WO2018024218A1 - 一种基于电子镇流器控制电子控制电路的装置及照明灯具 - Google Patents

一种基于电子镇流器控制电子控制电路的装置及照明灯具 Download PDF

Info

Publication number
WO2018024218A1
WO2018024218A1 PCT/CN2017/095671 CN2017095671W WO2018024218A1 WO 2018024218 A1 WO2018024218 A1 WO 2018024218A1 CN 2017095671 W CN2017095671 W CN 2017095671W WO 2018024218 A1 WO2018024218 A1 WO 2018024218A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switch
frequency detecting
resistor
capacitor
Prior art date
Application number
PCT/CN2017/095671
Other languages
English (en)
French (fr)
Inventor
文威
Original Assignee
欧普照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620831198.2U external-priority patent/CN205987508U/zh
Priority claimed from CN201610626560.7A external-priority patent/CN106102290B/zh
Application filed by 欧普照明股份有限公司 filed Critical 欧普照明股份有限公司
Priority to EP17836400.6A priority Critical patent/EP3481158B1/en
Publication of WO2018024218A1 publication Critical patent/WO2018024218A1/zh
Priority to US16/266,010 priority patent/US10624164B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • H05B45/397Current mirror circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to the field of lighting technologies, and in particular, to an apparatus and a lighting fixture for controlling an electronic control circuit based on an electronic ballast.
  • LED light sources instead of traditional fluorescent lamps
  • Conventional fluorescent lamps require an inductor ballast or an electronic ballast for power supply.
  • the inductor ballast outputs a power frequency signal, such as a 50/60 Hz voltage and current signal
  • the electronic ballast outputs a high frequency signal, typically greater than 20 kHz.
  • LED drivers also need to be compatible with inductive ballasts or electronic ballasts, and even need to be compatible with both inductors and electronic ballasts.
  • an LED-driven switch tube used in an electronic control circuit of a lighting fixture is often driven by a frequency detecting circuit, as shown in FIG. Shown.
  • the commercial alternating current is input to the electronic ballast 110, and the electronic ballast 110 inverts and outputs a high frequency voltage and current, and the normal operating frequency is greater than 20 kHz, and is input to the electronic control circuit 120.
  • the high frequency alternating current voltage and current enter the rectifier bridge circuit 122 through the filament analog circuit 121, and then output an appropriate current through the LED drive circuit 123.
  • the LED driving circuit 123 includes at least one switching transistor S, such as a power transistor, a field effect transistor, an IGBT or other electronic switches.
  • the driving signal of the switching transistor S is from the frequency detecting circuit 124, and the input of the frequency detecting circuit 124 is from the filament analog circuit 121. And the circuit between the rectifier bridge circuit 122, the output is used to drive the switch S.
  • the frequency detecting circuit 124 is often designed such that when the input frequency is the low frequency of the mains, if the lamp is connected to the magnetic ballast, the output is low, and the switch S cannot be driven; when the input frequency is high frequency If the lamp is connected to an electronic ballast, its output is high and the switch S is turned on.
  • FIG. 2 the voltage before the rectifier bridge circuit 122 (see FIG. 1) passes through the resistor R10 and the capacitor C10, and is connected to the diode D10 on the one hand.
  • the voltage regulator Vz0 is connected, the output of D10 is connected to ground through resistor R20 and capacitor C20, and the voltage above R20 and C20 is used as an output to control the action of the power switch. Since the voltage in front of the rectifier bridge circuit 122 is AC, the AC voltage generates a certain current through the capacitor C10, the magnitude of this current and the C10. Capacitance, AC voltage amplitude and frequency correlation.
  • the switch tube cannot be driven; when the AC voltage is a high frequency signal, the capacitive reactance of C10 is relatively small, the current flowing through C10 becomes correspondingly large, and a high level is generated above R20 and C20, and the switch tube is turned on.
  • ballasts can drive the switch S to be turned on when the electronic ballast is input, some brands of ballasts intermittently output high frequency signals when turned off.
  • the frequency signal passes through the frequency detecting circuit to cause the switching tube S to be intermittently turned on, so that the LED light source in the above lighting fixture intermittently emits light.
  • the lighting fixture with the electronic control circuit works with such a ballast, after the power is turned off There will be a phenomenon in which the LED light source blinks in the lighting fixture, causing user dissatisfaction.
  • the delay circuit introduces another problem that the switching transistor S cannot be turned on in time due to the delay circuit when connecting the non-preheating type ballast. Causes the ballast output overvoltage, increasing the risk of LED light source failure.
  • the present invention has been made in order to provide an apparatus and lighting fixture based on an electronic ballast control electronic control circuit that overcomes the above problems or at least partially solves the above problems.
  • an apparatus for controlling an electronic control circuit based on an electronic ballast includes a connected electronic ballast and an electronic control circuit, the electronic control circuit including a filament analog circuit, a rectifier bridge circuit, At least two frequency detecting circuits, interface logic circuits, and switching circuits connected in parallel; wherein:
  • the electronic ballast is sequentially connected to the switch circuit through the filament analog circuit and the rectifier bridge circuit; one end of the at least two frequency detection circuits connected in parallel is connected to the filament analog circuit and the rectification Between the bridge circuits, or between the electronic ballast and the filament analog circuit, the other end is connected to the interface logic circuit; the interface logic circuit is connected to the switch circuit, the interface logic circuit A working logic for controlling the at least two frequency detecting circuits connected in parallel.
  • the electronic control circuit includes a first frequency detection circuit and a second frequency detection circuit connected in parallel.
  • the first frequency detecting circuit is configured to start when a low frequency signal is input, where The second frequency detecting circuit is configured to be activated when the high frequency signal is input, and the high frequency impedance of the first frequency detecting circuit is smaller than the high frequency impedance of the second frequency detecting circuit.
  • the first frequency detecting circuit includes a first capacitor, one end of the first capacitor is connected to an input end of the first frequency detecting circuit, and the other end is connected to the interface logic circuit;
  • the second frequency detecting circuit includes a second capacitor, one end of the second capacitor is connected to an input end of the second frequency detecting circuit, and the other end is connected to the interface logic circuit;
  • the capacitance of the first capacitor is greater than the capacitance of the second capacitor.
  • the first frequency detecting circuit further includes a first diode and a first voltage stabilizing component, the first diode is connected between the first capacitor and the interface logic circuit, a first voltage stabilizing component is connected in parallel to both ends of the first diode;
  • the second frequency detecting circuit further includes a second diode and a second voltage stabilizing component, the second diode is connected between the second capacitor and the interface logic circuit, and the second voltage regulator A component is connected in parallel to both ends of the second diode.
  • the first voltage stabilizing component and the second voltage stabilizing component are respectively composed of a resistor and a capacitor connected in parallel.
  • the first frequency detecting circuit further includes a first voltage stabilizing tube, the first voltage stabilizing tube is connected to the first voltage stabilizing component, or the cathode of the first voltage stabilizing tube is connected to the Between the first capacitor and the first diode, a positive pole is connected to one end of the first voltage stabilizing component and grounded;
  • the second frequency detecting circuit further includes a second voltage stabilizing tube, the second voltage stabilizing tube is connected to the second voltage stabilizing component, or the cathode of the second voltage stabilizing tube is connected to the second capacitor Between the second diode and the second diode, the anode is connected to one end of the second voltage stabilizing component and grounded.
  • the first frequency detecting circuit further includes a first resistor for current limiting, the first resistor being connected between the input end of the first frequency detecting circuit and the first capacitor;
  • the second frequency detecting circuit further includes a second resistor for current limiting, the second resistor being coupled between the input of the second frequency detecting circuit and the second capacitor.
  • the interface logic circuit includes a first controllable switch, the first controllable switch is connected between the first frequency detecting circuit and the switch circuit, and the first controllable switch passes through itself Switching state controls the first frequency detecting circuit and the second frequency Rate detection logic between the circuits.
  • the first controllable switch is a triode switch or a FET switch.
  • the interface logic circuit further includes a second triode switch and a feedback resistor, wherein the first triode switch emits a pole connected to the first frequency detecting circuit, a collector of the first transistor switch is connected to the switch circuit, and a base of the first transistor switch is grounded through the second transistor switch One end of the feedback resistor is connected between the first triode switch and the switch circuit, the other end is connected to the second triode switch, and the emitter of the second triode switch is grounded .
  • the interface logic circuit further includes a third resistor for reducing the input impedance and a fourth resistor for current limiting, the third resistor being connected in parallel to the emitter of the first transistor switch and The fourth resistor is connected between the base of the first transistor switch and the collector of the second transistor switch.
  • the other end of the feedback resistor is connected to a base of the second transistor switch, and a base and an emitter of the second transistor switch are respectively connected to the second frequency detecting circuit.
  • the two ends of the second voltage stabilizing component, and the emitter of the second triode switch is grounded through the second voltage stabilizing component.
  • the interface logic circuit further includes a third diode and a fifth resistor, and a positive pole of the third diode is connected to a second voltage regulator component in the second frequency detecting circuit, where a cathode of the three diode is connected between the first transistor switch and the switch circuit, and the feedback resistor is connected to the emitter of the second transistor switch through the fifth resistor, and The base of the second transistor switch is connected between the feedback resistor and the fifth resistor.
  • the first triode switch is a PNP type triode switch
  • the second triode switch is an NPN type triode switch.
  • a lighting fixture comprising:
  • a light emitting device coupled to the electronic control circuit in the electronic ballast control electronic control circuit based device for turning on and off under control of the electronic control circuit.
  • At least two frequency detecting circuits connected in parallel are connected in the electronic control circuit, and at least two frequencies connected in parallel are detected.
  • One end of the circuit is connected to the interface logic circuit, so that the interface logic circuit can control the working logic of at least two frequency detecting circuits connected in parallel, so that at least one frequency detecting circuit of the device provides a starting signal for the switching circuit in the electronic control circuit, At the same time, at least one frequency detecting circuit provides a stable working signal for the switching circuit.
  • the lighting fixture can be stably operated after the power is turned on, and the off-flashing phenomenon of the light-emitting device connected to the electronic control circuit in the lighting fixture can be effectively avoided after the power is turned off, thereby reducing the illumination.
  • the risk of device failure improves the user experience with lighting fixtures.
  • FIG. 1 is a schematic block diagram of an apparatus for controlling an electronic control circuit based on an electronic ballast in the prior art
  • FIG. 2 is a schematic circuit diagram of a frequency detecting circuit in the apparatus for controlling an electronic control circuit based on an electronic ballast shown in FIG. 1;
  • 3a is a schematic block diagram of an apparatus for controlling an electronic control circuit based on an electronic ballast, in accordance with one embodiment of the present invention
  • 3b is a schematic block diagram of an apparatus for controlling an electronic control circuit based on an electronic ballast in accordance with another embodiment of the present invention
  • FIG. 4 is a schematic diagram showing the circuit structure of an electronic control circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the circuit structure of an electronic control circuit according to another embodiment of the present invention.
  • Figure 6 is a schematic block diagram of a lighting fixture in accordance with one embodiment of the present invention.
  • the apparatus can generally include a connected electronic ballast 310 and an electronic control circuit 320, wherein the electronic control circuit 320 includes a filament analog circuit 321, a rectifier bridge circuit 322, at least two Frequency detecting circuits connected in parallel (two frequency detecting circuits connected in parallel, including first frequency detecting circuit 323 and second frequency detecting circuit 324 are schematically shown in FIGS. 3a and 3b), interface logic circuit 325, and switching circuit 326; in FIG. 3a and FIG.
  • the electronic ballast 310 is sequentially connected to the switch circuit 326 through the filament analog circuit 321, the rectifier bridge circuit 322; at least two frequency detecting circuits connected in parallel (including the first frequency detecting circuit 323 and One end of the second frequency detecting circuit 324) is connected between the filament analog circuit 321 and the rectifier bridge circuit 322 (as shown in FIG. 3a), or is connected between the electronic ballast 310 and the filament analog circuit 321 (as shown in FIG. 3b). The other end is connected to the interface logic circuit 325; the interface logic circuit 325 is connected to the switch circuit 326, and the interface logic circuit 325 is used to control between at least two frequency detection circuits connected in parallel. For logic.
  • the first frequency detecting circuit 323 is used to start when the low frequency signal is input
  • the second frequency detecting circuit 324 is used to start when the high frequency signal is input
  • the high frequency impedance of the first frequency detecting circuit 323 is smaller than the second.
  • the high frequency impedance of the frequency detecting circuit 324 since the first frequency detecting circuit 323 is used to start when the low frequency signal is input, and the second frequency detecting circuit 324 is used to start when the high frequency signal is input, the first frequency detecting circuit 323 can be electronically controlled.
  • Switching circuit 326 in circuit 320 provides a stable operating signal while second frequency detecting circuit 324 is capable of providing a starting signal to switching circuit 326.
  • the second frequency detecting circuit 324 provides the start signal to the switch circuit 326, and its high frequency impedance is relatively large, the intermittent high frequency signal output by the electronic ballast 310 when turned off can not activate the switch circuit 326;
  • the ballast 310 is normally started, a frequency or a higher amplitude voltage is output, causing the second frequency detecting circuit 324 to activate the switching circuit 326.
  • the electronic ballast 310 is stably operated, the first one having a high frequency impedance is small.
  • the frequency detection circuit 323 provides the operating voltage of the switching circuit 326 so that the switching circuit 326 can maintain stable operation.
  • the first frequency detecting circuit 323 includes a first capacitor, one end of the first capacitor is connected to the input end of the first frequency detecting circuit 323, and the other end is connected to the interface logic circuit 325.
  • one end of the first capacitor is connected between the filament analog circuit 321 and the rectifier bridge circuit 322, and the other end is connected to the interface logic circuit 325.
  • the device shown in FIG. 3b is used, one end of the first capacitor is connected.
  • the second frequency detecting circuit 324 includes a second capacitor, one end of which is connected to the input of the second frequency detecting circuit 324 The other end is connected to the interface logic circuit 325.
  • the second capacitor is connected between the filament analog circuit 321 and the rectifier bridge circuit 322, and the other end is connected to the interface logic circuit. 325 is connected.
  • the device shown in FIG. 3b is used, one end of the second capacitor is connected between the electronic ballast 310 and the filament analog circuit 321, and the other end is connected to the interface logic circuit 325.
  • the capacitance of the first capacitor is greater than the capacitance of the second capacitor.
  • the reason that the capacitance value of the first capacitor must be greater than the capacitance value of the second capacitor is that when the capacitance value of the first capacitor is greater than the capacitance value of the second capacitor, the high-frequency capacitive reactance of the first capacitor can be made smaller than the second The high frequency capacitive reactance of the capacitor, so that when the same AC signal is input, the current flowing through the first capacitor is larger than the current flowing through the second capacitor, thereby implementing the first frequency detecting circuit 323 to start at the low frequency signal input, and the second frequency
  • the purpose of the detection circuit 324 is to activate when the high frequency signal is input.
  • the first frequency detecting circuit 323 further includes a first diode and a first voltage stabilizing component, the first diode is connected between the first capacitor and the interface logic circuit 325, and the first voltage stabilizing component is connected in parallel.
  • the second frequency detecting circuit 324 further includes a second diode and a second voltage stabilizing component, and the second diode is connected between the second capacitor and the interface logic circuit 325, Two voltage stabilizing components are connected in parallel to both ends of the second diode.
  • the first voltage stabilizing component and the second voltage stabilizing component are respectively composed of a resistor and a capacitor connected in parallel.
  • the first frequency detecting circuit 323 further includes a first voltage stabilizing tube, the first voltage stabilizing tube is connected to the first voltage stabilizing component, or the anode of the first voltage stabilizing tube is connected to the first capacitor and the first Between the diodes, the positive pole is connected to one end of the first voltage stabilizing component and grounded;
  • the second frequency detecting circuit 324 further includes a second voltage stabilizing tube, the second voltage stabilizing tube is connected to the second voltage stabilizing component, or second The cathode of the Zener diode is connected between the second capacitor and the second diode, and the anode is connected to one end of the second voltage stabilizing component and grounded.
  • the first frequency detection 323 circuit further includes a first resistor for current limiting, the first resistor being coupled between the input of the first frequency detecting circuit 323 and the first capacitor;
  • the second frequency detecting circuit 324 Also includes a second resistor for current limiting, the second resistor Connected between the input terminal of the second frequency detecting circuit 324 and the second capacitor.
  • the interface logic circuit 325 includes a first controllable switch coupled between the first frequency detection circuit 323 and the switch circuit 326, the first controllable switch being controlled by its own switch state.
  • the first controllable switch may be a triode switch or a FET switch, and may of course be other controllable electronic switches, which is not limited in this embodiment.
  • the interface logic circuit 325 when the first controllable switch is a first triode switch, the interface logic circuit 325 further includes a second triode switch and a feedback resistor, wherein the emitter of the first triode switch and the first A frequency detecting circuit 323 is connected.
  • the collector of the first transistor switch is connected to the switching circuit 326.
  • the base of the first transistor switch is grounded through the second transistor switch, and one end of the feedback resistor is connected to the first three poles.
  • the tube switch is connected to the switch circuit 326, the other end is connected to the second triode switch, and the emitter of the second triode switch is grounded.
  • the first triode switch is a PNP type triode switch and the second triode switch is an NPN type triode switch.
  • the interface logic circuit 325 further includes a third resistor for reducing the input impedance and a fourth resistor for current limiting, the third resistor being connected in parallel to the emitter and the base of the first transistor switch.
  • the fourth resistor is coupled between the base of the first transistor switch and the collector of the second transistor switch.
  • the interface logic circuit 325 described in the above embodiments can be implemented by a plurality of different circuit structures. Two different circuit structures are described in detail below through two specific embodiments.
  • FIG. 4 is a partial circuit diagram of an electronic control circuit 320 (see FIGS. 3a and 3b) in an embodiment.
  • the first resistor R1, the first capacitor C1, and the first diode D1 are first stabilized.
  • the voltage component and the first voltage regulator Vz constitute a first frequency detecting circuit 323 (see FIGS. 3a and 3b), wherein the first voltage stabilizing component is composed of a resistor R2 and a capacitor C2 connected in parallel, and the first resistor R1 and the first resistor
  • the capacitor C1, the first diode D1, and the first voltage stabilizing component are sequentially connected in series to the interface logic circuit 325 (see FIG. 3a and FIG.
  • the pressure tube VzA constitutes a second frequency detecting circuit 324 (see FIGS.
  • the second voltage stabilizing component is connected by a resistor R2A connected in parallel
  • the second resistor R1A, the second capacitor C1A, the second diode D1A, and the second voltage regulator are sequentially connected in series to the interface logic circuit 325, and the cathode of the second voltage regulator VzA is connected to the second capacitor C1A.
  • the positive pole of the second Zener diode VzA is connected to the second voltage stabilizing component and grounded; wherein the capacitance value of the first capacitor C1 is greater than the capacitance value of the second capacitor C1A.
  • the PNP type triode switch K1, the NPN type triode switch K2, the third resistor R3, the fourth resistor R4, and the feedback resistor Rbf constitute an interface logic circuit 325, wherein the emitter of the switch K1 is connected to the first frequency detecting circuit 323, and the switch K1 is The collector is connected to the switch circuit 326 (see FIG. 3a and FIG. 3b). The base of the switch K1 is grounded through the fourth resistor R4 and the switch K2 in sequence.
  • the third resistor R3 is connected in parallel at both ends of the switch K1, and one end of the feedback resistor Rbf is connected.
  • the other end is connected to the base of the switch K2, and the base and the emitter of the switch K2 are respectively connected to the two ends of the second voltage stabilizing component in the second frequency detecting circuit 324, and The emitter of switch K2 is grounded through a second voltage stabilizing assembly.
  • the capacitance value of the first capacitor C1 is greater than the capacitance value of the second capacitor C1A, so the high-frequency capacitive reactance of the first capacitor C1 is smaller than the high-frequency capacitive reactance of the second capacitor C1A, and for the same AC signal input, the flow
  • the current through the first capacitor C1 is greater than the current flowing through the second capacitor C1A.
  • the electronic ballast 310 outputs a high frequency voltage, which is respectively passed through the first capacitor C1 and the second capacitor C1A in the resistor R2 of the first voltage stabilizing component, the capacitor C2, and the second voltage stabilizing component. A voltage is generated on the resistor R2A and the capacitor C2A.
  • the output of the switch circuit 326 has a high level only when the second frequency detecting circuit 324 outputs a voltage signal to cause the switch K2 to be turned on; and the electronic ballast 310 After the stable operation, the switching circuit 326 maintains the output high level due to the continuous high level output of the first frequency detecting circuit 323 and the feedback of the feedback resistor Rfb.
  • the interface logic circuit 325 is also in an off state, even if the electronic ballast 310 is intermittent.
  • the high-frequency signal is output, because the capacitive reactance of the second capacitor C1A is relatively large, the voltage R2A and the capacitor C2A cannot accumulate sufficient voltage to drive the switch K2, the interface logic circuit 325 remains turned off, and the switch circuit 326 outputs a low level, that is, remains The off state, thus avoiding the turn-off flicker of the lighting fixture with electronic control circuit 320.
  • FIG. 5 is a partial circuit diagram of an electronic control circuit 320 (see FIGS. 3a and 3b) in another embodiment.
  • the first resistor R1, the first capacitor C1, and the first diode D1 are first.
  • the voltage stabilizing component and the first voltage stabilizing tube Vz constitute a first frequency detecting circuit 323 (see FIG. 3a and FIG. 3b), wherein the first voltage stabilizing component is composed of a resistor R2 and a capacitor C2 connected in parallel, and the first resistor R1, A capacitor C1, a first diode D1, and a first voltage stabilizing component are sequentially connected in series to the interface logic circuit 325 (see FIGS.
  • the cathode of the first Zener diode Vz is connected to the first capacitor C1 and the first Between the diodes D1, the anode of the first Zener diode Vz is connected to the first voltage stabilizing component and grounded; the second resistor R1A, the second capacitor C1A, the second diode D1A, the second voltage regulator component, and the second The Zener diode VzA constitutes a second frequency detecting circuit 324 (see FIG. 3a and FIG.
  • the second voltage stabilizing component is composed of a resistor R2A and a capacitor C2A connected in parallel, and a second resistor R1A, a second capacitor C1A, and a second The diode D1A and the second voltage stabilizing component are sequentially connected in series to the interface logic circuit 325, and the negative terminal of the second voltage regulator VzA Connected to the second capacitor C1A and the second diode D1A, the anode of the second Zener diode VzA is connected to the second voltage stabilizing component and grounded; wherein the capacitance of the first capacitor C1 is greater than the capacitance of the second capacitor C1A value.
  • the PNP type triode switch K1, the NPN type triode switch K2, the third resistor R3, the fourth resistor R4, the feedback resistor Rbf, the third diode D2 and the fifth resistor R5 constitute an interface logic circuit 325, wherein the emitter of the switch K1 Connected to the first frequency detecting circuit 323, the collector of the switch K1 is connected to the switch circuit 326 (see FIG. 3a and FIG. 3b), the base of the switch K1 is sequentially grounded through the fourth resistor R4 and the switch K2, and the third resistor R3 is connected in parallel.
  • the anode of the third diode D2 is connected to the second voltage stabilizing component of the second frequency detecting circuit 324, and the cathode of the third diode D2 is connected between the switch K1 and the switching circuit 326.
  • One end of the feedback resistor Rbf is connected between the switch K1 and the switch circuit 326, the other end is connected to the emitter of the switch K2 through the fifth resistor R5, and the base of the switch K2 is connected between the feedback resistor Rbf and the fifth resistor R5.
  • the output from the second frequency detecting circuit 324 is directly connected to the switching circuit 326 through the third diode D2, so that the switching circuit 326 can be directly driven, and the driving signal of the switch K2 is only passed from the switching circuit 326.
  • the feedback resistor Rbf is fed back.
  • the switch K2 Under the action of the high level of the switch circuit 326 and the feedback resistor Rfb, the switch K2 is turned on, so that the emitter of the switch K1 is positively biased to the base, and the switch K1 is saturated and turned on to further maintain the output high level.
  • the second frequency detecting circuit 324 outputs a low level, and the first frequency detecting circuit 323 maintains a high level output, under the reverse cut-off protection of the third diode D2, the switch Circuit 326 maintains a high level output and thus remains in an on state.
  • the activation of the switch circuit 326 requires the second frequency detecting circuit 324 to output a high level signal; after the electronic ballast 310 is stably operated, the high level output of the first frequency detecting circuit 323 and the feedback of the feedback resistor Rfb are continued.
  • the switch circuit 326 maintains an output high level.
  • the interface logic circuit 325 is also in an off state, even if the electronic ballast 310 is intermittent.
  • the high-frequency signal is output, because the capacitive reactance of the second capacitor C1A is relatively large, the resistor R2A and the capacitor C2A cannot accumulate sufficient voltage to drive the switch circuit 326, so that the interface logic circuit 325 remains off, and the switch circuit 326 outputs a low level. That is, the off state is maintained, thus avoiding the turn-off flicker of the lighting fixture with the electronic control circuit 320.
  • FIG. 6 is a schematic block diagram of a lighting fixture in accordance with one embodiment of the present invention.
  • the lighting fixture includes the electronic ballast control electronic control circuit-based device 610 and the light-emitting device 620 according to any of the above embodiments; wherein the device 610 includes an electronic ballast 611 and an electronic control circuit. 612.
  • the light emitting device 620 is connected to the electronic control circuit 612 for turning on and off under the control of the electronic control circuit 612.
  • the electronic control circuit 610 includes a filament analog circuit, a rectifier bridge circuit, at least two frequency detecting circuits connected in parallel, an interface logic circuit, and a switching circuit. Moreover, one of the frequency detecting circuits is used to start when the low frequency signal is input, the other frequency detecting circuit is used to start when the high frequency signal is input, and the interface logic circuit is used to control the working logic of the at least two frequency detecting circuits connected in parallel.
  • the frequency detecting circuit activated at the time of inputting the low frequency signal can make the switching circuit in the electronic control circuit
  • a frequency detecting circuit for stabilizing the working signal and starting at the time of inputting the high-frequency signal can provide a starting signal for the switching circuit, so that the lighting fixture can maintain stable operation after power-on, and can effectively avoid electronic control after power-off.
  • the turn-off flicker phenomenon of the light-emitting device 620 connected by the circuit 612 reduces the risk of failure of the light-emitting device 620 and improves the user experience of using the lighting fixture.
  • the above device connects at least two frequency detecting circuits connected in parallel in the electronic control circuit, and connects one end of at least two frequency detecting circuits connected in parallel to the interface logic circuit, so that the interface logic circuit can control at least two parallel connections
  • the operating logic of the frequency detecting circuit is such that at least one frequency detecting circuit of the device provides a start signal for the switching circuit in the electronic control circuit, and at least one frequency detecting circuit provides a stable working signal for the switching circuit. Therefore, for the lighting fixture with the device, the lighting fixture can be stably operated after the power is turned on, and the off-flashing phenomenon of the light-emitting device connected to the electronic control circuit in the lighting fixture can be effectively avoided after the power is turned off, thereby reducing the illumination.
  • the risk of device failure improves the user experience with lighting fixtures.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

本发明提供了一种基于电子镇流器控制电子控制电路的装置及照明灯具。该装置包括相连接的电子镇流器和电子控制电路,所述电子控制电路包括灯丝模拟电路、整流桥电路、至少两个并联连接的频率检测电路、接口逻辑电路以及开关电路;其中:所述电子镇流器依次通过所述灯丝模拟电路、所述整流桥电路连接至所述开关电路;所述至少两个并联连接的频率检测电路的一端连接于所述灯丝模拟电路和所述整流桥电路之间,或者连接于所述电子镇流器和所述灯丝模拟电路之间,另一端连接至所述接口逻辑电路;所述接口逻辑电路与所述开关电路连接。具有该装置的照明灯具能够有效避免照明灯具的关断闪烁现象,改善了用户对照明灯具的使用体验。

Description

一种基于电子镇流器控制电子控制电路的装置及照明灯具 技术领域
本发明涉及照明技术领域,特别涉及一种基于电子镇流器控制电子控制电路的装置及照明灯具。
背景技术
随着LED光效的提高,使用LED光源替代传统荧光灯成为发展的趋势。传统荧光灯需要电感镇流器或者电子镇流器进行供电,电感镇流器输出工频信号,如50/60Hz电压和电流信号,电子镇流器输出高频信号,一般大于20kHz。在替换应用中,LED驱动也需要兼容电感镇流器或者电子镇流器,甚至需要同时兼容电感和电子镇流器。
现有技术中,在兼容电子镇流器或者同时兼容电感和电子镇流器的应用中,应用于照明灯具的电子控制电路中LED驱动的开关管往往采用频率检测电路来驱动,如附图1所示。在图1中,市电交流电输入到电子镇流器110,电子镇流器110逆变输出高频电压和电流,一般工作频率大于20kHz,输入到电子控制电路120。在电子控制电路120内部,高频交流电压和电流经过灯丝模拟电路121进入整流桥电路122,再经过LED驱动电路123输出合适的电流。LED驱动电路123至少包含一个开关管S,如功率三极管、场效应管、IGBT或者其它的电子开关,开关管S的驱动信号来自频率检测电路124,而频率检测电路124的输入来自灯丝模拟电路121和整流桥电路122之间的电路,输出则用以驱动开关管S。频率检测电路124往往设计为,当输入频率为市电低频时,如灯管所接的是电感镇流器,则其输出为低电平,无法驱动开关管S;当输入频率为高频时,如灯管所接的是电子镇流器,则其输出为高电平,开关管S导通。图1中所示的频率检测电路124的电路图如附图2所示,在图2中,整流桥电路122(参见图1)前的电压经过电阻R10和电容C10,一方面连接到二极管D10,另一方面连接稳压管Vz0,D10输出通过电阻R20和电容C20连接到地,R20和C20上面的电压作为输出用以控制功率开关的动作。由于整流桥电路122前的电压为交流,交流电压通过电容C10产生一定的电流,这个电流的大小和C10 容值、交流电压幅值以及频率相关,当交流电压为工频信号时,由于C10的低频容抗非常大,流经C10的电流比较小,经过D10在R20和C20上面产生的电压比较低,无法驱动开关管;当交流电压为高频信号时,C10的容抗比较小,流经C10的电流相应变大,在R20和C20上面产生高电平,驱动开关管导通。
由图1和图2可知,上述电路虽然能实现在电子镇流器输入时驱动开关管S导通,但是,某些品牌的镇流器在关断时会间歇性输出高频信号,这些高频信号通过频率检测电路会促使开关管S间歇性导通,使上述照明灯具中的LED光源间歇性发光,当具有电子控制电路的照明灯具与此类镇流器工作时,在关断电源后会出现照明灯具中LED光源闪烁的现象,引起用户的不满。虽然可以通过在频率检测电路输出增加延迟来解决这个问题,但是延迟电路会引入另外一个问题,就是在连接非预热型镇流器时由于延迟电路的原因,无法及时驱动开关管S导通,引起镇流器输出过压,增加LED光源失效的风险。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的基于电子镇流器控制电子控制电路的装置及照明灯具。
依据本发明的一个方面,提供了一种基于电子镇流器控制电子控制电路的装置,包括相连接的电子镇流器和电子控制电路,所述电子控制电路包括灯丝模拟电路、整流桥电路、至少两个并联连接的频率检测电路、接口逻辑电路以及开关电路;其中:
所述电子镇流器依次通过所述灯丝模拟电路、所述整流桥电路连接至所述开关电路;所述至少两个并联连接的频率检测电路的一端连接于所述灯丝模拟电路和所述整流桥电路之间,或者连接于所述电子镇流器和所述灯丝模拟电路之间,另一端连接至所述接口逻辑电路;所述接口逻辑电路与所述开关电路连接,所述接口逻辑电路用于控制所述至少两个并联连接的频率检测电路间的工作逻辑。
可选地,所述电子控制电路包括并联连接的第一频率检测电路和第二频率检测电路。
可选地,所述第一频率检测电路用于在低频信号输入时启动,所 述第二频率检测电路用于在高频信号输入时启动,所述第一频率检测电路的高频阻抗小于所述第二频率检测电路的高频阻抗。
可选地,所述第一频率检测电路包括第一电容,所述第一电容的一端连接至所述第一频率检测电路的输入端,另一端与所述接口逻辑电路连接;
所述第二频率检测电路包括第二电容,所述第二电容的一端连接至所述第二频率检测电路的输入端,另一端与所述接口逻辑电路连接;
其中,所述第一电容的电容值大于所述第二电容的电容值。
可选地,所述第一频率检测电路还包括第一二极管和第一稳压组件,所述第一二极管连接于所述第一电容和所述接口逻辑电路之间,所述第一稳压组件并联连接至所述第一二极管的两端;
所述第二频率检测电路还包括第二二极管和第二稳压组件,所述第二二极管连接于所述第二电容和所述接口逻辑电路之间,所述第二稳压组件并联连接至所述第二二极管的两端。
可选地,所述第一稳压组件和所述第二稳压组件分别由并联连接的电阻和电容组成。
可选地,所述第一频率检测电路还包括第一稳压管,所述第一稳压管与所述第一稳压组件连接,或者,所述第一稳压管的负极连接至所述第一电容和所述第一二极管之间,正极与所述第一稳压组件的一端连接并接地;
所述第二频率检测电路还包括第二稳压管,所述第二稳压管与所述第二稳压组件连接,或者,所述第二稳压管的负极连接至所述第二电容和所述第二二极管之间,正极与所述第二稳压组件的一端连接并接地。
可选地,所述第一频率检测电路还包括用于限流的第一电阻,所述第一电阻连接于所述第一频率检测电路的输入端和所述第一电容之间;
所述第二频率检测电路还包括用于限流的第二电阻,所述第二电阻连接于所述第二频率检测电路的输入端和所述第二电容之间。
可选地,所述接口逻辑电路包括第一可控开关,所述第一可控开关连接于所述第一频率检测电路和所述开关电路之间,所述第一可控开关通过其自身的开关状态控制所述第一频率检测电路和所述第二频 率检测电路间的工作逻辑。
可选地,所述第一可控开关为三极管开关或场效应管开关。
可选地,当所述第一可控开关为第一三极管开关时,所述接口逻辑电路还包括第二三极管开关和反馈电阻,其中,所述第一三极管开关的发射极与所述第一频率检测电路连接,所述第一三极管开关的集电极与所述开关电路连接,所述第一三极管开关的基极通过所述第二三极管开关接地,所述反馈电阻的一端连接在所述第一三极管开关与所述开关电路之间,另一端与所述第二三极管开关连接,所述第二三极管开关的发射极接地。
可选地,所述接口逻辑电路还包括用于降低输入阻抗的第三电阻和用于限流的第四电阻,所述第三电阻并联连接于所述第一三极管开关的发射极和基极两端,所述第四电阻连接于所述第一三极管开关的基极和所述第二三极管开关的集电极之间。
可选地,所述反馈电阻的另一端与所述第二三极管开关的基极连接,所述第二三极管开关的基极和发射极分别连接至所述第二频率检测电路中的第二稳压组件的两端,且所述第二三极管开关的发射极通过所述第二稳压组件接地。
可选地,所述接口逻辑电路还包括第三二极管和第五电阻,所述第三二极管的正极与所述第二频率检测电路中的第二稳压组件连接,所述第三二极管的负极连接在所述第一三极管开关和所述开关电路之间,所述反馈电阻通过所述第五电阻连接至所述第二三极管开关的发射极,且所述第二三极管开关的基极连接至所述反馈电阻和所述第五电阻之间。
可选地,所述第一三极管开关为PNP型三极管开关,所述第二三极管开关为NPN型三极管开关。
依据本发明的另一个方面,提供一种照明灯具,包括:
上述任一项所述的基于电子镇流器控制电子控制电路的装置;以及
发光器件,与所述基于电子镇流器控制电子控制电路的装置中的电子控制电路相连接,用于在所述电子控制电路的控制下亮灭。
采用本发明实施例提供的装置,通过在电子控制电路中接入至少两个并联连接的频率检测电路,并将至少两个并联连接的频率检测电 路的一端连接至接口逻辑电路,使得接口逻辑电路能够控制至少两个并联连接的频率检测电路的工作逻辑,从而使得该装置至少有一个频率检测电路为电子控制电路中的开关电路提供启动信号,同时至少有一个频率检测电路为开关电路提供稳定工作信号。因此,对于具有该装置的照明灯具,能够在上电后保持照明灯具稳定工作,且能够在掉电后有效避免照明灯具中与电子控制电路连接的发光器件的关断闪烁现象,从而降低了发光器件失效的风险,改善了用户对照明灯具的使用体验。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是现有技术中一种基于电子镇流器控制电子控制电路的装置的示意性框图;
图2是图1所示的一种基于电子镇流器控制电子控制电路的装置中频率检测电路的示意性电路图;
图3a是根据本发明一个实施例的一种基于电子镇流器控制电子控制电路的装置的示意性框图;
图3b是根据本发明另一个实施例的一种基于电子镇流器控制电子控制电路的装置的示意性框图;
图4是根据本发明一个实施例的一种电子控制电路的电路结构示意图;
图5是根据本发明另一个实施例的一种电子控制电路的电路结构示意图;以及
图6是根据本发明一个实施例的一种照明灯具的示意性框图。
具体实施方式
图3a和图3b是根据本发明一个实施例的一种基于电子镇流器控制电子控制电路的装置的示意性框图。如图3a和图3b所示,该装置一般性地可包括相连接的电子镇流器310和电子控制电路320,其中,电子控制电路320包括灯丝模拟电路321、整流桥电路322、至少两个并联连接的频率检测电路(图3a和图3b中示意性地示出两个并联连接的频率检测电路,包括第一频率检测电路323和第二频率检测电路324)、接口逻辑电路325以及开关电路326;在图3a和图3b中,电子镇流器310依次通过灯丝模拟电路321、整流桥电路322连接至开关电路326;至少两个并联连接的频率检测电路(包括第一频率检测电路323和第二频率检测电路324)的一端连接于灯丝模拟电路321和整流桥电路322之间(如图3a所示),或者连接于电子镇流器310和灯丝模拟电路321之间(如图3b所示),另一端连接至接口逻辑电路325;接口逻辑电路325与开关电路326连接,接口逻辑电路325用于控制至少两个并联连接的频率检测电路间的工作逻辑。
在本实施例中,第一频率检测电路323用于在低频信号输入时启动,第二频率检测电路324用于在高频信号输入时启动,第一频率检测电路323的高频阻抗小于第二频率检测电路324的高频阻抗。该实施例中,由于第一频率检测电路323用于在低频信号输入时启动,同时第二频率检测电路324用于在高频信号输入时启动,因此使得第一频率检测电路323能够为电子控制电路320中的开关电路326提供稳定工作信号,同时第二频率检测电路324能够为开关电路326提供启动信号。
由于第二频率检测电路324为开关电路326提供启动信号,而其高频阻抗比较大,因此可使得电子镇流器310在关断时输出的间歇性高频信号无法启动开关电路326;在电子镇流器310正常启动时,会输出频率或者幅值更高的电压,促使第二频率检测电路324启动开关电路326,在电子镇流器310稳定工作时,由高频阻抗较小的第一频率检测电路323提供开关电路326的工作电压,使得开关电路326能够保持稳定工作。
在一个实施例中,上述电子控制电路320中,第一频率检测电路323包括第一电容,该第一电容的一端连接至第一频率检测电路323的输入端,另一端与接口逻辑电路325连接,具体的,当采用如图3a所 示的装置时,第一电容的一端连接至灯丝模拟电路321和整流桥电路322之间,另一端与接口逻辑电路325连接,当采用如图3b所示的装置时,第一电容的一端连接至电子镇流器310和灯丝模拟电路321之间,另一端与接口逻辑电路325连接;第二频率检测电路324包括第二电容,该第二电容的一端连接至第二频率检测电路324的输入端,另一端与接口逻辑电路325连接,具体的,当采用如图3a所示的装置时,第二电容的一端连接至灯丝模拟电路321和整流桥电路322之间,另一端与接口逻辑电路325连接,当采用如图3b所示的装置时,第二电容的一端连接至电子镇流器310和灯丝模拟电路321之间,另一端与接口逻辑电路325连接。其中,第一电容的电容值大于第二电容的电容值。该实施例中,第一电容的电容值必须大于第二电容的电容值的原因在于,当第一电容的电容值大于第二电容的电容值时,可使得第一电容的高频容抗小于第二电容的高频容抗,从而对于同样的交流信号输入时,流经第一电容的电流比流经第二电容的电流大,进而实现第一频率检测电路323在低频信号输入时启动、而第二频率检测电路324在高频信号输入时启动的目的。
在一个实施例中,第一频率检测电路323还包括第一二极管和第一稳压组件,第一二极管连接于第一电容和接口逻辑电路325之间,第一稳压组件并联连接至第一二极管的两端;第二频率检测电路324还包括第二二极管和第二稳压组件,第二二极管连接于第二电容和接口逻辑电路325之间,第二稳压组件并联连接至第二二极管的两端。本实施例中,第一稳压组件和第二稳压组件分别由并联连接的电阻和电容组成。
在一个实施例中,第一频率检测电路323还包括第一稳压管,第一稳压管与第一稳压组件连接,或者,第一稳压管的负极连接至第一电容和第一二极管之间,正极与第一稳压组件的一端连接并接地;第二频率检测电路324还包括第二稳压管,第二稳压管与第二稳压组件连接,或者,第二稳压管的负极连接至第二电容和第二二极管之间,正极与第二稳压组件的一端连接并接地。
在一个实施例中,第一频率检测323电路还包括用于限流的第一电阻,第一电阻连接于第一频率检测电路323的输入端和第一电容之间;第二频率检测电路324还包括用于限流的第二电阻,第二电阻连 接于第二频率检测电路324的输入端和第二电容之间。
在一个实施例中,接口逻辑电路325包括第一可控开关,第一可控开关连接于第一频率检测电路323和开关电路326之间,第一可控开关通过其自身的开关状态控制第一频率检测电路323和第二频率检测电路324间的工作逻辑。其中,第一可控开关可以是三极管开关或场效应管开关,当然也可以是其他可控型的电子开关,本实施例中不做此限定。
在一个实施例中,当第一可控开关为第一三极管开关时,接口逻辑电路325还包括第二三极管开关和反馈电阻,其中,第一三极管开关的发射极与第一频率检测电路323连接,第一三极管开关的集电极与开关电路326连接,第一三极管开关的基极通过第二三极管开关接地,反馈电阻的一端连接在第一三极管开关与开关电路326之间,另一端与第二三极管开关连接,第二三极管开关的发射极接地。
在一个实施例中,第一三极管开关为PNP型三极管开关,第二三极管开关为NPN型三极管开关。
在一个实施例中,接口逻辑电路325还包括用于降低输入阻抗的第三电阻和用于限流的第四电阻,第三电阻并联连接于第一三极管开关的发射极和基极两端,第四电阻连接于第一三极管开关的基极和第二三极管开关的集电极之间。
上述实施例中所述的接口逻辑电路325可通过多种不同的电路结构来实现,以下通过两个具体实施例详细说明其中两种不同的电路结构。
图4为一个实施例中电子控制电路320(参见图3a和图3b)的部分电路示意图,如图4所示,第一电阻R1、第一电容C1、第一二极管D1、第一稳压组件以及第一稳压管Vz组成第一频率检测电路323(参见图3a和图3b),其中,第一稳压组件由并联连接的电阻R2和电容C2组成,第一电阻R1、第一电容C1、第一二极管D1、第一稳压组件依次串联连接至接口逻辑电路325(参见图3a和图3b),第一稳压管Vz的负极连接至第一电容C1和第一二极管D1之间,第一稳压管Vz的正极与第一稳压组件连接并接地;第二电阻R1A、第二电容C1A、第二二极管D1A、第二稳压组件以及第二稳压管VzA组成第二频率检测电路324(参见图3a和图3b),其中,第二稳压组件由并联连接的电阻R2A 和电容C2A组成,第二电阻R1A、第二电容C1A、第二二极管D1A、第二稳压组件依次串联连接至接口逻辑电路325,第二稳压管VzA的负极连接至第二电容C1A和第二二极管D1A之间,第二稳压管VzA的正极与第二稳压组件连接并接地;其中,第一电容C1的电容值大于第二电容C1A的电容值。PNP型三极管开关K1、NPN型三极管开关K2、第三电阻R3、第四电阻R4以及反馈电阻Rbf组成接口逻辑电路325,其中,开关K1的发射极与第一频率检测电路323连接,开关K1的集电极与开关电路326(参见图3a和图3b)连接,开关K1的基极依次通过第四电阻R4、开关K2接地,第三电阻R3并联连接在开关K1的两端,反馈电阻Rbf的一端连接在开关K1与开关电路326之间,另一端与开关K2的基极连接,开关K2的基极和发射极分别连接至第二频率检测电路324中的第二稳压组件的两端,且开关K2的发射极通过第二稳压组件接地。
在图4所示电路中,第一电容C1的电容值大于第二电容C1A的电容值,因此第一电容C1的高频容抗比第二电容C1A的高频容抗小,对于同样的交流信号输入,流经第一电容C1的电流比流经第二电容C1A的电流大。在正常工作时电子镇流器310输出高频电压,该高频电压经第一电容C1和第二电容C1A分别在第一稳压组件中的电阻R2、电容C2以及第二稳压组件中的电阻R2A、电容C2A上面产生电压,由于该高频电压的幅值或者频率超过稳定工作时的幅值或者频率,使得电阻R2A和电容C2A上产生足够的电压,从而使NPN型三极管开关K2导通,而电阻R2和C2电容上的电压经过第三电阻R3和第四电阻R4分压,使得PNP型三极管开关K1的发射极对基极产生足够的正向压降,开关K1饱和导通,并控制输出高电平,同时该高电平经过反馈电阻Rfb反馈到开关K2的基极,确保开关K2能维持导通。当电子镇流器310进入稳定工作时,由于电子镇流器310输出的交流电压幅值或者频率大幅下降,该交流电压经过第二电容C1A在电阻R2A和电容C2A上的电压也相应下降,但是由于第一电容C1的容抗比较小,在电阻R2和电容C2上依然有足够高的电压,因此可以提供使开关电路326稳定工作的信号。
由此可知,只有在第二频率检测电路324输出电压信号,促使开关K2导通时,开关电路326的输出才会有高电平;而电子镇流器310 稳定工作后,由于第一频率检测电路323持续的高电平输出以及反馈电阻Rfb的反馈,使得开关电路326保持输出高电平。当电子镇流器310关断时,由于第一频率检测电路323和第二频率检测电路324都没有高电平输出,接口逻辑电路325也处于关断状态,此时即使电子镇流器310间歇性输出高频信号,由于第二电容C1A的容抗比较大,电阻R2A和电容C2A上无法累积足够的电压驱动开关K2,接口逻辑电路325保持关断,开关电路326输出低电平,即保持关断状态,因此避免了具有电子控制电路320的照明灯具的关断闪烁现象。
图5为另一个实施例中电子控制电路320(参见图3a和图3b)的部分电路示意图,如图5所示,第一电阻R1、第一电容C1、第一二极管D1、第一稳压组件以及第一稳压管Vz组成第一频率检测电路323(参见图3a和图3b),其中,第一稳压组件由并联连接的电阻R2和电容C2组成,第一电阻R1、第一电容C1、第一二极管D1、第一稳压组件依次串联连接至接口逻辑电路325(参见图3a和图3b),第一稳压管Vz的负极连接至第一电容C1和第一二极管D1之间,第一稳压管Vz的正极与第一稳压组件连接并接地;第二电阻R1A、第二电容C1A、第二二极管D1A、第二稳压组件以及第二稳压管VzA组成第二频率检测电路324(参见图3a和图3b),其中,第二稳压组件由并联连接的电阻R2A和电容C2A组成,第二电阻R1A、第二电容C1A、第二二极管D1A、第二稳压组件依次串联连接至接口逻辑电路325,第二稳压管VzA的负极连接至第二电容C1A和第二二极管D1A之间,第二稳压管VzA的正极与第二稳压组件连接并接地;其中,第一电容C1的电容值大于第二电容C1A的电容值。PNP型三极管开关K1、NPN型三极管开关K2、第三电阻R3、第四电阻R4、反馈电阻Rbf、第三二极管D2以及第五电阻R5组成接口逻辑电路325,其中,开关K1的发射极与第一频率检测电路323连接,开关K1的集电极与开关电路326(参见图3a和图3b)连接,开关K1的基极依次通过第四电阻R4、开关K2接地,第三电阻R3并联连接在开关K1的两端,第三二极管D2的正极与第二频率检测电路324中的第二稳压组件连接,第三二极管D2的负极连接在开关K1和开关电路326之间,反馈电阻Rbf的一端连接在开关K1与开关电路326之间,另一端通过第五电阻R5连接至开关K2的发射极,且开关K2的基极连接至反馈电阻Rbf和第五电阻R5之间。
在图5所示电路中,来自第二频率检测电路324的输出通过第三二极管D2直接连接到开关电路326,因此可直接驱动开关电路326,开关K2的驱动信号只有从开关电路326通过反馈电阻Rbf反馈回来。在电子镇流器310正常工作时,电子镇流器310输出的高频电压在第二频率检测电路324输出高电平,通过第三二极管D2直接输出到开关电路326,使开关电路326启动工作;在开关电路326的高电平以及反馈电阻Rfb的作用下,开关K2导通,使得开关K1发射极对基极正偏,开关K1饱和导通,进一步维持输出高电平。当电子镇流器310进入稳定工作时,第二频率检测电路324输出低电平,而第一频率检测电路323保持高电平输出,在第三二极管D2的反向截止保护下,开关电路326保持高电平输出,因此保持导通状态。
由此可知,开关电路326的启动需要第二频率检测电路324输出高电平信号;电子镇流器310稳定工作后,由于第一频率检测电路323持续的高电平输出以及反馈电阻Rfb的反馈,开关电路326保持输出高电平。当电子镇流器310关断时,由于第一频率检测电路323和第二频率检测电路324都没有高电平输出,接口逻辑电路325也处于关断状态,此时即使电子镇流器310间歇性输出高频信号,由于第二电容C1A的容抗比较大,电阻R2A和电容C2A上面无法累积足够的电压驱动开关电路326,使得接口逻辑电路325保持关断,开关电路326输出低电平,即保持关断状态,因此避免了具有电子控制电路320的照明灯具的关断闪烁现象。
图6是根据本发明一个实施例的一种照明灯具的示意性框图。如图6所示,该照明灯具包括上述任一项实施例所述的基于电子镇流器控制电子控制电路的装置610和发光器件620;其中,装置610包括电子镇流器611和电子控制电路612,发光器件620与电子控制电路612相连接,用于在电子控制电路612的控制下亮灭。
在图6所示照明灯具中,电子控制电路610中包括灯丝模拟电路、整流桥电路、至少两个并联连接的频率检测电路、接口逻辑电路以及开关电路。并且,其中一个频率检测电路用于在低频信号输入时启动,另一个频率检测电路用于在高频信号输入时启动,接口逻辑电路用于控制至少两个并联连接的频率检测电路的工作逻辑,因此使得在低频信号输入时启动的频率检测电路能够为电子控制电路中的开关电路提 供稳定工作信号,同时在高频信号输入时启动的频率检测电路能够为开关电路提供启动信号,从而使该照明灯具能够在上电后保持稳定工作,且能够在掉电后有效避免与电子控制电路612连接的发光器件620的关断闪烁现象,从而降低了发光器件620失效的风险,改善了用户对照明灯具的使用体验。
由上述实施例可知,采用本发明任一实施例提供的装置可至少达到以下有益效果:
上述装置通过在电子控制电路中接入至少两个并联连接的频率检测电路,并将至少两个并联连接的频率检测电路的一端连接至接口逻辑电路,使得接口逻辑电路能够控制至少两个并联连接的频率检测电路的工作逻辑,从而使得该装置至少有一个频率检测电路为电子控制电路中的开关电路提供启动信号,同时至少有一个频率检测电路为开关电路提供稳定工作信号。因此,对于具有该装置的照明灯具,能够在上电后保持照明灯具稳定工作,且能够在掉电后有效避免照明灯具中与电子控制电路连接的发光器件的关断闪烁现象,从而降低了发光器件失效的风险,改善了用户对照明灯具的使用体验。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于***实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
此外,还应当注意,本说明书中使用的语言主要是为了可读性和教导的目的而选择的,而不是为了解释或者限定本发明的主题而选择的。因此,在不偏离所附权利要求书的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。对于本发明的范围,对本发明所做的公开是说明性的,而非限制性的,本发明的范围由所附权利要求书限定。

Claims (16)

  1. 一种基于电子镇流器控制电子控制电路的装置,包括相连接的电子镇流器和电子控制电路,所述电子控制电路包括灯丝模拟电路、整流桥电路、至少两个并联连接的频率检测电路、接口逻辑电路以及开关电路;其中:
    所述电子镇流器依次通过所述灯丝模拟电路、所述整流桥电路连接至所述开关电路;所述至少两个并联连接的频率检测电路的一端连接于所述灯丝模拟电路和所述整流桥电路之间,或者连接于所述电子镇流器和所述灯丝模拟电路之间,另一端连接至所述接口逻辑电路;所述接口逻辑电路与所述开关电路连接,所述接口逻辑电路用于控制所述至少两个并联连接的频率检测电路间的工作逻辑。
  2. 根据权利要求1所述的装置,其中,所述电子控制电路包括并联连接的第一频率检测电路和第二频率检测电路。
  3. 根据权利要求2所述的装置,其中,所述第一频率检测电路用于在低频信号输入时启动,所述第二频率检测电路用于在高频信号输入时启动,所述第一频率检测电路的高频阻抗小于所述第二频率检测电路的高频阻抗。
  4. 根据权利要求2所述的装置,其中,所述第一频率检测电路包括第一电容,所述第一电容的一端连接至所述第一频率检测电路的输入端,另一端与所述接口逻辑电路连接;
    所述第二频率检测电路包括第二电容,所述第二电容的一端连接至所述第二频率检测电路的输入端,另一端与所述接口逻辑电路连接;
    其中,所述第一电容的电容值大于所述第二电容的电容值。
  5. 根据权利要求4所述的装置,其中,所述第一频率检测电路还包括第一二极管和第一稳压组件,所述第一二极管连接于所述第一电容和所述接口逻辑电路之间,所述第一稳压组件并联连接至所述第一二极管的两端;
    所述第二频率检测电路还包括第二二极管和第二稳压组件,所述第二二极管连接于所述第二电容和所述接口逻辑电路之间,所述第二稳压组件并联连接至所述第二二极管的两端。
  6. 根据权利要求5所述的装置,其中,所述第一稳压组件和所述 第二稳压组件分别由并联连接的电阻和电容组成。
  7. 根据权利要求5所述的装置,其中,所述第一频率检测电路还包括第一稳压管,所述第一稳压管与所述第一稳压组件连接,或者,所述第一稳压管的负极连接至所述第一电容和所述第一二极管之间,正极与所述第一稳压组件的一端连接并接地;
    所述第二频率检测电路还包括第二稳压管,所述第二稳压管与所述第二稳压组件连接,或者,所述第二稳压管的负极连接至所述第二电容和所述第二二极管之间,正极与所述第二稳压组件的一端连接并接地。
  8. 根据权利要求7所述的装置,其中,所述第一频率检测电路还包括用于限流的第一电阻,所述第一电阻连接于所述第一频率检测电路的输入端和所述第一电容之间;所述第二频率检测电路还包括用于限流的第二电阻,所述第二电阻连接于所述第二频率检测电路的输入端和所述第二电容之间。
  9. 根据权利要求5所述的装置,其中,所述接口逻辑电路包括第一可控开关,所述第一可控开关连接于所述第一频率检测电路和所述开关电路之间,所述第一可控开关通过其自身的开关状态控制所述第一频率检测电路和所述第二频率检测电路间的工作逻辑。
  10. 根据权利要求9所述的装置,其中,所述第一可控开关为三极管开关或场效应管开关。
  11. 根据权利要求10所述的装置,其中,当所述第一可控开关为第一三极管开关时,所述接口逻辑电路还包括第二三极管开关、和反馈电阻,其中,所述第一三极管开关的发射极与所述第一频率检测电路连接,所述第一三极管开关的集电极与所述开关电路连接,所述第一三极管开关的基极通过所述第二三极管开关接地,所述反馈电阻的一端连接在所述第一三极管开关与所述开关电路之间,另一端与所述第二三极管开关连接,所述第二三极管开关的发射极接地。
  12. 根据权利要求11所述的装置,其中,所述接口逻辑电路还包括用于降低输入阻抗的第三电阻和用于限流的第四电阻,所述第三电阻并联连接于所述第一三极管开关的发射极和基极两端,所述第四电阻连接于所述第一三极管开关的基极和所述第二三极管开关的集电极之间。
  13. 根据权利要求12所述的装置,其中,所述反馈电阻的另一端与所述第二三极管开关的基极连接,所述第二三极管开关的基极和发射极分别连接至所述第二频率检测电路中的第二稳压组件的两端,且所述第二三极管开关的发射极通过所述第二稳压组件接地。
  14. 根据权利要求12所述的装置,其中,所述接口逻辑电路还包括第三二极管和第五电阻,所述第三二极管的正极与所述第二频率检测电路中的第二稳压组件连接,所述第三二极管的负极连接在所述第一三极管开关和所述开关电路之间,所述反馈电阻通过所述第五电阻连接至所述第二三极管开关的发射极,且所述第二三极管开关的基极连接至所述反馈电阻和所述第五电阻之间。
  15. 根据权利要求11所述的装置,其中,所述第一三极管开关为PNP型三极管开关,所述第二三极管开关为NPN型三极管开关。
  16. 一种照明灯具,包括:
    权利要求1-15中任一项所述的基于电子镇流器控制电子控制电路的装置;以及
    发光器件,与所述基于电子镇流器控制电子控制电路的装置中的电子控制电路相连接,用于在所述电子控制电路的控制下亮灭。
PCT/CN2017/095671 2016-08-02 2017-08-02 一种基于电子镇流器控制电子控制电路的装置及照明灯具 WO2018024218A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17836400.6A EP3481158B1 (en) 2016-08-02 2017-08-02 Electronic ballast-based apparatus for controlling electronic control circuit and illuminating lamp
US16/266,010 US10624164B2 (en) 2016-08-02 2019-02-02 Electronic ballast-based device for controlling electronic control circuit and lighting lamp

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201620831198.2 2016-08-02
CN201620831198.2U CN205987508U (zh) 2016-08-02 2016-08-02 一种基于电子镇流器控制电子控制电路的装置及照明灯具
CN201610626560.7A CN106102290B (zh) 2016-08-02 2016-08-02 一种基于电子镇流器控制电子控制电路的装置及照明灯具
CN201610626560.7 2016-08-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/266,010 Continuation US10624164B2 (en) 2016-08-02 2019-02-02 Electronic ballast-based device for controlling electronic control circuit and lighting lamp

Publications (1)

Publication Number Publication Date
WO2018024218A1 true WO2018024218A1 (zh) 2018-02-08

Family

ID=61073243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095671 WO2018024218A1 (zh) 2016-08-02 2017-08-02 一种基于电子镇流器控制电子控制电路的装置及照明灯具

Country Status (3)

Country Link
US (1) US10624164B2 (zh)
EP (1) EP3481158B1 (zh)
WO (1) WO2018024218A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672004B (zh) * 2018-12-11 2019-09-11 矽統科技股份有限公司 頻率偵測器
US20220256675A1 (en) * 2019-06-21 2022-08-11 Kyocera Corporation Light source device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012068687A1 (en) * 2010-11-23 2012-05-31 Bramal Inc. Led lamp with variable input power supply
CN205124089U (zh) * 2015-11-26 2016-03-30 欧普照明股份有限公司 一种led驱动电路及led灯
CN105612814A (zh) * 2013-09-25 2016-05-25 硅山有限公司 Led照明***
CN106102290A (zh) * 2016-08-02 2016-11-09 欧普照明股份有限公司 一种基于电子镇流器控制电子控制电路的装置及照明灯具
CN205987508U (zh) * 2016-08-02 2017-02-22 欧普照明股份有限公司 一种基于电子镇流器控制电子控制电路的装置及照明灯具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7456588B2 (en) * 2006-06-05 2008-11-25 Osram Sylvania Inc. Arrangement and method for providing power line communication from an AC power source to a circuit for powering a load, and electronic ballasts therefor
US8482214B2 (en) * 2009-04-24 2013-07-09 City University Of Hong Kong Apparatus and methods of operation of passive LED lighting equipment
US9894732B2 (en) * 2014-10-17 2018-02-13 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp compatible with different sources of external driving signal
US9807826B2 (en) * 2015-03-10 2017-10-31 Jiaxing Super Lighting Electric Appliance Co., Ltd. Light emitting diode (LED) tube lamp
EP3481159B1 (en) * 2016-08-02 2022-04-13 Opple Lighting Co., Ltd. Led drive circuit and led lamp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012068687A1 (en) * 2010-11-23 2012-05-31 Bramal Inc. Led lamp with variable input power supply
CN105612814A (zh) * 2013-09-25 2016-05-25 硅山有限公司 Led照明***
CN205124089U (zh) * 2015-11-26 2016-03-30 欧普照明股份有限公司 一种led驱动电路及led灯
CN106102290A (zh) * 2016-08-02 2016-11-09 欧普照明股份有限公司 一种基于电子镇流器控制电子控制电路的装置及照明灯具
CN205987508U (zh) * 2016-08-02 2017-02-22 欧普照明股份有限公司 一种基于电子镇流器控制电子控制电路的装置及照明灯具

Also Published As

Publication number Publication date
EP3481158B1 (en) 2021-04-14
EP3481158A1 (en) 2019-05-08
US20190174590A1 (en) 2019-06-06
EP3481158A4 (en) 2020-02-12
US10624164B2 (en) 2020-04-14

Similar Documents

Publication Publication Date Title
JP4864994B2 (ja) Led駆動回路、led照明灯具、led照明機器、及びled照明システム
US8324823B2 (en) AC LED dimmer and dimming method thereby
EP3000285B1 (en) Improvements relating to power adaptors
TWI513372B (zh) 螢光燈電子安定器
JPWO2013011924A1 (ja) Led照明装置
JP6617099B2 (ja) 低電圧照明のための安定化回路
TWI432079B (zh) 發光二極體的驅動電路與使用其之照明裝置
KR101659715B1 (ko) Triac 디머를 위한 led들을 갖는 파워 인터페이스
TW201342987A (zh) 照明驅動電路
JP2011243331A (ja) Led電源回路
WO2018024218A1 (zh) 一种基于电子镇流器控制电子控制电路的装置及照明灯具
KR101620708B1 (ko) Led 전원 제어 장치
CN103108457B (zh) Led灯高频驱动器
JP7066060B2 (ja) 駆動回路及び関連ランプ
US10542595B2 (en) LED lamp power supply
TWI543665B (zh) 驅動裝置
JP2012160284A (ja) Led点灯装置、照明装置および照明制御システム
JP2012015125A (ja) Led駆動回路、led照明灯具、led照明機器、及びled照明システム
JP6461995B2 (ja) 電源アダプタ
KR200380930Y1 (ko) 형광램프용 전자식 안정기의 램프 자동 제어회로
JP2019033647A (ja) 電源装置、照明装置、及び制御方法
JP2005216841A (ja) 蛍光灯点灯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017836400

Country of ref document: EP

Effective date: 20190131