WO2018043943A1 - Composite magnetic particles and method for manufacturing same - Google Patents

Composite magnetic particles and method for manufacturing same Download PDF

Info

Publication number
WO2018043943A1
WO2018043943A1 PCT/KR2017/008633 KR2017008633W WO2018043943A1 WO 2018043943 A1 WO2018043943 A1 WO 2018043943A1 KR 2017008633 W KR2017008633 W KR 2017008633W WO 2018043943 A1 WO2018043943 A1 WO 2018043943A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite magnetic
magnetic particles
core
shell
iron oxide
Prior art date
Application number
PCT/KR2017/008633
Other languages
French (fr)
Korean (ko)
Inventor
성원모
백인승
황보미
Original Assignee
주식회사 이엠따블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엠따블유 filed Critical 주식회사 이엠따블유
Publication of WO2018043943A1 publication Critical patent/WO2018043943A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • H01F1/0315Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/288Shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a composite magnetic particle and a method for producing the same.
  • Such a shielding material serves to shield unwanted electromagnetic waves on electronic devices by drawing a magnetic field distributed in a developing space into a material to form a magnetic circuit having a high density magnetic flux.
  • the shielding material should be able to easily change the magnetization direction according to the phase change of the external alternating magnetic field, and preferably have a high magnetic permeability characteristic to minimize the leakage magnetic field.
  • a typical shielding material an amorphous alloy, ferrite, sanddust, MoP (Moly Permalloy Powder) and the like are mainly used.
  • NFC near field communication
  • WPC wireless power charging
  • One embodiment of the present invention provides a significantly improved permeability and saturation magnetization values in the available frequency bands of wireless power charging (WPC) modules and near field communication (NFC) modules by combining metal powders with ferrite powders.
  • WPC wireless power charging
  • NFC near field communication
  • One embodiment of the present invention to maximize the shielding effect of the electromagnetic wave, to provide a composite magnetic particles that can be made thin.
  • Another embodiment of the present invention to provide a method for producing the composite magnetic particles.
  • the iron oxide core And a Ni—Zn—Cu-based ferrite shell formed on an outer circumferential portion of the core.
  • the iron oxide may include at least one of Fe 2 O 3 and MO ⁇ Fe 2 O 3 .
  • M is at least one selected from the group containing Fe, Ni, Zn, Mn, Cu, and Co.
  • the ratio of the core to the composite magnetic particles may be 20 to 90% by volume.
  • the shell may have a Ni / Zn molar ratio of 0.3 to 0.9.
  • the shell may have a thickness greater than 0 and less than or equal to 0.1 ⁇ m.
  • the intermediate layer may be formed of ⁇ -Fe 2 O 3 .
  • the thickness of the intermediate layer may be 0.002 to 0.02 ⁇ m the diameter.
  • the iron aqueous solution may be an aqueous iron salt solution including sulfate, chloride, nitrate, or a combination thereof, and the base may include caustic soda.
  • the concentration of the base relative to the concentration of the iron aqueous solution may be 0.8 to 1.2.
  • the oxidation step may be performed at a temperature of 80 to 100 °C.
  • the oxidation step may be performed by venting air at a flow rate of 50 to 500 kPa / L ⁇ min or by venting oxygen gas at a flow rate of 10 to 100 kPa / L ⁇ min.
  • the iron oxide core may be formed including at least one of Fe 2 O 3 and MO.Fe 2 O 3 .
  • M is at least one selected from the group containing Fe, Ni, Zn, Mn, Cu, and Co.
  • the intermediate layer forming step of forming an intermediate layer on the surface of the iron oxide core may further include.
  • the intermediate layer may be formed by partially oxidizing the surface of the iron oxide core.
  • a significantly improved permeability and saturation magnetization in the available frequency bands of the wireless power charging (WPC) module and the near field communication (NFC) module can provide complex magnetic particles that can realize high efficiency wireless charging and short range communication technology.
  • a method of manufacturing the composite magnetic particles may be provided.
  • FIG. 1 is a view showing a first embodiment of a composite magnetic particle according to an embodiment of the present invention.
  • Fig. 2 is a graph showing the results of BET (specific surface area) measurement when the shell is grown to a thickness of up to 0.1 ⁇ m on the surface of a core having a diameter of 0.3 ⁇ m.
  • FIG 3 is a view showing a second embodiment of the composite magnetic particles according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a composite magnetic particle according to another exemplary embodiment of the present invention.
  • FIG. 5 is a graph showing changes in hydrogen ion concentration index (pH) and oxidation reduction potential (ORP) according to the degree of reaction in a core manufacturing process according to an embodiment of the present invention.
  • FIG. 6 is a graph showing the magnetic properties according to the Ni / Zn molar ratio of the shell.
  • Ms saturation magnetization
  • Hc coercive force
  • Ms saturation magnetization
  • Hc coercive force
  • Ms saturation magnetization
  • Hc coercive force
  • the temperature was raised to 85 ° C., and then oxygen gas was vented at a flow rate of 50 kPa / min. And by growing the Fe 3 O 4 (magnetite) for 120 minutes to conduct the oxidation reaction, to prepare a core.
  • the end point of reaction was confirmed by the potassium cyanate titration method. Through this, it was confirmed that the concentration of ferrous iron 65% or more compared to the total iron ions.
  • FIG. 5 is a graph showing changes in hydrogen ion concentration index (pH) and oxidation reduction potential (ORP) according to the degree of reaction in a core manufacturing process according to an embodiment of the present invention.
  • Nickel sulfate, zinc sulfate, and copper sulfate were respectively added with 0.15M, 0.65M, and 0.25M solutions, followed by stirring for 10 minutes, followed by the addition of 10M caustic soda solution to maintain a hydrogen ion concentration index (pH) of 12 or more. .
  • concentration of each of nickel sulfate, zinc sulfate, and copper sulfate was prepared to have a composition of the following [Formula 1].
  • Table 2 shows x, y, and z values of [Formula 1], that is, magnetic permeability and saturation magnetization (Ms) according to concentrations of nickel sulfate, zinc sulfate, and copper sulfate, and FIG. It is a graph showing the magnetic properties according to the Zn molar ratio.
  • the permeability was measured using an impedance analyzer (Impedence Analyzer 4294A) (Agilent)
  • the saturation magnetization value was measured using a Vibrating Sample Magnetometer (VSM) (Lakeshore).
  • reaction temperature was raised to 95 ° C, and Ni-Zn-Cu ferrite was epitaxially grown for 120 minutes.
  • the temperature was lowered to room temperature, the slurry was filtered, washed and dried at 130 ° C. for 24 hours to obtain a powder solid of the composite magnetic particles having a core-shell structure.
  • the temperature was raised to 85 ° C., and then air was flowed at a flow rate of 250 kPa / min for oxidation for 120 minutes. At this time, the concentration of hydrogen ions was measured and the point where the hydrogen ion concentration index (pH) became 3.5 or less was used as the end point of the reaction.
  • the reaction was aged for 30 minutes, washed sufficiently until reaching the neutral and then filtered and dried to prepare iron oxide powder.
  • An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that R was 0.94 in Comparative Example 1.
  • Iron oxide powder was prepared in the same manner as in Comparative Example 1 except that R was 0.98 in Comparative Example 1.
  • An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that R was 1.02 in Comparative Example 1.
  • Iron oxide powder was prepared in the same manner as in Comparative Example 1 except that R was 1.06 in Comparative Example 1.
  • An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that the rising temperature of Comparative Example 1 was 80 ° C.
  • An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that the rising temperature of Comparative Example 1 was 90 ° C.
  • An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that the rising temperature was changed to 95 ° C. in Comparative Example 1.
  • An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that the flow rate of air was 350 Pa / min in Comparative Example 1.
  • An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that the flow rate of air was 450 kW / min in Comparative Example 1.
  • a core having high saturation magnetization may be manufactured.
  • a core having high saturation magnetization may be manufactured.
  • a core having high saturation magnetization may be manufactured.

Abstract

Disclosed are composite magnetic particles and a method for manufacturing the same. An embodiment of the present invention provides composite magnetic particles comprising: an iron oxide core; and a Ni-Zn-Cu based ferrite shell formed on an outer circumference portion of the core.

Description

복합 자성 입자 및 그의 제조 방법Composite Magnetic Particles and Manufacturing Method Thereof
본 발명은 복합 자성 입자 및 그의 제조 방법에 관한 것이다.The present invention relates to a composite magnetic particle and a method for producing the same.
전자 기기가 소형화되고, 디지털화됨에 따라 불요전자파의 제거에 대한 요구가 증가하고 있으며, 이에 따라 전자파 장애(Electromagnetic Interference, EMI) 대책용 차폐재가 전자 기기에 사용되고 있다. As electronic devices are miniaturized and digitalized, demands for the elimination of unwanted electromagnetic waves are increasing. Accordingly, shielding materials for electromagnetic interference (EMI) countermeasures have been used in electronic devices.
이러한 차폐재는 현상적인 공간에 분포한 자기장을 재료 내부로 끌어들여 고밀도의 자속을 갖는 자기회로를 형성함으로써, 전자 기기에 미치는 불요전자파를 차폐시키는 역할을 한다. Such a shielding material serves to shield unwanted electromagnetic waves on electronic devices by drawing a magnetic field distributed in a developing space into a material to form a magnetic circuit having a high density magnetic flux.
이를 위해, 차폐재는 외부 교류 자기장의 위상 변화에 따라 자화 방향을 용이하게 변화시킬 수 있어야 하며, 누설되는 자기장을 최소화하기 위해 높은 투자율(magnetic permeability) 특성을 갖는 것이 바람직하다. 대표적인 차폐재로는 비정질 합금(amorphous alloy), 페라이트(ferrite), 샌더스트(sendust), MPP(Moly Permalloy Powder) 등이 주로 사용되고 있다.To this end, the shielding material should be able to easily change the magnetization direction according to the phase change of the external alternating magnetic field, and preferably have a high magnetic permeability characteristic to minimize the leakage magnetic field. As a typical shielding material, an amorphous alloy, ferrite, sanddust, MoP (Moly Permalloy Powder) and the like are mainly used.
최근, 모바일 폰을 비롯한 각종 휴대 단말기에 근거리 통신(Near Field Communication, NFC) 기능과 무선 충전(Wireless Power Charging, WPC) 기능이 탑재되고 있다. 근거리 통신은 보안 문제를 해결하려는 측면에서, 무선 충전은 사용자의 편리성 측면에서 근거리 통신과 무선 충전 기능을 함께 휴대 단말기에 탑재되고 있으며, 이에 대한 연구 개발이 지속적으로 진행되고 있다. 그러나, 근거리 통신 및 무선 충전 기능을 동시에 수행하기 위해서는 휴대 단말기에 근거리 통신과 무선 충전을 위한 각각의 코일을 탑재하여야 하는바, 휴대 단말기의 소형성에 비추어 두 가지 기능을 함께 탑재하는 데 어려움이 있다.Recently, near field communication (NFC) and wireless power charging (WPC) functions have been installed in various portable terminals including mobile phones. The short-range communication is to solve the security problem, the wireless charging is equipped with the short-range communication and the wireless charging function in the portable terminal in terms of user convenience, the research and development for this is continuously progressed. However, in order to simultaneously perform the near field communication and the wireless charging function, the portable terminal must be equipped with respective coils for the near field communication and the wireless charging.
구체적으로, 근거리 통신과 무선 충전 두 기능 모두 전자기장을 활용하는 공통점을 갖고 있으나, 서로 사용하는 주파수가 서로 다르다. 즉, 일반적으로 근거리 통신에는 13.56MHz 주파수를 이용하고, 무선 충전에는 100 ~ 200kHz를 이용하는데, 근거리 통신용 안테나의 통신방식과 무선 충전용 안테나에 필요한 특성을 단일 층(layer)으로 구성하기 위해서는 이 두 주파수에서의 특성을 모두 만족해야 하는 문제점이 있다.In particular, although both functions of near field communication and wireless charging have a common point of utilizing electromagnetic fields, they use different frequencies. In other words, in general, 13.56MHz frequency is used for short-range communication and 100-200kHz is used for wireless charging. There is a problem that all of the characteristics at the frequency must be satisfied.
이를 위해, 종래에는 서로 다른 투자율을 갖는 이종(異種)의 페라이트 시트 혹은 기타 자성 시트를 적층하거나 합지하는 방법을 사용하였으나, 이 경우 두께가 두꺼워져 경박 단소화된 모바일 기기에 적용하기 어려운 문제점이 있었다.To this end, conventionally, a method of laminating or laminating different types of ferrite sheets or other magnetic sheets having different permeability has been used, but in this case, there is a problem that it is difficult to apply to a thin and light mobile device due to its thick thickness. .
본 발명의 일 구현예는, 금속 분말과 페라이트 분말을 복합화함으로써 무선 충전(Wireless Power Charging, WPC) 모듈 및 근거리 통신(Near Field Communication, NFC) 모듈의 가용 주파수 대역에서 현저히 개선된 투자율 및 포화자화 값을 가져 고효율 무선 충전 및 근거리 통신 기술을 구현할 수 있는 복합 자성 입자를 제공하고자 한다.One embodiment of the present invention provides a significantly improved permeability and saturation magnetization values in the available frequency bands of wireless power charging (WPC) modules and near field communication (NFC) modules by combining metal powders with ferrite powders. To provide a composite magnetic particles that can implement high-efficiency wireless charging and short-range communication technology.
본 발명의 일 구현예는, 불요전자파의 차폐 효과를 극대화 시킬 수 있고, 박형 제조가 가능한 복합 자성 입자를 제공하고자 한다.One embodiment of the present invention, to maximize the shielding effect of the electromagnetic wave, to provide a composite magnetic particles that can be made thin.
본 발명의 다른 구현예는, 상기 복합 자성 입자의 제조 방법을 제공하고자 한다.Another embodiment of the present invention, to provide a method for producing the composite magnetic particles.
본 발명의 일 구현예는, 철 산화물 코어; 및 상기 코어의 외주부에 형성되는 Ni-Zn-Cu계 페라이트 쉘;을 포함하는, 복합 자성 입자를 제공한다.One embodiment of the invention, the iron oxide core; And a Ni—Zn—Cu-based ferrite shell formed on an outer circumferential portion of the core.
상기 철 산화물은 Fe2O3 및 MO·Fe2O3 중 적어도 하나를 포함할 수 있다. (여기에서, M은 Fe, Ni, Zn, Mn, Cu, 및 Co를 포함하는 군에서 선택된 적어도 하나이다.)The iron oxide may include at least one of Fe 2 O 3 and MO · Fe 2 O 3 . (Here, M is at least one selected from the group containing Fe, Ni, Zn, Mn, Cu, and Co.)
상기 복합 자성 입자에 대한 상기 코어의 비율이 20 내지 90부피% 일 수 있다.The ratio of the core to the composite magnetic particles may be 20 to 90% by volume.
상기 쉘은 Ni/Zn 몰비가 0.3 내지 0.9 일 수 있다.The shell may have a Ni / Zn molar ratio of 0.3 to 0.9.
상기 쉘의 두께가 0초과 및 0.1㎛ 이하일 수 있다.The shell may have a thickness greater than 0 and less than or equal to 0.1 μm.
상기 코어의 외주부 및 상기 쉘의 내주부에 형성되는 중간층을 더 포함할 수 있다.It may further include an intermediate layer formed on the outer peripheral portion of the core and the inner peripheral portion of the shell.
상기 중간층은 γ- Fe2O3로 형성될 수 있다.The intermediate layer may be formed of γ-Fe 2 O 3 .
상기 중간층의 두께가 지름이 0.002 내지 0.02㎛ 일 수 있다.The thickness of the intermediate layer may be 0.002 to 0.02㎛ the diameter.
본 발명의 다른 구현예는, 철 수용액에 1종 이상의 염기를 첨가하여 수산화철 침전을 형성하는 침전형성 단계; 상기 침전을 산화시켜 철 산화물 코어를 형성하는 산화 단계; 및 상기 코어에 니켈 수용액, 아연 수용액, 및 구리 수용액을 투입하고, 1종 이상의 염기를 첨가하여, 상기 코어의 외주부에 Ni-Zn-Cu계 페라이트 쉘을 형성하는 쉘 형성 단계;를 포함하는, 복합 자성 입자의 제조 방법을 제공한다.Another embodiment of the present invention, a precipitate forming step of forming an iron hydroxide precipitate by adding at least one base to the aqueous iron solution; Oxidizing the precipitate to form an iron oxide core; And a shell forming step of adding an aqueous nickel solution, an aqueous zinc solution, and an aqueous copper solution to the core and adding one or more bases to form a Ni—Zn—Cu-based ferrite shell on an outer circumference of the core. Provided are methods for producing magnetic particles.
상기 철 수용액은 황산염, 염화염, 질산염, 또는 이들의 조합을 포함하는 철염 수용액이고, 상기 염기는 가성소다를 포함하는 것일 수 있다.The iron aqueous solution may be an aqueous iron salt solution including sulfate, chloride, nitrate, or a combination thereof, and the base may include caustic soda.
상기 철 수용액의 농도에 대한 상기 염기의 농도가 0.8 내지 1.2 일 수 있다.The concentration of the base relative to the concentration of the iron aqueous solution may be 0.8 to 1.2.
상기 산화 단계는, 80 내지 100℃의 온도에서 수행되는 것일 수 있다.The oxidation step may be performed at a temperature of 80 to 100 ℃.
상기 산화 단계는, 공기(air)를 50 내지 500㏄/L·분의 유량으로 통기시켜 수행되거나, 산소 가스를 10 내지 100㏄/L·분의 유량으로 통기시켜 수행되는 것일 수 있다.The oxidation step may be performed by venting air at a flow rate of 50 to 500 kPa / L · min or by venting oxygen gas at a flow rate of 10 to 100 kPa / L · min.
상기 철 산화물 코어는 Fe2O3 및 MO·Fe2O3 중 적어도 하나를 포함하여 형성된 것일 수 있다. (여기에서, M은 Fe, Ni, Zn, Mn, Cu, 및 Co를 포함하는 군에서 선택된 적어도 하나이다.)The iron oxide core may be formed including at least one of Fe 2 O 3 and MO.Fe 2 O 3 . (Here, M is at least one selected from the group containing Fe, Ni, Zn, Mn, Cu, and Co.)
상기 산화 단계 이후 및 상기 쉘 형성 단계 이전에, 상기 철 산화물 코어의 표면에 중간층을 형성하는 중간층 형성 단계;를 더 포함할 수 있다.After the oxidation step and before the shell forming step, the intermediate layer forming step of forming an intermediate layer on the surface of the iron oxide core; may further include.
상기 중간층은 상기 철 산화물 코어의 표면을 부분 산화시켜 형성된 것일 수 있다.The intermediate layer may be formed by partially oxidizing the surface of the iron oxide core.
본 발명의 일 구현예에 따르면, 금속 분말과 페라이트 분말을 복합화함으로써 무선 충전(Wireless Power Charging, WPC) 모듈 및 근거리 통신(Near Field Communication, NFC) 모듈의 가용 주파수 대역에서 현저히 개선된 투자율 및 포화자화 값을 가져 고효율 무선 충전 및 근거리 통신 기술을 구현할 수 있는 복합 자성 입자를 제공할 수 있다.According to one embodiment of the present invention, by combining the metal powder and the ferrite powder, a significantly improved permeability and saturation magnetization in the available frequency bands of the wireless power charging (WPC) module and the near field communication (NFC) module It can provide complex magnetic particles that can realize high efficiency wireless charging and short range communication technology.
본 발명의 일 구현예에 따르면, 불요전자파의 차폐 효과를 극대화 시킬 수 있고, 박형 제조가 가능한 복합 자성 입자를 제공할 수 있다.According to one embodiment of the present invention, it is possible to maximize the shielding effect of the electromagnetic wave, it is possible to provide a composite magnetic particles that can be made thin.
본 발명의 다른 구현예에 따르면, 상기 복합 자성 입자의 제조 방법을 제공할 수 있다.According to another embodiment of the present invention, a method of manufacturing the composite magnetic particles may be provided.
도 1은 본 발명의 일 구현예에 따른 복합 자성 입자의 제1 실시예를 나타낸 도면이다.1 is a view showing a first embodiment of a composite magnetic particle according to an embodiment of the present invention.
도 2는 지름이 0.3㎛ 인 코어의 표면에 쉘을 최대 0.1㎛의 두께로 성장시켰을 때의 BET(비표면적) 측정 결과를 나타낸 그래프이다.Fig. 2 is a graph showing the results of BET (specific surface area) measurement when the shell is grown to a thickness of up to 0.1 μm on the surface of a core having a diameter of 0.3 μm.
도 3은 본 발명의 일 구현예에 따른 복합 자성 입자의 제2 실시예를 나타낸 도면이다.3 is a view showing a second embodiment of the composite magnetic particles according to an embodiment of the present invention.
도 4는 본 발명의 다른 구현예에 따른 복합 자성 입자의 제조 방법을 나타낸 흐름도이다.4 is a flowchart illustrating a method of manufacturing a composite magnetic particle according to another exemplary embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 코어 제조 공정에서 반응 정도에 따른 수소 이온 농도 지수(pH) 및 산화환원전위(Oxidation Reduction Potential, ORP)의 변화를 나타낸 그래프이다.5 is a graph showing changes in hydrogen ion concentration index (pH) and oxidation reduction potential (ORP) according to the degree of reaction in a core manufacturing process according to an embodiment of the present invention.
도 6은 쉘의 Ni/Zn 몰비에 따른 자기적 특성을 나타낸 그래프이다.6 is a graph showing the magnetic properties according to the Ni / Zn molar ratio of the shell.
도 7은 R 값에 따른 포화자화(Ms) 및 보자력(Hc) 변화를 나타낸 그래프이다.7 is a graph showing saturation magnetization (Ms) and coercive force (Hc) change according to R values.
도 8은 상승 온도에 따른 포화자화(Ms) 및 보자력(Hc) 변화를 나타낸 그래프이다.8 is a graph showing saturation magnetization (Ms) and coercive force (Hc) change with rising temperature.
도 9는 공기의 유량에 따른 포화자화(Ms) 및 보자력(Hc) 변화를 나타낸 그래프이다.9 is a graph showing changes in saturation magnetization (Ms) and coercive force (Hc) according to the flow rate of air.
도/황산제일철의 몰농도를 의미한다.)Degree / mole concentration of ferrous sulfate.)
이후, 온도를 85℃로 상승시킨 후, 산소 가스를 50㏄/분의 유량으로 통기하였다. 그리고, 120분간 산화 반응을 실시하여 Fe3O4(magnetite)를 성장시킴으로써, 코어를 제조하였다. 반응의 종점은 시안산칼륨 적정법으로 확인하였다. 이를 통해, 전체 철 이온에 비하여 제일철의 농도가 65% 이상임을 확인할 수 있었다.Thereafter, the temperature was raised to 85 ° C., and then oxygen gas was vented at a flow rate of 50 kPa / min. And by growing the Fe 3 O 4 (magnetite) for 120 minutes to conduct the oxidation reaction, to prepare a core. The end point of reaction was confirmed by the potassium cyanate titration method. Through this, it was confirmed that the concentration of ferrous iron 65% or more compared to the total iron ions.
이 때, 수소 이온의 농도를 측정하여 수소 이온 농도 지수(pH)가 3.5 이하가 되는 지점을 반응의 종말점으로 하였다. 도 5는 본 발명의 일 실시예에 따른 코어 제조 공정에서 반응 정도에 따른 수소 이온 농도 지수(pH) 및 산화환원전위(Oxidation Reduction Potential, ORP)의 변화를 나타낸 그래프이다.At this time, the concentration of hydrogen ions was measured and the point where the hydrogen ion concentration index (pH) became 3.5 or less was used as the end point of the reaction. 5 is a graph showing changes in hydrogen ion concentration index (pH) and oxidation reduction potential (ORP) according to the degree of reaction in a core manufacturing process according to an embodiment of the present invention.
(쉘의 제조)(Manufacture of Shell)
산화가 종료된 후, 분위기를 비산화성 분위기로 전환하고 온도를 45℃로 낮추었다. 또한, 황산니켈, 황산아연, 황산구리 각각 0.15M, 0.65M, 0.25M 용액을 첨가하고, 10분간 교반한 후 10M 농도의 가성소다 용액을 첨가하여 수소 이온 농도 지수(pH)가 12 이상 유지되도록 하였다. 이 때, 황산니켈, 황산아연, 황산구리 각각의 농도가 하기 [화학식 1]의 조성을 갖도록 준비하였다.After oxidation was complete, the atmosphere was switched to a non-oxidizing atmosphere and the temperature was lowered to 45 ° C. Nickel sulfate, zinc sulfate, and copper sulfate were respectively added with 0.15M, 0.65M, and 0.25M solutions, followed by stirring for 10 minutes, followed by the addition of 10M caustic soda solution to maintain a hydrogen ion concentration index (pH) of 12 or more. . At this time, the concentration of each of nickel sulfate, zinc sulfate, and copper sulfate was prepared to have a composition of the following [Formula 1].
[화학식 1][Formula 1]
NixZnyCuzFe2O4 (여기에서, x=0.15, y=0.65, z=0.25 이다.)Ni x Zn y Cu z Fe 2 O 4 (where x = 0.15, y = 0.65, z = 0.25)
[표 2]는 상기 [화학식 1]에서 x, y, z 값, 즉, 황산니켈, 황산아연, 황산구리의 농도에 따른 투자율 및 포화자화(Ms)를 측정한 것이고, 도 6은 쉘의 Ni/Zn 몰비에 따른 자기적 특성을 나타낸 그래프이다. 이 때, 투자율은 임피던스 분석기(Impedence Analyzer 4294A)(Agilent社)를 이용하여 측정하였고, 포화자화 값은 진동시료형자력계(Vibrating Sample Magnetometer, VSM)(Lakeshore社)를 이용하여 측정하였다. Table 2 shows x, y, and z values of [Formula 1], that is, magnetic permeability and saturation magnetization (Ms) according to concentrations of nickel sulfate, zinc sulfate, and copper sulfate, and FIG. It is a graph showing the magnetic properties according to the Zn molar ratio. At this time, the permeability was measured using an impedance analyzer (Impedence Analyzer 4294A) (Agilent), the saturation magnetization value was measured using a Vibrating Sample Magnetometer (VSM) (Lakeshore).
xx yy ZZ μ′(125kHz)μ '(125 kHz) μ″(125kHz)μ ″ (125 kHz) 포화자화(Ms)Saturation Magnetization (Ms)
0.350.35 0.450.45 0.250.25 551.7551.7 7.17.1 87.687.6
0.30.3 0.50.5 0.250.25 874.1874.1 8.88.8 87.187.1
0.250.25 0.550.55 0.250.25 1078.21078.2 11.611.6 86.786.7
0.20.2 0.60.6 0.250.25 1241.71241.7 14.714.7 84.984.9
0.150.15 0.650.65 0.250.25 1327.41327.4 25.325.3 84.284.2
0.10.1 0.70.7 0.250.25 1016.91016.9 12.212.2 82.682.6
이후, 반응 온도를 95℃까지 올리고, 120분간 Ni-Zn-Cu계 페라이트를 에피택셜 성장(Epitaxial Growth) 시켰다. Thereafter, the reaction temperature was raised to 95 ° C, and Ni-Zn-Cu ferrite was epitaxially grown for 120 minutes.
반응 완료되면, 온도를 상온으로 낮춘 후 슬러리를 여과 세척하고, 130℃에서 24시간 건조시켜 코어-쉘 구조의 복합 자성 입자들의 분말 고형분을 수득하였다. When the reaction was completed, the temperature was lowered to room temperature, the slurry was filtered, washed and dried at 130 ° C. for 24 hours to obtain a powder solid of the composite magnetic particles having a core-shell structure.
비교예 1Comparative Example 1
온도를 조절할 수 있는 5,000㏄의 반응기에 증류수 2,000㏄를 넣고, 질소(N2)를 통기하여 용존 산소를 제거하였다. 반응기의 온도를 45℃로 유지하면서 황산제일철의 몰농도가 0.72M이 되도록 황산제일철을 정량하여 녹이고, 이 용액에 가성소다(수산화나트륨, NaOH)를 R 값이 0.9가 되도록 농도를 변화시키면서 첨가하여 수산화제일철 침전이 생기도록 하였다. (여기에서, R 값은 2NaOH의 몰농도/황산제일철의 몰농도를 의미한다.)2,000 ㏄ of distilled water was put into a 5,000 반응기 reactor capable of controlling the temperature, and dissolved oxygen was removed by passing through nitrogen (N 2 ). While maintaining the temperature of the reactor at 45 ℃ ferrous sulfate was quantitated and dissolved so that the molar concentration of ferrous sulfate was 0.72M, and caustic soda (sodium hydroxide, NaOH) was added to the solution with varying concentration so that the R value was 0.9. Ferrous hydroxide precipitation was allowed to occur. (Here, R value means molar concentration of 2NaOH / molar concentration of ferrous sulfate.)
이후, 온도를 85℃로 상승시킨 후, 공기(air)를 250㏄/분의 유량으로 통기하여 120분간 산화 반응을 실시하였다. 이 때, 수소 이온의 농도를 측정하여 수소 이온 농도 지수(pH)가 3.5 이하가 되는 지점을 반응의 종말점으로 하였다.Thereafter, the temperature was raised to 85 ° C., and then air was flowed at a flow rate of 250 kPa / min for oxidation for 120 minutes. At this time, the concentration of hydrogen ions was measured and the point where the hydrogen ion concentration index (pH) became 3.5 or less was used as the end point of the reaction.
반응이 완료되면, 반응물을 30분간 숙성시키고, 중성에 도달할 때까지 충분히 세척한 후 여과 건조하여 철 산화물 분말을 제조하였다. When the reaction was completed, the reaction was aged for 30 minutes, washed sufficiently until reaching the neutral and then filtered and dried to prepare iron oxide powder.
비교예 2Comparative Example 2
비교예 1에서 R 값이 0.94가 되도록 한 것을 제외하고는 비교예 1과 동일하게 철 산화물 분말을 제조하였다. An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that R was 0.94 in Comparative Example 1.
* 비교예 3 Comparative Example 3
비교예 1에서 R 값이 0.98이 되도록 한 것을 제외하고는 비교예 1과 동일하게 철 산화물 분말을 제조하였다.Iron oxide powder was prepared in the same manner as in Comparative Example 1 except that R was 0.98 in Comparative Example 1.
비교예 4Comparative Example 4
비교예 1에서 R 값이 1.02가 되도록 한 것을 제외하고는 비교예 1과 동일하게 철 산화물 분말을 제조하였다. An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that R was 1.02 in Comparative Example 1.
비교예 5Comparative Example 5
비교예 1에서 R 값이 1.06이 되도록 한 것을 제외하고는 비교예 1과 동일하게 철 산화물 분말을 제조하였다.Iron oxide powder was prepared in the same manner as in Comparative Example 1 except that R was 1.06 in Comparative Example 1.
비교예 6Comparative Example 6
비교예 1에서 R 값이 1.1이 되도록 한 것을 제외하고는 비교예 1과 동일하게 철 산화물 분말을 제조하였다. An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that R was 1.1 in Comparative Example 1.
비교예 7Comparative Example 7
비교예 1에서 상승 온도를 80℃로 한 것을 제외하고는 비교예 1과 동일하게 철 산화물 분말을 제조하였다. An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that the rising temperature of Comparative Example 1 was 80 ° C.
비교예 8Comparative Example 8
비교예 1에서 상승 온도를 90℃로 한 것을 제외하고는 비교예 1과 동일하게 철 산화물 분말을 제조하였다. An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that the rising temperature of Comparative Example 1 was 90 ° C.
비교예 9Comparative Example 9
비교예 1에서 상승 온도를 95℃로 한 것을 제외하고는 비교예 1과 동일하게 철 산화물 분말을 제조하였다. An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that the rising temperature was changed to 95 ° C. in Comparative Example 1.
비교예 10Comparative Example 10
비교예 1에서 공기의 유량을 350㏄/분으로 한 것을 제외하고는 비교예 1과 동일하게 철 산화물 분말을 제조하였다. An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that the flow rate of air was 350 Pa / min in Comparative Example 1.
비교예 11Comparative Example 11
비교예 1에서 공기의 유량을 450㏄/분으로 한 것을 제외하고는 비교예 1과 동일하게 철 산화물 분말을 제조하였다.An iron oxide powder was prepared in the same manner as in Comparative Example 1 except that the flow rate of air was 450 kW / min in Comparative Example 1.
평가evaluation
(1) R 값에 따른 자기적 특성 평가(1) Evaluation of magnetic properties according to R value
비교예 1 내지 6에서 제조된 분말에 대하여 진동시료형자력계(Vibrating Sample Magnetometer, VSM)(Lakeshore社)를 이용하여 포화자화(Ms) 및 보자력(Hc)을 측정하였으며, 그 결과는 도 7 및 [표 3]에 나타난 바와 같다.For the powders prepared in Comparative Examples 1 to 6, saturation magnetization (Ms) and coercive force (Hc) were measured using a Vibrating Sample Magnetometer (VSM) (Lakeshore), and the results are shown in FIGS. 7 and [ As shown in Table 3].
R valueR value 포화자화(Ms)Saturation Magnetization (Ms) 보자력(Hc)Coercive force (Hc)
비교예 1Comparative Example 1 84.284.2 83.583.5
비교예 2Comparative Example 2 82.782.7 101.3101.3
비교예 3Comparative Example 3 82.182.1 105.7105.7
비교예 4Comparative Example 4 81.481.4 111.4111.4
비교예 5Comparative Example 5 80.680.6 133.0133.0
비교예 6Comparative Example 6 75.675.6 146.5146.5
도 7 및 [표 3]을 참조하면, R 값이 0.9 인 경우, 높은 포화자화를 가진 코어를 제조할 수 있다. 코어의 포화자화 값이 높을수록 코어-쉘 형태의 복합 자성 분말의 제조 시 복합 자성 분말의 포화자화 값 또한 높아지기 때문에 고투자율 구현에 유리하다.Referring to FIG. 7 and Table 3, when the R value is 0.9, a core having high saturation magnetization may be manufactured. The higher the saturation magnetization value of the core is, the higher the saturation magnetization value of the composite magnetic powder is when the core-shell composite magnetic powder is manufactured, which is advantageous for high permeability.
(2) 상승 온도에 따른 자기적 특성 평가(2) Evaluation of magnetic properties according to rising temperature
비교예 1, 비교예 7 내지 9에서 제조된 분말에 대하여 진동시료형자력계(Vibrating Sample Magnetometer, VSM)(Lakeshore社)를 이용하여 포화자화(Ms) 및 보자력(Hc)을 측정하였으며, 그 결과는 도 8 및 [표 4]에 나타난 바와 같다.Saturation magnetization (Ms) and coercive force (Hc) of the powders prepared in Comparative Example 1 and Comparative Examples 7 to 9 were measured using a Vibrating Sample Magnetometer (VSM) (Lakeshore). As shown in FIG. 8 and [Table 4].
T(℃)T (℃) 포화자화(Ms)Saturation Magnetization (Ms) 보자력(Hc)Coercive force (Hc)
비교예 1Comparative Example 1 84.284.2 83.583.5
비교예 7Comparative Example 7 83.283.2 82.982.9
비교예 8Comparative Example 8 84.484.4 82.182.1
비교예 9Comparative Example 9 84.584.5 75.975.9
도 8 및 [표 4]를 참조하면, 상승 온도가 85℃ 인 경우, 높은 포화자화를 가진 코어를 제조할 수 있다. 코어의 포화자화 값이 높을수록 코어-쉘 형태의 복합 자성 분말의 제조 시 복합 자성 분말의 포화자화 값 또한 높아지기 때문에 고투자율 구현에 유리하다.Referring to FIG. 8 and Table 4, when the rising temperature is 85 ° C., a core having high saturation magnetization may be manufactured. The higher the saturation magnetization value of the core is, the higher the saturation magnetization value of the composite magnetic powder is when the core-shell composite magnetic powder is manufactured, which is advantageous for high permeability.
(3) 공기의 유량에 따른 자기적 특성 평가(3) Evaluation of magnetic properties according to the flow of air
비교예 1, 비교예 10, 및 비교예 11에서 제도된 분말에 대하여 진동시료형자력계(Vibrating Sample Magnetometer, VSM)(Lakeshore社)를 이용하여 포화자화(Ms) 및 보자력(Hc)을 측정하였으며, 그 결과는 도 9 및 [표 5]에 나타난 바와 같다.Saturation magnetization (Ms) and coercive force (Hc) of the powders prepared in Comparative Examples 1, 10, and 11 were measured using a Vibrating Sample Magnetometer (VSM) (Lakeshore). The results are as shown in Figure 9 and Table 5.
Air flow(㏄/분)Air flow (㏄ / min) 포화자화(Ms)Saturation Magnetization (Ms) 보자력(Hc)Coercive force (Hc)
비교예 1Comparative Example 1 8282 5555
비교예 10Comparative Example 10 80.680.6 7474
비교예 11Comparative Example 11 78.878.8 8383
도 9 및 [표 5]를 참조하면, 공기(air)의 유량이 250㏄/분 인 경우, 높은 포화자화를 가진 코어를 제조할 수 있다. 코어의 포화자화 값이 높을수록 코어-쉘 형태의 복합 자성 분말의 제조 시 복합 자성 분말의 포화자화 값 또한 높아지기 때문에 고투자율 구현에 유리하다.Referring to FIG. 9 and Table 5, when the flow rate of air is 250 kPa / min, a core having high saturation magnetization may be manufactured. The higher the saturation magnetization value of the core is, the higher the saturation magnetization value of the composite magnetic powder is when the core-shell composite magnetic powder is manufactured, which is advantageous for high permeability.
상기에서는 본 발명을 특정의 바람직한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 마련되는 본 발명의 기술적 특징이나 분야를 이탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변화될 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 명백한 것이다.While the invention has been shown and described with respect to certain preferred embodiments thereof, it will be understood that the invention may be modified and modified in various ways without departing from the spirit or scope of the invention provided by the following claims. It can be apparent to one of ordinary skill in the art.

Claims (16)

  1. 철 산화물 코어; 및Iron oxide core; And
    상기 코어의 외주부에 형성되는 Ni-Zn-Cu계 페라이트 쉘;Ni-Zn-Cu-based ferrite shell formed on the outer peripheral portion of the core;
    을 포함하는, 복합 자성 입자.Containing, composite magnetic particles.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 철 산화물은 Fe2O3 및 MO·Fe2O3 중 적어도 하나를 포함하는, 복합 자성 입자.The iron oxide comprises at least one of Fe 2 O 3 and MO · Fe 2 O 3 , composite magnetic particles.
    (여기에서, M은 Fe, Ni, Zn, Mn, Cu, 및 Co를 포함하는 군에서 선택된 적어도 하나이다.)(Here, M is at least one selected from the group containing Fe, Ni, Zn, Mn, Cu, and Co.)
  3. 제 1 항에 있어서,The method of claim 1,
    상기 복합 자성 입자에 대한 상기 코어의 비율이 20 내지 90부피% 인, 복합 자성 입자.Composite magnetic particles, wherein the ratio of the core to the composite magnetic particles is 20 to 90% by volume.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 쉘은 Ni/Zn 몰비가 0.3 내지 0.9 인, 복합 자성 입자.The shell is a composite magnetic particle, Ni / Zn molar ratio of 0.3 to 0.9.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 쉘의 두께가 0초과 및 0.1㎛ 이하인, 복합 자성 입자.Composite magnetic particles, wherein the thickness of the shell is greater than 0 and 0.1 μm or less.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 코어의 외주부 및 상기 쉘의 내주부에 형성되는 중간층을 더 포함하는, 복합 자성 입자.Further comprising an intermediate layer formed on the outer peripheral portion of the core and the inner peripheral portion of the shell, composite magnetic particles.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 중간층은 γ- Fe2O3로 형성된, 복합 자성 입자.The intermediate layer is formed of γ-Fe 2 O 3 , composite magnetic particles.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 중간층의 두께가 지름이 0.002 내지 0.02㎛ 인, 복합 자성 입자.Composite magnetic particles, wherein the thickness of the intermediate layer is 0.002 to 0.02㎛ diameter.
  9. 철 수용액에 1종 이상의 염기를 첨가하여 수산화철 침전을 형성하는 침전형성 단계;A precipitation forming step of forming iron hydroxide precipitate by adding at least one base to an aqueous solution of iron;
    상기 침전을 산화시켜 철 산화물 코어를 형성하는 산화 단계; 및Oxidizing the precipitate to form an iron oxide core; And
    상기 코어에 니켈 수용액, 아연 수용액, 및 구리 수용액을 투입하고, 1종 이상의 염기를 첨가하여, 상기 코어의 외주부에 Ni-Zn-Cu계 페라이트 쉘을 형성하는 쉘 형성 단계;A shell forming step of adding a nickel aqueous solution, an aqueous zinc solution, and an aqueous copper solution to the core, and adding at least one base to form a Ni—Zn—Cu-based ferrite shell on the outer circumference of the core;
    를 포함하는, 복합 자성 입자의 제조 방법.Comprising a method for producing a composite magnetic particle.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 철 수용액은 황산염, 염화염, 질산염, 또는 이들의 조합을 포함하는 철염 수용액이고,The iron aqueous solution is an aqueous iron salt solution containing sulfate, chloride, nitrate, or a combination thereof,
    상기 염기는 가성소다를 포함하는 것인, 복합 자성 입자의 제조 방법.The base comprises a caustic soda, the method for producing a composite magnetic particle.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 철 수용액의 농도에 대한 상기 염기의 농도가 0.8 내지 1.2 인, 복합 자성 입자의 제조 방법.The concentration of the base relative to the concentration of the iron aqueous solution is 0.8 to 1.2, the method for producing a composite magnetic particle.
  12. 제 9 항에 있어서,The method of claim 9,
    상기 산화 단계는,The oxidation step,
    80 내지 100℃의 온도에서 수행되는 것인, 복합 자성 입자의 제조 방법.It is carried out at a temperature of 80 to 100 ℃, method of producing a composite magnetic particles.
  13. 제 9 항에 있어서,The method of claim 9,
    상기 산화 단계는,The oxidation step,
    공기(air)를 50 내지 500㏄/L·분의 유량으로 통기시켜 수행되거나,Or by venting air at a flow rate of 50 to 500 kPa / L
    산소 가스를 10 내지 100㏄/L·분의 유량으로 통기시켜 수행되는 것인, 복합 자성 입자의 제조 방법.A method for producing composite magnetic particles, which is carried out by venting oxygen gas at a flow rate of 10 to 100 Pa / L · min.
  14. 제 9 항에 있어서,The method of claim 9,
    상기 철 산화물 코어는 Fe2O3 및 MO·Fe2O3 중 적어도 하나를 포함하여 형성된 것인, 복합 자성 입자의 제조 방법.It said iron oxide core, the method of producing a composite magnetic particles to be formed includes at least one of Fe 2 O 3 and MO · Fe 2 O 3.
    (여기에서, M은 Fe, Ni, Zn, Mn, Cu, 및 Co를 포함하는 군에서 선택된 적어도 하나이다.)(Here, M is at least one selected from the group containing Fe, Ni, Zn, Mn, Cu, and Co.)
  15. 제 9 항에 있어서,The method of claim 9,
    상기 산화 단계 이후 및 상기 쉘 형성 단계 이전에,After the oxidation step and before the shell forming step,
    상기 철 산화물 코어의 표면에 중간층을 형성하는 중간층 형성 단계;Forming an intermediate layer on the surface of the iron oxide core;
    를 더 포함하는, 복합 자성 입자의 제조 방법.Further comprising, method for producing a composite magnetic particle.
  16. 제 15 항에 있어서,The method of claim 15,
    상기 중간층은 상기 철 산화물 코어의 표면을 부분 산화시켜 형성된 것인, 복합 자성 입자의 제조 방법.And the intermediate layer is formed by partially oxidizing the surface of the iron oxide core.
PCT/KR2017/008633 2016-08-31 2017-08-09 Composite magnetic particles and method for manufacturing same WO2018043943A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160111977A KR20180024928A (en) 2016-08-31 2016-08-31 Composite magnetic particle and method for manufacturing the same
KR10-2016-0111977 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043943A1 true WO2018043943A1 (en) 2018-03-08

Family

ID=61301309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008633 WO2018043943A1 (en) 2016-08-31 2017-08-09 Composite magnetic particles and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20180024928A (en)
WO (1) WO2018043943A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109748579A (en) * 2019-02-26 2019-05-14 南通华兴磁性材料有限公司 The preparation method of high impedance high magnetic characteristics nickel-manganese Zinc ferrite material
US20210032121A1 (en) * 2019-07-30 2021-02-04 Rogers Corporation Multiphase ferrites and composites comprising the same
US11476022B2 (en) 2019-08-30 2022-10-18 Rogers Corporation Magnetic particles, methods of making, and uses thereof
US11682509B2 (en) 2018-11-15 2023-06-20 Rogers Corporation High frequency magnetic films, method of manufacture, and uses thereof
US11691892B2 (en) 2020-02-21 2023-07-04 Rogers Corporation Z-type hexaferrite having a nanocrystalline structure
US11783975B2 (en) 2019-10-17 2023-10-10 Rogers Corporation Nanocrystalline cobalt doped nickel ferrite particles, method of manufacture, and uses thereof
US11827527B2 (en) 2019-09-24 2023-11-28 Rogers Corporation Bismuth ruthenium M-type hexaferrite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220028595A1 (en) * 2018-11-16 2022-01-27 Lg Innotek Co., Ltd. Magnetic core using composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275224A (en) * 1992-03-24 1993-10-22 Nippon Steel Corp Production of (zn, mn, ni) ferrite particles well-ordered in grain diameters
KR19990050959A (en) * 1997-12-17 1999-07-05 이구택 Manufacturing method of nickel-copper-zinc ferrite raw material using waste liquid and iron oxide
JP2006077294A (en) * 2004-09-09 2006-03-23 Fuji Electric Holdings Co Ltd Composite magnetic material and magnetic part
JP2007258427A (en) * 2006-03-23 2007-10-04 Tdk Corp Magnetic particle and its manufacturing method
KR20160014412A (en) * 2014-07-29 2016-02-11 주식회사 이엠따블유 Composite magnetic particle for wireless power charge and method of preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275224A (en) * 1992-03-24 1993-10-22 Nippon Steel Corp Production of (zn, mn, ni) ferrite particles well-ordered in grain diameters
KR19990050959A (en) * 1997-12-17 1999-07-05 이구택 Manufacturing method of nickel-copper-zinc ferrite raw material using waste liquid and iron oxide
JP2006077294A (en) * 2004-09-09 2006-03-23 Fuji Electric Holdings Co Ltd Composite magnetic material and magnetic part
JP2007258427A (en) * 2006-03-23 2007-10-04 Tdk Corp Magnetic particle and its manufacturing method
KR20160014412A (en) * 2014-07-29 2016-02-11 주식회사 이엠따블유 Composite magnetic particle for wireless power charge and method of preparing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11682509B2 (en) 2018-11-15 2023-06-20 Rogers Corporation High frequency magnetic films, method of manufacture, and uses thereof
CN109748579A (en) * 2019-02-26 2019-05-14 南通华兴磁性材料有限公司 The preparation method of high impedance high magnetic characteristics nickel-manganese Zinc ferrite material
US20210032121A1 (en) * 2019-07-30 2021-02-04 Rogers Corporation Multiphase ferrites and composites comprising the same
US11679991B2 (en) * 2019-07-30 2023-06-20 Rogers Corporation Multiphase ferrites and composites comprising the same
US11476022B2 (en) 2019-08-30 2022-10-18 Rogers Corporation Magnetic particles, methods of making, and uses thereof
US11827527B2 (en) 2019-09-24 2023-11-28 Rogers Corporation Bismuth ruthenium M-type hexaferrite
US11783975B2 (en) 2019-10-17 2023-10-10 Rogers Corporation Nanocrystalline cobalt doped nickel ferrite particles, method of manufacture, and uses thereof
US11691892B2 (en) 2020-02-21 2023-07-04 Rogers Corporation Z-type hexaferrite having a nanocrystalline structure

Also Published As

Publication number Publication date
KR20180024928A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
WO2018043943A1 (en) Composite magnetic particles and method for manufacturing same
WO2017082553A1 (en) Composite ferrite magnetic field shielding sheet, method for manufacturing same, and antenna module using same
EP2851910A1 (en) Magnetic part, metal powder used therein and manufacturing method therefor
WO2010018955A2 (en) Method for producing nickel manganese cobalt spinel ferrite having low permeation loss, and nickel manganese cobalt spinel ferrite produced by same
JP2010283263A (en) Non-contact power transmission device
WO2014116004A1 (en) Method for manufacturing fe-based amorphous metal powder and method for manufacturing amorphous soft magnetic cores using same
WO2009142412A2 (en) Production method for an electromagnetic wave-shielding and -absorbing sheet
WO2013169017A1 (en) Magnetic sheet, method for manufacturing magnetic sheet and antenna comprising the magnetic sheet
WO2013165166A1 (en) Magnetic sheet having wireless charging radiator function, method of manufacturing the same, and wireless charging device using the same
CN108695930A (en) A kind of wireless charging module shielding piece and wireless charging module
WO2016017941A1 (en) Composite magnetic particles for wireless charging and method for manufacturing same
WO2010117156A2 (en) Method for manufacturing y-type ferrite, and y-type ferrite manufactured by same
JP2011249628A (en) Method for producing electromagnetic interference suppression body
KR20150128031A (en) Soft magnetic alloy, wireless power transmitting apparatus and wireless power receiving apparatus comprising the same
CN111785471B (en) Amorphous nanocrystalline high-frequency anti-interference magnetic core composite material, preparation method thereof and magnetic core
WO2019054777A1 (en) Magnetic shielding sheet and wireless power transfer module comprising same
CN108695929A (en) A kind of wireless charging module shielding piece and wireless charging module
CN108541208A (en) The preparation method of wireless charging electromagnetic shielding piece
WO2016089076A1 (en) High silicon steel plate having excellent magnetic property and manufacturing method thereof
WO2015050369A1 (en) Magnetic member and wireless power transmission device comprising same
CN107799257A (en) A kind of preparation method of iron silicon metal soft magnetic composite material
US10594141B2 (en) Soft magnetic alloy, wireless power transmitting apparatus, and wireless power receiving apparatus including the same
CN108039260A (en) A kind of preparation method of 60 iron silica magnetic particle core materials of μ
WO2017078496A1 (en) Soft-magnetic alloy
WO2017105136A1 (en) Magnetic material and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846868

Country of ref document: EP

Kind code of ref document: A1