WO2018025904A1 - アークスポット溶接方法及び溶接ワイヤ - Google Patents

アークスポット溶接方法及び溶接ワイヤ Download PDF

Info

Publication number
WO2018025904A1
WO2018025904A1 PCT/JP2017/028015 JP2017028015W WO2018025904A1 WO 2018025904 A1 WO2018025904 A1 WO 2018025904A1 JP 2017028015 W JP2017028015 W JP 2017028015W WO 2018025904 A1 WO2018025904 A1 WO 2018025904A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
steel plate
weld metal
arc spot
less
Prior art date
Application number
PCT/JP2017/028015
Other languages
English (en)
French (fr)
Inventor
聖 八島
励一 鈴木
実 宮田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US16/315,691 priority Critical patent/US20190232411A1/en
Priority to CN201780044422.0A priority patent/CN109477178A/zh
Priority to EP17837006.0A priority patent/EP3498874A4/en
Priority to KR1020197002108A priority patent/KR102141796B1/ko
Publication of WO2018025904A1 publication Critical patent/WO2018025904A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/007Spot arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to an arc spot welding method and a welding wire.
  • a steel sheet with a further increased amount of C tends to be used as a means to achieve both of these performances.
  • resistance spot welding is mainly used for assembling vehicle bodies and joining parts.
  • C heat affected zone
  • martensite is generated in the heat affected zone (HAZ) by welding heat when resistance spot welding is performed, Since it hardens
  • arc spot welding is known as a welding technique replacing resistance spot welding.
  • Patent Document 1 in an arc spot welded joint in which high strength steel plates are superposed and arc spot welded, the relationship between the base metal hardness of the high strength steel plates and the weld metal hardness is controlled within an appropriate range. According to the above, it is described that the strength of the weld metal can be secured, a high cross tensile strength is obtained, and an arc spot welded joint excellent in joint strength can be obtained.
  • Patent Document 1 describes that joint strength can be increased by equalizing the hardness of a weld metal and a steel plate.
  • Patent Document 1 no consideration is given to the embrittlement of HAZ.
  • a general-purpose welding wire is used as the welding wire. In this case, if a steel plate having a high C content is used as the base material, the HAZ embrittlement becomes prominent, and it is considered that brittle fracture occurs without obtaining sufficient joint strength.
  • the present invention provides an arc spot welding method capable of preventing brittle fracture and obtaining high joint strength even when a steel sheet having a high C content is used, and a welding wire suitably used for the arc spot welding method. Objective.
  • the present inventors have found that the object can be achieved by forming a weld metal having a structure mainly composed of an austenite structure, and the present invention has been completed. It was.
  • the present invention provides an austenite structure in an arc spot welding method using a steel sheet having a carbon equivalent Ceq BM represented by the following formula (1) of 0.35 or more and containing C of 0.35% by mass or more. It is related with the arc spot welding method characterized by forming the weld metal which has the structure
  • Ceq BM [C] BM + [Mn] BM / 6 + ([Cu] BM + [Ni] BM ) / 15 + ([Cr] BM + [Mo] BM + [V] BM ) / 5 (1) (However, [C] BM , [Mn] BM , [Cu] BM , [Ni] BM , [Cr] BM , [Mo] BM , and [V] BM are respectively C, Mn, (The contents (% by mass) of Cu, Ni, Cr, Mo, and V are shown.)
  • a welding wire containing 30% by mass or more of Ni may be used.
  • C 1.5 mass% or less, Si: 0.5 to 0.7 mass%, Mn: 10 to 20 mass%, Ni: less than 30 mass%, Cr: 1 to 5 mass % And Mo: 5% by mass or less, and a welding wire in which the total of Mn and Ni is 25% by mass or more may be used.
  • a welding wire in which X represented by the following formula (2) is ⁇ 600 or less may be used.
  • X 521-353 [C] W ⁇ 22 [Si] W ⁇ 24.3 [Mn] W ⁇ 7.7 [Cu] W ⁇ 17.3 [Ni] W ⁇ 17.7 [Cr] W ⁇ 25. 8 [Mo] W (2) (However, [C] W , [Si] W , [Mn] W , [Cu] W , [Ni] W , [Cr] W , and [Mo] W are respectively C, Si in the welding wire. , Mn, Cu, Ni, Cr, and Mo content (% by mass) are shown.)
  • a welding wire having Y of 20 to 100 represented by the following formula (3) may be used.
  • Y [Ni] W + [Mo] W +30 [C] W +0.5 [Mn] W (3) (However, [Ni] W , [Mo] W , [C] W , and [Mn] W indicate the contents (mass%) of Ni, Mo, C, and Mn in the welding wire, respectively. )
  • the ratio of the Vickers hardness of the weld metal to the Vickers hardness of the steel plate was 0.6 to 1.3. May be.
  • the heat input may be 5.0 kJ or less.
  • the present invention provides a welding wire used for arc spot welding using a steel sheet having a carbon equivalent Ceq BM represented by the following formula (1) of 0.35 or more and containing C of 0.35% by mass or more.
  • the present invention also relates to a welding wire containing Ni of 30% by mass or more.
  • Ceq BM [C] BM + [Mn] BM / 6 + ([Cu] BM + [Ni] BM ) / 15 + ([Cr] BM + [Mo] BM + [V] BM ) / 5 (1) (However, [C] BM , [Mn] BM , [Cu] BM , [Ni] BM , [Cr] BM , [Mo] BM , and [V] BM are respectively C, Mn, (The contents (% by mass) of Cu, Ni, Cr, Mo, and V are shown.)
  • the present invention provides a welding wire used for arc spot welding using a steel sheet having a carbon equivalent Ceq BM represented by the following formula (1) of 0.35 or more and containing C of 0.35% by mass or more.
  • C 1.5 mass% or less
  • Si 0.5 to 0.7 mass%
  • Mn 10 to 20 mass%
  • Ni less than 30 mass%
  • Cr 1 to 5 mass%
  • Mo It also relates to a welding wire containing 5% by mass or less and the total of Mn and Ni being 25% by mass or more.
  • Ceq BM [C] BM + [Mn] BM / 6 + ([Cu] BM + [Ni] BM ) / 15 + ([Cr] BM + [Mo] BM + [V] BM ) / 5 (1) (However, [C] BM , [Mn] BM , [Cu] BM , [Ni] BM , [Cr] BM , [Mo] BM , and [V] BM are respectively C, Mn, (The contents (% by mass) of Cu, Ni, Cr, Mo, and V are shown.)
  • FIG. 1 is a schematic cross-sectional view showing a direction in which fracture progresses in a welded structure obtained by an arc spot welding method according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a direction in which fracture progresses in a welded structure obtained by an arc spot welding method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the cross tension test.
  • the carbon equivalent Ceq BM represented by the following formula (1) is 0.35 or more, and C is 0.35 mass%.
  • a weld metal having a structure in which the proportion of the austenite structure exceeds 80% is formed.
  • Ceq BM [C] BM + [Mn] BM / 6 + ([Cu] BM + [Ni] BM ) / 15 + ([Cr] BM + [Mo] BM + [V] BM ) / 5 (1) (However, [C] BM , [Mn] BM , [Cu] BM , [Ni] BM , [Cr] BM , [Mo] BM , and [V] BM are respectively C, Mn, (The contents (% by mass) of Cu, Ni, Cr, Mo, and V are shown.)
  • the carbon equivalent Ceq BM and the amount of C of the base material are indexes that greatly affect the embrittlement of the heat affected zone (HAZ) generated in the base material.
  • HAZ heat affected zone
  • martensite is generated in the heat affected zone (HAZ) by welding. Since martensite is very hard and has a brittle nature, it causes brittle fracture in the HAZ when a load is applied.
  • the present arc spot welding method is intended to prevent brittle fracture and obtain high joint strength even in such a case.
  • the carbon equivalent Ceq BM is 0.35 or more, and the C amount This is intended for the case where a steel plate (hereinafter also referred to as a high-C steel plate) having 0.35 mass% or more is used as a base material.
  • a steel plate hereinafter also referred to as a high-C steel plate
  • the carbon equivalent Ceq BM of the steel sheet is less than 0.35 and / or the amount of C is less than 0.35% by mass, the precipitation of martensite in the HAZ is reduced. Although brittle fracture is suppressed, high strength cannot be obtained.
  • a weld metal having a structure mainly composed of an austenite structure is formed.
  • the weld metal having a structure mainly composed of an austenite structure represents a weld metal in which the ratio of the austenite structure in the weld metal structure is more than 80%.
  • the ratio of the austenite structure in the weld metal structure is preferably 90% or more.
  • it is more preferable that the ratio of the austenite structure in the weld metal structure is 100%, that is, the entire structure of the weld metal is an austenite structure.
  • the ratio of the austenite structure in the weld metal structure is a ratio in area ratio, and is measured by observing crystal orientation by EBSD.
  • the observation range of EBSD is 200 ⁇ 200 ⁇ m, and the ratio of the austenite structure is calculated from the Phase map.
  • the austenite structure is a soft and ductile structure unlike the martensite structure. Therefore, a weld metal having a structure mainly composed of an austenite structure does not cause brittle fracture, and becomes a ductile fracture (molten metal fracture) in which the molten metal undergoes plastic deformation and breaks. Therefore, according to this arc spot welding method, even when a high-C steel plate is used as a base material, brittle fracture is prevented and the joint strength is increased by the high ductility of the weld metal having a structure mainly composed of an austenite structure. be able to.
  • the proportion of the structure other than the austenite structure such as ⁇ ferrite structure or martensite structure in the weld metal structure is more than 20% (in the cross-section macro)
  • the coarsening of the crystal grains and the excessive increase in the weld metal hardness are factors.
  • the molten metal does not plastically deform and brittle fracture occurs at the bond.
  • the ratio of the structure other than the austenite structure in the weld metal structure is also calculated by observing the crystal orientation by EBSD, similarly to the austenite structure.
  • a method for forming a weld metal having a structure mainly composed of an austenite structure is not particularly limited, but for example, a soluble wire having a specific composition is used, cooling is performed. Speed, heat input control and shielding gas composition contribute.
  • a welding wire suitable for forming a weld metal having a structure mainly composed of an austenite structure for example, a welding wire containing 30% by mass or more of Ni (hereinafter also referred to as Ni wire of the present embodiment). Is mentioned.
  • the wire composition of the Ni wire of this embodiment will be described.
  • Ni is an austenite stabilizing element, and the higher the amount of Ni, the more stably the austenite structure can be generated.
  • the Ni wire of the present embodiment at least a proportion of a structure other than austenite such as ferrite and martensite in the weld metal structure is suppressed to less than 20%, and at least a weld metal having a structure mainly composed of austenite is formed.
  • the amount of Ni contained in the wire is preferably 30% by mass or more.
  • the amount of Ni in the Ni wire of the present embodiment is more preferably 50% by mass or more, and further preferably 70% by mass or more.
  • the upper limit of Ni amount is not specifically limited, For example, 100 mass% may be sufficient.
  • the chemical component other than Ni that can be included in the Ni wire of the present embodiment is not particularly limited, but other than the optional components such as C, Si, Mn, Cu, Cr, Mo, V, and Co, the remainder Fe, and inevitable impurities such as P and S.
  • the Cu includes a plating content.
  • a welding wire suitable for forming a weld metal having a structure mainly composed of an austenite structure is C: 1.5% by mass or less, Si : 0.5 to 0.7% by mass, Mn: 10 to 20% by mass, Ni: less than 30% by mass, Cr: 1 to 5% by mass, and Mo: 5% by mass or less, total of Mn and Ni Is a welding wire (hereinafter, also referred to as a wire of less than 30% by mass of Ni in the present embodiment).
  • the amount of Mn contained in the wire is 2.0% by mass or less, but the wire of Ni of less than 30% by mass in this embodiment is Mn: 10% by mass. It is the above high Mn wire.
  • the composition of the wire of less than 30% by mass of Ni according to this embodiment will be described below.
  • C is an element that stabilizes austenite, it also causes carbides in the weld metal and induces martensitic transformation of the weld metal, and promotes embrittlement of the weld metal.
  • C content is more than 1.5% by mass, martensite and carbides are generated in the weld metal structure, and the weld metal may be embrittled.
  • the amount of C contained is preferably regulated to 1.5% by mass or less.
  • Si is a ferrite stabilizing element, but is an element that improves deoxidation and bead shape, and therefore is an element that must be added to the welding wire. If the amount of Si is less than 0.5% by mass, the deoxidation effect does not occur sufficiently, and defects may occur in the weld metal. Therefore, the amount of Si in the wire of less than 30% by mass of Ni in this embodiment is The content is preferably 0.5% by mass or more. On the other hand, if the amount of Si exceeds 0.7% by mass, ⁇ ferrite may be formed in the weld metal and the crystal grains may be coarsened. Therefore, the amount of Si in the wire of less than 30% by mass of Ni in this embodiment is It is preferable that it is 0.7 mass% or less.
  • Mn is an austenite stabilizing element like C, and also has the effect of increasing the solid solution amount of N having the effect of stabilizing the austenite phase in the matrix, and the welding wire of less than 30% by mass of Ni of this embodiment. Is an essential element.
  • Mn has the effect of softening steel and improving plastic workability.
  • the Mn content in the wire of less than 30% by mass of Ni of this embodiment is 10 to 20% by mass.
  • the amount of Mn is preferably 13% by mass or more, and preferably 16% by mass or less.
  • the total of Mn and Ni as an austenite stabilizing element is preferably 25% by mass or more. When Mn is less than 10% by mass, sufficient plastic deformation ability of the weld metal cannot be obtained, so that brittle fracture may occur.
  • the Cr is a ferrite stabilizing element, but it is possible to improve weldability by adding it in the range of 5% by mass or less.
  • the amount of Cr exceeds 5% by mass, there is a possibility that ⁇ ferrite structure is formed or that chromium carbide precipitates in the structure and embrittlement occurs. Therefore, in the welding wire of less than 30% by mass of Ni according to this embodiment, the Cr content is preferably 5% by mass or less, and more preferably 4% by mass or less.
  • the Cr amount is less than 1% by mass, in addition to chromium carbide, carbon may be formed in the weld metal, so the Cr amount contained in the welding wire of Ni of less than 30% by mass in this embodiment is The content is preferably 1% by mass or more, and more preferably 2% by mass or more.
  • Mo is a ferrite stabilizing element like Cr, but it is possible to improve weldability by adding it in the range of 5 mass% or less.
  • the Mo amount is preferably 5% by mass or less, and more preferably 3% by mass or less.
  • the wire of Ni less than 30 mass% of this embodiment does not need to contain Mo, the minimum of the amount of Mo in the case of containing is 1 mass%, for example.
  • the wire of less than 30% by mass of Ni according to the present embodiment may further contain an optional component such as Cu, V, Co and the like in addition to the chemical component described above.
  • the balance may be composed of Fe and inevitable impurities such as P and S. Note that the Cu includes a plating content.
  • the value of X represented by the above formula (2) is an index of the martensitic transformation start temperature.
  • X of the welding wire used is preferably ⁇ 600 or less, more preferably ⁇ 800 or less, and further preferably ⁇ 1000 or less.
  • the lower limit of X of the welding wire to be used is not particularly limited, but is, for example, ⁇ 1300 or more.
  • Y represented by the following formula (3) is 20 to 100.
  • the value of Y represented by the above formula (3) is an index representing the austenite stability in chemical composition. If Y is 20 or more, the main structure of the weld metal is austenite, and the precipitation ratio of the structure other than the austenite structure such as the ferrite structure and martensite structure in the weld metal can be suppressed to less than 20%. Therefore, in this arc spot welding method, Y of the welding wire used is preferably 20 or more, and more preferably 50 or more. On the other hand, if Y is 100 or less, the proportion of austenite contained in the weld metal can be 90% or more per cross-sectional area. Therefore, in this arc spot welding method, it is preferable that Y of the welding wire used is 100 or less which is the maximum value.
  • the ratio of the Vickers hardness of the weld metal to the Vickers hardness of the steel sheet is 0.6 to 1.3. It is preferable.
  • the ratio (hereinafter also referred to as the hardness ratio) of (Vickers hardness of weld metal / Vickers hardness of steel plate) is 0.6 to 1 .3 is preferable.
  • the hardness ratio is preferably 0.6 or more, and more preferably 0.7 or more.
  • the hardness ratio exceeds 1.3, since the weld metal is harder than the base metal, the weld metal hardly undergoes plastic deformation. If the weld metal is not deformed, the stress concentrates on the bond portion that is the interface between the weld metal and the base material. This bond portion is an interface between the base material structure and the weld metal, and is also a heat-affected zone (HAZ) region, and thus has a brittle nature in which a martensite structure is formed.
  • HZ heat-affected zone
  • the Vickers hardness of the weld metal is preferably 250 or less, more preferably 200 or less, from the viewpoint of suppressing brittle fracture.
  • the welding conditions such as heat input, welding method, shield gas and the like are not particularly limited, and may be appropriately adjusted within a range not impairing the effects of the present invention.
  • the amount of heat input is not particularly limited. However, if the amount of heat input increases, the amount of martensite generated in the base metal-weld metal bond and HAZ increases, and embrittlement is promoted.
  • the heat input is preferably 5.0 kJ or less, and more preferably 3.0 kJ or less.
  • the lower limit value of the heat input amount is not particularly limited, but is preferably 2.0 kJ or more in the case of a steel plate of 1.2 mm, for example.
  • the arc spot welding method may be any of MAG welding, MIG welding, TIG welding, and the like.
  • shielding gas according to each welding type such as MAG welding, MIG welding, TIG welding, etc., known gases such as inert gas such as Ar and He, CO 2 , mixed gas of inert gas and CO 2 , etc. It can be appropriately selected and used.
  • the 1st steel plate 1 and the 2nd steel plate 2 by which the arc is irradiated are made into the back surface 12 of the said 1st steel plate 1, and the said
  • the bead diameter of the weld metal 3 on the surface 11 of the first steel plate 1 is r1
  • the bead on the surface 21 of the second steel plate 2 of the weld metal 3 is It is preferable that r1, r2, Y, and Ceq BM satisfy the following formulas (3) to (5) where the diameter is r2. The reason why this embodiment is suitable will be described later.
  • the shape of the weld metal 3 is a factor that determines the stress concentration site when a tensile load is applied, and is also an important factor that contributes to the fracture position.
  • r2 / r1 in the formula (4) and r2 / r3 in the formula (6) are indicators of the fracture site and the fracture progress direction.
  • r2 / r1 is less than 0.35 or exceeds 1.00, a shape in which stress is concentrated on the bond portion (welded metal 3-HAZ4) on the first steel plate 1 side shown as point A in FIG. Therefore, when tensile stress is applied, the point A becomes the starting point of the fracture, and the fracture occurs in the HAZ 4 on the first steel plate 1 side.
  • the direction of the arrow in FIG. In order to relieve such stress concentration, r2 / r1 is preferably in the range of 0.35 to 1.00, and more preferably in the range of 0.5 to 0.8.
  • r2 / r3 is less than 0.5 or more than 3.0, a shape in which stress is concentrated on the bond portion (welded metal 3-HAZ4) on the second steel plate 2 side shown as point B in FIG. Therefore, when tensile stress is applied, the point B becomes the starting point of the fracture, and the fracture occurs in the HAZ 4 on the second steel plate 2 side.
  • the direction of the arrow in FIG. In order to alleviate such stress concentration, r2 / r3 is preferably in the range of 0.5 to 3.0, and more preferably in the range of 1.0 to 2.0.
  • ⁇ Y [Ni] W + [Mo] W +30 [C] W +0.5 [Mn] W (3)> ⁇ 25 ⁇ (Y / Ceq BM ) ⁇ 125 (5)>
  • the value of Y represented by the above formula (3) is an index representing the austenite stability on the chemical composition.
  • the ratio of Y to the carbon equivalent Ceq BM (Y / Ceq BM ) of the steel sheet is an indicator of whether it is a molten metal fracture or a bond fracture, and it is judged whether sufficient joint strength can be obtained. It becomes an index for.
  • Y / Ceq BM is preferably 25 or more, and more preferably 60 or more.
  • Y / Ceq BM is preferably 125 or less, and more preferably 100 or less.
  • the Ni wire and the wire of less than 30% by mass of Ni described above can be suitably used for arc spot welding using a steel plate having a high C content.
  • Table 1 shows the composition, the carbon equivalent Ceq BM represented by the following formula (1), and the Vickers hardness Hv for the used steel sheet.
  • the Vickers hardness (BM HV) of the steel plate was measured with a Vickers hardness tester.
  • Ceq BM [C] BM + [Mn] BM / 6 + ([Cu] BM + [Ni] BM ) / 15 + ([Cr] BM + [Mo] BM + [V] BM ) / 5 (1) (However, [C] BM , [Mn] BM , [Cu] BM , [Ni] BM , [Cr] BM , [Mo] BM , and [V] BM are respectively C, Mn, (The contents (% by mass) of Cu, Ni, Cr, Mo, and V are shown.)
  • Examples 1 to 53 In each example, two steel sheets having the steel types shown in Tables 2 to 3 and the plate thicknesses shown in Tables 2 to 3 and having been subjected to drilling (provided with holes 204) are shown in Tables 2 to 3. Arc spot welding was carried out under the welding conditions shown in Fig. 3 to produce test pieces having the shape shown in Fig. 3. The upper plate side was the first steel plate 201 and the lower plate side was the second steel plate 202, and an arc (not shown) was irradiated from the surface 211 side of the first steel plate 201. And about the produced test piece, the CTS (cross tension test) is implemented by pulling the 1st steel plate 201 and the 2nd steel plate 202 in the direction of the arrow in FIG.
  • CTS cross tension test
  • the evaluation was evaluated as “ ⁇ ” when 5 kN or more and less than 7 kN, and “X” when 5 kN or less.
  • the evaluation results are shown in Table 3.
  • the welding conditions are a welding current range of 200 to 300 A and an arc voltage of 15 to 20 V
  • Other types of shielding gas and construction methods are also shown in Tables 2-3. Note that “pulse”, “short circuit”, and “wire feed control” in the column “construction method” respectively represent the following. Pulse: Welding was performed using a pulse power source under conditions of a base current of 400 A, a peak current of 40 A, and a peak time of 3.5 msec.
  • Short-circuit Using a DC power source, welding was performed under the conditions of a welding current of 230 A and an arc voltage of 22 V while repeating a short-circuit state due to the wire coming into contact with the base material and an arc state.
  • Wire feed control Welding is performed while performing forward feed and reverse feed according to the welding state so that reverse feed is performed when the welding state becomes short-circuited and forward feed is performed when the welding state becomes an arc state. Welding was performed under the conditions of a current of 220 A and an arc voltage of 22.6 V.
  • Tables 2 to 3 show the amount of each component expressed in mass%.
  • X represented by the following formula (2) and Y represented by the following formula (3) are calculated and shown together in Tables 2 to 3.
  • “Others” in the wire components in Tables 2 to 3 represents the total amount of optional components such as Cu, V, and Co other than the components described in Tables 2 to 3.
  • “0” in the wire component amounts in Tables 2 to 3 indicates that the component amount is an amount equal to or less than an amount considered as an inevitable impurity.
  • Ceq W [C] W + [Mn] W / 6 + ([Cu] W + [Ni] W) / 15 + ([Cr] W + [Mo] W) / 5 (7) (However, [C] W , [Mn] W , [Cu] W , [Ni] W , [Cr] W , and [Mo] W are respectively C, Mn, Cu, Ni, (The Cr and Mo contents (% by mass) are shown.)
  • the bead diameter on the surface 211 of the first steel plate 201 of the metal 203 is r1 (mm)
  • the bead diameter on the surface 221 of the second steel plate 202 of the weld metal 203 is r2 (mm)
  • the back surface 222 of the second steel plate 202 of the weld metal 203 was r3 (mm)
  • r1 / r2 and r3 / r2 were calculated and shown together in Tables 4-5.
  • Tables 4 to 5 show the Vickers hardness (WM Hv) of the weld metal and the Vickers hardness (BM Hv) of the steel plate as the base material.
  • the Vickers hardness (WM Hv) of the weld metal was measured with a Vickers hardness tester in the same manner as the Vickers hardness (BM Hv) of the steel plate. Further, the ratio (WM Hv / BM Hv) of the Vickers hardness (WM Hv) of the weld metal to the Vickers hardness (BM Hv) of the steel plate was calculated and shown in Tables 4 to 5.
  • each weld metal structure was observed by EBSD, and the ratio of the austenite structure and the structure other than austenite (area ratio) in the weld metal structure was observed.
  • the observation range of EBSD was 200 ⁇ 200 ⁇ m, and the ratio of the austenite structure and the structure other than austenite was calculated from the Phase map.
  • Tables 4 to 5 show the proportions of structures other than austenite in the weld metal structure.
  • the ratio of the austenite structure in the weld metal structure is ⁇ 100 ⁇ (the ratio of the structure other than austenite in the weld metal structure) ⁇ (%).
  • Examples 1 to 33 are examples, and examples 34 to 53 are comparative examples.
  • the ratio of the structure other than austenite in the weld metal structure is 20% or more, that is, the ratio of the austenite structure in the weld metal structure is 80% or less, which is outside the range specified in the present invention.
  • the cross tension test sufficient strength was not obtained.
  • Examples 1 to 33 satisfying the requirements defined in the present invention sufficient strength was obtained in the cross tension test.
  • First steel plate 2 Second steel plate 3: Weld metal 4: HAZ (heat affected zone) 11: Front surface 12: Back surface 21: Front surface 22: Back surface 100: Welded structure 201: First steel plate 202: Second steel plate 203: Weld metal 204: Hole 211: Front surface 212: Back surface 221: Front surface 222: Back surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

本発明は、炭素当量CeqBM(なお、炭素当量CeqBMは明細書中に定義されている。)が0.35以上であり、かつCを0.35質量%以上含有する鋼板を用いたアークスポット溶接方法において、オーステナイト組織の割合が80%超である組織を有する溶接金属を形成させることを特徴とするアークスポット溶接方法、及びそれに好適に用いられる溶接ワイヤに関する。本アークスポット溶接方法によれば、C量の高い鋼板を用いた場合においても、脆性破壊を防止して高い継手強度を得ることができる。

Description

アークスポット溶接方法及び溶接ワイヤ
 本発明は、アークスポット溶接方法及び溶接ワイヤに関する。
 自動車分野においては、昨今の低燃費化や排出ガスの規制に伴って、車体の軽量化が進められている。これに伴い、車体部品に用いられる薄鋼板についても、引張強度が780MPaを超えるような高強度鋼板が採用されることが増えてきており、今後もさらに高強度化が進むとされている。また、車体部品のような複雑な部品形状に成形される構造物には、高い強度とともに高いプレス成形性が要求される。
 そこで、これらの性能を両立させるものとして、C量をより増加させた鋼板が用いられる傾向にある。一方、車体の組み立てや部品の接合には、主として抵抗スポット溶接が用いられている。ここで、鋼板へのCの添加は鋼板の高強度化やプレス成形性の向上には有効であるものの、抵抗スポット溶接した際に熱影響部(HAZ)には溶接熱によりマルテンサイトが生じ、過度に硬化して脆化してしまうため、強度の低下や割れの発生など、溶接性が著しく低下してしまうという問題があった。
 一方、抵抗スポット溶接に代わる溶接手法として、アークスポット溶接が知られている。例えば、特許文献1には、高張力鋼板が重ね合わせられてアークスポット溶接されたアークスポット溶接継手において、高張力鋼板の母材硬度と溶接金属硬度との関係を適正範囲に制御することすることにより、溶接金属の強度が確保でき、高い十字引張強さが得られ、継手強度に優れたアークスポット溶接継手が得られることが記載されている。
日本国特開2013-10139号公報
 特許文献1では、溶接金属と鋼板の硬度を同等にすることにより継手強度を高められると記載されている。しかしながら、特許文献1においては、HAZの脆化については何ら考慮されていない。また、溶接ワイヤとしては、汎用的な溶接ワイヤが用いられている。この場合において、母材としてC量の高い鋼板を用いると、HAZの脆化が顕著となり、十分な継手強度が得られることなく脆性破壊に至ると考えられる。
 そこで、本発明は、C量の高い鋼板を用いた場合においても、脆性破壊を防止して高い継手強度を得ることのできるアークスポット溶接方法、及びそれに好適に用いられる溶接ワイヤを提供することを目的とする。
 本発明者らは前記目的を達成するために鋭意検討を重ねた結果、オーステナイト組織を主体とする組織を有する溶接金属を形成させることにより当該目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記式(1)で表される炭素当量CeqBMが0.35以上であり、かつCを0.35質量%以上含有する鋼板を用いたアークスポット溶接方法において、オーステナイト組織の割合が80%超である組織を有する溶接金属を形成させることを特徴とするアークスポット溶接方法に関する。
 CeqBM=[C]BM+[Mn]BM/6+([Cu]BM+[Ni]BM)/15+([Cr]BM+[Mo]BM+[V]BM)/5   (1)
 (但し、[C]BM、[Mn]BM、[Cu]BM、[Ni]BM、[Cr]BM、[Mo]BM、及び[V]BMは、夫々、前記鋼板中のC、Mn、Cu、Ni、Cr、Mo、及びVの含有量(質量%)を示す。)
 上記アークスポット溶接方法においては、Niを30質量%以上含有する溶接ワイヤを用いてもよい。
 上記アークスポット溶接方法においては、C:1.5質量%以下、Si:0.5~0.7質量%、Mn:10~20質量%、Ni:30質量%未満、Cr:1~5質量%、及びMo:5質量%以下を含有し、MnとNiの合計が25質量%以上である溶接ワイヤを用いてもよい。
 上記アークスポット溶接方法においては、下記式(2)で表されるXが-600以下である溶接ワイヤを用いてもよい。
 X=521-353[C]-22[Si]-24.3[Mn]-7.7[Cu]-17.3[Ni]-17.7[Cr]-25.8[Mo]   (2)
 (但し、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、及び[Mo]は、夫々、前記溶接ワイヤ中のC、Si、Mn、Cu、Ni、Cr、及びMoの含有量(質量%)を示す。)
 上記アークスポット溶接方法においては、下記式(3)で表されるYが20~100である溶接ワイヤを用いてもよい。
 Y=[Ni]+[Mo]+30[C]+0.5[Mn]   (3)
 (但し、[Ni]、[Mo]、[C]、及び[Mn]は、夫々、前記溶接ワイヤ中のNi、Mo、C、及びMnの含有量(質量%)を示す。)
 上記アークスポット溶接方法においては、前記鋼板のビッカース硬さに対する前記溶接金属のビッカース硬さの比(前記溶接金属のビッカース硬さ/前記鋼板のビッカース硬さ)が0.6~1.3であってもよい。
 上記アークスポット溶接方法においては、入熱量が5.0kJ以下であってもよい。
 上記アークスポット溶接方法においては、アークが照射される側の第1鋼板と、第2鋼板とを、前記第1鋼板の裏面と前記第2鋼板の表面とを重ね合わせてアークスポット溶接したときに、前記溶接金属の前記第1鋼板の表面におけるビード径をr1、前記溶接金属の前記第2鋼板の表面におけるビード径をr2として、
 r1、r2、Y及びCeqBMが、下記式(3)~(5)を満たしていてもよい。
 Y=[Ni]+[Mo]+30[C]+0.5[Mn]   (3)
 (但し、[Ni]、[Mo]、[C]、及び[Mn]は、夫々、前記溶接ワイヤ中のNi、Mo、C、及びMnの含有量(質量%)を示す。)
 0.35≦(r2/r1)≦1.00   (4)
 25≦(Y/CeqBM)≦125   (5)
 また、本発明は、下記式(1)で表される炭素当量CeqBMが0.35以上であり、かつCを0.35質量%以上含有する鋼板を用いたアークスポット溶接に用いられる溶接ワイヤであって、Niを30質量%以上含有する溶接ワイヤにも関する。
 CeqBM=[C]BM+[Mn]BM/6+([Cu]BM+[Ni]BM)/15+([Cr]BM+[Mo]BM+[V]BM)/5   (1)
 (但し、[C]BM、[Mn]BM、[Cu]BM、[Ni]BM、[Cr]BM、[Mo]BM、及び[V]BMは、夫々、前記鋼板中のC、Mn、Cu、Ni、Cr、Mo、及びVの含有量(質量%)を示す。)
 また、本発明は、下記式(1)で表される炭素当量CeqBMが0.35以上であり、かつCを0.35質量%以上含有する鋼板を用いたアークスポット溶接に用いられる溶接ワイヤであって、C:1.5質量%以下、Si:0.5~0.7質量%、Mn:10~20質量%、Ni:30質量%未満、Cr:1~5質量%、及びMo:5質量%以下を含有し、MnとNiの合計が25質量%以上である溶接ワイヤにも関する。
 CeqBM=[C]BM+[Mn]BM/6+([Cu]BM+[Ni]BM)/15+([Cr]BM+[Mo]BM+[V]BM)/5   (1)
 (但し、[C]BM、[Mn]BM、[Cu]BM、[Ni]BM、[Cr]BM、[Mo]BM、及び[V]BMは、夫々、前記鋼板中のC、Mn、Cu、Ni、Cr、Mo、及びVの含有量(質量%)を示す。)
 本発明のアークスポット溶接方法によれば、C量の高い鋼板を用いた場合においても、脆性破壊を防止して高い継手強度を得ることができる。
図1は、本発明の一実施形態に係るアークスポット溶接方法により得られる溶接構造物において、破壊の進展する方向を示す断面模式図である。 図2は、本発明の一実施形態に係るアークスポット溶接方法により得られる溶接構造物において、破壊の進展する方向を示す断面模式図である。 図3は、十字引張試験の様子を表す概要図である。
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。また、本明細書において、質量を基準とする百分率(質量%)は、重量を基準とする百分率(重量%)と同義である。
 本実施形態のアークスポット溶接方法(以下、本アークスポット溶接方法ともいう)は、下記式(1)で表される炭素当量CeqBMが0.35以上であり、かつCを0.35質量%以上含有する鋼板を用いたアークスポット溶接方法において、オーステナイト組織の割合が80%超である組織を有する溶接金属を形成させるものである。
 CeqBM=[C]BM+[Mn]BM/6+([Cu]BM+[Ni]BM)/15+([Cr]BM+[Mo]BM+[V]BM)/5   (1)
 (但し、[C]BM、[Mn]BM、[Cu]BM、[Ni]BM、[Cr]BM、[Mo]BM、及び[V]BMは、夫々、前記鋼板中のC、Mn、Cu、Ni、Cr、Mo、及びVの含有量(質量%)を示す。)
 母材の炭素当量CeqBM及びC量は、母材に生じる熱影響部(HAZ)の脆化に大きな影響を及ぼす指標となる。ここで、炭素当量CeqBMが0.35以上であり、かつC量が0.35質量%以上である鋼板は、溶接により熱影響部(HAZ)にマルテンサイトが生じる。マルテンサイトは非常に硬く、脆い性質を有しているため、荷重がかかった際に、HAZにおいて脆性破壊を誘起する原因となる。本アークスポット溶接方法は、このような場合においても脆性破壊を防止して高い継手強度を得ることを目的とするものであり、したがって、炭素当量CeqBMが0.35以上であり、かつC量が0.35質量%以上である鋼板(以下、高C鋼板ともいう)を母材として用いる場合を対象とする。一方、鋼板の炭素当量CeqBMが0.35未満及び/又はC量が0.35質量%未満の場合には、HAZにおけるマルテンサイトの析出が減少するため、荷重がかかった際に、HAZにおいて脆性破壊が抑制されるが、高い強度を得ることはできない。
 上記目的を達成するために、本アークスポット溶接方法では、オーステナイト組織を主体とする組織を有する溶接金属を形成させる。ここで、オーステナイト組織を主体とする組織を有する溶接金属とは、溶接金属組織中のオーステナイト組織の割合が80%超である溶接金属を表す。本実施形態において、溶接金属組織中のオーステナイト組織の割合は、好ましくは90%以上である。また、溶接金属組織中のオーステナイト組織の割合が上限となる100%、すなわち、溶接金属の全組織がオーステナイト組織であることがより好ましい。ここで、溶接金属組織中のオーステナイト組織の割合は、面積率での割合であり、EBSDによる結晶方位の観察により測定される。なお、EBSDの観察範囲は200×200μmとし、Phaseマップにより、オーステナイト組織の割合を算出する。
 オーステナイト組織は、マルテンサイト組織とは異なり、軟質で延性に富む組織である。したがって、オーステナイト組織を主体とする組織を有する溶接金属は、脆性破壊を起こさず、溶金が塑性変形して破断する延性破壊(溶金破断)となる。そのため、本アークスポット溶接方法によれば、母材として高C鋼板を用いた場合でも、オーステナイト組織を主体とする組織を有する溶接金属の高い延性により、脆性破壊を防止して、継手強度を高めることができる。一方、溶接金属組織中のδフェライト組織やマルテンサイト組織といったオーステナイト組織以外の組織の割合が20%(断面マクロ中)よりも多いと、結晶粒粗大化や溶接金属硬度の過剰増加が要因となり、荷重がかかった際に、溶金が塑性変形せず、ボンドで脆性破壊が起こる。なお、溶接金属組織中のオーステナイト組織以外の組織の割合についても、オーステナイト組織と同様に、EBSDによる結晶方位観察により算出されるものとする。
 本アークスポット溶接方法において、オーステナイト組織を主体とする組織を有する溶接金属を形成させるための手法は、特に限定されるものではないが、例えば、特定の組成を有する溶性ワイヤを使用すること、冷却速度、入熱量の制御やシールドガス組成などが寄与する。
 オーステナイト組織を主体とする組織を有する溶接金属を形成させるために好適な溶接ワイヤの例としては、例えば、Niを30質量%以上含有する溶接ワイヤ(以下において、本実施形態のNiワイヤともいう)が挙げられる。以下、本実施形態のNiワイヤのワイヤ組成について説明する。
 Niはオーステナイト安定化元素であり、Ni量が高いほど、オーステナイト組織を安定して生成させることができる。本実施形態のNiワイヤにおいて、溶接金属組織中のフェライトやマルテンサイト等のオーステナイト以外の組織の割合を20%未満に抑制し、オーステナイトを主体とした組織を有する溶接金属を形成させるには、少なくともワイヤ中に含まれるNi量を30質量%以上とすることが好ましい。本実施形態のNiワイヤのNi量は、より好ましくは50質量%以上であり、さらに好ましくは70質量%以上である。また、Ni量の上限は特に限定されるものではなく、例えば100質量%であってもよい。
 本実施形態のNiワイヤに含まれうるNi以外の化学成分としては、特に限定されるものではないが、C、Si、Mn、Cu、Cr、Mo、V、Co等の任意成分の他、残部のFe、及びP、S等の不可避的不純物が挙げられる。尚、上記Cuはめっき分も含む。
 また、Niが30質量%未満であっても、オーステナイト組織を主体とする組織を有する溶接金属を形成させるために好適な溶接ワイヤの別の例としては、C:1.5質量%以下、Si:0.5~0.7質量%、Mn:10~20質量%、Ni:30質量%未満、Cr:1~5質量%、及びMo:5質量%以下を含有し、MnとNiの合計が25質量%以上である溶接ワイヤ(以下において、本実施形態のNi30質量%未満のワイヤともいう)が挙げられる。一般的なワイヤ、例えばYGW15、YGW18、YGW19などは、ワイヤ中に含まれるMn量は2.0質量%以下とされているが、本実施形態のNi30質量%未満のワイヤはMn:10質量%以上の高Mnのワイヤである。本実施形態のNi30質量%未満のワイヤの組成について以下に説明する。
 Cはオーステナイトを安定化する元素ではあるが、溶接金属中に炭化物を生じさせるとともに、溶接金属のマルテンサイト変態を誘起する元素でもあり、溶接金属の脆化を促進させるため下限は特に規定しないが、C量が1.5質量%よりも多いと、マルテンサイトや炭化物が溶接金属組織中に生じ、溶接金属の脆化が生じるおそれがあるため、本実施形態のNi30質量%未満のワイヤ中に含まれるC量は、1.5質量%以下に規定すること好ましい。
 Siは、フェライト安定化元素であるが、脱酸やビード形状を改善する元素であるため、溶接ワイヤには添加が必須な元素である。Si量が0.5質量%未満であると、脱酸効果が十分に起こらず、溶接金属中に欠陥が発生することがあるため、本実施形態のNi30質量%未満のワイヤ中のSi量は、0.5質量%以上であることが好ましい。一方、Si量が0.7質量%を超えると、溶接金属中にδフェライトが形成し結晶粒が粗大化する可能性があるため、本実施形態のNi30質量%未満のワイヤ中のSi量は、0.7質量%以下であることが好ましい。
 Mnは、C同様にオーステナイト安定化元素であり、また、マトリックス中のオーステナイト相を安定化する効果を有するNの固溶量を増加させる効果があり、本実施形態のNi30質量%未満の溶接ワイヤにおける必須の元素である。加えて、Mnは、鋼を軟質化し、塑性加工性を改善する効果を有する。これらの効果を得るためには、本実施形態のNi30質量%未満のワイヤ中のMn量を10~20質量%とすることが好ましい。また、当該Mn量は、好ましくは13質量%以上であり、また、好ましくは16質量%以下である。また、オーステナイト組織安定化に対し、Mnとオーステナイト安定化元素であるNiの合計が25質量%以上とすることが好ましい。Mnが10質量%未満である場合、十分な溶接金属の塑性変形能力が得られないため、脆性破壊が生じるおそれがある。
 Crはフェライト安定化元素であるが、5質量%以下の範囲で添加することで、溶接性を向上させることが可能となる。一方、Cr量が5質量%を超える場合、δフェライト組織の生成や、組織中にクロム炭化物が析出して脆化が起こるおそれがある。したがって、本実施形態のNi30質量%未満の溶接ワイヤにおいて、Cr量を5質量%以下とすることが好ましく、4質量%以下とすることがより好ましい。また、Cr量が1質量%未満であると、クロム炭化物の他、炭素が溶接金属中に形成することがあるため、本実施形態のNi30質量%未満の溶接ワイヤ中に含まれるCr量は、1質量%以上であることが好ましく、2質量%以上であることがより好ましい。
 Moは、Crと同様にフェライト安定化元素であるが、5質量%以下の範囲で添加することで、溶接性を向上させることが可能となる。一方、5質量%を超える場合、溶接金属硬度の過剰増加、または、組織中にモリブデン炭化物が析出して脆化が起こるおそれがある。したがって、本実施形態のNi30質量%未満の溶接ワイヤにおいて、Mo量を5質量%以下とすることが好ましく、3質量%以下とすることがより好ましい。また、本実施形態のNi30質量%未満のワイヤはMoを含有しなくともよいが、含有する場合のMo量の下限は、例えば1質量%である。
 本実施形態のNi30質量%未満のワイヤは、上述した化学成分以外にも、Cu、V、Co等の任意成分をさらに含有していてもよい。また、残部は、Feと、P、S等の不可避的不純物とからなっていてもよい。尚、上記Cuはめっき分も含む。
 また、本アークスポット溶接方法においては、下記式(2)で表されるXが-600以下である溶接ワイヤを用いることが好ましい。
 X=521-353[C]-22[Si]-24.3[Mn]-7.7[Cu]-17.3[Ni]-17.7[Cr]-25.8[Mo]   (2)
 (但し、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、及び[Mo]は、夫々、前記溶接ワイヤ中のC、Si、Mn、Cu、Ni、Cr、及びMoの含有量(質量%)を示す。)
 上記式(2)で表されるXの値は、マルテンサイト変態開始温度の指標となる。Xが-600以下の溶接ワイヤを用いることにより、溶接金属におけるδフェライト組織やマルテンサイト組織等のオーステナイト組織以外の組織の析出割合を抑制することが可能となる。そのため、本アークスポット溶接方法において、用いられる溶接ワイヤのXは-600以下であることが好ましく、-800以下であることがより好ましく、-1000以下であることがさらに好ましい。なお、用いられる溶接ワイヤのXの下限は特に限定されるものではないが、たとえば-1300以上である。
 また、本アークスポット溶接方法においては、下記式(3)で表されるYが20~100である溶接ワイヤを用いることが好ましい。
 Y=[Ni]+[Mo]+30[C]+0.5[Mn]   (3)
 (但し、[Ni]、[Mo]、[C]、及び[Mn]は、夫々、前記溶接ワイヤ中のNi、Mo、C、及びMnの含有量(質量%)を示す。)
 上記式(3)で表されるYの値は、化学組成上のオーステナイト安定度を表す指標となる。Yが20以上であれば、溶接金属の主体組織はオーステナイトであり、溶接金属におけるフェライト組織やマルテンサイト組織等のオーステナイト組織以外の組織の析出割合を20%未満に抑制することが可能となる。そのため、本アークスポット溶接方法において、用いられる溶接ワイヤのYは20以上であることが好ましく、50以上であることがより好ましい。一方、Yが100以下であれば、溶接金属に含まれるオーステナイトの割合を断面積あたり90%以上にすることができる。そのため、本アークスポット溶接方法において、用いられる溶接ワイヤのYは最大値である100以下であることが好ましい。
 また、本アークスポット溶接方法においては、前記鋼板のビッカース硬さに対する前記溶接金属のビッカース硬さの比(溶接金属のビッカース硬さ/鋼板のビッカース硬さ)が0.6~1.3であることが好ましい。
 高い継手強度を得るには、応力がかかった際に、溶接金属の塑性変形が起こりつつ、母材の塑性変形も十分に起こる必要がある。溶接金属と鋼板(母材)の両方で塑性変形を起こすためには、(溶接金属のビッカース硬さ/鋼板のビッカース硬さ)の比(以下、硬さ比ともいう)が0.6~1.3の範囲であることが好ましい。
 硬さ比が0.6未満の場合、応力がかかった際に溶接金属が選択的に塑性変形し、母材側はほとんど変形しない。この場合、ボンド部における脆性破断は抑制できるが、溶接金属のみに引張応力が集中するため、継手強度を最大限に得ることはできない。したがって、硬さ比は0.6以上であることが好ましく、0.7以上であることがより好ましい。
 一方、硬さ比が1.3を超える場合、母材よりも溶接金属の方が硬いため、溶接金属は塑性変形をほとんど生じない。溶接金属が変形しないと、応力は溶接金属と母材の界面であるボンド部に集中する。このボンド部は母材組織と溶接金属の界面であり、また、熱影響部(HAZ)領域でもあるため、マルテンサイト組織が形成された脆い性質を有している。硬さ比が1.3を超える場合には、このボンド部で破断に至るため、硬さ比は1.3以下であることが好ましく、1.0以下であることがより好ましい。
 また、本アークスポット溶接方法において、脆性破壊抑制の観点からは、溶接金属のビッカース硬さは250以下であることが好ましく、200以下であることがより好ましい。
 本アークスポット溶接方法において、入熱量、溶接方法、シールドガス等の各溶接条件は特に限定されるものではなく、本発明の効果を阻害しない範囲で適宜調整すればよい。
 なお、入熱量については、特に限定されるものではないが、入熱量が増大すると母材-溶接金属のボンド部やHAZにおけるマルテンサイト生成量が過大となり、脆化が促進されるため、本アークスポット溶接方法においては、入熱量は5.0kJ以下であることが好ましく、3.0kJ以下であることがより好ましい。一方、入熱量の下限値は特に限定されないが、たとえば鋼板1.2mmのような場合は、2.0kJ以上であることが好ましい。
 本アークスポット溶接方法は、MAG溶接、MIG溶接、TIG溶接等のいずれであってもよい。
 シールドガスとしては、MAG溶接、MIG溶接、TIG溶接等の各溶接種類に応じて、ArやHe等の不活性ガス、CO、不活性ガスとCOとの混合ガス等の公知のものを適宜選択して用いることができる。
 さらに、図1及び図2を参照して、本アークスポット溶接方法においては、アークが照射される側の第1鋼板1と、第2鋼板2とを、前記第1鋼板1の裏面12と前記第2鋼板2の表面21とを重ね合わせてアークスポット溶接したときに、溶接金属3の前記第1鋼板1の表面11におけるビード径をr1、溶接金属3の第2鋼板2の表面21におけるビード径をr2として、r1、r2、Y及びCeqBMが、下記式(3)~(5)を満たしていることが好ましい。この態様の好適理由については後述する。
 Y=[Ni]+[Mo]+30[C]+0.5[Mn]   (3)
 (但し、[Ni]、[Mo]、[C]、及び[Mn]は、夫々、前記溶接ワイヤ中のNi、Mo、C、及びMnの含有量(質量%)を示す。)
 0.35≦(r2/r1)≦1.00   (4)
 25≦(Y/CeqBM)≦125   (5)
 また、溶接金属3の第2鋼板2の裏面22におけるビード径をr3として、下記式(6)をさらに満たす場合はより適切な継手強度が得られるため、より好ましい。
0.5≦(r2/r3)≦3.0    (6)
 溶接金属3の形状は、引張荷重がかかったときの応力集中部位を決定する因子であり、破断位置にも寄与する重要な因子である。ここで、式(4)中のr2/r1と、式(6)のr2/r3は、破断部位と破壊進展方向の指標となる。
<0.35≦(r2/r1)≦1.00   (4)>
 本態様において、r2/r1が0.35未満、あるいは1.00を超える場合、図1中に点Aとして示される第1鋼板1側のボンド部(溶接金属3-HAZ4)に応力集中する形状となるため、引張応力がかかると、点Aが破壊の起点となって、第1鋼板1側のHAZ4で破壊が起こる。なお、この場合において、図1中の矢印の方向が、破壊の進展方向である。このような応力集中を緩和するためには、r2/r1は0.35~1.00の範囲内であることが好ましく、0.5~0.8の範囲内であることがより好ましい。
<0.5≦(r2/r3)≦3.0   (6)>
 本態様において、r2/r3が0.5未満、あるいは3.0を超える場合、図2中に点Bとして示される第2鋼板2側のボンド部(溶接金属3-HAZ4)に応力集中する形状となるため、引張応力がかかると、点Bが破壊の起点となって、第2鋼板2側のHAZ4で破壊が起こる。なお、この場合において、図2中の矢印の方向が、破壊の進展方向である。このような応力集中を緩和するためには、r2/r3は0.5~3.0の範囲内であることが好ましく、1.0~2.0の範囲内であることがより好ましい。
<Y=[Ni]+[Mo]+30[C]+0.5[Mn]   (3)>
<25≦(Y/CeqBM)≦125   (5)>
 上述したように、上記式(3)で表されるYの値は、化学組成上のオーステナイト安定度を表す指標となる。そして、鋼板の炭素当量CeqBMに対するYの比(Y/CeqBM)は、溶金破断となるかあるいはボンド部破断となるかの指標となり、かつ、十分な継手強度を得られるかを判断するための指標となる。
 本態様において、鋼板の炭素当量CeqBMに対するYの比(Y/CeqBM)が25未満の場合、溶接金属組織がオーステナイト主体であってもボンド部において脆化が生じ、引張応力がかかるとボンド部において破断に至るため、十分な継手強度を得ることが困難となる。したがって、本態様においては、Y/CeqBMは25以上であることが好ましく、60以上であることがより好ましい。
 一方、本態様において、Y/CeqBMが125を超える場合、ボンド部における脆性破断には至らず、溶金破断となるが、オーステナイト組織である溶接金属のみが選択的に引張応力が掛かり、破断に至るため、継手強度としては十分な強度が得られない。したがって、本態様においては、Y/CeqBMは125以下であることが好ましく、100以下であることがより好ましい。
 以上詳述したように、本実施形態のアークスポット溶接方法によれば、C量の高い鋼板を用いた場合においても、脆性破壊を防止して高い継手強度を得ることができる。また、上述したNiワイヤ及びNi30質量%未満のワイヤは、C量の高い鋼板を用いたアークスポット溶接に好適に用いることができる。
 以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で変更を加えて実施することが可能であり、それらはいずれも本発明の技術的範囲に包含される。
 まず、使用した鋼板について、組成、下記式(1)で表される炭素当量CeqBM、及びビッカース硬さHvを、表1に示した。なお、鋼板のビッカース硬さ(BM HV)は、ビッカース硬さ試験機により測定した。
 CeqBM=[C]BM+[Mn]BM/6+([Cu]BM+[Ni]BM)/15+([Cr]BM+[Mo]BM+[V]BM)/5   (1)
 (但し、[C]BM、[Mn]BM、[Cu]BM、[Ni]BM、[Cr]BM、[Mo]BM、及び[V]BMは、夫々、前記鋼板中のC、Mn、Cu、Ni、Cr、Mo、及びVの含有量(質量%)を示す。)
Figure JPOXMLDOC01-appb-T000001
(例1~53)
 各例において、表2~3に示される鋼種及び表2~3に示される板厚を有し、穴加工を施した(穴204を設けた)2枚の鋼板に対して、表2~3に示される溶接条件でアークスポット溶接を実施して図3に示される形状の試験片を作製した。なお、上板側を第1鋼板201、下板側を第2鋼板202とし、第1鋼板201の表面211側からアーク(図示せず)を照射した。そして、作製した試験片について、図3中の矢印の方向に第1鋼板201及び第2鋼板202を引っ張ることによりCTS(十字引張試験)を実施して、破断荷重が7kN以上であるものを◎、5kN以上7kN未満であったものを○、5kN以下のものを×として評価した。なお、評価結果が◎又は○の場合を合格とする。評価結果を表3に示す。
 ここで、溶接条件としては、溶接電流200~300A、アーク電圧15~20Vの範囲とし、表2~3に記載の入熱量は、入熱量(kJ)=溶接電流(A)×アーク電圧(V)/1000の計算式を用いて算出した。その他、シールドガスの種類、及び施工法についても表2~3に示した。なお、「施工法」の欄における、「パルス」、「短絡」、「ワイヤ送給制御」とは、それぞれ以下を表す。
 パルス:パルス電源を用いて、ベース電流400A、ピーク電流40A、ピーク時間3.5msecの条件で溶接を実施した。
 短絡:直流電源を用いて、ワイヤが母材に接触することによる短絡状態と、アーク状態を繰り返しながら、溶接電流230A、アーク電圧22Vの条件で溶接を実施した。
 ワイヤ送給制御:溶接状態が短絡状態になれば逆送を行い、溶接状態がアーク状態となれば正送を行うように、溶接状態に応じてワイヤの正送と逆送を行いながら、溶接電流220A、アーク電圧22.6Vの条件で溶接を実施した。
 また、ワイヤ成分については、質量%で表される各成分量を表2~3に示す。加えて、下記式(2)で表されるX、及び、下記式(3)で表されるYを算出し、表2~3にあわせて示す。なお、表2~3中のワイヤ成分における「その他」とは、表2~3中に記載された成分以外のCu、V、Co等の任意成分の合計量を表す。また、表2~3中のワイヤ成分量における「0」とは、その成分量が不可避不純物とみなされる量以下の量であることを表す。
 X=521-353[C]-22[Si]-24.3[Mn]-7.7[Cu]-17.3[Ni]-17.7[Cr]-25.8[Mo]   (2)
 (但し、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、及び[Mo]は、夫々、前記溶接ワイヤ中のC、Si、Mn、Cu、Ni、Cr、及びMoの含有量(質量%)を示す。)
 Y=[Ni]+[Mo]+30[C]+0.5[Mn]   (3)
 (但し、[Ni]、[Mo]、[C]、及び[Mn]は、夫々、前記溶接ワイヤ中のNi、Mo、C、及びMnの含有量(質量%)を示す。)
 さらに、各例に用いた溶接ワイヤの炭素当量Ceqを下記式(7)により算出し、表2にあわせて示した。
  Ceq=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo])/5   (7)
 (但し、[C]、[Mn]、[Cu]、[Ni]、[Cr]、及び[Mo]は、夫々、前記溶接ワイヤ中のC、Mn、Cu、Ni、Cr、及びMoの含有量(質量%)を示す。)
 また、アークが照射される側の第1鋼板201と、第2鋼板202とを、第1鋼板201の裏面212と第2鋼板202の表面221とを重ね合わせてアークスポット溶接したときの、溶接金属203の第1鋼板201の表面211におけるビード径をr1(mm)、溶接金属203の第2鋼板202の表面221におけるビード径をr2(mm)、溶接金属203の第2鋼板202の裏面222におけるビード径をr3(mm)とし、r1、r2、及びr3を表4~5に示した。また、r1/r2及びr3/r2を算出し、表4~5にあわせて示した。
 また、上記式(1)で表されるCeqBMに対する上記式(3)で表されるYの比(Y/CeqBM)と、上記式(1)で表されるCeqBMに対する上記式(7)で表されるCeqの比(Ceq/CeqBM)とを算出し、表4~5にあわせて示した。
 また、溶接金属のビッカース硬さ(WM Hv)と、母材である鋼板のビッカース硬さ(BM Hv)を表4~5に示す。なお、溶接金属のビッカース硬さ(WM Hv)は、鋼板のビッカース硬さ(BM Hv)と同様に、ビッカース硬さ試験機により測定した。さらに、鋼板のビッカース硬さ(BM Hv)に対する溶接金属のビッカース硬さ(WM Hv)の比(WM Hv/BM Hv)を算出し、表4~5にあわせて示した。
 また、各例の溶接金属組織について、EBSDによる結晶方位観察を行い、溶接金属組織中のオーステナイト組織とオーステナイト以外の組織の割合(面積率での割合)を観測した。なお、EBSDの観察範囲は200×200μmとし、Phaseマップにより、オーステナイト組織とオーステナイト以外の組織の割合を算出した。表4~5には、溶接金属組織中のオーステナイト以外の組織の割合を示す。溶接金属組織中のオーステナイト組織の割合は、{100-(溶接金属組織中のオーステナイト以外の組織の割合)}(%)である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 例1~例33は実施例であり、例34~例53は比較例である。
 溶接金属組織中のオーステナイト以外の組織の割合が20%以上であり、すなわち、溶接金属組織中のオーステナイト組織の割合が80%以下と本発明に規定の範囲外である例34~例53では、十字引張試験において十分な強度は得られなかった。
 一方、本発明に規定の各要件を満足する例1~例33では、十字引張試験において十分な強度が得られた。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2016年8月4日付けで出願された日本特許出願(特願2016-154054)に基づいており、その全体が引用により援用される。
1:第1鋼板
2:第2鋼板
3:溶接金属
4:HAZ(熱影響部)
11:表面
12:裏面
21:表面
22:裏面
100:溶接構造物
201:第1鋼板
202:第2鋼板
203:溶接金属
204:穴
211:表面
212:裏面
221:表面
222:裏面

Claims (10)

  1.  下記式(1)で表される炭素当量CeqBMが0.35以上であり、かつCを0.35質量%以上含有する鋼板を用いたアークスポット溶接方法において、オーステナイト組織の割合が80%超である組織を有する溶接金属を形成させることを特徴とするアークスポット溶接方法。
     CeqBM=[C]BM+[Mn]BM/6+([Cu]BM+[Ni]BM)/15+([Cr]BM+[Mo]BM+[V]BM)/5   (1)
     (但し、[C]BM、[Mn]BM、[Cu]BM、[Ni]BM、[Cr]BM、[Mo]BM、及び[V]BMは、夫々、前記鋼板中のC、Mn、Cu、Ni、Cr、Mo、及びVの含有量(質量%)を示す。)
  2.  Niを30質量%以上含有する溶接ワイヤを用いることを特徴とする請求項1に記載のアークスポット溶接方法。
  3.  C:1.5質量%以下、Si:0.5~0.7質量%、Mn:10~20質量%、Ni:30質量%未満、Cr:1~5質量%、及びMo:5質量%以下を含有し、MnとNiの合計が25質量%以上である溶接ワイヤを用いることを特徴とする請求項1に記載のアークスポット溶接方法。
  4.  下記式(2)で表されるXが-600以下である溶接ワイヤを用いることを特徴とする請求項1に記載のアークスポット溶接方法。
     X=521-353[C]-22[Si]-24.3[Mn]-7.7[Cu]-17.3[Ni]-17.7[Cr]-25.8[Mo]   (2)
     (但し、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、及び[Mo]は、夫々、前記溶接ワイヤ中のC、Si、Mn、Cu、Ni、Cr、及びMoの含有量(質量%)を示す。)
  5.  下記式(3)で表されるYが20~100である溶接ワイヤを用いることを特徴とする請求項1に記載のアークスポット溶接方法。
     Y=[Ni]+[Mo]+30[C]+0.5[Mn]   (3)
     (但し、[Ni]、[Mo]、[C]、及び[Mn]は、夫々、前記溶接ワイヤ中のNi、Mo、C、及びMnの含有量(質量%)を示す。)
  6.  前記鋼板のビッカース硬さに対する前記溶接金属のビッカース硬さの比(前記溶接金属のビッカース硬さ/前記鋼板のビッカース硬さ)が0.6~1.3であることを特徴とする請求項1に記載のアークスポット溶接方法。
  7.  入熱量が5.0kJ以下であることを特徴とする請求項1に記載のアークスポット溶接方法。
  8.  アークが照射される側の第1鋼板と、第2鋼板とを、前記第1鋼板の裏面と前記第2鋼板の表面とを重ね合わせてアークスポット溶接したときに、前記溶接金属の前記第1鋼板の表面におけるビード径をr1、前記溶接金属の前記第2鋼板の表面におけるビード径をr2として、
     r1、r2、Y及びCeqBMが、下記式(3)~(5)を満たすことを特徴とする請求項1~7のいずれか1項に記載のアークスポット溶接方法。
     Y=[Ni]+[Mo]+30[C]+0.5[Mn]   (3)
     (但し、[Ni]、[Mo]、[C]、及び[Mn]は、夫々、前記溶接ワイヤ中のNi、Mo、C、及びMnの含有量(質量%)を示す。)
     0.35≦(r2/r1)≦1.00   (4)
     25≦(Y/CeqBM)≦125   (5)
  9.  下記式(1)で表される炭素当量CeqBMが0.35以上であり、かつCを0.35質量%以上含有する鋼板を用いたアークスポット溶接に用いられる溶接ワイヤであって、Niを30質量%以上含有する溶接ワイヤ。
     CeqBM=[C]BM+[Mn]BM/6+([Cu]BM+[Ni]BM)/15+([Cr]BM+[Mo]BM+[V]BM)/5   (1)
     (但し、[C]BM、[Mn]BM、[Cu]BM、[Ni]BM、[Cr]BM、[Mo]BM、及び[V]BMは、夫々、前記鋼板中のC、Mn、Cu、Ni、Cr、Mo、及びVの含有量(質量%)を示す。)
  10.  下記式(1)で表される炭素当量CeqBMが0.35以上であり、かつCを0.35質量%以上含有する鋼板を用いたアークスポット溶接に用いられる溶接ワイヤであって、C:1.5質量%以下、Si:0.5~0.7質量%、Mn:10~20質量%、Ni:30質量%未満、Cr:1~5質量%、及びMo:5質量%以下を含有し、MnとNiの合計が25質量%以上である溶接ワイヤ。
     CeqBM=[C]BM+[Mn]BM/6+([Cu]BM+[Ni]BM)/15+([Cr]BM+[Mo]BM+[V]BM)/5   (1)
     (但し、[C]BM、[Mn]BM、[Cu]BM、[Ni]BM、[Cr]BM、[Mo]BM、及び[V]BMは、夫々、前記鋼板中のC、Mn、Cu、Ni、Cr、Mo、及びVの含有量(質量%)を示す。)
PCT/JP2017/028015 2016-08-04 2017-08-02 アークスポット溶接方法及び溶接ワイヤ WO2018025904A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/315,691 US20190232411A1 (en) 2016-08-04 2017-08-02 Arc spot welding method and welding wire
CN201780044422.0A CN109477178A (zh) 2016-08-04 2017-08-02 电弧点焊方法和焊丝
EP17837006.0A EP3498874A4 (en) 2016-08-04 2017-08-02 METHOD FOR ARC SPOT WELDING AND WELDING WIRE
KR1020197002108A KR102141796B1 (ko) 2016-08-04 2017-08-02 아크 스폿 용접 방법 및 용접 와이어

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-154054 2016-08-04
JP2016154054A JP6802660B2 (ja) 2016-08-04 2016-08-04 アークスポット溶接方法

Publications (1)

Publication Number Publication Date
WO2018025904A1 true WO2018025904A1 (ja) 2018-02-08

Family

ID=61073602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028015 WO2018025904A1 (ja) 2016-08-04 2017-08-02 アークスポット溶接方法及び溶接ワイヤ

Country Status (6)

Country Link
US (1) US20190232411A1 (ja)
EP (1) EP3498874A4 (ja)
JP (1) JP6802660B2 (ja)
KR (1) KR102141796B1 (ja)
CN (1) CN109477178A (ja)
WO (1) WO2018025904A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6782580B2 (ja) * 2016-08-04 2020-11-11 株式会社神戸製鋼所 アークスポット溶接方法
JP2018187640A (ja) * 2017-05-01 2018-11-29 株式会社神戸製鋼所 アーク溶接方法及び溶接ワイヤ
CN109623198B (zh) * 2019-01-03 2020-12-18 南京钢铁股份有限公司 一种用于高锰低温钢埋弧焊接的焊丝及焊接方法
JP7311473B2 (ja) * 2020-09-02 2023-07-19 株式会社神戸製鋼所 アーク溶接方法
CN112192091B (zh) * 2020-10-10 2022-05-13 鞍钢股份有限公司 一种电炉电阻丝快速替换修复方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241668A (ja) * 1994-03-04 1995-09-19 Nippon Steel Corp フラックス入りワイヤによるステンレス鋼のプラグ溶接方法
JP2006068796A (ja) * 2004-09-03 2006-03-16 Nippon Steel Corp 鋼板のプラズマスポット溶接方法
JP2013010139A (ja) 2011-05-27 2013-01-17 Nippon Steel & Sumitomo Metal Corp 継手強度に優れたアークスポット溶接継手およびその製造方法
WO2015016287A1 (ja) * 2013-07-31 2015-02-05 新日鐵住金株式会社 アークスポット溶接継手及びその製造方法
JP2016154054A (ja) 2011-11-30 2016-08-25 三菱鉛筆株式会社 入力用タッチペン

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2941504B2 (ja) * 1990-10-26 1999-08-25 インコ、アロイス、インターナショナル、インコーポレーテッド 低熱膨張係数合金用溶接材料
JP3405799B2 (ja) * 1994-03-04 2003-05-12 ファナック株式会社 レーザ加工方法
CN1049170C (zh) * 1995-05-09 2000-02-09 *** 修补铁路道岔专用焊条
WO1997030184A1 (fr) * 1996-02-13 1997-08-21 Nippon Steel Corporation Joint de soudure a haute resistance a la fatigue
JP4760299B2 (ja) * 2005-10-26 2011-08-31 住友金属工業株式会社 溶接継手及びその製造方法
CN100434229C (zh) * 2007-04-25 2008-11-19 天津大桥焊材集团有限公司 一种优质50公斤级钛钙型碳钢焊条及制备方法
WO2011155620A1 (ja) * 2010-06-07 2011-12-15 新日本製鐵株式会社 超高強度溶接継手およびその製造方法
KR101207682B1 (ko) * 2010-12-28 2012-12-03 주식회사 포스코 고강도 오스테나이트계 가스실드아크용접 강관 및 그 제조방법
KR101220559B1 (ko) * 2011-06-30 2013-01-10 주식회사 포스코 극저온 인성이 우수한 플럭스 코어드 아크 용접 와이어
US9777358B2 (en) * 2012-09-06 2017-10-03 Jfe Steel Corporation Thick-walled, high tensile strength steel with excellent CTOD characteristics of the weld heat-affected zone, and manufacturing method thereof
CN102886621A (zh) * 2012-10-29 2013-01-23 海门市威菱焊材制造有限公司 自保护药芯焊丝
CN105209209A (zh) * 2013-01-22 2015-12-30 犹他大学研究基金会 摩擦点焊和摩擦缝焊
WO2015083878A1 (ko) * 2013-12-06 2015-06-11 주식회사 포스코 극저온 충격 인성이 우수한 고강도 용접이음부 및 이를 위한 플럭스 코어드 아크 용접용 와이어

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241668A (ja) * 1994-03-04 1995-09-19 Nippon Steel Corp フラックス入りワイヤによるステンレス鋼のプラグ溶接方法
JP2006068796A (ja) * 2004-09-03 2006-03-16 Nippon Steel Corp 鋼板のプラズマスポット溶接方法
JP2013010139A (ja) 2011-05-27 2013-01-17 Nippon Steel & Sumitomo Metal Corp 継手強度に優れたアークスポット溶接継手およびその製造方法
JP2016154054A (ja) 2011-11-30 2016-08-25 三菱鉛筆株式会社 入力用タッチペン
WO2015016287A1 (ja) * 2013-07-31 2015-02-05 新日鐵住金株式会社 アークスポット溶接継手及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3498874A4

Also Published As

Publication number Publication date
JP2018020362A (ja) 2018-02-08
CN109477178A (zh) 2019-03-15
KR20190021384A (ko) 2019-03-05
EP3498874A1 (en) 2019-06-19
EP3498874A4 (en) 2020-01-08
US20190232411A1 (en) 2019-08-01
KR102141796B1 (ko) 2020-08-06
JP6802660B2 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2018025904A1 (ja) アークスポット溶接方法及び溶接ワイヤ
JP5909143B2 (ja) 熱延鋼板のmag溶接方法および熱延鋼板のmig溶接方法
WO2018038045A1 (ja) 抵抗溶接部を有する自動車用部材
WO2018203513A1 (ja) アーク溶接方法及び溶接ワイヤ
JP6627343B2 (ja) オーステナイト系ステンレス鋼、及び、高圧水素ガス用機器又は液体水素用機器
WO2013065521A1 (ja) Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP2017202494A (ja) オーステナイト系耐熱鋼溶接金属およびそれを有する溶接継手
JP6642282B2 (ja) オーステナイト系ステンレス鋼溶接継手の製造方法
JP2017225986A (ja) ガスシールドアーク溶接方法及び溶接構造物の製造方法
JP6155810B2 (ja) ガスシールドアーク溶接用高Niフラックス入りワイヤ
TWI589708B (zh) 高熱輸入熔接用鋼材
JP2015205288A (ja) 強度、靭性および耐sr割れ性に優れた溶接金属
JP4625415B2 (ja) ガスシールドアーク溶接用ソリッドワイヤ
WO2018025910A1 (ja) アークスポット溶接方法
JP2009127119A (ja) 抵抗溶接鋼板
JP2011074445A (ja) 大入熱溶接熱影響部靱性に優れた非調質厚肉高張力鋼の製造方法。
JP7432723B2 (ja) 溶接部の疲労強度に優れた溶接部材及びその製造方法
JP6874609B2 (ja) フェライト系ステンレス溶接部材
TWI846149B (zh) 雷射-電弧複合焊接接頭的製造方法
JP2016093838A (ja) 溶接継手の製造方法
JP4332064B2 (ja) 入熱20〜100kJ/mmの大入熱溶接用高HAZ靭性鋼材
KR20240090596A (ko) 레이저·아크 하이브리드 용접 이음매의 제조 방법
JP2016094660A (ja) 溶接継手の製造方法
JPH08246102A (ja) 溶接部の疲労強度が優れた複層高張力鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002108

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017837006

Country of ref document: EP

Effective date: 20190304