WO2018028004A1 - 一种量子碳素及制备该量子碳素的方法及装置 - Google Patents

一种量子碳素及制备该量子碳素的方法及装置 Download PDF

Info

Publication number
WO2018028004A1
WO2018028004A1 PCT/CN2016/096157 CN2016096157W WO2018028004A1 WO 2018028004 A1 WO2018028004 A1 WO 2018028004A1 CN 2016096157 W CN2016096157 W CN 2016096157W WO 2018028004 A1 WO2018028004 A1 WO 2018028004A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
quantum
metal piece
quantum carbon
cavity
Prior art date
Application number
PCT/CN2016/096157
Other languages
English (en)
French (fr)
Inventor
朱光华
Original Assignee
玉灵华科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610653441.0A external-priority patent/CN106219518B/zh
Priority claimed from CN201610654182.3A external-priority patent/CN106276875B/zh
Priority claimed from CN201610652204.2A external-priority patent/CN106241773A/zh
Priority claimed from CN201610654264.8A external-priority patent/CN106315551B/zh
Priority claimed from CN201610653442.5A external-priority patent/CN106276853A/zh
Priority claimed from CN201610653390.1A external-priority patent/CN106241787B/zh
Priority claimed from CN201610652205.7A external-priority patent/CN106276852B/zh
Priority claimed from CN201610654183.8A external-priority patent/CN106276854A/zh
Priority to EP16912459.1A priority Critical patent/EP3498670A4/en
Application filed by 玉灵华科技有限公司 filed Critical 玉灵华科技有限公司
Priority to KR1020197002386A priority patent/KR20190021413A/ko
Priority to US16/324,216 priority patent/US20190177168A1/en
Priority to JP2019506656A priority patent/JP2019531998A/ja
Publication of WO2018028004A1 publication Critical patent/WO2018028004A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/135Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/30Cells comprising movable electrodes, e.g. rotary electrodes; Assemblies of constructional parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/02Single layer graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the invention relates to a method and device, in particular to a quantum carbon and a method and a device for preparing the same.
  • carbon is one of the most important and important elements in nature. It has a variety of electron orbital properties of SP, SP2, and SP3 hybridization, especially the heterogeneity of carbon-carbon double bond sp2 hybridization leads to the crystallinity of the crystal, so that the carbon structural material with carbon as the only constituent element has A variety of properties, and new carbon materials are still being discovered and artificially produced. It can be said that no element can be formed as a single element like carbon to form so many structures and properties as three-dimensional diamond crystals, two-dimensional graphite sheets, one-dimensional carbene and carbon nanotubes, zero-dimensional fullerene molecules, and so on. Substance.
  • graphene sheet materials in carbon structures have many advantages, and in the fields of solar cells, sensors, nanoelectronics, high-performance nanoelectronic devices, composite materials, field emission materials, gas sensors, and energy storage.
  • scientists and efforts have been made to explore ways to prepare single-layer graphene, especially to produce high-quality, high-yield, low-cost, structurally stable graphene.
  • the well-known methods for preparing graphene are mainly as follows: 1 peeling method, including micro mechanical peeling method and solvent stripping method; 2 growth method, including crystal epitaxial growth, orientation epitaxy, chemical vapor deposition, etc.; 3 redox graphite method, including the commonly used Hummers method, Standenmaier method, Brodie method, etc.; 4 other methods, mainly arc discharge method, graphite interlayer chemical approach, currently very novel high temperature quenching method and carbon nanotube stripping Law and so on.
  • 1 peeling method including micro mechanical peeling method and solvent stripping method
  • 2 growth method including crystal epitaxial growth, orientation epitaxy, chemical vapor deposition, etc.
  • 3 redox graphite method including the commonly used Hummers method, Standenmaier method, Brodie method, etc.
  • 4 other methods mainly arc discharge method, graphite interlayer chemical approach, currently very novel high temperature quenching method and carbon nanotube stripping Law and so on.
  • the redox graphite method has a simple and diversified process, and is a commonly used method for preparing graphene, but it is only suitable for a small amount of preparation in a laboratory for research, and a large amount of preparation is liable to generate a large amount of waste acid, waste water and the like to cause environmental pollution.
  • the quantum carbon includes a single-layer graphene, a multilayer graphene, and a nano-carbon structure having carbon particles having a particle diameter of 0.3 to 100 nm, and has a compound containing carbon, hydrogen, oxygen, and nitrogen on the surface layer of the carbon particles.
  • the compound containing carbon, hydrogen, oxygen, and nitrogen includes a fused ring aromatic hydrocarbon, a compound containing a carbon oxygen single bond, a compound containing a carbon oxygen double bond, and a compound containing a carbon hydrogen bond.
  • Quantum carbon is a thermodynamically unstable but kinetically stable metastable substance of carbon.
  • the substrate constituting the quantum carbon is a monodisperse carbon atom or a cluster of carbon atoms.
  • the carbon atoms in the equilibrium state have a certain stress energy and are in a higher energy state.
  • the carbons in different carbon allotropes have different energies.
  • the energy of carbon atoms in graphite is the most stable state.
  • the energy of carbon atoms in fullerene sphere C60 is up to 0.45eV, and C240 is about 0.15eV.
  • the energy of carbon atoms in carbon nanotubes and diamonds is between 0.02 and 0.03 eV.
  • a quantum carbon characterized by being a crystal of a quantum carbon liquid, the crystal body being a nanocarbon structure, comprising a single layer of graphene or a plurality of graphenes, the surface layer of the crystal being containing carbon, hydrogen, oxygen, nitrogen
  • the compound containing carbon, hydrogen, oxygen, nitrogen including a fused aromatic hydrocarbon, a compound containing a carbon-oxygen single bond, a compound containing a carbon-oxygen double bond, a mixture of a compound containing a carbon-hydrogen bond, or a mixture thereof
  • the ratio of each element in the mixture is: C is 45%-55%, H is 0.2%-2.0%, N is 0.1%-0.3%, and O is 45%-65%.
  • the crystal surface layer refers to a compound element of the surface layer of the crystal particle, that is, an element content of the entire mixture in the quantum carbon solution. (Using EAI company CE-440 fast elemental analyzer after three measurements, the average result is: C: 50.19% H: 0.42% N: 0.22% O: 49.17% analytical accuracy: 0.15%; analytical accuracy: 0.15%.
  • the carbon nanoparticles have a high number of oxygen-containing groups as a whole).
  • the quantum carbon solution is an aqueous solution containing quantum carbon
  • the aqueous solution of the quantum carbon includes carbon particles: 0.6 ⁇ single layer graphene having a particle diameter of ⁇ 50 nm, 0.6 ⁇ particle size ⁇ 100 multilayer graphene, 0.6 nm ⁇ carbon structure particles with particle diameter ⁇ 200 nm, quantum carbon with 0.6 ⁇ particle size ⁇ 200 nm;
  • the quantum carbon solution has an ORP of 280 mv-500 mv, an electric conductivity ⁇ of 1-10 ms/cm, an electromotive force of 280 mv-380 mv, a pH of 1.2-3.2, and a concentration of 0.1%-0.45%.
  • the electrochemical oxidation generator portion, the ion intercalation device portion, the graphite interlaminar stripping portion, the dispersing device portion, the separating device portion, and the concentrating device portion are sequentially connected end to end; and the electronic control portion is used to control the electrochemical oxidation generator portion The operation of the ion intercalation device portion, the graphite interlaminar stripping portion, the dispersing device portion, the separating device portion, and the concentrating device portion.
  • the electrochemical oxidation generator portion includes a housing and at least one set of positive and negative plates disposed in the inner cavity of the housing
  • the component is arranged, the left side wall of the casing is provided with a liquid inlet a and an air inlet b, and the right side wall of the casing is provided with a discharge port c; the bottom of the casing is provided with a U-shaped bracket bracket and a central shaft is arranged thereon.
  • the positive and negative plate generating components are disposed on the central axis.
  • the positive and negative plate generating assembly comprises a positive plate and a negative plate which are vertically disposed, and the positive plate is graphitized three high (high density: specific gravity > 1.80, high purity: graphite > 99.9%, high strength: anti- The tensile strength is >30.00 MPa);
  • the negative electrode plate is a metal plate made of 314# stainless steel or 314# stainless steel plated with Pt or Ni, and the negative electrode plate is evenly distributed with a diameter of 1 to 2 mm ⁇ (50 to 300). Through holes.
  • the central shaft is provided with a elastic adjusting gap device for adjusting the gap between the positive electrode plate and the negative electrode plate, and the adjustment range is 0.5 mm to 10 mm;
  • the elastic adjusting gap device comprises a sliding piece vertically disposed on the central axis and an adjusting bolt fixed on the sliding piece, one end of the adjusting spring is in contact with the positive and negative plates, and the other end is in contact with the sliding piece, the positive plate and the negative plate An insulating spring is arranged between them.
  • the ion embedding device portion comprises a pump body, and a pipe system composed of a plurality of horizontal pipes and an L-shape and a flange, and an excitation rod is arranged at a corner of the L-shaped pipe; one end of the pipe system and the pump body (3) -4) The output is connected, and the other end of the pipe end is coupled with at least one set of ion embedding devices, and the ion embedding device is an adjustable high power focused ultrasonic transducer.
  • the graphite interlayer peeling portion comprises a casing, a peeling assembly disposed in the casing, the inlet and the outlet are provided at both ends of the casing and closed by the end cover;
  • the stripping assembly comprises a vertically disposed metal piece A, a metal piece B, And the metal piece C and the metal piece D;
  • the corresponding structure of the metal piece A, the metal piece B, the metal piece C, and the metal piece D is the metal piece structure A1, the metal piece structure A2, the metal piece structure B1, and the metal piece structure B2.
  • the combination thereof has a metal sheet A-metal sheet C, or a metal sheet B-metal sheet D, or a metal sheet A-metal sheet, or a metal sheet D-metal sheet A-metal sheet B-metal sheet C-metal sheet D;
  • the metal piece structure A1 is a uniformly distributed hexagonal through hole disk, and the center of the disk is the center of the center hole.
  • the metal sheet structure B1 and the metal sheet structure A1 have the same hole size, and are uniformly distributed hexagonal through-hole discs, but the center of the disc is the metal sheet structure A1 laterally moving 1/2 of the straight line distance between the two holes.
  • the metal sheet structure A2 is a uniformly distributed circular through-hole disc, and the center of the disc is the center of the center hole.
  • the metal sheet structure B2 and the metal sheet structure A2 have the same hole size, and are uniformly distributed circular through-hole discs, but the center of the disc is the metal sheet structure A2 laterally moving 1/2 of the straight line distance between the two holes.
  • the metal piece structure C piece has a semicircular through hole in the periphery of the disk and at least four limit screw holes uniformly distributed in the disk.
  • the metal piece structure D piece has a through hole at the center. Its combination is A1-B1, A2-B2, A-B and DABCD.
  • the dispersing device portion (2-2) comprises a casing, two dispersing cavities disposed in the casing, which are respectively connected to the dispersing cavity 1 and the dispersing cavity 2, and the output end of the dispersing cavity 2 and the external output of the casing a cavity connection;
  • the dispersion cavity 1 and the dispersion cavity 2 are two rectangular cavities, and an output end of the dispersion cavity is connected to the input end of the dispersion cavity 2, and the output end of the dispersion cavity 2 is wedge-shaped, the inclination angle is ⁇ ;
  • the output cavity Is trapezoidal, and the inclination angle of both sides is ⁇ , the distance from the output end of the dispersion chamber 2 to the input end is L, the width is D1, the diameter of the output end of the dispersion chamber 2 is D2, and the upper part of the housing is also opened with a vertical a flow path to the junction of the dispersion chamber 1 and the dispersion chamber 2, the flow channel is an inverted T-shaped flow channel, the bottom of the
  • a method for preparing quantum carbon comprising the steps of:
  • Step 1 Deionized water having a pH of 6.5-7.2 and a resistance value of 180 megohms prepared by using a multilayer reverse osmosis membrane.
  • a liquid inlet port a is provided in the generator on the left side wall of the partial housing of the electrochemical oxidation generator to enter the generator.
  • Step 2 Using H202 (concentration: 30%) is 0.15% of the water in the generator, and enters the generator through the inlet a.
  • Step 3 Through steps 1 and 2, the water and the agent enter the electrochemical oxidation generator portion and are allowed to stand for not less than 24 hours.
  • the preparation procedure is then initiated via the control cabinet.
  • the control cabinet provides high-frequency pulsed DC power supply, and the output DC power supply is 0-150V, 0-100A power supply chemical oxidation generator part (1) adjustment application; at the same time, the output power is 1-5KVA, 20KHz-120KHz multi-wave band interaction Emission wave, adjustable high power focused ultrasonic transducer for ion embedding devices.
  • Step 4 The primary carbon sol liquid prepared by the electrochemical oxidation generator is subjected to a pressure of 3 kg/cm 3 to 10 kg/cm 3 provided by the pump, and the carbon sol liquid is transported into the ion embedding device portion to perform intercalation of hydrogen and oxygen ions between the graphite layers. . Further, after the graphite interlayer peeling portion, the graphite interlayer peeling portion device of the dispersing device portion, and the dispersing device portion are prepared, the carbon sol liquid is subjected to various parameters in the graphite layer peeling portion and the dispersing device portion device.
  • the quantum carbon products of various forms are prepared by separating and concentrating as a basic liquid body of the quantum carbon. If the indicators of the carbon sol liquid do not reach the predetermined value range, the system will turn on the pump 4 to return the carbon sol liquid to the electrochemical oxidation generator for partial circulation preparation.
  • the indexes of the carbon sol liquid refer to: the pH value of the quantum carbon mixture is 1.2-2.2, the electromotive force ORP value is 280 mv-380 mv, the conductivity value is 1.5 ms/cm-5.0 ms/cm, and the solid-liquid concentration is According to the normal trend of conductivity-solid content, electromotive force-solid content and pH-solid content, the solid content is 0.4%-0.6%; the temperature of the carbon sol liquid is 40°C-70°C.
  • the indicators of the carbon sol liquid include detection of the particle size and particle size frequency distribution of the quantum carbon particles.
  • the particle size and particle size frequency distribution of the quantum carbon ranges from 0.6 nm to 1.0 nm.
  • the quantum carbon solution is obtained after each parameter is reached.
  • the quantum carbon solution is centrifuged at a speed of 15,000 rpm to 30,000 rpm in a classifier to centrifuge the quantum carbon mixture.
  • the quantum carbon mixture After centrifuging the quantum carbon mixture, adding 0.001%-0.010% by mass of m-hexacarboxylic acid as a crystal seed to the treated solution, and stirring at high speed for 2 hours while heating to 70 ° C - The mixture was allowed to stand at 80 ° C for >20 hours, and slowly cooled to room temperature to obtain a carbonic acid hydroxide of high purity mellitic acid crystals.
  • the quantum carbon mixture Preferably, after centrifuging the quantum carbon mixture, adding 0.1%-1.0% of an alkane or adding 0.1%-1.0% of a carbon alcohol or adding an alkane or a carbon alcohol to the treated solution Proportion mixture.
  • the alkane is carbon a C1-C12 alkane in which one or more mixed hydrocarbons.
  • the carbon alcohol is a carbon alcohol having a C1-C12 carbon group, wherein one or more mixed alcohols.
  • the mixture was stirred at high speed for 1 hour and allowed to stand for 12 hours to obtain a high-purity octane C8H18 hydrocarbon.
  • the present invention has the following advantages: the invention has the advantages of simple process, low cost, easy control, easy realization of large-scale production, and no three wastes, and the production of single-layer graphene, multi-layer graphene, and carbon structure particles are uniform in particle size. High purity and stable product quality.
  • Figure 1 is a diagram of a process for preparing a quantum carbon.
  • Figure 2 is a diagram showing the composition of quantum carbon preparation.
  • Figure 3a is a schematic view showing the structure of the electrochemical oxidation generator portion (1).
  • Figure 3b is a schematic cross-sectional view of the electrochemical oxidation generator portion (1) taken along line K-K.
  • Figure 3c is a schematic view showing the structure of the negative electrode plate in the electrochemical oxidation generator portion (1).
  • Figure 3d is a schematic view showing the structure of the positive electrode plate in the electrochemical oxidation generator portion (1).
  • Figure 4 is a schematic view showing the structure of the ion embedding device portion (3).
  • Fig. 5 is a schematic view showing the structure in the portion (2) of the graphite interlayer peeling and dispersing device.
  • Fig. 6a is a peeling sheet view of A1 in the peeling member (2-1).
  • Fig. 6b is a peeling sheet view of B1 in the peeling member (2-1).
  • Fig. 6c is a peeling sheet view of C in the peeling member (2-1).
  • Fig. 6d is a peeling sheet view of A2 in the peeling member (2-1).
  • Fig. 6e is a peeling sheet view of B2 in the peeling member (2-1).
  • Fig. 6f is a peeling sheet view of D in the peeling member (2-1).
  • Fig. 7a is a schematic view showing the combination of A1-B1 in the peeling member (2-1).
  • Fig. 7b is a schematic view showing the combination of A2-B2 in the peeling member (2-1).
  • Fig. 7c is a schematic view showing the combination of A and B sheets in the peeling member (2-1).
  • Fig. 8 is a schematic view showing the combination of A, B, C, and D sheets in the peeling member (2-1).
  • Figure 9 is a partial schematic view of the dispersing device.
  • Figure 10 is a graph showing the relationship between the solid content of carbon and the conductivity.
  • Figure 11 is a graph showing the relationship between the solid content of quantum carbon and the electromotive force.
  • Figure 12 is a graph showing the relationship between the solid content of quantum carbon and pH.
  • Figure 13 is a graph showing the parameters of the initial stage of quantum carbon preparation.
  • Figure 14 is a graph showing the parameters of quantum carbon preparation.
  • Figure 15 is a schematic diagram of quantum carbon oxidation.
  • Figure 16 is a view showing the morphology of graphene oxide of the present invention.
  • Figure 17 is an electron microscope observation of quantum carbon
  • Figure 18 is another electron microscope observation of quantum carbon.
  • Figure 19 is a plan view of a quantum carbon STM plane.
  • Figure 20 is a three-dimensional observation of a quantum carbon STM.
  • Figure 21 is a graph showing the quantum carbon STM particle size.
  • Figure 22 is an infrared spectrum of quantum carbon.
  • Figure 23 is an infrared standard map of quantum carbon.
  • Figure 24 is a mass spectrum of the preparation of mellitic acid by quantum carbon.
  • Figure 25 is a C13 map of the production of mellitic acid by quantum carbon.
  • Figure 26 is an XRD diffractometer for the preparation of a carbonic acid carbonic acid.
  • Figure 27 is a quantum carbon gas chromatography coupled with mass spectrometry (detection result: n-octane C8H18).
  • the quantum carbon according to the present invention includes a single-layer graphene, a multilayer graphene, and a nano-carbon structure having carbon particles having a particle diameter of 0.3 to 100 nm, and has carbon, hydrogen, and oxygen in a surface layer of the carbon particles.
  • a compound containing nitrogen, the compound containing carbon, hydrogen, oxygen, and nitrogen includes a fused ring aromatic hydrocarbon, a compound containing a carbon oxygen single bond, a compound containing a carbon oxygen double bond, and a compound containing a carbon hydrogen bond.
  • the quantum carbon includes a quantum carbon solution, and the quantum carbon solution is an aqueous solution containing quantum carbon having an ORP of 280 mv-500 mv, a conductivity ⁇ of 1-10 ms/cm, and an electromotive force of 280 mv. -380 mv, pH 1.2-3.2, concentration 0.1-0.45%.
  • the quantum carbon consists of the following mass percentages of carbon particles: 0.6 ⁇ particle size ⁇ 50 nm single-layer graphene, 0.6 ⁇ particle size ⁇ 100 multilayer graphene, 0.6 nm ⁇ particle size ⁇ 200 nm carbon structure particles, 0.6 ⁇ a quantum carbon having a particle diameter of ⁇ 200 nm; the compound containing carbon, hydrogen, oxygen, and nitrogen is a fused aromatic hydrocarbon, a compound containing a carbon-oxygen single bond, a compound containing a carbon-oxygen double bond, and a compound containing a hydrocarbon bond. a mixture of one or more of them, wherein the ratio of each element is: C 45% - 55%, H 0.2% - 2.0%, O 45% - 65%.
  • the invention relates to a method for preparing a quantum carbon, comprising an electronic control part, an electrochemical oxidation generator part (1), an ion embedding device part (3), a graphite interlayer peeling, a dispersing device part (2), a separating device Part and concentrator section composition. It is characterized in that the electrochemical oxidation generator portion (1), the ion embedding device portion (3), the graphite layer peeling, the dispersing device portion (2), the separating device portion, and the concentrating device portion are sequentially connected end to end.
  • the electrochemical oxidation generator portion (1) comprises a casing and at least one set of positive and negative plate generating assemblies (1-1; 1-2) disposed in the inner cavity of the casing, and the inlet port is provided on the left side wall of the casing a and the air inlet b, the discharge port c is provided on the right side wall of the casing.
  • the positive electrode plate 1-2 is graphitized three high (high density: specific gravity > 1.80, high purity: graphite > 99.9%, high strength: tensile strength > 30.00 MPa);
  • negative plate 1-1 is 314 # stainless steel or 314 # stainless steel
  • the surface is plated with a metal plate of Pt or Ni, and uniformly distributes through holes having a diameter of 2 mm ⁇ 50-300.
  • 1-3 is a PTFE bracket; 1-4 is a central axis of PTFE; 1-5 is an elastic adjustment gap device, adjusting the gap between 1-1 and 1-2, adjusting range It is 0.5mm ⁇ 10mm;
  • the ion intercalation device portion (3) comprises a pump body 3-4, a conduit 3-1, a flanged pipe joint, and at least one set of ion embedding devices disposed at the end of the conduit 3-1.
  • the ion embedding device is an adjustable high power focusing ultrasonic transducer (frequency 20KHz-120KHz, power 1KW-5KW).
  • the graphite interlayer peeling portion 2-1 comprises four circular metal sheets of different structures A, B, C, and D, and a limit bolt 2-1.1, a casing, and two end caps.
  • the four different structural metal sheets of A, B, C, and D include A1, A2, B1, and B2.
  • A1 is a uniformly distributed hexagonal through-hole disc, and the center of the disc is the center of the central hole.
  • B1 and A1 have the same hole size, and are uniformly distributed hexagonal through-hole discs, but the center of the disc is A1 laterally moving 1/2 of the straight line distance between the two holes.
  • A2 is a uniformly distributed circular through-hole disc, and the center of the disc is the center of the central hole.
  • B2 and A2 have the same hole size, and are uniformly distributed circular through-hole discs, but the center of the disc is A2 laterally moving 1/2 of the straight line distance between the two holes.
  • the C piece has a semicircular through hole around the disc and at least four limit screw holes evenly distributed in the disc.
  • the D piece has a through hole at the center. Its combination is A1-B1, A2-B2, A-B and DABCD.
  • the dispersing device portion (2-2) comprises a casing, two dispersing cavities disposed in the casing, which are respectively connected to the dispersing cavity 1 and the dispersing cavity 2, and the output end of the dispersing cavity 2 is connected with the output cavity outside the casing
  • the dispersion chamber 1 and the dispersion chamber 2 are two rectangular cavities, and an output end of the dispersion cavity is connected to the input end of the dispersion cavity 2.
  • the output end of the dispersion cavity 2 is wedge-shaped, the inclination angle is ⁇ ; the output cavity is trapezoidal And the inclination angle of the two sides is ⁇ , the distance from the output end of the dispersion chamber 2 to the input end is L, the width is D1, the diameter of the output end of the dispersion chamber 2 is D2, and a vertical flow path is also opened in the upper part of the housing.
  • the flow channel is an inverted T-shaped rectangular flow channel, and the bottom of the flow channel encloses the junction of the dispersion cavity 1 and the dispersion cavity 2, as shown in FIG.
  • the fluid flows through different pipe diameters and a certain geometric space, and different fluid pressures and particle movement speeds are generated at various local and particle points.
  • the liquid fluid entering from the inlet of A changes the liquid pressure to dynamic pressure.
  • the liquid flow rate increases, and the pressure is released to generate the partial negative pressure zone E.
  • the negative pressure zone E has the function of drawing in a specific gas or fluid medium from the B inlet.
  • the specific gas of the present invention is air.
  • the amount added is from 0.01% to 1% (liquid volume ratio), preferably from 0.1% to 0.5%.
  • the pressurized zone is a specific geometrical space, and the inhaled gas is in a gas-liquid mixed phase state. Due to the enlarged diameter of the pipe, the liquid flow velocity is decreased, and the liquid is converted from static pressure to static pressure for gas pressure and pressure dissolution. After being sufficiently dissolved by pressure of the gas, the liquid has become supersaturated. When the C outlet is abruptly abruptly expanded at a certain angle to expand the pressure to the atmospheric pressure, the liquid generates a large amount of microbubbles.
  • the gas microbubbles incorporated into the liquid are completed in an instant from the formation, growth to explosive collapse, and local abnormal high temperature and high pressure are generated, so that the water molecules bond to bond to generate a large amount of hydroxyl radicals ( ⁇ OH). And hydrogen radicals ( ⁇ H). Hydroxyl radicals ( ⁇ OH) have superior oxidizing power and oxidatively modify single-layer graphene, multilayer graphene, and carbon structure particles.
  • the invention relates to a method for preparing quantum carbon, comprising the following steps:
  • the generator is inserted into the generator by a liquid inlet port a on the left side wall of the housing of the electrochemical oxidation generator portion (1).
  • the H202 agent (concentration: 30%) is used to add 0.15% of the water in the generator, and enters the generator through the inlet a.
  • the electrochemical oxidation generator portion 1 includes a casing and at least one set of positive and negative plate generating assemblies (1-1; 1-2) disposed in the inner cavity of the casing, and the positive plates 1-2 are graphitized Three high graphite sheets (high density: specific gravity > 1.80, high purity: graphite > 99.9%, high strength: tensile strength > 30.00 MPa); negative plate 1-1 is 314 # stainless steel or 314 # stainless steel surface is plated with Pt or Ni The metal plates are evenly distributed with through holes having a diameter of 2 mm x 50-300.
  • 1-3 is a PTFE bracket; 1-4 is a central axis of PTFE; 1-5 is an elastic adjustment gap device, adjusting the gap between 1-1 and 1-2, adjusting range It is 0.5mm ⁇ 10mm;
  • the water and the agent enter the electrochemical anodizing device 1 and are allowed to stand for not less than 24 hours.
  • the preparation procedure is then initiated via the control cabinet.
  • the control cabinet provides high-frequency pulsed DC power supply, and the DC power supply at the output end is 0-150V, 0-100A power supply chemical anodizing device adjustment application; at the same time, the output power is 1-5KVA, 20KHz-120KHz multi-wave band interactive wave, for Adjustable high power focused ultrasonic transducer adjustment application for ion intercalation devices.
  • the primary carbon sol liquid prepared by the electrochemical oxidation generator portion (1) is subjected to a pressure of 3 kg/cm 3 to 10 kg/cm 3 supplied from the pump 3-4, and the carbon sol liquid is transported into the ion embedding device portion (3) to carry out graphite. Intercalation of interlayer hydrogen and oxygen ions. After the graphite layer is peeled off, the graphite interlayer peeling device 2-1 of the dispersing device portion (2), and the dispersing device portion (2-2) are prepared, the carbon sol liquid is peeled off between the graphite layers, and the dispersing device portion (2) Various parameters are detected in the device.
  • the indicators of the carbon sol liquid reach a predetermined value range
  • the basic liquid state as the quantum carbon The body is subjected to subsequent purification, concentration, and the like to prepare various forms of quantum carbon products (that is, concentrated or separated by the concentrating device and the separating device of the present invention, since the concentration and separation devices adopt conventional separation and concentration techniques, I will not repeat them here).
  • the system will turn on the pump 4 to return the carbon sol liquid back to the electrochemical oxidation generator section (1) for cyclic preparation.
  • the indexes of the carbon sol liquid described in (5) are: the pH of the quantum carbon mixture is 1.2-2.2, the electromotive force ORP value is 280 mv-380 mv, and the conductivity value is 1.5 ms/cm- 5.0ms/cm, and in line with the trend of Figure 13 and Figure 14; solid-liquid concentration according to Figure 10 conductivity-solid content, Figure 11 electromotive force-solid content, Figure 12 pH-solid content normalization trend, solid content value of 0.4% - 0.6%; the temperature of the carbon sol liquid is 40 ° C -70 ° C, wherein the surface of the pure carbon particles should be alkaline, because the surface of the crystallite is composed of an aromatic fused ring structure, which is a Lewis base in water It is easy to absorb hydrogen ions and make the surrounding liquid alkaline. The acidity appears after the surface bonds oxygen to a certain extent to cancel the Lewis basic.
  • the pH value is the indicator of the surface oxygen content of the quantum carbon particles. The pH value depends mainly on the pH.
  • Each index of the carbon sol liquid described in (5) includes detection of the particle diameter and particle size frequency distribution of the quantum carbon particles (Fig. 17, Fig. 18, Fig. 19, Fig. 20, Fig. 21).
  • the particle size and particle size frequency distribution of the quantum carbon ranges from 0.6 nm to 1.0 nm. It has exceeded the nanoscale (1nm-100nm) category.
  • the quantum carbon solution is obtained after each parameter is reached.
  • the quantum carbon solution is centrifuged at a speed of 15,000 rpm to 30,000 rpm in a classifier to centrifuge the quantum carbon mixture.
  • the alkane is carbon a C1-C12 alkane in which one or more mixed hydrocarbons.
  • the carbon alcohol is a carbon alcohol having a C1-C12 carbon group, wherein one or more mixed alcohols.
  • the mixture was stirred at high speed for 1 hour and allowed to stand for 12 hours to obtain a high-purity octane C8H18 carbon oxyhydroxide (Fig. 27).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

提供一种量子碳素、其生产方法和装置。该量子碳素是纳米结构的结晶体,包括单层或多层石墨烯,其表层含有碳、氢、氧、氮元素的化合物,该化合物包括稠环芳烃、含碳氧单键、含碳氧双键以及含碳氢键的化合物的一种或几种的混合物,混合物中各元素比例为:碳45-55%,氢0.2-2.0%,氮0.1-0.3%,氧45-65%。该生产方法包括将去离子水和过氧化氢引入具有碳阳极的电化学氧化发生器,制得初级碳溶胶液体,经离子嵌入装置在石墨层间嵌入氢、氧离子,再经剥离和分散装置得到量子碳素混合液,其pH值为1.2-2.2,电动势ORP为280-380mv,导电率为1.5-5.0ms/cm,固含量值为0.4-0.6%,温度为40-70℃,量子碳素的粒径和粒径频度分布在0.6-1.0nm之间,而后进行离心分级处理。该装置包括依次首尾连通的电化学氧化发生器(1)、离子嵌入装置(3)、石墨层间剥离、分散装置(2)、分离和浓缩装置,以及用于控制上述各部分的电控部分。实现了规模化生产。

Description

一种量子碳素及制备该量子碳素的方法及装置 技术领域
本发明涉及一种方法及装置,尤其是涉及一种量子碳素及制备该量子碳素的方法及装置。
背景技术
众所周知,碳元素是自然界中存在的与人类最密切相关、最重要的元素之一。它具有SP、SP2、SP3杂化的多样电子轨道特性,尤其是碳碳双键sp2杂化的异向性导致晶体的各向导性,使得以碳元素为唯一构成元素的碳素结构材料具有各式各样的性质,而且,新碳素材料还在不断被发现和人工制得。可以说,没有任何元素能像碳这样作为单一元素可形成像三维金刚石晶体、二维石墨层片、一维卡宾和碳纳米管、零维富勒烯分子等如此之多的结构与性质完全不同的物质。譬如碳素结构体中的石墨烯片材料就有太多优越性,而且在太阳能电池、传感器方面、纳米电子学、高性能纳电子器件、复合材料、场发射材料、气体传感器及能量存储等领域具有广泛的应用。近年来,科学家和致力于探索制备单层石墨烯的途径,尤其是要制备高质量、产率高、成本低、结构稳定的石墨烯的方法。目前公知比较成熟的制备石墨烯的方法主要有以下几种:①剥离法,包括微机械剥离法和溶剂剥离法等;②生长法,包括晶体外延生长、取向附生法、化学气相沉积等;③氧化还原石墨法,包括常用的Hummers法、Standenmaier法、Brodie法等;④其它方法,主要有电弧放电法、石墨层间化学物途径法、目前非常新颖的高温淬火法与碳纳米管剥开法等。其中氧化还原石墨法具有简单且多元化的工艺,是常用的制备石墨烯的方法,但只适合于实验室少量制备用于研究,大量制备容易产生大量废酸、废水等引起环境污染。
同样,碳素结构体这些具有优秀性质的材料,到目前为止,其各种制备方法在成本和环保等方面还没有根本性的突破。
规模化制备高质量、低成本、环保型的碳素晶体材料是所有应用的基础,发展低成本可控的制备方法是当下最急需解决的问题。
量子碳素包括了粒径为0.3-100nm的碳素粒子的单层石墨烯、多层石墨烯、纳米碳结构体,在所述碳素粒子的表层具有含有碳、氢、氧、氮的化合物,所述含有碳、氢、氧、氮的化合物包括稠环芳烃、含有碳氧单键的化合物、含有碳氧双键的化合物、含有碳氢键的化合物。
量子碳素是碳元素的一种热力学不稳定但动力学较稳定的亚稳定物质。构成量子碳素的基材是单分散碳原子或碳原子簇。以石墨烯为例,当石墨烯片层产生一定的弯曲结构时,则使处于平衡状态的碳原子具有一定的应力能并处于较高能量状态。不同碳同素异性体中碳元素所具有的能量各不相同,石墨中碳原子的能量为零为最稳定状态,富勒烯球C60中碳原子的能量最高达0.45eV,C240约为0.15eV,纳米碳管和金刚石中碳原子能量在0.02~0.03eV,要克服石墨烯弯曲结构的应力能,不同的碳同素异体的生成热有差别。最稳定的石墨其生成热Hf(g·c)为零;金刚石为1.67KJ/mol;C60为42.51KJ/mol;C70为40.38KJ/mol碳,要使石墨变成弯曲结构形成不同碳同素异体,必须从外部施加更高能量使之在受激状态下形成能量更高的单分散碳原子或碳原子簇.这些可控式激态能量的供给,可以通过本发明的特殊加工方法实现,并可以选择性的制备出不同碳结构体。
发明内容
本发明的上述技术问题主要是通过下述技术方案得以解决的:
一种量子碳素,其特征在于,为一种量子碳素液的结晶体,该结晶体是纳米碳结构体,包括单层石墨烯或多层石墨烯,结晶体表层为含有碳、氢、氧、氮的化合物,所述含有碳、氢、氧、氮的化合物包括稠环芳烃、含有碳氧单键的化合物、含有碳氧双键的化合物、含有碳氢键的化合物的一种或几种的混合物,混合物中各元素比例为:C为45%-55%,H为0.2%-2.0%,N为0.1%-0.3%,O为45%-65%。
所述结晶体表层是指晶体粒子表层的化合物元素,即指量子碳素液中的整个混合物的元素含量。(采用美国EAI公司CE-440型快速元素分析仪经过三次测量平均结果为:C:50.19%H:0.42%N:0.22%O:49.17%分析精度:0.15%;分析准确度:0.15%。表明碳纳米粒子整体上含氧基团的数目很高)。
所述量子碳素液是含有量子碳素的水溶液,所述量子碳素的水溶液包括碳素粒子:0.6≤粒径≤50nm单层石墨烯,0.6≤粒径≤100多层石墨烯,0.6nm≤粒径≤200nm的碳素结构粒子,0.6<粒径<200nm的量子碳素;
优选地,所述量子碳素液的ORP为280mv-500mv、电导率σ为1-10ms/cm、电动势为280mv-380mv、pH值为1.2-3.2、浓度为0.1%-0.45%。
优选地,包括依次首尾连通的电化学氧化发生器部分、离子嵌入装置部分、石墨层间剥离部分、分散装置部分、分离装置部分和浓缩装置部分;电控部分用于控制电化学氧化发生器部分、离子嵌入装置部分、石墨层间剥离部分、分散装置部分、分离装置部分和浓缩装置部分的运行。
优选地,所述电化学氧化发生器部分包括壳体和设置于壳体内腔中的至少一组正负极板 发生组件,壳体左侧壁上设有进液口a和进气口b,壳体右侧壁上设有出料口c;壳体底部设有一个U形托架托架上架有一中心轴,正负极板发生组件设置在中心轴上。
优选地,所述正负极板发生组件包括正极板和负极板,垂直设置,所述正极板为石墨化三高(高密度:比重>1.80、高纯度:石墨>99.9%、高强度:抗拉强度>30.00MPa);负极板为表面镀有Pt或Ni的314#不锈钢或314#不锈钢制成的金属极板,所述负极板上均匀地分布直径为1~2mm×(50~300)个的通孔。中心轴上设有一个弹性调节间隙装置,用于调节正极板和负极板之间的间隙,调节范围为0.5mm~10mm;
所述弹性调节间隙装置包括垂直设置在中心轴上的滑动片以及固定在滑动片上的调节螺栓,调节弹簧的一端与正负极板发生组件接触,另一端与滑动片接触,正极板和负极板之间设有绝缘弹簧。
优选地,所述离子嵌入装置部分包括泵体,以及通过若干水平管道和L形以及法兰组成的管道***,L形管道的转角处设置有激振棒;管道***的一端与泵体(3-4)输出端连接,另一端的管道端头配接有至少一组离子嵌入器,所述离子嵌入器为可调式大功率聚焦式超声波换能器。
优选地,所石墨层间剥离部分包括壳体、设置在壳体内的剥离组件,壳体两端设有进口和出口并通过端盖封闭;剥离组件包括垂直设置的金属片A、金属片B、以及金属片C以及金属片D;所述金属片A、金属片B、金属片C以及金属片D对应结构为金属片结构A1、金属片结构A2、金属片结构B1以及金属片结构B2。其组合有金属片A-金属片C、或金属片B-金属片D、或金属片A-金属片、或金属片D-金属片A-金属片B-金属片C-金属片D;
其中金属片结构A1为均匀分布六角形通孔圆盘,圆盘中心为中心孔的中心。金属片结构B1和金属片结构A1的孔型尺寸相同,为均匀分布六角形通孔圆盘,但圆盘中心为金属片结构A1横向移动两孔中心直线距离的1/2处。其中金属片结构A2为均匀分布圆形通孔圆盘,圆盘中心为中心孔的中心。金属片结构B2和金属片结构A2的孔型尺寸相同,为均匀分布圆形通孔圆盘,但圆盘中心为金属片结构A2横向移动两孔中心直线距离的1/2处。其中金属片结构C片为圆盘周边有半圆通孔和盘中均匀分布至少四个限位螺孔。其中金属片结构D片为中心有一通孔。其组合有A1-B1、A2-B2、A-B和DABCD。
所述分散装置部分(2-2)包括壳体、设置在壳体内依次连接的两个分散腔,分别是分散腔一和分散腔二,所述分散腔二的输出端与壳体外部的输出腔连接;所述分散腔一和分散腔二为两个矩形腔,且分散腔一输出端与分散腔二的输入端连接,所述分散腔二的输出端楔形,倾斜角度为α;输出腔为梯形,且两边的倾斜角度为β,所述分散腔二的输出端至输入端的距离为L,宽度为D1,分散腔二的输出端的口径为D2,所述壳体上部还开有一个垂直流道至 分散腔一和分散腔二的连接处,该流道为一个倒T形流道,流道的底部为矩形,且与分散腔一和分散腔二的连接处连通,其中,0.01≤(D1-D2)/L≤0.1,;35°≤α≤75°;45°≤β≤85°。
一种制备量子碳素的方法,其特征在于:包括如下步骤:
步骤1、采用多层反渗透膜制得的pH值为6.5-7.2、电阻值为180兆欧的去离子水。通过电化学氧化发生器部分壳体左侧壁上设有进液口a进入发生器中。
步骤2、采用H202剂(浓度为30%)为发生器中水体的0.15%的添加量,通过进液口a进入发生器中。
步骤3、通过步骤1、2,水和剂进入电化学氧化发生器部分内,静置不少于24小时时间。之后经控制柜启动制备程序。控制柜提供高频脉冲直流电源,输出端直流电源为0-150V、0-100A供电化学氧化发生器部分(1)调节应用;同时提供输出端功率为1-5KVA、20KHz-120KHz多波频段交互发射波,供离子嵌入装置的可调式大功率聚焦式超声波换能器调节应用。
步骤4、电化学氧化发生器部分制备的初级碳溶胶液体经过泵提供的3kg/cm3-10kg/cm3压强,输送碳溶胶液体进入离子嵌入装置部分中,进行石墨层间氢、氧离子的嵌入制备。再经由石墨层间剥离部分、分散装置部分的石墨层间剥离部分装置、分散装置部分的制备后,碳溶胶液体在石墨层间剥离部分、分散装置部分装置中进行各种参数的检测。当碳溶胶液体的各项指标达到预定值的范围时,作为量子碳素的基础液态体进行后续提纯、浓缩等方法手段的分离制备出各形态的量子碳素制品。如果碳溶胶液体的各项指标未达到预定值的范围时,***将开启泵4使碳溶胶液体重新返回电化学氧化发生器部分循环制备。
所述碳溶胶液体的各项指标是指:量子碳素混合液的pH值为1.2-2.2、电动势ORP值为280mv-380mv、电导率值为1.5ms/cm-5.0ms/cm,固液浓度依据电导率-固含量、电动势-固含量、pH-固含量的归一趋势,固含量值为0.4%-0.6%;碳溶胶液体的温度为40℃-70℃。
所述碳溶胶液体的各项指标包括对量子碳素粒子的粒径和粒径频度分布的检测。量子碳素的粒径和粒径频度分布的范围在0.6nm-1.0nm之间。
经过各参数达标后得到量子碳素液。量子碳素液经分级装置中设有转速为15000转/分钟-30000转/分钟的高速离心机,对量子碳素混合液进行离心分级处理。
优选地,对所述量子碳素混合液离心处理后,向处理后的溶液中加入添加0.001%-0.010%质量比的苯六甲酸作为结晶种子,并高速搅拌2小时同时加温到70℃-80℃,静置>20小时,缓慢降温到室温,得到高纯度苯六甲酸结晶体的碳氢氧化合物。
优选地,对所述量子碳素混合液离心处理后,向处理后的溶液中加入添加0.1%-1.0%的烷烃,或添加0.1%-1.0%的碳醇,或添加烷烃和碳醇任一比例混合物。所述烷烃是碳素为 C1-C12的烷烃,其中一种或多种混合烃。所述碳醇是碳素为C1-C12的碳醇,其中一种或多种混合醇。并高速搅拌1小时,静置12小时,得到高纯度辛烷C8H18碳氢化合物。
因此,本发明具有如下优点:本发明工艺简单、成本低、易于控制,容易实现大规模化生产,且无三废产生,生产的单层石墨烯、多层石墨烯、以及碳结构粒子颗粒度均匀,纯度高、产品质量稳定。
附图说明
图1为量子碳素制备工艺方法图。
图2为量子碳素制备构成图。
图3a为电化学氧化发生器部分(1)结构示意图。
图3b为电化学氧化发生器部分(1)中沿K-K线剖视结构示意图。
图3c为电化学氧化发生器部分(1)中负极板的结构示意图。
图3d为电化学氧化发生器部分(1)中正极板的结构示意图。
图4为离子嵌入装置部分(3)结构示意图。
图5为石墨层间剥离分散装置部分(2)中的结构示意图。
图6a为剥离部件(2-1)中的A1的剥离片图。
图6b为剥离部件(2-1)中的B1的剥离片图。
图6c为剥离部件(2-1)中的C的剥离片图。
图6d为剥离部件(2-1)中的A2的剥离片图。
图6e为剥离部件(2-1)中的B2的剥离片图。
图6f为剥离部件(2-1)中的D的剥离片图。
图7a为剥离部件(2-1)中A1-B1组合示意图。
图7b为剥离部件(2-1)中A2-B2组合示意图。
图7c为剥离部件(2-1)中的A、B片组合示意图。
图8为剥离部件(2-1)中的A、B、C、D片组合示意图。
图9为分散装置部分示意图。
图10为子碳素固含量与电导率关系曲线。
图11为量子碳素固含量与电动势关系曲线。
图12为量子碳素固含量与pH关系曲线。
图13为量子碳素制备初期各参数曲线。
图14为量子碳素制备达标各参数曲线。
图15为量子碳素氧化原理图。
图16为本发明氧化石墨烯形态图。
图17为量子碳素一种电镜观测图
图18为量子碳素另一种电镜观测图。
图19为量子碳素STM平面观测图。
图20为量子碳素STM三维观测图。
图21为量子碳素STM粒径检测图。
图22为量子碳素红外图谱。
图23为量子碳素红外标准图谱。
图24为量子碳素制备苯六甲酸质谱图。
图25为量子碳素制备苯六甲酸C13图谱。
图26为量子碳素制备苯六甲酸XRD衍射仪分析。
图27为量子碳素气相色谱与质谱联用检测(检测结果为:正辛烷C8H18)。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例1:
本发明涉及的量子碳素包括了粒径为0.3-100nm的碳素粒子的单层石墨烯、多层石墨烯、纳米碳结构体,在所述碳素粒子的表层具有含有碳、氢、氧、氮的化合物,所述含有碳、氢、氧、氮的化合物包括稠环芳烃、含有碳氧单键的化合物、含有碳氧双键的化合物、含有碳氢键的化合物。
该量子碳素包括量子碳素液,所述量子碳素液为含有量子碳素的水溶液,所述量子碳素液的ORP为280mv-500mv、电导率σ为1-10ms/cm、电动势为280mv-380mv、pH值为1.2-3.2、浓度为0.1%-0.45%。
量子碳素由如下质量百分比的碳素粒子构成:0.6≤粒径≤50nm单层石墨烯,0.6≤粒径≤100多层石墨烯,0.6nm≤粒径≤200nm的碳素结构粒子,0.6<粒径<200nm的量子碳素;所述含有碳、氢、氧、氮的化合物为稠环芳烃、含有碳氧单键的化合物、含有碳氧双键的化合物、含有碳氢键的化合物的一种或几种的混合物,其中各元素比例为:C 45%-55%,H 0.2%-2.0%,O 45%-65%。
实施例2、
本发明涉及的量子碳素的制备方法的装备,包括电控部分、电化学氧化发生器部分(1)、离子嵌入装置部分(3)、石墨层间剥离、分散装置部分(2)、分离装置部分和浓缩装置部分 组成。其特征在于:电化学氧化发生器部分(1)、离子嵌入装置部分(3)、石墨层间剥离、分散装置部分(2)、分离装置部分和浓缩装置部分依次首尾连通构成。
电化学氧化发生器部分(1)包括壳体和设置于壳体内腔中的至少一组正负极板发生组件(1-1;1-2),壳体左侧壁上设有进液口a和进气口b,壳体右侧壁上设有出料口c。正极板1-2为石墨化三高(高密度:比重>1.80、高纯度:石墨>99.9%、高强度:抗拉强度>30.00MPa);负极板1-1为314#不锈钢或314#不锈钢表面镀有Pt或Ni的金属极板,并均匀地分布直径为2mm×50-300个的通孔。1-3为聚四氟乙烯材质的托架;1-4为聚四氟乙烯材质的中心轴;1-5为弹性调节间隙装置,调节1-1和1-2之间的间隙,调节范围为0.5mm~10mm;。
离子嵌入装置部分(3)包括泵体3-4、管道3-1、法兰管接头、以及设置于管道3-1端头的至少一组离子嵌入装置组成。所述离子嵌入装置为可调式大功率聚焦式超声波换能器(频率20KHz-120KHz,功率1KW-5KW)。
石墨层间剥离部分2-1包括A、B、C、D四片不同结构圆形金属片和限位螺栓2-1.1、壳体、两个端盖组成。所述A、B、C、D四片不同结构金属片包括A1、A2、B1、B2。其中A1为均匀分布六角形通孔圆盘,圆盘中心为中心孔的中心。B1和A1的孔型尺寸相同,为均匀分布六角形通孔圆盘,但圆盘中心为A1横向移动两孔中心直线距离的1/2处。其中A2为均匀分布圆形通孔圆盘,圆盘中心为中心孔的中心。B2和A2的孔型尺寸相同,为均匀分布圆形通孔圆盘,但圆盘中心为A2横向移动两孔中心直线距离的1/2处。其中C片为圆盘周边有半圆通孔和盘中均匀分布至少四个限位螺孔。其中D片为中心有一通孔。其组合有A1-B1、A2-B2、A-B和DABCD。
分散装置部分(2-2)包括壳体、设置在壳体内依次连接的两个分散腔,分别是分散腔一和分散腔二,所述分散腔二的输出端与壳体外部的输出腔连接;所述分散腔一和分散腔二为两个矩形腔,且分散腔一输出端与分散腔二的输入端连接,所述分散腔二的输出端楔形,倾斜角度为α;输出腔为梯形,且两边的倾斜角度为β,所述分散腔二的输出端至输入端的距离为L,宽度为D1,分散腔二的输出端的口径为D2,所述壳体上部还开有一个垂直流道至分散腔一和分散腔二的连接处,该流道为一个倒T形矩形流道,且流道的底部将分散腔一和分散腔二的连接处包裹住,如图9,
流体经流不同的管径和一定的几何尺寸空间中,在各个局部和质点处产生不同的流体压强和质点的运动速度。从A进口进入的液流体,液体压力变换为动压。在局部负压区,是由于管径突变,液体流速增加,压力释放而产生局部负压区E。负压区E具有从B入口吸入特定气体或流体介质功能。
本发明特定气体为空气。加入量为0.01%~1%(液体体积比),优选0.1%~0.5%。加压区是特定几何尺寸空间,将吸入的气体形成气液混合相状态,由于管径扩大,液体流速下降,液体从动压变换为静压进行气缩加压溶解。经过充分气体的加压溶解后,液体已成为过饱和状态。C出口按一定角度突变扩展通向大气压的压力时,液体产生大量的微泡析出。在大气压界面C出口处,融入液体中的气体微泡从生成、生长到***式溃灭在瞬间完成,局部产生异常高温高压,使水分子结合键断裂产出大量的羟自由基(·OH)和氢自由基(·H)。羟自由基(·OH)具有超强的氧化能力,对单层石墨烯、多层石墨烯、以及碳结构粒子进行氧化修饰。
其中,0.01≤(D1-D2)/L≤0.1,优选(D1-D2)/L=0.05;35°≤α≤75°,优选α=45°;45°≤β≤85°,优选β=65°
实施例3
本发明涉及的一种制备量子碳素的方法,包括如下步骤:
(1)采用多层反渗透膜制得的pH值为6.5-7.2、电阻值为180兆欧的去离子水。通过电化学氧化发生器部分(1)壳体左侧壁上设有进液口a进入发生器中。
(2)采用H202剂(浓度为30%)为发生器中水体的0.15%的添加量,通过进液口a进入发生器中。
(3)电化学氧化发生器部分1中包括壳体和设置于壳体内腔中的至少一组正负极板发生组件(1-1;1-2),正极板1-2为石墨化的三高石墨板(高密度:比重>1.80、高纯度:石墨>99.9%、高强度:抗拉强度>30.00MPa);负极板1-1为314#不锈钢或314#不锈钢表面镀有Pt或Ni的金属极板,并均匀地分布直径为2mm×50-300个的通孔。1-3为聚四氟乙烯材质的托架;1-4为聚四氟乙烯材质的中心轴;1-5为弹性调节间隙装置,调节1-1和1-2之间的间隙,调节范围为0.5mm~10mm;。
(4)通过(1)(2)步骤,水和剂进入电化学阳极氧化装置1内,静置不少于24小时时间。之后经控制柜启动制备程序。控制柜提供高频脉冲直流电源,输出端直流电源为0-150V、0-100A供电化学阳极氧化装置调节应用;同时提供输出端功率为1-5KVA、20KHz-120KHz多波频段交互发射波,供离子嵌入装置的可调式大功率聚焦式超声波换能器调节应用。
(5)电化学氧化发生器部分(1)制备的初级碳溶胶液体经过泵3-4提供的3kg/cm3-10kg/cm3压强,输送碳溶胶液体进入离子嵌入装置部分(3)中,进行石墨层间氢、氧离子的嵌入制备。再经由石墨层间剥离、分散装置部分(2)的石墨层间剥离装置2-1、分散装置部分(2-2)的制备后,碳溶胶液体在石墨层间剥离、分散装置部分(2)装置中进行各种参数的检测。当碳溶胶液体的各项指标达到预定值的范围时,作为量子碳素的基础液态 体进行后续提纯、浓缩等方法手段的分离制备出各形态的量子碳素制品(即通过本发明的浓缩装置和分离装置进行浓缩或分离,由于浓缩和分离装置均采用传统的分离和浓缩技术,在此不再赘述)。如果碳溶胶液体的各项指标未达到预定值的范围时,***将开启泵4使碳溶胶液体重新返回电化学氧化发生器部分(1)循环制备。
(6)在(5)中所述碳溶胶液体的各项指标是指:量子碳素混合液的pH值为1.2-2.2、电动势ORP值为280mv-380mv、电导率值为1.5ms/cm-5.0ms/cm,并符合图13和图14趋势;固液浓度依据图10电导率-固含量、图11电动势-固含量、图12pH-固含量的归一趋势,固含量值为0.4%-0.6%;碳溶胶液体的温度为40℃-70℃,其中,纯净的碳粒子表面应该是碱性的,因为其的微晶表面是由芳香稠环结构组成的,这是路易斯碱,在水中易吸收氢离子而使周围液体呈碱性,酸性是在表面键合氧到一定程度抵消路易斯碱性后出现的,pH值就是量子碳素粒子表面含氧量的标志,pH值的高低主要取决于量子碳素粒子表面含氧基团的数目。
电导率为基准,电导率与固含量关系线性回归的结果
Figure PCTCN2016096157-appb-000001
在(5)中所述碳溶胶液体的各项指标包括对量子碳素粒子的粒径和粒径频度分布的检测(图17、图18、图19、图20、图21)。量子碳素的粒径和粒径频度分布的范围在0.6nm-1.0nm之间。已经超出纳米尺度(1nm-100nm)范畴。
经过各参数达标后得到量子碳素液。量子碳素液经分级装置中设有转速为15000转/分钟-30000转/分钟的高速离心机,对量子碳素混合液进行离心分级处理。
(7)7-1、对所述量子碳素混合液离心处理后,向处理后的溶液中加入添加(0.001%-0.010%质量比)的苯六甲酸作为结晶种子,并高速搅拌2小时同时加温到70℃-80℃,静置>20小时,缓慢降温到室温,得到高纯度苯六甲酸结晶体的碳氢氧化合物(图22、图23、图24、图25、图26)。
7-2、对所述量子碳素混合液离心处理后,向处理后的溶液中加入添加0.1%-1.0%的烷烃,或添加0.1%-1.0%的碳醇,或添加烷烃和碳醇任一比例混合物。所述烷烃是碳素为 C1-C12的烷烃,其中一种或多种混合烃。所述碳醇是碳素为C1-C12的碳醇,其中一种或多种混合醇。并高速搅拌1小时,静置12小时,得到高纯度辛烷C8H18碳氢氧化合物(图27)。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (10)

  1. 一种量子碳素,其特征在于,为一种量子碳素液的结晶体,该结晶体是纳米碳结构体,包括单层石墨烯或多层石墨烯,结晶体表层为选自含有碳、氢、氧元素的化合物,所述选自含有碳、氢、氧元素的化合物包括含有碳氧单键的化合物、含有碳氧双键的化合物、含有碳氢化合物的混合物,混合物中各元素比例为:C为45%-60%,H为0.2%-5.0%,O为35%-54%;
    所述量子碳素液是含有量子碳素的水溶液,所述量子碳素的水溶液包括碳素粒子:0.6≤粒径≤50nm单层石墨烯,0.6≤粒径≤100多层石墨烯,0.6<粒径<200nm的量子碳素。
  2. 根据权利要求1所述的一种量子碳素,其特征在于,所述量子碳素液的ORP为280mv-500mv、电导率σ为1-10ms/cm、电动势为280mv-380mv、pH值为1.2-3.2、浓度为0.1%-0.45%。
  3. 一种权利要求1所述的量子碳素的制备方法的装置,其特征在于,包括依次首尾连通的电化学氧化发生器部分(1)、离子嵌入装置部分(3)、石墨层间剥离部分、分散装置部分(2)、分离装置部分和浓缩装置部分;电控部分用于控制电化学氧化发生器部分(1)、离子嵌入装置部分(3)、石墨层间剥离部分、分散装置部分(2)、分离装置部分和浓缩装置部分的运行。
  4. 按照权利要求3所述的量子碳素的制备方法的装置,其特征在于:所述电化学氧化发生器部分(1)包括壳体和设置于壳体内腔中的至少一组正负极板发生组件,壳体左侧壁上设有进液口a和进气口b,壳体右侧壁上设有出料口c;壳体底部设有一个U形托架(1-3),托架(1-3)上架有一中心轴(1-4),正负极板发生组件设置在中心轴(1-4)上。
  5. 按照权利要求4所述的量子碳素的制备方法的装置,其特征在于:所述正负极板发生组件包括正极板(1-2)和负极板(1-1),垂直设置,所述正极板(1-2)为石墨化三高;负极板(1-2)为表面镀有Pt或Ni的314#不锈钢或314#不锈钢制成的金属极板,所述负极板(1-2)上均匀地分布直径为1~2mm×(50~300)个的通孔;中心轴(1-4)上设有一个弹性调节间隙装置(1-5),用于调节正极板(1-2)和负极板(1-1)之间的间隙,调节范围为0.5mm~10mm;
    所述弹性调节间隙装置(1-5)包括垂直设置在中心轴(1-4)上的滑动片以及固定在滑动片上的调节螺栓,调节弹簧的一端与正负极板发生组件接触,另一端与滑动片接触,正极板(1-2)和负极板(1-1)之间设有绝缘弹簧。
  6. 按照权利要求4所述的量子碳素的制备方法的装置,其特征在于:所述离子嵌入装置部分(3)包括泵体(3-4),以及通过若干水平管道和L形以及法兰(3-2)组成的管道***, L形管道的转角处设置有激振棒(3-3);管道***的一端与泵体(3-4)输出端连接,另一端的管道(3-1)端头配接有至少一组离子嵌入器,所述离子嵌入器为可调式大功率聚焦式超声波换能器。
  7. 按照权利要求4所述的量子碳素的制备方法的装置,其特征在于:所述石墨层间剥离部分(2-1)包括壳体、设置在壳体内的剥离组件,壳体两端设有进口和出口并通过端盖封闭;剥离组件包括垂直设置的金属片A、金属片B、以及金属片C以及金属片D;所述金属片A、金属片B、金属片C以及金属片D对应结构为金属片结构A1、金属片结构A2、金属片结构B1以及金属片结构B2;其组合有金属片A-金属片C、或金属片B-金属片D、或金属片A-金属片、或金属片D-金属片A-金属片B-金属片C-金属片D;
    其中金属片结构A1为均匀分布六角形通孔圆盘,圆盘中心为中心孔的中心;金属片结构B1和金属片结构A1的孔型尺寸相同,为均匀分布六角形通孔圆盘,但圆盘中心为金属片结构A1横向移动两孔中心直线距离的1/2处;其中金属片结构A2为均匀分布圆形通孔圆盘,圆盘中心为中心孔的中心;金属片结构B2和金属片结构A2的孔型尺寸相同,为均匀分布圆形通孔圆盘,但圆盘中心为金属片结构A2横向移动两孔中心直线距离的1/2处;其中金属片结构C片为圆盘周边有半圆通孔和盘中均匀分布至少四个限位螺孔;其中金属片结构D片为中心有一通孔;其组合有A1-B1、A2-B2、A-B和DABCD;
    所述分散装置部分(2-2)包括壳体、设置在壳体内依次连接的两个分散腔,分别是分散腔一和分散腔二,所述分散腔二的输出端与壳体外部的输出腔连接;所述分散腔一和分散腔二为两个矩形腔,且分散腔一输出端与分散腔二的输入端连接,所述分散腔二的输出端楔形,倾斜角度为α;输出腔为梯形,且两边的倾斜角度为β,所述分散腔二的输出端至输入端的距离为L,宽度为D1,分散腔二的输出端的口径为D2,所述壳体上部还开有一个垂直流道至分散腔一和分散腔二的连接处,该流道为一个倒T形流道,流道的底部为矩形,且与分散腔一和分散腔二的连接处连通;其中,0.01≤(D1-D2)/L≤0.1,;35°≤α≤75°;45°≤β≤85°。
  8. 一种制备量子碳素的方法,其特征在于:包括如下步骤:
    步骤1、采用多层反渗透膜制得的pH值为6.5-7.2、电阻值为180兆欧的去离子水;通过电化学氧化发生器部分(1)壳体左侧壁上设有进液口a进入发生器中;
    步骤2、采用H2O2剂(浓度为30%)为发生器中水体的0.15%的添加量,通过进液口a进入发生器中;
    步骤3、通过步骤1、2,水和剂进入电化学氧化发生器部分(1)内,静置不少于24小时时间;之后经控制柜启动制备程序;控制柜提供高频脉冲直流电源,输出端直流电源为 0-150V、0-100A供电化学氧化发生器部分(1)调节应用;同时提供输出端功率为1-5KVA、20KHz-120KHz多波频段交互发射波,供离子嵌入装置的可调式大功率聚焦式超声波换能器调节应用;
    步骤4、电化学氧化发生器部分(1)制备的初级碳溶胶液体经过泵3-4提供的3kg/cm3-10kg/cm3压强,输送碳溶胶液体进入离子嵌入装置部分(3)中,进行石墨层间氢、氧离子的嵌入制备;再经由石墨层间剥离部分、分散装置部分(2)的石墨层间剥离部分装置(2-1)、分散装置部分(2-2)的制备后,碳溶胶液体在石墨层间剥离部分、分散装置部分(2)装置中进行各种参数的检测;当碳溶胶液体的各项指标达到预定值的范围时,作为量子碳素的基础液态体进行后续提纯、浓缩后分离制备出各形态的量子碳素制品;如果碳溶胶液体的各项指标未达到预定值的范围时,***将开启泵4使碳溶胶液体重新返回电化学氧化发生器部分(1)循环制备;
    所述碳溶胶液体的各项指标是指:量子碳素混合液的pH值为1.2-2.2、电动势ORP值为280mv-380mv、电导率值为1.5ms/cm-5.0ms/cm,;固液浓度依据电导率-固含量、电动势-固含量、pH-固含量的归一趋势,固含量值为0.4%-0.6%;碳溶胶液体的温度为40℃-70℃;
    所述碳溶胶液体的各项指标包括对量子碳素粒子的粒径和粒径频度分布的检测;量子碳素的粒径和粒径频度分布的范围在0.6nm-1.0nm之间;
    经过各参数达标后得到量子碳素液;量子碳素液经分级装置中设有转速为15000转/分钟-30000转/分钟的高速离心机,对量子碳素混合液进行离心分级处理。
  9. 按照权利要求8所述的制备量子碳素的方法,其特征在于:对所述量子碳素混合液离心处理后,向处理后的溶液中加入添加0.001%-0.010%质量比的苯六甲酸作为结晶种子,并高速搅拌2小时同时加温到70℃-80℃,静置>20小时,缓慢降温到室温,得到高纯度苯六甲酸结晶体的碳氢氧化合物。
  10. 按照权利要求8所述的制备量子碳素的方法,其特征在于:对所述量子碳素混合液离心处理后,向处理后的溶液中加入0.1%-1.0%的烷烃,或0.1%-1.0%的碳醇,或烷烃和碳醇任一比例混合物;所述烷烃是碳原子为C1-C12的烷烃,其中一种或多种混合烃;所述碳醇是碳原子为C1-C12的碳醇,其中一种或多种混合醇;并高速剪切搅拌1小时,同时对混合液体施加五个波段频率超声分散,由低到高依次施加五个波段频率并且每个波段频率施加时间为1分钟,五个波段频率依次施加完毕后为一个施加组,连续循环进行若干施加组,直至超声分散的时间达到1小时后结束,然后静置12小时,得到上清液为浅黄色液体;采用气相色谱和质谱的共同联用分析方法,得到所述浅黄色液体成分是正辛烷C8H18碳氢化合物;所述五个波段频率依次为20KHz、45KHz、65KHz、100KHz、120KHz。
PCT/CN2016/096157 2016-08-10 2016-08-22 一种量子碳素及制备该量子碳素的方法及装置 WO2018028004A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16912459.1A EP3498670A4 (en) 2016-08-10 2016-08-22 QUANTUM CARBON AND PROCESS AND DEVICE FOR THE PRODUCTION OF THE SAME
JP2019506656A JP2019531998A (ja) 2016-08-10 2016-08-22 量子レベル炭素、該量子レベル炭素の製造方法及び装置
US16/324,216 US20190177168A1 (en) 2016-08-10 2016-08-22 Quantum carbon and a method and apparatus for preparing the quantum carbon
KR1020197002386A KR20190021413A (ko) 2016-08-10 2016-08-22 퀀텀 카본 및 이의 제조 방법과 장치

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201610654183.8A CN106276854A (zh) 2016-08-10 2016-08-10 一种用于制备量子碳素的离子嵌入装置
CN201610653442.5 2016-08-10
CN201610653390.1A CN106241787B (zh) 2016-08-10 2016-08-10 一种制备量子碳素的装置
CN201610654264.8 2016-08-10
CN201610654182.3 2016-08-10
CN201610654182.3A CN106276875B (zh) 2016-08-10 2016-08-10 一种制备量子碳素的方法
CN201610652204.2 2016-08-10
CN201610652205.7 2016-08-10
CN201610653390.1 2016-08-10
CN201610653441.0A CN106219518B (zh) 2016-08-10 2016-08-10 一种用于制备量子碳素的分散装置
CN201610652205.7A CN106276852B (zh) 2016-08-10 2016-08-10 一种用于制备量子碳素的电化学氧化发生器
CN201610654183.8 2016-08-10
CN201610653442.5A CN106276853A (zh) 2016-08-10 2016-08-10 一种量子碳素
CN201610653441.0 2016-08-10
CN201610654264.8A CN106315551B (zh) 2016-08-10 2016-08-10 一种量子碳素及制备该量子碳素的方法及装置
CN201610652204.2A CN106241773A (zh) 2016-08-10 2016-08-10 一种用于制备量子碳素的石墨层间剥离装置

Publications (1)

Publication Number Publication Date
WO2018028004A1 true WO2018028004A1 (zh) 2018-02-15

Family

ID=61161582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096157 WO2018028004A1 (zh) 2016-08-10 2016-08-22 一种量子碳素及制备该量子碳素的方法及装置

Country Status (5)

Country Link
US (1) US20190177168A1 (zh)
EP (1) EP3498670A4 (zh)
JP (1) JP2019531998A (zh)
KR (1) KR20190021413A (zh)
WO (1) WO2018028004A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974068A (zh) * 2023-01-04 2023-04-18 苏州中材非金属矿工业设计研究院有限公司 一种高振实密度的球形石墨及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468796A (zh) * 2008-04-25 2009-07-01 北京三昌宇恒科技发展有限公司 量子化碳材料素材液的制备方法与产品及其制备设备
CN104261383A (zh) * 2014-09-04 2015-01-07 朱光华 量子碳素及其制备方法和实施设备
US20160017502A1 (en) * 2014-07-17 2016-01-21 Rochester Institute Of Technology Electrochemical Process for Producing Graphene, Graphene Oxide, Metal Composites, and Coated Substrates
CN105565297A (zh) * 2014-10-13 2016-05-11 徐海波 电化学氧化切割碳纤维尖端面制备的石墨烯量子点及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104209074B (zh) * 2014-09-04 2016-01-06 朱光华 一种介质强化反应方法及其实施设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468796A (zh) * 2008-04-25 2009-07-01 北京三昌宇恒科技发展有限公司 量子化碳材料素材液的制备方法与产品及其制备设备
US20160017502A1 (en) * 2014-07-17 2016-01-21 Rochester Institute Of Technology Electrochemical Process for Producing Graphene, Graphene Oxide, Metal Composites, and Coated Substrates
CN104261383A (zh) * 2014-09-04 2015-01-07 朱光华 量子碳素及其制备方法和实施设备
CN105565297A (zh) * 2014-10-13 2016-05-11 徐海波 电化学氧化切割碳纤维尖端面制备的石墨烯量子点及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3498670A4 *

Also Published As

Publication number Publication date
JP2019531998A (ja) 2019-11-07
EP3498670A1 (en) 2019-06-19
EP3498670A4 (en) 2020-07-22
US20190177168A1 (en) 2019-06-13
KR20190021413A (ko) 2019-03-05

Similar Documents

Publication Publication Date Title
Kang et al. Synthesis of structure-controlled carbon nano spheres by solution plasma process
Santhosh et al. Oriented carbon nanostructures by plasma processing: recent advances and future challenges
Chen et al. Vertically-oriented graphene
Štengl Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor
CN104649253A (zh) 一种多孔石墨烯及多孔石墨烯膜的制备方法
Azizian-Kalandaragh et al. Ultrasound-assisted preparation and characterization of β-Bi2O3 nanostructures: Exploring the photocatalytic activity against rhodamine B
US20210188646A1 (en) Process, reactor and system for fabrication of free-standing two-dimensional nanostructures using plasma technology
CN113059174B (zh) 一种二维金属锑纳米片的制备方法
Sumdani et al. Recent advances of the graphite exfoliation processes and structural modification of graphene: a review
US20130022530A1 (en) Production Of Exfoliated Graphite
CN105016331B (zh) 一种石墨烯微片‑金刚石复合物的合成方法
Zhang et al. Controllable biomolecule-assisted synthesis and gas sensing properties of In2O3 micro/nanostructures with double phases
Nam et al. Green, fast, and scalable production of reduced graphene oxide via Taylor vortex flow
CN104118870B (zh) 一种氮掺杂石墨烯的制备方法及氮掺杂石墨烯
Sun et al. Graphene nucleation preference at CuO defects rather than Cu2O on Cu (111): a combination of DFT calculation and experiment
Feng et al. Porous structure diamond films with super-hydrophilic performance
CN1768002A (zh) 由液相碳源制备碳纳米管的方法
Xie et al. Review: Layer-number controllable preparation of high-quality graphene for wide applications
WO2018028004A1 (zh) 一种量子碳素及制备该量子碳素的方法及装置
Foong et al. Environmental friendly approach for facile synthesis of graphene-like nanosheets for photocatalytic activity
Xiaoli A review: the method for synthesis MoS 2 monolayer
Hou et al. Reduction of graphene oxide and its effect on square resistance of reduced graphene oxide films
CN205645738U (zh) 一种氮掺杂石墨烯@SiO2同轴纳米管场发射阴极
Guo et al. Two new kinds of nanodiamonds with the structure of controlled sp3/sp2 carbon ratio and carbon atom dimer by the cleavage plane mechanical stripping crush separation preparation technology
CN106315551B (zh) 一种量子碳素及制备该量子碳素的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002386

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019506656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016912459

Country of ref document: EP

Effective date: 20190311