WO2018044099A1 - 건설기계의 제어 시스템 및 건설기계의 제어 방법 - Google Patents

건설기계의 제어 시스템 및 건설기계의 제어 방법 Download PDF

Info

Publication number
WO2018044099A1
WO2018044099A1 PCT/KR2017/009555 KR2017009555W WO2018044099A1 WO 2018044099 A1 WO2018044099 A1 WO 2018044099A1 KR 2017009555 W KR2017009555 W KR 2017009555W WO 2018044099 A1 WO2018044099 A1 WO 2018044099A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
control
control valve
displacement
spool
Prior art date
Application number
PCT/KR2017/009555
Other languages
English (en)
French (fr)
Inventor
김창묵
정우용
안현식
김기용
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to US16/329,613 priority Critical patent/US10982691B2/en
Priority to CN201780053472.5A priority patent/CN109642416B/zh
Priority to JP2019512003A priority patent/JP7071339B2/ja
Priority to EP17847024.1A priority patent/EP3492662B1/en
Publication of WO2018044099A1 publication Critical patent/WO2018044099A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/162Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for giving priority to particular servomotors or users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/025Pressure reducing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/082Servomotor systems incorporating electrically operated control means with different modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/15Fork lift trucks, Industrial trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
    • F15B13/0433Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves the pilot valves being pressure control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31535Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31582Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6658Control using different modes, e.g. four-quadrant-operation, working mode and transportation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members
    • F15B2211/781Control of multiple output members one or more output members having priority

Definitions

  • the present invention relates to a control system of construction machinery and a control method of construction machinery. More specifically, the present invention relates to a control system of a construction machine having an electro-hydraulic main control valve using an electromagnetic proportional pressure reducing valve and a control method of the construction machine using the same.
  • electro-hydraulic main control valves which are electronically controlled through an electronic proportional pressure reducing valve (EPPRV) can be used.
  • EPPRV electronic proportional pressure reducing valve
  • One object of the present invention is to provide a control system for a construction machine that can improve fuel efficiency and improve controllability.
  • Another object of the present invention to provide a control method of a construction machine using the above-described control system.
  • the control system of a construction machine is connected to the hydraulic pump, the hydraulic oil connected to the hydraulic pump through the first and second parallel lines respectively and discharged from the hydraulic pump
  • First and second actuators operable by the first and second actuators, respectively, for controlling the operation of the first and second actuators according to the displacement amount of the spool installed in the first and second parallel lines, respectively;
  • Second and second spool displacement regulating valves for supplying pilot signal pressure to each of the spools for controlling displacement amounts of the spools of the first and second control valves according to an input control signal;
  • control unit may further include a control signal for reducing the switching ratio from the operation signal of the second actuator to the spool displacement of the second control valve in proportion to the magnitude of the operation signal for the first actuator. Output to the second spool displacement adjusting valve.
  • the switching ratio of the operation signal for the second actuator is limited to at least 50% of the switching ratio in the single operation of the second actuator. Can be.
  • the flow path area of the second control valve may be controlled to be inversely proportional to the magnitude of the operation signal for the first actuator.
  • the first and second spool displacement regulating valves may include an Electronic Proportional Pressure Reducing Valve (EPPRV).
  • EPPRV Electronic Proportional Pressure Reducing Valve
  • the controller may determine whether to perform a priority mode to prioritize the operation of the first actuator from the joystick displacements of the first and second actuators input as the operation signal.
  • a priority mode determining unit, a joystick displacement amount converting unit converting a joystick displacement input to the second actuator into a secondary joystick displacement having a value reduced in proportion to the joystick displacement of the first actuator in the priority mode; It may include an output unit for outputting the control signal for controlling the strength of the pilot signal pressure in accordance with the adjusted secondary joystick displacement amount.
  • the priority mode determiner may release the priority mode when the pressure of the hydraulic pump or the first and second actuators is a high load operation exceeding a preset pressure range.
  • the first and second control valves may be sequentially installed in a center bypass flow path connected to the hydraulic pump.
  • the first actuator comprises a boom cylinder and the second actuator comprises a bucket cylinder
  • the first control valve comprises a boom control valve
  • the second control valve is a bucket control valve. It may include.
  • the controller may determine to perform the priority mode when the operating pressure of the first actuator is greater than the operating pressure of the second actuator.
  • the first and second actuators connected to one hydraulic pump via first and second parallel lines, and the A hydraulic system is provided in the first and second parallel lines, respectively, and includes first and second control valves for controlling the operation of the first and second actuators, respectively.
  • adjusting the spool displacement amount of the second control valve may further include converting a ratio of the switching of the operation signal of the second actuator from the spool displacement amount of the second control valve to the spool displacement amount of the operation signal for the first actuator. May comprise reducing in proportion to size
  • adjusting the spool displacement of the second control valve may further include converting a ratio of the operation signal for the second actuator when the operation signal for the first actuator is maximum. It may include limiting to at least 50% of the conversion rate in a single operation.
  • adjusting the spool displacement of the second control valve may include controlling the flow path area of the second control valve in the priority mode to be inversely proportional to the magnitude of the operation signal for the first actuator. It may include.
  • receiving an operator's manipulation signal for the first and second actuators may include receiving a joystick displacement for the first and second actuators, wherein the second Adjusting the spool displacement amount of the control valve may include converting the joystick displacement amount input for the second actuator into a secondary joystick displacement amount having a value reduced in proportion to the joystick displacement amount for the first actuator.
  • the method may further comprise supplying a pilot signal pressure to the spool of the second control valve for controlling the spool displacement of the second control valve in accordance with the adjusted secondary joystick displacement.
  • supplying the pilot signal pressure to the spool of the second control valve may include using EPPRV.
  • the method may further include releasing the priority mode when the pressure of the hydraulic pump or the first and second actuators is a high load operation exceeding a preset pressure range.
  • the first actuator comprises a boom cylinder and the second actuator comprises a bucket cylinder
  • the first control valve comprises a boom control valve
  • the second control valve is a bucket control valve. It may include.
  • the method may include comparing the operating pressure at the first actuator with the operating pressure at the second actuator when determining whether the priority mode is operated.
  • the control of the flow of the hydraulic oil to the actuator having a relatively low operating pressure of the first and second actuators By reducing the flow path area of the valve, the operating pressure can be increased and the distribution of the flow rate flowing to the first and second actuators can be adjusted.
  • FIG. 1 is a hydraulic circuit diagram illustrating a control system of a construction machine according to exemplary embodiments.
  • FIG. 2 is a block diagram illustrating a control unit of the control system of the construction machine of FIG. 1.
  • FIG. 3 is a graph illustrating a bucket joystick displacement limit map according to the boom joystick displacement in the boom priority mode stored in the controller of FIG. 2.
  • FIG. 4 is a graph illustrating a conversion ratio of the bucket joystick displacement according to the bucket joystick displacement limit restriction map of FIG. 3.
  • FIG. 5 is a hydraulic circuit diagram illustrating a control system when a combined operation signal of a boom raising and a bucket crowd is received in FIG. 1.
  • FIG. 6 is a flowchart illustrating a control method of a construction machine according to exemplary embodiments.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 1 is a hydraulic circuit diagram illustrating a control system of a construction machine according to exemplary embodiments.
  • FIG. 2 is a block diagram illustrating a control unit of the control system of the construction machine of FIG. 1.
  • FIG. 3 is a graph illustrating a bucket joystick displacement limit map according to the boom joystick displacement in the boom priority mode stored in the controller of FIG. 2.
  • 4 is a graph illustrating a conversion ratio of the bucket joystick displacement according to the bucket joystick displacement limit restriction map of FIG. 3.
  • FIG. 5 is a hydraulic circuit diagram illustrating a control system when a combined operation signal of a boom raising and a bucket crowd is received in FIG. 1.
  • the control system of the construction machine is connected to the first hydraulic pump 100 and the first hydraulic pump 100 through first and second parallel lines 210 and 220, respectively. 1 installed in the first and second actuators 10 and 20 and the first and second parallel lines 210 and 220 operable by the hydraulic oil discharged from the hydraulic pump 100, respectively, the first and second actuators Of the spools of the first and second control valves 310, 320, proportional to the input control signal, to control the operation of the fields 10, 20, respectively.
  • First and second spool displacement adjustment valves 410 and 420 for supplying pilot signal pressure to each of the spools for controlling the displacement amount, and first and second spool displacement adjustment valves according to an operator's operation signal ( The control signal is output to 410 and 420, respectively, and the other signal is output according to one of the first and second actuators 10 and 20. Less may include a control unit 500 for controlling the amount of displacement of the spool the spool for control.
  • the construction machine may include an excavator, a wheel loader, a forklift, and the like.
  • an excavator a case in which the construction machine is an excavator will be described.
  • the control system according to the exemplary embodiments is not limited to controlling the excavator, and it will be understood that the same may be applied to wheel loaders, forklifts, and the like.
  • the construction machine may include a lower traveling body, an upper swinging body mounted on the lower traveling body so as to be pivotable, and a cab and a front work device installed in the upper swinging body.
  • the front work device may include a boom, an arm and a bucket.
  • a boom cylinder for controlling the movement of the boom may be installed between the boom and the upper frame.
  • An arm cylinder for controlling the movement of the arm may be installed between the boom and the arm.
  • a bucket cylinder for controlling the movement of the bucket may be installed between the arm and the bucket.
  • the first hydraulic pump 100 may be connected to an engine (not shown) via a power train. Power from the engine may be transmitted to the first hydraulic pump 100. The hydraulic oil discharged from the first hydraulic pump 100 may be distributed and supplied to the first and second actuators 10 and 20 via the first and second control valves 310 and 320, respectively.
  • first and second control valves 310 and 320 may be connected to the first hydraulic pump 100 through the first main hydraulic line 200.
  • the first main hydraulic line 200 may be branched into the first center bypass line 202 and the first and second parallel lines 210 and 220.
  • First and second control valves 310 and 320 may be installed in series in the first center bypass line 202.
  • the first and second control valves 310 and 320 may be connected to the first and second parallel lines 210 and 220, respectively, connected to the first hydraulic pump 100 in parallel. Even if the first control valve 310 is switched and the first center bypass line 202 is closed, the second control valve 320 is connected to the first hydraulic pump 100 by the second parallel line 220. The hydraulic oil discharged from the first hydraulic pump 100 may be supplied. Since the first and second control valves 310 and 320 are connected to the first and second parallel lines 210 and 220 connected in parallel to the first hydraulic pump 100, the first and second control valves are provided. The hydraulic fluid discharged from the first hydraulic pump 100 when the 310, 320 is switched is distributed to the first and second actuators 10, 20 through the first and second control valves 310, 320. Can be supplied.
  • the first center bypass line 202 may be provided with an auxiliary control valve for controlling the operation of the third actuator, the hydraulic fluid discharged from the first hydraulic pump 100 is the auxiliary control The valve may be supplied to the third actuator.
  • a parallel line having a structure similar to the first and second parallel lines 210 and 220 may be connected to the auxiliary control valve.
  • the first actuator 10 may be the boom cylinder
  • the second actuator 20 may be the bucket cylinder
  • the first control valve 310 may be a boom control valve
  • the second control valve 320 may be a bucket control valve
  • the first control valve 10, ie, the boom control valve, is connected to the first actuator 10, ie, the boom head chamber 12 through the boom head hydraulic line 232 and the boom rod hydraulic line 234. ) And the boom load chamber 14, respectively. Therefore, the first control valve 310 is switched to selectively supply the hydraulic oil discharged from the first hydraulic pump 100 to the boom head chamber 12 and the boom load chamber 14.
  • the hydraulic oil for driving the boom cylinder 10 may be returned to the drain tank T through the return hydraulic line.
  • the hydraulic oil from the boom load chamber 14 passes through the boom rod hydraulic line 234 through the first control valve 310, that is, through the boom control valve, to the drain tank ( Can be discharged to T).
  • the second control valve 320 that is, the bucket control valve is connected to the bucket head hydraulic line 242 and the bucket rod hydraulic line 244 by the second actuator, that is, the bucket head chamber 22 of the bucket cylinder 20. And a bucket load chamber 24, respectively. Accordingly, the second control valve 320 may be switched to selectively supply the hydraulic oil discharged from the first hydraulic pump 100 to the bucket head chamber 22 and the bucket load chamber 24.
  • the hydraulic oil for driving the bucket cylinder 20 may be returned to the drain tank T through the return hydraulic line.
  • the hydraulic oil from the bucket head chamber 22 and the bucket load chamber 24 passes through the second control valve 320, that is, the bucket control valve via the bucket head hydraulic line 242 and the bucket rod hydraulic line 244. Each may be discharged to the drain tank T.
  • the pilot pump 400 may be connected to an output shaft of the engine, and in this case, the pilot pump 400, which is powered by the engine, may be driven to discharge the control oil.
  • the pilot pump may be a gear pump.
  • the hydraulic oil and the control oil may comprise substantially the same material.
  • the control oil discharged from the pilot pump 400 may be supplied to the spools of the first and second control valves 310 and 320 via the first and second spool displacement adjusting valves 410 and 420, respectively. .
  • the control oil discharged from the pilot pump 400 may be supplied to the first and second spool displacement adjusting valves 410 and 420 through the control flow passage 402, respectively.
  • the first and second spool displacement adjusting valves 410 and 420 may generate a pilot signal pressure for controlling the displacement amount of the spools of the first and second control valves 310 and 320 in proportion to the input control signal. Can be supplied to each of them.
  • a pair of first spool displacement adjustment valves 410 may be provided at both sides of the spool of the first control valve 310, respectively.
  • the first pilot signal pressure output from the first spool displacement adjustment valve 410 is selectively supplied to both sides of the spool in the first control valve 310, so that the first control valve 310 can be switched.
  • the first spool displacement adjusting valve 410 may supply a first pilot signal having a magnitude proportional to the input control signal. Movement of the spool in the first control valve 310 may be controlled by the first pilot signal pressure. That is, the moving direction of the spool may be determined according to the supply direction of the first pilot signal pressure, and the displacement amount of the spool may be determined according to the strength of the first pilot signal pressure.
  • a pair of second spool displacement adjusting valves 420 may be provided at both sides of the spool of the second control valve 320, respectively.
  • the second pilot signal pressure output from the second spool displacement adjustment valve 420 is selectively supplied to both sides of the spool in the second control valve 320, so that the second control valve 320 can be switched.
  • the second spool displacement adjusting valve 420 may supply a second pilot signal having a magnitude proportional to the input control signal. Movement of the spool in the second control valve 320 may be controlled by the second pilot signal pressure. That is, the movement direction of the spool may be determined according to the supply direction of the second pilot signal pressure, and the displacement amount of the spool may be determined according to the strength of the second pilot signal pressure.
  • the control system of the construction machine may include a main control valve (MCV) as an assembly having first and second control valves 310, 320.
  • the main control valve may be an electro-hydraulic main control valve including an electromagnetic proportional damping valve (EPPRV) for controlling pilot hydraulic oil applied to the spool in the control valve according to an input electrical signal.
  • the first and second spool displacement regulating valves 410 and 420 may include an electromagnetic proportional damping valve EPPRV.
  • the control unit 500 receives an operation signal proportional to an operator's operation amount from the operation unit 600 and pressure command as the control signal to the first and second spool displacement adjusting valves 410 and 420 to correspond to the operation signal.
  • the signals can be output respectively.
  • the electronic proportional pressure reducing valves can respectively control the spools by an electrical control signal by outputting secondary pressures proportional to the pressure command signal to the corresponding spools.
  • the controller 500 receives an operation signal for the first actuator 10, for example, a joystick displacement amount and generates a control signal corresponding to the received joystick displacement amount, for example, a current to generate a first signal.
  • the spool displacement adjustment valve 410 can be applied.
  • the first spool displacement adjusting valve 410 supplies the applied spool of the first control valve 310 to the spool of the first control valve 310 by supplying a first pilot signal pressure proportional to the intensity of the applied current. It can be moved according to the strength of the first pilot signal pressure. Accordingly, the received joystick displacement with respect to the first actuator 10 may be converted into the spool displacement of the first control valve 310 at a preset switching ratio.
  • the control unit 500 receives an operation signal for the second actuator 20, for example, a joystick displacement, and generates a control signal corresponding to the received joystick displacement, for example, a current to generate a second spool displacement adjustment valve. 420 may be applied.
  • the second spool displacement adjusting valve 420 supplies the applied spool of the second control valve 320 by supplying a second pilot signal pressure proportional to the intensity of the applied current to the spool of the second control valve 320. It can be moved according to the strength of the second pilot signal pressure. Accordingly, the received joystick displacement with respect to the second actuator 20 may be converted into the spool displacement of the second control valve 320 at a preset switching ratio.
  • the operation unit 600 may include a joystick, a pedal, and the like.
  • an operation signal corresponding to the manipulation may be generated.
  • the operation unit 600 may include a sensor for measuring the joystick displacement (or angle).
  • the operation unit 600 may output a signal such as a voltage signal or a current signal corresponding to the measured displacement amount.
  • the control unit 600 may operate the first and second actuators by receiving the operation signal and controlling the main control valve to correspond to the operation signal.
  • the control system of the construction machine is between the second hydraulic pump 110, the first actuator 10 and the second hydraulic pump 110 for supplying hydraulic oil to the first actuator 10.
  • the second hydraulic pump 110 may be connected to the engine.
  • the hydraulic oil discharged from the second hydraulic pump 110 may be supplied to the first actuator 10 via the third control valve 330.
  • the third control valve 330 may be connected to the second hydraulic pump 110 through the second main hydraulic line 204.
  • the second main hydraulic line 204 may be branched to the second center bypass line 204 and the third parallel line 230.
  • a third control valve 330 and an additional auxiliary control valve may be sequentially installed in series.
  • the third control valve 330 is connected to the first actuator 10, that is, the boom head chamber 12 and the boom load chamber 14 through the boom head hydraulic line 232 and the boom rod hydraulic line 234. ), Respectively.
  • the third control valve 330 is switched to selectively supply hydraulic oil discharged from the second hydraulic pump 110 to the boom head chamber 12 and the boom load chamber 14. Accordingly, the hydraulic oil discharged from the first and second hydraulic pumps 100 and 110 may be supplied to the first actuator 10 after joining through the first and second control valves 310 and 330. . This confluence may proceed when the first actuator 10 is in a high load state.
  • the hydraulic oil discharged from the second hydraulic pump 110 may return to the drain tank T through the second center bypass flow path 204.
  • the control oil discharged from the pilot pump 400 may be supplied to the spool of the third control valve 330 via the third spool displacement adjusting valve 430.
  • the control oil discharged from the pilot pump 400 may be supplied to the third spool displacement adjusting valve 430 through the control flow passage 402.
  • the third spool displacement adjusting valve 430 may supply a pilot signal pressure to the spool of the third control valve 330 to control the displacement amount of the spool of the third control valve 330 in proportion to the input control signal. .
  • a pair of third spool displacement adjusting valves 430 may be provided at both sides of the spool of the third control valve 330, respectively.
  • the third pilot signal pressure output from the third spool displacement adjustment valve 430 is selectively supplied to both sides of the spool in the third control valve 330, so that the third control valve 330 may be switched.
  • the third spool displacement adjusting valve 430 may supply a third pilot signal having a magnitude proportional to the input control signal. Movement of the spool in the third control valve 330 may be controlled by the third pilot signal pressure. That is, the moving direction of the spool may be determined according to the supply direction of the third pilot signal pressure, and the displacement amount of the spool may be determined according to the strength of the third pilot signal pressure.
  • the third spool displacement regulating valve 430 may include an electromagnetic proportional damping valve (EPPRV).
  • EPPRV electromagnetic proportional damping valve
  • the controller 500 receives an operation signal for the first actuator 10, for example, a joystick displacement amount and generates a control signal corresponding to the received joystick displacement amount, for example, a current to generate a third spool displacement adjustment valve. 430 may be applied.
  • the third spool displacement adjusting valve 430 supplies the applied spool of the third control valve 330 by supplying a third pilot signal pressure proportional to the intensity of the applied current to the spool of the third control valve 330. It can be moved according to the strength of the third pilot signal pressure. Accordingly, the received joystick displacement with respect to the first actuator 10 may be converted into the spool displacement of the third control valve 330 at a preset switching ratio.
  • control unit 500 when the control unit 500 receives an operation signal for the combined operation of the first and second actuators 10 and 20, the control unit 500 generates a second signal according to the operation signal for the second actuator 20.
  • the amount of displacement of the spool of the control valve 320 may be controlled to be limited according to an operation signal of the first actuator 10.
  • the controller 500 may control a control signal for reducing the switching ratio of the spool displacement of the second control valve 320 to the operation signal of the second actuator 20 in proportion to the size of the operation signal of the first actuator 10. It can output to the 2 spool displacement adjustment valve 420.
  • the controller 500 may include a data receiver 510, a priority mode determiner 520, a joystick displacement converting unit 530, and an output unit 540.
  • the data receiver 510 may receive a joystick displacement from the manipulation unit 600.
  • the data receiver 510 may receive a joystick displacement as an operation signal for a boom, an arm, a bucket, and a swing.
  • the data receiving unit 510 may receive a bucket joystick displacement amount (bucket stroke) as the operation signal for the boom cylinder and a boom joystick displacement amount (bucket stroke).
  • the data receiver 510 may receive the pressure of the first hydraulic pump 100 and the second hydraulic pump 110.
  • the data receiver 510 may receive the pressure of the actuators.
  • the priority mode determining unit 520 performs a priority mode for prioritizing the operation of the first actuator 10 from the joystick displacements of the first and second actuators 10 and 20 input as the operation signal. Can be determined.
  • the priority mode determining unit 520 receives the boom joystick displacement and the bucket joystick displacement, the operating pressure at the first actuator 10 is compared with the operating pressure at the second actuator 20, and the first actuator 10 is determined.
  • the priority mode determination unit 520 may release the boom priority mode when the pressure of the first hydraulic pump 100 is a high load operation exceeding a preset pressure range.
  • the discharge pressure of the first hydraulic pump 100 may be about 80 bar, when performing the sole operation of the boom, the discharge pressure of the first hydraulic pump 100 may be about 130 bar have.
  • the discharge pressure of the first hydraulic pump 100 may increase to a value similar to the operating pressure of the boom.
  • the priority mode determination unit 520 is If the working pressure of the boom cylinder is greater than the working pressure of the bucket cylinder, it may be decided to perform the boom priority mode.
  • the priority mode determination unit 520 may determine to perform the boom priority mode when the discharge pressure of the first hydraulic pump 100 is less than or equal to a preset second pressure (for example, about 180 bar).
  • a preset second pressure for example, about 180 bar.
  • the priority mode determination unit 520 determines that the high load operation and release the boom priority mode. Can be.
  • the priority mode determination unit 520 determines that the high load operation.
  • the pressure command signal may be output as the control signal to the second spool displacement adjusting valve 420 so as to correspond to the first input value without adjusting the input bucket joystick displacement.
  • the joystick displacement converting unit 530 converts the joystick displacement inputted with respect to the second actuator 20 into a secondary joystick displacement having a value reduced in proportion to the joystick displacement of the first actuator 10. can do.
  • the joystick displacement amount converting unit 530 calculates the secondary bucket joystick displacement amount (converted bucket stroke) from the input bucket joystick displacement amount (bucket stroke) using the displacement amount limitation map in the boom priority mode. can do.
  • the input bucket joystick displacement may be converted into the secondary bucket joystick displacement in a preset ratio according to the size of the boom joystick displacement stored in the displacement limit map.
  • the reduction rate of the secondary bucket joystick displacement with respect to the input bucket joystick displacement may be proportional to the magnitude of the boom joystick displacement (boom stroke). That is, as the boom stroke increases, the secondary bucket joystick displacement can be converted to be smaller.
  • the output unit 540 may output the control signal for controlling the strength of the pilot signal pressure in proportion to the adjusted (limited) secondary joystick displacement.
  • the output unit 540 may generate a current proportional to the adjusted secondary bucket joystick displacement and apply it to the second spool displacement adjusting valve 420.
  • the second spool displacement adjusting valve 420 supplies a spool of the bucket control valve to the spool of the bucket control valve by supplying a second pilot signal pressure proportional to the intensity of the applied current to the spool of the applied second pilot signal pressure. Can be moved by intensity.
  • the flow path area of the bucket control valve in the boom priority mode can be controlled to be inversely proportional to the magnitude of the operation signal for the boom. That is, the flow path area of the bucket control valve according to the adjusted secondary bucket joystick displacement can be controlled to be smaller than the flow path area of the bucket control valve when the bucket is operated alone, and the rate of decrease of the flow path area is the boom. It may be proportional to the magnitude of the manipulation signal for.
  • the spool displacement with respect to the operation signal of the bucket control valve may also be adjusted. That is, the switching ratio (bucket ratio of the bucket operation signal) from the bucket operation signal to the spool displacement of the bucket control valve can be reduced in proportion to the size of the boom stroke.
  • the switching ratio of the bucket manipulation signal in the boom priority mode may be smaller than the switching ratio when the bucket alone operates. For example, when the boom stroke is 100%, the switching ratio of the input bucket joystick displacement amount to the spool displacement amount of the bucket control valve can be reduced to about 50% of the conversion ratio in the bucket alone operation.
  • the control system of the construction machine includes first and second control valves for controlling the operation of the first and second actuators and spools in the first and second control valves according to an input electrical signal. It may include an electro-hydraulic main control valve including an electromagnetic proportional pressure reducing valve for controlling the pilot oil applied to the.
  • the control system of the construction machine when performing the combined operation of the first and second actuators with different operating pressure, the control of the hydraulic oil flows to the actuator having a relatively low operating pressure of the first and second actuators By reducing the flow path area of the valve, the operating pressure can be increased and the distribution of the flow rate flowing to the first and second actuators can be adjusted.
  • FIG. 6 is a flowchart illustrating a control method of a construction machine according to exemplary embodiments.
  • an operation signal of an operator for the first and second actuators 10 and 20 and a discharge pressure of the first hydraulic pump 100 may be received (S100 and S120). ). It may be determined whether the work performed by the first and second actuators 10 and 20 is a high load operation (S110).
  • boom joystick displacement amount boost stroke
  • bucket stroke bucket stroke
  • the pressure of the first hydraulic pump 100 and the second hydraulic pump 110 may be received.
  • the pressure of the boom cylinder and the bucket cylinder can be received.
  • the discharge pressure of the first hydraulic pump 100 may be received while the bucket is performing a standalone operation.
  • a first predetermined pressure for example, 130 bar
  • it may be determined as a high load operation (S110).
  • the joystick displacement amount (bucket stroke) input to the bucket is not converted, and the control signal (current) according to the initial input value is output to the second spool displacement adjustment valve 420, and the second spool displacement adjustment valve 420 supplies a spool of the second control valve 320 to the spool of the second control valve 320 by supplying a second pilot signal pressure proportional to the intensity of the applied current. It can be moved according to the intensity (S152).
  • an operation signal for the boom when an operation signal for the boom is received while the bucket is operating, it may be determined whether to perform the boom priority mode.
  • an operation signal for the combined operation of the boom and the bucket when it may be decided to perform the boom priority mode when the operating pressure of the boom cylinder is greater than the operating pressure of the bucket cylinder.
  • the boom priority mode when the discharge pressure of the first hydraulic pump 100 is greater than or equal to the first pressure (for example, about 130 bar) and less than or equal to the preset second pressure (for example, about 180 bar), the boom priority mode may be changed. You can decide to do it.
  • the input operation signal for the second actuator 20 may be restricted according to the operation signal for the first actuator 10 (S140).
  • the joystick displacement input to the second actuator 20 may be adjusted to the secondary joystick displacement having a value reduced in proportion to the joystick displacement of the first actuator 10.
  • the second bucket joystick displacement may be calculated from the input bucket joystick displacement (bucket stroke) using the displacement limit map.
  • the input bucket joystick displacement may be converted into the secondary bucket joystick displacement in a preset ratio according to the size of the boom joystick displacement stored in the displacement limit map.
  • the reduction rate of the secondary bucket joystick displacement with respect to the input bucket joystick displacement may be proportional to the magnitude of the boom joystick displacement (boom stroke). That is, as the boom stroke increases, the secondary bucket joystick displacement can be converted to be smaller.
  • the spool of the second control valve 320 may be moved according to the limited operation signal for the second actuator 20 (S150).
  • the control signal (current) according to the limited secondary bucket joystick displacement (limited bucket stroke) is output to the second spool displacement adjustment valve 420, and the second spool displacement adjustment valve 420. Supplies a spool of the second control valve 320 in accordance with the intensity of the applied second pilot signal pressure by supplying a spool of the second control valve 320 to the spool of the second control valve 320 in proportion to the applied current intensity. You can move it.
  • the spool displacement with respect to the operation signal of the bucket control valve can also be adjusted. That is, the switching ratio (bucket ratio of the bucket operation signal) from the bucket operation signal to the spool displacement of the bucket control valve can be reduced in proportion to the size of the boom stroke.
  • the switching ratio of the bucket manipulation signal in the boom priority mode may be smaller than the switching ratio when the bucket alone operates. For example, when the boom stroke is 100%, the switching ratio of the input bucket joystick displacement amount to the spool displacement amount of the bucket control valve can be reduced to about 50% of the conversion ratio in the bucket alone operation.
  • the operating area of the bucket is increased by reducing the flow path area of the control valve flowing the hydraulic fluid to the bucket having a relatively low operating pressure
  • the distribution of flow to the boom and bucket can be adjusted.
  • first actuator 12 boom head chamber
  • first hydraulic pump 110 second hydraulic pump
  • main hydraulic line 202 first center bypass line
  • boom head hydraulic line 234 boom rod hydraulic line
  • first control valve 320 second control valve
  • third control valve 400 pilot pump
  • Control flow path 410 first spool displacement regulating valve
  • control unit 510 data receiving unit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

건설기계의 제어 시스템은 유압 펌프, 상기 유압 펌프에 제1 및 제2 병렬 라인들을 통해 각각 연결된 제1 및 제2 액추에이터들, 내부에 구비된 스풀의 변위량에 따라 상기 제1 및 제2 액추에이터들의 동작을 각각 제어하기 위한 제1 및 제2 제어 밸브들, 입력된 제어 신호에 따라 상기 제1 및 제2 제어 밸브들의 스풀들의 변위량을 제어하기 위한 파일럿 신호압을 상기 스풀들 각각에 공급하는 제1 및 제2 스풀 변위 조정 밸브들, 및 작업자의 조작 신호에 따라 상기 제1 및 제2 스풀 변위 조정 밸브들에 상기 제어 신호를 출력하고, 상기 제1 및 제2 액추에이터들의 복합 동작을 위한 조작 신호를 수신할 때 상기 제2 액추에이터에 대한 조작 신호에 따른 상기 제2 제어 밸브의 스풀 변위량을 상기 제1 액추에이터의 조작 신호에 따라 제한하도록 조정하는 제어부를 포함한다.

Description

건설기계의 제어 시스템 및 건설기계의 제어 방법
본 발명은 건설기계의 제어 시스템 및 건설기계의 제어 방법에 관한 것이다. 보다 상세하게는, 전자비례감압밸브를 이용한 전자 유압식 메인컨트롤밸브를 갖는 건설기계의 제어 시스템 및 이를 이용한 건설기계의 제어 방법에 관한 것이다.
최근 건설기계에 있어서, 전자비례감압밸브(EPPRV)를 통해 전자 제어하는 전자 유압식 메인컨트롤밸브가 사용될 수 있다. 기존의 기계유압식 메인컨트롤밸브를 갖는 건설기계에 있어서, 작동압이 서로 다른 액추에이터들의 복합 동작을 수행할 때, 유압라인에 오리피스를 설치하여 이들 사이의 유량분배의 밸런스를 조정할 수 있다.
그러나, 상기 오리피스의 고정된 면적 제한으로 인해 비효율적인 유량 분배 및 제어성 저하가 발생하고, 액추에이터에 가해지는 부하가 큰 경우에는 압력 손실로 인한 연비가 저하되는 문제점이 있다.
본 발명의 일 과제는 연비를 개선하고 제어성을 향상시킬 수 있는 건설기계의 제어 시스템을 제공하는 데 있다.
본 발명의 다른 과제는 상술한 제어 시스템을 이용한 건설기계의 제어 방법을 제공하는 데 있다.
상기 본 발명의 일 과제를 달성하기 위한 예시적인 실시예들에 따른 건설기계의 제어 시스템은 유압 펌프, 상기 유압 펌프에 제1 및 제2 병렬 라인들을 통해 각각 연결되고 상기 유압 펌프로부터 토출된 작동유에 의해 동작 가능한 제1 및 제2 액추에이터들, 상기 제1 및 제2 병렬 라인들에 각각 설치되고 내부에 구비된 스풀의 변위량에 따라 상기 제1 및 제2 액추에이터들의 동작을 각각 제어하기 위한 제1 및 제2 제어 밸브들, 입력된 제어 신호에 따라 상기 제1 및 제2 제어 밸브들의 스풀들의 변위량을 제어하기 위한 파일럿 신호압을 상기 스풀들 각각에 공급하는 제1 및 제2 스풀 변위 조정 밸브들, 및 작업자의 조작 신호에 따라 상기 제1 및 제2 스풀 변위 조정 밸브들에 상기 제어 신호를 출력하고, 상기 제1 및 제2 액추에이터들의 복합 동작을 위한 조작 신호를 수신할 때 상기 제2 액추에이터에 대한 조작 신호에 따른 상기 제2 제어 밸브의 스풀 변위량을 상기 제1 액추에이터의 조작 신호에 따라 제한하도록 조정하는 제어부를 포함한다.
예시적인 실시예들에 있어서, 상기 제어부는 상기 제2 액추에이터의 조작 신호로부터 상기 제2 제어 밸브의 스풀 변위량으로의 전환 비율을 상기 제1 액추에이터에 대한 조작 신호의 크기에 비례하여 감소시키는 제어 신호를 상기 제2 스풀 변위 조정 밸브에 출력할 수 있다.
예시적인 실시예들에 있어서, 상기 제1 액추에이터에 대한 조작 신호가 최대일 때, 상기 제2 액추에이터에 대한 조작 신호의 전환 비율은 상기 제2 액추에이터의 단독 동작 시의 전환 비율의 적어도 50%로 제한될 수 있다.
예시적인 실시예들에 있어서, 상기 제2 제어 밸브의 유로 면적은 상기 제1 액추에이터에 대한 조작 신호의 크기에 반비례하도록 제어될 수 있다.
예시적인 실시예들에 있어서, 상기 제1 및 제2 스풀 변위 조정 밸브들은 전자비례 감압밸브(Electronic Proportional Pressure Reducing Valve, EPPRV)를 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 제어부는, 상기 조작 신호로서 입력된 상기 제1 및 제2 액추에이터들에 대한 조이스틱 변위량으로부터 상기 제1 액추에이터의 동작을 우선시키기 위한 우선모드를 수행하는 지 여부를 판단하는 우선모드 판단부, 상기 우선모드일 경우 상기 제2 액추에이터에 대하여 입력된 조이스틱 변위량을 상기 제1 액추에이터의 조이스틱 변위량에 비례하여 감소된 값을 갖는 2차 조이스틱 변위량으로 변환하는 조이스틱 변위량 변환부, 및 상기 조정된 2차 조이스틱 변위량에 따라 상기 파일럿 신호압의 세기를 제어하기 위한 상기 제어 신호를 출력하는 출력부를 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 우선모드 판단부는 상기 유압 펌프 또는 상기 제1 및 제2 액추에이터들의 압력이 기 설정된 압력 범위를 초과하는 고부하 작업일 경우, 상기 우선모드를 해제할 수 있다.
예시적인 실시예들에 있어서, 상기 제1 및 제2 제어 밸브들은 상기 유압 펌프에 연결된 센터바이패스 유로에 순차적으로 설치될 수 있다.
예시적인 실시예들에 있어서, 상기 제1 액추에이터는 붐 실린더를 포함하며 상기 제2 액추에이터는 버켓 실린더를 포함하고, 상기 제1 제어 밸브는 붐 제어 밸브를 포함하며 상기 제2 제어 밸브는 버켓 제어 밸브를 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 제어부는 상기 제1 액추에이터의 작동압이 상기 제2 액추에이터의 작동압보다 더 클 때 상기 우선모드를 수행하도록 결정할 수 있다.
상기 본 발명의 다른 과제를 달성하기 위한 예시적인 실시예들에 따른 건설기계의 제어 방법에 있어서, 하나의 유압 펌프에 제1 및 제2 병렬 라인들을 통해 연결된 제1 및 제2 액추에이터들, 및 상기 제1 및 제2 병렬 라인들에 각각 설치되며 상기 제1 및 제2 액추에이터들의 동작을 각각 제어하기 위한 제1 및 제2 제어 밸브들을 포함하는 유압 시스템을 제공한다. 상기 제1 및 제2 액추에이터들에 대한 작업자의 조작 신호를 수신한다. 상기 조작 신호로부터 상기 제1 및 제2 액추에이터들 중 상기 제1 액추에이터의 동작을 우선시키기 위한 우선모드의 동작 여부를 판단한다. 우선모드일 때 상기 제2 액추에이터에 대한 조작 신호에 따른 상기 제2 제어 밸브의 스풀 변위량을 상기 제1 액추에이터에 대한 조작 신호에 따라 제한하도록 상기 제2 제어 밸브의 스풀 변위량을 조정한다.
예시적인 실시예들에 있어서, 상기 제2 제어 밸브의 스풀 변위량을 조정하는 것은 상기 제2 액추에이터의 조작 신호로부터 상기 제2 제어 밸브의 스풀 변위량으로의 전환 비율을 상기 제1 액추에이터에 대한 조작 신호의 크기에 비례하여 감소시키는 것을 포함할 수 있다
예시적인 실시예들에 있어서, 상기 제2 제어 밸브의 스풀 변위량을 조정하는 것은 상기 제1 액추에이터에 대한 조작 신호가 최대일 때, 상기 제2 액추에이터에 대한 조작 신호의 전환 비율을 상기 제2 액추에이터의 단독 동작 시의 전환 비율의 적어도 50%로 제한하는 것을 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 제2 제어 밸브의 스풀 변위량을 조정하는 것은 상기 우선모드 시의 상기 제2 제어 밸브의 유로 면적이 상기 제1 액추에이터에 대한 조작 신호의 크기에 반비례하도록 제어하는 것을 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 제1 및 제2 액추에이터들에 대한 작업자의 조작 신호를 수신하는 것은 상기 제1 및 제2 액추에이터들에 대한 조이스틱 변위량을 수신하는 것을 포함할 수 있고, 상기 제2 제어 밸브의 스풀 변위량을 조정하는 것은 상기 제2 액추에이터에 대하여 입력된 조이스틱 변위량을 상기 제1 액추에이터에 대한 조이스틱 변위량에 비례하여 감소된 값을 갖는 2차 조이스틱 변위량으로 변환하는 것을 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 방법은 상기 조정된 2차 조이스틱 변위량에 따라 상기 제2 제어 밸브의 스풀 변위량을 제어하기 위한 파일럿 신호압을 상기 제2 제어 밸브의 스풀에 공급하는 것을 더 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 파일럿 신호압을 상기 제2 제어 밸브의 스풀에 공급하는 것은 EPPRV를 이용하는 것을 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 방법은 상기 유압 펌프 또는 상기 제1 및 제2 액추에이터들의 압력이 기 설정된 압력 범위를 초과하는 고부하 작업일 경우, 상기 우선모드를 해제하는 것을 더 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 제1 액추에이터는 붐 실린더를 포함하며 상기 제2 액추에이터는 버켓 실린더를 포함하고, 상기 제1 제어 밸브는 붐 제어 밸브를 포함하며 상기 제2 제어 밸브는 버켓 제어 밸브를 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 우선모드 동작 여부를 판단할 때 상기 제1 액추에이터에서의 작동압과 상기 제2 액추에이터에서의 작동압을 비교하는 것을 포함할 수 있다.
예시적인 실시예들에 따르면, 작동압이 서로 다른 제1 및 제2 액추에이터들의 복합 동작을 수행할 때, 상기 제1 및 제2 액추에이터들 중 상대적으로 낮은 작동압을 갖는 액추에이터로 작동유가 흘러가는 제어 밸브의 유로 면적을 감소시켜 작동압을 상승시키고 상기 제1 및 제2 액추에이터들로 흘러가는 유량의 분배를 조절할 수 있다.
따라서, 기존의 제어 시스템에서 복합 동작시 유량 분배를 위하여 설치된 오리피스의 삭제가 가능하여, 원가 절감 효과와 연비 개선 효과를 얻을 수 있다. 또한, 기존의 오리피스가 가지고 있는 제어의 한계로 발생할 수 있는 면적으로 인한 비효율적 유량 분배 및 압력 손실을 방지할 수 있고, 액추에이터에 가해지는 부하와 조이스틱 변위량에 따라 가변적으로 미터인(meter-in) 제어를 수행함으로써, 연비를 개선하고 제어성을 향상시킬 수 있다.
다만, 본 발명의 효과는 상기 언급한 효과에 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다.
도 1은 예시적인 실시예들에 따른 건설기계의 제어 시스템을 나타내는 유압 회로도이다.
도 2는 도 1의 건설기계의 제어 시스템의 제어부를 나타내는 블록도이다.
도 3은 도 2의 제어부에 저장된 붐 우선모드시 붐 조이스틱 변위량에 따른 버켓 조이스틱 변위량 제한맵을 나타내는 그래프이다.
도 4는 도 3의 버켓 조이스틱 변위량 제한맵에 따른 버켓 조이스틱 변위량의 전환 비율을 나타내는 그래프이다.
도 5는 도 1에서 붐 상승 및 버켓 크라우드의 복합 동작 신호가 수신된 경우의 제어 시스템을 나타내는 유압 회로도이다.
도 6은 예시적인 실시예들에 따른 건설기계의 제어 방법을 나타내는 순서도이다.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하고자 한다.
본 발명의 각 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.
본 발명에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본문에 개시되어 있는 본 발명의 실시예들에 대해서, 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본문에 설명된 실시예들에 한정되는 것으로 해석되어서는 안 된다.
즉, 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
도 1은 예시적인 실시예들에 따른 건설기계의 제어 시스템을 나타내는 유압 회로도이다. 도 2는 도 1의 건설기계의 제어 시스템의 제어부를 나타내는 블록도이다. 도 3은 도 2의 제어부에 저장된 붐 우선모드시 붐 조이스틱 변위량에 따른 버켓 조이스틱 변위량 제한맵을 나타내는 그래프이다. 도 4는 도 3의 버켓 조이스틱 변위량 제한맵에 따른 버켓 조이스틱 변위량의 전환 비율을 나타내는 그래프이다. 도 5는 도 1에서 붐 상승 및 버켓 크라우드의 복합 동작 신호가 수신된 경우의 제어 시스템을 나타내는 유압 회로도이다.
도 1 내지 도 5를 참조하면, 건설기계의 제어 시스템은 제1 유압 펌프(100), 제1 유압 펌프(100)에 제1 및 제2 병렬 라인들(210, 220)을 통해 각각 연결되며 제1 유압 펌프(100)로부터 토출된 작동유에 의해 동작 가능한 제1 및 제2 액추에이터들(10, 20), 제1 및 제2 병렬 라인들(210, 220)에 각각 설치되어 제1 및 제2 액추에이터들(10, 20)의 동작을 각각 제어하기 위한 제1 및 제2 제어 밸브들(310, 320), 입력된 제어 신호에 비례하여 제1 및 제2 제어 밸브들(310, 320)의 스풀들의 변위량을 제어하기 위한 파일럿 신호압을 상기 스풀들 각각에 공급하는 제1 및 제2 스풀 변위 조정 밸브들(410, 420), 및 작업자의 조작 신호에 따라 제1 및 제2 스풀 변위 조정 밸브들(410, 420)에 상기 제어 신호를 각각 출력하고 제1 및 제2 액추에이터들(10, 20) 중 어느 하나의 조작 신호에 따라 다른 하나의 동작을 제어하기 위한 상기 스풀의 스풀 변위량을 조정하기 위한 제어부(500)를 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 건설기계는 굴삭기, 휠 로더, 지게차 등을 포함할 수 있다. 이하에서는 상기 건설기계가 굴삭기인 경우에 대하여 설명하기로 한다. 다만, 이로 인하여 예시적인 실시예들에 따른 제어 시스템이 굴삭기를 제어하기 위한 것으로 한정되는 것은 아니며, 휠 로더, 지게차 등에도 이와 실질적으로 동일하게 적용될 수 있음을 이해할 수 있을 것이다.
상기 건설기계는 하부 주행체, 상기 하부 주행체 상에 선회 가능하도록 탑재되는 상부 선회체, 및 상기 상부 선회체에 설치된 운전실과 프론트 작업 장치를 포함할 수 있다. 상기 프론트 작업 장치는 붐, 암 및 버켓을 포함할 수 있다. 상기 붐과 상기 상부 프레임 사이에는 상기 붐의 움직임을 제어하기 위한 붐 실린더가 설치될 수 있다. 상기 붐과 상기 암 사이에는 상기 암의 움직임을 제어하기 위한 암 실린더가 설치될 수 있다. 그리고, 상기 암과 상기 버켓 사이에는 상기 버켓의 움직임을 제어하기 위한 버켓 실린더가 설치될 수 있다. 상기 붐 실린더, 상기 암 실린더 및 상기 버켓 실린더가 신장 또는 수축함에 따라 상기 붐, 상기 암 및 상기 버켓은 다양한 움직임을 구현할 수 있고, 상기 프론트 작업장치는 여러가지 작업을 수행할 수 있다.
예시적인 실시예들에 있어서, 제1 유압 펌프(100)는 동력전달장치를 통하여 엔진(도시되지 않음)에 연결될 수 있다. 상기 엔진으로부터의 동력은 제1 유압 펌프(100)에 전달될 수 있다. 제1 유압 펌프(100)로부터 토출된 작동유는 제1 및 제2 제어 밸브들(310, 320)을 거쳐 제1 및 제2 액추에이터들(10, 20)에 각각 분배되어 공급될 수 있다.
구체적으로, 제1 및 제2 제어 밸브들(310, 320)은 제1 메인 유압 라인(200)을 통하여 제1 유압 펌프(100)에 연결될 수 있다. 제1 메인 유압 라인(200)은 제1 센터바이패스 라인(202) 및 제1 및 제2 병렬 라인들(210, 220)로 분기될 수 있다. 제1 센터바이패스 라인(202)에는 제1 및 제2 제어 밸브들(310, 320)이 직렬로 순차적으로 설치될 수 있다.
제1 및 제2 제어 밸브들(310, 320)은 제1 유압 펌프(100)에 서로 병렬로 연결된 제1 및 제2 병렬 라인들(210, 220)에 각각 연결될 수 있다. 제1 제어 밸브(310)가 절환되어 제1 센터바이패스 라인(202)이 폐쇄되더라도, 제2 제어 밸브(320)는 제2 병렬 라인(220)에 의해 제1 유압 펌프(100)에 연결되어 제1 유압 펌프(100)로부터 토출된 작동유를 공급받을 수 있다. 제1 및 제2 제어 밸브들(310, 320)은 제1 유압 펌프(100)에 병렬로 연결된 제1 및 제2 병렬 라인들(210, 220)과 연결되므로, 제1 및 제2 제어 밸브들(310, 320)이 절환될 때 제1 유압 펌프(100)로부터 토출된 작동유는 제1 및 제2 제어 밸브들(310, 320)을 통해 제1 및 제2 액추에이터들(10, 20)로 분배되어 공급될 수 있다.
도면에 도시되지는 않았지만, 제1 센터바이패스 라인(202)에는 제3 액추에이터의 동작을 제어하기 위한 보조 제어 밸브가 설치될 수 있고, 제1 유압 펌프(100)로부터 토출된 작동유는 상기 보조 제어 밸브를 통하여 상기 제3 액추에이터로 공급될 수 있다. 이 경우에 있어서, 제1 및 제2 병렬 라인들(210, 220)과 유사한 구조의 병렬 라인이 상기 보조 제어 밸브와 연결될 수 있다.
예시적인 실시예들에 있어서, 제1 액추에이터(10)는 상기 붐 실린더이고, 제2 액추에이터(20)는 상기 버켓 실린더일 수 있다. 이 경우에 있어서, 제1 제어 밸브(310)는 붐 제어 밸브이고, 제2 제어 밸브(320)는 버켓 제어 밸브일 수 있다.
제1 제어 밸브(10), 즉, 상기 붐 제어 밸브는 붐 헤드 유압라인(232) 및 붐 로드 유압라인(234)을 통해 제1 액추에이터(10), 즉, 상기 붐 실린더의 붐 헤드 챔버(12) 및 붐 로드 챔버(14)와 각각 연결될 수 있다. 따라서, 제1 제어 밸브(310)가 절환되어 제1 유압 펌프(100)로부터 토출된 작동유를 붐 헤드 챔버(12) 및 붐 로드 챔버(14)에 선택적으로 공급할 수 있다.
붐 실린더(10)를 구동시키는 작동유는 리턴 유압라인을 통해 드레인 탱크(T)로 귀환될 수 있다. 예시적인 실시예들에 있어서, 붐 상승 시에 붐 로드 챔버(14)로부터의 작동유는 붐 로드 유압라인(234)을 통해 제1 제어 밸브(310), 즉, 상기 붐 제어 밸브를 거쳐 드레인 탱크(T)로 배출될 수 있다.
제2 제어 밸브(320), 즉, 상기 버켓 제어 밸브는 버켓 헤드 유압라인(242) 및 버켓 로드 유압라인(244)을 통해 제2 액추에이터, 즉, 버켓 실린더(20)의 버켓 헤드 챔버(22) 및 버켓 로드 챔버(24)와 각각 연결될 수 있다. 따라서, 제2 제어 밸브(320)가 절환되어 제1 유압 펌프(100)로부터 토출된 작동유를 버켓 헤드 챔버(22) 및 버켓 로드 챔버(24)에 선택적으로 공급할 수 있다.
버켓 실린더(20)를 구동시키는 작동유는 리턴 유압라인을 통해 드레인 탱크(T)로 귀환될 수 있다. 버켓 헤드 챔버(22) 및 버켓 로드 챔버(24)로부터의 작동유는 버켓 헤드 유압라인(242) 및 버켓 로드 유압라인(244)을 통해 제2 제어 밸브(320), 즉, 상기 버켓 제어 밸브를 거쳐 드레인 탱크(T)로 각각 배출될 수 있다.
한편, 제1 및 제2 액추에이터들(10, 20)에 대한 조작 신호가 없는 경우에는, 제1 유압 펌프(100)로부터 토출된 작동유는 제1 센터바이패스 유로(202)를 통해 드레인 탱크(T)로 복귀할 수 있다.
예시적인 실시예들에 있어서, 파일럿 펌프(400)는 상기 엔진의 출력축에 연결될 수 있으며, 이 경우 상기 엔진의 동력을 전달받은 파일럿 펌프(400)가 구동되어 제어유를 토출할 수 있다. 예를 들면, 상기 파일럿 펌프는 기어펌프일 수 있다. 이 경우에 있어서, 상기 작동유 및 상기 제어유는 실질적으로 동일한 물질을 포함할 수 있다.
파일럿 펌프(400)로부터 토출된 제어유는 제1 및 제2 스풀 변위 조정 밸브들(410, 420)을 거쳐 제1 및 제2 제어 밸브들(310, 320)의 스풀들에 각각 공급될 수 있다. 파일럿 펌프(400)로부터 토출된 제어유는 제어 유로(402)를 통해 제1 및 제2 스풀 변위 조정 밸브들(410, 420)로 각각 공급될 수 있다.
제1 및 제2 스풀 변위 조정 밸브들(410, 420)은 입력된 제어 신호에 비례하여 제1 및 제2 제어 밸브들(310, 320)의 스풀들의 변위량을 제어하기 위한 파일럿 신호압을 상기 스풀들에 각각 공급할 수 있다.
예를 들면, 한 쌍의 제1 스풀 변위 조정 밸브들(410)이 제1 제어 밸브(310)의 스풀의 양측에 각각 구비될 수 있다. 제1 스풀 변위 조정 밸브(410)로부터 출력된 제1 파일럿 신호압은 제1 제어 밸브(310) 내의 스풀의 양측에 선택적으로 공급됨으로써, 제1 제어 밸브(310)가 절환될 수 있다. 제1 스풀 변위 조정 밸브(410)는 입력된 제어 신호에 비례하는 크기를 갖는 제1 파일럿 신호를 공급할 수 있다. 제1 제어 밸브(310) 내의 스풀의 이동은 상기 제1 파일럿 신호압에 의해 제어될 수 있다. 즉, 상기 제1 파일럿 신호압의 공급 방향에 따라 상기 스풀의 이동 방향이 결정되며, 상기 제1 파일럿 신호압의 세기에 따라 상기 스풀의 변위량이 결정될 수 있다.
또한, 한 쌍의 제2 스풀 변위 조정 밸브들(420)이 제2 제어 밸브(320)의 스풀의 양측에 각각 구비될 수 있다. 제2 스풀 변위 조정 밸브(420)로부터 출력된 제2 파일럿 신호압은 제2 제어 밸브(320) 내의 스풀의 양측에 선택적으로 공급됨으로써, 제2 제어 밸브(320)가 절환될 수 있다. 제2 스풀 변위 조정 밸브(420)는 입력된 제어 신호에 비례하는 크기를 갖는 제2 파일럿 신호를 공급할 수 있다. 제2 제어 밸브(320) 내의 스풀의 이동은 상기 제2 파일럿 신호압에 의해 제어될 수 있다. 즉, 상기 제2 파일럿 신호압의 공급 방향에 따라 상기 스풀의 이동 방향이 결정되며, 상기 제2 파일럿 신호압의 세기에 따라 상기 스풀의 변위량이 결정될 수 있다.
예시적인 실시예들에 있어서, 상기 건설기계의 제어 시스템은 제1 및 제2 제어 밸브들(310, 320)을 갖는 조립체로서의 메인컨트롤밸브(Main Control Valve, MCV)를 포함할 수 있다. 상기 메인컨트롤밸브는 입력되는 전기적 신호에 따라 제어 밸브 내의 스풀에 가해지는 파일럿 작동유를 제어하는 전자비례감암밸브(EPPRV)를 포함하는 전자유압식 메인컨트롤밸브일 수 있다. 제1 및 제2 스풀 변위 조정 밸브들(410, 420)은 전자비례감암밸브(EPPRV)를 포함할 수 있다.
제어부(500)는 조작부(600)로부터 작업자의 조작량에 비례하는 조작 신호를 수신하고, 상기 조작 신호에 대응하도록 제1 및 제2 스풀 변위 조정 밸브들(410, 420)로 상기 제어 신호로서 압력지령 신호를 각각 출력할 수 있다. 상기 전자비례감압밸브들은 상기 압력지령 신호에 비례하는 2차 압력을 대응하는 상기 스풀들에 각각 출력함으로써, 전기적 제어 신호로 상기 스풀들을 제어할 수 있다.
예를 들면, 제어부(500)는 제1 액추에이터(10)에 대한 조작 신호, 예를 들면, 조이스틱 변위량을 수신하고 상기 수신된 조이스틱 변위량에 대응하는 제어 신호, 예를 들면, 전류를 생성하여 제1 스풀 변위 조정 밸브(410)로 인가할 수 있다. 제1 스풀 변위 조정 밸브(410)는 상기 인가된 전류의 세기에 비례하는 제1 파일럿 신호압을 제1 제어 밸브(310)의 스풀에 공급함으로써 제1 제어 밸브(310)의 스풀을 상기 인가된 제1 파일럿 신호압의 세기에 따라 이동시킬 수 있다. 이에 따라, 제1 액추에이터(10)에 대한 상기 수신된 조이스틱 변위량은 기 설정된 전환 비율로 제1 제어 밸브(310)의 스풀 변위량으로 전환될 수 있다.
제어부(500)는 제2 액추에이터(20)에 대한 조작 신호, 예를 들면, 조이스틱 변위량을 수신하고 상기 수신된 조이스틱 변위량에 대응하는 제어 신호, 예를 들면, 전류를 생성하여 제2 스풀 변위 조정 밸브(420)로 인가할 수 있다. 제2 스풀 변위 조정 밸브(420)는 상기 인가된 전류의 세기에 비례하는 제2 파일럿 신호압을 제2 제어 밸브(320)의 스풀에 공급함으로써 제2 제어 밸브(320)의 스풀을 상기 인가된 제2 파일럿 신호압의 세기에 따라 이동시킬 수 있다. 이에 따라, 제2 액추에이터(20)에 대한 상기 수신된 조이스틱 변위량은 기 설정된 전환 비율로 제2 제어 밸브(320)의 스풀 변위량으로 전환될 수 있다.
예를 들면, 조작부(600)는 조이스틱, 페달 등을 포함할 수 있다. 작업자가 조작부(600)를 조작하면, 상기 조작에 대응하는 조작 신호가 발생될 수 있다. 조작부(600)는 상기 조이스틱 변위량(또는 각도)을 측정하는 센서를 포함할 수 있다. 조작부(600)는 상기 측정된 변위량에 대응하는 전압신호 또는 전류 신호와 같은 신호를 출력할 수 있다. 제어부(600)는 상기 조작 신호를 수신하여 상기 조작 신호에 대응하도록 상기 메인컨트롤밸브를 제어함으로써 상기 제1 및 제2 액츄에이터들을 작동시킬 수 있다.
예시적인 실시예들에 있어서, 상기 건설기계의 제어 시스템은 제1 액추에이터(10)에 작동유를 공급하기 위한 제2 유압 펌프(110), 제1 액추에이터(10) 및 제2 유압 펌프(110) 사이의 유압 라인에 설치되며 제1 액추에이터(10)의 동작을 제어하기 위한 제3 제어 밸브(330), 및 입력된 제어 신호에 비례하여 제3 제어 밸브(330)의 스풀의 변위량을 제어하기 위한 파일럿 신호압을 상기 스풀에 공급하는 제3 스풀 변위 조정 밸브(430)를 더 포함할 수 있다.
예시적인 실시예들에 있어서, 제2 유압 펌프(110)는 상기 엔진에 연결될 수 있다. 제2 유압 펌프(110)로부터 토출된 작동유는 제3 제어 밸브(330)를 거쳐 제1 액추에이터(10)에 공급될 수 있다.
구체적으로, 제3 제어 밸브(330)는 제2 메인 유압 라인(204)을 통하여 제2 유압 펌프(110)에 연결될 수 있다. 제2 메인 유압 라인(204)은 제2 센터바이패스 라인(204) 및 제3 병렬 라인(230)으로 분기될 수 있다. 제2 센터바이패스 라인(204)에는 제3 제어 밸브(330) 및 추가적인 보조 제어 밸브(도시되지 않음)가 직렬로 순차적으로 설치될 수 있다.
제3 제어 밸브(330)는 붐 헤드 유압라인(232) 및 붐 로드 유압라인(234)을 통해 제1 액추에이터(10), 즉, 상기 붐 실린더의 붐 헤드 챔버(12) 및 붐 로드 챔버(14)와 각각 연결될 수 있다. 제3 제어 밸브(330)가 절환되어 제2 유압 펌프(110)로부터 토출된 작동유를 붐 헤드 챔버(12) 및 붐 로드 챔버(14)에 선택적으로 공급할 수 있다. 이에 따라, 제1 및 제2 유압 펌프들(100, 110)로부터 토출된 작동유는 제1 및 제2 제어 밸브들(310, 330)을 거쳐 합류된 후 제1 액추에이터(10)로 공급될 수 있다. 이러한 합류는 제1 액추에이터(10)가 고부하 상태일 때 진행될 수 있다.
제1 액추에이터(10)에 대한 조작 신호가 없는 경우에는, 제2 유압 펌프(110)로부터 토출된 작동유는 제2 센터바이패스 유로(204)를 통해 드레인 탱크(T)로 복귀할 수 있다.
파일럿 펌프(400)로부터 토출된 제어유는 제3 스풀 변위 조정 밸브(430)를 거쳐 제3 제어 밸브(330)의 스풀에 공급될 수 있다. 파일럿 펌프(400)로부터 토출된 제어유는 제어 유로(402)를 통해 제3 스풀 변위 조정 밸브(430)로 공급될 수 있다.
제3 스풀 변위 조정 밸브(430)는 입력된 제어 신호에 비례하여 제3 제어 밸브(330)의 스풀의 변위량을 제어하기 위한 파일럿 신호압을 제3 제어 밸브(330)의 상기 스풀에 공급할 수 있다.
예를 들면, 한 쌍의 제3 스풀 변위 조정 밸브들(430)이 제3 제어 밸브(330)의 스풀의 양측에 각각 구비될 수 있다. 제3 스풀 변위 조정 밸브(430)로부터 출력된 제3 파일럿 신호압은 제3 제어 밸브(330) 내의 스풀의 양측에 선택적으로 공급됨으로써, 제3 제어 밸브(330)가 절환될 수 있다. 제3 스풀 변위 조정 밸브(430)는 입력된 제어 신호에 비례하는 크기를 갖는 제3 파일럿 신호를 공급할 수 있다. 제3 제어 밸브(330) 내의 스풀의 이동은 상기 제3 파일럿 신호압에 의해 제어될 수 있다. 즉, 상기 제3 파일럿 신호압의 공급 방향에 따라 상기 스풀의 이동 방향이 결정되며, 상기 제3 파일럿 신호압의 세기에 따라 상기 스풀의 변위량이 결정될 수 있다.
예시적인 실시예들에 있어서, 제3 스풀 변위 조정 밸브(430)는 전자비례감암밸브(EPPRV)를 포함할 수 있다.
제어부(500)는 제1 액추에이터(10)에 대한 조작 신호, 예를 들면, 조이스틱 변위량을 수신하고 상기 수신된 조이스틱 변위량에 대응하는 제어 신호, 예를 들면, 전류를 생성하여 제3 스풀 변위 조정 밸브(430)로 인가할 수 있다. 제3 스풀 변위 조정 밸브(430)는 상기 인가된 전류의 세기에 비례하는 제3 파일럿 신호압을 제3 제어 밸브(330)의 스풀에 공급함으로써 제3 제어 밸브(330)의 스풀을 상기 인가된 제3 파일럿 신호압의 세기에 따라 이동시킬 수 있다. 이에 따라, 제1 액추에이터(10)에 대한 상기 수신된 조이스틱 변위량은 기 설정된 전환 비율로 제3 제어 밸브(330)의 스풀 변위량으로 전환될 수 있다.
예시적인 실시예들에 있어서, 제어부(500)는 제1 및 제2 액추에이터들(10, 20)의 복합 동작을 위한 조작 신호를 수신할 때 제2 액추에이터(20)에 대한 조작 신호에 따른 제2 제어 밸브(320)의 스풀 변위량을 제1 액추에이터(10)의 조작 신호에 따라 제한하도록 제어할 수 있다. 제어부(500)는 제2 액추에이터(20)의 조작 신호에 대한 제2 제어 밸브(320)의 스풀 변위량의 전환 비율을 제1 액추에이터(10)의 조작 신호의 크기에 비례하여 감소시키는 제어 신호를 제2 스풀 변위 조정 밸브(420)에 출력할 수 있다.
도 2에 도시된 바와 같이, 제어부(500)는 데이터 수신부(510), 우선모드 판단부(520), 조이스틱 변위량 변환부(530) 및 출력부(540)를 포함할 수 있다.
데이터 수신부(510)는 조작부(600)로부터 조이스틱 변위량을 수신할 수 있다. 데이터 수신부(510)는 붐, 암, 버켓 및 스윙에 대한 조작 신호로서 조이스틱 변위량을 수신할 수 있다. 예를 들면, 데이터 수신부(510)는 붐 실린더에 대한 조작 신호로서 붐 조이스틱 변위량(붐 스트로크) 및 버켓 실린더에 대한 조작 신호로서 버켓 조이스틱 변위량(버켓 스트로크)를 수신할 수 있다. 또한, 데이터 수신부(510)는 제1 유압 펌프(100) 및 제2 유압 펌프(110)의 압력을 수신할 수 있다. 또한, 데이터 수신부(510)는 상기 액추에이터들의 압력을 수신할 수 있다.
우선모드 판단부(520)는 상기 조작 신호로서 입력된 제1 및 제2 액추에이터들(10, 20)에 대한 조이스틱 변위량으로부터 제1 액추에이터(10)의 동작을 우선시키기 위한 우선모드를 수행하는 지 여부를 판단할 수 있다. 우선모드 판단부(520)는 붐 조이스틱 변위량 및 버켓 조이스틱 변위량을 수신할 때, 제1 액추에이터(10)에서의 작동압과 제2 액추에이터(20)에서의 작동압을 비교하고, 제1 액추에이터(10)의 작동압이 제2 액추에이터(20)의 작동압보다 더 클 경우, 제1 액추에이터(10)의 동작을 우선시키기 위한 우선모드를 수행하도록 결정할 수 있다. 한편, 우선모드 판단부(520)는 제1 유압 펌프(100)의 압력이 기 설정된 압력 범위를 초과하는 고부하 작업일 경우, 상기 붐 우선모드를 해제할 수 있다.
버켓의 단독 동작을 수행할 때, 제1 유압 펌프(100)의 토출 압력이 약 80bar일 수 있고, 붐의 단독 동작을 수행할 때, 제1 유압 펌프(100)의 토출 압력이 약 130bar일 수 있다. 한편, 버켓이 땅을 파는 동작을 수행할 때, 제1 유압 펌프(100)의 토출 압력은 상기 붐의 작동압과 유사한 값으로 증가할 수 있다.
예를 들면, 상기 버켓이 약 80bar의 작동압으로 동작하고 있는 상태에서 상기 붐이 동작할 때(붐과 버켓의 복합 동작에 대한 조작 신호가 수신될 때), 우선모드 판단부(520)는 상기 붐 실린더의 작동압이 상기 버켓 실린더의 작동압보다 더 클 경우, 붐 우선모드를 수행하도록 결정할 수 있다. 우선모드 판단부(520)는 제1 유압 펌프(100)의 토출 압력이 기 설정된 제2 압력(예를 들어 약 180bar) 이하일 경우, 상기 붐 우선모드를 수행하도록 결정할 수 있다. 한편, 상기 붐과 버켓의 복합 동작시에, 제1 유압 펌프(100)의 토출 압력이 상기 제2 압력 이상일 경우, 우선모드 판단부(520)는 고부하 작업으로 판단하고 상기 붐 우선모드를 해제할 수 있다. 또한, 상기 버켓의 단독 동작시에, 제1 유압 펌프(100)의 토출 압력이 기 설정된 제1 압력(예를 들면 약 130bar 또는 180bar) 이상일 경우, 우선모드 판단부(520)는 고부하 작업으로 판단하고 입력된 버켓 조이스틱 변위량을 조정하지 않고 최초 입력된 값에 대응하도록 제2 스풀 변위 조정 밸브(420)로 상기 제어 신호로서 압력지령 신호를 각각 출력할 수 있다.
조이스틱 변위량 변환부(530)는 상기 우선모드일 때, 제2 액추에이터(20)에 대하여 입력된 조이스틱 변위량을 제1 액추에이터(10)의 조이스틱 변위량에 비례하여 감소된 값을 갖는 2차 조이스틱 변위량으로 변환할 수 있다.
도 3에 도시된 바와 같이, 조이스틱 변위량 변환부(530)는 붐 우선모드시, 변위량 제한맵을 이용하여 입력된 버켓 조이스틱 변위량(버켓 스트로크)으로부터 2차 버켓 조이스틱 변위량(변환된 버켓 스트로크)을 산출할 수 있다. 상기 입력된 버켓 조이스틱 변위량은 상기 변위량 제한맵에 저장된 붐 조이스틱 변위량의 크기에 따른 기 설정된 비율로 상기 2차 버켓 조이스틱 변위량으로 변환될 수 있다. 상기 입력된 버켓 조이스틱 변위량에 대한 상기 2차 버켓 조이스틱 변위량의 감소율은 붐 조이스틱 변위량(붐 스트로크)의 크기에 비례할 수 있다. 즉, 붐 스트로크가 증가할수록, 상기 2차 버켓 조이스틱 변위량은 더 작아지도록 변환될 수 있다.
출력부(540)는 상기 조정된(제한된) 2차 조이스틱 변위량에 비례하여 상기 파일럿 신호압의 세기를 제어하기 위한 상기 제어 신호를 출력할 수 있다. 출력부(540)는 상기 조정된 2차 버켓 조이스틱 변위량에 비례하는 전류를 생성하여 제2 스풀 변위 조정 밸브(420)로 인가할 수 있다. 제2 스풀 변위 조정 밸브(420)는 상기 인가된 전류의 세기에 비례하는 제2 파일럿 신호압을 상기 버켓 제어 밸브의 스풀에 공급함으로써 상기 버켓 제어 밸브의 스풀을 상기 인가된 제2 파일럿 신호압의 세기에 따라 이동시킬 수 있다.
따라서, 상기 붐 우선모드 시의 상기 버켓 제어 밸브의 유로 면적은 붐에 대한 조작 신호의 크기에 반비례하도록 제어될 수 있다. 즉, 상기 조정된 2차 버켓 조이스틱 변위량에 따른 상기 버켓 제어 밸브의 유로 면적은 버켓의 단독 동작시의 상기 버켓 제어 밸브의 유로 면적보다 작아지도록 제어될 수 있고, 상기 유로 면적의 감소 비율은 상기 붐에 대한 조작 신호의 크기에 비례할 수 있다.
도 4에 도시된 바와 같이, 상기 2차 버켓 조이스틱 변위량이 조정됨에 따라, 상기 버켓 제어 밸브의 조작 신호에 대한 스풀 변위량 역시 조정될 수 있다. 즉, 버켓 조작 신호로부터 버켓 제어 밸브의 스풀 변위량으로의 전환 비율(버켓 조작 신호의 전환 비율)은 붐 스트로크의 크기에 비례하여 감소될 수 있다. 상기 붐 우선모드에서의 상기 버켓 조작 신호의 전환 비율은 버켓 단독 동작 시의 전환 비율보다 더 작을 수 있다. 예를 들면, 붐 스트로크가 100%일 때, 상기 입력된 버켓 조이스틱 변위량으로부터 상기 버켓 제어 밸브의 스풀 변위량의 전환 비율은 버켓 단독 동작시의 전환 비율의 약 50%로 감소될 수 있다.
상술한 바와 같이, 상기 건설기계의 제어 시스템은 제1 및 제2 액추에이터들의 동작을 제어하기 위한 제1 및 제2 제어 밸브들 및 입력되는 전기 신호에 따라 상기 제1 및 제2 제어 밸브들 내의 스풀에 가해지는 파일럿 작동유를 제어하는 전자비례감압밸브들을 포함하는 전자유압식 메인컨트롤밸브를 포함할 수 있다. 상기 건설기계의 제어 시스템은, 작동압이 서로 다른 제1 및 제2 액추에이터들의 복합 동작을 수행할 때, 상기 제1 및 제2 액추에이터들 중 상대적으로 낮은 작동압을 갖는 액추에이터로 작동유가 흘러가는 제어 밸브의 유로 면적을 감소시켜 작동압을 상승시키고 상기 제1 및 제2 액추에이터들로 흘러가는 유량의 분배를 조절할 수 있다.
따라서, 기존의 기계유압식 메인컨트롤밸브를 갖는 제어 시스템에서 복합 동작시 유량 분배를 위하여 설치된 오리피스 구조를 대신하여 전자유압식 메인컨트롤밸브를 갖는 제어 시스템에서 이와 같은 기능을 수행함으로써, 원가 절감 효과와 연비 개선 효과를 얻을 수 있다. 또한, 기존의 오리피스 구조에서의 고정된 오리피스 면적으로 인한 비효율적 유량 분배 및 압력 손실을 방지할 수 있고, 액추에이터에 가해지는 부하와 조이스틱 변위량에 따라 가변적으로 미터인(meter-in) 제어를 수행함으로써, 연비를 개선하고 제어성을 향상시킬 수 있다.
이하에서는, 도 1의 제어 시스템을 이용하여 건설기계를 제어하는 방법에 대하여 설명하기로 한다.
도 6은 예시적인 실시예들에 따른 건설기계의 제어 방법을 나타내는 순서도이다.
도 1, 도 2 및 도 6을 참조하면, 제1 및 제2 액추에이터들(10, 20)에 대한 작업자의 조작 신호 및 제1 유압 펌프(100)의 토출 압력을 수신할 수 있다(S100, S120). 제1 및 제2 액추에이터들(10, 20)에 의해 수행되는 작업이 고부하 작업인지 여부를 판단할 수 있다(S110).
예시적인 실시예들에 있어서, 붐 실린더에 대한 조작 신호로서 붐 조이스틱 변위량(붐 스트로크) 및 버켓 실린더에 대한 조작 신호로서 버켓 조이스틱 변위량(버켓 스트로크)를 수신할 수 있다. 또한, 제1 유압 펌프(100) 및 제2 유압 펌프(110)의 압력을 수신할 수 있다. 이와 다르게, 상기 붐 실린더 및 상기 버켓 실린더의 압력을 수신할 수 있다.
예시적인 실시예들에 있어서, 버켓이 단독 동작을 수행하고 있는 상태에서 제1 유압 펌프(100)의 토출 압력을 수신할 수 있다. 상기 펌프의 토출 압력이 기 설정된 제1 압력(예를 들어 130bar) 이상인 경우, 고부하 작업이라 판단할 수 있다(S110). 이 경우에 있어서, 버켓에 대하여 입력된 조이스틱 변위량(버켓 스트로크)은 변환되지 않고 최초 입력값에 따른 제어 신호(전류)를 제2 스풀 변위 조정 밸브(420)로 출력하고, 제2 스풀 변위 조정 밸브(420)는 상기 인가된 전류의 세기에 비례하는 제2 파일럿 신호압을 제2 제어 밸브(320)의 스풀에 공급함으로써 제2 제어 밸브(320)의 스풀을 상기 인가된 제2 파일럿 신호압의 세기에 따라 이동시킬 수 있다(S152).
이어서, 상기 조작 신호로부터 제1 및 제2 액추에이터들(10, 20) 중 제1 액추에이터(10)의 동작을 우선시키기 위한 우선모드의 동작 여부를 판단할 수 있다(S130).
예시적인 실시예들에 있어서, 상기 버켓이 동작하고 있는 상태에서 붐에 대한 조작 신호가 수신될 때, 붐 우선모드의 수행 여부를 결정할 수 있다. 상기 붐과 버켓의 복합 동작에 대한 조작 신호가 수신될 때, 상기 붐 실린더의 작동압이 상기 버켓 실린더의 작동압보다 더 큰 경우에 붐 우선모드를 수행하도록 결정할 수 있다. 예를 들면, 제1 유압 펌프(100)의 토출 압력이 제1 압력(예를 들어 약 130bar) 이상이고 기 설정된 제2 압력(예를 들어 약 180bar) 이하의 범위일 경우, 상기 붐 우선모드를 수행하도록 결정할 수 있다.
이후, 상기 우선모드일 때 제2 액추에이터(20)에 대한 입력된 조작 신호를 제1 액추에이터(10)에 대한 조작 신호에 따라 제한할 수 있다(S140). 상기 우선모드일 경우, 제2 액추에이터(20)에 대하여 입력된 조이스틱 변위량을 제1 액추에이터(10)의 조이스틱 변위량에 비례하여 감소된 값을 갖는 2차 조이스틱 변위량으로 조정할 수 있다.
예시적인 실시예들에 있어서, 변위량 제한맵을 이용하여 입력된 버켓 조이스틱 변위량(버켓 스트로크)으로부터 2차 버켓 조이스틱 변위량(변환된 버켓 스트로크)을 산출할 수 있다. 상기 입력된 버켓 조이스틱 변위량은 상기 변위량 제한맵에 저장된 붐 조이스틱 변위량의 크기에 따른 기 설정된 비율로 상기 2차 버켓 조이스틱 변위량으로 변환될 수 있다. 상기 입력된 버켓 조이스틱 변위량에 대한 상기 2차 버켓 조이스틱 변위량의 감소율은 붐 조이스틱 변위량(붐 스트로크)의 크기에 비례할 수 있다. 즉, 붐 스트로크가 증가할수록, 상기 2차 버켓 조이스틱 변위량은 더 작아지도록 변환될 수 있다.
이어서, 제2 액추에이터(20)에 대한 상기 제한된 조작 신호에 따라 제2 제어 밸브(320)의 스풀을 이동시킬 수 있다(S150).
예시적인 실시예들에 있어서, 상기 제한된 2차 버켓 조이스틱 변위량(제한된 버켓 스트로크)에 따른 제어 신호(전류)를 제2 스풀 변위 조정 밸브(420)로 출력하고, 제2 스풀 변위 조정 밸브(420)는 상기 인가된 전류의 세기에 비례하는 제2 파일럿 신호압을 제2 제어 밸브(320)의 스풀에 공급함으로써 제2 제어 밸브(320)의 스풀을 상기 인가된 제2 파일럿 신호압의 세기에 따라 이동시킬 수 있다.
상기 버켓 조이스틱 변위량이 조정됨에 따라, 상기 버켓 제어 밸브의 조작 신호에 대한 스풀 변위량 역시 조정될 수 있다. 즉, 버켓 조작 신호로부터 버켓 제어 밸브의 스풀 변위량으로의 전환 비율(버켓 조작 신호의 전환 비율)은 붐 스트로크의 크기에 비례하여 감소될 수 있다. 상기 붐 우선모드에서의 상기 버켓 조작 신호의 전환 비율은 버켓 단독 동작 시의 전환 비율보다 더 작을 수 있다. 예를 들면, 붐 스트로크가 100%일 때, 상기 입력된 버켓 조이스틱 변위량으로부터 상기 버켓 제어 밸브의 스풀 변위량의 전환 비율은 버켓 단독 동작시의 전환 비율의 약 50%로 감소될 수 있다.
상술한 바와 같이, 작동압이 서로 다른 붐과 버켓의 복합 동작을 수행할 때, 상대적으로 낮은 작동압을 갖는 버켓으로 작동유가 흘러가는 제어 밸브의 유로 면적을 감소시켜 버켓의 작동압을 상승시키고 상기 붐과 버켓으로 흘러가는 유량의 분배를 조절할 수 있다.
이에 따라, 붐과 버켓에 가해지는 부하와 붐의 조이스틱 변위량에 따라 가변적으로 버켓에 대한 미터인(meter-in) 제어를 수행함으로써, 연비를 개선하고 제어성을 향상시킬 수 있다.
이상에서는 본 발명의 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
<부호의 설명>
10: 제1 액추에이터 12: 붐 헤드 챔버
14: 붐 로드 챔버 20: 제2 액추에이터
22: 버켓 헤드 챔버 24: 버켓 로드 챔버
100: 제1 유압 펌프 110: 제2 유압 펌프
200: 메인 유압 라인 202: 제1 센터바이패스 라인
204: 제2 센터바이패스 라인 210: 제1 병렬 라인
220: 제2 병렬 라인 230: 제3 병렬 라인
232: 붐 헤드 유압라인 234: 붐 로드 유압라인
310: 제1 제어 밸브 320: 제2 제어 밸브
330: 제3 제어 밸브 400: 파일럿 펌프
402; 제어 유로 410: 제1 스풀 변위 조정 밸브
420: 제2 스풀 변위 조정 밸브 430: 제3 스풀 변위 조정 밸브
500: 제어부 510: 데이터 수신부
520: 우선모드 판단부 530: 조이스틱 변위량 변환부
540: 출력부 600: 조작부

Claims (20)

  1. 유압 펌프;
    상기 유압 펌프에 제1 및 제2 병렬 라인들을 통해 각각 연결되고 상기 유압 펌프로부터 토출된 작동유에 의해 동작 가능한 제1 및 제2 액추에이터들;
    상기 제1 및 제2 병렬 라인들에 각각 설치되고, 내부에 구비된 스풀의 변위량에 따라 상기 제1 및 제2 액추에이터들의 동작을 각각 제어하기 위한 제1 및 제2 제어 밸브들;
    입력된 제어 신호에 따라 상기 제1 및 제2 제어 밸브들의 스풀들의 변위량을 제어하기 위한 파일럿 신호압을 상기 스풀들 각각에 공급하는 제1 및 제2 스풀 변위 조정 밸브들; 및
    작업자의 조작 신호에 따라 상기 제1 및 제2 스풀 변위 조정 밸브들에 상기 제어 신호를 출력하고, 상기 제1 및 제2 액추에이터들의 복합 동작을 위한 조작 신호를 수신할 때 상기 제2 액추에이터에 대한 조작 신호에 따른 상기 제2 제어 밸브의 스풀 변위량을 상기 제1 액추에이터의 조작 신호에 따라 제한하도록 조정하는 제어부를 포함하는 건설기계의 제어 시스템.
  2. 제 1 항에 있어서, 상기 제어부는 상기 제2 액추에이터의 조작 신호로부터 상기 제2 제어 밸브의 스풀 변위량으로의 전환 비율을 상기 제1 액추에이터에 대한 조작 신호의 크기에 비례하여 감소시키는 제어 신호를 상기 제2 스풀 변위 조정 밸브에 출력하는 건설기계의 제어 시스템.
  3. 제 2 항에 있어서, 상기 제1 액추에이터에 대한 조작 신호가 최대일 때, 상기 제2 액추에이터에 대한 조작 신호의 전환 비율은 상기 제2 액추에이터의 단독 동작 시의 전환 비율의 적어도 50%로 제한되는 건설기계의 제어 시스템.
  4. 제 1 항에 있어서, 상기 제2 제어 밸브의 유로 면적은 상기 제1 액추에이터에 대한 조작 신호의 크기에 반비례하도록 제어되는 건설기계의 제어 시스템.
  5. 제 1 항에 있어서, 상기 제1 및 제2 스풀 변위 조정 밸브들은 전자비례 감압밸브(Electronic Proportional Pressure Reducing Valve, EPPRV)를 포함하는 건설기계의 제어 시스템.
  6. 제 1 항에 있어서, 상기 제어부는
    상기 조작 신호로서 입력된 상기 제1 및 제2 액추에이터들에 대한 조이스틱 변위량으로부터 상기 제1 액추에이터의 동작을 우선시키기 위한 우선모드를 수행하는 지 여부를 판단하는 우선모드 판단부;
    상기 우선모드일 경우, 상기 제2 액추에이터에 대하여 입력된 조이스틱 변위량을 상기 제1 액추에이터의 조이스틱 변위량에 비례하여 감소된 값을 갖는 2차 조이스틱 변위량으로 변환하는 조이스틱 변위량 변환부; 및
    상기 조정된 2차 조이스틱 변위량에 따라 상기 파일럿 신호압의 세기를 제어하기 위한 상기 제어 신호를 출력하는 출력부를 포함하는 건설기계의 제어 시스템.
  7. 제 6 항에 있어서, 상기 우선모드 판단부는 상기 유압 펌프 또는 상기 제1 및 제2 액추에이터들의 압력이 기 설정된 압력 범위를 초과하는 고부하 작업일 경우, 상기 우선모드를 해제하는 건설기계의 제어시스템.
  8. 제 1 항에 있어서, 상기 제1 및 제2 제어 밸브들은 상기 유압 펌프에 연결된 센터바이패스 유로에 순차적으로 설치되는 건설기계의 제어 시스템.
  9. 제 8 항에 있어서, 상기 제1 액추에이터는 붐 실린더를 포함하며 상기 제2 액추에이터는 버켓 실린더를 포함하고, 상기 제1 제어 밸브는 붐 제어 밸브를 포함하며 상기 제2 제어 밸브는 버켓 제어 밸브를 포함하는 건설기계의 제어 시스템.
  10. 제 1 항에 있어서, 상기 제어부는 상기 제1 액추에이터의 작동압이 상기 제2 액추에이터의 작동압보다 더 클 때 상기 우선모드를 수행하도록 결정하는 것을 건설기계의 제어 시스템.
  11. 하나의 유압 펌프에 제1 및 제2 병렬 라인들을 통해 연결된 제1 및 제2 액추에이터들, 및 상기 제1 및 제2 병렬 라인들에 각각 설치되며 상기 제1 및 제2 액추에이터들의 동작을 각각 제어하기 위한 제1 및 제2 제어 밸브들을 포함하는 유압 시스템을 제공하고;
    상기 제1 및 제2 액추에이터들에 대한 작업자의 조작 신호를 수신하고;
    상기 조작 신호로부터 상기 제1 및 제2 액추에이터들 중 상기 제1 액추에이터의 동작을 우선시키기 위한 우선모드의 동작 여부를 판단하고; 그리고
    우선모드일 때 상기 제2 액추에이터에 대한 조작 신호에 따른 상기 제2 제어 밸브의 스풀 변위량을 상기 제1 액추에이터에 대한 조작 신호에 따라 제한하도록 상기 제2 제어 밸브의 스풀 변위량을 조정하는 것을 포함하는 건설기계의 제어 방법.
  12. 제 11 항에 있어서, 상기 제2 제어 밸브의 스풀 변위량을 조정하는 것은 상기 제2 액추에이터의 조작 신호로부터 상기 제2 제어 밸브의 스풀 변위량으로의 전환 비율을 상기 제1 액추에이터에 대한 조작 신호의 크기에 비례하여 감소시키는 것을 포함하는 건설기계의 제어 방법.
  13. 제 12 항에 있어서, 상기 제2 제어 밸브의 스풀 변위량을 조정하는 것은 상기 제1 액추에이터에 대한 조작 신호가 최대일 때, 상기 제2 액추에이터에 대한 조작 신호의 전환 비율을 상기 제2 액추에이터의 단독 동작 시의 전환 비율의 적어도 50%로 제한하는 것을 포함하는 건설기계의 제어 방법.
  14. 제 11 항에 있어서, 상기 제2 제어 밸브의 스풀 변위량을 조정하는 것은 상기 우선모드 시의 상기 제2 제어 밸브의 유로 면적이 상기 제1 액추에이터에 대한 조작 신호의 크기에 반비례하도록 제어하는 것을 포함하는 건설기계의 제어 방법.
  15. 제 11 항에 있어서, 상기 제1 및 제2 액추에이터들에 대한 작업자의 조작 신호를 수신하는 것은 상기 제1 및 제2 액추에이터들에 대한 조이스틱 변위량을 수신하는 것을 포함하고,
    상기 제2 제어 밸브의 스풀 변위량을 조정하는 것은 상기 제2 액추에이터에 대하여 입력된 조이스틱 변위량을 상기 제1 액추에이터에 대한 조이스틱 변위량에 비례하여 감소된 값을 갖는 2차 조이스틱 변위량으로 변환하는 것을 포함하는 건설기계의 제어 방법.
  16. 제 15 항에 있어서, 상기 조정된 2차 조이스틱 변위량에 따라 상기 제2 제어 밸브의 스풀 변위량을 제어하기 위한 파일럿 신호압을 상기 제2 제어 밸브의 스풀에 공급하는 것을 더 포함하는 건설기계의 제어 방법.
  17. 제 16 항에 있어서, 상기 파일럿 신호압을 상기 제2 제어 밸브의 스풀에 공급하는 것은 전자비례 감압밸브(Electronic Proportional Pressure Reducing Valve, EPPRV)를 이용하는 것을 포함하는 건설기계의 제어 방법.
  18. 제 11 항에 있어서, 상기 유압 펌프 또는 상기 제1 및 제2 액추에이터들의 압력이 기 설정된 압력 범위를 초과하는 고부하 작업일 경우, 상기 우선모드를 해제하는 것을 더 포함하는 건설기계의 제어시스템.
  19. 제 11 항에 있어서, 상기 제1 액추에이터는 붐 실린더를 포함하며 상기 제2 액추에이터는 버켓 실린더를 포함하고, 상기 제1 제어 밸브는 붐 제어 밸브를 포함하며 상기 제2 제어 밸브는 버켓 제어 밸브를 포함하는 건설기계의 제어 방법.
  20. 제 1 항에 있어서, 상기 우선모드 동작 여부를 판단할 때 상기 제1 액추에이터에서의 작동압과 상기 제2 액추에이터에서의 작동압을 비교하는 것을 포함하는 건설기계의 제어 방법.
PCT/KR2017/009555 2016-08-31 2017-08-31 건설기계의 제어 시스템 및 건설기계의 제어 방법 WO2018044099A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/329,613 US10982691B2 (en) 2016-08-31 2017-08-31 System and method for controlling construction machine
CN201780053472.5A CN109642416B (zh) 2016-08-31 2017-08-31 工程机械的控制***及工程机械的控制方法
JP2019512003A JP7071339B2 (ja) 2016-08-31 2017-08-31 建設機械の制御システム及び建設機械の制御方法
EP17847024.1A EP3492662B1 (en) 2016-08-31 2017-08-31 System and method for controlling a construction machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0111401 2016-08-31
KR1020160111401A KR102561435B1 (ko) 2016-08-31 2016-08-31 건설기계의 제어 시스템 및 건설기계의 제어 방법

Publications (1)

Publication Number Publication Date
WO2018044099A1 true WO2018044099A1 (ko) 2018-03-08

Family

ID=61301078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009555 WO2018044099A1 (ko) 2016-08-31 2017-08-31 건설기계의 제어 시스템 및 건설기계의 제어 방법

Country Status (6)

Country Link
US (1) US10982691B2 (ko)
EP (1) EP3492662B1 (ko)
JP (1) JP7071339B2 (ko)
KR (1) KR102561435B1 (ko)
CN (1) CN109642416B (ko)
WO (1) WO2018044099A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3880891A4 (en) * 2018-11-13 2022-08-03 Husco International, Inc. HYDRAULIC CONTROL SYSTEMS AND METHODS WITH MULTIFUNCTIONAL DYNAMIC CONTROL

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7253478B2 (ja) * 2019-09-25 2023-04-06 日立建機株式会社 作業機械
US11001989B1 (en) * 2020-03-30 2021-05-11 Caterpillar Inc. Electrical control of a hydraulic system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517202U (ja) * 1991-08-22 1993-03-05 東芝機械株式会社 油圧駆動装置
JPH1072850A (ja) * 1996-06-11 1998-03-17 Yutani Heavy Ind Ltd 油圧ショベル
KR20130143552A (ko) * 2010-09-09 2013-12-31 볼보 컨스트럭션 이큅먼트 에이비 건설기계용 가변용량형 유압펌프의 유량제어장치
KR20140034833A (ko) * 2011-06-27 2014-03-20 볼보 컨스트럭션 이큅먼트 에이비 건설기계용 유압제어밸브
KR20150104113A (ko) * 2013-01-18 2015-09-14 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 유량 제어장치 및 제어방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113605A (ja) * 1981-12-28 1983-07-06 Kayaba Ind Co Ltd 油圧回路とその回路に利用するコントロ−ルバルブ
US5249421A (en) * 1992-01-13 1993-10-05 Caterpillar Inc. Hydraulic control apparatus with mode selection
JP3767914B2 (ja) * 1993-12-27 2006-04-19 日立建機株式会社 油圧建設機械の制御装置
US5490384A (en) * 1994-12-08 1996-02-13 Caterpillar Inc. Hydraulic flow priority system
JPH09221783A (ja) 1996-02-15 1997-08-26 Hitachi Constr Mach Co Ltd 油圧ショベルの作動油の合流規制装置
US6050090A (en) * 1996-06-11 2000-04-18 Kabushiki Kaisha Kobe Seiko Sho Control apparatus for hydraulic excavator
JP3763375B2 (ja) 1997-08-28 2006-04-05 株式会社小松製作所 建設機械の制御回路
JP3511453B2 (ja) 1997-10-08 2004-03-29 日立建機株式会社 油圧建設機械の原動機と油圧ポンプの制御装置
US6321152B1 (en) * 1999-12-16 2001-11-20 Caterpillar Inc. System and method for inhibiting saturation of a hydraulic valve assembly
JP3901470B2 (ja) * 2001-05-15 2007-04-04 新キャタピラー三菱株式会社 流体圧回路の制御システム
JP2003232303A (ja) * 2002-02-12 2003-08-22 Shin Caterpillar Mitsubishi Ltd 流体圧回路
US7748279B2 (en) * 2007-09-28 2010-07-06 Caterpillar Inc Hydraulics management for bounded implements
JP5122906B2 (ja) * 2007-10-11 2013-01-16 東芝機械株式会社 建設機械のロードセンシング式油圧制御装置
JP5485007B2 (ja) 2010-05-07 2014-05-07 日立建機株式会社 作業車両の油圧制御装置
CN103857850A (zh) * 2011-10-07 2014-06-11 沃尔沃建造设备有限公司 用于施工机械的优先控制***
US8899034B2 (en) * 2011-12-22 2014-12-02 Husco International, Inc. Hydraulic system with fluid flow summation control of a variable displacement pump and priority allocation of fluid flow
KR20180037369A (ko) * 2016-10-04 2018-04-12 두산인프라코어 주식회사 건설기계의 제어 시스템 및 건설기계의 제어 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517202U (ja) * 1991-08-22 1993-03-05 東芝機械株式会社 油圧駆動装置
JPH1072850A (ja) * 1996-06-11 1998-03-17 Yutani Heavy Ind Ltd 油圧ショベル
KR20130143552A (ko) * 2010-09-09 2013-12-31 볼보 컨스트럭션 이큅먼트 에이비 건설기계용 가변용량형 유압펌프의 유량제어장치
KR20140034833A (ko) * 2011-06-27 2014-03-20 볼보 컨스트럭션 이큅먼트 에이비 건설기계용 유압제어밸브
KR20150104113A (ko) * 2013-01-18 2015-09-14 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 유량 제어장치 및 제어방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3492662A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3880891A4 (en) * 2018-11-13 2022-08-03 Husco International, Inc. HYDRAULIC CONTROL SYSTEMS AND METHODS WITH MULTIFUNCTIONAL DYNAMIC CONTROL

Also Published As

Publication number Publication date
EP3492662A1 (en) 2019-06-05
JP2019528415A (ja) 2019-10-10
EP3492662A4 (en) 2020-07-01
CN109642416A (zh) 2019-04-16
KR102561435B1 (ko) 2023-07-31
CN109642416B (zh) 2021-07-06
EP3492662B1 (en) 2023-02-15
KR20180024695A (ko) 2018-03-08
US20190234050A1 (en) 2019-08-01
JP7071339B2 (ja) 2022-05-18
US10982691B2 (en) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2018048291A1 (ko) 건설기계의 제어 시스템 및 건설기계의 제어 방법
WO2015111775A1 (ko) 건설기계용 재생유량 제어장치 및 그 제어방법
WO2018044099A1 (ko) 건설기계의 제어 시스템 및 건설기계의 제어 방법
WO2014092355A1 (ko) 조이스틱 컨트롤 기반의 건설장비 자동 제어 시스템 및 방법
WO2014112668A1 (ko) 건설기계의 유량 제어장치 및 제어방법
WO2013008964A1 (ko) 건설기계용 유압 액츄에이터 댐핑 제어시스템
WO2017094986A1 (ko) 건설기계의 유압 시스템 및 유압 제어 방법
WO2014208828A1 (ko) 플로팅기능을 갖는 건설기계용 유압회로 및 플로팅기능 제어방법
WO2013022131A1 (ko) 건설기계의 유압 제어시스템
WO2018190615A1 (ko) 건설 기계의 유압 시스템
WO2012091187A1 (ko) 건설기계의 붐-선회 복합구동 유압 제어시스템
WO2016004664A1 (zh) 一种挖掘机的节能控制***
WO2013051737A1 (ko) 굴삭기를 이용한 평탄화 작업 제어시스템
WO2014148808A1 (ko) 건설기계 유압시스템 및 이의 제어방법
WO2012087012A2 (ko) 전자유압펌프용 비상 제어부를 포함하는 건설기계의 유압 시스템
WO2014069702A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
WO2016195374A1 (ko) 건설기계의 유압 시스템
WO2013008965A1 (ko) 건설기계용 유량 제어밸브
WO2016043365A1 (ko) 건설기계용 유압회로
KR20060063935A (ko) 유압 구동 장치
WO2017094985A1 (ko) 건설기계의 유압 제어 장치 및 유압 제어 방법
WO2014163362A1 (ko) 건설기계의 스풀 변위 가변 제어장치 및 제어방법
WO2022025556A1 (ko) 건설 기계
WO2018164465A1 (ko) 건설기계의 제어 시스템 및 건설기계의 제어 방법
WO2014034969A1 (ko) 건설기계용 유압시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512003

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017847024

Country of ref document: EP

Effective date: 20190228