement at a temperature of 25 ℃. In this case, the Li + ion mobility factor is Li + ion diffusion also / can be defined as (Li + ion diffusivity + anion diffusivity), in which the Li + ion diffusivity and anion diffusivity is the following equipment and methods Can be measured.
예컨대, Varian 500MHz NMR/ dual probe 를 사용하였으며, Li+ 이온확산도(cation diffusion constant)는 7Li diffusion NMR 로 측정하였고, 음이온확산도는 (anion diffusion constant 측정 측정)는 19F diffusion NMR로 측정하였다. 이때 사용된 용매(solvent)는 acetone-d6이며, 시료 자체 내에서의 확산(diffusion )값을 측정하기 위하여 inner tube(acetone-d6)를 사용하여 시료와 deuterium solvent가 섞이지 않도록 하였다. 또한, 이 측정 실험에서 pulse sequence는 stimulated echo with gradient pulse 를 사용하였다. Gradient amplitude는 최고 gradient power일 때의 peak intensity가 최저 gradient power일 때의 peak intensity 대비 약 2~5% 정도 수준이 되도록 조절하였으며 이 구간을 solution NMR과 동일하게 16단계로 나누어 각 시료에 대해 16번의 다른 amplitude를 적용하였다.For example, a Varian 500 MHz NMR / dual probe was used, and Li + cation diffusion constant was measured by 7 Li diffusion NMR, and anion diffusion was measured by 19 F diffusion NMR. The solvent used was acetone-d 6 , and the inner tube (acetone-d 6 ) was used to prevent the sample from mixing with the deuterium solvent to measure the diffusion value in the sample itself. In this measurement experiment, the pulse sequence was stimulated echo with gradient pulse. Gradient amplitude was adjusted so that the peak intensity at the highest gradient power was about 2 to 5% of the peak intensity at the lowest gradient power. This section was divided into 16 steps in the same way as the solution NMR. Different amplitudes were applied.
또한 상기 젤 폴리머 전해질은 25℃ 온도에서 젤 함량이 약 1 중량% 이상, 구체적으로 약 20중량% 이상일 수 있다.In addition, the gel polymer electrolyte may have a gel content of about 1% by weight or more, specifically about 20% by weight or more at 25 ° C.
또한, 상기 젤 폴리머 전해질은 25℃ 온도에서 반응성 올리고머 전체 투입량 대비 미반응 올리고머의 함량이 20% 이하인 것이 바람직하다.In addition, the gel polymer electrolyte preferably has an unreacted oligomer content of 20% or less relative to the total amount of the reactive oligomer at 25 ° C.
이때, 상기 미반응 올리고머의 함량은 젤 폴리머 전해질을 구현한 다음, 젤 폴리머 전해질을 용매 (아세톤) 추출하고, 이어서 추출된 용매를 NMR 측정을 통해 확인할 수 있다.In this case, the content of the unreacted oligomer may be implemented by implementing a gel polymer electrolyte, then extracting the gel polymer electrolyte with a solvent (acetone), and then checking the extracted solvent through NMR measurement.
한편, 본 발명의 젤 폴리머 전해질에 있어서, 상기 전해액은 통상적인 리튬염 함유 비수용매로 이루어진 것으로, 이때 상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3, LiC4BO8, LiTFSI, LiFSI, 및 LiClO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있으며, 이에 한정되는 것은 아니다. On the other hand, in the gel polymer electrolyte of the present invention, the electrolyte is composed of a conventional lithium salt-containing non-aqueous solvent, wherein the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 , LiC 4 BO 8 , LiTFSI, LiFSI, and LiClO 4 Or a mixture of two or more thereof, but is not limited thereto.
상기 리튬염은 상기 중합개시제와 올리고머의 전체 함량에 대해 10 내지 50 중량%를 포함할 수 있다.The lithium salt may include 10 to 50% by weight based on the total content of the polymerization initiator and the oligomer.
또한, 본 발명의 전해액 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 비수용매를 사용할 수 있으며, 예를 들면 에테르, 에스테르(Acetate류, Propionate류), 아미드, 선형 카보네이트 또는 환형 카보네이트, 니트릴(아세토니트릴, SN 등) 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.In addition, as the electrolyte solvent of the present invention, a non-aqueous solvent commonly used in a lithium secondary battery electrolyte may be used. For example, ether, ester (Acetate, Propionate), amide, linear carbonate or cyclic carbonate, nitrile (aceto Nitrile, SN, and the like) may be used alone or in combination of two or more thereof.
그 중에서 대표적으로 환형 카보네이트, 선형 카보네이트 또는 이들의 혼합물인 카보네이트 화합물을 포함할 수 있다. Among them, carbonate compounds which are typically cyclic carbonates, linear carbonates or mixtures thereof may be included.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 또한 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다. Specific examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene Carbonate, vinylene carbonate, and halides thereof, any one selected from the group consisting of or mixtures of two or more thereof. Specific examples of the linear carbonate compounds include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethylmethyl carbonate (EMC), methylpropyl carbonate (MPC) and ethylpropyl carbonate (EPC). Any one selected from the group consisting of, or a mixture of two or more thereof may be representatively used, but is not limited thereto.
특히, 상기 카보네이트계 전해액 용매 중 환형 카보네이트인 프로필렌 카보네이트 및 에틸렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 전해액 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트에 에틸메틸 카보네이트, 디에틸 카보네이트 또는 디메틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 가지는 전해액을 만들 수 있어서 더욱 바람직하게 사용될 수 있다. In particular, propylene carbonate and ethylene carbonate, which are cyclic carbonates in the carbonate electrolyte solvent, may be preferably used because they have high dielectric constants and dissociate lithium salts in the electrolyte well, such as ethylmethyl carbonate and diethyl carbonate. Alternatively, when a low viscosity, low dielectric constant linear carbonate such as dimethyl carbonate is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be made, and thus it can be used more preferably.
또한, 상기 전해액 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤,α-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다. In addition, the ester in the electrolyte solvent is methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, γ-valerolactone, γ-caprolactone, α-valerolactone And ε-caprolactone, but any one selected from the group consisting of, or a mixture of two or more thereof may be used, but is not limited thereto.
또한, 상기 전해액 용매는 전해액에서 사용하는 통상적인 첨가제를 추가하여 성능을 개선할 수 있다. 예를 들면 VC, VEC, Propane sultone, SN, 'AdN, ESa, PRS, FEC, LiPO2F2, LiODFB, LiBOB, TMSPa, TMSPi, TFEPa, TFEPi 등 일반적인 첨가제를 제한 없이 더 포함할 수 있다.In addition, the electrolyte solvent may improve the performance by adding a conventional additive used in the electrolyte solution. For example, VC, VEC, Propane sultone, SN, 'AdN, ESa, PRS, FEC, LiPO 2 F 2 , LiODFB, LiBOB, TMSPa, TMSPi, TFEPa, TFEPi may further include without limitation.
종래 일반 전해액이 양극에서 용출된 금속이온이 음극에서 석출되는 반면, 본 발명의 젤 폴리머 전해질은 올리고머에 의해 형성된 폴리머 네트워크를 포함함으로써, 양극에서 용출된 금속이온과 결합하여 음극에서 금속이 석출 되는 것을 경감시킬 수 있다. 따라서, 리튬 이차전지의 충방전 효율을 향상시킬 수 있고 양호한 사이클 특성을 나타낼 수 있다. 뿐만 아니라, 양극과 음극 표면에 고분자로 구성되는 보호층을 형성하거나, 고분자 구조를 이용하여 음이온 안정화를 통한 부반응 억제 및 전극간의 밀착력을 증대시켜 고온에서의 전지 내부의 gas발생을 억제할 수 있다. 또한 젤 폴리머 고분자를 통한 분리막 강화와, 이에 따른 관통 안정성 향상, 난연성 및 휘발성 감소를 통한 과충전 등의 안정성 개선이 가능할 수 있다.In the conventional general electrolyte solution, the metal ions eluted from the positive electrode are precipitated at the negative electrode, whereas the gel polymer electrolyte of the present invention includes a polymer network formed by the oligomer, thereby combining with the metal ions eluted at the positive electrode to precipitate the metal at the negative electrode. I can alleviate it. Therefore, the charge and discharge efficiency of the lithium secondary battery can be improved and good cycle characteristics can be exhibited. In addition, by forming a protective layer composed of a polymer on the surface of the positive electrode and the negative electrode, or by using a polymer structure to suppress side reactions through anion stabilization and to increase the adhesion between the electrodes can suppress the gas generation inside the battery at a high temperature. In addition, it may be possible to improve the stability of the membrane through the polymer polymer, thereby improving the stability through penetration, such as through charging stability, flame retardancy and reduced volatility.
또한, 본 발명에서는 In the present invention,
적어도 하나 이상의 공중합성 아크릴레이트 또는 아크릴산을 포함하는 단량체로부터 유도된 단위 A; Unit A derived from monomers comprising at least one copolymerizable acrylate or acrylic acid;
우레탄을 포함하는 단위 C; 및Unit C comprising urethane; And
실록산을 포함하는 단위 E를 포함하는 젤 폴리머 전해질을 제공할 수 있다.A gel polymer electrolyte comprising unit E comprising siloxane can be provided.
또한, 본 발명에서는 In the present invention,
실록산을 포함하는 단위 E를 포함하는 올리고머를 포함하며,An oligomer comprising unit E comprising a siloxane,
25℃ 온도에서 1.0x10-4S/cm 내지 2.0x10-2S/cm의 Li+ 이온전도도와,Li + ion conductivity of 1.0x10 -4 S / cm to 2.0x10 -2 S / cm at a temperature of 25 ℃,
0.3 이상의 Li+ 이온 이동계수, 및Li + ion transfer coefficient of 0.3 or more, and
반응성 올리고머 전체 투입량 대비 미반응 올리고머의 함량이 20% 이하인 젤 폴리머 전해질을 제공할 수 있다.It is possible to provide a gel polymer electrolyte having a content of unreacted oligomer of 20% or less relative to the total amount of reactive oligomer.
또한, 본 발명의 다른 일 구현예는In addition, another embodiment of the present invention
리튬염, Lithium Salt,
전해액 용매, Electrolyte solvent,
중합개시제, 및 Polymerization initiator, and
적어도 하나 이상의 공중합성 아크릴레이트 또는 아크릴산을 포함하는 단량체로부터 유도된 단위 A, 우레탄을 포함하는 단위 C, 및 실록산을 포함하는 단위 E를 포함하는 올리고머를 포함하는 본 발명의 젤 폴리머 전해질용 조성물을 제공할 수 있다.Provided is a composition for a gel polymer electrolyte of the present invention comprising an oligomer comprising a unit A derived from a monomer comprising at least one copolymerizable acrylate or acrylic acid, a unit C comprising a urethane, and a unit E comprising a siloxane. can do.
이때, 상기 올리고머는 젤 폴리머 전해질용 조성물 전체 중량에 대해 0.5 중량% 내지 20 중량%, 보다 바람직하게는 0.5 중량% 내지 10 중량%로 포함될 수 있다. 만약, 0.5 중량% 미만이면 젤화되기 어려워 젤 폴리머 전해질의 특성이 발현되기 어려울 수 있고, 20 중량%를 초과하면 올리고머의 과량 함유로 인해 저항이 증가하여 전지 성능이 저하될 수 있다. In this case, the oligomer may be included in 0.5% by weight to 20% by weight, more preferably 0.5% by weight to 10% by weight relative to the total weight of the composition for the gel polymer electrolyte. If less than 0.5% by weight of the gel polymer is difficult to be difficult to express the characteristics of the gel polymer electrolyte, if it exceeds 20% by weight may increase the resistance due to the excessive content of the oligomer may lower the battery performance.
이때, 본 발명에서는 종래에 알려져 있는 중합 방법을 이용하여 상기 젤 폴리머 전해질용 조성물로부터 본 발명의 젤 폴리머 전해질을 제조할 수 있다. At this time, in the present invention, the gel polymer electrolyte of the present invention can be produced from the gel polymer electrolyte composition using a polymerization method known in the art.
이러한 반응을 위해 사용되는 중합개시제는 당 업계에 알려진 통상적인 중합개시제가 사용될 수 있다.The polymerization initiator used for this reaction may be used conventional polymerization initiator known in the art.
상기 중합개시제의 비제한적인 예로는 벤조일 퍼옥사이드(benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), 디라우릴 퍼옥사이드(dilauryl peroxide), 디-tert-부틸 퍼옥사이드(di-tert-butyl peroxide), t-부틸 퍼옥시-2-에틸-헥사노에이트(t-butyl peroxy-2-ethyl-hexanoate), 큐밀 하이드로퍼옥사이드(cumyl hydroperoxide) 및 하이드로겐 퍼옥사이드(hydrogen peroxide) 등의 유기과산화물류나 히드로과산화물류와 2,2'-아조비스(2-시아노부탄), 2,2'-아조비스(메틸부티로니트릴), AIBN(2,2'-Azobis(iso-butyronitrile)) 및 AMVN(2,2'-Azobisdimethyl-Valeronitrile) 등의 아조 화합물류 등이 있으나, 이에 한정하지 않는다.Non-limiting examples of the polymerization initiator are benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert-butyl peroxide, organic peroxides and hydros such as t-butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide, and hydrogen peroxide Peroxides with 2,2'-azobis (2-cyanobutane), 2,2'-azobis (methylbutyronitrile), AIBN (2,2'-Azobis (iso-butyronitrile)) and AMVN (2 And azo compounds such as 2'-Azobisdimethyl-Valeronitrile), but are not limited thereto.
상기 중합개시제는 전지 내에서 열, 비제한적인 예로 30℃ 내지 100℃의 열에 의해 분해되거나 상온(5℃ 내지 30℃)에서 분해되어 라디칼을 형성하고, 자유라디칼 중합에 의해 중합성 올리고머가 아크릴레이트계 화합물과 반응하여 젤 폴리머 전해질을 형성할 수 있다.The polymerization initiator is decomposed by heat in a battery, such as, but not limited to, 30 ° C. to 100 ° C., or decomposed at room temperature (5 ° C. to 30 ° C.) to form radicals, and the polymerizable oligomer is acrylate by free radical polymerization. The gel polymer electrolyte may be formed by reacting with the compound.
또한, 상기 중합개시제는 올리고머 전체 함량에 대해 0.01 중량% 내지 2 중량%의 양으로 사용될 수 있다. 중합개시제가 2 중량%를 초과하면 젤 폴리머 전해질용 조성물을 전지 내에 주액하는 도중 젤화가 너무 빨리 일어나거나 미반응 개시제가 남아 나중에 전지 성능에 악영향을 미치는 단점이 있고, 반대로 중합개시제가 0.01 중량부 미만이면 젤화가 잘 이루어지지 않는 문제가 있다.In addition, the polymerization initiator may be used in an amount of 0.01% by weight to 2% by weight based on the total content of the oligomer. If the polymerization initiator is more than 2% by weight, gelation may occur too quickly or the unreacted initiator remains after the gel polymer electrolyte composition is injected into the battery, which adversely affects the battery performance. Conversely, the polymerization initiator is less than 0.01 part by weight. There is a problem that the gelation is not made well.
본 발명의 일 실시예에 따른 젤 폴리머 전해질용 조성물은 상기 기재된 성분들 이외에, 젤 반응의 효율성 증대와 저항 감소 효과를 부여하기 위하여, 당 업계에 알려진 이러한 물성을 구현할 수 있는 기타 첨가제 등을 선택적으로 더 함유할 수 있다.Gel polymer electrolyte composition according to an embodiment of the present invention, in addition to the components described above, in order to impart an effect of increasing the efficiency and resistance of the gel reaction, and optionally other additives that can implement such properties known in the art It may contain more.
젤고분자 전해질에는 전해액에서 사용하는 통상적인 첨가제를 추가하여 성능을 개선할 수 있다. 예를 들면 VC, VEC, Propane sultone, SN, 'AdN, ESa, PRS, FEC, LiPO2F2, LiODFB, LiBOB, TMSPa, TMSPi, TFEPa, TFEPi 등 일반적인 첨가제를 모두 적용 가능하다.The gel polymer electrolyte may be improved by adding a conventional additive used in an electrolyte solution. For example, general additives such as VC, VEC, Propane sultone, SN, 'AdN, ESa, PRS, FEC, LiPO 2 F 2 , LiODFB, LiBOB, TMSPa, TMSPi, TFEPa, TFEPi are applicable.
본 발명의 또 다른 일 실시예에서는In another embodiment of the present invention
리튬의 흡장·방출이 가능한 양극과 음극, 및 상기 양극과 음극 사이에 배치되는 폴리머 전해질을 포함하며,A positive electrode and a negative electrode capable of occluding and releasing lithium, and a polymer electrolyte disposed between the positive electrode and the negative electrode,
상기 폴리머 전해질로서 본 발명의 젤 폴리머 전해질을 포함하는 리튬 이차전지를 제공한다.It provides a lithium secondary battery comprising the gel polymer electrolyte of the present invention as the polymer electrolyte.
상기 젤 폴리머 전해질은 당 업계에 알려진 통상적인 방법에 따라 젤 폴리머 전해질용 조성물을 중합시켜 형성된 것이다. 예를 들면, 젤 폴리머 전해질은 이차전지의 내부에서 상기 젤 폴리머 전해질용 조성물을 in-situ 중합하여 형성될 수 있다.The gel polymer electrolyte is formed by polymerizing the composition for gel polymer electrolyte according to a conventional method known in the art. For example, the gel polymer electrolyte may be formed by in-situ polymerization of the composition for gel polymer electrolyte in the secondary battery.
보다 바람직한 일 실시 형태를 들면, (a) 양극, 음극, 및 상기 양극과 음극 사이에 개재(介在)된 분리막으로 이루어진 전극 조립체를 전지 케이스에 삽입하는 단계 및 (b) 상기 전지 케이스에 본 발명에 따른 젤 폴리머 전해질용 조성물을 주입한 후 중합시켜 젤 폴리머 전해질을 형성하는 단계를 포함할 수 있다.For a more preferred embodiment, (a) inserting an electrode assembly consisting of a positive electrode, a negative electrode and a separator interposed between the positive electrode and the negative electrode in the battery case and (b) the present invention in the battery case Injecting the composition for the gel polymer electrolyte according to the polymerization may include the step of forming a gel polymer electrolyte.
리튬 이차전지 내 in-situ 중합 반응은 E-BEAM, 감마선, 상온/고온 에이징 공정을 통하여 가능하며, 본 발명의 일 실시예에 따르면 열 중합을 통해 진행될 수 있다. 이때, 중합 시간은 대략 2분 내지 12시간 정도 소요되며, 열 중합 온도는 30 내지 100℃ 가 될 수 있다.In -situ polymerization reaction in the lithium secondary battery is possible through the E-BEAM, gamma rays, room temperature / high temperature aging process, according to one embodiment of the present invention can be carried out through thermal polymerization. At this time, the polymerization time takes about 2 minutes to 12 hours, the thermal polymerization temperature may be 30 to 100 ℃.
보다 구체적으로 리튬 이차전지 내 in-situ 중합 반응은 리튬염이 포함되어 있는 전해액에 개시제와 상기 올리고머를 소정량 첨가하여 혼합한 후 전지셀에 주액한다. 그러한 전지셀의 주액구를 밀봉한 후, 40 내지 80℃로 1 내지 20 시간 동안 가열하여 중합을 행하면, 리튬염 함유 전해액이 젤화를 거치게 되면 젤의 형태로 포함된 젤 폴리머 전해질이 제조된다. More specifically, in-situ polymerization reaction in a lithium secondary battery is added to a predetermined amount of the initiator and the oligomer in an electrolyte solution containing a lithium salt and mixed and then injected into a battery cell. After sealing the injection port of such a battery cell, the polymerization is carried out by heating to 40 to 80 ℃ for 1 to 20 hours, the gel polymer electrolyte contained in the form of a gel is prepared when the lithium salt-containing electrolyte is subjected to gelation.
본 발명의 일 실시예에 따른 상기 리튬 이차전지는 충전 전압이 3.0V 내지 5.0V 범위로, 일반전압 및 고전압 영역 모두에서 리튬 이차전지의 용량 특성이 우수하다.The lithium secondary battery according to an embodiment of the present invention has a charge voltage of 3.0V to 5.0V, excellent capacity characteristics of the lithium secondary battery in both the normal voltage and the high voltage region.
한편, 본 발명의 일 실시예에 따르면, 상기 리튬 이차전지를 구성하는 전극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 전극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 전극을 제조할 수 있다.On the other hand, according to an embodiment of the present invention, the electrode constituting the lithium secondary battery can be manufactured by a conventional method known in the art. For example, a slurry may be prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersant in an electrode active material, and then applying the coating (coating) to a current collector of a metal material, compressing, and drying the electrode to prepare an electrode. have.
본 발명의 일 실시예에 따르면, 상기 양극을 구성하는 양극 활물질은 일반전압 또는 고전압에 적용할 수 있고, 리튬을 가역적으로 인터칼레이션/디인터칼레이션 할 수 있는 화합물이 사용될 수 있다.According to an embodiment of the present invention, the positive electrode active material constituting the positive electrode may be applied to a general voltage or a high voltage, and a compound capable of reversibly intercalating / deintercalating lithium may be used.
구체적으로, 상기 양극 활물질은, 예를 들면 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, LiNi1 - yCoyO2(O=y<1), LiCo1 - yMnyO2(O=y<1), LiNi1 - yMnyO2 (O=y<1), 및 Li[NiaCobMnc]O2 (0 < a, b, c = 1, a+b+c=1)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있으며, 이들로 한정되는 것은 아니다. 또한, 이러한 산화물 (oxide) 외에 황화물 (sulfide), 셀렌화물 (selenide) 및 할로겐화물 (halide) 등도 포함될 수 있다.Specifically, the positive electrode active material is, for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiNi 1 - y Co y O 2 (O = y <1), LiCo 1 - y Mn y O 2 ( O = y <1), LiNi 1 - y Mn y O 2 (O = y <1), and Li [Ni a Co b Mn c ] O 2 (0 <a, b, c = 1, a + b + c = 1) may include any one or a mixture of two or more thereof selected from the group consisting of It is not limited to these. In addition to these oxides, sulfides, selenides and halides may also be included.
또한, 본 발명의 일 실시예에 따르면, 상기 음극을 구성하는 음극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다. In addition, according to an embodiment of the present invention, as the negative electrode active material constituting the negative electrode, a carbon material, lithium metal, silicon, tin, or the like, into which lithium ions may be inserted and released, may be used. Preferably, a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber. High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
상기 양극 및/또는 음극은 바인더와 용매, 필요에 따라 통상적으로 사용될 수 있는 도전재와 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 집전체에 도포하고 압축하여 음극을 제조할 수 있다. The positive electrode and / or negative electrode may be prepared by mixing and stirring a binder, a solvent, a conductive material and a dispersant, which may be commonly used as necessary, to prepare a slurry, and then applying the same to a current collector and compressing the negative electrode.
상기 바인더로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부티렌 고무(SBR), 불소 고무, 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다. The binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Various kinds of binder polymers such as sulfonated EPDM, styrene butyrene rubber (SBR), fluorine rubber, various copolymers and the like may be used.
또한, 상기 리튬 이차전지는 종류에 따라 양극과 음극 사이에 분리막이 존재할 수 도 있다. 이러한 분리막으로는 통상적인 다공성 고분자 필름, 즉 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다. 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, the lithium secondary battery may have a separator between the positive electrode and the negative electrode according to the type. As such a separator, a conventional porous polymer film, that is, polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, and a polyethylene / polypropylene two-layer separator and a polyethylene / polypropylene / polyethylene three-layer separator Of course, a mixed multilayer film such as polypropylene / polyethylene / polypropylene three-layer separator can be used. Or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers of high melting point, polyethylene terephthalate fibers and the like can be used, but is not limited thereto.
본 발명의 일 실시예에 따른 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등이 될 수 있다.The external shape of the lithium secondary battery according to an embodiment of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
한편, 본 발명의 또 다른 일 실시예에서는 On the other hand, in another embodiment of the present invention
제1전극, 제2전극, 전기 변색 물질 및A first electrode, a second electrode, an electrochromic material, and
본 발명의 젤 폴리머 전해질을 포함하는 전기 변색 소자를 추가로 제공할 수도 있다.It is also possible to further provide an electrochromic device comprising the gel polymer electrolyte of the present invention.
이때, 상기 제1전극 및 제2전극은 기재 상에 투명 도전층이 형성된 구조이며, 상기 전기 변색 소자는 전해질의 마주보는 면들 상에 유연성 기판 및 강성 기판을 포함할 수도 있다.In this case, the first electrode and the second electrode may have a structure in which a transparent conductive layer is formed on a substrate, and the electrochromic device may include a flexible substrate and a rigid substrate on opposite surfaces of the electrolyte.
이와 같이, 변색소자의 유연성과 내구성 및 디자인의 자유도를 위해 본 발명의 젤 폴리머 전해질을 적용하는 경우, 소자 구동에 필요한 이온전도도 확보 및 내구성 확보가 가능하다.As such, when the gel polymer electrolyte of the present invention is applied for flexibility and durability of the color change device and freedom of design, it is possible to secure ion conductivity and durability required for driving the device.
이때, 상기 기재 및 투명 도전층은 당 분야에서 공지된 것이라면 특별히 한정되지 않는다. 기재로는 유리, 투명 플리스틱 (고분자) 등을 들 수 있으며, 투명 도전층을 형성하기 위한 도전성 물질로는 ITO(indium doped tin oxide), ATO(antimony doped tin oxide), FTO(fluorine doped tin oxide), IZO(Indium doped zinc oxide), ZnO 등을 들 수 있다. 기재 상에 도전성 물질을 스퍼터링, 전자빔 증착, 화학기상증착, 졸-젤 코팅법 등의 공지된 방법으로 증착하여 투명 도전층을 형성할 수 있다.In this case, the substrate and the transparent conductive layer are not particularly limited as long as they are known in the art. Examples of the substrate include glass and transparent plastics (polymer), and conductive materials for forming the transparent conductive layer include indium doped tin oxide (ITO), antimony doped tin oxide (ATO), and fluorine doped tin oxide (FTO). ), IZO (Indium doped zinc oxide), ZnO and the like. The conductive material may be deposited on the substrate by a known method such as sputtering, electron beam deposition, chemical vapor deposition, or sol-gel coating to form a transparent conductive layer.
또한, 전기 변색 물질의 종류는 특별히 한정되지 않으며, WO3, Ir(OH)x, MoO3, V2O5, TiO2, NiO 등의 무기 금속산화물; 폴리피롤, 폴리아닐린, 폴리아줄렌, 폴리피리딘, 폴리인돌, 폴리카바졸, 폴리아진, 폴리티오펜 등의 전도성 고분자; 비올로겐, 안트라퀴논, 페노사이아진 등의 유기 변색 물질 등을 들 수 있다.In addition, the kind of electrochromic material is not particularly limited, and inorganic metal oxides such as WO 3 , Ir (OH) x, MoO 3 , V 2 O 5 , TiO 2 , NiO; Conductive polymers such as polypyrrole, polyaniline, polyazulene, polypyridine, polyindole, polycarbazole, polyazine and polythiophene; Organic discoloring substances, such as viologen, anthraquinone, and phenocyazine, etc. are mentioned.
상기 전기 변색 물질을 전극 상에 적층하는 방법은 표면 프로파일을 따라 기저면으로부터 일정한 높이로 박막을 형성할 수 있는 방법이라면 특별히 한정되지 않으며, 예컨대 스퍼터링 등의 진공증착 방법을 들 수 있다.The method of laminating the electrochromic material on the electrode is not particularly limited as long as it can form a thin film at a constant height from the base surface along the surface profile, and examples thereof include vacuum deposition methods such as sputtering.
상기 전기 변색 물질 중에서 예컨대 WO3는 환원반응에 의해 착색되는 물질이고, NiO는 산화반응에 의해 착색되는 물질이다. 이와 같은 무기 금속 산화물을 포함하는 전기 변색 소자에서 전기 변색이 일어나는 전기화학적 메커니즘은 반응식 1과 같이 설명된다. 구체적으로, 전기 변색 소자에 전압을 인가하면 전해질 내에 포함되어 있는 양성자(H+) 또는 리튬 이온(Li+)이 전류의 극성에 따라 전기 변색 물질로 삽입 또는 탈리되며, 이때 화합물 내의 전하 중성 조건을 만족시키기 위하여 전기 변색 물질에 포함된 전이금속의 산화수가 변화함으로써 전기 변색 물질자체의 광학적 특성, 예컨대 투과도(색상)가 변화하게 된다.Among the electrochromic materials, for example, WO 3 is a material that is colored by a reduction reaction, and NiO is a material that is colored by an oxidation reaction. The electrochemical mechanism in which the electrochromic device occurs in the electrochromic device including the inorganic metal oxide is described as in Scheme 1. Specifically, when voltage is applied to the electrochromic device, protons (H + ) or lithium ions (Li + ) contained in the electrolyte are inserted into or desorbed from the electrochromic material according to the polarity of the current. In order to satisfy, by changing the oxidation number of the transition metal contained in the electrochromic material, the optical properties of the electrochromic material itself, such as transmittance (color), is changed.
[반응식 1]Scheme 1
WO3(투명) + xe + xM MxWO3(진한 청색)WO 3 (transparent) + xe + xM M x WO 3 (dark blue)
(식 중, M은 양성자 또는 알칼리금속 양이온, 예컨대 Li+ 임).Wherein M is a proton or an alkali metal cation such as Li + .
이와 같이 구성된 전기 변색 소자는 당업계에 알려진 통상적인 방법에 따라 제조될 수 있으며, 예컨대 (a) 제1 전극 및 제2전극을 제조하는 단계; (b) 제조된 제1전극 및 제2전극 사이에 본 발명에 따른 젤 폴리머 전해질 조성물을 주입한 후 봉합하는 단계; 및 (c) 주입된 전해질 조성물을 중합시켜 젤 폴리머 전해질을 형성하는 단계를 포함할 수 있다.The electrochromic device configured as described above may be manufactured according to a conventional method known in the art, such as (a) preparing a first electrode and a second electrode; (b) injecting and then sealing the gel polymer electrolyte composition according to the present invention between the prepared first and second electrodes; And (c) polymerizing the injected electrolyte composition to form a gel polymer electrolyte.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
[실시예]EXAMPLE
젤 폴리머 전해질용 조성물의 제조Preparation of gel polymer electrolyte composition
(실시예 1)(Example 1)
에틸렌 카보네이트(EC) : 에틸메틸카보네이트(EMC): 다이메틸카보네이트 (DMC) = 2:3:5(부피비)의 조성을 갖는 비수 전해액 용매에 LiPF6를 1M 농도가 되도록 용해하여 전해액을 준비하였다. 상기 화학식7a의 올리고머 (분자량 7,800, 단위 A는 2몰, 단위B: 단위 C: 단위 D: 단위 E의 몰비는 4.7 : 33.4 : 14.3 : 47.6) 5% 및 중합개시제로서 AIBN을 올리고머 전체 함량 대비 0.5 중량%, VC 0.5%를 첨가하여 젤 폴리머 전해질용 조성물을 제조하였다.Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) = 2: 3: 5 (volume ratio) LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution. The oligomer of Formula 7a (molecular weight 7,800, unit A is 2 mol, unit B: unit C: unit D: mole ratio of unit E is 4.7: 33.4: 14.3: 47.6) 5% and AIBN as the polymerization initiator 0.5 to the total content of the oligomer A composition for gel polymer electrolyte was prepared by adding weight% and 0.5% VC.
(실시예 2)(Example 2)
에틸렌 카보네이트(EC) : 에틸메틸카보네이트(EMC): 다이메틸카보네이트 (DMC) = 2:3:5(부피비)의 조성을 갖는 비수 전해액 용매에 LiPF6를 1M 농도가 되도록 용해하여 전해액을 준비하였다. 상기 화학식7b의 올리고머 (분자량 8,500, 단위 A는 2몰, 단위 C: 단위 D: 단위 E의 몰비는 30 : 26 :44) 5% 및 중합개시제로서 AIBN을 올리고머 전체 함량 대비 0.5 중량%, VC 0.5%를 첨가하여 젤 폴리머 전해질용 조성물을 제조하였다.Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) = 2: 3: 5 (volume ratio) LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution. 5% of the oligomer of Formula 7b (molecular weight 8,500, unit A is 2 mol, unit C: unit D: mole ratio of unit E is 30:26:44) and 0.5 wt% of the total oligomer content of AIBN as a polymerization initiator, VC 0.5 % Was added to prepare a gel polymer electrolyte composition.
(실시예 3)(Example 3)
에틸렌 카보네이트(EC) : 에틸메틸카보네이트(EMC): 다이메틸카보네이트 (DMC) = 2:3:5(부피비)의 조성을 갖는 비수 전해액 용매에 LiPF6를 1M 농도가 되도록 용해하여 전해액을 준비하였다. 상기 화학식7c의 올리고머 (분자량 8,500, 단위 A는 1몰, 단위 C: 단위 D: 단위 E의 몰비는 30 : 26 :44) 5% 및 중합개시제로서 AIBN을 올리고머 전체 함량 대비 0.5 중량 % VC 0.5%를 첨가하여 젤 폴리머 전해질용 조성물을 제조하였다.Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) = 2: 3: 5 (volume ratio) LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution. 5% of the oligomer of Chemical Formula 7c (molecular weight 8,500, unit A is 1 mol, unit C: unit D: molar ratio of unit E is 30: 26:44) and 0.5 wt% VC 0.5% of the total content of the oligomer as the polymerization initiator Was added to prepare a composition for a gel polymer electrolyte.
(실시예 4)(Example 4)
에틸렌 카보네이트(EC) : 에틸메틸카보네이트(EMC): 다이메틸카보네이트 (DMC) = 2:3:5(부피비)의 조성을 갖는 비수 전해액 용매에 LiPF6를 1M 농도가 되도록 용해하여 전해액을 준비하였다. 상기 화학식7d의 올리고머 (분자량 8,100, 단위 A는 2몰, 단위B: 단위 C: 단위 D: 단위 E의 몰비는 4.7 : 33.4 : 14.3 : 47.6) 5% 및 중합개시제로서 AIBN을 올리고머 전체 함량 대비 0.5 중량 % VC 0.5%를 첨가하여 젤 폴리머 전해질용 조성물을 제조하였다.Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) = 2: 3: 5 (volume ratio) LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution. The oligomer of Formula 7d (molecular weight 8,100, unit A is 2 moles, unit B: unit C: unit D: mole ratio of unit E is 4.7: 33.4: 14.3: 47.6) 5% and AIBN as the polymerization initiator 0.5 to the total content of the oligomer A composition for gel polymer electrolyte was prepared by adding 0.5% by weight of VC.
(실시예 5)(Example 5)
상기 화학식7a의 올리고머를 12%를 포함하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 젤 폴리머 전해질용 조성물을 제조하였다.A gel polymer electrolyte composition was prepared in the same manner as in Example 1, except that 12% of the oligomer of Chemical Formula 7a was included.
(실시예 6)(Example 6)
에틸렌 카보네이트(EC) : 에틸메틸카보네이트(EMC): 다이메틸카보네이트 (DMC) = 2:3:5(부피비)의 조성을 갖는 비수 전해액 용매에 LiPF6를 1M 농도가 되도록 용해하여 전해액을 준비하였다. 올리고머 (A는 2몰, C:E의 몰비는 1:1, 평균분자량 10,000) 5% 및 중합개시제로서 AIBN을 올리고머 전체 함량 대비 0.5 중량 % VC 0.5%를 첨가하여 젤 폴리머 전해질용 조성물을 제조하였다.Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) = 2: 3: 5 (volume ratio) LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution. 5% oligomer (A is 2 mol, molar ratio of C: E is 1: 1, average molecular weight 10,000) 5% and 0.5% by weight of VC 0.5% to the total content of the oligomer was added as a polymerization initiator to prepare a gel polymer electrolyte composition. .
(비교예 1)(Comparative Example 1)
에틸렌 카보네이트(EC) : 에틸메틸카보네이트(EMC): 다이메틸카보네이트 (DMC) = 2:3:5(부피비)의 조성을 갖는 비수 전해액 용매에 LiPF6를 1M 농도가 되도록 용해하여 전해액을 준비하였다. Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) = 2: 3: 5 (volume ratio) LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution.
이어서, 올리고머로 본 발명의 올리고머를 구성하는 단위 중 우레탄을 포함하는 단위 C 및 실록산을 포함하는 단위 E를 포함하지 않는 대신, 아크릴레이트를 포함하는 단량체로부터 유도된 단위 A만을 포함하는 디펜타에리트리톨 펜타아크릴레이트(dipentaerythritol pentaacrylate)로 이루어진 올리고머를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 젤 폴리머 전해질용 조성물을 제조하였다..Subsequently, in the units constituting the oligomer of the present invention as an oligomer, the unit C containing urethane and the unit E including siloxane, instead of the dipentaerythritol containing only unit A derived from the monomer including acrylate A gel polymer electrolyte composition was prepared in the same manner as in Example 1, except that an oligomer made of pentaacrylate (dipentaerythritol pentaacrylate) was used.
(비교예 2)(Comparative Example 2)
에틸렌 카보네이트(EC) : 에틸메틸카보네이트(EMC): 다이메틸카보네이트 (DMC) = 2:3:5(부피비)의 조성을 갖는 비수 전해액 용매에 LiPF6를 1M 농도가 되도록 용해하여 전해액을 준비하였다. Ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) = 2: 3: 5 (volume ratio) LiPF 6 was dissolved in a non-aqueous electrolyte solvent to a concentration of 1 M to prepare an electrolyte solution.
이어서, 올리고머로 본 발명의 올리고머를 구성하는 단위 중 실록산을 포함하는 단위 E를 포함하지 않는 대신, 아크릴레이트를 포함하는 단량체로부터 유도된 단위 A와 우레탄을 포함하는 단위 C로 이루어진 하기 화학식 8로 표시되는 올리고머를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 젤 폴리머 전해질용 조성물을 제조하였다.Subsequently, instead of including the unit E containing siloxane among the units constituting the oligomer of the present invention as an oligomer, a unit A derived from a monomer containing acrylate and a unit C including urethane are represented by the following Chemical Formula 8 Except for using the oligomer to prepare a composition for a gel polymer electrolyte in the same manner as in Example 1.
[화학식 8][Formula 8]
Figure PCTKR2015010472-appb-I000055
Figure PCTKR2015010472-appb-I000055
이차전지 의 제조 Manufacture of Secondary Battery
(실시예 7)(Example 7)
양극 활물질로 (LiNi1 / 3Co1 / 3Mn1 / 3O2; NCM) 94 중량%, 도전재로 카본 블랙(carbon black) 3 중량%, 바인더로 PVdF 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.As a cathode active material (LiNi 1/3 Co 1/ 3 Mn 1/3 O 2; NCM) 94 % by weight, of a conductive material of carbon black (carbon black) 3% by weight, solvent: 3% by weight of PVdF as a binder, N- methyl A positive electrode mixture slurry was prepared by adding to 2-pyrrolidone (NMP). The positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 μm, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
음극 활물질로 탄소 분말, 바인더로 PVdF, 도전재로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.A negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive material at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent. The negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 μm, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 이용하여 전지를 조립하였으며, 조립된 전지에 상기 실시예 1에서 제조된 젤 폴리머 전해질용 조성물을 주입한 후 2일 방치후 70℃로 5시간 가열하여 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.The battery was assembled using a separator consisting of the positive electrode, the negative electrode, and three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), and the gel polymer electrolyte composition prepared in Example 1 was injected into the assembled battery. After leaving for 2 days and then heated to 70 ℃ for 5 hours to prepare a secondary battery containing a gel polymer electrolyte.
(실시예 8)(Example 8)
실시예 1의 젤 폴리머 전해질용 조성물을 주입하는 대신 실시예 2의 젤 폴리머 전해질용 조성물을 주입하는 것을 제외하고는 상기 실시예 7과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.A secondary battery including the gel polymer electrolyte was manufactured in the same manner as in Example 7, except that the gel polymer electrolyte composition of Example 2 was injected instead of the gel polymer electrolyte composition of Example 1.
(실시예 9)(Example 9)
실시예 1의 젤 폴리머 전해질용 조성물을 주입하는 대신 실시예 5의 젤 폴리머 전해질용 조성물을 주입하는 것을 제외하고는 상기 실시예 7과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.A secondary battery including the gel polymer electrolyte was manufactured in the same manner as in Example 7, except that the gel polymer electrolyte composition of Example 5 was injected instead of the gel polymer electrolyte composition of Example 1.
(실시예 10)(Example 10)
실시예 1의 젤 폴리머 전해질용 조성물을 주입하는 대신 실시예 6의 젤 폴리머 전해질용 조성물을 주입하는 것을 제외하고는 상기 실시예 7과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.A secondary battery including the gel polymer electrolyte was manufactured in the same manner as in Example 7, except that the gel polymer electrolyte composition of Example 6 was injected instead of the gel polymer electrolyte composition of Example 1.
(비교예 3)(Comparative Example 3)
실시예 1의 젤 폴리머 전해질용 조성물을 주입하는 대신 비교예 1의 젤 폴리머 전해질용 조성물을 주입하는 것을 제외하고는 상기 실시예 7과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.A secondary battery including the gel polymer electrolyte was manufactured in the same manner as in Example 7, except that the gel polymer electrolyte composition of Comparative Example 1 was injected instead of the gel polymer electrolyte composition of Example 1.
(비교예 4)(Comparative Example 4)
비교예 1의 젤 폴리머 전해질용 조성물을 주입하는 대신 비교예 2의 젤 폴리머 전해질용 조성물을 주입하는 것을 제외하고는 상기 비교예 3과 마찬가지의 방법으로 젤 폴리머 전해질을 포함하는 이차전지를 제조하였다.A secondary battery including a gel polymer electrolyte was manufactured in the same manner as in Comparative Example 3 except that the gel polymer electrolyte composition of Comparative Example 2 was injected instead of the composition for gel polymer electrolyte of Comparative Example 1.
(실험예 1: 이온 전도도 측정)Experimental Example 1 Measurement of Ion Conductivity
상기 실시예 1, 2, 5 및 6에서 제조된 젤 폴리머 전해질용 조성물과, 비교예 1에서 제조된 젤 폴리머 전해질용 조성물을 이용하여 13mm두께의 필름 형태로 제조한 다음, SUS/GPE/SUS 셀 형태로 Impedance측정법을 사용하여 Li+ 이온 전도도를 측정하였다. 측정장비는 Bio Logic사의 VMP3 모델로 측정조건은 10,000 - 0.1Hz, 10mV의 amplitude 조건으로 상온(25℃)에서 진행 되었다. 그 결과를 하기 표 1에 나타내었다.The gel polymer electrolyte composition prepared in Examples 1, 2, 5, and 6 and the gel polymer electrolyte composition prepared in Comparative Example 1 were prepared in the form of a film of 13 mm thickness, and then SUS / GPE / SUS cells. In the form, Li + ion conductivity was measured using Impedance measurement. The measuring instrument is Bio Logic's VMP3 model, and the measurement conditions were performed at room temperature (25 ℃) under 10,000-0.1Hz and 10mV amplitude conditions. The results are shown in Table 1 below.
이온 전도도 Ion conductivity
실시예 1Example 1 8.4mS/cm8.4mS / cm
실시예 2Example 2 8.1mS/cm8.1mS / cm
실시예 5Example 5 6.5mS/cm6.5mS / cm
실시예 6Example 6 4.8mS/cm4.8mS / cm
비교예 1Comparative Example 1 7.0mS/cm7.0mS / cm
상기 표 1에서 보여지는 바와 같이 본 발명의 실시예 1 및 2에서 제조된 젤 폴리머 전해질용 조성물을 이용하는 경우에, 기존의 아크릴레이트계 올리고머를 포함하는 비교예 1의 겔 폴리머 전해질용 조성물에 비하여 약 10% 이상 개선된 것을 확인할 수 있다. 또한, 실시예 5와 같이 올리고머의 함량이 10%를 초과하는 경우에는, 실시예 6에 겔 폴리머 전해질용 조성물에 비해서는 약 25% 이상 이온전도도가 증가한 것을 알 수 있다.As shown in Table 1, when using the gel polymer electrolyte composition prepared in Examples 1 and 2 of the present invention, compared to the gel polymer electrolyte composition of Comparative Example 1 containing a conventional acrylate oligomer It can be seen that more than 10% improvement. In addition, when the content of the oligomer exceeds 10% as in Example 5, it can be seen that the ionic conductivity is increased by about 25% or more compared to the composition for gel polymer electrolyte in Example 6.
다만, 실시예 6의 경우, 실시예 1에 비하여 이온전도도가 낮아짐을 알 수 있었다. However, in Example 6, it was found that the ionic conductivity is lower than in Example 1.
이러한 결과로부터, 본 발명에서와 같이 올리고머를 형성하는 단위들의 몰비를 적절히 조절하여 포함하는 경우, 이온전도도가 종래 젤 폴리머 전해질에 비하여 향상되는 효과를 구현할 수 있음을 확인할 수 있다. From these results, it can be seen that when the molar ratio of the units forming the oligomer is properly included as in the present invention, the ion conductivity can be improved compared to the conventional gel polymer electrolyte.
(실험예 2)Experimental Example 2
상기 실시예 1, 2, 5, 및 6과 비교예 1에서 제조된 젤 폴리머 전해질용 조성물을 NMR 측정용 inner tube를 투입하고, inner tube 바깥쪽에서 GPE를 polymerization 시킨 후 inner tube 안쪽에 acetone-d6를 넣은 다음, Li+ 이온이동계수를 하기 측정 방법을 이용하여 측정하였다. 그 결과 값을 하기 표 2에 나타내었다.In the gel polymer electrolyte composition prepared in Examples 1, 2, 5, and 6 and Comparative Example 1, the inner tube for NMR measurement was added, the GPE was polymerized on the outer side of the inner tube, and then acetone-d6 was added to the inner tube. After the addition, the Li + ion transfer coefficient was measured using the following measuring method. The results are shown in Table 2 below.
[측정 방법][How to measure]
상기 Li+ 이온이동계수= Li+ 이온확산도 / (Li+ 이온확산도 + 음이온 확산도)Li + ion migration coefficient = Li + ion diffusivity / (Li + ion diffusivity + anion diffusivity)
NMR 장비: Varian 500MHz NMR/ dual probeNMR Instruments: Varian 500MHz NMR / dual probe
Li+ 이온확산도: 7Li diffusion NMR 로 측정Li + ion diffusivity: measured by 7 Li diffusion NMR
<7Li diffusion NMR 실험 조건>< 7 Li diffusion NMR experimental conditions>
-Diffusion gradient length: 4.0 msecDiffusion gradient length: 4.0 msec
-Diffusion delay: 200.0 msec-Diffusion delay: 200.0 msec
-Lowest gradient value: 100-Lowest gradient value: 100
-Highest gradient value: 30000Highest gradient value: 30000
-Number of increments: 16-Number of increments: 16
음이온확산도: 19F diffusion NMR로 측정. Anion Diffusion: Measured by 19 F diffusion NMR.
<19F diffusion NMR 실험 조건>< 19 F diffusion NMR test conditions>
-Diffusion gradient length: 3.0 msecDiffusion gradient length: 3.0 msec
-Diffusion delay: 70.0 msec-Diffusion delay: 70.0 msec
-Lowest gradient value: 1000-Lowest gradient value: 1000
-Highest gradient value: 23000Highest gradient value: 23000
-Number of increments: 16-Number of increments: 16
사용된 용매(solvent): acetone-d6 (이때, 시료 자체 내에서의 확산(diffusion )값을 측정하기 위하여 inner tube(acetone-d6)를 사용하여 시료와 deuterium solvent가 섞이지 않도록 하였다.)Solvent used: acetone-d 6 (In this case, the inner tube (acetone-d 6 ) was used to prevent the sample from mixing with the deuterium solvent to measure the diffusion value in the sample itself.)
pulse sequence: stimulated echo with gradient pulsepulse sequence: stimulated echo with gradient pulse
Gradient amplitude: 최고 gradient power일 때의 peak intensity가 최저 gradient power일 때의 peak intensity 대비 약 2~5% 정도 수준이 되도록 조절하였으며 이 구간을 solution NMR과 동일하게 16단계로 나누어 각 시료에 대해 16번의 다른 amplitude를 적용하였다.Gradient amplitude: The peak intensity at the highest gradient power is adjusted to be about 2 to 5% of the peak intensity at the lowest gradient power. This section is divided into 16 steps in the same manner as the solution NMR. Different amplitudes were applied.
젤 폴리머 전해질용 조성물Gel polymer electrolyte composition Li+ 이온이동계수Li + ion transfer coefficient
실시예 1Example 1 0.4350.435
실시예 2Example 2 0.4200.420
실시예 5Example 5 0.3820.382
실시예 6Example 6 0.3100.310
비교예 1Comparative Example 1 0.4020.402
상기 표 2에서 보여지는 바와 같이 본 발명의 실시예 1 및 2에서 제조된 젤 폴리머 전해질용 조성물을 이용하는 경우에, 기존의 아크릴레이트계 올리고머를 포함하는 비교예 1의 겔 폴리머 전해질용 조성물에 비하여 Li+ 이온이동계수가 약 4% 이상 개선된 것을 확인할 수 있다. As shown in Table 2, in the case of using the gel polymer electrolyte composition prepared in Examples 1 and 2 of the present invention, Li compared to the gel polymer electrolyte composition of Comparative Example 1 containing an existing acrylate oligomer + It can be seen that the ion transfer coefficient is improved by about 4% or more.
또한, 실시예 5와 같이 올리고머의 함량이 10%를 초과하는 경우에도, 실시예 6에 겔 폴리머 전해질용 조성물에 비해서는 약 15% 이상 Li+ 이온이동계수가 증가한 것을 알 수 있다.In addition, even when the content of the oligomer exceeds 10% as in Example 5, it can be seen that the Li + ion transfer coefficient increased by about 15% or more compared to the gel polymer electrolyte composition in Example 6.
다만, 실시예 6의 경우, 실시예 1에 비하여 Li+ 이온이동계수가 낮아짐을 알 수 있었다. However, in Example 6, it can be seen that the Li + ion transfer coefficient is lower than in Example 1.
이러한 결과로부터, 본 발명에서와 같이 올리고머를 형성하는 단위들의 몰비를 적절히 조절하여 포함하는 경우, 비하여 Li+ 이온이동계수가 종래 젤 폴리머 전해질에 비하여 향상되는 효과를 구현할 수 있음을 확인할 수 있다. From these results, it can be seen that when the molar ratio of the units forming the oligomer is included as appropriate in the present invention, the Li + ion transfer coefficient can be improved compared to the conventional gel polymer electrolyte.
(실험예 3)Experimental Example 3
상기 실시예 7 내지 10과 비교예 3에서 제조된 이차전지 내에서 젤 폴리머 전해질을 구현한 다음, 젤 폴리머 전해질을 용매 (아세톤) 추출하였다. 이어서, 추출된 용매를 NMR측정을 통해 미반응 올리고머 잔량을 분석하였다. 그 결과를 하기 표 3에 나타내었다.After implementing the gel polymer electrolyte in the secondary batteries prepared in Examples 7 to 10 and Comparative Example 3, the gel polymer electrolyte was extracted with a solvent (acetone). Then, the extracted solvent was analyzed by the NMR measurement of the remaining amount of unreacted oligomer. The results are shown in Table 3 below.
이차전지Secondary battery 미반응 올리고머 (중량%)Unreacted oligomer (% by weight)
실시예 7Example 7 N.DN.D
실시예 8Example 8 0.5%0.5%
실시예 9Example 9 N.DN.D
실시예 10Example 10 2%2%
비교예 3Comparative Example 3 3.0%3.0%
상기 표 3에서 보여지는 바와 같이 실시예 7 내지 10의 이차전지의 미반응 올리고머의 함량은 2% 이하인 반면, 비교예 3의 이차전지의 미반응 올리고머의 함량은 3%로 미반응 올리고머의 함량이 높은 것을 알 수 있다. As shown in Table 3, the content of the unreacted oligomer of the secondary batteries of Examples 7 to 10 is 2% or less, while the content of the unreacted oligomer of the secondary battery of Comparative Example 3 is 3% and the content of the unreacted oligomer is 3%. It is high.
한편, 미반응 올리고머의 함량이 높은 경우, 겔 폴리머 전해질 내에서의 부반응 및 저항이 증가되어, 이차전지의 사이클 수명 특성을 저하시킬 수 있다. On the other hand, when the content of the unreacted oligomer is high, side reactions and resistance in the gel polymer electrolyte are increased, which may lower the cycle life characteristics of the secondary battery.
이로부터 실시예 7 내지 10의 이차전지는 비교예 3의 이차전지에 비하여, 부반응 및 저항이 감소되어 전지의 사이클 수명 특성이 개선될 것이라는 점을 알 수 있었다.From this, it can be seen that the secondary batteries of Examples 7 to 10 have a lower side reaction and resistance than the secondary batteries of Comparative Example 3, thereby improving cycle life characteristics of the batteries.
(실험예 4: 충방전 실험)(Experimental example 4: charge and discharge experiment)
상기 실시예 7 내지 10에서 제조된 이차전지 셀(설계용량 760mAh) 및 비교예 3의 이차전지에 대하여 1.0C로 전압이 4.15V에 도달할 때까지 정전류 충전하고 이어서, 상기 전압에서 전류가 감소하여 1/20C에 도달할 때까지 정전압 충전을 실시하였다. 그런 다음 1.0C로 전압이 2.5V에 이를 때까지 정전류로 방전하였다. 상기 충방전을 100회 반복하였다.For the secondary battery cells (design capacity 760mAh) and the secondary battery of Comparative Example 3 prepared in Examples 7 to 10 and constant current charge until the voltage reaches 4.15V at 1.0C, and then the current is reduced at the voltage Constant voltage charging was performed until it reached 1 / 20C. It was then discharged with constant current at 1.0C until the voltage reached 2.5V. The charging and discharging was repeated 100 times.
상기 결과로부터 하기 식을 이용하여 용량유지율을 계산하고, 그 결과를 하기 표 4 및 도 1에 나타내었다.From the above results, the capacity retention rate was calculated using the following equation, and the results are shown in Table 4 and FIG. 1.
<식><Expression>
100번째 사이클에서의 용량유지율 = 100번째 사이클 방전용량 / 첫 번째 사이클 방전용량Capacity maintenance rate at 100th cycle = 100th cycle discharge capacity / 1st cycle discharge capacity
1st 사이클 방전 용량1 st cycle discharge capacity 100th 사이클 방전 용량100 th cycle discharge capacity 100th 사이클에서의 용량 유지율(%)Capacity retention at 100 th cycles (%)
실시예 7Example 7 754mAh754 mAh 739mAh739 mAh 98%98%
실시예 8Example 8 751mAh751 mAh 728mAh728 mAh 97%97%
실시예 9Example 9 730mAh730 mAh 715mAh715 mAh 98%98%
실시예 10Example 10 683mAh 683 mAh 417mAh417 mAh 61%61%
비교예 3Comparative Example 3 720mAh720 mAh 117mAh117 mAh 16.2%16.2%
상기 표 4에서 보이는 바와 같이 실시예 7 내지 10의 이차전지, 특히 실시예 7 및 8의 이차전지는 비교예 3의 이차전지에 비하여 충,방전 시 용량유지율이 보다 우수한 것을 알 수 있다.As shown in Table 4, it can be seen that the secondary batteries of Examples 7 to 10, particularly the secondary batteries of Examples 7 and 8, have better capacity retention rates during charging and discharging than secondary batteries of Comparative Example 3.
(실험예 5) Experimental Example 5
상기 실시예 1 및 비교예 2에서 제조된 각각의 젤 폴리머 전해액용 조성물에 대하여 ring방식 측정 방법 (KRUSS사의 tensiometer K11 model 장치)를 이용하여 25℃에서 표면장력을 측정하였다. 그 결과를 하기 표 5에 나타내었다. For each gel polymer electrolyte composition prepared in Example 1 and Comparative Example 2, the surface tension was measured at 25 ° C. using a ring method (a tensiometer K11 model device manufactured by KRUSS). The results are shown in Table 5 below.
표면장력 (mN/m)Surface tension (mN / m)
실시예 1Example 1 29mN/m29mN / m
비교예 2Comparative Example 2 21mN/m21mN / m
상기 표 5에 나타낸 바와 같이, 단위 B, C, D 및 E를 포함하는 올리고머를 포함하는 본 발명의 젤 폴리머 전해질의 경우, 단순히 아크릴레이트 단위와 우레탄 단위를 포함하는 올리고머를 포함하는 비교예 2의 젤 폴리머 전해질에 비하여 표면 장력이 높은 것을 알 수 있다. As shown in Table 5, in the case of the gel polymer electrolyte of the present invention including the oligomer including the units B, C, D and E, the comparative example 2 of the comparative example including an oligomer containing an acrylate unit and a urethane unit It can be seen that the surface tension is higher than that of the gel polymer electrolyte.
이러한 결과에 따라, 본 발명의 올리고머, 특히 단위 E를 포함하는 올리고머를 포함하는 젤 폴리머 전해질의 경우, 표면 장력이 높아 분리막과의 친화력이 향상될 수 있고, 이에 따라 저항이 감소되어 이온전도도 향상 효과와 사이클 수명 특성 향상을 구현할 수 있음을 예측할 수 있다.As a result, in the case of the gel polymer electrolyte including the oligomer of the present invention, in particular, the oligomer including the unit E, the affinity with the separator can be improved due to the high surface tension, thereby reducing the resistance and improving the ion conductivity. It can be expected that the improvement of cycle life characteristics can be realized.
(실험예 6)Experimental Example 6
상기 실시예 7과 추가 비교예 4에서 제조된 겔 폴리머 전해질을 포함하는 전지를 분해하여, 겔 폴리머 전해액이 함침되어 있는 분리막을 분리해 낸 다음, 분리된 분리막을 60℃ 및 120℃ 챔버에 약 30분간 방치하여 열처리 전후의 분리막의 수축 (shrink) 면적 정도를 비교하였다. 그 결과(비율)을 하기 표 6에 나타내었다. The cell including the gel polymer electrolyte prepared in Example 7 and Comparative Example 4 was decomposed to separate the separator containing the gel polymer electrolyte, and then the separated separator was placed in a chamber at 60 ° C. and 120 ° C. for about 30 minutes. After leaving for a minute, the degree of shrinkage of the membrane before and after the heat treatment was compared. The results (ratios) are shown in Table 6 below.
분리막의 면적 (cm2)Membrane Area (cm 2 )
25℃25 ℃ 60℃60 ℃ 120℃120 ℃
실시예 7Example 7 20.5220.52 19.7619.76 19.3819.38
비교예 4Comparative Example 4 20.5220.52 14.8214.82 11.5511.55
상기 표 6에 나타낸 바와 같이, 본 발명의 젤 폴리머 전해질이 함침된 분리막의 경우, 비교예 4의 젤 폴리머 전해질이 함침된 분리막에 비하여 고온에서의 분리막 수축 정도가 낮은 것을 알 수 있다. 이러한 결과로부터, 본 발명의 젤 폴리머 전해질의 경우 고온에서의 내구성이 향상되고, 이에 따라 이차전지의 수명 특성이 보다 향상될 수 있음을 예측할 수 있다.As shown in Table 6, in the case of the membrane impregnated with the gel polymer electrolyte of the present invention, it can be seen that the degree of shrinkage of the membrane at a high temperature is lower than that of the separator impregnated with the gel polymer electrolyte of Comparative Example 4. From these results, it can be predicted that the gel polymer electrolyte of the present invention is improved in durability at high temperature, thereby improving the life characteristics of the secondary battery.

Claims (46)

  1. 폴리머 네트워크; 및Polymer networks; And
    상기 폴리머 네트워크 상에 함침되어 있는 전해액을 포함하며,An electrolyte impregnated on said polymer network,
    상기 폴리머 네트워크는 적어도 하나 이상의 공중합성 아크릴레이트 또는 아크릴산을 포함하는 단량체로부터 유도된 단위 A, 우레탄을 포함하는 단위 C, 및 실록산을 포함하는 단위 E를 포함하는 제1 올리고머가 3차원 구조로 결합되어 형성된 것을 특징으로 하는 젤 폴리머 전해질.The polymer network comprises a first oligomer comprising unit A derived from a monomer comprising at least one copolymerizable acrylate or acrylic acid, a unit C comprising urethane, and a unit E comprising siloxane in a three-dimensional structure. Gel polymer electrolyte, characterized in that formed.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 제1 올리고머는 하기 화학식 1로 표시되는 것을 특징으로 하는 젤 폴리머 전해질:Gel polymer electrolyte, characterized in that the first oligomer is represented by the following formula (1):
    [화학식 1][Formula 1]
    A-[C-E]k-C-AA- [CE] k -CA
    상기 식에서, Where
    k는 1 내지 200의 정수이다.k is an integer of 1 to 200.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 단위 A는 하이드록시메틸 (메타)아크릴레이트, 및 하이드록시에틸 (메타)아크릴레이트로 이루어진 군으로부터 선택된 적어도 하나의 화합물로부터 유도된 단위, 또는 하기 화학식 (i)로 표시되는 단위인 것을 특징으로 하는 젤 폴리머 전해질:Unit A is a unit derived from at least one compound selected from the group consisting of hydroxymethyl (meth) acrylate and hydroxyethyl (meth) acrylate, or a unit represented by the following formula (i) Gel polymer electrolyte:
    Figure PCTKR2015010472-appb-I000056
    (i) .
    Figure PCTKR2015010472-appb-I000056
    (i).
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 단위 C는 하기 화학식 2a 또는 화학식 2b로 표시되는 단위를 포함하는 것을 특징으로 하는 젤 폴리머 전해질:The unit C is a gel polymer electrolyte, characterized in that it comprises a unit represented by the formula (2a) or (2b):
    [화학식 2a][Formula 2a]
    Figure PCTKR2015010472-appb-I000057
    Figure PCTKR2015010472-appb-I000057
    [화학식 2b][Formula 2b]
    Figure PCTKR2015010472-appb-I000058
    Figure PCTKR2015010472-appb-I000058
    상기 식에서,Where
    R'은 탄소수 1 내지 10의 선형 또는 비선형 알킬렌기, 탄소수 3 내지 10의 치환 또는 비치환된 사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 바이사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 아릴렌기, 탄소수 6 내지 20의 치환 또는 비치환된 바이아릴렌기, 탄소수 6 내지 20의 치환 또는 비치환된 아릴렌기, 나프탈렌기 및 안트라센기로 이루어진 군으로부터 선택된 적어도 하나이다. R 'is a linear or nonlinear alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 10 carbon atoms, a substituted or unsubstituted bicycloalkylene group having 6 to 20 carbon atoms, or a substituted or substituted carbon group having 6 to 20 carbon atoms or At least one selected from the group consisting of an unsubstituted arylene group, a substituted or unsubstituted biarylene group having 6 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, a naphthalene group and an anthracene group.
  5. 청구항 4에 있어서, The method according to claim 4,
    상기 R'은 하기 그룹으로 이루어진 군으로부터 선택된 하나의 화합물인 것을 특징으로 하는 젤 폴리머 전해질:The gel polymer electrolyte, characterized in that R 'is one compound selected from the group consisting of:
    Figure PCTKR2015010472-appb-I000059
    (R-i)
    Figure PCTKR2015010472-appb-I000059
    (Ri)
    Figure PCTKR2015010472-appb-I000060
    (R-ii)
    Figure PCTKR2015010472-appb-I000060
    (R-ii)
    Figure PCTKR2015010472-appb-I000061
    (R-iii)
    Figure PCTKR2015010472-appb-I000061
    (R-iii)
    Figure PCTKR2015010472-appb-I000062
    (R-iv)
    Figure PCTKR2015010472-appb-I000062
    (R-iv)
    Figure PCTKR2015010472-appb-I000063
    (R-v)
    Figure PCTKR2015010472-appb-I000063
    (Rv)
    Figure PCTKR2015010472-appb-I000064
    (R-vi)
    Figure PCTKR2015010472-appb-I000064
    (R-vi)
    Figure PCTKR2015010472-appb-I000065
    (R-vii)
    Figure PCTKR2015010472-appb-I000065
    (R-vii)
    Figure PCTKR2015010472-appb-I000066
    (R-viii)
    Figure PCTKR2015010472-appb-I000066
    (R-viii)
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 단위 E는 하기 화학식 3으로 표시되는 단위를 포함하는 것을 특징으로 하는 젤 폴리머 전해질:The gel polymer electrolyte, characterized in that the unit E comprises a unit represented by the following formula (3):
    [화학식 3][Formula 3]
    Figure PCTKR2015010472-appb-I000067
    Figure PCTKR2015010472-appb-I000067
    상기 식에서,Where
    R1 및 R2는 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이고,R 1 and R 2 are linear or nonlinear alkylene groups having 1 to 5 carbon atoms,
    R3 및 R4는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기 및 페닐기로 이루어진 군으로부터 선택된 하나이며,R 3 and R 4 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, and a phenyl group,
    R5 내지 R10는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기, 페닐기, 및 불소로 이루어진 군으로부터 선택된 하나이고,R 5 to R 10 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, a phenyl group, and fluorine,
    o는 0 또는 1의 정수이고,o is an integer of 0 or 1,
    p는 0 또는 1 내지 400의 정수이고,p is 0 or an integer from 1 to 400,
    r은 1 내지 400의 정수이며,r is an integer from 1 to 400,
    상기 p:r의 몰비는 0:100 내지 80:20이다.The molar ratio of p: r is 0: 100 to 80:20.
  7. 청구항 6에 있어서, The method according to claim 6,
    상기 단위 E는 하기 화학식 3a 내지 3g로 이루어진 군으로부터 선택된 적어도 하나의 화합물을 포함하는 것을 특징으로 하는 젤 폴리머 전해질:Wherein the unit E comprises at least one compound selected from the group consisting of the following Chemical Formulas 3a to 3g:
    [화학식 3a] [Formula 3a]
    Figure PCTKR2015010472-appb-I000068
    Figure PCTKR2015010472-appb-I000068
    [화학식 3b][Formula 3b]
    Figure PCTKR2015010472-appb-I000069
    Figure PCTKR2015010472-appb-I000069
    [화학식 3c][Formula 3c]
    Figure PCTKR2015010472-appb-I000070
    Figure PCTKR2015010472-appb-I000070
    [화학식 3d][Formula 3d]
    Figure PCTKR2015010472-appb-I000071
    Figure PCTKR2015010472-appb-I000071
    [화학식 3e][Formula 3e]
    Figure PCTKR2015010472-appb-I000072
    Figure PCTKR2015010472-appb-I000072
    [화학식 3f][Formula 3f]
    Figure PCTKR2015010472-appb-I000073
    Figure PCTKR2015010472-appb-I000073
    [화학식 3g][Formula 3g]
    Figure PCTKR2015010472-appb-I000074
    Figure PCTKR2015010472-appb-I000074
    상기 식에서,Where
    p는 0 또는 1 내지 400의 정수이고,p is 0 or an integer from 1 to 400,
    r은 1 내지 400의 정수이며,r is an integer from 1 to 400,
    상기 p:r의 몰비는 0:100 내지 80:20이다.The molar ratio of p: r is 0: 100 to 80:20.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 올리고머 1몰 중에서 단위 A는 1몰 또는 2몰이고,Unit A is 1 mol or 2 mol in 1 mol of the first oligomer,
    상기 단위 C : 단위 E의 몰비는 1.005:1 내지 2:1인 것을 특징으로 하는 젤 폴리머 전해질.Gel polymer electrolyte, characterized in that the molar ratio of the unit C: unit E is 1.005: 1 to 2: 1.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 올리고머는 선택적으로 하기 화학식 4로 표시되는 단위 B 및 하기 화학식 5로 표시되는 단위 D로 이루어진 군으로부터 선택된 적어도 하나 이상의 단위를 더 포함하는 것을 특징으로 하는 젤 폴리머 전해질.The first oligomer optionally further comprises at least one or more units selected from the group consisting of a unit B represented by the following formula (4) and a unit D represented by the following formula (5).
    [화학식 4][Formula 4]
    *-CO-R''-O-** -CO-R ''-O- *
    [화학식 5][Formula 5]
    *-O-[R'''-O]m-** -O- [R '''-O] m- *
    상기 식에서, Where
    R''는 탄소수 1 내지 10의 치환 또는 비치환된 선형의 알킬렌기, 또는 탄소수 1 내지 10의 치환 또는 비치환된 비선형의 알킬렌기이고,R '' is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
    R'''는 탄소수 1 내지 10의 치환 또는 비치환된 선형의 알킬렌기, 또는 탄소수 1 내지 10의 치환 또는 비치환된 비선형의 알킬렌기이고,R '' 'is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
    m은 1 내지 30의 정수이다.m is an integer of 1-30.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 단위 B는 하기 그룹으로부터 이루어진 군으로부터 선택된 적어도 하나의 화합물인 것을 특징으로 하는 젤 폴리머 전해질.The unit B is a gel polymer electrolyte, characterized in that at least one compound selected from the group consisting of:
    *-CO-CH2CH2-O-* (B-i)* -CO-CH 2 CH 2 -O- * (Bi)
    *-CO-CHCH3CH2-O-* (B-ii)* -CO-CHCH 3 CH 2 -O- * (B-ii)
    *-CO-CH2CH2CH2CH2 CH2-O-* (B-iii)* -CO-CH 2 CH 2 CH 2 CH 2 CH 2 -O- * (B-iii)
    *-CO-CHCH3CH2CH2-O-* (B-iv)* -CO-CHCH 3 CH 2 CH 2 -O- * (B-iv)
  11. 청구항 9에 있어서,The method according to claim 9,
    상기 단위 D는 하기 그룹으로부터 이루어진 군으로부터 선택된 적어도 하나의 화합물인 것을 특징으로 하는 젤 폴리머 전해질.The unit D is a gel polymer electrolyte, characterized in that at least one compound selected from the group consisting of:
    *-O-CH2CH2-O-* (D-i)* -O-CH 2 CH 2 -O- * (Di)
    *-O-CHCH3CH2-O-* (D-ii)* -O-CHCH 3 CH 2 -O- * (D-ii)
  12. 청구항 9에 있어서,The method according to claim 9,
    상기 제1 올리고머는 하기 화학식 6a 내지 6c로 이루어진 군으로부터 선택된 적어도 하나로 표시되는 것을 특징으로 하는 젤 폴리머 전해질.Gel polymer electrolyte, characterized in that the first oligomer is represented by at least one selected from the group consisting of the formulas 6a to 6c.
    [화학식 6a][Formula 6a]
    [A]s-[B]n-[C-E-]k-C-[B]n-A[A] s- [B] n- [CE-] k -C- [B] n -A
    [화학식 6b][Formula 6b]
    [A]s-[C-D-E-D]k-C-A[A] s- [CDED] k -CA
    [화학식 6c][Formula 6c]
    [A]s-[B]n-[C-D-E-D]k-C-[B]n-A.[A] s- [B] n- [CDED] k -C- [B] n -A.
    상기 식에서, Where
    n은 0 또는 1 내지 30의 정수이고, n is 0 or an integer from 1 to 30,
    k는 1 내지 200의 정수이며, k is an integer from 1 to 200,
    s는 0 또는 1이다.s is 0 or 1.
  13. 청구항 9에 있어서,The method according to claim 9,
    상기 제1 올리고머 1몰 중에서 상기 단위 A는 1몰 또는 2몰이고, The unit A is 1 mol or 2 mol in 1 mol of the first oligomer,
    상기 단위 B : 단위 C : 단위 D : 단위 E의 몰비는 0 내지 35 : 2 내지 201 : 0 내지 35 : 1 내지 200 (이때, 단위 B 및 D는 동시에 0은 아니다)인 것을 특징으로 하는 젤 폴리머 전해질.The gel polymer characterized in that the molar ratio of the unit B: unit C: unit D: unit E is 0 to 35: 2 to 201: 0 to 35: 1 to 200 (wherein units B and D are not 0 at the same time) Electrolyte.
  14. 청구항 9에 있어서,The method according to claim 9,
    상기 제1 올리고머는 하기 화학식 7a 내지 7d로 이루어진 군으로부터 선택된 적어도 하나의 화합물인 것을 특징으로 하는 젤 폴리머 전해질.The first oligomer is a gel polymer electrolyte, characterized in that at least one compound selected from the group consisting of the formula 7a to 7d.
    [화학식 7a][Formula 7a]
    Figure PCTKR2015010472-appb-I000075
    Figure PCTKR2015010472-appb-I000075
    [화학식 7b][Formula 7b]
    Figure PCTKR2015010472-appb-I000076
    Figure PCTKR2015010472-appb-I000076
    [화학식7c][Formula 7c]
    Figure PCTKR2015010472-appb-I000077
    Figure PCTKR2015010472-appb-I000077
    [화학식 7d][Formula 7d]
    Figure PCTKR2015010472-appb-I000078
    Figure PCTKR2015010472-appb-I000078
    상기 식에서,Where
    k는 1 내지 200의 정수이고,k is an integer from 1 to 200,
    n은 1 내지 30의 정수이고, n is an integer from 1 to 30,
    m은 1 내지 30의 정수이며,m is an integer from 1 to 30,
    p는 1 내지 400의 정수이고,p is an integer from 1 to 400,
    r은 1 내지 400의 정수이며,r is an integer from 1 to 400,
    상기 p:r의 몰비는 0:100 내지 80:20이다.The molar ratio of p: r is 0: 100 to 80:20.
  15. 청구항 1에 있어서, The method according to claim 1,
    상기 젤 폴리머 전해질은 메틸 아크릴레이트, 메틸 메타크릴레이트, 에틸 아크릴레이트, 에틸 메타크릴레이트, 프로필 아크릴레이트, 프로필 메타크릴레이트, 부틸 아크릴레이트, 부틸 메타크릴레이트, 헥실 아크릴레이트, 헥실 메타크릴레이트, 에틸헥실 아크릴레이트, 에틸헥실 메타크릴레이트, 2,2,2-트리플루오로에틸 아크릴레이트, 2,2,2-트리플루오로에틸 메타크릴레이트, 2,2,3,3-테트라플루오로프로필 아크릴레이트, 및 2,2,3,3-테트라플루오로프로필 메타크릴레이트로 이루어진 군으로부터 선택된 적어도 하나로부터 유도된 단위를 포함하는 제2 올리고머를 더 포함하는 것을 특징으로 하는 젤 폴리머 전해질.The gel polymer electrolyte may be methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl methacrylate, hexyl acrylate, hexyl methacrylate, Ethylhexyl acrylate, ethylhexyl methacrylate, 2,2,2-trifluoroethyl acrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,3,3-tetrafluoropropyl A gel polymer electrolyte further comprising a second oligomer comprising units derived from acrylate, and at least one selected from the group consisting of 2,2,3,3-tetrafluoropropyl methacrylate.
  16. 청구항 15에 있어서,The method according to claim 15,
    상기 제2 올리고머는 제1 올리고머의 전체 함량을 기준으로 50중량% 이하로 포함되는 것을 특징으로 하는 젤 폴리머 전해질.The second oligomer is a gel polymer electrolyte, characterized in that contained in less than 50% by weight based on the total content of the first oligomer.
  17. 청구항 1에 있어서,The method according to claim 1,
    상기 폴리머 네트워크는 폴리머 네트워크 상에 무기물 입자를 추가로 함유하는 것을 특징으로 하는 젤 폴리머 전해질.Wherein said polymer network further contains inorganic particles on said polymer network.
  18. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 올리고머의 중량평균분자량은 1,000 내지 100,000인 것을 특징으로 하는 젤 폴리머 전해질.Gel polymer electrolyte, characterized in that the weight average molecular weight of the first oligomer is 1,000 to 100,000.
  19. 청구항 1에 있어서,The method according to claim 1,
    상기 젤 폴리머 전해질은 25℃ 온도에서 1.0?10-4S/cm 내지 2.0?10-2S/cm의 Li+ 이온전도도를 가지는 것을 특징으로 하는 젤 폴리머 전해질.The gel polymer electrolyte has a Li + ion conductivity of 1.0 ~ 10 -4 S / cm to 2.0 ~ 10 -2 S / cm at 25 ℃ temperature.
  20. 청구항 1에 있어서,The method according to claim 1,
    상기 젤 폴리머 전해질은 25℃ 온도에서 0.3 이상의 Li+ 이온 이동계수를 가지는 것을 특징으로 하는 젤 폴리머 전해질.The gel polymer electrolyte is a gel polymer electrolyte, characterized in that having a Li + ion transfer coefficient of 0.3 or more at a temperature of 25 ℃.
  21. 청구항 1에 있어서,The method according to claim 1,
    상기 젤 폴리머 전해질은 25℃ 온도에서 젤 함량이 1 중량% 이상인 것을 특징으로 하는 젤 폴리머 전해질.The gel polymer electrolyte is a gel polymer electrolyte, characterized in that the gel content of 1% by weight or more at 25 ℃ temperature.
  22. 청구항 1에 있어서,The method according to claim 1,
    상기 젤 폴리머 전해질은 25℃ 온도에서 반응성 올리고머 전체 투입량 대비 미반응 올리고머의 함량이 20% 이하인 것을 특징으로 하는 젤 폴리머 전해질.The gel polymer electrolyte is a gel polymer electrolyte, characterized in that the content of the unreacted oligomer relative to the total amount of the reactive oligomer at a temperature of 25 ℃ 20% or less.
  23. 적어도 하나 이상의 공중합성 아크릴레이트 또는 아크릴산을 포함하는 단량체로부터 유도된 단위 A; Unit A derived from monomers comprising at least one copolymerizable acrylate or acrylic acid;
    우레탄을 포함하는 단위 C; 및Unit C comprising urethane; And
    실록산을 포함하는 단위 E를 포함하는 것을 특징으로 하는 젤 폴리머 전해질.A gel polymer electrolyte comprising unit E comprising siloxane.
  24. 실록산을 포함하는 단위를 함유하는 올리고머를 포함하며,Oligomers containing units comprising siloxanes,
    25℃ 온도에서 1.0x10-4S/cm 내지 2.0x10-2S/cm의 Li+ 이온전도도와,Li + ion conductivity of 1.0x10 -4 S / cm to 2.0x10 -2 S / cm at 25 ° C,
    0.3 이상의 Li+ 이온 이동계수, 및Li + ion transfer coefficient of 0.3 or more, and
    반응성 올리고머 전체 투입량 대비 미반응 올리고머의 함량이 20% 이하인 것을 특징으로 하는 젤 폴리머 전해질.Gel polymer electrolyte, characterized in that the content of the unreacted oligomer relative to the total amount of the reactive oligomer is 20% or less.
  25. 리튬염, Lithium Salt,
    전해액 용매, Electrolyte solvent,
    중합개시제, 및 Polymerization initiator, and
    적어도 하나 이상의 공중합성 아크릴레이트 또는 아크릴산을 포함하는 단량체로부터 유도된 단위 A, 우레탄을 포함하는 단위 C, 및 실록산을 포함하는 단위 E를 포함하는 제1 올리고머를 포함하는 젤 폴리머 전해질을 포함하는 청구항 1에 기재된 젤 폴리머 전해질용 조성물.Claim 1 comprising a gel polymer electrolyte comprising a first oligomer comprising unit A derived from a monomer comprising at least one copolymerizable acrylate or acrylic acid, unit C comprising urethane, and unit E comprising siloxane. The composition for gel polymer electrolytes described in.
  26. 청구항 25에 있어서,The method according to claim 25,
    상기 제1 올리고머는 젤 폴리머 전해질용 조성물 전체 중량에 대해 0.5 중량% 내지 20 중량%로 포함되는 것을 특징으로 하는 젤 폴리머 전해질용 조성물.The first oligomer is a gel polymer electrolyte composition, characterized in that it comprises 0.5 to 20% by weight relative to the total weight of the composition for gel polymer electrolyte.
  27. 청구항 25에 있어서,The method according to claim 25,
    상기 제1 올리고머는 하기 화학식 1로 표시되는 것을 특징으로 하는 젤 폴리머 전해질용 조성물:The first oligomer is a composition for a gel polymer electrolyte, characterized in that represented by the formula (1):
    [화학식 1][Formula 1]
    A-[C-E]k-C-AA- [CE] k -CA
    상기 식에서, Where
    k는 1 내지 200의 정수이다.k is an integer of 1 to 200.
  28. 청구항 25에 있어서, The method according to claim 25,
    상기 단위 A는 하이드록시메틸 (메타)아크릴레이트, 및 하이드록시에틸 (메타)아크릴레이트로 이루어진 군으로부터 선택된 적어도 하나의 화합물로부터 유도된 단위, 또는 하기 화학식 (i)로 표시되는 단위인 것을 특징으로 하는 젤 폴리머 전해질용 조성물:Unit A is a unit derived from at least one compound selected from the group consisting of hydroxymethyl (meth) acrylate and hydroxyethyl (meth) acrylate, or a unit represented by the following formula (i) Gel polymer electrolyte composition:
    Figure PCTKR2015010472-appb-I000079
    (i) .
    Figure PCTKR2015010472-appb-I000079
    (i).
  29. 청구항 25에 있어서,The method according to claim 25,
    상기 단위 C는 하기 화학식 2a 또는 화학식 2b로 표시되는 단위인 것을 특징으로 하는 젤 폴리머 전해질용 조성물:The unit C is a gel polymer electrolyte composition, characterized in that the unit represented by the formula (2a) or formula (2b):
    [화학식 2a][Formula 2a]
    Figure PCTKR2015010472-appb-I000080
    Figure PCTKR2015010472-appb-I000080
    [화학식 2b][Formula 2b]
    Figure PCTKR2015010472-appb-I000081
    Figure PCTKR2015010472-appb-I000081
    상기 식에서,Where
    R'은 탄소수 1 내지 10의 선형 또는 비선형 알킬렌기, 탄소수 3 내지 10의 치환 또는 비치환된 사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 바이사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 아릴렌기, 탄소수 6 내지 20의 치환 또는 비치환된 바이아릴렌기, 탄소수 6 내지 20의 치환 또는 비치환된 아릴렌기, 나프탈렌기 및 안트라센기로 이루어진 군으로부터 선택된 적어도 하나이다. R 'is a linear or nonlinear alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 10 carbon atoms, a substituted or unsubstituted bicycloalkylene group having 6 to 20 carbon atoms, or a substituted or substituted carbon group having 6 to 20 carbon atoms or At least one selected from the group consisting of an unsubstituted arylene group, a substituted or unsubstituted biarylene group having 6 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, a naphthalene group and an anthracene group.
  30. 청구항 25에 있어서, The method according to claim 25,
    상기 단위 E는 하기 화학식 3으로 표시되는 단위인 것을 특징으로 하는 젤 폴리머 전해질용 조성물:The unit E is a gel polymer electrolyte composition, characterized in that the unit represented by the formula (3):
    [화학식 3][Formula 3]
    Figure PCTKR2015010472-appb-I000082
    Figure PCTKR2015010472-appb-I000082
    상기 식에서,Where
    R1 및 R2는 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이고,R 1 and R 2 are linear or nonlinear alkylene groups having 1 to 5 carbon atoms,
    R3 및 R4는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기 및 페닐기로 이루어진 군으로부터 선택된 하나이며,R 3 and R 4 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, and a phenyl group,
    R5 내지 R10는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기, 페닐기, 및 불소로 이루어진 군으로부터 선택된 하나이고,R 5 to R 10 are each independently one selected from the group consisting of hydrogen, an alkyl group having 1 to 5 carbon atoms, a phenyl group, and fluorine,
    o는 0 또는 1의 정수이고,o is an integer of 0 or 1,
    p는 0 또는 1 내지 400의 정수이고,p is 0 or an integer from 1 to 400,
    r은 1 내지 400의 정수이며,r is an integer from 1 to 400,
    상기 p:r의 몰비는 0:100 내지 80:20이다.The molar ratio of p: r is 0: 100 to 80:20.
  31. 청구항 25에 있어서,The method according to claim 25,
    상기 제1 올리고머 1몰 중에서 단위 A는 1몰 또는 2몰이고, Unit A is 1 mol or 2 mol in 1 mol of the first oligomer,
    상기 단위 C : 단위 E의 몰비는 1.005:1 내지 2:1인 것을 특징으로 하는 젤 폴리머 전해질용 조성물.A molar ratio of Unit C: E is 1.005: 1 to 2: 1.
  32. 청구항 25에 있어서,The method according to claim 25,
    상기 제1 올리고머는 선택적으로 하기 화학식 4로 표시되는 단위 B 및 하기 화학식 5로 표시되는 단위 D로 이루어진 군으로부터 선택된 적어도 하나 이상의 단위를 더 포함하는 것을 특징으로 하는 젤 폴리머 전해질용 조성물.The first oligomer optionally further comprises at least one unit selected from the group consisting of a unit B represented by the following formula (4) and a unit D represented by the following formula (5).
    [화학식 4][Formula 4]
    *-CO-R''-O-** -CO-R ''-O- *
    [화학식 5][Formula 5]
    *-O-[R'''-O]m-** -O- [R '''-O] m- *
    상기 식에서, Where
    R''는 탄소수 1 내지 10의 치환 또는 비치환된 선형의 알킬렌기, 또는 탄소수 1 내지 10의 치환 또는 비치환된 비선형의 알킬렌기이고,R '' is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
    R'''는 탄소수 1 내지 10의 치환 또는 비치환된 선형의 알킬렌기, 또는 탄소수 1 내지 10의 치환 또는 비치환된 비선형의 알킬렌기이고,R '' 'is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted nonlinear alkylene group having 1 to 10 carbon atoms,
    m은 1 내지 30의 정수이다.m is an integer of 1-30.
  33. 청구항 32에 있어서,The method according to claim 32,
    상기 올리고머는 하기 화학식 6a 내지 6c로 이루어진 군으로부터 선택된 적어도 하나로 표시되는 것을 특징으로 하는 젤 폴리머 전해질용 조성물.The oligomer is a gel polymer electrolyte composition, characterized in that represented by at least one selected from the group consisting of 6a to 6c.
    [화학식 6a][Formula 6a]
    [A]s-[B]n-[C-E-]k-C-[B]n-A[A] s- [B] n- [CE-] k -C- [B] n -A
    [화학식 6b][Formula 6b]
    [A]s-[C-D-E-D]k-C-A[A] s- [CDED] k -CA
    [화학식 6c][Formula 6c]
    [A]s-[B]n-[C-D-E-D]k-C-[B]n-A.[A] s- [B] n- [CDED] k -C- [B] n -A.
    상기 식에서, Where
    n은 0 또는 1 내지 30의 정수이고, n is 0 or an integer from 1 to 30,
    k는 1 내지 200의 정수이며, k is an integer from 1 to 200,
    s는 0 또는 1이다.s is 0 or 1.
  34. 청구항 32에 있어서,The method according to claim 32,
    상기 올리고머 1몰 중에서 단위 A는 1몰 또는 2몰이고, Unit A is 1 mol or 2 mol in 1 mol of the oligomer,
    단위 B : 단위 C : 단위 D : 단위 E의 몰비는 0 내지 35 : 2 내지 201 : 0 내지 35 : 1 내지 200 (이때, 단위 B 및 D는 동시에 0은 아니다)인 것을 특징으로 하는 젤 폴리머 전해질.Gel polymer electrolyte, characterized in that the molar ratio of unit B: unit C: unit D: unit E is 0 to 35: 2 to 201: 0 to 35: 1 to 200, wherein unit B and D are not 0 at the same time. .
  35. 청구항 25에 있어서,The method according to claim 25,
    상기 제1 올리고머는 하기 화학식 7a 내지 7d로 이루어진 군으로부터 선택된 적어도 하나의 화합물인 것을 특징으로 하는 젤 폴리머 전해질용 조성물.The first oligomer is a composition for a gel polymer electrolyte, characterized in that at least one compound selected from the group consisting of the formula 7a to 7d.
    [화학식 7a][Formula 7a]
    Figure PCTKR2015010472-appb-I000083
    Figure PCTKR2015010472-appb-I000083
    [화학식 7b][Formula 7b]
    Figure PCTKR2015010472-appb-I000084
    Figure PCTKR2015010472-appb-I000084
    [화학식7c][Formula 7c]
    Figure PCTKR2015010472-appb-I000085
    Figure PCTKR2015010472-appb-I000085
    [화학식 7d][Formula 7d]
    Figure PCTKR2015010472-appb-I000086
    Figure PCTKR2015010472-appb-I000086
    상기 식에서,Where
    k는 1 내지 200의 정수이고,k is an integer from 1 to 200,
    n은 1 내지 30의 정수이고, n is an integer from 1 to 30,
    m은 1 내지 30의 정수이며,m is an integer from 1 to 30,
    p는 1 내지 400의 정수이고,p is an integer from 1 to 400,
    r은 1 내지 400의 정수이며,r is an integer from 1 to 400,
    상기 p:r의 몰비는 0:100 내지 80:20이다.The molar ratio of p: r is 0: 100 to 80:20.
  36. 청구항 25에 있어서,The method according to claim 25,
    상기 폴리머 네트워크는 폴리머 네트워크 상에 무기물 입자를 추가로 함유하는 것을 특징으로 하는 젤 폴리머 전해질용 조성물.The polymer network is a composition for a gel polymer electrolyte, characterized in that it further contains inorganic particles on the polymer network.
  37. 청구항 25에 있어서,The method according to claim 25,
    상기 올리고머의 중량평균분자량은 1,000 내지 100,000인 것을 특징으로 하는 젤 폴리머 전해질용 조성물.The weight average molecular weight of the oligomer is a composition for a gel polymer electrolyte, characterized in that 1,000 to 100,000.
  38. 청구항 25에 있어서, The method according to claim 25,
    상기 중합개시제는벤조일 퍼옥사이드, 아세틸 퍼옥사이드, 디라우릴 퍼옥사이드, 디-tert-부틸 퍼옥사이드, t-부틸 퍼옥시-2-에틸-헥사노에이트, 큐밀 하이드로퍼옥사이드, 하이드로겐 퍼옥사이드, 2,2'-아조비스(2-시아노부탄), 2,2'-아조비스(메틸부티로니트릴), AIBN(2,2'-Azobis(iso-butyronitrile)) 및 AMVN(2,2'-Azobisdimethyl-Valeronitrile)로 이루어진 군으로부터 선택되는 단일물 또는 2종 이상의 혼합물인 것을 특징으로 하는 젤 폴리머 전해질용 조성물.The polymerization initiator is benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert-butyl peroxide, t-butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide, hydrogen peroxide, 2 , 2'-azobis (2-cyanobutane), 2,2'-azobis (methylbutyronitrile), AIBN (2,2'-Azobis (iso-butyronitrile)) and AMVN (2,2'- Azobisdimethyl-Valeronitrile) A composition for gel polymer electrolyte, characterized in that a single substance or a mixture of two or more selected from the group consisting of.
  39. 청구항 25에 있어서,The method according to claim 25,
    상기 중합개시제는 올리고머 전체 함량에 대해 0.01 중량% 내지 2 중량%로 포함되는 것을 특징으로 하는 젤 폴리머 전해질용 조성물.The polymerization initiator is a gel polymer electrolyte composition, characterized in that it comprises 0.01 to 2% by weight relative to the total content of the oligomer.
  40. 청구항 25에 있어서, The method according to claim 25,
    상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3, LiC4BO8, LiTFSI, LiFSI, 및 LiClO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 젤 폴리머 전해질용 조성물.The lithium salt may be LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2) 3, LiC 4 BO 8 , LiTFSI, LiFSI, and LiClO 4 is any one selected from the group consisting of or a composition for the gel polymer electrolyte, it characterized in that a mixture of two or more of these.
  41. 청구항 25에 있어서,The method according to claim 25,
    상기 리튬염은 상기 중합개시제와 올리고머의 전체 함량에 대해 10 내지 50 중량%를 포함하는 것을 특징으로 하는 젤 폴리머 전해질용 조성물.The lithium salt is a gel polymer electrolyte composition, characterized in that it comprises 10 to 50% by weight relative to the total content of the polymerization initiator and oligomer.
  42. 청구항 25에 있어서,The method according to claim 25,
    상기 전해액 용매는 선형 카보네이트, 환형 카보네이트 또는 이들의 조합인 것을 특징으로 하는 젤 폴리머 전해질용 조성물.The electrolyte solution is a gel polymer electrolyte composition, characterized in that the linear carbonate, cyclic carbonate or a combination thereof.
  43. 청구항 42에 있어서, The method of claim 42,
    상기 선형 카보네이트는 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 에틸메틸 카보네이트, 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하고, 상기 환형 카보네이트는 에틸렌 카보네이트, 프로필렌 카보네이트, 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 젤 폴리머 전해질용 조성물.The linear carbonate includes any one or a mixture of two or more selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylmethyl carbonate, methylpropyl carbonate and ethylpropyl carbonate, wherein the cyclic carbonate is ethylene Carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, and halides thereof A composition for gel polymer electrolyte comprising any one selected or a mixture of two or more thereof.
  44. 리튬의 흡장?방출이 가능한 양극과 음극, 및 상기 양극과 음극 사이에 배치되는 폴리머 전해질을 포함하며,A positive electrode and a negative electrode capable of occluding and releasing lithium, and a polymer electrolyte disposed between the positive electrode and the negative electrode,
    상기 폴리머 전해질은 청구항 1 에 기재된 젤 폴리머 전해질을 포함하는 것을 특징으로 하는 리튬 이차전지.The polymer electrolyte comprises a gel polymer electrolyte according to claim 1, characterized in that the lithium secondary battery.
  45. 청구항 44에 있어서,The method of claim 44,
    상기 리튬 이차전지의 충전 전압은 2.5V 내지 5.0V인 것을 특징으로 하는 리튬 이차전지.Lithium secondary battery, characterized in that the charging voltage of the lithium secondary battery is 2.5V to 5.0V.
  46. 제1전극, 제2전극, 전기 변색 물질 및A first electrode, a second electrode, an electrochromic material, and
    청구항 1에 기재된 젤 폴리머 전해질을 포함하는 전기 변색 소자.An electrochromic device comprising the gel polymer electrolyte according to claim 1.
PCT/KR2015/010472 2014-10-02 2015-10-02 Gel polymer electrolyte and lithium secondary battery comprising same WO2016053064A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15847219.1A EP3203565B1 (en) 2014-10-02 2015-10-02 Gel polymer electrolyte and lithium secondary battery comprising same
CN201580053571.4A CN106797048B (en) 2014-10-02 2015-10-02 Gel polymer electrolyte and lithium secondary battery including the gel polymer electrolyte
US15/515,547 US10243239B1 (en) 2014-10-02 2015-10-02 Gel polymer electrolyte and lithium secondary battery comprising the same
JP2017517284A JP6562568B2 (en) 2014-10-02 2015-10-02 Gel polymer electrolyte and lithium secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0133433 2014-10-02
KR20140133433 2014-10-02
KR1020150139401A KR101737223B1 (en) 2014-10-02 2015-10-02 Gel polymer electrolyte and lithium secondary battery comprising the same
KR10-2015-0139401 2015-10-02

Publications (1)

Publication Number Publication Date
WO2016053064A1 true WO2016053064A1 (en) 2016-04-07

Family

ID=55631005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010472 WO2016053064A1 (en) 2014-10-02 2015-10-02 Gel polymer electrolyte and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2016053064A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886165A (en) * 2016-12-08 2018-11-23 株式会社Lg化学 For the electrolyte of lithium secondary battery and including the lithium secondary battery of electrolyte
CN110603681A (en) * 2017-11-13 2019-12-20 株式会社Lg化学 Composition for gel polymer electrolyte, gel polymer electrolyte prepared from the composition, and lithium secondary battery comprising the gel polymer electrolyte
US20200358065A1 (en) * 2017-10-31 2020-11-12 Lg Chem, Ltd. Separator having no separator substrate and electrochemical device including the same
EP3694040A4 (en) * 2018-01-03 2020-12-16 Lg Chem, Ltd. Gel polymer electrolyte composition, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising same
EP3780235A4 (en) * 2018-08-16 2021-06-02 Lg Chem, Ltd. Electrolyte for lithium secondary battery
US20210194052A1 (en) * 2017-11-30 2021-06-24 Lg Chem, Ltd. Composition for gel polymer electrolyte, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the same
US20210359342A1 (en) * 2018-09-21 2021-11-18 Lg Chem, Ltd. Composition for gel polymer electrolyte and lithium secondary battery including gel polymer electrolyte formed therefrom
US11316194B2 (en) 2018-01-03 2022-04-26 Lg Energy Solution, Ltd. Gel polymer electrolyte composition, gel polymer electrolyte prepared thereby, and lithium secondary battery including the gel polymer electrolyte
US11581578B2 (en) * 2017-11-30 2023-02-14 Lg Energy Solution, Ltd. Composition for gel polymer electrolyte including siloxane oligomer and styrene-based oligomer, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060179A (en) * 1999-10-28 2001-07-06 시바타 미노루 Polyelectrolytic gel and process to manufacture polyelectrolytic gel
KR20030015709A (en) * 2001-08-17 2003-02-25 삼성에스디아이 주식회사 Polymeric sol electrolyte and lithium battery employing the same
KR100365392B1 (en) * 1996-03-23 2003-03-04 주식회사 엘지화학 Ion-conductive polymer electrolyte and electrochemical element using the same
KR20120057158A (en) * 2010-11-26 2012-06-05 에스케이이노베이션 주식회사 Polymer electrolyte composite containing the siloxane-based epoxy compounds and lithium-polymer secondary battery using the same
KR20140066163A (en) * 2011-08-12 2014-05-30 모멘티브 퍼포먼스 머티리얼즈 인크. Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365392B1 (en) * 1996-03-23 2003-03-04 주식회사 엘지화학 Ion-conductive polymer electrolyte and electrochemical element using the same
KR20010060179A (en) * 1999-10-28 2001-07-06 시바타 미노루 Polyelectrolytic gel and process to manufacture polyelectrolytic gel
KR20030015709A (en) * 2001-08-17 2003-02-25 삼성에스디아이 주식회사 Polymeric sol electrolyte and lithium battery employing the same
KR20120057158A (en) * 2010-11-26 2012-06-05 에스케이이노베이션 주식회사 Polymer electrolyte composite containing the siloxane-based epoxy compounds and lithium-polymer secondary battery using the same
KR20140066163A (en) * 2011-08-12 2014-05-30 모멘티브 퍼포먼스 머티리얼즈 인크. Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203565A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886165A (en) * 2016-12-08 2018-11-23 株式会社Lg化学 For the electrolyte of lithium secondary battery and including the lithium secondary battery of electrolyte
US20200358065A1 (en) * 2017-10-31 2020-11-12 Lg Chem, Ltd. Separator having no separator substrate and electrochemical device including the same
CN110603681A (en) * 2017-11-13 2019-12-20 株式会社Lg化学 Composition for gel polymer electrolyte, gel polymer electrolyte prepared from the composition, and lithium secondary battery comprising the gel polymer electrolyte
US11411248B2 (en) 2017-11-13 2022-08-09 Lg Energy Solution, Ltd. Composition for gel polymer electrolyte including siloxane oligomer, lithium salt, and phosphate or boron-based anion stabilizing additive, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the gel polymer electrolyte
US20210194052A1 (en) * 2017-11-30 2021-06-24 Lg Chem, Ltd. Composition for gel polymer electrolyte, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the same
US11581578B2 (en) * 2017-11-30 2023-02-14 Lg Energy Solution, Ltd. Composition for gel polymer electrolyte including siloxane oligomer and styrene-based oligomer, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the same
EP3694040A4 (en) * 2018-01-03 2020-12-16 Lg Chem, Ltd. Gel polymer electrolyte composition, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising same
US11316194B2 (en) 2018-01-03 2022-04-26 Lg Energy Solution, Ltd. Gel polymer electrolyte composition, gel polymer electrolyte prepared thereby, and lithium secondary battery including the gel polymer electrolyte
EP3780235A4 (en) * 2018-08-16 2021-06-02 Lg Chem, Ltd. Electrolyte for lithium secondary battery
US11923509B2 (en) 2018-08-16 2024-03-05 Lg Energy Solution, Ltd. Electrolyte including mixture of siloxane-based oligomer and polyalkylene carbonate-based oligomer and lithium secondary battery including the same
US20210359342A1 (en) * 2018-09-21 2021-11-18 Lg Chem, Ltd. Composition for gel polymer electrolyte and lithium secondary battery including gel polymer electrolyte formed therefrom

Similar Documents

Publication Publication Date Title
WO2016053064A1 (en) Gel polymer electrolyte and lithium secondary battery comprising same
WO2016053065A1 (en) Gel polymer electrolyte and lithium secondary battery comprising same
WO2018044129A1 (en) Gel polymer electrolyte and lithium secondary battery including same
WO2018106078A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019108032A1 (en) Gel polymer electrolyte composition and lithium secondary battery comprising same
WO2019203622A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2020009436A1 (en) Lithium secondary battery with improved high temperature characteristics
WO2019107921A1 (en) Gel polymer electrolyte composition, and gel polymer electrolyte and lithium secondary battery which comprise same
WO2020171483A1 (en) Electrochemical device and manufacturing method thereof
WO2021025521A1 (en) Copolymer for polymer electrolyte, gel polymer electrolyte comprising same, and lithium secondary battery
WO2019135624A1 (en) Gel polymer electrolyte composition, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising same
WO2019013501A1 (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive
WO2019108031A1 (en) Composition for gel polymer electrolyte, gel polymer electrolyte prepared by means of same, and lithium secondary battery comprising same
WO2020060295A1 (en) Composition for gel polymer electrolyte, and lithium secondary battery including gel polymer electrolyte formed therefrom
WO2020096343A1 (en) Composition for gel polymer electrolyte, and lithium secondary battery comprising gel polymer electrolyte formed therefrom
WO2017171449A1 (en) Gel polymer electrolyte composition, and gel polymer electrolyte
WO2020036336A1 (en) Electrolyte for lithium secondary battery
WO2020060293A1 (en) Composition for gel polymer electrolyte and lithium secondary battery comprising gel polymer electrolyte formed therefrom
WO2021015535A1 (en) Lithium secondary battery
WO2020036444A1 (en) Method for preparing negative electrode for lithium secondary battery, and negative electrode for lithium secondary battery, prepared using same
WO2019108024A1 (en) Composition for gel polymer electrolyte, gel polymer electrolyte prepared by means of same, and lithium secondary battery comprising same
WO2019088733A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019039903A2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019009594A1 (en) Polymeric electrolyte for secondary battery and lithium secondary battery comprising same
WO2021025535A1 (en) Copolymer for polymer electrolyte, gel polymer electrolyte comprising same, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847219

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015847219

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015847219

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017517284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE