WO2019013501A1 - Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive - Google Patents

Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive Download PDF

Info

Publication number
WO2019013501A1
WO2019013501A1 PCT/KR2018/007729 KR2018007729W WO2019013501A1 WO 2019013501 A1 WO2019013501 A1 WO 2019013501A1 KR 2018007729 W KR2018007729 W KR 2018007729W WO 2019013501 A1 WO2019013501 A1 WO 2019013501A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
aqueous electrolyte
carbon atoms
linear
Prior art date
Application number
PCT/KR2018/007729
Other languages
French (fr)
Korean (ko)
Inventor
김현승
유성훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180077576A external-priority patent/KR102270869B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/340,269 priority Critical patent/US11081729B2/en
Priority to EP18832898.3A priority patent/EP3518334B1/en
Priority to CN201880024734.XA priority patent/CN110574210B/en
Priority to PL18832898T priority patent/PL3518334T3/en
Publication of WO2019013501A1 publication Critical patent/WO2019013501A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte additive, a nonaqueous electrolyte solution for a lithium secondary battery comprising the same, and a lithium secondary battery.
  • the technology based on the secondary battery is the most suitable technology for various applications and can be applied to individual IT devices such as miniaturization and may be applied to large devices such as power storage devices.
  • Lithium-ion batteries which are theoretically the most energy-dense battery system among the secondary battery technologies, are in the spotlight.
  • a lithium ion battery unlike in the early days when a lithium metal was directly applied to a system, it is composed of a positive electrode made of a transition metal oxide containing lithium, a negative electrode capable of storing lithium, an electrolyte, and a separator.
  • the energy is stored through the redox reaction of the transition metal, which means that the transition metal must be essentially included in the anode material.
  • the first is observed when the passivation ability of the coating formed on the anode / cathode surface after the activation process is lowered.
  • the electrode materials of the lithium ion battery use a graphite anode in the case of a cathode, but the operating potential of the graphite is 0.3 V ( vs. Li / Li + ) or less. Because it is lower than the chemical stability window, the electrolyte is first reduced and decomposed. The thus-decomposed electrolytic solution product forms a solid electrolyte interphase (SEI) film that transmits lithium ions but inhibits further decomposition of the electrolyte solution.
  • SEI solid electrolyte interphase
  • the second is when metal impurities are included in the initial electrode slurry preparation.
  • a positive electrode of a lithium ion battery is manufactured by coating a slurry containing a conductive material and a binder together with an electrode active material on a current collector such as aluminum.
  • a current collector such as aluminum.
  • the metal such as iron or copper
  • the powder can be contained in the electrode manufacturing without being removed.
  • the third occurs when the transition metals from the anode are easily eluted into the electrolyte.
  • the transition metals constituting the anode can be easily eluted into the electrolyte due to HF produced in the electrolyte, or formation of an unstable structure due to charging / discharging of the anode.
  • the thus eluted transition metal ions are re-deposited on the anode It is possible to increase the resistance of the anode or, conversely, to move to the cathode through the electrolyte and then electrodeposition to the cathode to self-discharge the cathode, thereby destroying the SEI film which gives the passive ability to the cathode, And it is known as a factor to increase the interfacial resistance of the cathode.
  • Such elution of the transition metal and insufficient passivation ability of the SEI film causes not only the activation step but also deterioration due to the transition metal ion species eluted from the anode at high temperature charge / discharge or high temperature storage.
  • the present invention also provides a nonaqueous electrolyte solution for a lithium secondary battery comprising the nonaqueous electrolyte additive.
  • the present invention also provides a lithium secondary battery comprising the non-aqueous electrolyte for the lithium secondary battery.
  • R 1 and R 2 are each independently a linear or non-linear alkyl group having 1 to 5 carbon atoms; and R 3 is a linear or non-linear alkylene group having 1 to 3 carbon atoms.
  • R 4 is a linear or non-linear alkylene group having 1 to 3 carbon atoms
  • A is a substituted or unsubstituted heteroaryl group having 3 to 6 carbon atoms containing at least one of oxygen and nitrogen atoms or a substituted or unsubstituted heteroaryl group having 3 to 6 carbon atoms containing at least one of oxygen and nitrogen A cyclic group,
  • R 5 is hydrogen, an alkyl group having 1 to 3 carbon atoms, oxygen ( ⁇ O), -CN and , Wherein R is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
  • n is an integer of 1 to 6
  • each R 5 may be the same or different from each other.
  • the compound represented by Formula 1 may be at least one selected from the group consisting of compounds represented by Chemical Formulas 1a to 1c.
  • the compound represented by Formula 2 may be at least one selected from the group consisting of compounds represented by Chemical Formulas 2a to 2c.
  • R 6 is a linear or non-linear alkylene group having 1 to 3 carbon atoms
  • R 7 to R 10 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms, and -CN,
  • R ' is a linear or non-linear alkylene group having 1 to 3 carbon atoms.
  • R 11 is a linear or non-linear alkylene group having 1 to 3 carbon atoms
  • R 12 to R 15 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms, and -CN.
  • R 16 is a linear or non-linear alkylene group having 1 to 3 carbon atoms
  • R 17 to R 19 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms and -CN,
  • D is CH, or N
  • the compound represented by Formula 2 may be at least one selected from the group consisting of compounds represented by Formula 2b and 2c, and more specifically, a compound represented by Formula 2c.
  • the compound represented by the formula (2a) may be at least one selected from the group consisting of compounds represented by the following formulas (2a-1) to (2a-7).
  • the compound represented by Formula 2b may be a compound represented by Formula 2b-1.
  • the compound represented by Formula 2c may be a compound represented by Formula 2c-1.
  • Nonaqueous electrolyte additive is at least one compound selected from the group consisting of the compounds represented by the formulas (1) and (2), wherein the nonaqueous electrolyte solution is a nonaqueous electrolyte solution for a lithium secondary battery.
  • the non-aqueous electrolyte additive may be included in an amount of 0.05 wt% to 5 wt%, specifically 0.5 wt% to 3 wt% based on the total amount of the non-aqueous electrolyte.
  • the positive electrode comprises at least one positive electrode active material selected from the group consisting of lithium-nickel-manganese-cobalt oxide and lithium-manganese oxide,
  • non-aqueous electrolyte is a non-aqueous electrolyte for the lithium secondary battery of the present invention.
  • the cathode active material may include a lithium-manganese-based oxide, and the lithium-manganese-based oxide may be LiMn 2 O 4 .
  • a Lewis base-based compound containing a nitrogen element and a propargyl group as a non-aqueous electrolyte additive to improve the low-voltage phenomenon of a lithium ion battery
  • Lewis acid can be removed and a more stable SEI film can be formed on the surfaces of the cathode and the anode, so that the elution of the transition metal from the anode can be suppressed due to the decomposition product of the lithium salt.
  • the nonaqueous electrolyte solution containing the nonaqueous electrolyte solution it is possible to manufacture a lithium secondary battery in which defective low voltage is improved and leakage of transition metal in the positive electrode is suppressed.
  • Example 1 is a graph showing a change in voltage of a coin half cell according to time in Experimental Example 1 of the present invention.
  • the present invention has an excellent adsorption effect with metal impurities, To provide an additive that can be reinforced.
  • the SEI film which is the cathode coating can be strengthened by containing the triple bond, and the metal leaching can be inhibited by being adsorbed on the metal foreign matter.
  • non-aqueous electrolyte additive of the present invention since it has a functional group containing a nitrogen element which is a Lewis base function, decomposition products such as HF and PF 5 formed due to decomposition of the lithium salt can be removed.
  • the present invention provides a non-aqueous electrolyte and a lithium secondary battery which can improve low voltage defects by including the non-aqueous electrolyte additive.
  • R 1 and R 2 are each independently a linear or non-linear alkyl group having 1 to 5 carbon atoms; and R 3 is a linear or non-linear alkylene group having 1 to 3 carbon atoms.
  • R 4 is a linear or non-linear alkylene group having 1 to 3 carbon atoms
  • A is a substituted or unsubstituted heteroaryl group having 3 to 6 carbon atoms containing at least one of oxygen and nitrogen atoms or a substituted or unsubstituted heteroaryl group having 3 to 6 carbon atoms containing at least one of oxygen and nitrogen A cyclic group,
  • R 5 is hydrogen, an alkyl group having 1 to 3 carbon atoms, oxygen ( ⁇ O), -CN and , Wherein R is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
  • n is an integer of 1 to 6
  • each R 5 may be the same or different from each other.
  • the compounds represented by Chemical Formulas 1 and 2 contain a functional group functioning as a Lewis base containing a nitrogen element in the structure. Therefore, decomposition of anions such as PF 6 - of a lithium salt can not be inhibited,
  • the Lewis acid such as HF and PF 5 which are decomposition products to be produced can be removed from the inside of the electrolytic solution and thus the deterioration behavior due to the chemical reaction of the surface coating of the anode or the cathode due to such Lewis acid can be suppressed.
  • deterioration of the coating film can be suppressed and further decomposition of the electrolyte in the battery due to destruction of the coating film can be prevented, so that the self-discharge of the battery can be prevented finally.
  • the compounds represented by Chemical Formulas 1 and 2 have a prophylactic functional group in the structure, it is possible to improve the high temperature durability of the cathode itself by forming a SEI film having high passivation ability on the surface of the cathode, In addition, it is possible to reduce the amount of the transition metal electrodeposited on the cathode itself.
  • the prophage may adsorb on the surface of the metallic impurities contained in the anode to make the elution of the impurities difficult, and the internal short-circuit that may occur due to the precipitation of the eluted metal ions on the anode .
  • the prophage is easy to be reduced on the surface of the anode, it is possible to form a stable film on the surface of the anode. Therefore, it is possible to use a graphite system due to the additional reduction decomposition reaction of the electrolyte caused by the instability of the SEI film, Can be prevented.
  • the nonaqueous electrolyte additive containing the compound represented by the general formulas (1) and (2) of the present invention can be adsorbed on the metal surface to inhibit the metal from leaching into ions, Since the SEI film can be formed stably and breakdown of the positive / negative electrode coating due to decomposition of the lithium salt can be prevented, the self-discharge reaction of the battery can be suppressed and the low voltage failure of the lithium ion battery can be improved have.
  • the compound represented by Formula 1 may be at least one selected from the group consisting of compounds represented by Chemical Formulas 1a to 1c.
  • the compound represented by Formula 2 may be at least one selected from the group consisting of compounds represented by Chemical Formulas 2a to 2c.
  • R 6 is a linear or non-linear alkylene group having 1 to 3 carbon atoms
  • R 7 to R 10 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms, and -CN,
  • R ' is a linear or non-linear alkylene group having 1 to 3 carbon atoms.
  • R 11 is a linear or non-linear alkylene group having 1 to 3 carbon atoms
  • R 12 to R 15 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms, and -CN.
  • R 16 is a linear or non-linear alkylene group having 1 to 3 carbon atoms
  • R 17 to R 19 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms and -CN,
  • D is CH, or N
  • the non-aqueous electrolyte additive of the present invention is characterized in that the compound represented by the general formula (2b) or (2c), particularly the compound represented by the general formula (2c)
  • the Lewis acid which is the decomposition product of the lithium salt, can be effectively removed by the imidazole functional group.
  • the compound represented by the formula (2) may be at least one selected from the group consisting of compounds represented by the following formulas (2a-1) to (2a-7).
  • the compound represented by Formula 2b may be a compound represented by Formula 2b-1.
  • the compound represented by Formula 2c may be a compound represented by Formula 2c-1.
  • a nonaqueous electrolyte solution for a lithium secondary battery comprising a nonaqueous electrolyte additive
  • non-aqueous electrolyte additive is at least one compound selected from the group consisting of the compounds represented by the formulas (1) and (2).
  • the compounds represented by the formulas (1) and (2) may be contained in an amount of 0.05 wt% to 5 wt%, specifically 0.5 wt% to 3 wt%, more specifically 0.8 wt% to 1.2 wt% have.
  • a secondary battery having improved performance can be manufactured.
  • the content of the additive is within the range of 0.05 wt% to 5 wt%, the effect of stabilizing the SEI film and the effect of inhibiting metal dissolution are excellent, and the effect of controlling the resistance of the coating due to decomposition of the additive is excellent.
  • the lithium salt contained as an electrolyte may be any of those conventionally used in an electrolyte for a lithium secondary battery, and examples thereof include Li + as a cation of the lithium salt, is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, BF 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3 ) 5 PF -, (CF 3 ) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -
  • the organic solvent may be any one that minimizes degradation due to an oxidation reaction or the like during charging and discharging of the secondary battery, none.
  • an ether solvent, an ester solvent or an amide solvent may be used alone or in combination of two or more.
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether and ethyl propyl ether, or a mixture of two or more thereof may be used , But is not limited thereto.
  • the ester solvent may include at least one compound selected from the group consisting of a cyclic carbonate compound, a linear carbonate compound, a linear ester compound, and a cyclic ester compound.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate , 2,3-pentylene carbonate, vinylene carbonate, and fluoroethylene carbonate (FEC), or a mixture of two or more thereof.
  • EC ethylene carbonate
  • PC propylene carbonate
  • 1,2-butylene carbonate 2,3-butylene carbonate
  • 1,2-pentylene carbonate 2,3-pentylene carbonate
  • vinylene carbonate and fluoroethylene carbonate (FEC)
  • FEC fluoroethylene carbonate
  • linear carbonate compound examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methyl propyl carbonate and ethyl propyl carbonate , Or a mixture of two or more thereof, but the present invention is not limited thereto.
  • linear ester compound examples include any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate, And mixtures thereof, but the present invention is not limited thereto.
  • cyclic ester compound examples include any one selected from the group consisting of? -Butyrolactone,? -Valerolactone,? -Caprolactone,? -Valerolactone and? -Caprolactone, or two or more Mixtures may be used, but are not limited thereto.
  • the cyclic carbonate-based compound in the ester-based solvent is a highly viscous organic solvent having a high dielectric constant and can dissociate the lithium salt in the electrolyte well.
  • the cyclic carbonate-based compound has a low viscosity such as dimethyl carbonate and diethyl carbonate,
  • the dielectric constant linear carbonate compound and the linear ester compound are mixed in an appropriate ratio, an electrolyte having a high electric conductivity can be prepared, and thus it can be more preferably used.
  • the non-aqueous electrolyte of the present invention may further comprise an additive for forming an SEI film, if necessary.
  • an additive for forming the SEI film examples include silicone-based compounds including vinyl groups, vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate, vinylethylene carbonate, cyclic sulfite, saturated sulphone, unsaturated sulphone, They may be used alone or in combination of two or more.
  • cyclic sulfite examples include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethyl ethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, 4,5-dimethyl Propylene sulfite, 4,5-diethylpropylene sulfite, 4,6-dimethylpropylene sulfite, 4,6-diethylpropylene sulfite, and 1,3-butylene glycol sulfite. 1,3-propane sultone, 1,4-butane sultone, and the like.
  • Unsaturated sulphones include ethene sultone, 1,3-propenesultone, 1,4-butene sultone, -Propenesultone, and the non-cyclic sulfone includes divinyl sulfone, dimethyl sulfone, diethyl sulfone, methyl ethyl sulfone, and methyl vinyl sulfone.
  • a secondary battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte
  • non-aqueous electrolyte solution for a lithium secondary battery of the present invention as the non-aqueous electrolyte.
  • the lithium secondary battery of the present invention can be manufactured by injecting the non-aqueous electrolyte of the present invention into an electrode assembly in which a cathode, a cathode, and a separation membrane interposed between the anode and the cathode are sequentially laminated.
  • the positive electrode, negative electrode, and separator forming the electrode assembly may be those conventionally used in the manufacture of the lithium secondary battery.
  • the positive electrode and the negative electrode constituting the lithium secondary battery of the present invention can be manufactured and used by a conventional method.
  • the positive electrode may be manufactured by forming a positive electrode mixture layer on the positive electrode current collector.
  • the positive electrode mixture layer may be formed by coating a positive electrode slurry containing a positive electrode active material, a binder, a conductive material and a solvent on a positive electrode collector, followed by drying and rolling.
  • the positive electrode collector is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery.
  • the positive electrode collector may be formed of a metal such as carbon, stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used.
  • a lithium-transition metal oxide including lithium and at least one metal selected from cobalt, manganese, nickel, or aluminum Specifically, a lithium-nickel-manganese-cobalt oxide (for example, Li (Ni p Co q Mn r1 ) O 2 (where 0 ⁇ p
  • the lithium-nickel-manganese-cobalt-based oxide includes Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2, Li (Ni 0.7 Mn 0.15 Co 0.15) O 2 and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O may be mentioned 2, wherein the lithium-manganese-based oxide is LiMn 2 O 4 .
  • a lithium-manganese-based oxide having a high Mn content which is a lithium-nickel-manganese-cobalt oxide and a lithium-manganese-based oxide, particularly, a transition metal is eluted from the active material and the transition metal is electrodeposited It is possible to realize a better metal dissolution inhibiting effect.
  • the positive electrode active material of the present invention may contain, in addition to the lithium-manganese-based oxide, a lithium-cobalt oxide (such as LiCoO 2 ), a lithium-nickel oxide (such as LiNiO 2 ) oxide (e.
  • lithium-nickel -cobalt oxide e.g., LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1) and the like
  • lithium-manganese-cobalt oxide e.g., LiCo 1-Y2 Mn Y2 O 2 (herein, 0 ⁇ Y2 ⁇ 1), LiMn 2-z1 Co z1 O 4 ( here, 0 ⁇ z1 ⁇ 2) and the like
  • the cathode active material may be contained in an amount of 80% by weight to 99% by weight based on the total weight of solids in the cathode slurry.
  • the binder is a component that assists in bonding of the active material to the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 30 wt% based on the total weight of the solid content in the positive electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene (Ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM tetrafluoroethylene
  • EPDM tetrafluoroethylene
  • EPDM sulfonated EPDM
  • the conductive material is usually added in an amount of 1 to 30% by weight based on the total weight of the solid content in the positive electrode slurry.
  • Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples thereof include carbon black, acetylene black (or denka black), Ketjenblack, channel black, furnace black, Carbon black such as lamp black or thermal black; Graphite powder such as natural graphite, artificial graphite, or graphite with a highly developed crystal structure; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that provides a preferable viscosity when the positive electrode active material and optionally a binder and a conductive material are included.
  • NMP N-methyl-2-pyrrolidone
  • the solid content in the slurry containing the positive electrode active material, and optionally the binder and the conductive material may be in the range of 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
  • the negative electrode may be manufactured by forming a negative electrode mixture layer on the negative electrode collector.
  • the negative electrode material mixture layer may be formed by coating a negative electrode current collector with a slurry containing a negative electrode active material, a binder, a conductive material, a solvent, and the like, followed by drying and rolling.
  • the anode current collector generally has a thickness of 3 to 500 mu m.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • Examples of the negative electrode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like can be used.
  • fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
  • the negative electrode active material may be a lithium metal, a carbon material capable of reversibly intercalating / deintercalating lithium ions, a metal or an alloy of these metals and lithium, a metal complex oxide, lithium capable of doping and dedoping lithium Materials, and transition metal oxides.
  • the carbonaceous material capable of reversibly intercalating / deintercalating lithium ions is not particularly limited as long as it is a carbonaceous anode active material generally used in a lithium ion secondary battery.
  • the carbonaceous material include crystalline carbon, Amorphous carbon or any combination thereof.
  • the crystalline carbon include graphite such as natural graphite or artificial graphite in the form of amorphous, plate-like, flake, spherical or fiber, and examples of the amorphous carbon include soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, fired coke, and the like.
  • the metal or an alloy of these metals and lithium may be selected from the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, And Sn, or an alloy of these metals and lithium may be used.
  • metal composite oxide is PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0? X? 1), Li x WO 2 (0? X? 1), and Sn x Me 1-x Me y y z , Pb, Ge, Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen: 0 ⁇ x? 1; 1? Y? May be used.
  • Si As the material capable of doping and dedoping lithium, Si, SiO x (0 ⁇ x? 2), Si-Y alloy (Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, Rare earth elements and combinations thereof, but not Si), Sn, SnO 2 , Sn-Y (wherein Y is at least one element selected from the group consisting of alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, Element and an element selected from the group consisting of combinations thereof, and not Sn), and at least one of them may be mixed with SiO 2 .
  • Si-Y alloy Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, Rare earth elements and combinations thereof, but not Si
  • Sn, SnO 2 Sn-Y (wherein Y is at least one element selected from the group consisting of alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, Element
  • the element Y may be at least one element selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Se, Te, Po, and combinations thereof.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, lithium vanadium oxide, and the like.
  • the negative active material may be contained in an amount of 80% by weight to 99% by weight based on the total weight of the solid content in the negative electrode slurry.
  • the binder is a component that assists in bonding between the conductive material, the active material and the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of the solid content in the negative electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber various copolymers thereof.
  • the conductive material is a component for further improving the conductivity of the negative electrode active material and may be added in an amount of 1 to 20 wt% based on the total weight of the solid content in the negative electrode slurry.
  • Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery.
  • the solvent may include water or an organic solvent such as NMP, alcohol, etc., and may be used in an amount in which the negative electrode active material and, optionally, a binder, a conductive material, and the like are contained in a desired viscosity.
  • the slurry containing the negative electrode active material and, optionally, the binder and the conductive material may be contained to have a solid concentration of 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
  • the separation membrane blocks the internal short circuit of both electrodes and impregnates the electrolyte.
  • the separation membrane composition is prepared by mixing a polymer resin, a filler and a solvent, and then the separation membrane composition is directly coated on the electrode and dried Or may be formed by casting and drying the separation membrane composition on a support, and then laminating the separation membrane film peeled off from the support on the electrode.
  • the separator may be a porous polymer film commonly used, such as a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene / methacrylate copolymer
  • the polymer film may be used alone or as a laminate thereof, or may be a nonwoven fabric made of a conventional porous nonwoven fabric, for example, glass fiber of high melting point, polyethylene terephthalate fiber or the like, but is not limited thereto.
  • the pore diameter of the porous separation membrane is generally 0.01 to 50 ⁇ m, and the porosity may be 5 to 95%.
  • the thickness of the porous separator may be generally in the range of 5 to 300 mu m.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
  • a Li half cell using Li metal as a positive electrode and a negative electrode containing impurities prepared by the above-mentioned method was prepared, and then a coin half cell was manufactured using a porous polyethylene separator.
  • a nonaqueous electrolytic solution and a coin half cell comprising the nonaqueous electrolytic solution were prepared in the same manner as in Example 1, except that 0.04 g of the compound of the formula (2c-1) was added to 4.96 g of the organic solvent during the preparation of the nonaqueous electrolyte solution.
  • a nonaqueous electrolytic solution and a coin half cell comprising the same were prepared in the same manner as in Example 1, except that 0.006 g of the compound of the formula (2c-1) was added to 4.94 g of the organic solvent in the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution and a coin half cell comprising the nonaqueous electrolytic solution were prepared in the same manner as in Example 1 except that the additive was not included in the preparation of the nonaqueous electrolyte (see Table 1 below).
  • a nonaqueous electrolytic solution and a coin half cell comprising the nonaqueous electrolytic solution were prepared in the same manner as in Example 1 except that the nonaqueous electrolytic solution additive was used as a nonaqueous electrolyte additive in the preparation of the nonaqueous electrolytic solution (see Table 1 below).
  • a nonaqueous electrolytic solution and a coin half cell comprising the nonaqueous electrolytic solution were prepared in the same manner as in Example 1 except that the nonaqueous electrolytic solution additive was used as a nonaqueous electrolyte additive in the preparation of the nonaqueous electrolytic solution (see Table 1 below).
  • a nonaqueous electrolytic solution and a coin half including the same were prepared in the same manner as in Example 1, except that the nonaqueous electrolytic solution additive used in the preparation of the nonaqueous electrolyte solution was a lithium salt compound, lithium oxalyldifluoroborate (LiODFB) (See Table 1 below).
  • LiODFB lithium oxalyldifluoroborate
  • a nonaqueous electrolytic solution and a coin half cell containing the same were prepared in the same manner as in Example 1 except that succinonitrile (SN) was included as a nonaqueous electrolyte additive in the preparation of the nonaqueous electrolyte (see Table 1 below) .
  • succinonitrile SN
  • Example Lithium salt Organic solvent additive Configuration Addition amount (g) The Addition amount (g) (wt%)
  • Example 3 4.94 2c-1 0.06 1.2 Comparative Example 1 5 - - - Comparative Example 2 4.95 3 0.05 One Comparative Example 3 4.95 4 0.05 One Comparative Example 4 4.95 LiODFB 0.05 One Comparative Example 5 4.95 SN 0.05
  • LiODFB lithium oxalyldifluoroborate SN: succinonitrile
  • the coin half cell manufactured in Example 1 and the coin half cell manufactured in Comparative Example 1 were each prepared in a dry room and then allowed to stand in a 25 ° C thermostat for 24 hours and then subjected to 0.1 C CC- The change in the voltage of the coin half cell with time was measured while proceeding in the voltage range of 4.25 V ( vs. Li / Li + ). At this time, the CV current termination condition was set at 0.05 C.
  • the coin half cell of Example 1 contains a compound containing a nitrogen atom and a propargyl group in a non-aqueous electrolyte as an additive, it is adsorbed by metallic impurities to prevent elution of impurities, the acid is removed and the resin phase is prevented from being formed on the surface of the negative electrode, so that internal short-circuit is hardly generated. Therefore, it can be seen that a graph can be confirmed that normal charging / discharging is proceeding normally as shown in Fig.
  • LiMn 2 O 4 LiMn 2 O 4
  • carbon black as a conductive material
  • PVDF polyvinylidene fluoride
  • the resultant was applied to a current collector (Al foil), dried, and subjected to a roll press to produce a positive electrode.
  • the positive electrode was charged into the non-aqueous electrolyte prepared in Example 1 and each of the non-aqueous electrolytes (5 mL) prepared in Comparative Example 1, Comparative Example 4 and Comparative Example 5, After storing the electrode, the concentration of metal (Mn) dissolved in the electrolyte was measured using an inductively coupled plasma optical emission spectrometer ( ICP- OES). The amount of metal measured by ICP analysis 2 is shown in FIG.

Abstract

The present invention relates to a non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for a lithium ion battery and a lithium ion battery, comprising the non-aqueous electrolyte solution additive and, specifically, to a non-aqueous electrolyte solution in which a Lewis base-based compound comprising a propargyl group is applied as a non-aqueous electrolyte solution additive for a lithium ion battery, and which is capable of suppressing elution of metal impurities which cause defects inside a battery and is capable of removing acid generated by the decomposition of lithium salts, and a lithium secondary battery in which transition metal elution in an anode and low voltage phenomena are improved, by comprising the non-aqueous electrolyte solution additive for the lithium ion battery.

Description

비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지Non-aqueous electrolyte additive, non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing same
관련 출원(들)과의 상호 인용Cross-reference with related application (s)
본 출원은 2017년 7월 14일자 한국 특허 출원 제2017-0089773호 및 2018년 7월 4일자 한국 특허 출원 제2018-0077576호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 2017-0089773, filed on July 14, 2017, and Korean Patent Application No. 2018-0077576, filed on July 4, 2018, all of which are incorporated herein by reference in their entirety The contents of which are incorporated herein by reference.
기술분야Technical field
본 발명은 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지에 관한 것이다.The present invention relates to a nonaqueous electrolyte additive, a nonaqueous electrolyte solution for a lithium secondary battery comprising the same, and a lithium secondary battery.
정보사회의 발달로 인한 개인 IT 디바이스와 전산망이 발달되고 이에 수반하여 전반적인 사회의 전기에너지에 대한 의존도가 높아지면서, 전기 에너지를 효율적으로 저장하고 활용하기 위한 기술 개발이 요구되고 있다.As individual IT devices and computer networks are developed due to the development of information society and the dependency on the electric energy of society as a whole is increasing, the development of technology for efficiently storing and utilizing electric energy is required.
이차전지 기반 기술은 여러 용도에 가장 적합한 기술로서, 소형화가 가능하여 개인 IT 디바이스 등에 적용될 수 있고, 전력 저장 장치 등과 같은 대형 디바이스에도 적용될 수도 있다. The technology based on the secondary battery is the most suitable technology for various applications and can be applied to individual IT devices such as miniaturization and may be applied to large devices such as power storage devices.
이차전지 기술 중에서도 이론적으로 에너지 밀도가 가장 높은 전지 시스템인 리튬 이온 전지가 각광을 받고 있다. Lithium-ion batteries, which are theoretically the most energy-dense battery system among the secondary battery technologies, are in the spotlight.
리튬 이온 전지의 경우, 리튬 금속을 직접 시스템에 적용하였던 초창기와는 달리, 리튬을 함유하고 있는 전이금속 산화물로 이루어진 양극과, 리튬을 저장할 수 있는 음극, 전해액, 및 분리막으로 구성되어 있다.In the case of a lithium ion battery, unlike in the early days when a lithium metal was directly applied to a system, it is composed of a positive electrode made of a transition metal oxide containing lithium, a negative electrode capable of storing lithium, an electrolyte, and a separator.
이중 양극의 경우 전이금속의 산화환원 반응을 통하여 에너지를 저장하게 되는데, 이는 곧 전이금속이 양극 소재에 필수적으로 포함되어야 한다는 것으로 귀결된다. In the case of the dual anode, the energy is stored through the redox reaction of the transition metal, which means that the transition metal must be essentially included in the anode material.
한편, 리튬 이온 전지의 제조에 있어서 현재 큰 문제로 지적되고 있는 것은 전지의 저전압 불량이다. 저전압 불량의 경우, 활성화 공정을 거친 후 전지의 전위가 서서히 떨어져 제품으로서의 가치를 잃어 버리는 것으로, 이러한 현상은 이하의 3가지 원인에서 기인한다.On the other hand, it is the low voltage failure of the battery which is pointed out as a big problem at present in the production of the lithium ion battery. In the case of low voltage failure, the potential of the cell gradually drops after the activation process, and the value of the product is lost. This phenomenon is caused by the following three reasons.
첫 번째는 활성화 공정 후에 양극/음극 표면에 형성되는 피막의 부동태(passivation) 능력이 떨어질 때에 관측된다. The first is observed when the passivation ability of the coating formed on the anode / cathode surface after the activation process is lowered.
리튬 이온 전지의 전극 소재 중 특히 음극의 경우 흑연계 음극을 사용하는 경우가 대부분인데, 흑연의 경우 이의 작동 전위가 0.3 V (vs. Li/Li+) 이하로 리튬 이온 전지에 사용되는 전해액의 전기화학적 안정창보다 낮기 때문에, 전해액이 먼저 환원되어 분해된다. 이렇게 환원 분해된 전해액 산물은 리튬 이온은 투과시키지만, 전해액의 추가적인 분해를 억제하는 고체 전해질 피막 (Solid electrolyte interphase (SEI) 막)을 형성하게 된다.Most of the electrode materials of the lithium ion battery use a graphite anode in the case of a cathode, but the operating potential of the graphite is 0.3 V ( vs. Li / Li + ) or less. Because it is lower than the chemical stability window, the electrolyte is first reduced and decomposed. The thus-decomposed electrolytic solution product forms a solid electrolyte interphase (SEI) film that transmits lithium ions but inhibits further decomposition of the electrolyte solution.
하지만, 상기 SEI 막이 추가적인 전해액 분해를 억제시킬 수 있을 정도로 충분한 부동태 능력을 가지지 못하는 경우, 저장 중에 전해액이 추가적으로 분해되어 충전된 흑연이 자가 방전되면서, 결론적으로 전체 전지의 전위가 저하하는 현상이 나타나게 된다. 이러한 요소도 저전압 불량의 큰 원인이라 할 수 있다. However, if the SEI film does not have enough passivity to inhibit further decomposition of the electrolyte, the electrolyte is further decomposed during storage, and the charged graphite is self-discharged, resulting in a decrease in the potential of the entire cell . These factors are also a major cause of low voltage failure.
두 번째는 초기 전극 슬러리 제조 시에 금속 상의 불순물이 포함된 경우에 나타난다.The second is when metal impurities are included in the initial electrode slurry preparation.
한 예로, 리튬 이온 전지의 양극은 전극 활물질뿐만 아니라 도전재, 바인더가 함께 포함된 슬러리를 알루미늄 등의 집전체 위에 도포함으로써 제조하는데, 이때 도전재의 제조 과정에서 발생된 철 또는 구리, 니켈 등과 같은 금속 분말이 제거되지 않고 전극 제조 시에 함유될 수 있다. For example, a positive electrode of a lithium ion battery is manufactured by coating a slurry containing a conductive material and a binder together with an electrode active material on a current collector such as aluminum. In this case, the metal such as iron or copper, The powder can be contained in the electrode manufacturing without being removed.
초기에 함유된 금속불순물의 경우, 전극 내부에 국부적으로 많은 양이 존재하게 되는 경우가 많으며 이로 인하여 초기 전지의 출하 전 활성화 과정 중에 양극으로부터 과량의 금속 이온이 용출되면서, 음극에 전착(electro-deposition)되어 수지상으로 성장하게 된다. 이는 결국 전지의 내부 단락을 발생시키는 원인이 되고, 저전압 불량률이 비약적으로 상승할 수 있다. In the case of metallic impurities initially contained in the electrode, a large amount of the metal impurity locally exists in many places inside the electrode. As a result, excessive metal ions are eluted from the anode during the pre-shipment activation process of the initial cell, ) To grow into a dendritic shape. This eventually causes an internal short circuit of the battery, and the low voltage failure rate may increase dramatically.
세 번째는 양극으로부터 전이금속들이 전해액 내부로 쉽게 용출되는 경우에 발생한다.The third occurs when the transition metals from the anode are easily eluted into the electrolyte.
즉, 전해액에서 생성되는 HF, 혹은 양극의 충방전에 따른 불안정한 구조의 형성 등으로 인하여 양극을 구성하는 전이금속들이 전해액 내부로 쉽게 용출될 수 있는데, 이렇게 용출된 전이금속 이온은 양극에 재전착되어 양극의 저항을 증가시키는 원인이 되거나, 반대로 전해액을 통하여 음극으로 이동된 후 음극에 전착되어 음극을 자가 방전시키고, 음극에 부동태 능력을 부여하는 SEI 막을 파괴하여 추가적인 전해액 분해 반응을 촉진시키면서, 리튬 이온을 소모시키거나, 음극의 계면 저항을 증가시키는 요인으로 알려져 있다. That is, the transition metals constituting the anode can be easily eluted into the electrolyte due to HF produced in the electrolyte, or formation of an unstable structure due to charging / discharging of the anode. The thus eluted transition metal ions are re-deposited on the anode It is possible to increase the resistance of the anode or, conversely, to move to the cathode through the electrolyte and then electrodeposition to the cathode to self-discharge the cathode, thereby destroying the SEI film which gives the passive ability to the cathode, And it is known as a factor to increase the interfacial resistance of the cathode.
이러한 전이금속의 용출과 SEI 막의 불충분한 부동태 능력은 활성화 공정 단계뿐만 아니라, 고온 충방전 혹은 고온 저장 시에 양극에서 용출되는 전이금속 이온 종에 의한 열화의 원인이 된다. Such elution of the transition metal and insufficient passivation ability of the SEI film causes not only the activation step but also deterioration due to the transition metal ion species eluted from the anode at high temperature charge / discharge or high temperature storage.
이에, 전이금속 용출이 발생하는 양극 소재들을 활용한 리튬 이온 전지에서는 저전압 불량을 개선할 수 있는 첨가제를 도입하여, 고온 수명이나 저장 등의 성능을 개선하려는 연구가 대두되고 있다.Therefore, studies have been made to improve the performance of high-temperature lifetime and storage by introducing an additive capable of improving low-voltage defects in a lithium ion battery using a cathode material in which a transition metal elution occurs.
선행기술문헌Prior art literature
J. Power Sources, 119-121 (2003) 330-337 J. Power Sources, 119-121 (2003) 330-337
J. Electrochem. SOC., 151 (2004) A542-A547 J. Electrochem. SOC. , 151 (2004) A542-A547
본 발명은 상기와 같은 문제점을 해결하기 위하여, 리튬 이온 전지의 저전압 현상 및 양극에서의 전이금속 용출을 개선하기 위하여 금속 불순물에 대한 흡착 효과가 우수하고, 리튬염으로부터 발생된 분해 산물 제거 효과가 우수한 비수전해액 첨가제를 제공하고자 한다.In order to solve the above problems, it is an object of the present invention to provide a lithium ion battery which is excellent in the adsorption effect on metal impurities to improve the low voltage development of the lithium ion battery and the dissolution of the transition metal in the anode, Aqueous electrolyte additive.
또한, 본 발명은 상기 비수전해액 첨가제를 포함하는 리튬 이차전지용 비수전해액을 제공하고자 한다.The present invention also provides a nonaqueous electrolyte solution for a lithium secondary battery comprising the nonaqueous electrolyte additive.
또한, 본 발명은 상기 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공하고자 한다.The present invention also provides a lithium secondary battery comprising the non-aqueous electrolyte for the lithium secondary battery.
상기의 목적을 달성하기 위한 본 발명의 일실시예에서, In order to achieve the above object, in one embodiment of the present invention,
하기 화학식 1 및 화학식 2로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물인 비수전해액 첨가제를 제공한다.And at least one compound selected from the group consisting of compounds represented by the following general formulas (1) and (2).
(화학식 1)(Formula 1)
Figure PCTKR2018007729-appb-I000001
Figure PCTKR2018007729-appb-I000001
상기 화학식 1에서, In Formula 1,
R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 선형 또는 비선형의 알킬기이고, R3는 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이다.R 1 and R 2 are each independently a linear or non-linear alkyl group having 1 to 5 carbon atoms; and R 3 is a linear or non-linear alkylene group having 1 to 3 carbon atoms.
(화학식 2)(2)
Figure PCTKR2018007729-appb-I000002
Figure PCTKR2018007729-appb-I000002
상기 화학식 2에서,In Formula 2,
R4는 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 4 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
A는 산소 및 질소 원소 중 적어도 하나 이상을 포함하는 탄소수 3 내지 6의 치환 또는 비치환된 헤테로아릴기, 또는 산소 및 질소 원소 중 적어도 하나 이상을 포함하는 탄소수 3 내지 6의 치환 또는 비치환된 헤테로사이클릭기이고,A is a substituted or unsubstituted heteroaryl group having 3 to 6 carbon atoms containing at least one of oxygen and nitrogen atoms or a substituted or unsubstituted heteroaryl group having 3 to 6 carbon atoms containing at least one of oxygen and nitrogen A cyclic group,
R5는 수소, 탄소수 1 내지 3의 알킬기, 산소(=O), -CN 및 로 이루어진 군으로부터 선택된 적어도 하나이고, 이때 R은 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이며,R 5 is hydrogen, an alkyl group having 1 to 3 carbon atoms, oxygen (═O), -CN and , Wherein R is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
n은 1 내지 6 중 어느 하나의 정수이며,n is an integer of 1 to 6,
n이 2 이상인 경우 각각의 R5는 서로 동일하거나 상이할 수 있다. When n is 2 or more, each R 5 may be the same or different from each other.
상기 화학식 1로 표시되는 화합물은 하기 화학식 1a 내지 화학식 1c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.The compound represented by Formula 1 may be at least one selected from the group consisting of compounds represented by Chemical Formulas 1a to 1c.
(화학식 1a)(1a)
Figure PCTKR2018007729-appb-I000004
Figure PCTKR2018007729-appb-I000004
(화학식 1b) (1b)
Figure PCTKR2018007729-appb-I000005
Figure PCTKR2018007729-appb-I000005
(화학식 1c)(Formula 1c)
Figure PCTKR2018007729-appb-I000006
Figure PCTKR2018007729-appb-I000006
또한, 상기 화학식 2로 표시되는 화합물은 하기 화학식 2a 내지 화학식 2c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.In addition, the compound represented by Formula 2 may be at least one selected from the group consisting of compounds represented by Chemical Formulas 2a to 2c.
[화학식 2a](2a)
Figure PCTKR2018007729-appb-I000007
Figure PCTKR2018007729-appb-I000007
상기 화학식 2a에서,In the above formula (2a)
R6는 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 6 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
R7 내지 R10은 각각 독립적으로 수소, 탄소수 1 내지 3의 알킬기 및 -CN로 이루어진 군으로부터 선택된 적어도 하나이며,R 7 to R 10 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms, and -CN,
B는 CH2, O, N-CH3, C=O 또는
Figure PCTKR2018007729-appb-I000008
이고, 이때 R'는 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이다.
B is CH 2 , O, N-CH 3 , C = O or
Figure PCTKR2018007729-appb-I000008
, Wherein R 'is a linear or non-linear alkylene group having 1 to 3 carbon atoms.
[화학식 2b](2b)
Figure PCTKR2018007729-appb-I000009
Figure PCTKR2018007729-appb-I000009
상기 화학식 2b에서,In the above formula (2b)
R11은 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 11 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
R12 내지 R15는 각각 독립적으로 수소, 탄소수 1 내지 3의 알킬기, 및 -CN로 이루어진 군으로부터 선택된 적어도 하나이다.R 12 to R 15 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms, and -CN.
[화학식 2c][Chemical Formula 2c]
Figure PCTKR2018007729-appb-I000010
Figure PCTKR2018007729-appb-I000010
상기 화학식 2c에서,In the above formula (2c)
R16은 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 16 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
R17 내지 R19는 각각 독립적으로 수소, 탄소수 1 내지 3의 알킬기 및 -CN로 이루어진 군으로부터 선택된 적어도 하나이며, R 17 to R 19 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms and -CN,
D는 CH, 또는 N이다.D is CH, or N;
구체적으로, 상기 화학식 2로 표시되는 화합물은 하기 화학식 2b 및 화학식 2c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있으며, 더욱 구체적으로 하기 화학식 2c로 표시되는 화합물일 수 있다.Specifically, the compound represented by Formula 2 may be at least one selected from the group consisting of compounds represented by Formula 2b and 2c, and more specifically, a compound represented by Formula 2c.
한편, 상기 화학식 2a로 표시되는 화합물은 하기 화학식 2a-1 내지 화학식 2a-7로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.The compound represented by the formula (2a) may be at least one selected from the group consisting of compounds represented by the following formulas (2a-1) to (2a-7).
(화학식 2a-1)(2a-1)
Figure PCTKR2018007729-appb-I000011
Figure PCTKR2018007729-appb-I000011
(화학식 2a-2)(2a-2)
Figure PCTKR2018007729-appb-I000012
Figure PCTKR2018007729-appb-I000012
(화학식 2a-3)(Formula 2a-3)
Figure PCTKR2018007729-appb-I000013
Figure PCTKR2018007729-appb-I000013
(화학식 2a-4)(Formula 2a-4)
Figure PCTKR2018007729-appb-I000014
Figure PCTKR2018007729-appb-I000014
(화학식 2a-5)(Formula 2a-5)
Figure PCTKR2018007729-appb-I000015
Figure PCTKR2018007729-appb-I000015
(화학식 2a-6)(2a-6)
Figure PCTKR2018007729-appb-I000016
Figure PCTKR2018007729-appb-I000016
(화학식 2a-7)(Formula 2a-7)
Figure PCTKR2018007729-appb-I000017
Figure PCTKR2018007729-appb-I000017
또한, 상기 화학식 2b으로 표시되는 화합물은 하기 화학식 2b-1로 표시되는 화합물일 수 있다.The compound represented by Formula 2b may be a compound represented by Formula 2b-1.
(화학식 2b-1)(2b-1)
Figure PCTKR2018007729-appb-I000018
Figure PCTKR2018007729-appb-I000018
상기 화학식 2c로 표시되는 화합물은 하기 화학식 2c-1로 표시되는 화합물일 수 있다.The compound represented by Formula 2c may be a compound represented by Formula 2c-1.
(화학식 2c-1)(2c-1)
Figure PCTKR2018007729-appb-I000019
Figure PCTKR2018007729-appb-I000019
또한, 본 발명의 일 실시예에서는 In an embodiment of the present invention,
리튬염; 유기용매; 및 비수전해액 첨가제를 포함하는 리튬 이차전지용 비수전해액으로서, 상기 비수전해액 첨가제는 상기 화학식 1 및 화학식 2로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물인 리튬 이차전지용 비수전해액을 제공한다.Lithium salts; Organic solvent; And a nonaqueous electrolyte additive, wherein the nonaqueous electrolyte additive is at least one compound selected from the group consisting of the compounds represented by the formulas (1) and (2), wherein the nonaqueous electrolyte solution is a nonaqueous electrolyte solution for a lithium secondary battery.
상기 비수전해액 첨가제는 비수전해액 전체 함량을 기준으로 0.05 중량% 내지 5 중량%, 구체적으로 0.5 중량% 내지 3 중량%로 포함될 수 있다.The non-aqueous electrolyte additive may be included in an amount of 0.05 wt% to 5 wt%, specifically 0.5 wt% to 3 wt% based on the total amount of the non-aqueous electrolyte.
또한, 본 발명의 일 실시예에서는In an embodiment of the present invention,
음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막, 및 비수전해액을 포함하되,A negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and a nonaqueous electrolyte,
상기 양극은 리튬-니켈-망간-코발트계 산화물 및 리튬-망간계 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상의 양극 활물질을 포함하고,Wherein the positive electrode comprises at least one positive electrode active material selected from the group consisting of lithium-nickel-manganese-cobalt oxide and lithium-manganese oxide,
상기 비수전해액은 본 발명의 리튬 이차전지용 비수전해액인 것인 리튬 이차전지를 제공한다.And the non-aqueous electrolyte is a non-aqueous electrolyte for the lithium secondary battery of the present invention.
구체적으로, 상기 양극 활물질은 리튬-망간계 산화물을 포함할 수 있으며, 이러한 리튬-망간계 산화물은 LiMn2O4일 수 있다.Specifically, the cathode active material may include a lithium-manganese-based oxide, and the lithium-manganese-based oxide may be LiMn 2 O 4 .
본 발명에서는 리튬 이온 전지의 저전압 현상을 개선하기 위하여 비수전해액 첨가제로 질소 원소 및 프로파질(propargyl)기를 포함하는 루이스 염기(Lewis base) 기반의 화합물을 사용함으로써, 리튬염의 음이온 분해로 인하여 형성되는 루이스 산(Lewis acid)을 제거할 수 있고, 음극 및 양극 표면 상에 보다 안정적인 SEI 막을 형성할 수 있으므로, 리튬염의 분해 산물로 인하여 양극으로부터 전이금속의 용출을 억제할 수 있다. 또한, 본 발명에서는 상기 비수전해액을 포함하는 비수전해액을 적용함으로써 저전압 불량이 개선되고, 양극에서의 전이금속 용출이 억제된 리튬 이차전지를 제조할 수 있다.In the present invention, by using a Lewis base-based compound containing a nitrogen element and a propargyl group as a non-aqueous electrolyte additive to improve the low-voltage phenomenon of a lithium ion battery, Lewis acid can be removed and a more stable SEI film can be formed on the surfaces of the cathode and the anode, so that the elution of the transition metal from the anode can be suppressed due to the decomposition product of the lithium salt. Further, in the present invention, by applying the nonaqueous electrolyte solution containing the nonaqueous electrolyte solution, it is possible to manufacture a lithium secondary battery in which defective low voltage is improved and leakage of transition metal in the positive electrode is suppressed.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention and together with the description of the invention serve to further the understanding of the technical idea of the invention, It is not limited.
도 1은 본 발명의 실험예 1에서 시간에 따른 코인 하프셀의 전압 변화를 나타낸 그래프이다.1 is a graph showing a change in voltage of a coin half cell according to time in Experimental Example 1 of the present invention.
도 2는 본 발명의 실험예 3에서 비수전해액에 대한 금속 용출 억제 효과를 나타낸 그래프이다.2 is a graph showing the effect of inhibiting metal elution on a non-aqueous electrolyte according to Experimental Example 3 of the present invention.
이하, 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may appropriately define the concept of the term in order to best describe its invention It should be construed as meaning and concept consistent with the technical idea of the present invention.
리튬 이온 전지의 저전압 불량률을 개선시키기 위해서는, 양극에 포함된 불순물의 용출을 억제하거나, 음극 등 전극 표면 위에 형성되는 피막이 우수한 부동태 능력을 가지도록 설계하는 것이 중요하다. 하지만, 양극으로부터 전이금속이 전해액에 용출되는 것을 온전히 해결하는 것은 어렵기 때문에, 용출되어 나오는 금속 이온을 전해액 내부에서 포획(scavenging)하여 음극 혹은 양극에 전착되는 것을 원천차단 하게 된다면, 전지의 열화를 크게 억제할 수 있고, 따라서 저전압 개선 효과도 얻을 수 있을 것으로 판단된다.In order to improve the low-voltage defective ratio of the lithium ion battery, it is important to suppress leaching of impurities contained in the anode or to design the film formed on the electrode surface such as a cathode to have excellent passivation capability. However, since it is difficult to completely solve the elution of the transition metal from the anode into the electrolytic solution, if the metal ions eluted are scavenged in the electrolytic solution to prevent the electrodeposition on the cathode or the anode, Therefore, it is considered that the effect of improving the low voltage can be obtained.
이에 본 발명에서는 이런 전이금속의 용출 혹은 양극 피막 및 SEI 막의 부동태 능력 상실에서 발생하는 전지의 초기 불량을 억제 및 방지하기 위하여 금속상 불순물과의 흡착 효과가 우수하고, 음극 표면의 SEI 막의 부동태 능력을 강화할 수 있는 첨가제를 제공하고자 한다. 이러한 본 발명의 비수전해액 첨가제의 경우 삼중 결합을 함유함으로써 음극 피막인 SEI 막을 강화할 수 있을 뿐만 아니라, 금속 이물에 흡착하여 금속 용출을 억제할 수 있다. 특히, 본 발명의 비수전해액 첨가제의 경우, 루이스 염기 작용기인 질소 원소를 포함하는 작용기를 가지고 있기 때문에, 리튬염의 분해로 인해 형성되는 HF, PF5 등의 분해 산물을 제거할 수 있다.Therefore, in order to prevent or prevent the initial failure of the cell caused by dissolution of the transition metal or loss of the passivation ability of the anodic coating and the SEI film, the present invention has an excellent adsorption effect with metal impurities, To provide an additive that can be reinforced. In the case of the nonaqueous electrolyte additive of the present invention, the SEI film which is the cathode coating can be strengthened by containing the triple bond, and the metal leaching can be inhibited by being adsorbed on the metal foreign matter. In particular, in the case of the non-aqueous electrolyte additive of the present invention, since it has a functional group containing a nitrogen element which is a Lewis base function, decomposition products such as HF and PF 5 formed due to decomposition of the lithium salt can be removed.
또한, 본 발명에서는 상기 비수전해액 첨가제를 포함함으로써 저전압 불량을 개선할 수 있는 비수전해액 및 리튬 이차전지를 제공하고자 한다.Also, the present invention provides a non-aqueous electrolyte and a lithium secondary battery which can improve low voltage defects by including the non-aqueous electrolyte additive.
구체적으로, 본 발명의 일 실시예에서는Specifically, in one embodiment of the present invention
하기 화학식 1 및 화학식 2로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물인 비수전해액 첨가제를 제공한다.And at least one compound selected from the group consisting of compounds represented by the following general formulas (1) and (2).
(화학식 1)(Formula 1)
Figure PCTKR2018007729-appb-I000020
Figure PCTKR2018007729-appb-I000020
상기 화학식 1에서, In Formula 1,
R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 선형 또는 비선형의 알킬기이고, R3는 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이다.R 1 and R 2 are each independently a linear or non-linear alkyl group having 1 to 5 carbon atoms; and R 3 is a linear or non-linear alkylene group having 1 to 3 carbon atoms.
(화학식 2)(2)
Figure PCTKR2018007729-appb-I000021
Figure PCTKR2018007729-appb-I000021
상기 화학식 2에서,In Formula 2,
R4는 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 4 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
A는 산소 및 질소 원소 중 적어도 하나 이상을 포함하는 탄소수 3 내지 6의 치환 또는 비치환된 헤테로아릴기, 또는 산소 및 질소 원소 중 적어도 하나 이상을 포함하는 탄소수 3 내지 6의 치환 또는 비치환된 헤테로사이클릭기이고,A is a substituted or unsubstituted heteroaryl group having 3 to 6 carbon atoms containing at least one of oxygen and nitrogen atoms or a substituted or unsubstituted heteroaryl group having 3 to 6 carbon atoms containing at least one of oxygen and nitrogen A cyclic group,
R5는 수소, 탄소수 1 내지 3의 알킬기, 산소(=O), -CN 및
Figure PCTKR2018007729-appb-I000022
로 이루어진 군으로부터 선택된 적어도 하나이고, 이때 R은 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이며,
R 5 is hydrogen, an alkyl group having 1 to 3 carbon atoms, oxygen (═O), -CN and
Figure PCTKR2018007729-appb-I000022
, Wherein R is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
n은 1 내지 6 중 어느 하나의 정수이며,n is an integer of 1 to 6,
n이 2 이상인 경우 각각의 R5는 서로 동일하거나 상이할 수 있다. When n is 2 or more, each R 5 may be the same or different from each other.
상기 화학식 1 및 화학식 2로 표시되는 화합물은 구조 내에 질소 원소를 포함하는 루이스 염기로 기능하는 작용기를 함유하기 때문에, 리튬 염의 PF6 -와 같은 음이온의 분해를 억제할 수는 없지만, 음이온의 분해로 생성되는 분해산물인 HF, PF5와 같은 루이스 산을 전해액 내부에서 제거할 수 있고, 따라서 이러한 루이스 산으로부터 기인하는 양극 혹은 음극 표면 피막의 화학 반응으로 인한 열화 거동을 억제할 수 있다. 그 결과 피막의 열화를 억제하여, 피막의 파괴에 의한 전지의 추가적인 전해액 분해를 막을 수 있기 때문에, 최종적으로 전지의 자가방전을 막을 수 있다.The compounds represented by Chemical Formulas 1 and 2 contain a functional group functioning as a Lewis base containing a nitrogen element in the structure. Therefore, decomposition of anions such as PF 6 - of a lithium salt can not be inhibited, The Lewis acid such as HF and PF 5 which are decomposition products to be produced can be removed from the inside of the electrolytic solution and thus the deterioration behavior due to the chemical reaction of the surface coating of the anode or the cathode due to such Lewis acid can be suppressed. As a result, deterioration of the coating film can be suppressed and further decomposition of the electrolyte in the battery due to destruction of the coating film can be prevented, so that the self-discharge of the battery can be prevented finally.
또한, 상기 화학식 1 및 화학식 2로 표시되는 화합물은 구조 내에 프로파질 작용기를 가지고 있기 때문에, 이러한 작용기가 환원 분해되면서 음극 표면에 부동태 능력이 높은 SEI 막을 형성하여 음극 자체의 고온 내구성도 개선할 수 있을 뿐만 아니라, 음극 자체에 전착되는 전이금속의 양을 감소 시킬 수 있다. 나아가, 상기 프로파질기에 의해, 양극에 포함된 금속성 불순물의 표면에 흡착되어 불순물의 용출이 어려워지게 만드는 기능을 할 수 있으며, 이를 통하여 용출된 금속이온이 음극에 석출되어 발생할 수 있는 내부 단락을 억제할 수 있다. 더욱이, 상기 프로파질기는 음극 표면에서 환원되기 용이하기 때문에, 음극 표면에 안정한 피막을 형성할 수 있으므로, SEI 막의 불안정성(instability)에 의하여 발생하는 전해액의 추가적인 환원 분해 반응에 의한 흑연계, 실리콘계 음극의 자가 방전 반응을 방지할 수 있다.In addition, since the compounds represented by Chemical Formulas 1 and 2 have a prophylactic functional group in the structure, it is possible to improve the high temperature durability of the cathode itself by forming a SEI film having high passivation ability on the surface of the cathode, In addition, it is possible to reduce the amount of the transition metal electrodeposited on the cathode itself. Furthermore, the prophage may adsorb on the surface of the metallic impurities contained in the anode to make the elution of the impurities difficult, and the internal short-circuit that may occur due to the precipitation of the eluted metal ions on the anode . In addition, since the prophage is easy to be reduced on the surface of the anode, it is possible to form a stable film on the surface of the anode. Therefore, it is possible to use a graphite system due to the additional reduction decomposition reaction of the electrolyte caused by the instability of the SEI film, Can be prevented.
상기 열거한 종합적인 효과를 통하여 본 발명의 화학식 1 및 화학식 2로 표시되는 화합물을 포함하는 비수전해액 첨가제는 금속 표면에 흡착되어 금속이 이온으로 용출되는 것을 억제하여 내부 단락 발생을 억제할 수 있을 뿐만 아니라, SEI 막을 안정적으로 형성시켜 주고, 리튬 염의 분해에 의한 양/음극 피막의 파괴를 방지할 수 있기에, 전지의 자가방전 반응을 억제할 수 있고, 이를 통하여 리튬 이온 전지의 저전압 불량을 개선할 수 있다.Through the synthetic effects listed above, the nonaqueous electrolyte additive containing the compound represented by the general formulas (1) and (2) of the present invention can be adsorbed on the metal surface to inhibit the metal from leaching into ions, Since the SEI film can be formed stably and breakdown of the positive / negative electrode coating due to decomposition of the lithium salt can be prevented, the self-discharge reaction of the battery can be suppressed and the low voltage failure of the lithium ion battery can be improved have.
한편, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1a 내지 화학식 1c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.Meanwhile, the compound represented by Formula 1 may be at least one selected from the group consisting of compounds represented by Chemical Formulas 1a to 1c.
(화학식 1a)(1a)
Figure PCTKR2018007729-appb-I000023
Figure PCTKR2018007729-appb-I000023
(화학식 1b) (1b)
Figure PCTKR2018007729-appb-I000024
Figure PCTKR2018007729-appb-I000024
(화학식 1c)(Formula 1c)
Figure PCTKR2018007729-appb-I000025
Figure PCTKR2018007729-appb-I000025
또한, 상기 화학식 2로 표시되는 화합물은 하기 화학식 2a 내지 화학식 2c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.In addition, the compound represented by Formula 2 may be at least one selected from the group consisting of compounds represented by Chemical Formulas 2a to 2c.
[화학식 2a](2a)
Figure PCTKR2018007729-appb-I000026
Figure PCTKR2018007729-appb-I000026
상기 화학식 2a에서,In the above formula (2a)
R6는 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 6 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
R7 내지 R10은 각각 독립적으로 수소, 탄소수 1 내지 3의 알킬기 및 -CN로 이루어진 군으로부터 선택된 적어도 하나이며,R 7 to R 10 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms, and -CN,
B는 CH2, O, N-CH3, C=O 또는
Figure PCTKR2018007729-appb-I000027
이고, 이때 R'는 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이다.
B is CH 2 , O, N-CH 3 , C = O or
Figure PCTKR2018007729-appb-I000027
, Wherein R 'is a linear or non-linear alkylene group having 1 to 3 carbon atoms.
[화학식 2b](2b)
Figure PCTKR2018007729-appb-I000028
Figure PCTKR2018007729-appb-I000028
상기 화학식 2b에서,In the above formula (2b)
R11은 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 11 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
R12 내지 R15는 각각 독립적으로 수소, 탄소수 1 내지 3의 알킬기, 및 -CN로 이루어진 군으로부터 선택된 적어도 하나이다.R 12 to R 15 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms, and -CN.
[화학식 2c][Chemical Formula 2c]
Figure PCTKR2018007729-appb-I000029
Figure PCTKR2018007729-appb-I000029
상기 화학식 2c에서,In the above formula (2c)
R16은 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 16 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
R17 내지 R19는 각각 독립적으로 수소, 탄소수 1 내지 3의 알킬기 및 -CN로 이루어진 군으로부터 선택된 적어도 하나이며, R 17 to R 19 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms and -CN,
D는 CH, 또는 N이다.D is CH, or N;
한편, 상기 화학식 2a의 화합물에서 사이클릭기 내에 카르보닐기가 2개 이상 치환(포함)되는 경우, 카르보닐기의 산소가 π-acceptor로 작용하여 질소의 전자를 비편재화 (de-localization) 시킬 수 있다. 따라서, 이러한 아마이드 화합물의 경우 아민계열의 물질보다 질소 원자의 루이스 염기로서의 효과 즉, 루이스 산을 제거하는 효과가 상대적으로 감소할 수 있다.On the other hand, when two or more carbonyl groups are substituted (included) in the cyclic group in the compound of formula (2a), the carbon of the carbonyl group acts as a π-acceptor to de-localize electrons of nitrogen. Therefore, in the case of such an amide compound, the effect of the nitrogen atom as a Lewis base, that is, the effect of removing Lewis acid, can be relatively reduced as compared with the amine-based substance.
따라서, 본 발명의 비수전해액 첨가제는 상기 화학식 2로 표시되는 화합물 중에서, 상기 화학식 2a의 화합물에 비하여, 상기 화학식 2b 및 2c로 표시되는 화합물, 이 중에도 특히 화학식 2c로 표시되는 화합물이, 루이스 염기인 이마다졸(imidazole) 작용기에 의하여 리튬염의 분해 산물인 루이스 산을 효과적으로 제거할 수 있기 때문에, 보다 바람직하게 사용될 수 있다.Accordingly, the non-aqueous electrolyte additive of the present invention is characterized in that the compound represented by the general formula (2b) or (2c), particularly the compound represented by the general formula (2c) The Lewis acid, which is the decomposition product of the lithium salt, can be effectively removed by the imidazole functional group.
한편, 상기 화학식 2로 표시되는 화합물은 하기 화학식 2a-1 내지 화학식 2a-7로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.The compound represented by the formula (2) may be at least one selected from the group consisting of compounds represented by the following formulas (2a-1) to (2a-7).
(화학식 2a-1)(2a-1)
Figure PCTKR2018007729-appb-I000030
Figure PCTKR2018007729-appb-I000030
(화학식 2a-2)(2a-2)
Figure PCTKR2018007729-appb-I000031
Figure PCTKR2018007729-appb-I000031
(화학식 2a-3)(Formula 2a-3)
Figure PCTKR2018007729-appb-I000032
Figure PCTKR2018007729-appb-I000032
(화학식 2a-4)(Formula 2a-4)
Figure PCTKR2018007729-appb-I000033
Figure PCTKR2018007729-appb-I000033
(화학식 2a-5)(Formula 2a-5)
Figure PCTKR2018007729-appb-I000034
Figure PCTKR2018007729-appb-I000034
(화학식 2a-6)(2a-6)
Figure PCTKR2018007729-appb-I000035
Figure PCTKR2018007729-appb-I000035
(화학식 2a-7)(Formula 2a-7)
Figure PCTKR2018007729-appb-I000036
Figure PCTKR2018007729-appb-I000036
또한, 상기 화학식 2b으로 표시되는 화합물은 하기 화학식 2b-1로 표시되는 화합물일 수 있다.The compound represented by Formula 2b may be a compound represented by Formula 2b-1.
(화학식 2b-1)(2b-1)
Figure PCTKR2018007729-appb-I000037
Figure PCTKR2018007729-appb-I000037
또한, 상기 화학식 2c로 표시되는 화합물은 하기 화학식 2c-1로 표시되는 화합물일 수 있다.In addition, the compound represented by Formula 2c may be a compound represented by Formula 2c-1.
(화학식 2c-1)(2c-1)
Figure PCTKR2018007729-appb-I000038
Figure PCTKR2018007729-appb-I000038
또한, 본 발명의 일 실시예에서는In an embodiment of the present invention,
리튬염;Lithium salts;
유기용매; 및Organic solvent; And
비수전해액 첨가제를 포함하는 리튬 이차전지용 비수전해액으로서,A nonaqueous electrolyte solution for a lithium secondary battery comprising a nonaqueous electrolyte additive,
상기 비수전해액 첨가제는 상기 화학식 1 및 화학식 2로 표시되는 화합물 중 적어도 하나의 화합물인 리튬 이차전지용 비수전해액을 제공한다.Wherein the non-aqueous electrolyte additive is at least one compound selected from the group consisting of the compounds represented by the formulas (1) and (2).
이때, 상기 화학식 1 및 화학식 2로 표시되는 화합물은 비수전해액 전체 함량을 기준으로 0.05 중량% 내지 5 중량%, 구체적으로 0.5 중량% 내지 3 중량, 보다 구체적으로 0.8 내지 1.2 중량%의 범위로 포함될 수 있다.In this case, the compounds represented by the formulas (1) and (2) may be contained in an amount of 0.05 wt% to 5 wt%, specifically 0.5 wt% to 3 wt%, more specifically 0.8 wt% to 1.2 wt% have.
상기 화학식 1 및 화학식 2로 표시되는 화합물이 상기 범위로 포함되는 경우, 제반 성능이 더욱 향상된 이차전지를 제조할 수 있다. 예컨대, 상기 첨가제의 함량이 0.05 중량% 내지 5 중량% 범위 내이면 SEI 막의 안정화 효과나 금속 용출 억제 효과가 우수하고, 첨가제의 분해에 의한 피막의 저항 증가 제어 효과가 우수하다. When the compounds represented by the formulas (1) and (2) are included in the above ranges, a secondary battery having improved performance can be manufactured. For example, when the content of the additive is within the range of 0.05 wt% to 5 wt%, the effect of stabilizing the SEI film and the effect of inhibiting metal dissolution are excellent, and the effect of controlling the resistance of the coating due to decomposition of the additive is excellent.
한편, 상기 본 발명의 비수전해액에 있어서, 전해질로서 포함되는 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, BF4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다.Meanwhile, in the non-aqueous electrolyte of the present invention, the lithium salt contained as an electrolyte may be any of those conventionally used in an electrolyte for a lithium secondary battery, and examples thereof include Li + as a cation of the lithium salt, is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, BF 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3 ) 5 PF -, (CF 3 ) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 ( CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 At least one selected from the group consisting of SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - .
또한, 일 구현예에 따른 본 발명의 비수전해액에 있어서, 상기 유기용매는 이차전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한이 없다. 예를 들면 에테르계 용매, 에스테르계 용매, 또는 아미드계 용매 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. In addition, in the non-aqueous electrolyte according to an embodiment of the present invention, the organic solvent may be any one that minimizes degradation due to an oxidation reaction or the like during charging and discharging of the secondary battery, none. For example, an ether solvent, an ester solvent or an amide solvent may be used alone or in combination of two or more.
상기 유기용매 중 에테르계 용매로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.As the ether solvent in the organic solvent, any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether and ethyl propyl ether, or a mixture of two or more thereof may be used , But is not limited thereto.
또한, 상기 에스테르계 용매는 환형 카보네이트 화합물, 선형 카보네이트 화합물, 선형 에스테르 화합물, 및 환형 에스테르 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 포함할 수 있다. In addition, the ester solvent may include at least one compound selected from the group consisting of a cyclic carbonate compound, a linear carbonate compound, a linear ester compound, and a cyclic ester compound.
이중 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트(FEC)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다.Specific examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate , 2,3-pentylene carbonate, vinylene carbonate, and fluoroethylene carbonate (FEC), or a mixture of two or more thereof.
또한, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.Specific examples of the linear carbonate compound include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methyl propyl carbonate and ethyl propyl carbonate , Or a mixture of two or more thereof, but the present invention is not limited thereto.
상기 선형 에스테르 화합물은 그 구체적인 예로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.Specific examples of the linear ester compound include any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate, And mixtures thereof, but the present invention is not limited thereto.
상기 환형 에스테르 화합물은 그 구체적인 예로 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤, ε-카프로락톤과 같은 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.Specific examples of the cyclic ester compound include any one selected from the group consisting of? -Butyrolactone,? -Valerolactone,? -Caprolactone,? -Valerolactone and? -Caprolactone, or two or more Mixtures may be used, but are not limited thereto.
상기 에스테르계 용매 중에서 환형 카보네이트계 화합물은 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트계 화합물에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트계 화합물 및 선형 에스테르계 화합물을 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.The cyclic carbonate-based compound in the ester-based solvent is a highly viscous organic solvent having a high dielectric constant and can dissociate the lithium salt in the electrolyte well. The cyclic carbonate-based compound has a low viscosity such as dimethyl carbonate and diethyl carbonate, The dielectric constant linear carbonate compound and the linear ester compound are mixed in an appropriate ratio, an electrolyte having a high electric conductivity can be prepared, and thus it can be more preferably used.
본 발명의 비수전해액은 필요에 따라서 SEI막 형성용 첨가제를 더 포함할 수 있다. 본 발명에서 사용 가능한 SEI막 형성용 첨가제로는 비닐기를 포함한 실리콘계 화합물, 비닐렌 카보네이트, 비닐에틸렌카보네이트, 플루오로에틸렌 카보네이트, 비닐에틸렌 카보네이트, 환형 설파이트, 포화 설톤, 불포화 설톤, 비환형 설폰 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.The non-aqueous electrolyte of the present invention may further comprise an additive for forming an SEI film, if necessary. Examples of the additive for forming the SEI film that can be used in the present invention include silicone-based compounds including vinyl groups, vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate, vinylethylene carbonate, cyclic sulfite, saturated sulphone, unsaturated sulphone, They may be used alone or in combination of two or more.
이때, 상기 환형 설파이트로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌 설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 1,3-부틸렌 글리콜 설파이트 등을 들 수 있으며, 포화 설톤으로는 1,3-프로판 설톤, 1,4-부탄 설톤 등을 들 수 있으며, 불포화 설톤으로는 에텐 설톤, 1,3-프로펜 설톤, 1,4-부텐 설톤, 1-메틸-1,3-프로펜 설톤 등을 들 수 있으며, 비환형 설폰으로는 디비닐 설폰, 디메틸 설폰, 디에틸 설폰, 메틸에틸 설폰, 메틸비닐 설폰 등을 들 수 있다.Examples of the cyclic sulfite include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethyl ethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, 4,5-dimethyl Propylene sulfite, 4,5-diethylpropylene sulfite, 4,6-dimethylpropylene sulfite, 4,6-diethylpropylene sulfite, and 1,3-butylene glycol sulfite. 1,3-propane sultone, 1,4-butane sultone, and the like. Unsaturated sulphones include ethene sultone, 1,3-propenesultone, 1,4-butene sultone, -Propenesultone, and the non-cyclic sulfone includes divinyl sulfone, dimethyl sulfone, diethyl sulfone, methyl ethyl sulfone, and methyl vinyl sulfone.
또한, 본 발명의 일 실시예에서는, Further, in an embodiment of the present invention,
양극, 음극, 상기 양극 및 음극 사이에 개재된 분리막 및 비수전해액을 포함하는 이차전지에 있어서, A secondary battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte,
상기 비수전해액으로 본 발명의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공한다. And a non-aqueous electrolyte solution for a lithium secondary battery of the present invention as the non-aqueous electrolyte.
구체적으로, 본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 개재된 분리막이 순차적으로 적층되어 이루어진 전극조립체에 본 발명의 비수전해액을 주입하여 제조할 수 있다. 이때, 전극조립체를 이루는 양극, 음극 및 분리막은 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.Specifically, the lithium secondary battery of the present invention can be manufactured by injecting the non-aqueous electrolyte of the present invention into an electrode assembly in which a cathode, a cathode, and a separation membrane interposed between the anode and the cathode are sequentially laminated. At this time, the positive electrode, negative electrode, and separator forming the electrode assembly may be those conventionally used in the manufacture of the lithium secondary battery.
상기 본 발명의 리튬 이차전지를 구성하는 양극 및 음극은 통상적인 방법으로 제조되어 사용될 수 있다.The positive electrode and the negative electrode constituting the lithium secondary battery of the present invention can be manufactured and used by a conventional method.
먼저, 상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다. 상기 양극 합제층은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.First, the positive electrode may be manufactured by forming a positive electrode mixture layer on the positive electrode current collector. The positive electrode mixture layer may be formed by coating a positive electrode slurry containing a positive electrode active material, a binder, a conductive material and a solvent on a positive electrode collector, followed by drying and rolling.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. The positive electrode collector is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery. For example, the positive electrode collector may be formed of a metal such as carbon, stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 코발트, 망간, 니켈 또는 알루미늄 중에서 선택되는 1종 이상의 금속과 리튬을 포함하는 리튬 전이금속 산화물을 포함할 수 있으며, 구체적으로는 전지의 용량 특성 및 안전성이 높은 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 리튬-망간계 산화물을 포함할 수 있으며, 보다 구체적으로 리튬-망간계 산화물을 포함할 수 있다.The cathode active material is a compound capable of reversibly intercalating and deintercalating lithium, and may include a lithium-transition metal oxide including lithium and at least one metal selected from cobalt, manganese, nickel, or aluminum, Specifically, a lithium-nickel-manganese-cobalt oxide (for example, Li (Ni p Co q Mn r1 ) O 2 (where 0 <p <1, 0 <q < 1, 0 &lt; r1 &lt; 1, p + q + r1 = 1) or a lithium-manganese oxide. More specifically, it may include lithium-manganese oxide.
상기 리튬-니켈-망간-코발트계 산화물은 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 를 들 수 있으며, 상기 리튬-망간계 산화물은 LiMn2O4을 들 수 있다.The lithium-nickel-manganese-cobalt-based oxide includes Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2, Li (Ni 0.7 Mn 0.15 Co 0.15) O 2 and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O may be mentioned 2, wherein the lithium-manganese-based oxide is LiMn 2 O 4 .
즉, 본 발명의 화합물의 경우, 리튬 염의 분해 산물인 루이스 산을 제거할 수 있는 루이스 염기계 작용기를 포함할 뿐만 아니라 음극에 부동태 능력이 높은 피막을 형성할 수 있는 프로파질 작용기를 지니고 있기에, 양극 활물질 중에서 리튬-니켈-망간-코발트계 산화물 및 리튬-망간계 산화물, 특히 이 중에서 전이금속이 많이 용출되어 음극에 이러한 전이금속이 전착되어 전지의 열화를 발생시키는 Mn 함량이 높은 리튬-망간계 산화물을 사용하는 경우에 보다 우수한 금속 용출 억제 효과를 구현할 수 있다.That is, in the case of the compound of the present invention, since it contains a Lewis salt mechanical group capable of removing Lewis acid, which is a decomposition product of a lithium salt, as well as a prophylactic functional group capable of forming a passivating film on the anode, A lithium-manganese-based oxide having a high Mn content, which is a lithium-nickel-manganese-cobalt oxide and a lithium-manganese-based oxide, particularly, a transition metal is eluted from the active material and the transition metal is electrodeposited It is possible to realize a better metal dissolution inhibiting effect.
한편, 본 발명의 양극 활물질은 리튬-망간계 산화물 외에도, 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 및 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다))로 이루어진 군으로부터 선택된 적어도 하나 이상의 리튬 전이금속 산화물을 더 포함할 수 있다.The positive electrode active material of the present invention may contain, in addition to the lithium-manganese-based oxide, a lithium-cobalt oxide (such as LiCoO 2 ), a lithium-nickel oxide (such as LiNiO 2 ) oxide (e. g., in LiNi 1-Y Mn Y O 2 ( where, 0 <Y <1), LiMn 2-z Ni z O 4 ( where, 0 <z <2) and the like), lithium-nickel -cobalt oxide (e.g., LiNi 1-Y1 Co Y1 O 2 (here, 0 <Y1 <1) and the like), lithium-manganese-cobalt oxide (e.g., LiCo 1-Y2 Mn Y2 O 2 (herein, 0 <Y2 <1), LiMn 2-z1 Co z1 O 4 ( here, 0 <z1 <2) and the like), lithium-nickel-manganese-cobalt oxide (e.g., Li (Ni p Co q Mn r1) O 2 (here, 0 <p <1, 0 <q <1, 0 <r1 <1, p + q + r1 = 1) , or Li (Ni p1 Co q1 Mn r2 ) O 4 ( (E.g., 0 <p1 <2, 0 <q1 <2, 0 <r2 <2, p1 + q1 + r2 = 2), and a lithium-nickel- Li (Ni Co p2 q2 Mn r3 M S2) O 2 (here, M is composed of Al, Fe, V, Cr, Ti, Ta, Mg and Mo 1, 0 <r3 <1, 0 <s2 <1, p2 + q2 + 1, 0 <p2 < and r3 + s2 = 1)). &lt; / RTI &gt;
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다. The cathode active material may be contained in an amount of 80% by weight to 99% by weight based on the total weight of solids in the cathode slurry.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding of the active material to the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 30 wt% based on the total weight of the solid content in the positive electrode slurry. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene (Ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers and the like.
상기 도전재는 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. The conductive material is usually added in an amount of 1 to 30% by weight based on the total weight of the solid content in the positive electrode slurry.
이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙(또는 덴카 블랙), 케첸 블랙 (Ketjenblack), 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples thereof include carbon black, acetylene black (or denka black), Ketjenblack, channel black, furnace black, Carbon black such as lamp black or thermal black; Graphite powder such as natural graphite, artificial graphite, or graphite with a highly developed crystal structure; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.The solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that provides a preferable viscosity when the positive electrode active material and optionally a binder and a conductive material are included. For example, the solid content in the slurry containing the positive electrode active material, and optionally the binder and the conductive material may be in the range of 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
또한, 상기 음극은 음극 집전체 상에 음극 합제층을 형성하여 제조할 수 있다. 상기 음극 합제층은 음극 집전체 상에 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.The negative electrode may be manufactured by forming a negative electrode mixture layer on the negative electrode collector. The negative electrode material mixture layer may be formed by coating a negative electrode current collector with a slurry containing a negative electrode active material, a binder, a conductive material, a solvent, and the like, followed by drying and rolling.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The anode current collector generally has a thickness of 3 to 500 mu m. The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. Examples of the negative electrode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like can be used. In addition, like the positive electrode collector, fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
또한, 상기 음극활물질은 리튬 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질, 및 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다. The negative electrode active material may be a lithium metal, a carbon material capable of reversibly intercalating / deintercalating lithium ions, a metal or an alloy of these metals and lithium, a metal complex oxide, lithium capable of doping and dedoping lithium Materials, and transition metal oxides.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.The carbonaceous material capable of reversibly intercalating / deintercalating lithium ions is not particularly limited as long as it is a carbonaceous anode active material generally used in a lithium ion secondary battery. Examples of the carbonaceous material include crystalline carbon, Amorphous carbon or any combination thereof. Examples of the crystalline carbon include graphite such as natural graphite or artificial graphite in the form of amorphous, plate-like, flake, spherical or fiber, and examples of the amorphous carbon include soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, fired coke, and the like.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.The metal or an alloy of these metals and lithium may be selected from the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, And Sn, or an alloy of these metals and lithium may be used.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.In the metal composite oxide is PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0? X? 1), Li x WO 2 (0? X? 1), and Sn x Me 1-x Me y y z , Pb, Ge, Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen: 0 <x? 1; 1? Y? May be used.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x≤2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.As the material capable of doping and dedoping lithium, Si, SiO x (0 <x? 2), Si-Y alloy (Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, Rare earth elements and combinations thereof, but not Si), Sn, SnO 2 , Sn-Y (wherein Y is at least one element selected from the group consisting of alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, Element and an element selected from the group consisting of combinations thereof, and not Sn), and at least one of them may be mixed with SiO 2 . The element Y may be at least one element selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Se, Te, Po, and combinations thereof.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.Examples of the transition metal oxide include lithium-containing titanium composite oxide (LTO), vanadium oxide, lithium vanadium oxide, and the like.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.The negative active material may be contained in an amount of 80% by weight to 99% by weight based on the total weight of the solid content in the negative electrode slurry.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding between the conductive material, the active material and the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of the solid content in the negative electrode slurry. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene Examples thereof include ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber and various copolymers thereof.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. The conductive material is a component for further improving the conductivity of the negative electrode active material and may be added in an amount of 1 to 20 wt% based on the total weight of the solid content in the negative electrode slurry. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery. For example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, Carbon powder; Graphite powder such as natural graphite, artificial graphite, or graphite with a highly developed crystal structure; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.The solvent may include water or an organic solvent such as NMP, alcohol, etc., and may be used in an amount in which the negative electrode active material and, optionally, a binder, a conductive material, and the like are contained in a desired viscosity. For example, the slurry containing the negative electrode active material and, optionally, the binder and the conductive material may be contained to have a solid concentration of 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
또한, 상기 분리막은 양 전극의 내부 단락을 차단하고 전해질을 함침하는 역할을 하는 것으로, 고분자 수지, 충진제 및 용매를 혼합하여 분리막 조성물을 제조한 다음, 상기 분리막 조성물을 전극 상부에 직접 코팅 및 건조하여 분리막 필름을 형성하거나, 상기 분리막 조성물을 지지체 상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리된 분리막 필름을 전극 상부에 라미네이션하여 형성할 수 있다. In addition, the separation membrane blocks the internal short circuit of both electrodes and impregnates the electrolyte. The separation membrane composition is prepared by mixing a polymer resin, a filler and a solvent, and then the separation membrane composition is directly coated on the electrode and dried Or may be formed by casting and drying the separation membrane composition on a support, and then laminating the separation membrane film peeled off from the support on the electrode.
상기 분리막은 통상적으로 사용되는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.The separator may be a porous polymer film commonly used, such as a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene / methacrylate copolymer The polymer film may be used alone or as a laminate thereof, or may be a nonwoven fabric made of a conventional porous nonwoven fabric, for example, glass fiber of high melting point, polyethylene terephthalate fiber or the like, but is not limited thereto.
이때, 상기 다공성 분리막의 기공 직경은 일반적으로 0.01 내지 50㎛이고, 기공도는 5 내지 95%일 수 있다. 또한 상기 다공성 분리막의 두께는 일반적으로 5 내지 300㎛ 범위일 수 있다. At this time, the pore diameter of the porous separation membrane is generally 0.01 to 50 μm, and the porosity may be 5 to 95%. The thickness of the porous separator may be generally in the range of 5 to 300 mu m.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to enable those skilled in the art to more fully understand the present invention.
실시예Example
실시예 1.Example 1.
(비수전해액 제조)(Preparation of non-aqueous electrolyte)
1.0 M LiPF6가 용해된 유기용매 (에틸렌 카보네이트:에틸 메틸 카보네이트=30:70vol%) 4.95g에 화학식 2c-1의 화합물 0.005g을 첨가하여 본 발명의 비수전해액을 제조하였다 (하기 표 1 참조).A non-aqueous electrolyte solution of the present invention was prepared by adding 0.005 g of the compound of the formula (2c-1) to 4.95 g of an organic solvent (ethylene carbonate: ethyl methyl carbonate = 30: 70 vol%) in which 1.0 M LiPF 6 was dissolved (see Table 1 below) .
(양극 제조)(Anode manufacture)
양극 활물질로 니켈, 코발트, 망간을 포함하는 3성분계 양극활물질(Li(Ni0.8Mn0.1Co0.1)O2), 도전재로 카본 블랙 및 바인더로 폴리비닐리덴플루오라이드(PVDF)를 97.5:1:1.5 (wt%)의 비율로 두께가 20㎛인 양극 집전체 (Al foil)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 양극을 제조하였다. 이렇게 제조한 전극 표면 위에 0.5 mg/cm2 내지 0.6 mg/cm2 가량의 철 입자를 도포하여 저전압 불량의 모사 실험용 양극을 준비하였다.(Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 ) containing nickel, cobalt and manganese as a positive electrode active material, carbon black as a conductive material and polyvinylidene fluoride (PVDF) as a binder in a ratio of 97.5: 1: (Al foil) having a thickness of 20 占 퐉 in a ratio of 1.5 (wt%), dried, and roll pressed to prepare a positive electrode. On the surface of the electrode thus prepared, 0.5 mg / cm 2 to 0.6 mg / cm 2 To prepare a simulated anode for low voltage defects.
(이차전지 제조)(Secondary Battery Manufacturing)
전술한 방법으로 제조한 불순물을 포함하는 양극과 음극으로 Li 금속을 사용한 Li 하프셀을 제조한 다음, 다공성 폴리에틸렌 분리막을 사용하여 코인 하프셀을 제조하였다.A Li half cell using Li metal as a positive electrode and a negative electrode containing impurities prepared by the above-mentioned method was prepared, and then a coin half cell was manufactured using a porous polyethylene separator.
실시예 2.Example 2.
비수전해액 제조 시에, 유기용매 4.96g에 화학식 2c-1의 화합물 0.04g을 첨가하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 코인 하프셀을 각각 제조하였다.A nonaqueous electrolytic solution and a coin half cell comprising the nonaqueous electrolytic solution were prepared in the same manner as in Example 1, except that 0.04 g of the compound of the formula (2c-1) was added to 4.96 g of the organic solvent during the preparation of the nonaqueous electrolyte solution.
실시예 3.Example 3.
비수전해액 제조 시에, 유기용매 4.94g에 화학식 2c-1의 화합물 0.006g을 첨가하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 코인 하프셀을 각각 제조하였다.A nonaqueous electrolytic solution and a coin half cell comprising the same were prepared in the same manner as in Example 1, except that 0.006 g of the compound of the formula (2c-1) was added to 4.94 g of the organic solvent in the preparation of the nonaqueous electrolyte.
비교예 1.Comparative Example 1
비수전해액 제조 시에 첨가제를 포함하지 않는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 코인 하프셀을 제조하였다 (하기 표 1 참조).A nonaqueous electrolytic solution and a coin half cell comprising the nonaqueous electrolytic solution were prepared in the same manner as in Example 1 except that the additive was not included in the preparation of the nonaqueous electrolyte (see Table 1 below).
비교예 2.Comparative Example 2
비수전해액 제조 시에 비수전해액 첨가제로 하기 화학식 3의 화합물을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 코인 하프셀을 제조하였다 (하기 표 1 참조).A nonaqueous electrolytic solution and a coin half cell comprising the nonaqueous electrolytic solution were prepared in the same manner as in Example 1 except that the nonaqueous electrolytic solution additive was used as a nonaqueous electrolyte additive in the preparation of the nonaqueous electrolytic solution (see Table 1 below).
[화학식 3](3)
Figure PCTKR2018007729-appb-I000039
Figure PCTKR2018007729-appb-I000039
비교예 3.Comparative Example 3
비수전해액 제조 시에 비수전해액 첨가제로 하기 화학식 4의 화합물을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 코인 하프셀을 제조하였다 (하기 표 1 참조).A nonaqueous electrolytic solution and a coin half cell comprising the nonaqueous electrolytic solution were prepared in the same manner as in Example 1 except that the nonaqueous electrolytic solution additive was used as a nonaqueous electrolyte additive in the preparation of the nonaqueous electrolytic solution (see Table 1 below).
[화학식 4][Chemical Formula 4]
Figure PCTKR2018007729-appb-I000040
Figure PCTKR2018007729-appb-I000040
비교예 4.Comparative Example 4
비수전해액 제조 시에 비수전해액 첨가제로 리튬염계 화합물인 리튬 옥사릴디플루오로보레이트(lithium oxalyldifluoroborate, LiODFB)을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 코인 하프셀을 제조하였다 (하기 표 1 참조).A nonaqueous electrolytic solution and a coin half including the same were prepared in the same manner as in Example 1, except that the nonaqueous electrolytic solution additive used in the preparation of the nonaqueous electrolyte solution was a lithium salt compound, lithium oxalyldifluoroborate (LiODFB) (See Table 1 below).
비교예 5.Comparative Example 5
비수전해액 제조 시에 비수전해액 첨가제로 숙시노 니트릴(SN)을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 코인 하프셀을 제조하였다 (하기 표 1 참조).A nonaqueous electrolytic solution and a coin half cell containing the same were prepared in the same manner as in Example 1 except that succinonitrile (SN) was included as a nonaqueous electrolyte additive in the preparation of the nonaqueous electrolyte (see Table 1 below) .
실시예Example 리튬염Lithium salt 유기용매 Organic solvent 첨가제additive
구성Configuration 첨가량(g)Addition amount (g) 화학식The 첨가량Addition amount
(g)(g) (wt%)(wt%)
실시예 1Example 1 1.0 M LiPF6 1.0 M LiPF 6 EC:EMC=30:70 (vol%)EC: EMC = 30: 70 (vol%) 4.954.95 2c-12c-1 0.050.05 1One
실시예 2Example 2 4.964.96 2c-12c-1 0.040.04 0.80.8
실시예 3Example 3 4.944.94 2c-12c-1 0.060.06 1.21.2
비교예 1Comparative Example 1 55 -- -- --
비교예 2Comparative Example 2 4.954.95 33 0.050.05 1One
비교예 3Comparative Example 3 4.954.95 44 0.050.05 1One
비교예 4Comparative Example 4 4.954.95 LiODFBLiODFB 0.050.05 1One
비교예 5Comparative Example 5 4.954.95 SNSN 0.050.05 1One
LiODFB: 리튬 옥사릴디플루오로보레이트SN: 숙시노 니트릴LiODFB: lithium oxalyldifluoroborate SN: succinonitrile
실험예 Experimental Example
실험예 1. Experimental Example 1
상기 실시예 1에서 제조된 코인 하프셀과 비교예 1에서 제조된 코인 하프셀을 각각 드라이 룸에서 제조한 다음, 25℃ 항온조 내에 24시간 정치 시킨 후, 0.1 C CC-CV 충방전을 3.00 V ~ 4.25 V (vs. Li/Li+)의 전압 범주에서 진행하면서 시간에 따른 코인 하프셀의 전압의 변화를 측정하였다. 이때, CV 전류 종료 조건을 0.05 C로 설정하였다. The coin half cell manufactured in Example 1 and the coin half cell manufactured in Comparative Example 1 were each prepared in a dry room and then allowed to stand in a 25 ° C thermostat for 24 hours and then subjected to 0.1 C CC- The change in the voltage of the coin half cell with time was measured while proceeding in the voltage range of 4.25 V ( vs. Li / Li + ). At this time, the CV current termination condition was set at 0.05 C.
그 결과, 도 1에 나타낸 바와 같이, 실시예 1의 코인 하프셀의 경우 정상적으로 충반전이 발생하여, 충전시 4.25V의 CCV에 도달하였다가 방전이 시작되어 방전되는 형태의 전압이 나타나는 반면, 비교예 1의 코인 하프셀의 경우 초기 충전 시 4.25V의 전압에 이르지 못하고 내부 단락이 발생하여 전압이 양극에 산화 전류가 가해지는 중에도 하강하는 형태의 그래프가 나타나는 것을 알 수 있다.As a result, as shown in FIG. 1, in the case of the coin half cell of the first embodiment, charge and inversion occurs normally, and voltage of 4.2V CCV is reached at the time of charging, In the case of the coin half cell of Example 1, the voltage of 4.25 V did not reach the initial charging state, and an internal short circuit occurred, so that a graph of a form in which the voltage dropped while the oxidation current was applied to the anode was also found.
즉, 상기 정전류 과정 중 양극에서 산화 반응이 발생하여 철 분말이 용출될 수 있는 전위 이상까지 코인 하프셀의 전압이 상승하게 되면, 양극으로부터 철 (Fe)이 용출되고, 이렇게 용출된 철(Fe)은 음극인 Li 금속 표면에 전착되면서 수지상 (dendrite)을 생성하여 내부 단락이 야기된다. 그 영향으로, 비교예 1의 코인 하프셀은 도 1에 나타낸 바와 같이 충전 종지 전압에 이르지 못하고 전위가 떨어지는 그래프가 나타난다. 이러한 결과로부터 규칙적인 충방전이 진행되지 않다는 것을 알 수 있다.That is, when the voltage of the coin half cell rises to an electric potential higher than the potential at which the iron powder is eluted due to the oxidation reaction in the anode during the constant current process, iron (Fe) is eluted from the anode, Is electrodeposited on the surface of the Li metal, which is the cathode, to generate a dendrite, which causes an internal short circuit. As a result, the coin half cell of Comparative Example 1 does not reach the charging end voltage as shown in Fig. From these results, it can be seen that regular charging and discharging does not proceed.
반면에, 실시예 1의 코인 하프셀은 비수전해액 내에 질소 원자와 프로파질기를 함유한 화합물을 첨가제로 포함하기 때문에 금속성 불순물에 흡착되어 불순물의 용출을 방지할 뿐만 아니라, 염의 분해로 형성되는 산(acid)이 제거되어, 음극 표면에서 수지상이 생성되는 것을 방지하기 때문에, 내부 단락이 거의 발생하지 않는다. 따라서, 도 1 에 나타낸 바와 같이 정상적으로 규칙적인 충방전이 진행된다는 확인할 수 있는 그래프가 나타나는 것을 알 수 있다.On the other hand, since the coin half cell of Example 1 contains a compound containing a nitrogen atom and a propargyl group in a non-aqueous electrolyte as an additive, it is adsorbed by metallic impurities to prevent elution of impurities, the acid is removed and the resin phase is prevented from being formed on the surface of the negative electrode, so that internal short-circuit is hardly generated. Therefore, it can be seen that a graph can be confirmed that normal charging / discharging is proceeding normally as shown in Fig.
실험예 2.Experimental Example 2
상기 실시예 1 내지 3에서 제조된 코인 하프셀과 비교예 1 내지 3에서 제조된 코인 하프셀을 각각 6개씩 상기 실험예 1과 같은 조건으로 충방전을 진행하면서 전해액에 따른 코인 하프셀의 내부 단락 발생 여부를 확인하였다. 이렇게 얻어진 결과로부터 실시예 1 내지 3의 코인 하프셀과 비교예 1 내지 3의 코인 하프셀 각각의 내부 단락 발생 정도(불량률)를 측정한 후, 그 결과를 하기 표 2에 나타내었다. 이때, 표 2에서 내부 단락 발생률이 높은 경우, 이차전지의 저전압 발생률(불량률)이 높음을 의미한다.The coin half cells prepared in Examples 1 to 3 and the coin half cells prepared in Comparative Examples 1 to 3 were charged and discharged under the same conditions as Experimental Example 1, . From the results thus obtained, the degree of occurrence of an internal short circuit (defect rate) in each of the coin half cells of Examples 1 to 3 and the coin half cells of Comparative Examples 1 to 3 was measured, and the results are shown in Table 2 below. At this time, when the internal short-circuiting rate is high in Table 2, it means that the low-voltage generation rate (defective rate) of the secondary battery is high.
내부 단락이 발생된 코인 하프셀 수 (발생/제조)Number of coin half cells in which an internal short occurs (generation / manufacture) 내부 단락 발생 율 (%)Rate of occurrence of internal short circuit (%)
실시예 1Example 1 2/62/6 3333
실시예 2Example 2 2/62/6 3333
실시예 3Example 3 2/62/6 3333
비교예 1Comparative Example 1 4/64/6 6767
비교예 2Comparative Example 2 3/63/6 5050
비교예 3Comparative Example 3 3/63/6 5050
상기 표 2에 나타낸 바와 같이, 첨가제를 포함하지 않는 비수전해액을 이용한 비교예 1의 경우, 충전이 진행되면서 리튬염의 분해 산물과 양극의 금속 용출로 인하여 내부 단락 발생이 약 67% 가량 발생하는 것을 알 수 있다.As shown in Table 2, in the case of Comparative Example 1 using a nonaqueous electrolyte solution containing no additive, it was found that about 67% of the internal short circuit occurred due to decomposition products of the lithium salt and elution of the metal from the positive electrode, .
반면에, 실시예 1 내지 3의 코인 하프셀의 경우, 비수전해액 내에 질소 원자와 프로파질기를 함유한 화합물을 첨가제로 포함하기 때문에 금속성 불순물에 흡착되어 불순물의 용출을 방지할 뿐만 아니라, 리튬염의 분해로 형성되는 루이스 산이 제거되어, 음극 표면에서 수지상이 생성되는 것을 방지하기 때문에, 내부 단락 발생률이 비교예 1과 비교하여 약 40% 이상 개선되었음을 확인할 수 있다.On the other hand, in the case of the coin half cells of Examples 1 to 3, since a compound containing a nitrogen atom and a propargyl group is contained as an additive in the non-aqueous electrolyte, it is adsorbed by metallic impurities to prevent elution of impurities, Lewis acid formed by the decomposition is removed to prevent the resin phase from being formed on the surface of the negative electrode. Thus, it can be confirmed that the incidence of internal short circuit is improved by about 40% or more as compared with Comparative Example 1.
한편, 질소 원자를 포함하는 화학식 4의 화합물 또는 프로파질기를 함유하는 화학식 5의 화합물을 첨가제로 포함하는 비수전해액을 구비한 비교예 2 및 비교예 3의 코인 하프셀의 경우, 저전압 발생률(불량률)이 약 50%로 실시예 1 내지 5과 비교하여 성능이 상대적으로 열화되는 것을 확인할 수 있다.On the other hand, in the case of the coin half cells of Comparative Example 2 and Comparative Example 3 having the non-aqueous electrolyte containing the nitrogen atom-containing compound of Formula 4 or the compound of Formula 5 containing the propargyl group as an additive, the low voltage generation rate ) Is about 50%, it is confirmed that the performance is relatively deteriorated as compared with Examples 1 to 5.
실험예 3. 금속(Mn) 용출 억제 평가 실험EXPERIMENTAL EXAMPLE 3 Evaluation test of metal (Mn) elution inhibition
양극 활물질로 리튬-망간계 활물질 (LiMn2O4), 도전재로 카본 블랙 및 바인더로 폴리비닐리덴플루오라이드(PVDF)를 90:7.5:2.5 (wt%)의 비율로 두께가 20 ㎛인 양극 집전체 (Al foil)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 양극을 제조하였다.(LiMn 2 O 4 ) as a positive electrode active material, carbon black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder in a ratio of 90: 7.5: 2.5 (wt% The resultant was applied to a current collector (Al foil), dried, and subjected to a roll press to produce a positive electrode.
이어서, 상기 양극을 실시예 1에서 제조한 비수전해액과 비교예 1, 비교예 4 및 비교예 5에서 제조한 각각의 비수전해액 (5 mL)에 투입하고, 60℃ 조건하에서 SOC 0%로 2 주간 전극을 저장한 다음, 유도결합 플라즈마 방출분광기(ICP-OES, inductively coupled plasma optical emission spectrophotometer)를 이용하여 전해액에 용출된 금속(Mn)의 농도를 측정하였다 ICP분석을 이용하여 측정된 금속의 양을 하기 도 2에 나타내었다.Subsequently, the positive electrode was charged into the non-aqueous electrolyte prepared in Example 1 and each of the non-aqueous electrolytes (5 mL) prepared in Comparative Example 1, Comparative Example 4 and Comparative Example 5, After storing the electrode, the concentration of metal (Mn) dissolved in the electrolyte was measured using an inductively coupled plasma optical emission spectrometer ( ICP- OES). The amount of metal measured by ICP analysis 2 is shown in FIG.
도 2를 참고하면, 본 발명의 실시예 1의 비수전해액을 이용하는 경우, 첨가제로 포함된 루이스 염기를 함유하는 화합물이 고온에서 발생하는 리튬염의 음이온의 분해 산물인 루이스 산을 효과적으로 제거할 수 있기 때문에, 첨가제를 포함하지 않는 비교예 1의 비수전해액, 일반적인 전해액 첨가제를 포함하는 비교예 4의 비수전해액 및 니트릴계 첨가제를 포함하는 비교예 5의 비수전해액을 이용하는 경우에 비하여 리튬-망간계 산화물을 포함하는 양극으로부터 금속 용출 억제 효과가 현저히 향상되어, Mn 이온이 적게 검출되는 것을 확인할 수 있다. 2, in the case of using the nonaqueous electrolyte according to Example 1 of the present invention, it is possible to effectively remove Lewis acid, which is a decomposition product of an anion of a lithium salt generated at a high temperature, , A non-aqueous electrolyte of Comparative Example 1 containing no additive, a non-aqueous electrolyte of Comparative Example 4 containing a general electrolyte additive, and a non-aqueous electrolyte of Comparative Example 5 containing a nitrile-based additive, , The effect of suppressing the dissolution of metal from the positive electrode is remarkably improved, and it can be confirmed that Mn ions are detected little.

Claims (13)

  1. 하기 화학식 1 및 화학식 2로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물인 비수전해액 첨가제:And at least one compound selected from the group consisting of compounds represented by the following formulas (1) and (2):
    (화학식 1)(Formula 1)
    Figure PCTKR2018007729-appb-I000041
    Figure PCTKR2018007729-appb-I000041
    상기 화학식 1에서, In Formula 1,
    R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 선형 또는 비선형의 알킬기이고, R3는 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이다.R 1 and R 2 are each independently a linear or non-linear alkyl group having 1 to 5 carbon atoms; and R 3 is a linear or non-linear alkylene group having 1 to 3 carbon atoms.
    (화학식 2)(2)
    Figure PCTKR2018007729-appb-I000042
    Figure PCTKR2018007729-appb-I000042
    상기 화학식 2에서,In Formula 2,
    R4는 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 4 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
    A는 산소 및 질소 원소 중 적어도 하나 이상을 포함하는 탄소수 3 내지 6의 치환 또는 비치환된 헤테로아릴기, 또는 산소 및 질소 원소 중 적어도 하나 이상을 포함하는 탄소수 3 내지 6의 치환 또는 비치환된 헤테로사이클릭기이고,A is a substituted or unsubstituted heteroaryl group having 3 to 6 carbon atoms containing at least one of oxygen and nitrogen atoms or a substituted or unsubstituted heteroaryl group having 3 to 6 carbon atoms containing at least one of oxygen and nitrogen A cyclic group,
    R5는 수소, 탄소수 1 내지 3의 알킬기, 산소(=O), -CN 및
    Figure PCTKR2018007729-appb-I000043
    로 이루어진 군으로부터 선택된 적어도 하나이고, 이때 R은 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이며,
    R 5 is hydrogen, an alkyl group having 1 to 3 carbon atoms, oxygen (═O), -CN and
    Figure PCTKR2018007729-appb-I000043
    , Wherein R is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
    n은 1 내지 6 중 어느 하나의 정수이며,n is an integer of 1 to 6,
    n이 2 이상인 경우 각각의 R5는 서로 동일하거나 상이할 수 있다. When n is 2 or more, each R 5 may be the same or different from each other.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1a 내지 화학식 1c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나인 것인 비수전해액 첨가제:Wherein the compound represented by the formula (1) is at least one selected from the group consisting of compounds represented by the following formulas (1a) to (1c):
    (화학식 1a)(1a)
    Figure PCTKR2018007729-appb-I000044
    Figure PCTKR2018007729-appb-I000044
    (화학식 1b) (1b)
    Figure PCTKR2018007729-appb-I000045
    Figure PCTKR2018007729-appb-I000045
    (화학식 1c)(Formula 1c)
    Figure PCTKR2018007729-appb-I000046
    Figure PCTKR2018007729-appb-I000046
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 2로 표시되는 화합물은 하기 화학식 2a 내지 화학식 2c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나인 것인 비수전해액 첨가제:Wherein the compound represented by Formula 2 is at least any one selected from the group consisting of compounds represented by Chemical Formulas 2a to 2c:
    [화학식 2a](2a)
    Figure PCTKR2018007729-appb-I000047
    Figure PCTKR2018007729-appb-I000047
    상기 화학식 2a에서,In the above formula (2a)
    R6는 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 6 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
    R7 내지 R10은 각각 독립적으로 수소, 탄소수 1 내지 3의 알킬기 및 -CN로 이루어진 군으로부터 선택된 적어도 하나이며,R 7 to R 10 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms, and -CN,
    B는 CH2, O, N-CH3, C=O 또는
    Figure PCTKR2018007729-appb-I000048
    이고, 이때 R'는 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이다.
    B is CH 2 , O, N-CH 3 , C = O or
    Figure PCTKR2018007729-appb-I000048
    , Wherein R 'is a linear or non-linear alkylene group having 1 to 3 carbon atoms.
    [화학식 2b](2b)
    Figure PCTKR2018007729-appb-I000049
    Figure PCTKR2018007729-appb-I000049
    상기 화학식 2b에서,In the above formula (2b)
    R11은 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 11 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
    R12 내지 R15는 각각 독립적으로 수소, 탄소수 1 내지 3의 알킬기, 및 -CN로 이루어진 군으로부터 선택된 적어도 하나이다.R 12 to R 15 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms, and -CN.
    [화학식 2c][Chemical Formula 2c]
    Figure PCTKR2018007729-appb-I000050
    Figure PCTKR2018007729-appb-I000050
    상기 화학식 2c에서,In the above formula (2c)
    R16은 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 16 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
    R17 내지 R19는 각각 독립적으로 수소, 탄소수 1 내지 3의 알킬기 및 -CN로 이루어진 군으로부터 선택된 적어도 하나이며, R 17 to R 19 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms and -CN,
    D는 CH, 또는 N이다.D is CH, or N;
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 2로 표시되는 화합물은 하기 화학식 2b 및 화학식 2c로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나인 것인 비수전해액 첨가제:Wherein the compound represented by Formula 2 is at least one selected from the group consisting of compounds represented by Formula 2b and Formula 2c:
    [화학식 2b](2b)
    Figure PCTKR2018007729-appb-I000051
    Figure PCTKR2018007729-appb-I000051
    상기 화학식 2b에서,In the above formula (2b)
    R11은 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 11 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
    R12 내지 R15는 각각 독립적으로 수소, 탄소수 1 내지 3의 알킬기, 및 -CN로 이루어진 군으로부터 선택된 적어도 하나이다.R 12 to R 15 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms, and -CN.
    [화학식 2c][Chemical Formula 2c]
    Figure PCTKR2018007729-appb-I000052
    Figure PCTKR2018007729-appb-I000052
    상기 화학식 2c에서,In the above formula (2c)
    R16은 탄소수 1 내지 3의 선형 또는 비선형의 알킬렌기이고,R 16 is a linear or non-linear alkylene group having 1 to 3 carbon atoms,
    R17 내지 R19는 각각 독립적으로 수소, 탄소수 1 내지 3의 알킬기 및 -CN로 이루어진 군으로부터 선택된 적어도 하나이며, R 17 to R 19 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms and -CN,
    D는 CH, 또는 N이다.D is CH, or N;
  5. 청구항 3에 있어서,The method of claim 3,
    상기 화학식 2a로 표시되는 화합물은 하기 화학식 2a-1 내지 화학식 2a-7로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나인 것인 비수전해액 첨가제:Wherein the compound represented by the formula (2a) is at least one selected from the group consisting of compounds represented by the following formulas (2a-1) to (2a-7)
    (화학식 2a-1)(2a-1)
    Figure PCTKR2018007729-appb-I000053
    Figure PCTKR2018007729-appb-I000053
    (화학식 2a-2)(2a-2)
    Figure PCTKR2018007729-appb-I000054
    Figure PCTKR2018007729-appb-I000054
    (화학식 2a-3)(Formula 2a-3)
    Figure PCTKR2018007729-appb-I000055
    Figure PCTKR2018007729-appb-I000055
    (화학식 2a-4)(Formula 2a-4)
    Figure PCTKR2018007729-appb-I000056
    Figure PCTKR2018007729-appb-I000056
    (화학식 2a-5)(Formula 2a-5)
    Figure PCTKR2018007729-appb-I000057
    Figure PCTKR2018007729-appb-I000057
    (화학식 2a-6)(2a-6)
    Figure PCTKR2018007729-appb-I000058
    Figure PCTKR2018007729-appb-I000058
    (화학식 2a-7)(Formula 2a-7)
    Figure PCTKR2018007729-appb-I000059
    Figure PCTKR2018007729-appb-I000059
  6. 청구항 3에 있어서,The method of claim 3,
    상기 화학식 2b로 표시되는 화합물은 하기 화학식 2b-1인 것인 비수전해액 첨가제:Wherein the compound represented by Formula 2b is a compound represented by Formula 2b-1:
    (화학식 2b-1)(2b-1)
    Figure PCTKR2018007729-appb-I000060
    Figure PCTKR2018007729-appb-I000060
  7. 청구항 3에 있어서,The method of claim 3,
    상기 화학식 2c로 표시되는 화합물은 하기 화학식 2c-1인 것인 비수전해액 첨가제:Wherein the compound represented by Formula 2c is a compound represented by Formula 2c-1:
    (화학식 2c-1)(2c-1)
    Figure PCTKR2018007729-appb-I000061
    Figure PCTKR2018007729-appb-I000061
  8. 리튬염; Lithium salts;
    유기용매; 및Organic solvent; And
    비수전해액 첨가제를 포함하며,A non-aqueous electrolyte additive,
    상기 비수전해액 첨가제는 청구항 1의 비수전해액 첨가제인 것인 리튬 이차전지용 비수전해액.Wherein the non-aqueous electrolyte additive is the non-aqueous electrolyte additive of claim 1. 6. The non-aqueous electrolyte additive of claim 1,
  9. 청구항 8에 있어서,The method of claim 8,
    상기 비수전해액 첨가제는 비수전해액 전체 함량을 기준으로 0.05 중량% 내지 5 중량% 로 포함되는 것인 리튬 이차전지용 비수전해액.Wherein the non-aqueous electrolyte additive is contained in an amount of 0.05 wt% to 5 wt% based on the total amount of the non-aqueous electrolyte.
  10. 청구항 9에 있어서,The method of claim 9,
    상기 비수전해액 첨가제는 비수전해액 전체 함량을 기준으로 0.5 중량% 내지 3 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.Wherein the non-aqueous electrolyte additive is contained in an amount of 0.5 to 3% by weight based on the total weight of the non-aqueous electrolyte.
  11. 음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막, 및 비수전해액을 포함하되,A negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and a nonaqueous electrolyte,
    상기 양극은 리튬-니켈-망간-코발트계 산화물 및 리튬-망간계 산화물로 이루어진 군으로부터 선택된 양극 활물질을 포함하고,Wherein the anode comprises a cathode active material selected from the group consisting of a lithium-nickel-manganese-cobalt oxide and a lithium-manganese oxide,
    상기 비수전해액은 청구항 8의 리튬 이차전지용 비수전해액인 것인 이차전지.Wherein the non-aqueous electrolyte is the non-aqueous electrolyte for the lithium secondary battery according to claim 8.
  12. 청구항 11에 있어서,The method of claim 11,
    상기 양극활물질은 리튬-망간계 산화물인 것인 리튬 이차전지.Wherein the positive electrode active material is a lithium-manganese-based oxide.
  13. 청구항 12에 있어서,The method of claim 12,
    상기 리튬-망간계 산화물은 LiMn2O4인 것인 리튬 이차전지.Wherein the lithium-manganese-based oxide is LiMn 2 O 4 .
PCT/KR2018/007729 2017-07-14 2018-07-06 Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive WO2019013501A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/340,269 US11081729B2 (en) 2017-07-14 2018-07-06 Non-aqueous electrolyte solution additive, and non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery which include the same
EP18832898.3A EP3518334B1 (en) 2017-07-14 2018-07-06 Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising said additive
CN201880024734.XA CN110574210B (en) 2017-07-14 2018-07-06 Additive for non-aqueous electrolyte solution, non-aqueous electrolyte solution for lithium secondary battery comprising the same, and lithium secondary battery
PL18832898T PL3518334T3 (en) 2017-07-14 2018-07-06 Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising said additive

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170089773 2017-07-14
KR10-2017-0089773 2017-07-14
KR1020180077576A KR102270869B1 (en) 2017-07-14 2018-07-04 Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
KR10-2018-0077576 2018-07-04

Publications (1)

Publication Number Publication Date
WO2019013501A1 true WO2019013501A1 (en) 2019-01-17

Family

ID=65002299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007729 WO2019013501A1 (en) 2017-07-14 2018-07-06 Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive

Country Status (1)

Country Link
WO (1) WO2019013501A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153791A1 (en) * 2019-01-25 2020-07-30 주식회사 엘지화학 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN113711415A (en) * 2019-08-21 2021-11-26 株式会社Lg新能源 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN113728484A (en) * 2019-01-25 2021-11-30 株式会社Lg新能源 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
EP3913719A4 (en) * 2019-02-28 2022-03-23 Lg Energy Solution, Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
US20230098167A1 (en) * 2020-10-27 2023-03-30 Lg Energy Solution, Ltd. Non-Aqueous Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
KR20230127728A (en) 2022-02-25 2023-09-01 주식회사 켐얼라이언스 Electrolyte for secondary battery, manufacturing method thereof, and secondary battery comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078139A (en) * 2013-02-03 2013-05-01 宁德新能源科技有限公司 Lithium ion battery electrolyte
US20140308564A1 (en) * 2013-04-10 2014-10-16 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method of fabricating the same
WO2015111612A1 (en) * 2014-01-24 2015-07-30 三洋化成工業株式会社 Additive for secondary batteries, electrode and electrolyte solution each using same, lithium ion battery and lithium ion capacitor
JP2016139567A (en) * 2015-01-29 2016-08-04 三洋化成工業株式会社 Additive agent for secondary battery, electrode using the same and electrolyte
WO2016158986A1 (en) * 2015-03-31 2016-10-06 住友精化株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078139A (en) * 2013-02-03 2013-05-01 宁德新能源科技有限公司 Lithium ion battery electrolyte
US20140308564A1 (en) * 2013-04-10 2014-10-16 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method of fabricating the same
WO2015111612A1 (en) * 2014-01-24 2015-07-30 三洋化成工業株式会社 Additive for secondary batteries, electrode and electrolyte solution each using same, lithium ion battery and lithium ion capacitor
JP2016139567A (en) * 2015-01-29 2016-08-04 三洋化成工業株式会社 Additive agent for secondary battery, electrode using the same and electrolyte
WO2016158986A1 (en) * 2015-03-31 2016-10-06 住友精化株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153791A1 (en) * 2019-01-25 2020-07-30 주식회사 엘지화학 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN113728484A (en) * 2019-01-25 2021-11-30 株式会社Lg新能源 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2022517684A (en) * 2019-01-25 2022-03-09 エルジー エナジー ソリューション リミテッド Electrolytes for lithium secondary batteries and lithium secondary batteries containing them
JP7154677B2 (en) 2019-01-25 2022-10-18 エルジー エナジー ソリューション リミテッド Electrolyte for lithium secondary battery and lithium secondary battery containing the same
EP3913719A4 (en) * 2019-02-28 2022-03-23 Lg Energy Solution, Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
JP2022521585A (en) * 2019-02-28 2022-04-11 エルジー エナジー ソリューション リミテッド Electrolytes for lithium secondary batteries and lithium secondary batteries containing them
JP7233801B2 (en) 2019-02-28 2023-03-07 エルジー エナジー ソリューション リミテッド Electrolyte for lithium secondary battery and lithium secondary battery containing the same
CN113711415A (en) * 2019-08-21 2021-11-26 株式会社Lg新能源 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
EP3944392A4 (en) * 2019-08-21 2022-07-20 LG Energy Solution, Ltd. Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
US20230098167A1 (en) * 2020-10-27 2023-03-30 Lg Energy Solution, Ltd. Non-Aqueous Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
KR20230127728A (en) 2022-02-25 2023-09-01 주식회사 켐얼라이언스 Electrolyte for secondary battery, manufacturing method thereof, and secondary battery comprising same

Similar Documents

Publication Publication Date Title
WO2021034141A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019013501A1 (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive
WO2018169371A2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021235794A1 (en) Secondary battery
WO2019203622A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2012169843A2 (en) Non-aqueous electrolyte and lithium secondary battery using same
WO2018106078A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2018135822A1 (en) Additive for non-aqueous electrolyte, lithium secondary battery non-aqueous electrolyte comprising same, and lithium secondary battery
WO2019107921A1 (en) Gel polymer electrolyte composition, and gel polymer electrolyte and lithium secondary battery which comprise same
WO2019093853A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2020036336A1 (en) Electrolyte for lithium secondary battery
WO2020242138A1 (en) Cathode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2020060295A1 (en) Composition for gel polymer electrolyte, and lithium secondary battery including gel polymer electrolyte formed therefrom
WO2019108031A1 (en) Composition for gel polymer electrolyte, gel polymer electrolyte prepared by means of same, and lithium secondary battery comprising same
WO2022092831A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2021015535A1 (en) Lithium secondary battery
WO2019039903A2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2018080259A1 (en) Polymer electrolyte for secondary battery and secondary battery comprising same
WO2019009594A1 (en) Polymeric electrolyte for secondary battery and lithium secondary battery comprising same
WO2019045545A1 (en) Method for manufacturing electrochemical device
WO2019088733A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019108024A1 (en) Composition for gel polymer electrolyte, gel polymer electrolyte prepared by means of same, and lithium secondary battery comprising same
WO2022010281A1 (en) Nonaqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2019103496A1 (en) Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same
WO2019107855A1 (en) Polymer electrolyte for secondary battery and secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018832898

Country of ref document: EP

Effective date: 20190423

NENP Non-entry into the national phase

Ref country code: DE