WO2018037955A1 - 情報処理装置および方法、並びに記録媒体 - Google Patents

情報処理装置および方法、並びに記録媒体 Download PDF

Info

Publication number
WO2018037955A1
WO2018037955A1 PCT/JP2017/029254 JP2017029254W WO2018037955A1 WO 2018037955 A1 WO2018037955 A1 WO 2018037955A1 JP 2017029254 W JP2017029254 W JP 2017029254W WO 2018037955 A1 WO2018037955 A1 WO 2018037955A1
Authority
WO
WIPO (PCT)
Prior art keywords
human flow
flow data
control unit
moving body
unit
Prior art date
Application number
PCT/JP2017/029254
Other languages
English (en)
French (fr)
Inventor
敦 塩野崎
正道 飛鳥井
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2018535609A priority Critical patent/JP6950695B2/ja
Priority to CN201780050052.1A priority patent/CN109564725A/zh
Priority to US16/317,565 priority patent/US11127286B2/en
Publication of WO2018037955A1 publication Critical patent/WO2018037955A1/ja
Priority to US17/458,541 priority patent/US20210390849A1/en
Priority to JP2021154231A priority patent/JP7173251B2/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0056Navigation or guidance aids for a single aircraft in an emergency situation, e.g. hijacking
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0038Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/20UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present disclosure relates to an information processing apparatus and method, and a recording medium, and more particularly, to an information processing apparatus and method that can easily acquire a wide range of human flow data, and a recording medium.
  • An unmanned aerial vehicle (drone) is configured to be able to acquire data at a distant location, and recently, it has been proposed to perform sensing using various sensors by an unmanned aerial vehicle (Patent Document 1).
  • the present disclosure has been made in view of such circumstances, and can easily acquire a wide range of human flow data.
  • An information processing apparatus is configured so that a setting unit that sets a measurement area and a moving body move to the measurement area set by the setting unit and measure human flow data representing a human flow.
  • a moving body control unit to be controlled, a receiving unit that receives human flow data measured by the moving body, and a display control unit that controls a display corresponding to the human flow data received by the receiving unit.
  • the mobile body control unit can control the mobile body to measure the human flow data by moving from the current position to the measurement area when the mobile body is not in the measurement area.
  • the moving body control unit can control the moving body to measure surrounding human flow data while turning from the current position in the measurement area.
  • the moving body control unit can control the moving body to change to the direction in which the flow of people is the most in the measurement area and to measure surrounding human flow data.
  • the mobile body control unit can control the plurality of mobile bodies to measure surrounding human flow data by moving the mobile bodies while correcting the movement vectors, respectively, when measuring with a plurality of mobile bodies.
  • the previous display control unit can control the display of the size of the human flow corresponding to the human flow data in a heat map.
  • the display control unit can control the display so that the part of the old data differs according to the elapsed time when controlling the display of the size of the human flow corresponding to the human flow data in the heat map.
  • the setting unit can set the landing area.
  • the moving body control unit can control the moving body to move to the landing area set by the setting unit when the measurement is completed or when the fuel is insufficient.
  • the setting unit also sets the number of people around when landing, the moving body control unit measures the human flow data in the landing area, and the measured human flow data is obtained by the setting unit.
  • the human flow data is measured while turning, and when the measured human flow data is smaller than the number of people set by the setting unit, it can be controlled to land.
  • the mobile unit control unit further includes a transmission unit that transmits landing instruction data, and the mobile unit control unit, based on the landing command data, when the mobile unit receives the landing command data transmitted by the transmission unit in the landing area Can be controlled to land.
  • the information processing method controls the information processing device to set a measurement area, and the moving body moves to the set measurement area to measure human flow data representing a human flow. , Receiving the human flow data measured by the mobile body and controlling the display corresponding to the received human flow data.
  • a program recorded on a recording medium includes a setting unit that sets a measurement area, and a human flow data that represents a human flow when the moving body moves to the measurement area set by the setting unit.
  • a display control unit for controlling the display corresponding to the human flow data received by the receiving unit, and the receiving unit for receiving the human flow data measured by the moving unit, Make the computer work.
  • a measurement area is set, and the moving body is controlled to move to the set measurement area and measure human flow data representing a human flow. And the human flow data measured by the said mobile body are received, and the display corresponding to the received human flow data is controlled.
  • FIG. 20 is a block diagram illustrating a configuration example of a personal computer to which the present technology is applied.
  • FIG. 1 is a diagram illustrating a configuration example of a human flow measurement system to which the present technology is applied.
  • Many multifunctional mobile phones (smartphones, etc.) have a Wi-Fi function, and sometimes send radio waves to search for access points.
  • the human flow measurement system shown in the example of FIG. 1 acquires, for example, human flow data indicating the flow of a person having a multi-function mobile phone by sensing the radio wave, and performs display corresponding to the acquired human flow data.
  • System for example, human flow data indicating the flow of a person having a multi-function mobile phone by sensing the radio wave, and performs display corresponding to the acquired human flow data.
  • the human flow measurement system 11 moves to a measurement area and inputs a moving body 21 that measures human flow data, a measurement condition for the moving body 21, and a terminal that controls a display corresponding to the human flow data. 22.
  • Many multi-function mobile phones for example, smartphones have a Wi-Fi function, and sometimes send radio waves to search for access points.
  • the moving body 21 is represented by a drone, but it may be movable. Moreover, although it is desirable for the mobile body 21 to be able to fly, it does not need to be able to fly.
  • the mobile body 21 is configured to include a human flow measurement unit 31, a position measurement unit 32, a human flow data DB (database) 33, a control unit 34, a communication unit 35, and a drive unit 36.
  • the human flow measurement unit 31 measures human flow data by measuring radio waves of a multi-function mobile phone that is transmitted to search for an access point. The measured human flow data is supplied to the control unit 34.
  • the position measurement unit 32 includes a position information measurement system such as a GPS (Global Positioning System), for example, detects the position of the moving body 21 and supplies the control unit 34 with position information indicating the detection result.
  • the human flow data DB 33 registers the human flow data from the human flow measurement unit 31 via the control unit 34.
  • the control unit 34 controls each unit of the moving body 21 under the control of the terminal 22. That is, the control unit 34 causes the human flow measurement unit 31 to measure the human flow data and causes the position measurement unit 32 to detect the position of the moving body 21 based on the measurement conditions sent via the communication unit 35, thereby measuring the human flow.
  • the human flow data measured by the unit 31 is registered in the human flow data DB 33 and the communication unit 35 is transmitted to the terminal 22.
  • the control unit 34 drives the drive unit 36 based on the measurement conditions (measurement area information and landing area information, etc.) and the position information from the position measurement unit 32 sent via the communication unit 35. Then, the moving body 21 is moved.
  • the communication unit 35 transmits human flow data to the terminal 22, receives measurement conditions from the terminal 22, and supplies the measurement condition to the control unit 34.
  • the drive unit 36 drives each unit of the moving body 21 under the control of the control unit 34.
  • the terminal 22 includes, for example, a personal computer, a tablet terminal, a mobile phone, and the like, and is configured to include a human flow data DB (database) 41, a control unit 42, a communication unit 43, an input unit 44, and a display unit 45.
  • DB human flow data DB
  • the human flow data DB 41 registers the human flow data measured by the mobile body 21 via the control unit 42.
  • the display unit 45 is configured to include a moving body control unit 51, a display control unit 52, and a registration unit 53, as shown in FIG.
  • the mobile control unit 51 causes the communication unit 43 to transmit measurement conditions by the user from the input unit 44.
  • the mobile control unit 51 causes the communication unit 43 to transmit a control signal for landing when the landing is in the manual mode.
  • the display control unit 52 generates display data corresponding to the human flow data in the human flow data DB 41 and outputs the generated display data to the display unit 45.
  • the registration unit 53 registers the human flow data acquired via the communication unit 43 in the human flow data DB 41.
  • the communication unit 43 transmits measurement conditions to the mobile unit 21, receives human flow data from the mobile unit 21, and supplies the data to the control unit 42.
  • the input unit (setting unit) 44 sets measurement conditions related to human flow data measurement in response to a user operation.
  • the display unit 45 performs display corresponding to the display data generated by the display control unit 52.
  • the user inputs measurement conditions by operating the input unit 44.
  • the input unit 44 sets measurement conditions and supplies them to the moving body control unit 51 in step S11.
  • a map 71 is displayed on the display unit 45, and is surrounded by a lower left point (latitude 0, longitude 0) and an upper right point (latitude 1, longitude 1) via the input unit 44.
  • the measured area 72 is set. Further, the fuel shortage and the landing area at the end of measurement are set in the same manner as the measurement area 72.
  • IDs of other mobile bodies 21 are also input.
  • the mobile body control unit 51 transmits the set measurement conditions to the mobile body 21 via the communication unit 43.
  • the control unit 34 of the mobile body 21 acquires measurement conditions (measurement area, landing area, ID of the other mobile body 21, etc.) via the communication unit 35.
  • the subsequent processing is processing performed by the control unit 34 of the moving body 21 based on the measurement conditions from the moving body control unit 51, that is, under the control of the moving body control unit 51.
  • step S12 the control unit 34 of the moving body 21 performs a situation grasping process.
  • This situation grasping process will be described later with reference to FIG. 6, but by this process, which of the moving mode, the measurement mode, and the landing mode is the current mode of the moving body 21 is determined. Is grasped.
  • step S13 the control unit 34 determines whether or not the moving body 21 is currently in the movement mode. If it is determined in step S13 that the current mode is the movement mode, the process proceeds to step S14.
  • step S14 the control unit 34 performs a movement process.
  • the control unit 34 measures the position so that the current location 81 and the measurement area 72 are connected by the arrow 82 indicating the movement direction on the map 71 displayed on the display unit 45.
  • the unit 32 is caused to acquire the current location 81, and the drive unit 36 is controlled to move from the acquired current location 81 in the moving direction represented by the arrow 82 of the measurement area 72 set by the terminal 22. Thereafter, the process proceeds to step S19.
  • step S13 determines whether or not the mode is not the movement mode. If it is determined in step S13 that the mode is not the movement mode, the process proceeds to step S15.
  • step S15 the control unit 34 determines whether or not the moving body 21 is currently in the measurement mode. If it is determined in step S15 that the measurement mode is set, the process proceeds to step S16.
  • step S16 the control unit 34 performs a measurement process. Details of this measurement process will be described later with reference to FIG. 7, and the human flow in the measurement area is measured by this process. Thereafter, the process proceeds to step S19.
  • step S15 If it is determined in step S15 that the measurement mode is not selected, the process proceeds to step S17.
  • step S17 the control unit 34 determines whether or not the moving body 21 is currently in the landing mode. If it is determined in step S17 that the current mode is not the landing mode, the process returns to step S13, and the subsequent processes are repeated. If it is determined in step S17 that the current mode is the landing mode, the process proceeds to step S18.
  • step S18 the control unit 34 performs a landing process. Details of this landing process will be described later with reference to FIG. 15, but the mobile body 21 is landed automatically or manually by this process. Thereafter, the process proceeds to step S19.
  • step S19 the control unit 34 determines whether or not to end the human flow measurement process. If it is determined not to end, the process returns to step S12, and the subsequent processes are repeated. If it is determined in step S19 that the process is to be terminated, the human flow measurement process in FIG. 3 is terminated.
  • step S31 the control unit 34 acquires status data such as the fuel amount, the measured amount, and the current location.
  • step S32 the control unit 34 determines whether or not the fuel is insufficient. If it is determined in step S32 that there is no fuel shortage, the process proceeds to step S33. In step S33, the control unit 34 determines whether or not the measurement is finished.
  • step S32 If it is determined in step S32 that the fuel is insufficient, or if it is determined in step S33 that the measurement has been completed, the process proceeds to step S34.
  • step S34 the control unit 34 sets the mode of the moving body 21 to the landing mode. Thereafter, the processing proceeds to step S38.
  • step S35 the control unit 34 determines whether or not it is a measurement area. If it is determined in step S35 that it is a measurement area, the process proceeds to step S36. In step S36, the control unit 34 sets the mode of the moving body 21 to the measurement mode. Thereafter, the processing proceeds to step S38.
  • step S35 If it is determined in step S35 that it is not the measurement area, the process proceeds to step S37.
  • step S37 the control unit 34 sets the mode of the moving body 21 to the movement mode. Thereafter, the processing proceeds to step S38.
  • step S38 the control unit 34 determines whether or not to end the situation grasping process. If it is determined in step S38 that the situation grasping process is not terminated, the process returns to step S31, and the subsequent processes are repeated. If it is determined in step S38 that the situation grasping process is to be terminated, the process is terminated.
  • this measurement process may be complete
  • step S51 the control unit 34 controls the driving unit 36 and the human flow measurement unit 31 to measure the surrounding human flow while turning from the current location.
  • a map of the measurement area 91 is shown.
  • the measurement area 91 is divided by the moving body 21 into a grid having a size that can be measured at a time.
  • the already-measured lattice group 92 is hatched as a heat map according to the human flow.
  • the number of people is shown corresponding to the darkness of the hatch.
  • the control unit 34 shows an example of measuring the human flow for each grid while turning the moving body 21 clockwise.
  • step S52 the control unit 34 determines the direction.
  • FIG. 9 shows an example of a direction determining matrix. The numbers represent values that have already been measured by turning and measuring in step S51. As shown in FIG. 9, the control unit 34 determines the most current direction (dark hatch) in the current location 93 except for the portion (light hatch) measured immediately before. By doing in this way, only a place with many people can be measured efficiently.
  • step S53 the control unit 34 controls the drive unit 36 to move the moving body 21 in the direction determined in step S52.
  • step S54 the control unit 34 determines whether or not to end the measurement process. If it is determined in step S54 that the measurement process is not terminated, the process returns to step S51, and the subsequent processes are repeated. If it is determined in step S54 that the measurement process is to be terminated, the measurement process is terminated.
  • FIG. 8 is an example of turning
  • FIG. 9 is an example of a direction determination method, and other methods may be used for either.
  • step S16 in FIG. 3 an example in which a plurality of moving bodies 21-1 and 21-2 exist is shown.
  • the lattice group 92 that has already been measured by the moving body 21-1 and the lattice group 102 that has already been measured by the moving body 21-2 are included in the grid. Accordingly, hatching is performed as a heat map. For example, the number of people is shown corresponding to the darkness of the hatch.
  • step S71 the control unit 34 of the moving body 21-1 controls the driving unit 36 and the human flow measurement unit 31, and for example, measures surrounding human flow while turning from the current location as described above in step S51 of FIG. Do.
  • step S72 the control unit 34 acquires the position information of the other moving body 21-2 via the communication unit 35.
  • step S73 the control unit 34 determines the direction as described above in step S52 of FIG.
  • the measurement area 91 in FIG. 11 is divided into a grid having a size that can be measured at a time by the moving body 21.
  • the already-measured lattice group 92 is hatched as a heat map according to the human flow. For example, the number of people is shown corresponding to the darkness of the hatch.
  • step S74 the control unit 34 controls the drive unit 36 to move the moving body 21 in the direction determined in step S73.
  • the control unit 34 controls the drive unit 36 to move the moving body 21 in the direction determined in step S73.
  • step S75 the control unit 34 determines whether or not to end the measurement process. If it is determined in step S75 that the measurement process is not terminated, the process returns to step S51, and the subsequent processes are repeated. If it is determined in step S75 that the measurement process is to be terminated, the measurement process is terminated.
  • FIG. 12 is a diagram showing an example of human flow data obtained by human flow measurement.
  • the human flow data includes information on the number of people n and the measurement time t for each grid obtained by dividing the measurement area 91 into a grid.
  • FIG. 13 is an example of a human flow display displayed on the display unit 45 based on the human flow data on the terminal 22 side.
  • the already measured lattice group 92 is hatched as a heat map according to the human flow. For example, the number of people is shown corresponding to the darkness of the hatch.
  • FIG. 14 shows another example of the human flow display displayed on the display unit 45 based on the human flow data on the terminal 22 side.
  • the display of the grid group 92B is displayed with higher transparency or lower saturation than the display of the grid group 92A.
  • the human flow data of the lattice group 92C is temporally older than the human flow data of the lattice group 92B, the display of the lattice group 92C displays higher transparency or lower saturation than the display of the lattice group 92B. Has been.
  • step S18 in FIG. 3 will be described with reference to the flowchart in FIG.
  • step S91 the control unit 34 controls the drive unit 36 to move the moving body 21 to the landing area (charge) set by the terminal 22.
  • step S92 the control unit 34 determines whether the landing is in the automatic mode. If it is determined in step S92 that the automatic mode is set, the process proceeds to step S93. In step S ⁇ b> 93, the control unit 34 controls the human flow measurement unit 31 and performs human flow measurement. Thereafter, in step S94, the control unit 34 determines whether or not the human flow is small by looking at the human flow measurement result.
  • step S94 If it is determined in step S94 that there are many people, the process proceeds to step S95.
  • step S ⁇ b> 95 the control unit 34 controls the drive unit 36 to turn the moving body 21. Thereafter, the process returns to step S93, and the subsequent processes are repeated.
  • step S94 If it is determined in step S94 that there is little human flow, the process proceeds to step S96.
  • step S ⁇ b> 96 the control unit 34 controls the drive unit 36 to land the moving body 21.
  • step S92 determines whether the mode is not the automatic mode. If it is determined in step S92 that the mode is not the automatic mode, the process proceeds to step S97.
  • step S97 the control unit 34 switches to the manual mode.
  • step S98 the control unit 34 performs landing of the moving body 21 in the manual mode. That is, landing of the moving body 21 is performed based on the control signal of the control unit 42 of the terminal 22 that is transmitted and received via the communication unit 43 and the communication unit 35.
  • the mobile body 21 is landed by control from the terminal 22 of the operator in the manual mode, and from the current location 112 in the automatic mode, The human flow is measured with the turning shown at 113, and landing is made at a position where the human flow is small.
  • the example which measures a person's flow was demonstrated, you may measure the flow of the car which carries the cellular phone with a Wi-Fi function, or the onboard equipment with a Wi-Fi function which a person has.
  • the flow of people may be measured in an outdoor measurement area, or the flow of people may be measured at a station or the like.
  • ⁇ Personal computer> The series of processes described above can be executed by hardware or can be executed by software.
  • a program constituting the software is installed in the computer.
  • the computer includes a computer incorporated in dedicated hardware, a general-purpose personal computer capable of executing various functions by installing various programs, and the like.
  • FIG. 17 is a block diagram showing a hardware configuration example of a personal computer that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input / output interface 505 is further connected to the bus 504.
  • An input unit 506, an output unit 507, a storage unit 508, a communication unit 509, and a drive 510 are connected to the input / output interface 505.
  • the input unit 506 includes a keyboard, a mouse, a microphone, and the like.
  • the output unit 507 includes a display, a speaker, and the like.
  • the storage unit 508 includes a hard disk, a nonvolatile memory, and the like.
  • the communication unit 509 includes a network interface or the like.
  • the drive 510 drives a removable medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 501 loads, for example, a program stored in the storage unit 508 to the RAM 503 via the input / output interface 505 and the bus 504 and executes the program. Thereby, the series of processes described above are performed.
  • the program executed by the computer (CPU 501) can be provided by being recorded on the removable medium 511.
  • the removable medium 511 is a package made of, for example, a magnetic disk (including a flexible disk), an optical disk (CD-ROM (Compact Disc-Read Disc Only), DVD (Digital Versatile Disc), etc.), a magneto-optical disc, or a semiconductor memory.
  • the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 508 via the input / output interface 505 by attaching the removable medium 511 to the drive 510. Further, the program can be received by the communication unit 509 via a wired or wireless transmission medium and installed in the storage unit 508. In addition, the program can be installed in the ROM 502 or the storage unit 508 in advance.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in a necessary stage such as in parallel or when a call is made. It may be a program for processing.
  • the step of describing the program recorded on the recording medium is not limited to the processing performed in chronological order according to the described order, but may be performed in parallel or It also includes processes that are executed individually.
  • system represents the entire apparatus composed of a plurality of devices (apparatuses).
  • the present disclosure can take a cloud computing configuration in which one function is shared by a plurality of devices via a network and is jointly processed.
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit).
  • a configuration other than that described above may be added to the configuration of each device (or each processing unit).
  • a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). . That is, the present technology is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present technology.
  • this technique can also take the following structures.
  • a setting section for setting the measurement area;
  • a moving body control unit that controls the moving body to move to the measurement area set by the setting unit and measure human flow data representing a human flow;
  • a receiver for receiving human flow data measured by the mobile body;
  • An information processing apparatus comprising: a display control unit that controls display corresponding to human flow data received by the receiving unit.
  • the mobile unit control unit when the mobile unit is not in the measurement area, controls to move from the current position to the measurement area and measure the human flow data.
  • Information processing device (3) The information processing unit according to (1) or (2), wherein the moving body control unit controls the moving body to measure surrounding human flow data while turning from a current position in the measurement area. apparatus.
  • the mobile body control unit controls the mobile body to change to a direction in which the human flow is the largest in the measurement area and measure surrounding human flow data.
  • the information processing apparatus according to any one of 3).
  • the moving body control unit controls the plurality of moving bodies to measure surrounding human flow data by moving while correcting movement vectors.
  • the information processing apparatus according to any one of (1) to (4).
  • (6) The information processing apparatus according to any one of (1) to (5), wherein the display control unit controls display in which a size of a human flow corresponding to the human flow data is expressed in a heat map.
  • the display control unit controls the display so that the part of the old data differs according to the elapsed time when controlling the display of the size of the human flow corresponding to the human flow data in a heat map.
  • (8) The information processing apparatus according to any one of (1) to (7), wherein the setting unit sets a landing area.
  • the moving body control unit controls the moving body to move to a landing area set by the setting unit when measurement ends or when fuel is insufficient.
  • the setting unit also sets the number of people around when landing,
  • the moving body control unit measures the human flow data in the landing area, and when the measured human flow data is larger than the number of persons set by the setting unit,
  • a transmission unit for transmitting the landing instruction data is further provided,
  • the mobile body control unit controls the mobile body to perform landing based on the landing instruction data when the mobile body receives the landing instruction data transmitted by the transmission unit in the landing area.
  • the information processing device is Set the measurement area, The moving body moves to the measurement area set by the setting unit, and controls to measure human flow data representing the flow of people, Receiving human flow data measured by the mobile, An information processing method for controlling display corresponding to received human flow data.
  • a setting section for setting the measurement area; A moving body control unit that controls the moving body to move to the measurement area set by the setting unit and measure human flow data representing a human flow; A receiver for receiving human flow data measured by the mobile body; A recording medium in which a program that causes a computer to function as a display control unit that controls display corresponding to human flow data received by the receiving unit is recorded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示は、広い範囲の人流データを簡単に取得することができるようにする情報処理装置および方法、並びに記録媒体に関する。 移動体制御部は、入力部からの利用者の設定情報や移動体を制御するための制御データを通信部に送信させる。表示制御部は、人流データDBの人流データに対応する表示データを生成し、生成した表示データを表示部に出力する。通信部は、移動体に、制御データ、測定エリアの情報、着陸エリアの情報を送信し、移動体から人流データを受信し、制御部に供給する。入力部は、ユーザの操作に対応して、人流データ計測に関する設定情報を設定する。表示部は、表示制御部により生成された表示データに対応する表示を行う。本開示は、例えば、移動体と端末からなる人流測定システムに適用することができる。

Description

情報処理装置および方法、並びに記録媒体
 本開示は、情報処理装置および方法、並びに記録媒体に関し、特に、広い範囲の人流データを簡単に取得することができるようにした情報処理装置および方法、並びに記録媒体に関する。
 無人航空機(ドローン)は、離れた場所のデータを取得可能に構成されており、近年、無人航空機により各種センサを用いてセンシングを行うことが提案されている(特許文献1)。
 一方、多くの多機能携帯電話機(スマートフォンなど)には、Wi-Fi機能がついており、アクセスポイントを探すために、ときどき電波を発信している。その電波をセンシングすることで、人の流れを示す人流データを取得し、サービスに用いられている。
特開2015-188150号公報
 しかしながら、端末では、電波のセンシングを行う範囲が固定されてしまうため、広い範囲のデータを取ろうとすると多くの端末を設置しなければならなかった。また、離れた場所のデータを取得することが困難であった。
 そこで、離れた場所のデータを取得可能な無人航空機により、人流データの取得を行うことが早急に求められている。
 本開示は、このような状況に鑑みてなされたものであり、広い範囲の人流データを簡単に取得することができるものである。
 本技術の一側面の情報処理装置は、測定エリアを設定する設定部と、移動体が、前記設定部により設定された測定エリアに移動して、人の流れを表す人流データを測定するように制御する移動体制御部と、前記移動体により測定された人流データを受信する受信部と、前記受信部により受信された人流データに対応する表示を制御する表示制御部とを備える。
 前記移動体制御部は、前記移動体が、前記測定エリアにいない場合、現在位置から前記測定エリアに移動して、前記人流データを測定するように制御することができる。
 前記移動体制御部は、前記移動体が、前記測定エリアにおいて、現在位置から旋回しつつ周囲の人流データを測定するように制御することができる。
 前記移動体制御部は、前記移動体が、前記測定エリアにおいて、最も人の流れの多かった方向に転換して、周囲の人流データを測定するように制御することができる。
 前記移動体制御部は、複数の移動体で測定を行う場合、前記複数の移動体が、それぞれ移動ベクトルを補正しながら移動することにより周囲の人流データを測定するように制御することができる。
 前前記表示制御部は、前記人流データに対応する人流の大きさをヒートマップに表現した表示を制御することができる。
 前記表示制御部は、前記人流データに対応する人流の大きさをヒートマップに表現した表示を制御する際に、経過時間に応じて古いデータの部分が異なるように表示を制御することができる。
 前記設定部は、着陸エリアを設定することができる。
 前記移動体制御部は、前記移動体が、測定終了時または燃料不足時、前記設定部により設定された着陸エリアに移動するように制御することができる。
 前記設定部は、着陸時の周囲の人数も設定し、前記移動体制御部は、前記移動体が、前記着陸エリアにおいて、前記人流データを測定し、測定された人流データが、前記設定部により設定された人数よりも多い場合、旋回しながら、前記人流データを測定し、測定された人流データが、前記設定部により設定された人数よりも少ない場合、着陸するように制御することができる。
 着陸指示データを送信する送信部をさらに備え、前記移動体制御部は、前記移動体が、前記着陸エリアにおいて、前記送信部により送信された着陸指示データを受けた場合、前記着陸指示データに基づいて着陸を行うように制御することができる。
 本技術の一側面の情報処理方法は、情報処理装置が、測定エリアを設定し、移動体が、設定された測定エリアに移動して、人の流れを表す人流データを測定するように制御し、前記移動体により測定された人流データを受信し、受信された人流データに対応する表示を制御する。
 本技術の一側面の記録媒体に記録されているプログラムは、測定エリアを設定する設定部と、移動体が、前記設定部により設定された測定エリアに移動して、人の流れを表す人流データを測定するように制御する移動体制御部と、前記移動体により測定された人流データを受信する受信部と、前記受信部により受信された人流データに対応する表示を制御する表示制御部として、コンピュータを機能させる。
 本技術の一側面においては、測定エリアが設定され、移動体が、設定された測定エリアに移動して、人の流れを表す人流データを測定するように制御される。そして、前記移動体により測定された人流データが受信され、受信された人流データに対応する表示が制御される。
 本技術によれば、広い範囲の人流データを簡単に取得することができる。
  なお、本明細書に記載された効果は、あくまで例示であり、本技術の効果は、本明細書に記載された効果に限定されるものではなく、付加的な効果があってもよい。
本技術を適用した人流測定システムの構成例を示すブロック図である。 移動体の制御部の機能構成例を示すブロック図である。 人流測定システムの人流測定処理を説明するフローチャートである。 測定条件の設定について説明する図である。 移動処理を説明する図である。 状況把握処理について説明するフローチャートである。 測定処理について説明するフローチャートである。 測定エリアにおける現在地からの回旋例を示す図である。 方向を決定するためのマトリックスを示す図である。 移動体が複数の場合の測定処理について説明するフローチャートである。 移動体が複数の場合の測定処理について説明する図である。 人流データの例を示す図である。 人流データに対応する表示の例を示す図である。 人流データに対応する表示の他の例を示す図である。 着陸処理を説明するフローチャートである。 自動モードの場合の着陸処理を説明する図である。 本技術を適用したパーソナルコンピュータの構成例を示すブロック図である。
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。
 <システムの構成例>
 図1は、本技術を適用した人流測定システムの構成例を示す図である。多くの多機能携帯電話機(スマートフォンなど)には、Wi-Fi機能がついており、アクセスポイントを探すために、ときどき電波を発信している。図1の例に示される人流測定システムは、例えば、その電波をセンシングすることで、多機能携帯電話機を有する人の流れを示す人流データを取得し、取得された人流データに対応する表示を行うシステムである。
 図1の例において、人流測定システム11は、計測エリアに移動して、人流データを計測する移動体21と、移動体21に対する測定条件を入力したり、人流データに対応する表示を制御する端末22とで構成される。多くの多機能携帯電話機(例えば、スマートフォンなど)には、Wi-Fi機能がついており、アクセスポイントを探すために、ときどき電波を発信している。
 移動体21は、ドローンに代表されるが、移動可能であればよい。また、移動体21は、飛行可能であることが望ましいが、飛行可能でなくてもよい。移動体21は、人流測定部31、位置測定部32、人流データDB(データベース)33、制御部34、通信部35、および駆動部36を含むように構成される。
 人流測定部31は、アクセスポイントを探すために発信する多機能携帯電話機の電波を計測することにより人流データを計測する。計測された人流データは、制御部34に供給される。
 位置測定部32は、例えばGPS(Global Positioning System)などの位置情報計測システムからなり、移動体21の位置を検出して、その検出結果を示す位置情報を制御部34に供給する。人流データDB33は、制御部34を介して、人流測定部31からの人流データを登録する。
 制御部34は、端末22の制御のもと、移動体21の各部を制御する。すなわち、制御部34は、通信部35を介して送られてくる測定条件に基づき、人流測定部31に、人流データを測定させ、位置測定部32に移動体21の位置を検出させ、人流測定部31により測定された人流データを人流データDB33に登録させるとともに、通信部35に、端末22に送信させる。また、制御部34は、通信部35を介して送られてくる測定条件(測定エリアの情報および着陸エリアの情報など)および位置測定部32からの位置情報に基づいて、駆動部36を駆動させて、移動体21を移動させる。
 通信部35は、端末22に、人流データを送信したり、端末22からの測定条件を受信し、制御部34に供給する。駆動部36は、制御部34の制御のもと、移動体21の各部を駆動させる。
 端末22は、例えば、パーソナルコンピュータ、タブレット端末、携帯電話機などからなり、人流データDB(データベース)41、制御部42、通信部43、入力部44、および表示部45を含むように構成される。
 人流データDB41は、制御部42を介して、移動体21により計測された人流データを登録する。
 表示部45は、図2に示されるように、移動体制御部51、表示制御部52、登録部53を含むように構成されている。移動体制御部51は、入力部44からの利用者による測定条件を通信部43に送信させる。また、移動体制御部51は、着陸が手動モードのとき、着陸のための制御信号を通信部43に送信させる。表示制御部52は、人流データDB41の人流データに対応する表示データを生成し、生成した表示データを表示部45に出力する。登録部53は、通信部43を介して取得した人流データを人流データDB41に登録する。
 通信部43は、移動体21に、測定条件を送信し、移動体21から人流データを受信し、制御部42に供給する。入力部(設定部)44は、ユーザの操作に対応して、人流データ計測に関する測定条件を設定する。表示部45は、表示制御部52により生成された表示データに対応する表示を行う。
 次に、図3のフローチャートを参照して、人流測定システム11の人流測定処理について説明する。
 ユーザは、入力部44を操作することで、測定条件を入力する。これに対応して、入力部44は、ステップS11において、測定条件を設定し、移動体制御部51に供給する。例えば、図4に示されるように、表示部45にマップ71を表示させ、入力部44を介して、左下のポイント(緯度0,経度0)と右上のポイント(緯度1,経度1)で囲まれた測定エリア72が設定される。また、燃料不足や測定終了時の着陸エリアも、測定エリア72と同様に設定される。複数の移動体21で協調測定する際には、他の移動体21のIDなども入力される。移動体制御部51は、設定した測定条件を、通信部43を介して、移動体21に送信する。移動体21の制御部34は、通信部35を介して、測定条件(測定エリア、着陸エリア、他の移動体21のIDなど)を取得する。
 なお、これ以降の処理は、移動体制御部51からの測定条件に基づいて、すなわち、移動体制御部51からの制御のもと、移動体21の制御部34により行われる処理である。
 ステップS12において、移動体21の制御部34は、状況把握処理を行う。この状況把握処理の詳細は、図6を参照して後述されるが、この処理により、移動体21の現在のモードが、移動モード、測定モード、および着陸モードのうち、いずれのモードであるのかが把握される。
 制御部34は、ステップS13において、移動体21が現在、移動モードであるか否かを判定する。ステップS13において、移動モードであると判定された場合、処理は、ステップS14に進む。
 ステップS14において、制御部34は、移動処理を行う。例えば、図5の例において、表示部45に表示されたマップ71上で、現在地81と測定エリア72とが、移動方向を表す矢印82で接続されているように、制御部34は、位置測定部32に、現在地81を取得させ、取得された現在地81から、端末22により設定された測定エリア72の矢印82で表される移動方向に、駆動部36を制御して、移動させる。その後、処理は、ステップS19に進む。
 一方、ステップS13において、移動モードではないと判定された場合、処理は、ステップS15に進む。ステップS15において、制御部34は、移動体21が現在、測定モードであるか否かを判定する。ステップS15において、測定モードであると判定された場合、処理は、ステップS16に進む。
 ステップS16において、制御部34は、測定処理を行う。この測定処理の詳細は、図7を参照して後述されるが、この処理により測定エリア内の人流が測定される。その後、処理は、ステップS19に進む。
 ステップS15において、測定モードではないと判定された場合、処理は、ステップS17に進む。ステップS17において、制御部34は、移動体21が現在、着陸モードであるか否かを判定する。ステップS17において、着陸モードではないと判定された場合、処理は、ステップS13に戻り、それ以降の処理が繰り返される。ステップS17において、着陸モードであると判定された場合、処理は、ステップS18に進む。
 ステップS18において、制御部34は、着陸処理を行う。この着陸処理の詳細は、図15を参照して後述されるが、この処理により自動または手動により移動体21が着陸する。その後、処理は、ステップS19に進む。
 ステップS19において、制御部34は、人流測定処理を終了するか否かを判定し、終了しないと判定された場合、処理は、ステップS12に戻り、それ以降の処理が繰り返される。ステップS19において、処理を終了すると判定された場合、図3の人流測定処理は終了される。
 次に、図6のフローチャートを参照して、図3のステップS12の状況把握処理について説明する。
 制御部34は、ステップS31において、燃料量や測定量や現在地などである状況データを取得する。ステップS32において、制御部34は、燃料不足であるか否かを判定する。ステップS32において、燃料不足ではないと判定された場合、処理は、ステップS33に進む。ステップS33において、制御部34は、測定終了したか否かを判定する。
 ステップS32において、燃料不足であると判定された場合、または、ステップS33において、測定終了したと判定された場合、処理は、ステップS34に進む。ステップS34において、制御部34は、移動体21のモードを着陸モードとする。その後、処理は、ステップS38に進む。
 一方、ステップS33において、測定終了していないと判定された場合、処理は、ステップS35に進む。ステップS35において、制御部34は、測定エリアであるか否かを判定する。ステップS35において、測定エリアであると判定された場合、処理は、ステップS36に進む。ステップS36において、制御部34は、移動体21のモードを測定モードとする。その後、処理は、ステップS38に進む。
 ステップS35において、測定エリアではないと判定された場合、処理は、ステップS37に進む。ステップS37において、制御部34は、移動体21のモードを移動モードとする。その後、処理は、ステップS38に進む。
 ステップS38において、制御部34は、状況把握処理を終了するか否かを判定する。ステップS38において、状況把握処理を終了しないと判定された場合、処理は、ステップS31に戻り、それ以降の処理が繰り返される。ステップS38において、状況把握処理を終了すると判定された場合、処理は終了される。
 次に、図7のフローチャートを参照して、図3のステップS16の測定処理について説明する。なお、この計測処理は、一通りの計測で終了されてもよいし、所定の時間になるまで、あるいは、燃料が切れるまで繰り返し計測されてもよい。
 ステップS51において、制御部34は、駆動部36および人流測定部31を制御し、現在地から旋回しつつ周囲の人流測定を行う。図8の例においては、測定エリア91のマップが示されている。例えば、測定エリア91は、移動体21によって1度に測定可能な広さの格子状に分割されている。格子のうち、すでに計測済みの格子群92は、人流に応じてヒートマップとしてハッチがなされている。例えば、ハッチの濃さに対応して、人流の多さが表されている。制御部34は、現在地93から矢印94が示すように、移動体21を時計回りに旋回させながら、その格子毎に人流を測定する例が示されている。
 ステップS52において、制御部34は、方向決定を行う。図9は、方向決定用のマトリクスの例を示している。数字は、ステップS51の旋回と計測によりすでに計測済みの値を表している。制御部34は、図9に示されるように、現在地93において、直前に測定した部分(薄いハッチ)を除いて、最も人流の多かった方向(濃いハッチ)に決定する。このようにすることで、人の多いところのみを効率的に測定することができる。
 ステップS53において、制御部34は、駆動部36を制御し、ステップS52により決定された方向に移動体21を移動させる。
 ステップS54において、制御部34は、測定処理を終了するか否かを判定する。ステップS54において、測定処理を終了しないと判定された場合、処理は、ステップS51に戻り、それ以降の処理が繰り返される。ステップS54において、測定処理を終了すると判定された場合、測定処理は終了する。
 なお、図8は、旋回の一例であり、図9は、方向決定方法の一例であり、どちらについても、その他の方法が用いられてもよい。
 次に、図10のフローチャートを参照して、図3のステップS16の測定処理の他の例について説明する。すなわち、図10の例においては、複数の移動体21-1および21-2が存在する場合の例が示されている。また、図11の測定エリア91のマップには、格子のうち、移動体21-1によりすでに計測済みの格子群92と、移動体21-2によりすでに計測済みの格子群102には、人流に応じてヒートマップとしてハッチがなされている。例えば、ハッチの濃さに対応して、人流の多さが表されている。
 ステップS71において、移動体21-1の制御部34は、駆動部36および人流測定部31を制御し、例えば、図7のステップS51で上述したように、現在地から旋回しつつ周囲の人流測定を行う。
 ステップS72において、制御部34は、通信部35を介して、他の移動体21-2の位置情報を取得する。
 ステップS73において、制御部34は、例えば、図7のステップS52で上述したように、方向決定を行う。図11の測定エリア91は、移動体21によって1度に測定可能な広さの格子状に分割されている。格子のうち、すでに計測済みの格子群92は、人流に応じてヒートマップとしてハッチがなされている。例えば、ハッチの濃さに対応して、人流の多さが表されている。
 ステップS74において、制御部34は、駆動部36を制御し、ステップS73により決定された方向に移動体21を移動させる。なお、その際、図11に示されるように、移動体21-1の現在地93と移動体21-2の現在地101との距離dが指定距離Dよりも小さい場合、移動体21-1の移動体21-2への単位方向ベクトルViにより次の式(1)で移動ベクトルMをM’に補正する。
Figure JPOXMLDOC01-appb-M000001
 これにより、移動体同士が近づかないようにすることができる。
 ステップS75において、制御部34は、測定処理を終了するか否かを判定する。ステップS75において、測定処理を終了しないと判定された場合、処理は、ステップS51に戻り、それ以降の処理が繰り返される。ステップS75において、測定処理を終了すると判定された場合、測定処理は終了する。
 以上のようにすることで、複数の移動体が存在する場合には、お互いが近づきすぎないほうが衝突を避けるとともに、重なった無駄な測定を避けることができ、効率的な測定を行うことができる。
 図12は、人流測定により得られた人流データの例を示す図である。
 人流データは、測定エリア91を格子状に分割された格子毎に、人数nと測定時間tの情報が入っている。
 図13は、端末22側において、人流データに基づいて表示部45に表示される人流表示の例である。図13の例においては、格子のうち、すでに計測済みの格子群92は、人流に応じてヒートマップとしてハッチがなされている。例えば、ハッチの濃さに対応して、人流の多さが表されている。
 図14は、端末22側において、人流データに基づいて表示部45に表示される人流表示の他の例である。
 図14の例においては、表現の便宜上、同じハッチングで表現されているが、実際には、すでに計測済みの格子群92のうち、格子群92Aの人流データより、格子群92Bの人流データが時間的に古いデータであるので、格子群92Bの表示は、格子群92Aの表示より、透明度が高いまたは彩度を低く表示されている。また、格子群92Bの人流データより、格子群92Cの人流データが時間的に古いデータであるので、格子群92Cの表示は、格子群92Bの表示よりさらに、透明度が高いまたは彩度を低く表示されている。
 以上のようにすることで、測定された時刻から現在時刻までの経過時間に応じて、徐々にデータが現状と乖離していることを表現することができる。
 次に、図15のフローチャートを参照して、図3のステップS18の着陸処理について説明する。
 ステップS91において、制御部34は、駆動部36を制御し、移動体21を、端末22により設定されている着陸エリア(充電)へ移動する。
 ステップS92において、制御部34は、着陸が自動モードであるか否かを判定する。ステップS92において自動モードであると判定された場合、処理は、ステップS93に進む。ステップS93において、制御部34は、人流測定部31を制御し、人流測定を行う。その後、ステップS94において、制御部34は、人流測定結果を見て、人流が少ないか否かを判定する。
 ステップS94において、人流が多いと判定された場合、ステップS95に進む。ステップS95において、制御部34は、駆動部36を制御し、移動体21を旋回させる。その後、処理は、ステップS93に戻り、それ以降の処理が繰り返される。
 ステップS94において、人流が少ないと判定された場合、ステップS96に進む。ステップS96において、制御部34は、駆動部36を制御し、移動体21を着陸させる。
 一方、ステップS92において、自動モードではないと判定された場合、処理は、ステップS97に進む。ステップS97において、制御部34は、手動モードに切り替えをする。その後、ステップS98において、制御部34は、手動モードにより移動体21の着陸を行う。すなわち、通信部43および通信部35を介して送受信される、端末22の制御部42の制御信号に基づいて、移動体21の着陸が行われる。
 以上のように、図16に示されるように、着陸エリア111において、移動体21は、手動モードの場合、操縦者の端末22からの制御により着陸され、自動モードの場合、現在地112から、矢印113に示される旋回とともに人流が測定され、人流が少ない位置で着陸される。
 このようにすることで、人とぶつかったり、盗まれたりすることを抑制することができる。
 なお、人の流れを計測する例を説明したが、人の持つWi-Fi機能つき携帯電話機、またはWi-Fi機能つき車載器を搭載した車の流れを計測してもよい。戸外の測定エリアにて人の流れを計測してもよいし、駅などで人の流れを計測するようにしてもよい。
 以上のように、本技術によれば、広い範囲の人流データを簡単に取得することができる。
 <パーソナルコンピュータ>
 上述した一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な汎用のパーソナルコンピュータなどが含まれる。
 図17は、上述した一連の処理をプログラムにより実行するパーソナルコンピュータのハードウエアの構成例を示すブロック図である。
 パーソナルコンピュータ500において、CPU(Central Processing Unit)501,ROM(Read Only Memory)502,RAM(Random Access Memory)503は、バス504により相互に接続されている。
 バス504には、さらに、入出力インタフェース505が接続されている。入出力インタフェース505には、入力部506、出力部507、記憶部508、通信部509、及びドライブ510が接続されている。
 入力部506は、キーボード、マウス、マイクロホンなどよりなる。出力部507は、ディスプレイ、スピーカなどよりなる。記憶部508は、ハードディスクや不揮発性のメモリなどよりなる。通信部509は、ネットワークインタフェースなどよりなる。ドライブ510は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブルメディア511を駆動する。
 以上のように構成されるパーソナルコンピュータ500では、CPU501が、例えば、記憶部508に記憶されているプログラムを、入出力インタフェース505及びバス504を介して、RAM503にロードして実行する。これにより、上述した一連の処理が行われる。
 コンピュータ(CPU501)が実行するプログラムは、リムーバブルメディア511に記録して提供することができる。リムーバブルメディア511は、例えば、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory),DVD(Digital Versatile Disc)等)、光磁気ディスク、もしくは半導体メモリなどよりなるパッケージメディア等である。また、あるいは、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータにおいて、プログラムは、リムーバブルメディア511をドライブ510に装着することにより、入出力インタフェース505を介して、記憶部508にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部509で受信し、記憶部508にインストールすることができる。その他、プログラムは、ROM502や記憶部508に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要な段階で処理が行われるプログラムであっても良い。
 また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
 また、本明細書において、システムとは、複数のデバイス(装置)により構成される装置全体を表すものである。
 なお、本開示における実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本開示は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。つまり、本技術は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有するのであれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例また修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 なお、本技術は以下のような構成も取ることができる。
 (1) 測定エリアを設定する設定部と、
 移動体が、前記設定部により設定された測定エリアに移動して、人の流れを表す人流データを測定するように制御する移動体制御部と、
 前記移動体により測定された人流データを受信する受信部と、
 前記受信部により受信された人流データに対応する表示を制御する表示制御部と
 を備える情報処理装置。
 (2) 前記移動体制御部は、前記移動体が、前記測定エリアにいない場合、現在位置から前記測定エリアに移動して、前記人流データを測定するように制御する
 前記(1)に記載の情報処理装置。
 (3) 前記移動体制御部は、前記移動体が、前記測定エリアにおいて、現在位置から旋回しつつ周囲の人流データを測定するように制御する
 前記(1)または(2)に記載の情報処理装置。
 (4) 前記移動体制御部は、前記移動体が、前記測定エリアにおいて、最も人の流れの多かった方向に転換して、周囲の人流データを測定するように制御する
 前記(1)乃至(3)のいずれかに記載の情報処理装置。
 (5) 前記移動体制御部は、複数の移動体で測定を行う場合、前記複数の移動体が、それぞれ移動ベクトルを補正しながら移動することにより周囲の人流データを測定するように制御する
 前記(1)乃至(4)のいずれかに記載の情報処理装置。
 (6) 前記表示制御部は、前記人流データに対応する人流の大きさをヒートマップに表現した表示を制御する
 前記(1)乃至(5)のいずれかに記載の情報処理装置。
 (7) 前記表示制御部は、前記人流データに対応する人流の大きさをヒートマップに表現した表示を制御する際に、経過時間に応じて古いデータの部分が異なるように表示を制御する
 前記(6)に記載の情報処理装置。
 (8) 前記設定部は、着陸エリアを設定する
 前記(1)乃至(7)のいずれかに記載の情報処理装置。
 (9) 前記移動体制御部は、前記移動体が、測定終了時または燃料不足時、前記設定部により設定された着陸エリアに移動するように制御する
 前記(8)に記載の情報処理装置。
 (10) 前記設定部は、着陸時の周囲の人数も設定し、
 前記移動体制御部は、前記移動体が、前記着陸エリアにおいて、前記人流データを測定し、測定された人流データが、前記設定部により設定された人数よりも多い場合、旋回しながら、前記人流データを測定し、測定された人流データが、前記設定部により設定された人数よりも少ない場合、着陸するように制御する
 前記(9)に記載の情報処理装置。
 (11) 着陸指示データを送信する送信部をさらに備え、
 前記移動体制御部は、前記移動体が、前記着陸エリアにおいて、前記送信部により送信された着陸指示データを受けた場合、前記着陸指示データに基づいて着陸を行うように制御する
 前記(9)に記載の情報処理装置。
 (12) 情報処理装置が、
 測定エリアを設定し、
 移動体が、前記設定部により設定された測定エリアに移動して、人の流れを表す人流データを測定するように制御し、
 前記移動体により測定された人流データを受信し、
 受信された人流データに対応する表示を制御する
 情報処理方法。
 (13) 測定エリアを設定する設定部と、
 移動体が、前記設定部により設定された測定エリアに移動して、人の流れを表す人流データを測定するように制御する移動体制御部と、
 前記移動体により測定された人流データを受信する受信部と、
 前記受信部により受信された人流データに対応する表示を制御する表示制御部と
 して、コンピュータを機能させるプログラムが記録されている記録媒体。
 11 人流測定システム,21,21-1,21-2 移動体,22 端末,31 人流測定部,32 位置測定部,33 人流データDB,34 制御部,35 通信部,36 駆動部,41 人流データDB,42 制御部,43 通信部,44 入力部,45 表示部,51 移動体制御部,52 表示制御部,53 登録部,91 測定エリア,92,92A乃至92 格子群,93 現在地,94 矢印,101 現在地,102 格子群,111 着陸エリア,112 現在地,113 矢印

Claims (13)

  1.  測定エリアを設定する設定部と、
     移動体が、前記設定部により設定された測定エリアに移動して、人の流れを表す人流データを測定するように制御する移動体制御部と、
     前記移動体により測定された人流データを受信する受信部と、
     前記受信部により受信された人流データに対応する表示を制御する表示制御部と
     を備える情報処理装置。
  2.  前記移動体制御部は、前記移動体が、前記測定エリアにいない場合、現在位置から前記測定エリアに移動して、前記人流データを測定するように制御する
     請求項1に記載の情報処理装置。
  3.  前記移動体制御部は、前記移動体が、前記測定エリアにおいて、現在位置から旋回しつつ周囲の人流データを測定するように制御する
     請求項1に記載の情報処理装置。
  4.  前記移動体制御部は、前記移動体が、前記測定エリアにおいて、最も人の流れの多かった方向に転換して、周囲の人流データを測定するように制御する
     請求項1に記載の情報処理装置。
  5.  前記移動体制御部は、複数の移動体で測定を行う場合、前記複数の移動体が、それぞれ移動ベクトルを補正しながら移動することにより周囲の人流データを測定するように制御する
     請求項1に記載の情報処理装置。
  6.  前記表示制御部は、前記人流データに対応する人流の大きさをヒートマップに表現した表示を制御する
     請求項1に記載の情報処理装置。
  7.  前記表示制御部は、前記人流データに対応する人流の大きさをヒートマップに表現した表示を制御する際に、経過時間に応じて古いデータの部分が異なるように表示を制御する
     請求項6に記載の情報処理装置。
  8.  前記設定部は、着陸エリアを設定する
     請求項1に記載の情報処理装置。
  9.  前記移動体制御部は、前記移動体が、測定終了時または燃料不足時、前記設定部により設定された着陸エリアに移動するように制御する
     請求項8に記載の情報処理装置。
  10.  前記設定部は、着陸時の周囲の人数も設定し、
     前記移動体制御部は、前記移動体が、前記着陸エリアにおいて、前記人流データを測定し、測定された人流データが、前記設定部により設定された人数よりも多い場合、旋回しながら、前記人流データを測定し、測定された人流データが、前記設定部により設定された人数よりも少ない場合、着陸するように制御する
     請求項9の記載の情報処理装置。
  11.  着陸指示データを送信する送信部をさらに備え、
     前記移動体制御部は、前記移動体が、前記着陸エリアにおいて、前記送信部により送信された着陸指示データを受けた場合、前記着陸指示データに基づいて着陸を行うように制御する
     請求項9に記載の情報処理装置。
  12.  情報処理装置が、
     測定エリアを設定し、
     移動体が、前記設定部により設定された測定エリアに移動して、人の流れを表す人流データを測定するように制御し、
     前記移動体により測定された人流データを受信し、
     受信された人流データに対応する表示を制御する
     情報処理方法。
  13.  測定エリアを設定する設定部と、
     移動体が、前記設定部により設定された測定エリアに移動して、人の流れを表す人流データを測定するように制御する移動体制御部と、
     前記移動体により測定された人流データを受信する受信部と、
     前記受信部により受信された人流データに対応する表示を制御する表示制御部と
     して、コンピュータを機能させるプログラムが記録されている記録媒体。
PCT/JP2017/029254 2016-08-26 2017-08-14 情報処理装置および方法、並びに記録媒体 WO2018037955A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018535609A JP6950695B2 (ja) 2016-08-26 2017-08-14 情報処理装置および方法、並びに記録媒体
CN201780050052.1A CN109564725A (zh) 2016-08-26 2017-08-14 信息处理装置和方法以及记录介质
US16/317,565 US11127286B2 (en) 2016-08-26 2017-08-14 Information processing device and method, and recording medium
US17/458,541 US20210390849A1 (en) 2016-08-26 2021-08-27 Information processing device and method, and recording medium
JP2021154231A JP7173251B2 (ja) 2016-08-26 2021-09-22 情報処理装置および方法、並びにプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-165710 2016-08-26
JP2016165710 2016-08-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/317,565 A-371-Of-International US11127286B2 (en) 2016-08-26 2017-08-14 Information processing device and method, and recording medium
US17/458,541 Continuation US20210390849A1 (en) 2016-08-26 2021-08-27 Information processing device and method, and recording medium

Publications (1)

Publication Number Publication Date
WO2018037955A1 true WO2018037955A1 (ja) 2018-03-01

Family

ID=61244882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029254 WO2018037955A1 (ja) 2016-08-26 2017-08-14 情報処理装置および方法、並びに記録媒体

Country Status (4)

Country Link
US (2) US11127286B2 (ja)
JP (2) JP6950695B2 (ja)
CN (2) CN113955108A (ja)
WO (1) WO2018037955A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201621177D0 (en) 2016-12-13 2017-01-25 Semblant Ltd Protective coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122678A (ja) * 1985-11-25 1987-06-03 三井造船株式会社 避難者誘導方式
JP2004101616A (ja) * 2002-09-05 2004-04-02 Sony Corp 移動撮影システム、移動撮影方法、移動体、及び信号発生装置

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002288385A (ja) 2001-03-26 2002-10-04 Mitsubishi Electric Corp 混雑状況探知器
US6652351B1 (en) * 2001-12-21 2003-11-25 Rehco, Llc Dancing figure
US6798357B1 (en) * 2002-09-19 2004-09-28 Navteq North America, Llc. Method and system for collecting traffic information
US7996151B2 (en) * 2004-03-29 2011-08-09 Pioneer Corporation Map information display controlling device, system, method, and program, and recording medium where the program is recorded
KR100651481B1 (ko) * 2005-12-09 2006-11-30 삼성전자주식회사 데이터의 저장 정보에 따라 배경 화면을 변환하여 표시하기위한 계층 구조 제공 방법과 그에 따른 배경 화면 변환방법 및 이를 위한 이동 단말기
US20070288132A1 (en) * 2006-06-07 2007-12-13 Raytheon Company Cooperative swarm of unmanned vehicles
JP4556142B2 (ja) * 2007-11-27 2010-10-06 ソニー株式会社 ナビゲーション装置及びナビゲーション関連情報表示方法
US8743197B2 (en) * 2008-04-22 2014-06-03 David James Stewart System and method for monitoring jump velocity
US8482417B2 (en) * 2008-11-17 2013-07-09 David Stewart System and method for network-based jump area monitoring
US8135503B2 (en) * 2010-04-27 2012-03-13 Honeywell International Inc. Ground proximity sensor
CN102903163B (zh) * 2011-07-30 2016-12-07 温卓明 一种基于无线通信的人流定位和监控***
US10776103B2 (en) * 2011-12-19 2020-09-15 Majen Tech, LLC System, method, and computer program product for coordination among multiple devices
US20130181993A1 (en) * 2012-01-13 2013-07-18 Fiona Elizabeth HERRING Place heat geometries
US9104201B1 (en) * 2012-02-13 2015-08-11 C&P Technologies, Inc. Method and apparatus for dynamic swarming of airborne drones for a reconfigurable array
IL218327A (en) * 2012-02-26 2013-05-30 Elbit Systems Ltd Safe emergency landing of unmanned aerial vehicles
JP6060536B2 (ja) * 2012-06-27 2017-01-18 ソニー株式会社 情報処理装置、情報処理方法およびプログラム
CN103176476B (zh) * 2013-03-08 2015-07-01 北京航空航天大学 一种滑翔式无人机自主进场航路规划方法
GB201314091D0 (en) * 2013-08-07 2013-09-18 Smart Ship Holdings Ltd Ordering products/services
CA2927096C (en) * 2013-10-26 2023-02-28 Amazon Technologies, Inc. Unmanned aerial vehicle delivery system
JP5767731B1 (ja) 2014-03-26 2015-08-19 株式会社衛星ネットワーク 空撮映像配信システムおよび空撮映像配信方法
WO2015185594A1 (en) * 2014-06-04 2015-12-10 Cuende Infometrics, S.A. System and method for measuring the real traffic flow of an area
US9847032B2 (en) * 2014-07-15 2017-12-19 Richard Postrel System and method for automated traffic management of intelligent unmanned aerial vehicles
US9409644B2 (en) * 2014-07-16 2016-08-09 Ford Global Technologies, Llc Automotive drone deployment system
US9874878B2 (en) * 2014-07-22 2018-01-23 Sikorsky Aircraft Corporation System and method for adaptive multi-scale perception
US9363008B2 (en) * 2014-07-22 2016-06-07 International Business Machines Corporation Deployment criteria for unmanned aerial vehicles to improve cellular phone communications
JP6172783B2 (ja) * 2014-07-31 2017-08-02 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機を用いて仮想観光をするシステムおよび方法
CN104821084B (zh) * 2014-09-20 2017-01-18 罗普特(厦门)科技集团有限公司 基于无人机测量的路段交通指数估算***
US10013900B2 (en) * 2014-09-23 2018-07-03 Amazon Technologies, Inc. Vehicle noise control and communication
US20160207626A1 (en) * 2015-01-21 2016-07-21 Glen R. Bailey Airborne Surveillance Kite
WO2016130994A1 (en) * 2015-02-13 2016-08-18 Unmanned Innovation, Inc. Unmanned aerial vehicle remote flight planning system
US9747901B1 (en) * 2015-02-27 2017-08-29 Amazon Technologies, Inc. Speech interaction for unmanned aerial vehicles
EP3888958B1 (en) * 2015-06-03 2023-05-24 ClearMotion, Inc. Method of mitigating motion sickness in an autonomous vehicle
CN105095451A (zh) * 2015-07-27 2015-11-25 深圳先进技术研究院 警用无人机大数据采集***及犯罪空间数据库构建方法
US10061328B2 (en) * 2015-08-12 2018-08-28 Qualcomm Incorporated Autonomous landing and control
US10096263B2 (en) * 2015-09-02 2018-10-09 Ford Global Technologies, Llc In-vehicle tutorial
WO2017041303A1 (en) * 2015-09-11 2017-03-16 SZ DJI Technology Co., Ltd. Systems and methods for detecting and tracking movable objects
CN205098466U (zh) * 2015-10-08 2016-03-23 安徽理工大学 基于多旋翼的人口密度监测装置
US9651945B1 (en) * 2015-11-03 2017-05-16 International Business Machines Corporation Dynamic management system, method, and recording medium for cognitive drone-swarms
CN105760831B (zh) * 2015-12-07 2019-07-05 北京航空航天大学 一种基于低空航拍红外视频的行人跟踪方法
US10351240B1 (en) * 2016-01-21 2019-07-16 Wing Aviation Llc Methods and systems for cooperative operation and configuration of aerially-mobile devices
CN105760853A (zh) * 2016-03-11 2016-07-13 上海理工大学 人员流量监控无人机
EP3239729A1 (en) * 2016-04-25 2017-11-01 Viavi Solutions UK Limited Sensor-based geolocation of a user device
US20170313439A1 (en) * 2016-04-29 2017-11-02 Jordan Holt Methods and syststems for obstruction detection during autonomous unmanned aerial vehicle landings
US11453494B2 (en) * 2016-05-20 2022-09-27 Skydio, Inc. Unmanned aerial vehicle area surveying
KR20170138797A (ko) * 2016-06-08 2017-12-18 엘지전자 주식회사 드론
WO2018034033A1 (ja) * 2016-08-16 2018-02-22 本郷飛行機株式会社 通信制御装置
US10163357B2 (en) * 2016-08-24 2018-12-25 Qualcomm Incorporated Navigation assistance data and route planning for drones
US11797029B2 (en) * 2021-07-19 2023-10-24 Ford Global Technologies, Llc Systems and methods for operating drones in proximity to objects

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122678A (ja) * 1985-11-25 1987-06-03 三井造船株式会社 避難者誘導方式
JP2004101616A (ja) * 2002-09-05 2004-04-02 Sony Corp 移動撮影システム、移動撮影方法、移動体、及び信号発生装置

Also Published As

Publication number Publication date
JP2022008501A (ja) 2022-01-13
US20210390849A1 (en) 2021-12-16
JP7173251B2 (ja) 2022-11-16
US20190287390A1 (en) 2019-09-19
CN109564725A (zh) 2019-04-02
CN113955108A (zh) 2022-01-21
JP6950695B2 (ja) 2021-10-13
JPWO2018037955A1 (ja) 2019-06-20
US11127286B2 (en) 2021-09-21

Similar Documents

Publication Publication Date Title
US10569874B2 (en) Flight control method and apparatus
CN107861518B (zh) 一种无人飞行器的控制方法和终端
US10997237B2 (en) Acoustic monitoring system
RU2759064C1 (ru) Способ и устройство для сообщения маршрутной информации полета и способ и устройство для определения информации
EP3809161A1 (en) Information processing device, information processing method and distance measurement system
US9091548B2 (en) Information processing apparatus, information processing method, and program
CN109190648B (zh) 模拟环境生成方法、装置、移动终端及计算机可读取存储介质
KR20090002848A (ko) 주변 기기 식별 방법 및 장치
CN108151748B (zh) 飞行装置测绘作业航线规划方法、装置和终端
CN106054918A (zh) 提供无人机信息的方法和装置
CN107560614A (zh) 路线规划方法及装置
JP7173251B2 (ja) 情報処理装置および方法、並びにプログラム
EP2972657B1 (en) Application-controlled granularity for power-efficient classification
US11341596B2 (en) Robot and method for correcting position of same
US20200241572A1 (en) Drone control method and device, drone and core network device
KR20170071278A (ko) 이동 단말기
WO2018038006A1 (ja) 電子機器、制御方法、及び制御プログラム
WO2017187948A1 (ja) 電子機器、制御方法、及び制御プログラム
WO2019082924A1 (ja) 情報処理装置
WO2023152967A1 (ja) 情報処理システム、情報処理装置、情報処理方法及びプログラム
US20240196162A1 (en) Electronic device using geofence and operation method
US20240127042A1 (en) Information processing device, information processing system, information processing method, and recording medium
EP4373139A1 (en) Method and electronic device for searching for external device through positioning angle adjustment
US20230262415A1 (en) Electronic device and operation method using a geo-fence
JP6636606B2 (ja) 電子機器、制御方法、及び制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018535609

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843438

Country of ref document: EP

Kind code of ref document: A1