JPH05275224A - Production of (zn, mn, ni) ferrite particles well-ordered in grain diameters - Google Patents

Production of (zn, mn, ni) ferrite particles well-ordered in grain diameters

Info

Publication number
JPH05275224A
JPH05275224A JP4066426A JP6642692A JPH05275224A JP H05275224 A JPH05275224 A JP H05275224A JP 4066426 A JP4066426 A JP 4066426A JP 6642692 A JP6642692 A JP 6642692A JP H05275224 A JPH05275224 A JP H05275224A
Authority
JP
Japan
Prior art keywords
ferrite particles
ions
particle size
ferrous
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4066426A
Other languages
Japanese (ja)
Inventor
Fumihiko Hasegawa
史彦 長谷川
Katsuto Nakatsuka
勝人 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4066426A priority Critical patent/JPH05275224A/en
Publication of JPH05275224A publication Critical patent/JPH05275224A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To get ferrite particles which are well-ordered in gain diameter by heating alkaline aqueous solution, where bivalent metallic ions are added to aqueous solution including ferrous ions, and hydrolyzing it. CONSTITUTION:Aqueous solution of ph.8 or over, where 0.01-1.5mol/l of bivalent metallic ions such as Zn, Mn, Ni, etc., are added singly or mixedly to the aqueous solution including 0.1-1.5mol/l ferrous ions, is heated to 160-300 deg.C so as to cause hydrolysis reaction, controlling the mixture ratio of the ferric ions to the ferrous ions below 1% or less by adding the ferric ion oxidation preventive or reductive operation. Furthermore, the size of ferrite particles being gotten is controlled by changing the alkali concentration in solution. Hereby, (Zn, Mn, Ni) ferrite particles 0.3mum or more well-ordered in gain particles and excellent in scattering, with their sizes and compositions controlled can be produced efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スイッチング電源等の
電子部品に使用するソフトフェライトコアの原料および
トナー等の磁性材料に広範に利用できるMn−Zn,N
i−Zn等の複合フェライト粒子およびZn,Mn,N
i等の単元フェライト粒子の湿式製造法における粒径制
御および組成制御技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can be widely used as a raw material for soft ferrite cores used in electronic parts such as switching power supplies and magnetic materials such as toners.
Composite ferrite particles such as i-Zn and Zn, Mn, N
The present invention relates to a particle size control and composition control technique in a wet manufacturing method of unitary ferrite particles such as i.

【0002】[0002]

【従来の技術】Mn−Zn,Ni−Zn等の複合フェラ
イト粒子の一般的な製造法である乾式法あるいはその粒
子の粉砕では粒度の均一な粒子は得られ難く、粒度の揃
った粒子を得たい場合には湿式法が用いられる。フェラ
イト粒子の湿式製造法としては、共沈法、湿式酸化法が
知られている。しかし、従来の技術では、粒径の整った
0.3μm以上の大粒子を安定的に製造することはでき
ていない。
2. Description of the Related Art It is difficult to obtain particles having a uniform particle size by a dry method which is a general method for producing composite ferrite particles such as Mn-Zn and Ni-Zn or by crushing the particles, and it is possible to obtain particles having a uniform particle size. The wet method is used if desired. As a wet method for producing ferrite particles, a coprecipitation method and a wet oxidation method are known. However, conventional techniques have not been able to stably produce large particles having a uniform particle size of 0.3 μm or more.

【0003】共沈法は、70℃以下のアルカリ溶液中で
二価金属イオンと第二鉄イオンを1:2の割合で混合
し、加熱することによってフェライト粒子を製造する方
法であるが、この方法で得られるフェライト粒子は粒径
は整っているが、粒径制御範囲は概ね0.01〜0.3
μmであり、大粒子は得られない。湿式酸化法は、60
〜90℃のアルカリ溶液中で二価金属イオンと共存する
第一鉄イオンを空気などの酸化性ガスで酸化することに
よってフェライト粒子を製造する方法であるが、この方
法で得られるフェライト粒子は粒径は整っているが、粒
径制御範囲は概ね0.05〜0.3μmであり、大粒子
を得ようとすると、反応所要時間が極端に長く必要であ
り、粒度分布も悪化する。また、高濃度溶液の使用にお
いても反応所要時間の長さと粒度分布の悪化から適当で
ない。
The coprecipitation method is a method for producing ferrite particles by mixing divalent metal ions and ferric ions in a ratio of 1: 2 in an alkaline solution at 70 ° C. or lower and heating the mixture. The ferrite particles obtained by the method have a uniform particle size, but the particle size control range is approximately 0.01 to 0.3.
μm, and large particles cannot be obtained. The wet oxidation method is 60
It is a method for producing ferrite particles by oxidizing ferrous ions that coexist with divalent metal ions in an alkaline solution at ˜90 ° C. with an oxidizing gas such as air. The ferrite particles obtained by this method are particles. Although the diameter is uniform, the particle size control range is generally 0.05 to 0.3 μm, and when obtaining large particles, the reaction time is extremely long and the particle size distribution is deteriorated. Further, even when a high-concentration solution is used, it is not suitable because of the length of time required for the reaction and the deterioration of the particle size distribution.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、従来
の方法では製造できない粒径の整った、かつ任意に大き
さ・組成を制御した分散性の良い0.3μm以上の(Z
n,Mn,Ni)フェライト粒子を効率よく製造する方
法を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to obtain a particle size of 0.3 μm or more, which has a uniform particle size and which can be produced by a conventional method, and which has an arbitrarily controlled size and composition and has good dispersibility.
It is to provide a method for efficiently producing (n, Mn, Ni) ferrite particles.

【0005】[0005]

【課題を解決するための手段】本発明は0.1〜1.5
mol/l の第一鉄イオンと0.01〜1.5mol/l のM
n,Zn,Ni等の金属イオンを単独あるいは混合して
含むpH8以上の水溶液を第一鉄イオンの酸化防止ある
いは還元操作を加え、第一鉄イオンに対する第二鉄イオ
ンの混入割合を1%以下に制御し、160〜300℃に
加熱することによる加水分解反応により、粒径の整った
フェライト粒子を製造する方法である。
The present invention provides 0.1-1.5.
mol / l ferrous ion and 0.01-1.5 mol / l M
An aqueous solution having a pH of 8 or more containing metal ions such as n, Zn and Ni alone or mixed is subjected to an oxidation prevention or reduction operation of ferrous ions, and the mixing ratio of ferric ions to ferrous ions is 1% or less. It is a method of producing ferrite particles having a uniform particle size by a hydrolysis reaction by controlling the temperature to 160 to 300 ° C.

【0006】また、硝酸ナトリウムまたは硝酸カリウム
等の酸化剤を、加水分解反応によってフェライト粒子の
生成が開始される温度以下で第一鉄イオンの等量の1〜
3倍添加することによって、成分組成の制御された粒径
の整ったフェライト粒子を製造する方法である。更に、
溶液中のアルカリ濃度を変えることにより、得られるフ
ェライト粒子の大きさを制御する方法である。
Further, an oxidizing agent such as sodium nitrate or potassium nitrate is added in an amount of 1 to 1 of an equivalent amount of ferrous ions at a temperature equal to or lower than a temperature at which ferrite particles are formed by a hydrolysis reaction.
This is a method for producing ferrite particles having a controlled particle size and a controlled grain size by adding 3 times. Furthermore,
This is a method of controlling the size of ferrite particles obtained by changing the alkali concentration in the solution.

【0007】本製造法の基本反応は、160〜300℃
のアルカリ溶液中で(1)式に示す第一鉄イオンのSc
hikorr反応と呼ばれる酸化加水分解反応によって
マグネタイト粒子が生成するものであり、(2)式のよ
うにMn,Zn等の水酸化物がFe(OH)2 と共存す
ることによりSchikorr反応の際にMn,Znが
取り込まれてフェライト粒子が生成する。 3Fe2++ 6OH- →Fe3 4 +2H2 O ………………………………………(1) xMn2++ yZn2++(3-x-y)Fe2++ 6OH- →(Mnx Zny Fe1-x-y )O・Fe2 O3 + H2 +2H2 O …(2) x+y ≦1
The basic reaction of this production method is 160 to 300 ° C.
Sc of ferrous ion shown in formula (1) in alkaline solution of
Magnetite particles are generated by an oxidative hydrolysis reaction called a hikorr reaction, and hydroxides such as Mn and Zn coexist with Fe (OH) 2 as shown in formula (2), so that Mn is used during the Schikorr reaction. , Zn are taken in and ferrite particles are generated. 3Fe 2+ + 6OH - → Fe 3 O 4 + 2H 2 O ............................................. (1) xMn 2+ + yZn 2+ + (3-xy) Fe 2+ + 6OH - → (Mn x Zn y Fe 1-xy ) O ・ Fe 2 O 3 + H 2 + 2H 2 O… (2) x + y ≦ 1

【0008】[0008]

【作用】アルカリ溶液中における第一鉄イオンは、酸化
性ガスまたは酸化剤によって極めて酸化されやすいた
め、取扱いに注意を要する。原料に含まれる第二鉄イオ
ンは全て第一鉄イオンに還元されていることが望まし
く、例えば酸性溶液中における鋳片等との共存による還
元操作を加える。使用水、アルカリ溶液は窒素等の不活
性ガスにより完全に脱酸素する。
The ferrous ion in the alkaline solution is extremely easily oxidized by the oxidizing gas or the oxidizing agent, so that it must be handled with care. It is desirable that all the ferric iron ions contained in the raw material have been reduced to ferrous iron ions. For example, a reducing operation is added by coexistence with a cast piece or the like in an acidic solution. The water and alkaline solution used are completely deoxidized with an inert gas such as nitrogen.

【0009】第二鉄イオンの混入、残留はフェロシアン
化カリウムまたはチオシアン化カリウムにより検出され
る。pH8以上、0.1〜1.5mol/l に調整された第
一鉄溶液を大気の接触、混入を防ぎながら、不活性ガス
を満たしたオートクレーブ中で昇温すると160℃以上
の温度において系内で均一にSchikorr反応と呼
ばれる水酸化第一鉄の加水分解反応が起こり、まずマグ
ネタイトの核が生成し、その核が続いて起こるSchi
korr反応により均一に成長する際にMn,Zn等の
金属成分が取り込まれることにより、粒径の整った0.
3μm以上のフェライト粒子が得られる。
The mixing and residual of ferric ion is detected by potassium ferrocyanide or potassium thiocyanate. When a ferrous iron solution adjusted to pH 8 or higher and 0.1 to 1.5 mol / l is heated in an autoclave filled with an inert gas while preventing contact and mixing with the atmosphere, the system is heated to 160 ° C or higher. The hydrogenation reaction of ferrous hydroxide, called the Schikorr reaction, occurs uniformly, and the magnetite nuclei are formed first, and the nuclei subsequently occur.
The metal components such as Mn and Zn are taken in during uniform growth by the Korr reaction, so that the grain size is adjusted to 0.
Ferrite particles of 3 μm or more are obtained.

【0010】加水分解反応が開始する以前の温度におけ
る第一鉄イオンに対する第二鉄イオンの混入割合は1%
以下、好ましくは0.5%以下であることが望ましく、
1%を超えると粒度分布の悪化が認められる。
The mixing ratio of ferric ion to ferrous ion at the temperature before the hydrolysis reaction starts is 1%.
Or less, preferably 0.5% or less,
If it exceeds 1%, the particle size distribution deteriorates.

【0011】第一鉄濃度は0.1mol/l 以下では経済的
ではなく1.5mol/l 以上では溶液の粘度が高く撹拌が
困難となり均一反応が生じにくい。溶液中の鉄以外のフ
ェライト組成の他の金属イオン濃度は0.01〜1.5
mol/l が適当であり、粒子に取り込まれなかったものは
pH4程度の中和洗浄で分離することができる。
If the ferrous iron concentration is 0.1 mol / l or less, it is not economical, and if it is 1.5 mol / l or more, the viscosity of the solution is high and stirring is difficult, and a uniform reaction is unlikely to occur. The other metal ion concentration of the ferrite composition other than iron in the solution is 0.01 to 1.5.
Mol / l is suitable, and those not incorporated into the particles can be separated by neutralization washing at a pH of about 4.

【0012】水酸化第一鉄の加水分解反応は160℃以
上で開始され、温度の上昇は酸化速度を大きくするが核
生成反応は160℃で一様に起こるため粒子の大きさに
は影響しない。300℃を超えると高強度の容器が必要
になり経済的でない。また、pH7未満ではSchik
orr反応は進行せずpH7以上に保つことが必要であ
り反応速度が高くなるpH8以上に保つことが望まし
い。以上の方法によると中和点であるpH10で2μ
m、過剰アルカリ濃度が4mol/l では約8μmの粒径の
整ったフェライト粒子が得られる。アルカリ濃度を高く
すると大きな粒子が得られることがわかり、粒径は溶液
中のアルカリ濃度で制御することができる。上記製造法
において、硝酸ナトリウムまたは硝酸カリウム等の酸化
剤を、加水分解反応によってフェライト粒子の生成が開
始される温度以下で第一鉄イオンの等量の1〜3倍量添
加することによって、α−Feの混成を防ぐことができ
ると共に他の金属イオンの固溶量も増え、成分組成の制
御された粒径の整ったフェライト粒子を製造することが
できる。
The hydrolysis reaction of ferrous hydroxide is started at 160 ° C. or higher, and the increase in temperature increases the oxidation rate, but the nucleation reaction occurs uniformly at 160 ° C., so the particle size is not affected. .. If it exceeds 300 ° C, a high-strength container is required, which is not economical. Also, if the pH is less than 7, Schik
The orr reaction does not proceed and it is necessary to keep the pH at 7 or higher, and it is desirable to keep the pH at 8 or higher at which the reaction rate becomes high. According to the above method, 2μ at pH 10 which is the neutralization point
m and an excess alkali concentration of 4 mol / l, ferrite particles having a regular particle size of about 8 μm can be obtained. It was found that large particles can be obtained by increasing the alkali concentration, and the particle size can be controlled by the alkali concentration in the solution. In the above-mentioned production method, an oxidizing agent such as sodium nitrate or potassium nitrate is added in an amount of 1 to 3 times the equivalent amount of ferrous ions at a temperature equal to or lower than the temperature at which the generation of ferrite particles is initiated by the hydrolysis reaction, and α- It is possible to prevent the mixture of Fe and increase the amount of solid solution of other metal ions, and it is possible to produce ferrite particles having a controlled particle size and a controlled particle size.

【0013】酸化剤を添加した場合には、中和点である
pH10で0.3μm、過剰アルカリ濃度が4mol/l で
は約2μmの粒径の整ったフェライト粒子が得られる。
この場合にもアルカリ濃度を高くすると大きな粒子が得
られることがわかり、粒径は溶液中のアルカリ濃度で制
御することができる。また、酸化剤の量が増えるほど反
応所要時間が短くてすむことが確認された。本発明で得
られた粒子は、乾式法に比べると粒子間の焼結がないこ
と、従来の湿式法に比べると粒径が大きいことから、分
散性に優れていることが確認された。
When an oxidizing agent is added, ferrite particles having a regular particle size of 0.3 μm at a neutralization point of pH 10 and about 2 μm at an excess alkali concentration of 4 mol / l can be obtained.
Also in this case, it was found that large particles can be obtained by increasing the alkali concentration, and the particle size can be controlled by the alkali concentration in the solution. It was also confirmed that the reaction time required was shorter as the amount of the oxidizing agent increased. It was confirmed that the particles obtained in the present invention are excellent in dispersibility because there is no sintering between particles as compared with the dry method and the particle diameter is larger as compared with the conventional wet method.

【0014】[0014]

【実施例】図1は、0.25mol/l のMnイオン、0.
25mol/l のZnイオンおよび1mol/l の第一鉄イオン
を含むpH10の水溶液を常温から2.5℃/min で昇
温し、250℃で1時間保持した際に得られたMnZn
フェライト粒子の粒度分布を示す。フェライト粒子が生
成する加水分解反応が開始する以前の温度における第一
鉄イオンに対する第二鉄イオンの混入割合が増えると得
られるフェライト粒子は広い粒度分布を示す。混入割合
を3%としたものは小粒子の混成が見られるが、混入割
合を1%以下に制御したものは均一な粒度分布を有する
約2μmのフェライト粒子が得られている。
EXAMPLE FIG. 1 shows 0.25 mol / l Mn ion, 0.1.
MnZn obtained when a pH 10 aqueous solution containing 25 mol / l Zn ions and 1 mol / l ferrous iron was heated from room temperature to 2.5 ° C./min and held at 250 ° C. for 1 hour.
The particle size distribution of ferrite particles is shown. When the mixing ratio of ferric ion to ferrous ion at the temperature before the initiation of the hydrolysis reaction in which ferrite particles are formed is increased, the obtained ferrite particles show a wide particle size distribution. When the mixing ratio is 3%, small particles are mixed, but when the mixing ratio is controlled to 1% or less, about 2 μm ferrite particles having a uniform particle size distribution are obtained.

【0015】図2は、アルカリ濃度を変えて0.25mo
l/l のMnイオン、0.25mol/lのZnイオンおよび
1mol/l の第一鉄イオンを含む水溶液を常温から2.5
℃/min で昇温し、250℃で1時間保持した際に得ら
れたMnZnフェライト粒子の粒径を示す。粒径はアル
カリ濃度を高くすることによって大きなものを得ること
ができる。この傾向は他の二価金属イオンの場合も同様
であった。尚、過剰アルカリ濃度0(中和点)のpHは
ほぼ10である。
FIG. 2 shows that the alkali concentration is changed to 0.25 mo.
An aqueous solution containing 1 / l of Mn ions, 0.25 mol / l of Zn ions and 1 mol / l of ferrous iron was added at room temperature to 2.5.
The particle size of MnZn ferrite particles obtained when the temperature was raised at a rate of ° C / min and the temperature was kept at 250 ° C for 1 hour is shown. A large particle size can be obtained by increasing the alkali concentration. This tendency was the same for other divalent metal ions. The pH at an excessive alkali concentration of 0 (neutralization point) is about 10.

【0016】図3は、アルカリ濃度を変えて0.25mo
l/l のMnイオン、0.25mol/lのZnイオンおよび
1mol/l の第一鉄イオンを含む水溶液を常温から2.5
℃/min で昇温し、60℃で硝酸ナトリウムを第一鉄イ
オンに対して1.5等量添加した後、250℃で1時間
保持した際に得られたMnZnフェライト粒子の粒径を
示す。pH10(過剰アルカリ濃度0)における粒径は
約0.3μmと酸化剤を添加しない場合に比べ小さくな
っているが、アルカリ濃度が増すにつれて粒径は大きく
なり過剰アルカリ濃度4mol/l では約2μmであった。
他の二価金属イオンの場合も同様の値が得られた。
FIG. 3 shows that the alkali concentration is changed to 0.25 mo.
An aqueous solution containing 1 / l of Mn ions, 0.25 mol / l of Zn ions and 1 mol / l of ferrous iron was added at room temperature to 2.5.
The particle size of MnZn ferrite particles obtained when the temperature is raised at 60 ° C / min, 1.5 equivalents of sodium nitrate is added to the ferrous ions at 60 ° C, and the mixture is held at 250 ° C for 1 hour is shown. .. The particle size at pH 10 (excess alkali concentration 0) is about 0.3 μm, which is smaller than that when no oxidizer is added, but the particle size increases as the alkali concentration increases and becomes about 2 μm at the excess alkali concentration 4 mol / l. there were.
Similar values were obtained for other divalent metal ions.

【0017】図4は、Znイオンの添加量を変えて、1
mol/l の第一鉄イオンを含むpH10の水溶液を常温か
ら2.5℃/min で昇温し、250℃で24時間保持し
た際に得られたZnフェライト粒子のZn固溶量を示
す。添加するZnイオンの量に応じてZnの固溶量が増
し、Znx Fe3-x 4 としてx=0.75程度まで固
溶することが認められた。同様にして、Mnの場合には
x=0.5程度まで、Niの場合にはx=0.25程度
まで固溶することが認められた。これらの単元フェライ
ト粒子の粒径はZn,Mnの場合には図2のpH10の
場合と同様の約2μmであったが、Niの場合にはNi
添加量とともに大きくなる傾向がみられたが1μm以下
の小粒子であった。
In FIG. 4, the amount of Zn ions added was changed to 1
The Zn solid solution amount of Zn ferrite particles obtained when an aqueous solution of pH 10 containing mol / l ferrous ions was heated from room temperature to 2.5 ° C./min and held at 250 ° C. for 24 hours is shown. It was confirmed that the solid solution amount of Zn was increased according to the amount of Zn ions to be added, and that Zn x Fe 3 -x O 4 was dissolved up to about x = 0.75. Similarly, in the case of Mn, it was confirmed that the solid solution was up to about x = 0.5, and in the case of Ni, up to about x = 0.25. The particle size of these unitary ferrite particles was about 2 μm in the case of Zn and Mn, which was the same as in the case of pH 10 in FIG.
Although it tended to increase with the amount added, the particles were small particles of 1 μm or less.

【0018】図5は、Znイオンの添加量を変えて、1
mol/l の第一鉄イオンを含むpH10の水溶液を常温か
ら2.5℃/min で昇温し、60℃で硝酸ナトリウムを
第一鉄イオンに対して1.5等量添加した後、250℃
で1時間保持した際に得られたZnフェライト粒子のZ
n固溶量を示す。添加するZnイオンの量とZnの固溶
量が1:1の関係になっており、添加するZnイオンの
量によってフェライト成分が制御されることが示され
る。Mn,Niについても同様の結果が得られた。
In FIG. 5, the amount of Zn ions added was changed to 1
Aqueous solution of pH 10 containing mol / l ferrous ion was heated from room temperature at 2.5 ℃ / min, and 1.5 equivalent of sodium nitrate was added to ferrous ion at 60 ℃. ℃
Z of Zn ferrite particles obtained when held for 1 hour at
n indicates the amount of solid solution. There is a 1: 1 relationship between the amount of added Zn ions and the amount of solid solution of Zn, which shows that the ferrite component is controlled by the amount of added Zn ions. Similar results were obtained for Mn and Ni.

【0019】[0019]

【発明の効果】本発明によれば、スイッチング電源等の
電子部品に使用するソフトフェライトコアの原料および
トナー等の磁性材料に広範に利用できる均一な粒度を持
ち、かつ任意に大きさ・組成を制御された分散性の良い
0.3μm以上のMn−Zn,Ni−Zn等の複合フェ
ライト粒子およびZn,Mn,Ni等の単元フェライト
粒子を高濃度の溶液から効率よく製造できる。
EFFECTS OF THE INVENTION According to the present invention, the material has a uniform particle size and can be widely used as a raw material for soft ferrite cores used in electronic parts such as switching power supplies and magnetic materials such as toner, and has an arbitrary size and composition. It is possible to efficiently produce composite ferrite particles such as Mn—Zn and Ni—Zn having a controlled dispersibility of 0.3 μm or more and unitary ferrite particles such as Zn, Mn and Ni from a high concentration solution.

【図面の簡単な説明】[Brief description of drawings]

【図1】MnZnフェライトの粒度分布への第一鉄イオ
ンに対する第二鉄イオンの混入割合の効果を示す図表で
ある。
FIG. 1 is a chart showing the effect of the mixing ratio of ferric ion to ferrous ion on the particle size distribution of MnZn ferrite.

【図2】MnZnフェライトの粒径へのアルカリ濃度の
効果を示す図表である。
FIG. 2 is a chart showing the effect of alkali concentration on the particle size of MnZn ferrite.

【図3】酸化剤を添加した場合のMnZnフェライトの
粒径へのアルカリ濃度の効果を示す図表である。
FIG. 3 is a chart showing the effect of alkali concentration on the particle size of MnZn ferrite when an oxidizing agent is added.

【図4】ZnフェライトのZn固溶量に対するZn添加
量の効果を示す図表である。
FIG. 4 is a table showing the effect of the amount of Zn added on the amount of Zn solid solution of Zn ferrite.

【図5】酸化剤を添加した場合のZnフェライトのZn
固溶量に対するZn添加量の効果を示す図表である。
FIG. 5: Zn of Zn ferrite when an oxidizing agent is added
It is a chart which shows the effect of Zn addition amount with respect to solid solution amount.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年5月15日[Submission date] May 15, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【作用】アルカリ溶液中における第一鉄イオンは、酸化
性ガスまたは酸化剤によって極めて酸化されやすいた
め、取扱いに注意を要する。原料に含まれる第二鉄イオ
ンは全て第一鉄イオンに還元されていることが望まし
く、例えば酸性溶液中における片等との共存による還
元操作を加える。使用水、アルカリ溶液は窒素等の不活
性ガスにより完全に脱酸素する。
The ferrous ion in the alkaline solution is extremely easily oxidized by the oxidizing gas or the oxidizing agent, so that it must be handled with care. It is desirable that the ferric ion contained in the raw material is reduced all the ferrous ions, for example, addition of a reducing operation by the coexistence of iron pieces or the like in an acidic solution. The water and alkaline solution used are completely deoxidized with an inert gas such as nitrogen.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 0.1〜1.5mol/l の第一鉄イオンを
含む水溶液に0.01〜1.5mol/l のZn,Mn,N
i等の二価金属イオンを単独あるいは混合して添加し、
pH8以上で160〜300℃に加熱して加水分解反応
により粒径の整った(Zn,Mn,Ni)フェライト粒
子を製造する方法。
1. An aqueous solution containing 0.1 to 1.5 mol / l ferrous ion in an amount of 0.01 to 1.5 mol / l Zn, Mn, and N.
adding divalent metal ions such as i alone or in combination,
A method for producing (Zn, Mn, Ni) ferrite particles having a uniform particle size by a hydrolysis reaction by heating at 160 to 300 ° C. at pH 8 or higher.
【請求項2】 請求項1において、加熱前に第一鉄イオ
ンの酸化防止あるいは還元操作を加え、第一鉄イオンに
対する第二鉄イオンの混入割合を1%以下に制御するこ
とにより、粒径の整った(Zn,Mn,Ni)フェライ
ト粒子を製造する方法。
2. The particle size according to claim 1, wherein an oxidation preventing or reducing operation of ferrous ions is added before heating, and the mixing ratio of ferric ions to ferrous ions is controlled to 1% or less. A method of producing ordered (Zn, Mn, Ni) ferrite particles.
【請求項3】 請求項1または2記載の製造法におい
て、硝酸ナトリウムまたは硝酸カリウム等の酸化剤を、
加水分解反応によってフェライト粒子の生成が開始され
る温度以下で第一鉄イオンの等量の1〜3倍量添加する
ことによって、成分組成の制御された粒径の整った(Z
n,Mn,Ni)フェライト粒子を製造する方法。
3. The method according to claim 1, wherein the oxidizing agent is sodium nitrate or potassium nitrate,
By adding 1 to 3 times the equivalent amount of ferrous ions at a temperature equal to or lower than the temperature at which the generation of ferrite particles is initiated by the hydrolysis reaction, the particle size whose component composition is controlled is adjusted (Z.
n, Mn, Ni) A method for producing ferrite particles.
【請求項4】 請求項1または2、または3記載の製造
法において、水溶液中のアルカリ濃度を変えることによ
り、得られる粒径の整った(Zn,Mn,Ni)フェラ
イト粒子の大きさを制御する方法。
4. The method according to claim 1, 2 or 3, wherein the size of the obtained (Zn, Mn, Ni) ferrite particles having a uniform particle size is controlled by changing the alkali concentration in the aqueous solution. how to.
JP4066426A 1992-03-24 1992-03-24 Production of (zn, mn, ni) ferrite particles well-ordered in grain diameters Withdrawn JPH05275224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4066426A JPH05275224A (en) 1992-03-24 1992-03-24 Production of (zn, mn, ni) ferrite particles well-ordered in grain diameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4066426A JPH05275224A (en) 1992-03-24 1992-03-24 Production of (zn, mn, ni) ferrite particles well-ordered in grain diameters

Publications (1)

Publication Number Publication Date
JPH05275224A true JPH05275224A (en) 1993-10-22

Family

ID=13315452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4066426A Withdrawn JPH05275224A (en) 1992-03-24 1992-03-24 Production of (zn, mn, ni) ferrite particles well-ordered in grain diameters

Country Status (1)

Country Link
JP (1) JPH05275224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043943A1 (en) * 2016-08-31 2018-03-08 주식회사 이엠따블유 Composite magnetic particles and method for manufacturing same
WO2020217982A1 (en) 2019-04-25 2020-10-29 日鉄鉱業株式会社 Method for producing cobalt ferrite particles and cobalt ferrite particles produced by same
WO2020241065A1 (en) 2019-05-24 2020-12-03 日鉄鉱業株式会社 Cobalt ferrite particle production method and cobalt ferrite particles produced thereby

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043943A1 (en) * 2016-08-31 2018-03-08 주식회사 이엠따블유 Composite magnetic particles and method for manufacturing same
WO2020217982A1 (en) 2019-04-25 2020-10-29 日鉄鉱業株式会社 Method for producing cobalt ferrite particles and cobalt ferrite particles produced by same
KR20220002285A (en) 2019-04-25 2022-01-06 닛데츠 고교 가부시키가이샤 Method for producing cobalt ferrite particles and cobalt ferrite particles produced thereby
WO2020241065A1 (en) 2019-05-24 2020-12-03 日鉄鉱業株式会社 Cobalt ferrite particle production method and cobalt ferrite particles produced thereby
KR20220012350A (en) 2019-05-24 2022-02-03 닛데츠 고교 가부시키가이샤 Method for producing cobalt ferrite particles and cobalt ferrite particles prepared accordingly

Similar Documents

Publication Publication Date Title
JP4244193B2 (en) Method for producing MnZn ferrite and MnZn ferrite
US4372865A (en) Carbonate/hydroxide coprecipitation process
JP2007238429A (en) Ferrite material
JP3454316B2 (en) Manganese zinc based ferrite core and method for producing the same
JPH05275224A (en) Production of (zn, mn, ni) ferrite particles well-ordered in grain diameters
WO2020241065A1 (en) Cobalt ferrite particle production method and cobalt ferrite particles produced thereby
US4472369A (en) Process for producing ferrites
JP2006213530A (en) Mn-Zn-Ni-BASED FERRITE
WO2020217982A1 (en) Method for producing cobalt ferrite particles and cobalt ferrite particles produced by same
JP2007297232A (en) Method for producing oxide magnetic material
NL8301491A (en) METHOD FOR PRODUCING MAGNETIC METAL OXIDES
JPS58115027A (en) Oxide magnetic material and preparation thereof
JP6055892B2 (en) Mn-Zn ferrite
JPH0544804B2 (en)
JP3181321B2 (en) Manganese-zinc ferrite material and method of manufacturing magnetic core for high frequency power transformer
JP2008290906A (en) METHOD OF MANUFACTURING MnZn-BASED FERRITE
JP2008290907A (en) METHOD OF MANUFACTURING MnZn-BASED FERRITE
JPH05198419A (en) Oxide magnetic material
JPS6135133B2 (en)
JP7169138B2 (en) Composite particle manufacturing method
JP2002356329A (en) Granulated magnetite particles and their producing method
CN110127732A (en) A kind of application of high pressure blasting procedure in silicon-steel magnesium oxide production
JPH05270837A (en) Production of magnetite particle with uniform particle size
JPS5989725A (en) Protective coating material for annealing for anisotropic silicon steel plate
JPH04219321A (en) Zinc raw material for soft ferrite and production of oxide raw material for soft ferrite using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608