WO2018042515A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2018042515A1
WO2018042515A1 PCT/JP2016/075325 JP2016075325W WO2018042515A1 WO 2018042515 A1 WO2018042515 A1 WO 2018042515A1 JP 2016075325 W JP2016075325 W JP 2016075325W WO 2018042515 A1 WO2018042515 A1 WO 2018042515A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
mode
temperature
control device
blower
Prior art date
Application number
PCT/JP2016/075325
Other languages
English (en)
French (fr)
Inventor
芸青 范
恵美 竹田
怜司 森岡
淳一 岡崎
正樹 豊島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/075325 priority Critical patent/WO2018042515A1/ja
Priority to EP16915076.0A priority patent/EP3508795B1/en
Priority to JP2018536555A priority patent/JP6727312B2/ja
Priority to CN201680088662.6A priority patent/CN109642747B/zh
Publication of WO2018042515A1 publication Critical patent/WO2018042515A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/873Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Definitions

  • the present invention relates to an air conditioner, and more particularly to air blow control of an indoor unit.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-60250
  • the air conditioner described in Japanese Patent Application Laid-Open No. 2010-60250 provides a more efficient and comfortable air-conditioned space by controlling the direction and amount of air flow according to the position of the person in the room and the intention of the user. is doing.
  • An object of the present invention is to provide an air conditioner capable of supplying warm air to a foot by controlling a fan of an air conditioner in order to make the indoor air temperature uniform during a heating operation at a low load. .
  • An air conditioner includes a refrigerant circuit, a condensing temperature detection unit, a blower, an air conditioning load detection unit, and a control device.
  • the refrigerant circulates in the order of the compressor, the condenser, the expansion mechanism, and the evaporator.
  • the condensing temperature detector is configured to detect a condensing temperature that is a refrigerant temperature in the condenser.
  • the blower is configured to adjust the amount of air blown to the condenser.
  • the air conditioning load detection unit is configured to detect the air conditioning load of the air conditioned space.
  • the control device has a first mode and a second mode that is different from the first mode as operation modes, and is configured to control the air flow rate of the blower.
  • the control device In the second mode, the control device is configured to operate the blower so as to change the air volume between the first air volume and the second air volume larger than the first air volume in accordance with the change in the condensation temperature.
  • the control device is configured to change the first mode to the second mode when the air conditioning load detected by the air conditioning load detection unit is lower than the first threshold value during the first mode.
  • a fan intermittent operation (FIO: Fan Intermittent Operation) is performed during a low-load heating operation, thereby destroying the temperature boundary layer formed near the floor and preventing the warm air from rising. , Can supply warm air to your feet. As a result, it is possible to reduce the temperature vibration at the foot and improve indoor comfort.
  • FIO Fan Intermittent Operation
  • FIG. It is a figure which shows an example of the air conditioning apparatus 101 in Embodiment 1.
  • FIG. It is a figure which shows an example of arrangement
  • FIG. It is a figure which shows an example of the indoor air flow in the FIO control in heating operation.
  • 3 is a flowchart illustrating an example of a control flow in the first embodiment. It is a figure for demonstrating the operation mode switching of step S2. It is a figure for demonstrating the change of the operating frequency of the compressor of step S3. It is a figure which shows an example of the driving
  • FIG. It is a figure for demonstrating the change of the condensation temperature in fan intermittent operation (FIO).
  • FIG. 6 is a diagram illustrating an example of the operation of each unit before and after entering the second mode (FIO) in the first embodiment. It is a figure which shows an example of the control system in Embodiment 2.
  • FIG. FIG. 10 is a diagram illustrating an example of the operation of each unit before and after entering the second mode (FIO) in the second embodiment. It is a figure shown about the difference in the timing which enters 2nd mode (FIO).
  • FIG. 1 is a diagram illustrating an example of an air-conditioning apparatus 101 according to Embodiment 1 of the present invention.
  • the air conditioning apparatus 101 includes an indoor unit 103, an outdoor unit 104, and a control device 130.
  • the indoor unit 103 includes an indoor blower 113, an indoor heat exchanger 115, an infrared sensor 110, a pipe temperature sensor 111, and an indoor temperature sensor 121.
  • the outdoor unit 104 includes an outdoor fan 114, an outdoor heat exchanger 116, an expansion valve 117, a four-way valve 118, and a compressor 119.
  • the refrigerant circuit 102 is configured by connecting the outdoor heat exchanger 116, the expansion valve 117, the four-way valve 118, the compressor 119, and the indoor heat exchanger 115 in an annular shape by the refrigerant pipe 120.
  • a heat pump is formed by circulating the refrigerant in the refrigerant circuit 102 while repeating compression and expansion.
  • the control device 130 controls the four-way valve 118, the compressor 119, the blowers 113 and 114, etc., so that the air conditioner 101 air-conditions the room in an operation mode such as cooling / heating / blowing.
  • FIG. 1 shows a state where the four-way valve 118 is set to heating.
  • the port H and the port G communicate with each other, and the port E and the port F communicate with each other.
  • the refrigerant flows from the discharge port B of the compressor 119 in the order of the indoor heat exchanger 115, the expansion valve 117, and the outdoor heat exchanger 116, and reaches the suction port A of the compressor 119.
  • the port H and the port E communicate with each other, and the port G and the port F communicate with each other.
  • the refrigerant flows from the discharge port B of the compressor 119 in the order of the outdoor heat exchanger 116, the expansion valve 117, and the indoor heat exchanger 115, and reaches the suction port A of the compressor 119.
  • FIG. 2 is a diagram illustrating an example of an arrangement of components of the indoor unit 103 according to the first embodiment.
  • the indoor unit 103 includes an indoor heat exchanger 115, an indoor blower 113, a pipe temperature sensor 111, an infrared sensor 110, and a wind direction plate (louver) 112 inside the main body.
  • the indoor heat exchanger 115 is disposed on the upstream side of the air flow of the indoor blower 113.
  • the blowout port forms a ventilation path on the downstream side of the indoor blower 113.
  • the direction of the airflow can be adjusted by changing the angle of the wind direction plate (louver) 112 attached to the outlet.
  • the indoor space is cooled and heated by cold air and hot air blown from the indoor unit 103 of the air conditioner 101.
  • the air conditioner 101 is equipped with a vapor compression refrigeration cycle, and the indoor unit 103 and the outdoor unit 104 are connected by a refrigerant pipe 120.
  • the compressor 119 compresses the low-temperature / low-pressure refrigerant and discharges the high-temperature / high-pressure refrigerant from the discharge port B.
  • the compressor 119 is driven by an inverter (not shown), and the operation capacity is controlled in accordance with the air condition.
  • the outdoor heat exchanger 116 performs heat exchange between cold / hot heat supplied from the refrigerant flowing through the refrigeration cycle and outdoor air. As described above, outdoor air is supplied to the outdoor heat exchanger 116 by the outdoor blower 114.
  • the expansion valve 117 is connected between the indoor heat exchanger 115 and the outdoor heat exchanger 116, and decompresses and expands the refrigerant.
  • the expansion valve 117 is configured by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the four-way valve 118 is connected to the discharge port B and the suction port A of the compressor 119, and switches the flow of the refrigerant according to the operation (cooling operation, heating operation) of the air conditioner 101.
  • the outdoor blower 114 is a fan capable of varying the flow rate of air supplied to the outdoor heat exchanger 116 and the indoor blower 113 to the indoor heat exchanger 115, respectively.
  • a centrifugal fan or a multiblade fan driven by a motor such as a DC fan motor can be used.
  • FIO Fret Intermittent Operation
  • the FIO control is a control in which an air flow that delivers warm air to the feet is generated by the fan.
  • the operation mode in which the air volume is determined by the setting of the user's remote controller or the like is described as a normal operation mode (hereinafter referred to as a first mode (FCO: Fan Common Operation)), and the air conditioning load is low
  • FCO Fan Common Operation
  • An operation mode in which the fan is intermittently operated is referred to as an intermittent operation mode (hereinafter, second mode (FIO)).
  • FIG. 3 is a diagram illustrating an example of an indoor air flow in FIO control in the heating operation in the first embodiment.
  • control device 130 changes the angle of wind direction plate (louver) 112 to make the blowing direction of indoor unit 103 downward. .
  • the control device 130 When the condensation temperature CT detected by the pipe temperature sensor 111 installed in the indoor heat exchanger 115 is equal to or higher than a certain value (T1), the control device 130 starts the operation of the indoor blower 113 at the fan rotation speed (N2). . When the condensation temperature CT detected by the pipe temperature sensor 111 becomes lower than a certain value (T2), the control device 130 stops the indoor blower 113 or operates with a low air volume. At this time, the control device 130 continues the operation of the compressor 119 regardless of the operation of the indoor blower 113.
  • the indoor blower 113 while the indoor blower 113 is stopped or operating at a low air volume, the surface temperature of the indoor heat exchanger 115 rises, and when the condensation temperature detected by the pipe temperature sensor 111 becomes a certain value (T1) or more again, The indoor blower 113 resumes operation at the rotational speed (N2).
  • FIG. 4 is a flowchart showing an example of a control flow in the first embodiment of the present invention.
  • the control device 130 that executes the processing of this flowchart can be realized by hardware such as a circuit device that realizes these functions, or is read from a memory by a calculation device such as a microcomputer or a CPU and executed by the calculation device. It can also be realized as software.
  • control device 130 detects air conditioning load Q (kW). For example, when determining whether the air-conditioning load Q is lower than a predetermined value Q2, the surface temperature of an object (wall, floor, person, etc.) existing in the air-conditioned space can be used as a guide.
  • the air conditioning load detection unit 125 detects the surface temperature (radiation temperature Tr) of an object existing in the air conditioned space by the infrared sensor 110. When the surface temperature falls below the first threshold value (YES in S2), control device 130 changes the first mode (FCO) to the second mode (FIO).
  • the air conditioning load Q is estimated based on the indoor radiation temperature Tr detected by the infrared sensor 110 shown in FIG.
  • the infrared sensor 110 may detect the radiation temperature Tr at a plurality of locations in the room.
  • a weighted average value can be used.
  • the relationship between the radiation temperature Tr and the air conditioning load Q may be a predetermined map, and the air conditioning load Q may be obtained from the radiation temperature Tr with reference to the map in step S1.
  • the temperature difference between the outside air temperature and the room temperature the difference between the floor surface temperature or the room temperature and the set temperature, the amount of solar radiation, the room temperature, etc. may be taken into consideration.
  • step S2 the control device 130 determines whether or not the case where the air conditioning load Q is lower than the predetermined value Q2 (Q ⁇ Q2). If Q ⁇ Q2 is satisfied in step S2 (YES in S2), the process proceeds to step S3. If not satisfied (NO in S2), the process proceeds to step S14.
  • FIG. 5 is a diagram for explaining the operation mode switching in step S2.
  • the condition that air conditioning load Q estimated by infrared sensor 110 using radiation temperature is lower than a predetermined value Q2 (Q ⁇ Q2) is that air conditioner 101 enters the second mode (FIO). It is a condition.
  • the condition that the air conditioning load Q is lower than the predetermined value Q1 (Q ⁇ Q2) is a condition for stopping the compressor.
  • the control device 130 switches the operation mode between the second mode (FIO) and the first mode (FCO) as appropriate.
  • the air conditioning load detection unit 125 determines the air conditioning load based on the indoor surface temperature or the radiation temperature, but even if the air conditioning load is determined based on the rotational speed of the compressor 119. good. In this case, the air conditioning load detection unit 125 detects the rotation speed of the compressor 119, and the control device 130 detects that the rotation speed of the compressor 119 is lower than the first threshold value (the lower limit set value F1 for normal operation). In addition, the first mode (FCO) is changed to the second mode (FIO).
  • control device 130 also changes the operating frequency of the compressor 119.
  • FIG. 6 is a diagram for explaining changes in the operating frequency of the compressor in step S3. 4 and 6, in step S3, control device 130 sets the operation frequency of the compressor to an operation frequency F2 that is about half of the lower limit frequency F1 in the normal operation. That is, when changing from the first mode (FCO) to the second mode (FIO) at time t1, the operating frequency of the compressor 119 is a frequency F2 that is about a half of the frequency F1 from the frequency F1 that is the lower limit set value in the normal operation. To change. Further, if the air conditioning load Q is greater than or equal to the predetermined value Q2 in step S2, the operation frequency is returned to the frequency F1 at time t2 because the operation shifts to the first mode (FCO).
  • step S3 the control device 130 changes the blowing direction of the indoor blower 113 simultaneously with the change of the operating frequency of the compressor 119.
  • the air conditioner 101 includes a wind direction plate (louver) 112. Then, when the mode is the second mode (FIO), the control device 130 controls the wind direction plate 112 so that the blowing direction becomes a predetermined wind direction (corresponding to the angle ⁇ 2).
  • the control device 130 changes the angle ⁇ of the wind direction plate (louver) 112 to an arbitrary angle ⁇ 1 set by the user in the first mode (FCO), but changes it to the angle ⁇ 2 in the second mode (FIO).
  • the angle ⁇ 2 indicating the predetermined wind direction is 45 ° or more. It is.
  • the angle ⁇ 2 is in the range of 60 to 85 °.
  • step S3 processing for intermittently operating the indoor fan 113 is executed.
  • FIG. 7 is a diagram illustrating an example of an operating state of the indoor blower 113 in the first embodiment.
  • the angle ⁇ of the wind direction plate (louver) 112 is turned downward, and the air volume is intermittently increased or decreased between the first air volume and the second air volume as shown at times t1 to t2.
  • the fan rotation speed has a setting of the rotation speed N2 and a setting of 0 (rpm).
  • the timing for switching the rotation speed from N2 to 0 and the timing for switching from 0 to N2 are determined based on the condensation temperature CT of the indoor heat exchanger 115. Is done.
  • the second air volume is the air volume corresponding to the rotational speed N2
  • the first air volume may be an air volume smaller than the second air volume, and is not necessarily zero.
  • FIG. 8 is a diagram for explaining a change in the condensation temperature during the second mode (FIO).
  • the determination value of the condensation temperature CT for operating / stopping the indoor blower 113 two types of temperature T1 and temperature T2 are set.
  • the condensation temperature CT changes up and down between the temperature T1 and the temperature T2.
  • the indoor blower 113 stops at the rising time tr, and the indoor blower 113 operates at the falling time tf.
  • FIG. 9 is an enlarged view of a part of FIG. While the indoor blower 113 is stopped, the condensation temperature CT of the indoor heat exchanger 115 rises from T2 to T1.
  • the indoor fan 113 starts operation. During the operation of the indoor fan 113 from time t3 to t4, the indoor heat exchanger 115 is cooled by the air blowing, so that the condensation temperature CT decreases from T1 to T2. When the condensation temperature CT decreases to the temperature T2 at time t4, the indoor blower 113 stops. Thereafter, the start and stop of the operation of the indoor blower 113 are repeated at times t5 and t6.
  • blower fan ON / OFF control based on the condensation temperature is executed in steps SS4 to S10 in FIG.
  • the control will be described.
  • step S4 the control device 130 detects the condensation temperature CT by the pipe temperature sensor 111.
  • step S6 the control device 130 determines whether or not the condensing temperature CT measured using the pipe temperature sensor 111 is lower than a predetermined value T2. If CT ⁇ T2 is established in step S6 (YES in S6), control device 130 stops indoor blower 113 in step S7 and proceeds to step S10. If CT ⁇ T2 is not satisfied in step S6 (NO in S6), control device 130 proceeds to step S10 without executing step S7.
  • step S8 the control device 130 determines whether or not the condensation temperature CT measured using the pipe temperature sensor 111 is higher than a predetermined value T1. If CT> T1 is established in step S8 (YES in S8), control device 130 causes indoor fan 113 to operate in step S9, and proceeds to step S10. If CT> T1 is not satisfied in step S8 (NO in S8), control device 130 proceeds to step S10 without executing step S9.
  • step S10 the control device 130 detects the room temperature Ta by the room temperature sensor 121. If room temperature Ta is higher than predetermined value Ta_min (YES in S11), control device 130 advances the process to step S12. When room temperature Ta is lower than predetermined value Ta_min (NO in S11), control device 130 advances the process to step S14.
  • step S12 the control device 130 detects the human body temperature Ta_t.
  • the indoor surface temperature can be measured using the infrared sensor 110, and this can be used as the sensory temperature Ta_t.
  • step S13 the control device 130 sets the operation mode to the first mode (FCO), and causes the air conditioner 101 to operate normally.
  • FCO first mode
  • the normal operation executed in the first mode may be different from the indoor fan intermittent operation in which the processes in steps S3 to S13 are repeated.
  • Various processes may be used as long as the process controls the air volume and room temperature according to user settings. Driving is assumed.
  • the air-conditioning load detection unit 125 of FIG. 1 includes an infrared sensor 110 that detects the surface temperature of an object that exists in the air-conditioned space, and an indoor temperature sensor 121 that detects the indoor temperature.
  • the control device 130 has a first condition that the room temperature Ta is lower than the second threshold Ta_min, and the surface temperature (sensory temperature Ta_t) is higher than the third threshold Ta_set.
  • the operation mode is changed from the second mode (FIO) to the first mode (FCO).
  • FIG. 10 is a diagram illustrating an example of the operation of each part before and after entering the second mode (FIO) in the first embodiment. From time t0 to t1, normal operation (FCO) during heating is performed. At this time, the rotation speed of the indoor blower 113 is the rotation speed N1 determined by the user setting.
  • FCO normal operation
  • the rotational speed N of the indoor blower 113 is intermittently switched between 0 and N2, and the wind direction plate (louver) 112 is set to an arbitrarily set arbitrary value.
  • the control of causing the indoor fan 113 to operate intermittently while fixing the operating frequency of the compressor 119 destroys the natural temperature boundary layer of the air formed near the floor and prevents the warm air from rising. , Reduce the vibration of the foot temperature.
  • the air conditioner 101 includes a refrigerant circuit 102, a pipe temperature sensor 111, an indoor fan 113, an air conditioning load detection unit 125, and a control device 130.
  • the refrigerant circulates in the order of the compressor 119, the indoor heat exchanger 115 that functions as a condenser, the expansion valve 117, and the outdoor heat exchanger 116 that functions as an evaporator.
  • the pipe temperature sensor 111 is configured to detect a condensation temperature CT which is a refrigerant temperature in the indoor heat exchanger 115.
  • the indoor blower 113 is configured to adjust the heat radiation amount of the indoor heat exchanger 115.
  • the air conditioning load detection unit 125 is configured to detect the air conditioning load of the air conditioned space.
  • the control device 130 has a first mode (FCO) and a second mode (FIO) different from the first mode as operation modes, It is comprised so that the ventilation volume of the indoor air blower 113 may be controlled.
  • the control device 130 causes the indoor blower 113 to change the air volume between the first air volume (zero) and the second air volume (N2) greater than the first air volume in accordance with the change in the condensation temperature CT. Configured to drive.
  • the control device 130 performs the first mode (FCO). Is configured to change to the second mode (FIO).
  • the following effects (1) to (3) can be obtained.
  • the air-conditioning apparatus includes a control device that controls a plurality of indoor units 103 in order to set the indoor temperature of the air-conditioning target space R as a target temperature. Since the control of the load detection means, the temperature detection means, the air blow control means, and the wind direction control means of each indoor unit 103 is the same as that of the first embodiment, illustration and description thereof are omitted.
  • FIG. 11 is a diagram illustrating an example of a control system according to the second embodiment.
  • Indoor units 103A, 103B, and 103C are connected to centralized control device 230 by communication devices 203, 204, and 205, respectively. It is possible to control the indoor units 103A, 103B, and 103C from the centralized control device 230.
  • the connection between the indoor units 103A, 103B, and 103C and the communication devices 203, 204, and 205, and the connection between the communication devices 203, 204, and 205 and the central control device 230 may be wired or wireless. To communicate to.
  • FIG. 12 is a diagram illustrating an example of the operation of each part before and after entering the second mode (FIO) in the second embodiment.
  • Control of the load detection means, temperature detection means, air blow control means, and wind direction control means of the indoor units 103A, 103B, 103C is the same as that of the first embodiment as shown in FIG.
  • the second embodiment is characterized in that the timings at which the indoor units 103A, 103B, and 103C enter the second mode (FIO) are slightly different from each other.
  • FIG. 13 is a diagram illustrating a difference in timing of entering the second mode (FIO).
  • the timing when the indoor unit 103B enters the second mode (FIO) is delayed by the time difference FIO ⁇ T from the timing when the indoor unit 103A enters the second mode (FIO).
  • this time difference, fan rotation speed, and temperature T1, T2 settings are adjusted, warm air blows out from the other indoor units 103B or 103C during the fan stop time of the indoor unit 103A.
  • the indoor heat exchanger 115 includes a first condenser 115A and a second condenser 115B connected in parallel to each other in the refrigerant circuit.
  • the indoor blower 113 includes a first blower 113A and a second blower 113B that are provided corresponding to the first condenser 115A and the second condenser 115B, respectively.
  • the central control device 230 is configured such that the first air blower 113A blows the second air flow (fan rotation speed N2A) and the second air blower 113B is the second air flow (fan).
  • the first blower 113A and the second blower 113B are controlled so that the period during which the rotational speed N2B) is blown does not overlap.
  • the indoor unit 103C is similarly provided with a condenser and a blower.
  • the air is alternately blown from the blowers of a plurality of indoor units, so that warm air is always supplied to the feet, and temperature vibrations near the floor surface can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和装置(101)は、冷媒回路(102)と、配管温度センサ(111)と、室内送風機(113)と、空調負荷検知部(125)と、制御装置(130)とを含む。配管温度センサ(111)は、凝縮温度(CT)を検知する。室内送風機(113)は、室内熱交換器(115)への送風量を調整する。空調負荷検知部(125)は、空調負荷を検知する。制御装置(130)は、第1モードと、第1モードとは異なる第2モードとを運転モードとして有し、室内送風機(113)の送風量を制御する。制御装置(130)は、第2モードでは、第1風量と第1風量より多い第2風量との間で、凝縮温度の変化に伴い風量を変化させるように室内送風機(113)を運転する。制御装置(130)は、第1モード中に、空調負荷検知部(125)が検知する空調負荷が第1しきい値よりも低下した場合には、第1モードを第2モードに変更する。

Description

空気調和装置
 本発明は、空気調和装置に関し、特に室内機の送風制御に関する。
 空気調和装置の暖房運転では、暖気は比重が軽いので上に移動するため、床面の温度が低下しやすい傾向がある。そのため、これまでの空気調和装置の暖房運転では、ファンを用いて足元に暖気を搬送することによって快適性を高めていた。さらに暖房時の快適性を向上させるために、例えば、特開2010-60250号公報(特許文献1)に記載されているような空気調和機が提案されている。
 特開2010-60250号公報に記載の空気調和機は、部屋内における人の位置および使用者の意図に応じてその時の送風方向および送風量を制御し、より効率的で快適な空調空間を提供している。
特開2010-60250号公報
 現在、住宅の高気密、高断熱化が進み、暖房負荷は小さくなる傾向にある。暖房負荷が小さい状況では、加熱能力も小さく制限される。特開2010-60250号公報に記載の空気調和機では、以下のような問題が発生する。
(1) 室内熱交換器の加熱能力が小さい場合は、吹き出し風量を確保すると吹き出し空気温度が低くなるので、足元に搬送される空気の温度が低くなる。
(2) 吹き出し風量を少なくした場合は、吹き出し空気温度は上昇するが、風量が少ないため比重が重い足元の冷気によって比重が軽い吹き出し空気(暖気)が舞い上がり、温風を足元まで搬送できない。
 本発明は、上記のような問題点を解決するためになされたものである。本発明の目的は、低負荷での暖房運転時に室内空気温度を均一にするために、空調機のファンを制御して、足元に暖気を供給することができる空気調和装置を提供することである。
 この発明に係る空気調和装置は、冷媒回路と、凝縮温度検知部と、送風機と、空調負荷検知部と、制御装置とを備える。冷媒回路は、冷媒が、圧縮機、凝縮器、膨張機構、蒸発器の順に循環する。凝縮温度検知部は、凝縮器における冷媒温度である凝縮温度を検知するように構成される。送風機は、凝縮器への送風量を調整するように構成される。空調負荷検知部は、空調空間の空調負荷を検知するように構成される。制御装置は、第1モードと、第1モードとは異なる第2モードとを運転モードとして有し、送風機の送風量を制御するように構成される。制御装置は、第2モードでは、第1風量と第1風量より多い第2風量との間で、凝縮温度の変化に伴い風量を変化させるように送風機を運転するように構成される。制御装置は、第1モード中に、空調負荷検知部が検知する空調負荷が第1しきい値よりも低下した場合には、第1モードを第2モードに変更するように構成される。
 本発明によれば、低負荷の暖房運転時に、ファン断続運転(FIO:Fan Intermittent Operation)をすることによって、床付近に形成された温度境界層を破壊して、温風の舞い上がりを防止しつつ、温風を足元に供給できる。その結果、足元の温度振動を低減させることができ、室内の快適性を向上させることが可能となる。
実施の形態1における空気調和装置101の一例を示す図である。 室内機103の構成要素の配置の一例を示す図である。 暖房運転でのFIO制御での室内の空気流れの一例を示す図である。 実施の形態1における制御の流れの一例を示すフローチャートである。 ステップS2の運転モード切り換えについて説明するための図である。 ステップS3の圧縮機の運転周波数の変化を説明するための図である。 実施の形態1における室内送風機113の運転状態の一例を示す図である。 ファン断続運転(FIO)中の凝縮温度の変化を説明するための図である。 図8の一部を拡大して示した図である。 実施の形態1において第2モード(FIO)に入る前後の各部の動作の一例を示す図である。 実施の形態2における制御システムの一例を示す図である。 実施の形態2において第2モード(FIO)に入る前後の各部の動作の一例を示す図である。 第2モード(FIO)に入るタイミングの違いについて示す図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。
 [実施の形態1]
 (空気調和装置101の構成)
 図1は、本発明の実施の形態1における空気調和装置101の一例を示す図である。図1に示すように、空気調和装置101は、室内機103と、室外機104と、制御装置130とを備える。
 室内機103は、室内送風機113と、室内熱交換器115と、赤外線センサ110と、配管温度センサ111と、室内温度センサ121とを含む。室外機104は、室外送風機114と、室外熱交換器116と、膨張弁117と、四方弁118と、圧縮機119とを含む。室外熱交換器116、膨張弁117、四方弁118、圧縮機119、及び室内熱交換器115が環状に冷媒配管120によって接続されることで、冷媒回路102が構成される。冷媒回路102の内部を冷媒が圧縮と膨張を繰り返しながら循環することで、ヒートポンプが形成される。制御装置130が四方弁118、圧縮機119、送風機113,114等を制御することによって、空気調和装置101は、冷房/暖房/送風などの運転モードにて室内を空調する。
 図1においては、四方弁118が暖房に設定された状態が示されている。この場合、四方弁118において、ポートHとポートGとが連通しており、ポートEとポートFとが連通している。冷媒は圧縮機119の吐出口Bから、室内熱交換器115、膨張弁117、室外熱交換器116の順に流れ、圧縮機119の吸入口Aに至る。
 なお、図示しないが、冷房時には、四方弁118において、ポートHとポートEとが連通しており、ポートGとポートFとが連通する。冷媒は圧縮機119の吐出口Bから、室外熱交換器116、膨張弁117、室内熱交換器115の順に流れ、圧縮機119の吸入口Aに至る。
 (室内機103の構成)
 図2は、実施の形態1における室内機103の構成要素の配置の一例を示す図である。室内機103は、その本体内部に室内熱交換器115と、室内送風機113と、配管温度センサ111と、赤外線センサ110と、風向板(ルーバ)112とが配置されている。室内熱交換器115は、室内送風機113の空気流の上流側に配置される。
 吹き出し口は、室内送風機113の下流側の通風路を形成している。吹き出し口に取り付けられた風向板(ルーバ)112の角度を変更することによって、気流の方向を調整することができる。
 (暖房運転の機器動作)
 空気調和装置101の室内機103から吹き出される冷風、温風により室内空間の冷暖房が行なわれる。また、空気調和装置101は、蒸気圧縮式冷凍サイクルを搭載しており、室内機103、室外機104は冷媒配管120で接続されている。
 圧縮機119は、低温・低圧の冷媒を圧縮して高温・高圧の冷媒を吐出口Bから吐出する。圧縮機119は、図示しないインバータで駆動され、空調状況に応じて運転容量が制御される。
 室外熱交換器116は、冷凍サイクルを流れる冷媒から供給される冷温熱と室外空気との間で熱交換を行なう。上述したように、室外熱交換器116には、室外送風機114によって室外空気が供給される。膨張弁117は、室内熱交換器115と室外熱交換器116との間に接続され、冷媒を減圧して膨張させる.膨張弁117は、開度が可変に制御可能なもの、たとえば電子式膨張弁等によって構成される。四方弁118は、圧縮機119の吐出口Bおよび吸入口Aに接続され、空気調和装置101の運転(冷房運転、暖房運転)に応じて冷媒の流れを切り替える。
 (室内送風機113、室外送風機114)
 室外送風機114は、室外熱交換器116に、室内送風機113は室内熱交換器115にそれぞれ供給する空気の流量を可変することが可能なファンである。これらのファンとしては、DCファンモータなどのモータによって駆動される遠心ファンや多翼ファン等を用いることができる。
 <機器動作>
 本実施の形態では、暖房負荷が少ない時に足元の快適性を向上させるために、FIO(Fan Intermittent Operation)制御を行なう。FIO制御は、温風を足元まで届けるような空気流れをファンによって発生させる制御である。以下の説明において、ユーザのリモコン等の設定によって風量が決定される運転モードを通常運転モード(以下、第1モード(FCO:Fan Common Operation))と記載し、空調負荷が低負荷である場合にファンを断続運転させる運転モードを断続運転モード(以下、第2モード(FIO))と記載する。
 図3は、実施の形態1における暖房運転でのFIO制御での室内の空気流れの一例を示す図である。図1~図3を参照して、空調対象空間Rでの暖房負荷が少ない時に、制御装置130は、風向板(ルーバ)112の角度を変更することによって室内機103の吹き出し方向を下向きにする。
 室内熱交換器115に設置された配管温度センサ111が検知する凝縮温度CTがある値(T1)以上の場合に、制御装置130は、ファン回転速度(N2)で室内送風機113の運転を開始する。また、配管温度センサ111が検知する凝縮温度CTがある値(T2)より低くなると、制御装置130は、室内送風機113を停止するか、または低風量で運転する。この時、室内送風機113の動作に関係なく、制御装置130は、圧縮機119の運転を継続する。
 したがって、室内送風機113が停止または低風量で運転している間に、室内熱交換器115の表面温度が上昇し、再び配管温度センサ111が検知する凝縮温度がある値(T1)以上になると、室内送風機113が回転速度(N2)で運転を再開する。
 <制御動作>
 以上のように構成された空気調和機について、フローチャートを用いて動作を説明する。図4は、本発明の実施の形態1における制御の流れの一例を示すフローチャートである。このフローチャートの処理を実行する制御装置130は、これらの機能を実現する回路デバイスなどのハードウェアで実現することもできるし、マイコンまたはCPUなどの演算装置にメモリから読み込まれ、演算装置で実行されるソフトウェアとして実現することもできる。
 図4を参照して、このフローチャートの処理が開始されると、まずステップS1において、制御装置130は、空調負荷Q(kW)を検知する。たとえば、空調負荷Qが所定値Q2より低いか否かを判断する際に、空調空間に存在する物体(壁、床、人など)の表面温度を目安とすることができる。
 空調負荷検知部125は赤外線センサ110によって空調空間に存在する物体の表面温度(輻射温度Tr)を検知する。制御装置130は、表面温度が第1しきい値よりも低下した場合に(S2でYES)、第1モード(FCO)を第2モード(FIO)に変更する。
 また他の例では、空調負荷Qは、図2に示される赤外線センサ110によって検出した室内の輻射温度Trに基づいて推定される。赤外線センサ110は、室内の複数個所の輻射温度Trを検出するものであっても良く、そのような場合には重みづけ平均値を使用することができる。たとえば、輻射温度Trと空調負荷Qとの関係を予め定められたマップにしておき、ステップS1においてマップを参照して輻射温度Trから空調負荷Qを求めるようにしても良い。
 さらに、空調負荷Qを推定する際に、外気温度と室内温度との温度差、床面温度または室内温度と設定温度との差、日射量、室内温度などを考慮しても良い。
 続いて、ステップS2において、制御装置130は、空調負荷Qが所定値Q2より低い場合(Q<Q2)に該当するかを判定する。ステップS2においてQ<Q2が成立する場合(S2でYES)、ステップS3に処理が進められ、成立しない場合(S2でNO)、ステップS14に処理が進められる。
 図5は、ステップS2の運転モード切り換えについて説明するための図である。図5を参照して、赤外線センサ110によって、輻射温度を用いて推定した空調負荷Qが所定値Q2より低い(Q<Q2)という条件は、空気調和装置101が第2モード(FIO)に入る条件である。なお、空調負荷Qが所定値Q1より低いという条件(Q<Q2)は、圧縮機を停止する条件である。
 このように、空調負荷Qと判定値である所定値Q2とを比較することによって、制御装置130は、運転モードを適宜第2モード(FIO)と第1モード(FCO)とに切換える。
 なお、図1の例では、空調負荷検知部125は、室内の表面温度または輻射温度に基づいて空調負荷を判断するものであったが、圧縮機119の回転速度によって空調負荷を判断しても良い。この場合、空調負荷検知部125は圧縮機119の回転速度を検知し、制御装置130は、圧縮機119の回転速度が第1しきい値(通常運転の下限設定値F1)よりも低下した場合に、第1モード(FCO)を第2モード(FIO)に変更する。
 ステップS2からステップS3に処理が進められた場合には制御装置130は圧縮機119の運転周波数も変更する。図6は、ステップS3における圧縮機の運転周波数の変化を説明するための図である。図4、図6を参照して、ステップS3では、制御装置130は、圧縮機の運転周波数を、通常運転における下限周波数F1と比べて約半分くらいの運転周波数F2に設定する。すなわち、時刻t1において第1モード(FCO)から第2モード(FIO)に変わる時、圧縮機119の運転周波数は、通常運転における下限設定値である周波数F1から周波数F1の約半分くらいの周波数F2に変化する。また、ステップS2において空調負荷Qが所定値Q2以上であれば、第1モード(FCO)に移行するので時刻t2において、運転周波数は周波数F1に戻る。
 また、ステップS3においては、制御装置130は、圧縮機119の運転周波数の変更と同時に、室内送風機113の送風方向を変更する。送風方向を変更するために、空気調和装置101は、風向板(ルーバ)112を含む。そして、制御装置130は、モードが第2モード(FIO)である場合に、送風方向が所定の風向(角度θ2に対応)となるように風向板112を制御する。
 制御装置130は、風向板(ルーバ)112の角度θを第1モード(FCO)ではユーザが設定した任意角度θ1としているが、第2モード(FIO)では角度θ2に変化させる。ここで、図2に示すように、風向板(ルーバ)112の角度θは床面に対して鉛直方向を90°、水平方向を0°とすると、所定の風向を示す角度θ2は45°以上である。好ましくは、角度θ2は、60~85°の範囲である。
 以下ステップS3に続き、ステップS4~S10において、室内送風機113を断続運転させる処理が実行される。
 図7は、実施の形態1における室内送風機113の運転状態の一例を示す図である。空調機の暖房低能力運転時に、風向板(ルーバ)112の角度θを下向きにして、時刻t1~t2に示すように風量を断続的に第1風量と第2風量との間で増減させる。ファン回転速度は回転速度N2の設定と0(rpm)の設定があり、回転速度をN2から0へ切換えるタイミングと、0からN2へ切換えるタイミングは、室内熱交換器115の凝縮温度CTに基づき決定される。
 なお、図7に示した例では、第2風量が回転速度N2に対応する風量であり、第1風量は室内送風機113を停止した状態に対応する風量(風量=0)である。ただし、第1風量は、第2風量よりも小さい風量であれば良く、必ずしもゼロでなくても良い。
 図8は、第2モード(FIO)中の凝縮温度の変化を説明するための図である。室内送風機113を運転/停止させるための凝縮温度CTの判定値は、温度T1と温度T2の2種類が設定されている。第2モード(FIO)中は、凝縮温度CTは、温度T1と温度T2の間で上下に変化する。上昇時間trにおいて室内送風機113が停止し、下降時間tfにおいて室内送風機113が運転する。
 図9は、図8の一部を拡大して示した図である。室内送風機113が停止中は、室内熱交換器115の凝縮温度CTはT2からT1へ上昇する。
 時刻t3において、凝縮温度CTが温度T1に達すると室内送風機113が運転を開始する。時刻t3~t4の室内送風機113運転中は、室内熱交換器115が送風によって冷却されるので、凝縮温度CTはT1からT2へ下降する。時刻t4において、凝縮温度CTが温度T2まで低下すると室内送風機113が停止する。以降、時刻t5、t6においても室内送風機113の運転開始、運転停止が繰返される。
 図9に示すように、制御装置130は、第2モード(FIO)において、凝縮温度CTが第1温度T1より高くなると室内送風機113の送風量を第1風量(ファン回転速度=N2)から第2風量(ファン回転速度=0)に変更する。また制御装置130は、凝縮温度CTが第2温度T2(<T1)より低くなると室内送風機113の送風量を第2風量(ファン回転速度=0)から第1風量(ファン回転速度=N2)に変更する。
 このような凝縮温度に基づいた送風ファンのON・OFF制御が図4のステップSS4~S10で実行される。以下再び図4に戻って、制御について説明する。
 ステップS3に続き、ステップS4において、制御装置130は、配管温度センサ111によって凝縮温度CTを検知する。
 続いて、ステップS5において、制御装置130は、室内送風機113が運転中(=ON)であるか否かを判断する。ステップS5において、室内送風機113がONである場合(S5でYES)にはステップS6に処理が進められ、室内送風機113がOFFである場合(S5でNO)には、ステップS8に処理が進められる。
 ステップS6では、制御装置130は、配管温度センサ111を用いて測定した凝縮温度CTが所定値T2より低いか否かを判断する。ステップS6においてCT<T2が成立した場合(S6でYES)には、ステップS7において制御装置130は室内送風機113を停止させ、ステップS10に処理を進める。ステップS6においてCT<T2が成立しない場合(S6でNO)には、制御装置130はステップS7の処理を実行せずにステップS10に処理を進める。
 一方、ステップS8では、制御装置130は、配管温度センサ111を用いて測定した凝縮温度CTが所定値T1より高いか否かを判断する。ステップS8においてCT>T1が成立した場合(S8でYES)には、制御装置130はステップS9において室内送風機113を運転させ、ステップS10に処理を進める。ステップS8においてCT>T1が成立しない場合(S8でNO)には、制御装置130はステップS9の処理を実行せずにステップS10に処理を進める。
 ステップS10では、制御装置130は、室内温度センサ121によって室温Taを検知する。室温Taが所定値Ta_minより高い場合(S11でYES)には、制御装置130はステップS12に処理を進める。室温Taが所定値Ta_minより低い場合(S11でNO)、制御装置130は、ステップS14に処理を進める。
 ステップS12では、制御装置130は、人体の体感温度Ta_tを検知する。体感温度の目安として、赤外線センサ110を用いて室内の表面温度を測定し、これを体感温度Ta_tとすることができる。
 体感温度Ta_tが所定値Ta_setより高い場合(S13でYES)には、制御装置130は、ステップS1に処理を戻し、上述の動作を繰り返す。体感温度Ta_tが所定値Ta_setより低い場合(S13でNO)、制御装置130は、ステップS14に処理を進める。ステップS14では、制御装置130は、運転モードを第1モード(FCO)に設定し、空気調和装置101を通常運転させる。
 なお、第1モードで実行される通常運転は、ステップS3~S13の処理を繰り返す室内ファン断続運転と異なる処理であれば良く、ユーザの設定にしたがって風量や室温を制御する処理であれば種々の運転が想定される。
 ステップS11およびS13において、第2モードから第1モードへ運転モードの切り替えの判断が行なわれる。すなわち、図1の空調負荷検知部125は、空調空間に存在する物体の表面温度を検知する赤外線センサ110と、室内温度を検知する室内温度センサ121とを含む。制御装置130は、第2モード(FIO)で運転中に、室内温度Taが第2しきい値Ta_minより低いという第1条件と、表面温度(体感温度Ta_t)が第3しきい値Ta_setよりも低いという第2条件との少なくとも一方が成立した場合に、運転モードを第2モード(FIO)から第1モード(FCO)に変更する。
 図10は、実施の形態1において第2モード(FIO)に入る前後の各部位の動作の一例を示す図である。時刻t0~t1では、暖房時の通常運転(FCO)が実行されている。このとき室内送風機113の回転速度は、ユーザの設定によって決定される回転速度N1となっている。
 時刻t1において通常運転(FCO)から低負荷運転(FIO)になると、室内送風機113の回転速度Nは0とN2との間で断続的に切換わり、風向板(ルーバ)112は通常設定した任意角度θ1から所定の角度θ2(=60~85°)に変化し、圧縮機119の運転周波数は、通常運転の下限値に相当する周波数F1から、その約半分の周波数F2になる。
 このように、圧縮機119の運転周波数を固定しながら、断続的に室内送風機113を運転させる制御によって、床付近に形成された空気の固有温度境界層を破壊し、温風の舞い上がりを防止し、足元温度の振動を減少させる。
 再び図1等を参照して実施の形態1に係る空気調和装置101について総括する。空気調和装置101は、冷媒回路102と、配管温度センサ111と、室内送風機113と、空調負荷検知部125と、制御装置130とを備える。冷媒回路102において暖房時には、冷媒が、圧縮機119、凝縮器として働く室内熱交換器115、膨張弁117、蒸発器として働く室外熱交換器116の順に循環する。配管温度センサ111は、室内熱交換器115における冷媒温度である凝縮温度CTを検知するように構成される。室内送風機113は、室内熱交換器115の放熱量を調整するように構成される。空調負荷検知部125は、空調空間の空調負荷を検知するように構成される。
 図4のフローチャートと図10の波形図で代表されるように、制御装置130は、第1モード(FCO)と、第1モードとは異なる第2モード(FIO)とを運転モードとして有し、室内送風機113の送風量を制御するように構成される。制御装置130は、第2モードでは、第1風量(ゼロ)と第1風量より多い第2風量(N2)との間で、凝縮温度CTの変化に伴い風量を変化させるように室内送風機113を運転するように構成される。図5に示すように、制御装置130は、第1モード中に、空調負荷検知部125が検知する空調負荷Qが第1しきい値Q2よりも低下した場合には、第1モード(FCO)を第2モード(FIO)に変更するように構成される。
 実施の形態1に係る空気調和装置101によって、以下(1)~(3)の効果が得られる。
(1) ファンを止めて凝縮温度を上昇させることにより圧縮機の低周波数運転でも吹き出し温度を上昇させることが可能となる。また、ファン再起動時に温風を足元に供給できる。
(2) 風向板を下向きにすることによって、温風の送風方向を足元にできる。また、吹出した温風と室内の空気との温度差によって、温風は足元まで送られた後に下から上に移動する。このため、圧縮機の低周波数運転でも室内温度を均一化することが可能となる。
(3) 圧縮機の運転周波数が低い場合でも室温を均一に保てるため、圧縮機の運転/停止を繰り返す発停が抑制され、省エネルギ効果が期待できる。
 [実施の形態2]
 以下、本発明の実施の形態2について説明する。実施の形態2に係る空気調和装置は、空調対象空間Rの室内温度を目標温度とするための、複数台の室内機103を制御する制御装置を備えている。各室内機103の負荷検知手段、温度検知手段、送風制御手段、風向制御手段の制御は実施の形態1と同様であるため、図示及び説明を省略する。
 図11は、実施の形態2における制御システムの一例を示す図である。室内機103A,103B,103Cは、それぞれ通信装置203、204、205によって、集中制御装置230に接続される。集中制御装置230から室内機103A,103B,103Cの制御を行なうことが可能である。室内機103A,103B,103Cと通信装置203、204、205間の接続、および通信装置203、204、205と集中制御装置230との接続は有線でも無線でもよく、制御指令や機器情報などが相互に伝達すればよい。
 図12は、実施の形態2における第2モード(FIO)に入る前後の各部位の動作の一例を示す図である。室内機103A,103B,103Cの負荷検知手段、温度検知手段、送風制御手段、風向制御手段の制御は図12に示すように実施の形態1と同様である。しかし、室内機103A,103B,103Cが第2モード(FIO)に入るタイミングが互いに若干異なる点が実施の形態2の特徴である。
 図13は、第2モード(FIO)に入るタイミングの違いについて示す図である。図13に示すように、室内機103Bが第2モード(FIO)に入るタイミングは、室内機103Aが第2モード(FIO)に入るタイミングよりも、時間差FIOΔTだけ遅れる。この時間差と、ファンの回転速度と、温度T1,T2の設定を調整すると、室内機103Aのファン停止時間では、他の室内機103B、または103Cから暖気が吹き出す。
 すなわち、実施の形態2では、図11に簡略的に示されるように、室内熱交換器115は、冷媒回路において互いに並列に接続される第1凝縮器115Aと第2凝縮器115Bとを含む。室内送風機113は、第1凝縮器115Aおよび第2凝縮器115Bにそれぞれ対応して設けられる第1送風機113Aと第2送風機113Bとを含む。図13に示すように、集中制御装置230は、第2モード(FIO)では、第1送風機113Aが第2風量(ファン回転速度N2A)を送風する期間と第2送風機113Bが第2風量(ファン回転速度N2B)を送風する期間とが重ならないように、第1送風機113Aおよび第2送風機113Bを制御する。なお、図示省略するが、室内機103Cにも同様に凝縮器と送風機が設けられている。
 このように制御することによって、複数の室内機の送風機から交互に送風されるので、足元に温風が常時供給され、床面付近の温度振動を抑えることが可能になる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 101 空気調和装置、103,103A,103B,103C 室内機、104 室外機、110 赤外線センサ、111 配管温度センサ、113 室内送風機、114 室外送風機、115 室内熱交換器、116 室外熱交換器、117 膨張弁、118 四方弁、119 圧縮機、120 冷媒配管、121 室内温度センサ、130 制御装置、230 集中制御装置、203 通信装置。

Claims (9)

  1.  冷媒が、圧縮機、凝縮器、膨張機構、蒸発器の順に循環する冷媒回路と、
     前記凝縮器における冷媒温度である凝縮温度を検知するように構成される凝縮温度検知部と、
     前記凝縮器への送風量を調整するように構成される送風機と、
     空調負荷を検知するように構成される空調負荷検知部と、
     第1モードと、前記第1モードとは異なる第2モードとを運転モードとして有し、前記送風機の送風量を制御するように構成される制御装置とを備え、
     前記制御装置は、前記第2モードでは、第1風量と前記第1風量より多い第2風量との間で、前記凝縮温度の変化に伴い風量を変化させるように前記送風機を運転するように構成され、
     前記制御装置は、前記第1モード中に、前記空調負荷検知部が検知する前記空調負荷が第1しきい値よりも低下した場合には、前記第1モードを前記第2モードに変更するように構成される、空気調和装置。
  2.  前記空調負荷検知部は空調空間の温度を検知し、
     前記制御装置は、前記温度が前記第1しきい値よりも低下した場合に、前記第1モードを前記第2モードに変更する、請求項1に記載の空気調和装置。
  3.  前記空調負荷検知部は、
     空調空間に存在する物体の表面温度を検知する表面温度検知部と、
     室内温度を検知する室内温度検知部とを含み、
     前記制御装置は、前記第2モードで運転中に、前記室内温度が第2しきい値より低いという第1条件と、前記表面温度が第3しきい値よりも低いという第2条件との少なくとも一方が成立した場合に、前記運転モードを前記第2モードから前記第1モードに変更する、請求項1に記載の空気調和装置。
  4.  前記空調負荷検知部は前記圧縮機の回転速度を検知し、
     前記制御装置は、前記圧縮機の回転速度が前記第1しきい値よりも低下した場合に、前記第1モードを前記第2モードに変更する、請求項1に記載の空気調和装置。
  5.  前記送風機の送風方向を変更する風向変更部を備え、
     前記制御装置は、モードが前記第2モードである場合に、前記送風方向が所定の風向となるように前記風向変更部を制御する、請求項1に記載の空気調和装置。
  6.  床面に対して鉛直方向を示す角度を90°とし、水平方向を示す角度を0°とした場合に、前記所定の風向を示す角度は45°以上である、請求項5に記載の空気調和装置。
  7.  前記制御装置は、前記第2モードにおいて、前記凝縮温度が第1温度より高くなると前記送風機の送風量を前記第1風量から前記第2風量に変更し、前記第1温度より低い第2温度よりも前記凝縮温度が低くなると前記送風機の送風量を前記第2風量から前記第1風量に変更する、請求項1に記載の空気調和装置。
  8.  前記空気調和装置は、
     前記冷媒回路において前記凝縮器に並列に接続される追加の凝縮器と、
     前記追加の凝縮器に対応して設けられる追加の送風機とをさらに備え、
     前記制御装置は、前記第2モードでは、前記送風機が前記第2風量を送風する期間と前記追加の送風機が前記第2風量を送風する期間とが重ならないように、前記送風機および前記追加の送風機を制御する、請求項1に記載の空気調和装置。
  9.  前記第1風量は前記送風機を停止した状態に対応する風量である、請求項1~8のいずれか1項に記載の空気調和装置。
PCT/JP2016/075325 2016-08-30 2016-08-30 空気調和装置 WO2018042515A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/075325 WO2018042515A1 (ja) 2016-08-30 2016-08-30 空気調和装置
EP16915076.0A EP3508795B1 (en) 2016-08-30 2016-08-30 Air conditioning device
JP2018536555A JP6727312B2 (ja) 2016-08-30 2016-08-30 空気調和装置
CN201680088662.6A CN109642747B (zh) 2016-08-30 2016-08-30 空气调节装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/075325 WO2018042515A1 (ja) 2016-08-30 2016-08-30 空気調和装置

Publications (1)

Publication Number Publication Date
WO2018042515A1 true WO2018042515A1 (ja) 2018-03-08

Family

ID=61300271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075325 WO2018042515A1 (ja) 2016-08-30 2016-08-30 空気調和装置

Country Status (4)

Country Link
EP (1) EP3508795B1 (ja)
JP (1) JP6727312B2 (ja)
CN (1) CN109642747B (ja)
WO (1) WO2018042515A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110454944B (zh) * 2019-08-26 2021-11-23 重庆美的通用制冷设备有限公司 空调器的控制方法、装置及空调器
CN110848898B (zh) * 2019-10-11 2021-02-12 珠海格力电器股份有限公司 一种防止空调负荷转换停机的控制方法、计算机可读存储介质及空调
CN113669880A (zh) * 2021-07-29 2021-11-19 青岛海尔空调器有限总公司 空调控制方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894158A (ja) * 1994-09-29 1996-04-12 Daikin Ind Ltd ヒートポンプ式空気調和機
JP2007040554A (ja) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd 空気調和機
JP2010060250A (ja) 2008-09-08 2010-03-18 Panasonic Corp 空気調和機
JP2013217550A (ja) * 2012-04-06 2013-10-24 Mitsubishi Heavy Ind Ltd 制御装置および方法並びにプログラム、それを備えたマルチ型空気調和システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3523963B2 (ja) * 1996-06-25 2004-04-26 東芝キヤリア株式会社 空気調和機の制御方法
KR100248760B1 (ko) * 1997-06-27 2000-04-01 윤종용 공기조화기의 난방제어방법
JP4127230B2 (ja) * 2004-03-26 2008-07-30 株式会社デンソー 車両用空調装置
JP5003829B2 (ja) * 2011-01-19 2012-08-15 ダイキン工業株式会社 空気調和機
CN102563806B (zh) * 2012-01-09 2014-10-29 美的集团股份有限公司 一种空调器出风温度的控制方法
CN103196214B (zh) * 2013-04-08 2015-05-06 青岛海信日立空调***有限公司 控制空调室内机的方法及空调室内机
JP5975937B2 (ja) * 2013-06-13 2016-08-23 三菱電機株式会社 空気調和機
JP6301634B2 (ja) * 2013-11-11 2018-03-28 シャープ株式会社 空気調和機
CN104006499B (zh) * 2014-05-28 2016-08-17 美的集团股份有限公司 空调***及其控制方法
CN106052008A (zh) * 2016-05-20 2016-10-26 弗德里希新能源科技(杭州)股份有限公司 机组运行冷凝温度及蒸发温度的调节方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894158A (ja) * 1994-09-29 1996-04-12 Daikin Ind Ltd ヒートポンプ式空気調和機
JP2007040554A (ja) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd 空気調和機
JP2010060250A (ja) 2008-09-08 2010-03-18 Panasonic Corp 空気調和機
JP2013217550A (ja) * 2012-04-06 2013-10-24 Mitsubishi Heavy Ind Ltd 制御装置および方法並びにプログラム、それを備えたマルチ型空気調和システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3508795A4

Also Published As

Publication number Publication date
JPWO2018042515A1 (ja) 2019-06-24
CN109642747B (zh) 2020-11-27
EP3508795A1 (en) 2019-07-10
EP3508795B1 (en) 2022-05-11
CN109642747A (zh) 2019-04-16
EP3508795A4 (en) 2019-08-28
JP6727312B2 (ja) 2020-07-22

Similar Documents

Publication Publication Date Title
JP6906311B2 (ja) 空気調和装置
US10151505B2 (en) Air-conditioning apparatus
JP6253774B2 (ja) 空気調和システム
US20160245569A1 (en) Air-conditioning apparatus
US11181293B2 (en) Air-conditioning apparatus
JP4478082B2 (ja) 空気調和機の制御方法
GB2516336A (en) Air-conditioning apparatus
JP5642121B2 (ja) 空調装置
JP6781395B2 (ja) 空気調和機
JP2011127802A (ja) 空気調和機
WO2018042515A1 (ja) 空気調和装置
JPWO2019193639A1 (ja) 空気調和システム
JP6956594B2 (ja) 空気調和装置
JPH0650595A (ja) 空気調和装置
JP5973076B2 (ja) 温水型暖房装置
JP7316759B2 (ja) 空気調和装置及び空気調和システム
WO2022024261A1 (ja) 空気調和装置
JP6562139B2 (ja) 冷凍装置
JPWO2018134888A1 (ja) 空気調和機
JP4592600B2 (ja) 空気調和機
JP6490095B2 (ja) 空気調和システム
WO2023021574A1 (ja) 空気調和装置
JP7068537B1 (ja) 空気調和装置および制御方法
JPH0436535A (ja) 空気調和機の室内ファン運転方法
JP2003254585A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018536555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016915076

Country of ref document: EP

Effective date: 20190401