WO2018021656A1 - 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법 - Google Patents

혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법 Download PDF

Info

Publication number
WO2018021656A1
WO2018021656A1 PCT/KR2017/003840 KR2017003840W WO2018021656A1 WO 2018021656 A1 WO2018021656 A1 WO 2018021656A1 KR 2017003840 W KR2017003840 W KR 2017003840W WO 2018021656 A1 WO2018021656 A1 WO 2018021656A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
tetrakis
substituted
unsubstituted
Prior art date
Application number
PCT/KR2017/003840
Other languages
English (en)
French (fr)
Inventor
이인준
강원준
김동옥
양송희
이성우
정동욱
정의갑
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Priority to JP2019503944A priority Critical patent/JP6772365B2/ja
Priority to EP17834601.1A priority patent/EP3492498A4/en
Priority to US16/321,114 priority patent/US10975173B2/en
Priority to CN201780046389.5A priority patent/CN109496219A/zh
Publication of WO2018021656A1 publication Critical patent/WO2018021656A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/12Olefin polymerisation or copolymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0225Complexes comprising pentahapto-cyclopentadienyl analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/49Hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • the present invention relates to a high density ethylene polymer using a hybrid supported metallocene catalyst and a method for producing the same, and more particularly, to a high density polyethylene polymer which satisfies the balance between mechanical properties and excellent moldability of conventional high density ethylene polymers. It is about.
  • the high density ethylene polymer of the present invention has a wide molecular weight distribution, has a long chain branch, has a high melt flowability, is excellent in workability, and has a high molecular weight and relates to a high density polyethylene polymer having excellent mechanical properties.
  • Polyethylene resins are affected by mechanical and thermal properties by their molecular weight and density, which in turn leads to different applications. Generally, the lower the density of the polyethylene polymer, the better the transparency and the impact strength, but the physical properties such as heat resistance, hardness and flexural modulus are lowered, and the chemical resistance is also lowered.
  • the higher the density of the polyethylene polymer the better the physical properties such as heat resistance, hardness, flexural modulus and the like, and the chemical resistance increases, but the transparency and the impact strength are lowered. Therefore, it is very difficult to produce an injection product using ethylene copolymers, particularly an injection product having excellent impact resistance and excellent chemical resistance when manufacturing various industrial products such as cartridges and pails.
  • injection products such as various industrial products required by the market require high impact resistance, so the need for such a technique is very high.
  • High density polyethylene polymers have been provided for many purposes through various molding methods.
  • the film molded body is melted by extrusion of a high-density polyethylene polymer and extruded from a mold while blowing air into the inflation method to inflate the molten polymer extrudate, or as a method of obtaining a molded body of a desired shape.
  • a blow molding method in which the high density polyethylene polymer is blown into the mold cavity, and then air is blown into the molten resin in the mold cavity to expand and compress the molten resin onto the cavity inner wall to form a molten polymer in the cavity.
  • There is also an injection molding method in which a molten high density polyethylene polymer is pressed into a mold cavity to fill the cavity.
  • the high density polyethylene polymer has various molding methods, a common feature in these methods is that the high density polyethylene polymer is melted by first heating and then molded. Therefore, the behavior during heating and melting of the high density polyethylene polymer, that is, the melting property, is an extremely important physical property in molding the high density polyethylene polymer.
  • melt properties in particular the melt fluidity of the high density polyethylene-based polymers, are intrinsic properties that govern satisfactory molding processability. Moldability in the present invention is not limited to workability in extrusion, compression, injection or rotational molding.
  • the index used as a standard for molding processability is different for each molding method.
  • a high density polyethylene polymer having a narrow molecular weight distribution tends to be used to obtain a molded article having impact resistance.
  • high density polyethylene polymers used in extrusion, compression, injection or rotational molding are generally prepared using titanium-based Ziegler-Natta catalysts or chromium-based catalysts.
  • the high-density polyethylene polymer prepared using such a catalyst has a wide molecular weight distribution to improve melt fluidity, but due to the incorporation of low molecular weight components, mechanical properties such as impact resistance are remarkably reduced, resulting in comonomers. There is a drawback that the distribution is concentrated in the low molecular weight body and the chemical resistance is lowered. For this reason, there is a problem in that speeding up in injection molding cannot be performed while maintaining good mechanical properties.
  • US Pat. No. 6,525,150 proposes a metallocene catalyst capable of producing a resin having a narrow molecular weight distribution using a uniform activity point of metallocene and a homogeneous comonomer distribution in the case of a copolymer.
  • the molecular weight distribution is narrow, there is a problem that the mechanical strength is excellent but the molding processability is low.
  • polyolefin having a bimodal molecular weight distribution using a catalyst having different reactivity to comonomers is proposed.
  • polyolefins having a bimodal molecular weight distribution prepared in this manner have improved melt flowability, but have low kneading properties due to different molecular weight distributions. Therefore, there is a problem that it is difficult to obtain a product having uniform physical properties after processing and the mechanical strength is lowered.
  • metallocene catalysts Many methods have been proposed to improve the mechanical properties and melt flowability of high density polyethylene polymers prepared using metallocene catalysts, but most of them have been proposed only for the solution of linear low density polyolefins.
  • metallocene has a characteristic that the activity tends to decrease as the concentration of the comonomer decreases, so there is a problem in that it is not economically low in the production of high density polyolefin.
  • catalysts having characteristics of excellent activity and processability in the production of low density polyolefins have low activity when producing high density polyolefins, and thus are inexpensive.
  • many particles are formed, which makes it difficult to operate stably.
  • a catalyst for solving the above problems and producing a high-density polyolefin polymer having high mechanical strength and melt flowability and high activity is constantly required, and an improvement is needed.
  • the present invention aims to solve all the above-mentioned problems.
  • the present invention provides a high-density ethylene-based polymer and a method for producing the same, which simultaneously satisfy mechanical properties, chemical resistance, and excellent molding processability, which are not shown in the conventional high-density ethylene-based polymer.
  • Still another object of the present invention is to provide a high-density polyethylene polymer having excellent productivity due to its low molecular weight distribution and long-chain branched structure, and thus a low load during processing such as extrusion, compression, injection, and rotational molding.
  • the present invention has a density of 0.930 to 0.970 g / cm 3 At 190 ° C., MI is 0.1-50 g / 10min, MFR is 35-100, characteristic relaxation time ( ⁇ ) is 0.3-2.0 s, MI and characteristic relaxation time , ⁇ ) satisfies the following equation.
  • the high-density ethylene polymer prepared in the presence of the hybrid supported metallocene catalyst has excellent melt flow properties and excellent impact strength, flexural strength, environmental stress crack resistance, and melt tension.
  • FIG. 2 is a complex viscosity graph of Examples 2 to 4 and Comparative Examples 2 and 3.
  • FIG. 2 is a complex viscosity graph of Examples 2 to 4 and Comparative Examples 2 and 3.
  • FIG. 3 is a graph of complex viscosity of Example 5 and Comparative Examples 4 to 7.
  • FIG. 3 is a graph of complex viscosity of Example 5 and Comparative Examples 4 to 7.
  • FIG. 5 is a van Gurp-Palmen graph of Examples 2 to 4 and Comparative Examples 2 and 3.
  • FIG. 5 is a van Gurp-Palmen graph of Examples 2 to 4 and Comparative Examples 2 and 3.
  • Example 6 is a graph of van Gurp-Palmen of Example 5 and Comparative Examples 4 to 7.
  • the present invention includes a high density ethylene polymer that is polymerized in the presence of a hybrid supported metallocene catalyst.
  • the polymer is a concept including a copolymer.
  • the hybrid supported metallocene catalyst of the present invention each independently contains at least one or more first and second metallocene compounds and at least one cocatalyst compound.
  • the first metallocene compound which is a transition metal compound according to the present invention, may be represented by the following Chemical Formula 1.
  • the first metallocene compound plays a role of showing high activity in the hybrid supported catalyst, and serves to improve melt flowability of the prepared polymer.
  • the first metallocene compound has a low incorporation degree of comonomer and has a feature of forming a low molecular weight to improve workability during processing of the polymer.
  • the first metallocene compound Since the first metallocene compound has an asymmetric structure and a non-legged structure having different ligands, the first metallocene compound forms a steric hindrance that is difficult for the comonomer to access to the catalytic active point, thereby lowering the incorporation of the comonomer. It shows the workability and high catalytic activity in the manufacture of rosene.
  • M1 is a Group 4 transition metal of the Periodic Table of the Elements
  • X 1 and X 2 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, Aryl groups having 6 to 20 carbon atoms, alkylaryl groups having 7 to 40 carbon atoms, arylalkyl groups having 7 to 40 carbon atoms, alkylamido groups having 1 to 20 carbon atoms, arylamido groups having 6 to 20 carbon atoms, or alkylations having 1 to 20 carbon atoms
  • a den group, R 1 to R 12 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted carbon group having 6 to 20
  • Ions or molecules that coordinate with a transition metal (M1 and M2 in Formulas 1 and 2), such as indene to bind, are called ligands.
  • the "substituted" is a hydrogen atom substituted with a substituent such as a halogen atom, a hydrocarbon group of 1 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, an aryloxy group of 6 to 20 carbon atoms Means that.
  • hydrocarbon group means a linear, branched or cyclic saturated or unsaturated hydrocarbon group, unless otherwise specified, the alkyl group, alkenyl group, alkynyl group and the like may be linear, branched or cyclic.
  • examples of the transition metal compound represented by Chemical Formula 1 may include, but are not limited to, transition metal compounds having the following structure, mixtures thereof, and the like.
  • M is a Group 4 transition metal of the periodic table of elements, for example, hafnium (Hf), zirconium (Zr), titanium (Ti), and the like, and Me is a methyl group.
  • the second metallocene compound which is a transition metal compound according to the present invention, may be represented by the following Chemical Formula 2.
  • the second metallocene compound serves to exhibit high comonomer incorporation in the hybrid supported catalyst, and serves to improve the mechanical properties of the prepared polymer.
  • the second metallocene compound has a high degree of incorporation of comonomers, forms a high molecular weight, and has a characteristic of concentrating the distribution of comonomers in the high molecular weight so that impact strength, flexural strength, environmental stress crack resistance, and melt tension are increased. Improve.
  • the second metallocene compound forms a long-chain branched structure to improve melt flowability of the high molecular weight high density polyethylene resin.
  • the second metallocene compound has a symmetric structure or an asymmetric structure and a bridge structure having various ligands, the second metallocene compound forms a steric hindrance to facilitate access to the catalytic active point, thereby increasing the incorporation of the comonomer. .
  • M 2 is a Group 4 transition metal of the periodic table of the elements
  • X 3 , X 4 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms , An aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 40 carbon atoms, an arylalkyl group having 7 to 40 carbon atoms, an alkylamido group having 1 to 20 carbon atoms, an arylamido group having 6 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms
  • R 13 to R 18 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted carbon group having
  • R 13 to indene in combination with indene and R 21 to R 26 in combination with R 18 may be a structure or other structure as each other, indene in combination with the R 13 to R 18 and Indenes bonded to R 21 to R 26 may form a bridge structure because they are connected to Si.
  • the "substituted” is a hydrogen atom substituted with a substituent such as a halogen atom, a hydrocarbon group of 1 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, an aryloxy group of 6 to 20 carbon atoms Means that.
  • a substituent such as a halogen atom, a hydrocarbon group of 1 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, an aryloxy group of 6 to 20 carbon atoms Means that.
  • hydrocarbon group means a linear, branched or cyclic saturated or unsaturated hydrocarbon group, unless otherwise specified, the alkyl group, alkenyl group, alkynyl group and the like may be linear, branched or cyclic.
  • examples of the transition metal compound represented by Formula 2 may include, but are not limited to, transition metal compounds having the following structure, mixtures thereof, and the like.
  • M is a Group 4 transition metal of the periodic table of elements, for example, hafnium (Hf), zirconium (Zr), titanium (Ti), and the like, Me is a methyl group, and Ph is a phenyl group.
  • the catalyst composition according to the present invention may include a cocatalyst compound including the transition metal compound and at least one compound selected from the group consisting of compounds represented by the following Chemical Formulas 3 to 6.
  • AL is aluminum
  • R 27 is a hydrocarbon group substituted with a halogen atom, a hydrocarbon group of 1 to 20 carbon atoms or a halogen of 1 to 20 carbon atoms
  • a is an integer of 2 or more.
  • A1 is aluminum or boron
  • R 28 is a halogen atom, a hydrocarbon group of 1 to 20 carbon atoms, a hydrocarbon group substituted by halogen of 1 to 20 carbon atoms or alkoxy of 1 to 20 carbon atoms.
  • L1 and L2 are neutral or cationic Lewis acids
  • Z1 and Z2 are Group 13 elements of the Periodic Table of the Elements
  • A2 and A3 are substituted or unsubstituted aryl groups having 6 to 20 carbon atoms, or It is an unsubstituted C1-C20 alkyl group.
  • the compound represented by the formula (3) is an aluminoxane, and is not particularly limited as long as it is an ordinary alkylaluminoxane.
  • methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane and the like can be used, and specifically, methyl aluminoxane can be used.
  • the alkylaluminoxane may be prepared by a conventional method such as adding an appropriate amount of water to trialkylaluminum, or reacting a trialkylaluminum with a hydrocarbon compound or an inorganic hydrate salt containing water, and is generally linear and cyclic. Aluminoxanes are obtained in mixed form.
  • a conventional alkyl metal compound may be used.
  • trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethylchloro aluminum, triisopropyl aluminum, tricyclopentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, Trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-p-tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron , Tributyl boron, tripentafluorophenylboron and the like can be used, and more specifically, trimethylaluminum, triisobutylaluminum, tripentafluorophenylboron and the like can be used, and more specifically, trimethylalum
  • Examples of the compound represented by the formula (5) or (6) include methyldioctateylammonium tetrakis (pentafluorophenyl) borate ([HNMe (C18H37) 2] + [B (C6F5) 4]-), trimethylammonium tetrakis ( Phenyl) borate, triethylammonium tetrakis (phenyl) borate, tripropylammonium tetrakis (phenyl) borate, tributylammonium tetrakis (phenyl) borate, trimethylammonium tetrakis (p-tolyl) borate, tripropylammonium tetrakis (p-tolyl) borate, trimethylammonium tetrakis (o, p-dimethylphenyl) borate, triethylammonium tetrakis (o, p-dimethylphenyl) bo
  • methyldioctateylammonium tetrakis (pentafluorophenyl) borate [HNMe (C18H37) 2] + [B (C6F5) 4]-
  • N, N-dimethylanilinium tetrakis (pentafluorophenyl ) Borate triphenylcarbonium tetrakis (pentafluorophenyl) borate, and the like.
  • the mass ratio of the transition metals (M1 of Formula 1 and M2 of Formula 2) to the carrier of the first and second metallocene compounds is 1: 1 to 1: 1000 is preferred. Preferably from 1: 100 to 1: 500.
  • the carrier and the metallocene compound in the above mass ratio it shows appropriate supported catalytic activity, which is advantageous in maintaining the activity and economical efficiency of the catalyst.
  • the mass ratio of the promoter compound to the carrier represented by Formulas 5 and 6 is preferably 1:20 to 20: 1, and the mass ratio of the promoter compounds to the carriers of Formulas 3 and 4 is 1: 100 to 100: 1. desirable.
  • the mass ratio of the first metallocene compound to the second metallocene compound is preferably 1: 100 to 100: 1. It is advantageous in maintaining the activity and economics of the catalyst when including the promoter and the metallocene compound in the mass ratio.
  • Suitable carriers for the production of the hybrid supported metallocene catalyst according to the present invention may use a porous material having a large surface area.
  • the first and second metallocene compounds and the cocatalyst compound may be supported catalysts mixed with a carrier and used as a catalyst.
  • the supported catalyst refers to a catalyst supported on a carrier in order to maintain good dispersion and stability for improving catalyst activity and maintaining stability.
  • Hybrid supporting means not supporting the first and second metallocene compounds on the carrier, but supporting the catalyst compound on the carrier in one step.
  • Hybrid loading is much more economical than supporting by shortening the production time and reducing the amount of solvent used.
  • the carrier is a solid which stably disperses and retains a catalytically functional material, and is generally a porous material or a large area in order to be highly dispersed and supported so that the exposed surface area of the catalytically functional material becomes large.
  • the carrier must be mechanically, thermally, chemically stable, and examples of the carrier include, but are not limited to, silica, alumina, titanium oxide, zeolite, zinc oxide starch, synthetic polymers, and the like.
  • the carrier may have an average particle size of 10 to 250 microns, preferably an average particle size of 10 to 150 microns, more preferably 20 to 100 microns.
  • the micropore volume of the carrier may be 0.1 to 10 cc / g, preferably 0.5 to 5 cc / g, more preferably 1.0 to 3.0 cc / g.
  • the specific surface area of the carrier may be 1 to 1000 m 2 / g, preferably 100 to 800 m 2 / g may be more preferably 200 to 600 m 2 / g.
  • the silica may have a drying temperature of 200 to 900. Preferably from 300 to 800, more preferably from 400 to 700. If it is less than 200, the moisture is too much to react with the surface water and the promoter, and if it exceeds 900, the structure collapse of the carrier.
  • the concentration of the hydroxy group in the dried silica may be 0.1 to 5 mmol / g, preferably 0.7 to 4 mmol / g, more preferably 1.0 to 2 mmol / g. If it is less than 0.5 mmol / g, the amount of supported promoter is lowered. If it exceeds 5 mmol / g, the catalyst component is inactivated, which is not preferable.
  • the hybrid supported metallocene catalyst according to the present invention may be prepared by activating the metallocene catalyst and supporting the activated metallocene catalyst on a carrier.
  • a promoter may be first supported on a carrier.
  • Activation of the metallocene catalyst may be performed separately, or may vary according to circumstances. That is, the first metallocene compound and the second metallocene compound may be mixed and activated to be supported on the carrier, and the first and second metallocene compounds may be supported later after the cocatalyst compound is first supported on the carrier. have.
  • solvents for the reaction include aliphatic hydrocarbon solvents such as hexane and pentane, aromatic hydrocarbon solvents such as toluene and benzene, and hydrocarbon solvents substituted with chlorine atoms such as chlorochloromethane, diethyl ether and tetra
  • organic solvents such as ether solvents such as hydrofuran, acetone, ethyl acetate, and the like can be used, and preferably toluene and hexane are not limited thereto.
  • the reaction temperature in the preparation of the catalyst is 0 to 100 °C, preferably 25 to 70, but is not limited thereto.
  • the reaction time in the preparation of the catalyst is 3 minutes to 48 hours, preferably 5 minutes to 24 hours, but is not limited thereto.
  • Activation of the metallocene compound may be prepared by mixing (contacting) the promoter compound.
  • the mixing can be carried out in the presence of the hydrocarbon solvent, or without the solvent, usually under an inert atmosphere of nitrogen or argon.
  • the temperature at the time of activation of the first and second metallocene compounds may be 0 to 100 ° C, preferably 10 to 30 ° C.
  • the stirring time may be 5 minutes to 24 hours, and preferably 30 minutes to 3 hours.
  • the metallocene compound is a catalyst composition in a solution state uniformly dissolved in the hydrocarbon solvent or the like, or is used as it is, or the solvent is removed using a precipitation reaction and vacuum dried at 20 to 200 ° C. for 1 to 48 hours to obtain a solid powder state. It may be used as, but is not limited thereto.
  • the method for producing a high density ethylene polymer according to the present invention includes the step of contacting the hybrid supported metallocene catalyst with at least one olefin monomer to prepare a polyolefin homopolymer or copolymer.
  • the method for producing the high density polyethylene polymer of the present invention can be polymerized in a slurry state using an autoclave reactor or in a gas phase state using a gas phase polymerization reactor.
  • the respective polymerization reaction conditions may be variously modified depending on the polymerization method (slurry polymerization, gas phase polymerization) according to the desired polymerization result or the form of the polymer. The degree of modification thereof can be easily carried out by those skilled in the art.
  • a solvent or olefin itself may be used as a medium.
  • the solvent includes propane, butane, pentane, hexane, octane, decane, dodecane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, dichloromethane, chloroethane, dichloroethane, chloro Benzene and the like can be exemplified, and these solvents may be mixed and used in a predetermined ratio, but are not limited thereto.
  • examples of the olefin monomer may include ethylene, ⁇ -olefins, cyclic olefins, dienes, trienes, styrenes, and the like, but are not limited thereto.
  • the ⁇ -olefins include aliphatic olefins having 3 to 12 carbon atoms, for example, 3 to 8, specifically, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4 -Methyl-1-pentene, 3-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene , 1-hexadecene, 1-atocene, 4,4-dimethyl-1-pentene, 4,4-diethyl-1-hexene, 3,4-dimethyl-1-hexene and the like can be exemplified.
  • the ⁇ -olefins may be homopolymerized or two or more olefins may be alternating, random, or block copolymerized.
  • Copolymerization of the ⁇ -olefins is copolymerization of ethylene and an ⁇ -olefin having 3 to 12 carbon atoms, for example, 3 to 8 (specifically, ethylene and propylene, ethylene and 1-butene, ethylene and 1-hexene, and ethylene 4-methyl-1-pentene, such as ethylene and 1-octene) and copolymerization of propylene with an ⁇ -olefin having 4 to 12 carbon atoms, for example 4 to 8 carbon atoms (specifically, propylene and 1-butene, propylene and 4- Methyl-1-pentene, propylene and 4-methyl-1-butene, propylene and 1-hexene, propylene and 1-octene, and the like.
  • the amount of other ⁇ -olefins may be up to 99 mol% of the total monomers, preferably in the case of ethylene copolymers, up to 80 mol%.
  • olefin monomer may include, but are not limited to, ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decene, and mixtures thereof.
  • the amount of the catalyst composition is not particularly limited.
  • the center metal (M, group 4) of the transition metal compound represented by Chemical Formulas 1 and 2 in the reaction system to be polymerized can be a 5 mol / l - the transition metal) concentration of 1 ⁇ 10 -5 to 9 ⁇ 10.
  • the temperature and pressure during the polymerization is not particularly limited because it may vary depending on the reaction material, reaction conditions, etc.
  • the polymerization temperature may be 0 to 200 °C, preferably 100 to 180 °C, in the case of solution polymerization, slurry or In the case of gas phase polymerization, it may be 0 to 120 ° C, preferably 60 to 100 ° C.
  • the polymerization pressure may be 1 to 150 bar, preferably 30 to 90 bar, more preferably 10 to 20 bar.
  • the pressure may be by injection of olefin monomer gas (eg ethylene gas).
  • the polymerization can be carried out in a batch (eg autoclave reactor), semi-continuous or continuous (eg gas phase polymerization reactor).
  • the polymerization can also be carried out in two or more steps with different reaction conditions, and the molecular weight of the final polymer can be controlled by varying the polymerization temperature or by injecting hydrogen into the reactor.
  • the high density ethylene-based resin according to the present invention can be obtained by ethylene homopolymerization or copolymerization of ethylene and alpha olefin using the hybrid supported metallocene compound as a catalyst, and has a single rod molecular weight distribution.
  • the high density ethylene polymer of the present invention may have a density of 0.930 to 0.970 g / cm 3 , more preferably 0.950 to 0.965 g / cm 3 . If the polymer has a density of 0.930 g / cm 3 or less, sufficiently high toughness cannot be exhibited.
  • the density of the polymer is 0.970 g / cm 3 If it is above, since crystallinity will become large too much and a molded object will become brittle, it is unpreferable.
  • the MI melt index
  • a method of forming a short-chain branched structure (density deterioration) through copolymerization is usually used.
  • ethylene density causes deterioration of the toughness of the polymer, so there is a limit to the application due to the decrease in density.
  • Lowering MI improves impact resistance and chemical resistance, but deteriorates melt fluidity and greatly reduces moldability.
  • the high density polyethylene polymer of the present invention has a low MI and shows excellent impact resistance and chemical resistance. It also has a wide molecular weight distribution and long chain branching, which shows excellent injection moldability.
  • the melt fluidity referred to in the present invention mainly corresponds to the extrusion load when the molten resin is extruded from the extruder, and MI, MFI, MFR and the like are used as an index for such melt fluidity.
  • MI melt index
  • MFI flowability at 21.6 kg load at 190 ° C.
  • MFR represents the ratio of MI to MFI, that is, MFI / MI.
  • MI of the high density ethylene polymer of the present invention may be 0.1 to 50 g / 10 min, preferably 0.5 to 10 g / 10 min. If the MI is 0.1 g / 10min or less, the molding processability greatly decreases when used as an injection molding material, and the appearance of the injection molded product becomes poor. If the MI is greater than 50 g / 10min, the impact resistance is significantly lowered.
  • the MFR of the high density ethylene polymer of the present invention may be 35 to 100, more preferably 37 to 80. If the MFR is 35 or less, moldability is greatly reduced when used as an injection molding material. If the MFR is 100 or more, the mechanical properties decrease.
  • the y-axis complex viscosity (Poise) graph according to the frequency (rad / s) of the x-axis of Figures 2 to 4 of the present invention is related to the fluidity, high complex viscosity at a low frequency and high The lower the complex viscosity at the frequency, the greater the fluidity and the greater the shear thinning phenomenon.
  • the ethylene-based polymers of the present invention show significantly better melt flow compared to existing high density ethylene-based polymers with similar MI, density.
  • the shear thinning effect is much better than that of the high density ethylene polymer having a similar MI in the MI range, preferably 0.5 to 10 g / 10min, in the present invention, thereby showing excellent fluidity and processability.
  • the hybrid supported metallocene catalyst of the present invention can induce the production of long chain branches in the high-density ethylene-based polymer to be prepared, thereby making a long chain branch (LCB) having a side chain of 6 or more carbon atoms in the main chain It is possible to produce a high density ethylene-based polymer comprising.
  • LCB long chain branch
  • the ethylene-based polymer of the present invention in Figure 1 shows a high stress relaxation time ( ⁇ ) compared to the conventional high density ethylene-based polymer having a similar MI, density.
  • the relaxation time ( ⁇ ) refers to the time that the stress inside the polymer returns to the equilibrium state after applying a certain deformation to the polymer, which is related to the entanglement of the polymer. If the high molecular weight of the ethylene-based polymer increases or has a long chain branch, the entanglement becomes stronger, which increases the chain relaxation and increases the relaxation time. As such, the relaxation time is related to the long chain branching of the polymer.
  • the characteristic relaxation time ( ⁇ ) through the cross model is used.
  • the complex viscosity, frequency, and stress relaxation time may be represented by a cross model as follows.
  • ⁇ 0 , ⁇ 0 , n are values that are determined by curve fitting the measured values of melt complex viscosity ( ⁇ * ) in the frequency ( ⁇ ) range by means of a rheology measuring instrument.
  • the characteristic relaxation time ( ⁇ ) takes an inverse value of ⁇ 0 determined by a cross model.
  • the characteristic relaxation time ( ⁇ ) in the present invention is 0.3 to 2.0 s, preferably 0.4 to 1.9 s, more preferably 0.5 to 1.8 s.
  • the ethylene-based polymer of the present invention exhibits a higher characteristic relaxation time ( ⁇ ) than the existing high-density ethylene-based polymer having a similar MI, density, and MI and characteristic relaxation time, ⁇ ) can be expressed by the following relationship.
  • the high density polyethylene resin of the present invention has a low MI, has excellent mechanical properties, and contains long chain branches, thereby exhibiting high MFR and excellent processability.
  • the high density polyethylene resin of the present invention has a low MI but exhibits better processability than conventional HDPE due to its high MFR property.
  • the high density ethylene polymer of the present invention can be used as an injection, compression, or rotational molding material.
  • Production Example 6-1 A compound of Me 2 Si ⁇ 2-methyl-4- (2-naphthyl) ⁇ 2 ZrCl 2 was obtained in the same manner as in Preparation Example 5-2 using a compound (yield 90%).
  • Preparation Example 1 A 10 wt% methylaluminum oxane (MAO) solution (1,188 g of methylaluminum oxane) was added to 2.862 g of a compound and 3.46 9 g of a compound of Preparation Example 2-2, followed by stirring at room temperature for 1 hour. After adding 300 g of silica (XPO2402) to the reactor, 900 mL of purified toluene was added to the reactor and stirred. After the stirring step for 1 hour was completed, the mixed solution of the first metallocene compound, the second metallocene compound and the methylaluminum oxane was added while the reactor was stirred. The reactor is warmed to 60 ° C. and then stirred for 2 hours.
  • MAO methylaluminum oxane
  • the mixed supported metallocene catalyst obtained in Preparation Example 8 was introduced into a fluidized bed gas process continuous polymerizer to prepare an olefin polymer.
  • 1-hexene was used as the comonomer
  • the reactor ethylene pressure was maintained at 15 bar
  • the polymerization temperature was 80 ⁇ 90.
  • An olefin polymer was prepared in the same manner as in Example 1, except that the hybrid supported metallocene catalysts of Preparation Examples 9 to 11 were used, respectively.
  • HDPE 7303 (SK synthesis chemical) was used.
  • Comparative Example 2 has a density of 0.9538 g / cm 3 according to ASTM D1505, and a melt index (MI) according to ASTM D1238 is 2.1 g / 10 min.
  • HDPE C910A (Hanhwa Total) was used.
  • Comparative Example 3 has a density of 0.9556 g / cm 3 according to ASTM D1505 and a melt index (MI) according to ASTM D1238 of 2.4 g / 10min.
  • Comparative Example 4 has a density of 0.9532 g / cm 3 according to ASTM D1505 and a melt index (MI) according to ASTM D1238 is 4.2 g / 10min.
  • Comparative Example 5 has a density according to ASTM D1505 of 0.9642 g / cm 3 and a melt index (MI) according to ASTM D1238 is 4.9 g / 10min.
  • Comparative Example 6 has a density of 0.9582 g / cm 3 according to ASTM D1505 and a melt index (MI) according to ASTM D1238 is 5.1 g / 10min.
  • Comparative Example 7 has a density according to ASTM D1505 of 0.9621 g / cm 3 and a melt index (MI) according to ASTM D1238 is 5.8 g / 10min.
  • HDPE 7210 (SK synthesis chemical) was used.
  • Comparative Example 8 has a density of 0.9579 g / cm 3 according to ASTM D1505 and a melt index (MI) according to ASTM D1238 is 6.1 g / 10min.
  • Comparative Example 9 has a density of 0.9562 g / cm 3 according to ASTM D1505, and a melt index (MI) according to ASTM D1238 is 6.9 g / 10 min.
  • Comparative Example 10 has a density of 0.9592 g / cm 3 according to ASTM D1505 and a melt index (MI) according to ASTM D1238 is 7.2 g / 10min.
  • Comparative Example 11 has a density of 0.9580 g / cm 3 according to ASTM D1505, and a melt index (MI) according to ASTM D1238 is 8.0 g / 10 min.
  • Comparative Example 12 has a density of 0.9592 g / cm 3 according to ASTM D1505, and a melt index (MI) according to ASTM D1238 is 8.0 g / 10 min.
  • Melt flowability MI is the extrusion amount for 10 minutes at a load of 2.16 kg and was measured according to ASTM 1238 at a measurement temperature of 190 ° C.
  • MFI was the extrusion amount for 10 minutes at a load of 21.6 kg and was measured according to ASTM 1238 at a measurement temperature of 190 ° C.
  • MFR represents the ratio of MI to MFI, that is, MFI / MI.
  • the stress relaxation time ( ⁇ ) is a curve fitting value of the complex viscosity with respect to the aforementioned frequency through a cross model.
  • ASTM is the name of a standard, 1) the definition of common terms in the field, 2) the order in which it deems appropriate to achieve a given task, 3) the technique for making a given measurement, and 4) the criteria for grouping objects or concepts. 5) It is divided into five categories, such as setting the range and limit of the characteristics of products and materials.
  • MI melt index
  • a high melt index means excellent workability of a polymer, and is inversely related to molecular weight.
  • polyolefin resin has various shaping
  • melt properties that is, melt flowability, are intrinsic properties that govern satisfactory formability. The larger the melt flow index, the easier it is to flow.
  • MI represents flowability at 2.16 kg load at 190 ° C.
  • MFI represents flowability at 21.6 kg load at 190 ° C.
  • MFR represents the ratio of MI to MFI, that is, MFI / MI.
  • Characteristic relaxation time ( ⁇ ) is as described above.
  • Example 1 Ethylene pressure (bar) Hydrogen / ethylene molar ratio (%) 1-hexene / ethylene molar ratio (%) Catalytic activity (gPE / gCat)
  • Example 2 14.4 0.101 0.161 4900
  • Example 3 14.7 0.082 0.131 4800
  • Example 4 15.0 0.125 0.157 5100
  • Example 5 14.6 0.116 0.141 4900
  • Example 6 15.2 0.137 0.154 5000
  • Example 7 14.9 0.136 0.147 5100
  • Example 8 14.8 0.152 0.152 5200
  • Table 2 shows the above-described physical property measurement data.
  • the high-density polyethylene copolymer of the embodiment of the present invention is excellent in melt flow compared with 12 conventionally used HDPE.
  • Example 1 0.9542 1.1 56.1 1.530
  • Example 2 0.9582 1.6 46.9 0.902
  • Example 3 0.9572 2.5 43.6 1.168
  • Example 4 0.9563 2.6 42.7 0.751
  • Example 5 0.9567 3.1 44.4 0.803
  • Example 6 0.9562 6.3 40.5 0.532
  • Example 7 0.9534 6.9 39.7 0.508
  • Example 8 0.9560 8.5 37.0 0.636 Comparative Example 1 0.9523 2.1 37.4 0.267 Comparative Example 2 0.9538 2.1 28.5 0.088 Comparative Example 3 0.9556 2.4 28.5 0.058 Comparative Example 4 0.9532 4.2 26.1 0.026 Comparative Example 5 0.9642 4.9 34.9 0.116 Comparative Example 6 0.9582 5.1 32.6 0.101 Comparative Example 7 0.9621 5.8 30.1 0.041 Comparative Example 8 0.9579 6.1 35.4 0.113 Comparative Example 9 0.9562 6.9 30.4 0.045 Comparative Example 10 0.9592 1.1 56.1 1.530
  • Example 2 0.9582
  • the asymmetric structure of the first metallocene of Chemical Formula 1 of the present invention does not have the same electron periodic phenomenon of giving electrons from the ligand to the core metal, so that the bond lengths between the core metal and the ligand are different from each other.
  • the steric hindrance received when the monomer approaches the catalytic active point is low.
  • the second metallocene of the general formula (2) has a bridge structure to protect the catalytic active point and to facilitate the comonomer access to the catalytic active point has the characteristics of excellent comonomer intrusion.
  • the catalytic activity point is stabilized to form high molecular weight.
  • the high density polyethylene resin prepared by using the mixed metallocene catalyst of the present invention exhibits shear thinning with a large slope, thereby providing excellent processability.
  • the first metallocene of the formula (1) from Table 2 the metallocene catalyst hybridized to the second metallocene of the formula (2) shows a high MFR, showing excellent injection processability.
  • the high density polyethylene resin of the present invention has a low MI and is excellent in mechanical properties.
  • the ethylene-based polymer of the above embodiment can be seen that it contains a long chain branch from Figures 5 to 7 and the stress relaxation time ( ⁇ ) of the van Gurp-Palmen graph, which is characterized by excellent processability Indicates.
  • each embodiment has a high stress relaxation time as it includes a long chain branch.
  • the polymer having a high stress relaxation time has excellent workability. It can be confirmed that the workability is excellent through the relatively high stress relaxation time obtained by the curve fitting value through the cross model.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 에틸렌 단독 중합체 또는 에틸렌과 알파 올레핀, 환상 올레핀 및 직쇄상, 분지상 및 환상 디엔으로 이루어진 군으로부터 선택되는 적어도 1종의 공단량체의 공중합체로 이루어진 고밀도 에틸렌계 중합체에 대한 것이다. 본 발명에 따른 고밀도 폴리에틸렌 수지는 넓은 분자량 분포 및 공단량체 분포 특성이 우수하며, 장쇄 분지구조를 가지고 있어서 용융유동성이 우수하고, 고분자량체에 공단량체 분포가 집중되어 기계적 특성이 우수하다. 본 발명의 고밀도 에틸렌 중합체는 우수한 기계적 특성과 용융 유동성으로 인해 압출, 압축, 사출, 회전 성형 등의 가공시 우수한 성형 가공성을 가진다.

Description

혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법
본 발명은 혼성 담지 메탈로센 촉매를 이용한 고밀도 에틸렌계 중합체 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 종래의 고밀도 에틸렌계 중합체보다 우수한 기계적 특성과, 우수한 성형 가공성의 균형을 충족 시킨 고밀도 폴리에틸렌 중합체에 관한 것이다.
본 발명의 고밀도 에틸렌계 중합체는 분자량 분포가 넓고 장쇄분지를 가져 용융 유동성이 높아 가공성이 우수하고, 고분자량을 포함하고 있어 우수한 기계적 특성을 가지는 고밀도 폴리에틸렌 중합체에 관한 것이다.
폴리에틸렌 수지는 분자량 및 밀도에 의해 기계적, 열적 특성이 영향을 받으며, 이에 따라 적용 분야도 달라지게 된다. 일반적으로 폴리에틸렌 중합체의 밀도가 낮을수록 투명성과 충격강도 등은 더 좋아지지만, 내열성, 경도 및 굴곡 탄성률 등의 물성은 저하되며, 내화학성 또한 저하되는 단점을 갖게 된다.
반면, 폴리에틸렌 중합체의 밀도가 높을수록 내열성, 경도 및 굴곡 탄성률 등의 물성이 좋아지고 내화학성이 증가하지만, 투명성 및 충격 강도 등은 저하된다. 따라서 에틸렌 공중합체를 이용한 사출제품 특히 카트리지, Pail 통 등 각종 산업 용품 등의 제조시 충격강도가 우수하면서 내화학성이 우수한 사출 제품을 만드는 것은 상당히 어렵다. 특히 시장에서 요구하는 각종 산업 용품 등의 사출 제품은 높은 내충격성을 요구하기 때문에 이와 같은 기술에 대한 필요성은 매우 높다.
고밀도 폴리에틸렌 중합체는 여러 가지의 성형방법을 통하여 많은 용도로 제공 되고 있다. 예를 들면 필름 성형체는 대표적인 방법으로서 고밀도 폴리에틸렌 중합체를 용융하여 공기를 취입시키면서 금형으로부터 압출함으로써 용융 중합체 압출물을 인프레이션하는 인프레이션법(inflation method), 또 원하는 형상의 성형체를 얻는 방법으로서, 용융된 고밀도 폴리에틸렌 중합체를 형틀의 공동에 취입 한 후 공기를 형틀 공동에 있는 용융 수지에 취입함으로써 용융 수지를 공동 내벽 상에 팽창 및 압착 시켜 공동내에 용융 중합물을 형성하는 블로우 성형법(blow molding method)이 있다. 또한 용융된 고밀도 폴리에틸렌 중합체를 형틀 공동내에 압입하여 공동을 충전하는 사출 성형법이 있다.
이와 같이 고밀도 폴리에틸렌 중합체는 여러 가지의 성형방법이 있으나, 이들의 방법에서 공통점은 고밀도 폴리에틸렌 중합체를 먼저 가열함으로써 용융상태로 하고 이것을 성형한다는 점이다. 따라서 고밀도 폴리에틸렌 중합체의 가열, 용융시의 거동 즉, 용융 특성은 고밀도 폴리에틸렌계 중합체를 성형 가공함에 있어서 극히 중요한 물성이다.
특히, 압출, 압축, 사출 또는 회전 성형 등의 성형에 있어서, 용융 특성, 특히 고밀도 폴리에틸렌계 중합체의 용융 유동성은 만족스러운 성형 가공성을 좌우하는 본질적 물성이다. 본 발명에서 말하는 성형 가공성은 압출, 압축, 사출 또는 회전 성형시의 가공성에 국한되는 것은 아니다.
일반적으로 MI, MFI, MFR이 클수록 용융 유동성이 우수하다고 할 수 있다. 그러나 실용적으로는 각 성형 방법마다 성형 재료로서의 중합체에 요구되는 성상이 다르기 때문에 성형 가공성을 나타내는 표준으로서 사용되는 지표는 각 성형 방법에 따라 달라진다. 예를 들면, 사출 성형법에서는 내충격성을 갖는 성형품을 얻기 위해 분자량 분포가 좁은 고밀도 폴리에틸렌 중합체가 사용되는 경향이 있다.
종래 압출, 압축, 사출 또는 회전 성형 등에 사용되는 고밀도 폴리에틸렌 중합체는 티타늄계의 지글러-나타 촉매 또는 크롬계 촉매를 사용하여 제조하는 것이 일반적이다.
그러나 이와 같은 촉매를 사용하여 제조된 고밀도 폴리에틸렌 중합체는 분자량 분포가 넓어 용융 유동성은 향상 시킬 수 있으나, 낮은 분자량 성분이 혼입되어 있어서 내충격성 등의 기계적 물성이 현저하게 저하되고, 공단량체(comonomer)의 분포가 저분자량체에 집중적으로 분포하게 되어 내화학성이 저하되는 결점이 존재한다. 이 때문에 양호한 기계적 물성을 유지하면서 사출 성형에서의 고속화를 할 수 없다는 문제점이 있었다.
이러한 문제점을 해결하기 위해 메탈로센 촉매에 대한 연구가 많이 이루어졌다. 미국특허 제 6525150호에서는 메탈로센의 균일한 활성점을 이용하여 분자량 분포가 좁고, 또한 공중합체의 경우에는 공단량체의 분포가 균일한 수지를 제조할 수 메탈로센 촉매를 제시 하였다. 그러나 이는 분자량 분포가 좁기 때문에 기계적 강도는 우수하나 성형 가공성이 낮다는 문제점이 존재한다.
전술한 것과 같이, 통상적으로 단일 메탈로센 촉매의 경우 균일한 활성점으로 분자량 분포가 좁으므로 성형 가공성이 좋지 않으므로 기계적 물성과 성형성의 균형이 중요시되는 고밀도 폴리에틸렌 중합체 분야에서는 메탈로센 촉매계의 응용 개발은 많이 진행되지 못하고 있는 상황이다.
이러한 문제점을 해결하기 위해 복수의 반응기를 사용하거나, 많은 종류의 메탈로센 촉매를 혼합하는 방법에 의해 분자량 분포를 넓히는 것이 많이 제안되었다.
그러나 이와 같은 분자량 분포를 넓히는 방법을 사용할 경우 성형성에는 향상이 있으나, 다른 물성의 저하가 불가피하여 분자량 분포를 좁힘으로써 얻어진 기계적 강도 등의 우수한 물성을 갖는 고밀도 폴리에틸렌 중합체를 얻을 수 없었다.
또한, 촉매의 고유점도를 유지시킴으로써 용융 장력을 향상 시키는 방법이 제시되었으나, 이는 용융 유동성 저하를 개선하지 못해 고속 성형이 어려운 문제점이 있다.
상기 메탈로센 촉매의 문제점을 해결하기 위해 중합체의 주사슬에 곁가지로 LCB (Long chain branch,장쇄분지)를 도입시키는 촉매를 이용하여 중합체의 용융 유동성을 개선시켰으나, 내충격성 등 기계적 물성이 통상의 메탈로센 촉매를 사용한 경우보다 현저히 낮은 문제점이 존재한다.
또한 다른 방안으로는 공단량체에 대한 반응성이 서로 다른 촉매를 이용하여 이정 (bimodal) 분자량 분포를 갖는 폴리올레핀을 제조하는 방법이 제시되어 있다. 그러나 이와 같은 방식으로 제조된 이정 분자량 분포를 갖는 폴리올레핀은 용융유동성은 향상되나, 서로 다른 분자량 분포를 가짐으로 인해 혼련성이 낮아진다. 따라서, 가공 후 균일한 물성을 갖는 제품을 얻기 어렵고 기계적 강도가 저하되는 문제점이 존재한다.
메탈로센 촉매를 이용하여 제조된 고밀도 폴리에틸렌 중합체의 기계적 특성과 용융 유동성을 개선하기 위해 많은 방법이 제시되고 있으나 대부분 선형 저밀도 폴리올레핀에 대한 해결 방법만이 제시 되었다. 또한 메탈로센은 공단량체의 농도가 감소 할수록 활성이 감소하는 경향을 나타내는 특성이 있어 고밀도 폴리올레핀 제조 시 활성이 낮아 경제적이지 못한 문제점이 존재한다.
저밀도 폴리올레핀 제조에서 우수한 활성과 가공성을 갖는 특징을 가지는 촉매라도 고밀도 폴리올레핀을 제조 할때에는 활성이 낮아 비경제적이고, 특히 기상 공정에서는 미세입자가 많이 형성되어 안정적인 조업이 어려운 문제점이 발생한다.
기상 반응기에서는 활성이 중요한 인자인데, 활성이 낮음으로 인해 미세입자가 다량 형성 되고 이로 인해 정전기가 대량 발생하여 반응기 벽면에 붙어 열 전달을 방해하여 중합 온도를 낮추고 벽면에 붙어 있던 미세 입자가 계속하여 커져서 종래에는 생산을 중단하게 하는 문제가 발생하기 때문이다.
상기와 같은 문제점을 해결하고 기계적 강도와 용융유동성이 우수하고 활성이 높은 고밀도 폴리올레핀 중합체를 제조하기 위한 촉매가 끊임없이 요구 되고 있으며 이에 대한 개선이 필요한 상황이다.
본 발명은 상술한 문제점을 모두 해결하는 것을 목적으로 한다.
본 발명은 종래의 고밀도 에틸렌계 중합체에서 나타내지 못한 기계적 특성과 내화학성, 우수한 성형 가공성을 동시에 만족하는 고밀도 에틸렌계 중합체 및 이의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 응력완화특정시간(characteristic relaxation time, λ) 높은 수치를 가지고, 가공성이 우수한 고밀도 에틸렌계 중합체 및 이의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 후술하는 혼성담지 메탈로센 촉매의 존재 하에 제조되는 고분자량체에 공단량체(comonomer) 함량이 높고 저분자량체에 공단량체 함량이 낮아 충격강도, 굴곡강도, 내응력균열성(ESCR), 용융장력(melt tension)이 우수한 단일봉 분자량 분포를 갖는 고밀도 폴리에틸렌 중합체 및 이의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 넓은 분자량 분포와 장쇄분지 구조를 가지고 있으므로 인해 압출, 압축, 사출, 회전 성형 등의 가공시 부하가 적어 생산성이 우수한 고밀도 폴리에틸렌 중합체 및 이의 제조방법을 제공하는 것이다.
상기한 바와 같은 본 발명의 목적을 달성하고, 후술하는 본 발명의 특징적인 효과를 실현하기 위한, 본 발명의 특징적인 구성은 하기와 같다.
본 발명은 밀도가 0.930 내지 0.970 g/cm3 이며, 190 ℃에서 MI가 0.1 내지 50 g/10min 이고, MFR이 35 내지 100 이고, 응력완화특정시간(characteristic relaxation time, λ)이 0.3 내지 2.0 s이고, MI와 응력완화특정시간(characteristic relaxation time, λ)의 관계가 하기 식을 만족한다.
-0.445ln(MI)+3.6023 > λ > -0.323ln(MI)+0.696
본 발명에서 혼성 담지 메탈로센 촉매의 존재 하에 제조된 고밀도 에틸렌계 중합체는 용융유동성이 우수하면서도 충격강도, 굴곡강도, 내환경응력균열성, 용융 장력이 우수한 특성을 가진다.
도 1은 실시예 및 비교예에 따른 MI와 응력완화특정시간(characteristic relaxation time, λ)의 관계를 나타내는 그래프이다.
도 2는 실시예 2 내지 4, 비교예 2, 3의 복소점도(complex viscosity) 그래프이다.
도 3은 실시예 5, 비교예 4 내지 7의 복소점도(complex viscosity) 그래프이다.
도 4는 실시예 6, 7 비교예 9 내지 12의 복소점도(complex viscosity) 그래프이다.
도 5는 실시예 2 내지 4, 비교예 2, 3의 van Gurp-Palmen 그래프이다.
도 6은 실시예 5, 비교예 4 내지 7의 van Gurp-Palmen 그래프이다.
도 7은 실시예 6, 7 비교예 9 내지 12의 van Gurp-Palmen 그래프이다.
후술하는 본 발명에 대한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 기술적 사상 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다.
따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다.
또한, 본 발명에서는 비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 상세히 설명하기로 한다.
본 발명은 혼성 담지 메탈로센 촉매의 존재 하에 중합되는 고밀도 에틸렌계 중합체를 포함한다.
여기서 중합체(polymer)는 공중합체(copolymer)를 포함하는 개념이다.
본 발명의 혼성 담지 메탈로센 촉매는 각각 독립적으로 적어도 1종 이상의 제 1 및 2메탈로센 화합물과 적어도 1종 이상의 조촉매 화합물을 포함한다.
본 발명에 따른 전이금속 화합물인 제 1메탈로센 화합물은 하기 화학식 1과 같이 나타낼 수 있다.
제 1메탈로센 화합물은 혼성 담지 촉매에서 높은 활성을 나타내는 역할을 하며, 제조된 중합체의 용융유동성을 향상 시키는 역할을 한다.
상기 제 1메탈로센 화합물은 공단량체(comonomer)의 혼입도가 낮고 저분자량체를 형성하는 특징을 가지고 있어 중합체의 가공시 가공성을 향상 시킨다.
또한, 공단량체의 혼입이 낮음으로 인해 고밀도가 형성되고 고밀도 제조시에도 높은 활성을 나타낸다.
상기 제 1메탈로센 화합물은 서로 다른 리간드를 가지는 비대칭 구조와 비다리 구조를 가지므로 인해 공단량체가 촉매 활성점으로 접근하기 어려운 입체장애를 형성하여 공단량체의 혼입을 낮추는 역할을 하며 혼성 담지 메탈로센 제조시 가공성과 높은 촉매 활성을 나타내게 한다.
Figure PCTKR2017003840-appb-C000001
상기 화학식 1에서 M1은 원소 주기율표의 4족 전이금속이며, X1, X2는 각각 독립적으로 할로겐 원자, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 2 내지 20의 알키닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 40의 알킬아릴기, 탄소수 7 내지 40의 아릴알킬기, 탄소수 1 내지 20의 알킬아미도기, 탄소수 6 내지 20의 아릴아미도기 또는 탄소수 1 내지 20의 알킬리덴기이며, R1 내지R12 은 각각 독립적으로 수소 원자, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 알킬아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 아릴알킬기 또는 치환 또는 비치환된 탄소수 1 내지 20의 실릴이며, 서로 연결되어 고리를 형성할 수 있으며, R1 내지 R5와 결합하는 사이클로펜타디엔과 R6 내지 R12와 결합하는 인덴은 서로 다른 구조를 가지는 비대칭 구조이며, 상기 사이클로펜타디엔과 상기 인덴이 서로 연결되어 있지 않으므로 비다리 구조를 형성할 수 있다.
본 발명에서 상기 화학식 1의 R1 내지 R5와 결합하는 사이클로펜타디엔과 R6 내지 R12와 결합하는 인덴 및 하기의 화학식 2의 R13 내지 R18과 결합하는 인덴과 R21 내지 R26과 결합하는 인덴과 같이 전이금속(화학식 1 및 2의 M1 및 M2)과 배위결합하고 있는 이온 또는 분자를 리간드(ligand)라 한다.
본 발명에서, 상기 "치환"은 특별한 언급이 없는 한, 수소 원자가 할로겐 원자, 탄소수 1 내지 20의 탄화수소기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴옥시기 등의 치환기로 치환된 것을 의미한다.
또한, 상기 "탄화수소기"는 특별한 언급이 없는 한, 선형, 분지형 또는 환형의 포화 또는 불포화 탄화수소기를 의미하고, 상기 알킬기, 알케닐기, 알키닐기 등은 선형, 분지형 또는 환형일 수 있다.
구체예에서, 상기 화학식 1로 표시되는 전이금속 화합물의 예로는 하기 구조의 전이금속 화합물, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다.
[화학식 1-1]
Figure PCTKR2017003840-appb-I000001
[화학식 1-2]
Figure PCTKR2017003840-appb-I000002
[화학식 1-3]
Figure PCTKR2017003840-appb-I000003
[화학식 1-4]
Figure PCTKR2017003840-appb-I000004
[화학식 1-5]
Figure PCTKR2017003840-appb-I000005
[화학식 1-6]
Figure PCTKR2017003840-appb-I000006
[화학식 1-7]
Figure PCTKR2017003840-appb-I000007
[화학식 1-8]
Figure PCTKR2017003840-appb-I000008
[화학식 1-9]
Figure PCTKR2017003840-appb-I000009
[화학식 1-10]
Figure PCTKR2017003840-appb-I000010
[화학식 1-11]
Figure PCTKR2017003840-appb-I000011
[화학식 1-12]
Figure PCTKR2017003840-appb-I000012
[화학식 1-13]
Figure PCTKR2017003840-appb-I000013
[화학식 1-14]
Figure PCTKR2017003840-appb-I000014
[화학식 1-15]
Figure PCTKR2017003840-appb-I000015
[화학식 1-16]
Figure PCTKR2017003840-appb-I000016
[화학식 1-17]
Figure PCTKR2017003840-appb-I000017
[화학식 1-18]
Figure PCTKR2017003840-appb-I000018
[화학식 1-19]
Figure PCTKR2017003840-appb-I000019
[화학식 1-20]
Figure PCTKR2017003840-appb-I000020
[화학식 1-21]
Figure PCTKR2017003840-appb-I000021
[화학식 1-22]
Figure PCTKR2017003840-appb-I000022
[화학식 1-23]
Figure PCTKR2017003840-appb-I000023
[화학식 1-24]
Figure PCTKR2017003840-appb-I000024
상기 전이금속 화합물에서, M은 원소 주기율표의 4족 전이금속, 예를 들면, 하프늄(Hf), 지르코늄(Zr), 티타늄(Ti) 등이며, Me는 메틸기이다.
본 발명에 따른 전이금속 화합물인 제 2메탈로센 화합물은 하기의 화학식 2와 같이 나타낼 수 있다.
제 2 메탈로센 화합물은 혼성 담지 촉매에서 높은 공단량체 혼입도를 나타내는 역할을 하며, 제조된 중합체의 기계적 물성을 향상 시키는 역할을 한다.
상기 제 2메탈로센 화합물은 공단량체의 혼입도가 높고 고분자량체를 형성하며, 고분자량체에 공단량체의 분포를 집중시키는 특징을 가지고 있어서 충격강도, 굴곡강도, 내환경응력균열성, 용융장력을 향상 시킨다. 또한 제2 메탈로센 화합물은 장쇄 분지 구조를 형성하여 높은 분자량의 고밀도 폴리에틸렌 수지의 용융 유동성을 향상 시킨다.
상기 제 2메탈로센 화합물은 여러 가지 리간드를 가지는 대칭 구조 또는 비대칭 구조와 다리 구조를 가지므로 인해 공단량체가 촉매 활성점으로 접근하기 쉽게 입체장애를 형성하여 공단량체의 혼입을 증가 시키는 역할을 한다.
Figure PCTKR2017003840-appb-C000002
상기 화학식 2에서, M2은 원소 주기율표의 4족 전이금속이며, X3, X4는 각각 독립적으로 할로겐 원자, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 2 내지 20의 알키닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 40의 알킬아릴기, 탄소수 7 내지 40의 아릴알킬기, 탄소수 1 내지 20의 알킬아미도기, 탄소수 6 내지 20의 아릴아미도기 또는 탄소수 1 내지 20의 알킬리덴기이며, R13 내지 R18 은 각각 독립적으로 수소 원자, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 알킬아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 아릴알킬기, 또는 치환 또는 비치환된 탄소수 1 내지 20의 실릴기이고, 서로 연결되어 고리를 형성할 수 있으며, R21 내지 R26 은 각각 독립적으로 수소 원자, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 알킬아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 아릴알킬기 또는 치환 또는 비치환된 탄소수 1 내지 20의 실릴기이고, 서로 연결되어 고리를 형성할 수 있으며, R19, R20 은 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 알킬아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 아릴알킬기 또는 치환 또는 비치환된 탄소수 1 내지 20의 실릴기이고, 서로 연결되어 고리를 형성할 수 있으며, R13 내지 R18과 결합하는 인덴과 R21 내지 R26과 결합하는 인덴은 서로 같은 구조이거나 다른 구조일 수 있으며, 상기 R13 내지 R18과 결합하는 인덴과 R21 내지 R26과 결합하는 인덴은 서로 Si과 연결되어 있으므로 다리구조를 형성할 수 있다.
본 발명에서, 상기 "치환"은 특별한 언급이 없는 한, 수소 원자가 할로겐 원자, 탄소수 1 내지 20의 탄화수소기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴옥시기 등의 치환기로 치환된 것을 의미한다. 또한, 상기 "탄화수소기"는 특별한 언급이 없는 한, 선형, 분지형 또는 환형의 포화 또는 불포화 탄화수소기를 의미하고, 상기 알킬기, 알케닐기, 알키닐기 등은 선형, 분지형 또는 환형일 수 있다.
구체예에서, 상기 화학식 2로 표시되는 전이금속 화합물의 예로는 하기 구조의 전이금속 화합물, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다.
[화학식 2-1]
Figure PCTKR2017003840-appb-I000025
[화학식 2-2]
Figure PCTKR2017003840-appb-I000026
[화학식 2-3]
Figure PCTKR2017003840-appb-I000027
[화학식 2-4]
Figure PCTKR2017003840-appb-I000028
[화학식 2-5]
Figure PCTKR2017003840-appb-I000029
[화학식 2-6]
Figure PCTKR2017003840-appb-I000030
[화학식 2-7]
Figure PCTKR2017003840-appb-I000031
[화학식 2-8]
Figure PCTKR2017003840-appb-I000032
[화학식 2-9]
Figure PCTKR2017003840-appb-I000033
[화학식 2-10]
Figure PCTKR2017003840-appb-I000034
[화학식 2-11]
Figure PCTKR2017003840-appb-I000035
[화학식 2-12]
Figure PCTKR2017003840-appb-I000036
[화학식 2-13]
Figure PCTKR2017003840-appb-I000037
[화학식 2-14]
Figure PCTKR2017003840-appb-I000038
[화학식 2-15]
Figure PCTKR2017003840-appb-I000039
[화학식 2-16]
Figure PCTKR2017003840-appb-I000040
[화학식 2-17]
Figure PCTKR2017003840-appb-I000041
[화학식 2-18]
Figure PCTKR2017003840-appb-I000042
[화학식 2-19]
Figure PCTKR2017003840-appb-I000043
[화학식 2-20]
Figure PCTKR2017003840-appb-I000044
[화학식 2-21]
Figure PCTKR2017003840-appb-I000045
[화학식 2-22]
Figure PCTKR2017003840-appb-I000046
[화학식 2-23]
Figure PCTKR2017003840-appb-I000047
[화학식 2-24]
Figure PCTKR2017003840-appb-I000048
[화학식 2-25]
Figure PCTKR2017003840-appb-I000049
[화학식 2-26]
Figure PCTKR2017003840-appb-I000050
[화학식 2-27]
Figure PCTKR2017003840-appb-I000051
[화학식 2-28]
Figure PCTKR2017003840-appb-I000052
상기 전이금속 화합물에서, M은 원소 주기율표의 4족 전이금속, 예를 들면, 하프늄(Hf), 지르코늄(Zr), 티타늄(Ti) 등이며, Me는 메틸기, Ph는 페닐기이다.
본 발명에 따른 촉매 조성물은 상기 전이금속 화합물, 및 하기 화학식 3 내지 6으로 표시되는 화합물로 이루어진 군으로부터 선택된 적어도 1종 이상의 화합물을 포함하는 조촉매 화합물을 포함할 수 있다.
Figure PCTKR2017003840-appb-C000003
상기 화학식 3에서, AL은 알루미늄이며, R27은 할로겐 원자, 탄소수 1 내지 20의 탄화수소기 또는 탄소수 1 내지 20의 할로겐으로 치환된 탄화수소기이며, a는 2 이상의 정수이다.
Figure PCTKR2017003840-appb-C000004
상기 화학식 4에서, A1는 알루미늄 또는 보론이며, R28은 할로겐 원자, 탄소수 1 내지 20의 탄화수소기, 탄소수 1 내지 20의 할로겐으로 치환된 탄화수소기 또는 탄소수 1 내지 20의 알콕시이다.
Figure PCTKR2017003840-appb-C000005
Figure PCTKR2017003840-appb-C000006
상기 화학식 5 및 6에서, L1 및 L2는 중성 또는 양이온성 루이스 산이며, Z1 및 Z2는 원소 주기율표의 13족 원소이며, A2 및 A3는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이다.
상기 화학식 3으로 표시되는 화합물은 알루미녹산이며, 통상의 알킬알루미녹산이라면 특별히 한정되지 않는다. 예를 들면, 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등을 사용할 수 있으며, 구체적으로 메틸알루미녹산을 사용할 수 있다. 상기 알킬알루미녹산은 트리알킬알루미늄에 적량의 물을 첨가하거나, 물을 포함하는 탄화수소 화합물 또는 무기 수화물 염과 트리알킬알루미늄을 반응시키는 등의 통상의 방법으로 제조할 수 있으며, 일반적으로 선상과 환상의 알루미녹산이 혼합된 형태로 얻어진다.
상기 화학식 4로 표시되는 화합물로는 예를 들면, 통상의 알킬 금속 화합물을 사용할 수 있다. 구체적으로, 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리시클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론, 트리펜타플루오로페닐보론 등을 사용할 수 있고, 더욱 구체적으로 트리메틸알루미늄, 트리이소부틸알루미늄, 트리펜타플루오로페닐보론 등을 사용할 수 있다.
상기 화학식 5 또는 6으로 표시되는 화합물의 예로는 메틸디옥타테실암모늄테트라키스(펜타플루오로페닐)보레이트([HNMe(C18H37)2]+[B(C6F5)4]-), 트리메틸암모늄 테트라키스(페닐)보레이트, 트리에틸암모늄 테트라키스(페닐)보레이트, 트리프로필암모늄 테트라키스(페닐)보레이트, 트리부틸암모늄 테트라키스(페닐)보레이트, 트리메틸암모늄 테트라키스(p-톨릴)보레이트, 트리프로필암모늄 테트라키스(p-톨릴)보레이트, 트리메틸암모늄 테트라키스(o,p-디메틸페닐)보레이트, 트리에틸암모늄 테트라키스(o,p-디메틸페닐)보레이트, 트리메틸암모늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리부틸암모늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리부틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 디에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리페닐포스포늄 테트라키스(페닐)보레이트, 트리메틸포스포늄 테트라키스(페닐)보레이트, N,N-디에틸아닐리늄 테트라키스(페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, 트리페닐카보늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리페닐카보늄 테트라키스(펜타플루오로페닐)보레이트, 트리메틸암모늄 테트라키스(페닐)알루미네이트, 트리에틸암모늄 테트라키스(페닐)알루미네이트, 트리프로필암모늄 테트라키스(페닐)알루미네이트, 트리부틸암모늄 테트라키스(페닐)알루미네이트, 트리메틸암모늄 테트라키스(p-톨릴)알루미네이트, 트리프로필암모늄 테트라키스(p-톨릴)알루미네이트, 트리에틸암모늄 테트라키스(o,p-디메틸페닐)알루미네이트, 트리부틸암모늄 테트라키스(p-트리플루오로메틸페닐)알루미네이트, 트리메틸암모늄 테트라키스(p-트리플루오로메틸페닐)알루미네이트, 트리부틸암모늄 테트라키스(펜타플루오로페닐)알루미네이트, N,N-디에틸아닐리늄 테트라키스(페닐)알루미네이트, N,N-디에틸아닐리늄 테트라키스(페닐)알루미네이트, N,N-디에틸아닐리늄 테트라키스(펜타플루오로페닐)알루미네이트, 디에틸암모늄 테트라키스(펜타플루오로페닐)알루미네이트, 트리페닐포스포늄 테트라키스(페닐)알루미네이트, 트리메틸포스포늄 테트라키스(페닐)알루미네이트, 트리에틸암모늄 테트라키스(페닐)알루미네이트, 트리부틸암모늄 테트라키스(페닐)알루미네이트 등을 예시할 수 있으나, 이에 제한되지 않는다. 구체적으로, 메틸디옥타테실암모늄 테트라키스(펜타플루오로페닐)보레이트([HNMe(C18H37)2]+[B(C6F5)4]-), N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, 트리페닐카보늄 테트라키스(펜타플루오로페닐)보레이트 등을 사용할 수 있다.
본 발명에 따른 혼성 담지 메탈로센 촉매 제조에 있어서 상기 제1 및 제 2 메탈로센 화합물의 전이금속(상기 화학식 1의 M1 및 상기 화학식 2의 M2) 대 담체의 질량비는 1:1내지 1:1000이 바람직하다. 바람직하게는 1:100 내지 1:500 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성에서 유리하다.
또한 화학식 5, 6으로 대표되는 조촉매 화합물 대 담체의 질량비는 1:20 내지 20:1인 것이 바람직하고, 화학식 3, 4의 조촉매 화합물 대 담체의 질량비는 1:100 내지 100:1인 것이 바람직하다.
상기 제 1메탈로센 화합물 대 상기 제 2메탈로센 화합물의 질량비는 1:100내지 100:1인 것이 바람직하다. 상기 질량비로 조촉매 및 메탈로센 화합물을 포함할 때 촉매의 활성 유지 및 경제성에서 유리하다.
본 발명에 따른 혼성 담지 메탈로센 촉매 제조에 적합한 담체는 넓은 표면적을 지닌 다공성 물질을 사용할 수 있다.
상기 제 1 및 2메탈로센 화합물 및 조촉매 화합물은 담체에 혼성 담지하여 촉매로 이용하는 담지촉매일 수 있다. 담지 촉매는 촉매 활성 향상과 안정성 유지를 위하여 분산이 잘 되고 안정적으로 유지하기 위해 담체에 담지한 촉매를 의미한다.
혼성 담지하는 것은 제 1및 2메탈로센 화합물을 각각 담체에 담지하는 것이 아니라, 한 번의 과정으로 담체에 촉매화합물을 담지시키는 것을 말한다. 혼성 담지는 제조시간의 단축과 용매 사용량의 감소로 각각 담지하는 것에 비해 훨씬 경제적이라 할 수 있다.
상기 담체란, 촉매 기능을 지닌 물질을 분산시켜서, 안정하게 담아 유지하는 고체이며, 촉매 기능 물질의 노출 표면적이 커지도록 고도로 분산시켜 담지하기 위해서, 보통 다공성이나 면적이 큰 물질이다. 담체는 기계적, 열적, 화학적으로 안정하여야 하며, 그 예로 담체의 예로는 실리카, 알루미나, 산화티탄, 제올라이트, 산화아연 전분, 합성폴리머 등을 포함하나 이에 제한되는 것은 아니다.
상기 담체는 평균입도가 10 내지 250 마이크론, 바람직하게는 평균 입도가 10 내지 150 마이크론, 보다 바람직하게는 20 내지 100 마이크론일 수 있다.
상기 담체의 미세기공 부피는 0.1 내지 10 cc/g일 수 있고, 바람직하게는 0.5 내지 5cc/g, 보다 바람직하게는 1.0 내지 3.0cc/g 일 수 있다.
또한, 상기 담체의 비표면적은 1 내지 1000 m2/g 일 수 있으며, 바람직하게는 100 내지 800 m2/g 보다 바람직하게는 200 내지 600 m2/g일 수 있다.
상기 담체가 실리카일 경우, 실리카는 건조 온도는 200 내지 900 일 수 있다. 바람직하게는 300 내지 800 , 보다 바람직하게는 400 내지 700 일 수 있다. 200 미만인 경우에는 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고 900 를 초과하게 되면 담체의 구조 붕괴가 이루어진다. 건조된 실리카 내의 히드록시기의 농도는 0.1 내지 5 mmol/g일 수 있고, 바람직하게는 0.7 내지 4 mmol/g일 수 있으며, 보다 바람직하게는 1.0 내지 2 mmol/g이 바람직하다. 0.5 mmol/g 미만이면 조촉매의 담지량이 낮아지며 5 mmol/g을 초과하면 촉매 성분이 불활성화 되어 바람직하지 않다.
본 발명에 따른 혼성 담지 메탈로센 촉매는 메탈로센 촉매를 활성화 시키는 단계, 활성화된 메탈로센 촉매를 담체에 담지하는 단계로 제조 할 수 있다. 상기 혼성 담지 메탈로센 제조에 있어서 조촉매를 담체에 먼저 담지 시킬 수 있다. 상기 메탈로센 촉매의 활성화는 각각 진행 할 수도 있으며 상황에 따라 달리 할 수 있다. 즉 제 1메탈로센 화합물과 제 2메탈로센 화합물을 혼합하여 활성화 시킨 후 담체에 담지 할 수도 있으며, 담체에 조촉매 화합물을 먼저 담지 한 후 제1, 2 메탈로센 화합물을 나중에 담지 할 수 있다.
상기 혼성 담지 메탈로센 촉매의 제조시 반응의 용매는 헥산, 펜탄과 같은 지방족 탄화수소 용매, 톨루엔, 벤젠과 같은 방향족 탄화 수소 용매, 티클로로메탄과 같은 염소원자로 치환된 탄화수소 용매, 디에틸에테르, 테트라히드로퓨란과 같은 에테르계 용매, 아세톤, 에틸아세테이트 등의 대부분의 유기용매가 사용 가능하며 바람직하게는 톨루엔, 헥산이 바람직하나, 이에 제한되지 않는다.
상기 촉매의 제조시 반응온도는 0 내지 100 ℃이며, 바람직하게는 25 내지 70 이나, 이에 제한되지 않는다.
상기 촉매의 제조시 반응시간은 3분 내지 48시간이며, 바람직하게는 5분 내지 24시간이나 이에 제한되지 않는다.
상기 메탈로센 화합물의 활성화는 상기 조촉매 화합물을 혼합(접촉)하여 제조할 수 있다. 상기 혼합은, 통상적으로 질소 또는 아르곤의 불활성 분위기 하에서, 용매를 사용하지 않거나, 상기 탄화수소 용매 존재 하에 수행될 수 있다.
상기 제 1및 2메탈로센 화합물의 활성화 시 온도는 0 내지 100 ℃, 바람직하게는 10 내지 30 ℃일 수 있다.
상기 제 1 및 2메탈로센 화합물을 조촉매 화합물로 활성화 시 교반시간은 5분 내지 24시간일 수 있으며, 바람직하게는 30분 내지 3시간 일 수 있다.
상기 메탈로센 화합물은 상기 탄화수소 용매 등에 균일하게 용해된 용액 상태의 촉매 조성물은 그대로 사용되거나, 침전반응을 이용하여 용매를 제거시키고 20 내지 200 ℃에서 1시간 내지 48시간 동안 진공 건조하여 고체 분말 상태로 사용될 수 있으나, 이에 제한되지 않는다.
본 발명에 따른 고밀도 에틸렌계 중합체의 제조방법은 상기 혼성 담지 메탈로센 촉매와 하나 이상의 올레핀 단량체를 접촉시켜 폴리올레핀 단일 중합체 또는 공중합체를 제조하는 단계를 포함한다.
본 발명의 고밀도 폴리에틸렌 중합체의 제조방법(중합 반응)은 오토클레이브 반응기를 이용하는 슬러리상태 또는 기상 중합 반응기를 이용하는 기상상태로 중합 반응할 수 있다. 또한, 각각의 중합 반응 조건은, 중합 방법(슬러리 중합, 기상중합) 목적하는 중합결과 또는 중합체의 형태에 따라 다양하게 변형될 수 있다. 그의 변형 정도는 당업자에 의해 용이하게 수행될 수 있다.
상기 중합이 액상 또는 슬러리상에서 실시되는 경우, 용매 또는 올레핀 자체를 매질로 사용할 수 있다. 상기 용매로는 프로판, 부탄, 펜탄, 헥산, 옥탄, 데칸, 도데칸, 시클로펜탄, 메틸시클로펜탄, 시클로헥산, 메틸시클로헥산, 벤젠, 톨루엔, 자일렌, 디클로로메탄, 클로로에탄, 디클로로에탄, 클로로벤젠 등을 예시할 수 있으며, 이들 용매를 일정한 비율로 섞어 사용할 수도 있으나, 이에 제한되지 않는다.
구체예에서, 상기 올레핀 단량체로는 에틸렌, α-올레핀류, 환상 올레핀류, 디엔류, 트리엔(trienes)류, 스티렌(styrenes)류 등을 예시할 수 있으나, 이에 제한되지 않는다.
상기 α-올레핀류는 탄소수 3 내지 12, 예를 들면 3 내지 8의 지방족 올레핀을 포함하며, 구체적으로는 프로필렌, 1-부텐, 1-펜텐, 3-메틸-1-부텐, 1-헥센, 4-메틸-1-펜텐, 3-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센(1-decene), 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 4,4-디메틸-1-펜텐, 4,4-디에틸-1-헥센 및 3,4-디메틸-1-헥센 등을 예시할 수 있다.
상기 α-올레핀류는 단독 중합되거나, 2종 이상의 올레핀이 교대(alternating), 랜덤(random), 또는 블록(block) 공중합될 수도 있다. 상기 α-올레핀류의 공중합은 에틸렌과 탄소수 3 내지 12, 예를 들면, 3 내지 8의 α-올레핀의 공중합(구체적으로, 에틸렌과 프로필렌, 에틸렌과 1-부텐, 에틸렌과 1-헥센, 에틸렌과 4-메틸-1-펜텐, 에틸렌과 1-옥텐 등) 및 프로필렌과 탄소수 4 내지 12, 예를 들면 탄소수 4 내지 8의 α-올레핀의 공중합(구체적으로, 프로필렌과 1-부텐, 프로필렌과 4-메틸-1-펜텐, 프로필렌과 4-메틸-1-부텐, 프로필렌과 1-헥센, 프로필렌과 1-옥텐 등)을 포함한다. 상기 에틸렌 또는 프로필렌과 다른 α-올레핀의 공중합에서, 다른 α-올레핀의 양은 전체 모노머의 99 몰% 이하일 수 있으며, 바람직하게는 에틸렌 공중합체의 경우, 80 몰% 이하일 수 있다.
상기 올레핀 단량체의 바람직한 예로는, 에틸렌, 프로필렌, 1-부텐, 1-헥센, 1-옥텐, 1-데센, 이들의 혼합물을 예시할 수 있으나 이에 한정되지 않는다.
본 발명의 고밀도 폴리에틸렌 수지 제조방법에 있어서, 상기 촉매 조성물의 사용량은 특별히 한정되지 않으나, 예를 들면, 중합되는 반응계 내에서 상기 화학식 1과 2로 표시되는 전이금속 화합물의 중심 금속(M, 4족 전이금속) 농도가 1 * 10-5 내지 9 * 10- 5 mol/l일 수 있다.
또한, 중합 시 온도 및 압력은 반응 물질, 반응 조건 등에 따라 변할 수 있기 때문에 특별히 한정되지 않지만, 중합 온도는 용액 중합의 경우, 0 내지 200 ℃, 바람직하게는 100 내지 180 ℃일 수 있고, 슬러리 또는 기상중합의 경우, 0 내지 120 ℃, 바람직하게는 60 내지 100 ℃일 수 있다.
또한, 중합 압력은 1 내지 150 bar, 바람직하게는 30 내지 90 bar일 수 있으며, 보다 바람직하게는 10 내지 20bar 일 수 있다. 압력은 올레핀 단량체 가스(예를 들면, 에틸렌 가스)의 주입에 의한 것일 수 있다.
예를 들면, 상기 중합은 배치식(예로, 오토클레이브 반응기), 반연속식 또는 연속식(예로, 기상중합반응기)으로 수행될 수 있다. 상기 중합은 상이한 반응 조건을 갖는 둘 이상의 단계로도 수행될 수 있으며, 최종 중합체의 분자량은 중합 온도를 변화시키거나, 반응기 내에 수소를 주입하는 방법으로 조절할 수 있다.
본 발명에 따른 고밀도 에틸렌계 수지는 상기 혼성 담지 메탈로센 화합물을 촉매로 사용하여, 에틸렌 단일 중합 또는 에틸렌과 알파 올레핀과의 공중합으로 얻을 수 있으며, 단일봉의 분자량 분포(unimodal distribution)를 가진다.
이하 본 발명에 관한 고밀도 에틸렌계 중합체에 대하여 구체적으로 설명한다.
본 발명의 고밀도 에틸렌계 중합체는 0.930 내지 0.970 g/cm3의 밀도를 가질 수 있고, 보다 바람직하게는 0.950 내지 0.965 g/cm3일 수 있다. 중합체의 밀도가 0.930 g/cm3 이하이면, 충분히 높은 강인성을 나타낼 수가 없다. 중합체의 밀도가 0.970 g/cm3 이상이면, 결정화도가 너무 커지고, 성형체가 취성 파괴되기 쉬워지기 때문에 바람직하지 못하다.
일반적으로 MI(용융지수)가 커지면 성형성은 향상 되지만, 내충격성은 악화된다. 이러한 이유로 인해 성형성을 향상시키기 위해 MI를 크게 할 경우에는 통상 공중합을 통해 단쇄 분지 구조를 형성(밀도 저하)하게 하여 내충격성 악화를 방지하는 방법을 사용한다. 그러나 이와 같은 에틸렌 밀도 저하는 중합체의 강인성 악화를 초래하기 때문에 밀도 저하에 의한 적용에는 한계가 있다. MI를 낮게 하면 내충격성 및 내화학성은 향상되지만 용융 유동성이 악화되어 성형성이 크게 저하된다. 이와 달리 본 발명의 고밀도 폴리에틸렌 중합체는 종래의 고밀도 폴리에틸렌 중합체와 달리 낮은 MI를 가지고 있어 우수한 내충격성 및 내화학성을 나타낸다. 또한 넓은 분자량 분포와 장쇄 분지를 가지고 있어 우수한 사출 성형성을 나타낸다.
본 발명에서 말하는 용융유동성이란 주로 용융 수지를 압출기로부터 압출시의 압출 부하에 대응하는 것으로서, 이와 같은 용융 유동성의 표준이 되는 지표로서는 MI, MFI, MFR 등이 사용된다. 본 발명에서 MI(용융지수)란 190 ℃에서 2.16 kg 하중에서의 흐름성을 나타내고, MFI란 190 ℃에서 21.6 kg 하중에서의 흐름성을 나타낸다. MFR은 MI와 MFI의 비, 즉 MFI/MI를 나타낸다.
본 발명의 고밀도 에틸렌계 중합체의 MI는 0.1 내지 50 g/10min일 수 있고, 바람직하게는 0.5 내지 10 g/10min 일 수 있다. MI가 0.1 g/10min 이하이면 사출 성형 재료로 사용될 때 성형 가공성이 크게 저하되고, 사출 제품의 외관이 불량해 진다. MI가 50 g/10min보다 크게 되면 내충격성이 크게 낮아지게 된다.
본 발명의 고밀도 에틸렌계 중합체의 MFR은 35 내지 100일 수 있으며, 보다 바람직하게는 37 내지 80이다. MFR이 35 이하이면 사출 성형 재료로 사용될 때 성형 가공성이 크게 저하된다. MFR이 100 이상이면 기계적 물성이 저하된다.
또한, 본 발명의 도면 2 내지 4의 x-축의 주파수(frequency, rad/s)에 따른 y-축 복소점도(complex viscosity, Poise)그래프는 유동성과 관련된 것으로, 낮은 주파수에서는 높은 복소점도를 가지고 높은 주파수에서는 낮은 복소점도를 가질수록 유동성이 크며, 이를 전단담화(shear thinning) 현상이 크다고 표현한다. 본 발명의 에틸렌계 중합체는 유사한 MI, 밀도를 갖는 기존의 고밀도 에틸렌계 중합체에 대비하여 현저하게 우수한 용융유동성을 보여준다. 이에 따라 본 발명에서의 MI 범위, 바람직하게는 0.5 내지 10 g/10min에서 유사한 MI를 갖는 고밀도 에틸렌계 중합체 보다 전단담화(shear thinning)효과가 매우 뛰어나 우수한 유동성 및 가공성을 보여줌을 알 수 있다.
또한, 본 발명의 혼성 담지 메탈로센 촉매는 제조되는 고밀도 에틸렌계 중합체에서 장쇄분지의 생성을 유도할 수 있으며, 이에 따라 주 사슬에 탄소수 6 이상의 곁가지를 갖는 장쇄분지(LCB, Long Chain Branch)를 포함하는 고밀도 에틸렌계 중합체를 제조할 수 있다.
에틸렌계 중합체에서 장쇄분지의 여부는 유변물성측정장비(Rheometer)를 이용하여 측정된 van Gurp-Palmen 그래프에서의 변곡점의 유무 혹은 복합 모듈러스(complex modulus, G*)가 작아질수록 발산하는 경향을 가지는지에 대한 여부 등으로 판단 할 수 있다.
본 발명에서의 도면 5 내지 7의 van Gurp-Palmen 그래프를 보면, x-축인 복합 모듈러스(complex modulus) 값이 낮아질수록 y-축의 위상차(phase angle)가 발산하며, 복합 모듈러스(complex modulus) 값이 증가할수록 변곡점을 가지는 특징을 보인다. 이러한 그래프의 특징은 에틸렌계 중합체의 장쇄분지에 의해 나타난다.
또한, 도면 1에서 본 발명의 에틸렌계 중합체는 유사한 MI, 밀도를 갖는 기존의 고밀도 에틸렌계 중합체에 대비하여 응력완화특정시간(characteristic relaxation time, λ)이 높은 수치를 보인다. 응력완화시간(Relaxation time, λ)은 고분자에 일정한 변형을 가한 후, 고분자 내부의 응력이 평형 상태로 돌아오는 시간을 의미하는데, 이는 고분자의 얽힘(entanglement)과 관련이 있다. 에틸렌계 중합체의 고분자량이 증가하거나 장쇄분지를 가지게 되면 얽힘이 강해지고, 이는 사슬의 얽힘이 증가하여 응력완화시간(relaxation time)이 증가한다. 이와 같이, 응력완화시간(relaxation time)은 고분자의 장쇄분지와 관련성이 있다.
본 발명에서는, 유변물성측정장비(Rheometer)를 통한 복소점도 측정값을 사용하여, 크로스 모델(Cross model)을 통한 응력완화특정시간(characteristic relaxation time, λ)을 사용한다.
복소점도와 주파수 및 응력완화시간은 하기와 같은 크로스 모델(Cross model)로 표현될 수 있다. ω0, η0, n은 유변물성측정장비를 통해 주파수 (ω)범위에서의 용융 복합점도 점도(melt complex viscosity, η*)의 측정값을 곡선 적합(curve fitting) 하여 결정하게 되는 값이다. 그리고, 응력완화특정시간(characteristic relaxation time, λ)은 크로스 모델(Cross model)로 결정된 ω0의 역수 값을 취하게 된다.
Figure PCTKR2017003840-appb-I000053
본 발명에서의 응력완화특정시간(characteristic relaxation time, λ)은 0.3 내지 2.0 s 이며, 바람직하게는 0.4 내지 1.9 s이며, 보다 바람직하게는 0.5 내지 1.8 s이다. 본 발명의 에틸렌계 중합체는 유사한 MI, 밀도를 갖는 기존의 고밀도 에틸렌계 중합체에 대비하여 응력완화특정시간(characteristic relaxation time, λ)이 높은 수치를 보이며, MI와 응력완화특정시간(characteristic relaxation time, λ)의 관계는 하기와 같은 관계식으로 표현될 수 있다.
-0.445ln(MI)+3.6023 > λ > -0.323ln(MI)+0.696 일 수 있고, 바람직하게는,
-0.441ln(MI)+2.6004 > λ > -0.338ln(MI)+0.7256 일 수 있으며, 보다 바람직하게는,
-0.437ln(MI)+1.5704 > λ > -0.383ln(MI)+0.9163 일 수 있다.
일반적으로 MI가 낮으면 기계적 물성을 향상 시킬 수 있으나 용융유동성이 악화되어 가공성을 악화 시킨다. 본 발명의 고밀도 폴리에틸렌 수지는 낮은 MI를 가지고 있어 기계적 물성이 우수하고 장쇄 분지를 포함하고 있어 높은 MFR을 나타내어 가공성이 우수함을 확인하였다.
본 발명의 고밀도 폴리에틸렌 수지는 낮은 MI를 가지고 있으나 높은 MFR 특성으로 인해 종래의 HDPE보다 우수한 가공성을 나타낸다.
본 발명의 고밀도 에틸렌계 중합체는 사출, 압축, 회전 성형 재료로 이용될 수 있다.
실시예
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
1메탈로센 화합물 제조예 1. [Indenyl(cyclopentadienyl)]ZrCl2
인덴(5 g, 0.043mol)을 헥산(150 mL)에 녹인 다음 충분히 섞어주고 -30 ℃까지 냉각시킨 후 헥산용액에 2.5M n-부틸리튬(n-BuLi) 헥산용액(17ml, 0.043mol)을 천천히 떨어뜨려주고 상온에서 12시간 동안 교반하였다. 흰색 현탁액을 유리필터로 여과하여 흰색고체를 충분히 건조시킨 후 인덴 리튬염(수율: 99%의 수율)을 얻었다.
인덴 리튬염(1.05 g, 8.53 mmol) 슬러리 용액에 CpZrCl3(2.24 g, 8.53 mmol)을 에테르(30 mL)에 천천히 녹인 다음 -30 ℃까지 냉각시켰다. 이 에테르 용액에 에테르(15 mL)에 녹인 인덴 리튬염을 천천히 떨어뜨린 후 24시간 교반하여 [Indenyl(cyclopentadienyl)]ZrCl2 (수율 97%) 얻었다. 여기서 Cp는 cyclopentadienyl 의미한다.
1메탈로센 화합물 제조예 2. [2-methyl benzeindenyl (cyclopentadienyl)] ZrCl2
2-methylbenzeindene을 사용하여 제조예 1과 동일한 방법으로 [2-methyl benzeindenyl (cyclopentadienyl)]ZrCl2(수율: 95%) 얻었다.
1메탈로센 화합물 제조예 3. [2-phenyl benzeindenyl (tetramethylcyclopentadienyl)]ZrCl2
2-methylbenzeindene 과 tetrametylcyclopentadiene을 사용하여 제조예 1과 동일한 방법으로 [2-phenyl benzeindenyl (tetramethylcyclopentadienyl)]ZrCl2 (수율: 93%) 얻었다.
1메탈로센 화합물 제조예 4. [fluorenyl (cyclopentadienyl)]ZrCl2
Fluorene 과 cyclopentadiene을 사용하여 제조예 1과 동일한 방법으로 [2-phenyl benzeindenyl (tetramethylcyclopentadienyl)]ZrCl2 (수율: 92%) 얻었다.
2메탈로센 화합물 제조예 5. Me2Si{2-methyl-4-(1-naphthyl)}2ZrCl2
제조예 5-1: 리간드 화합물 제조
2-methyl-4-bromo indene (2 g, 1 eq), Pd(PPh3)4 (553 mg, 0.05 eq), 1-NaphB(OH)2 (2.14 g, 1.3 eq)을 THF, MeOH 용액(4:1, 40 ml)에 넣은 후 degassing한 K2CO3수용액 (2.0 M, 3.3 eq)를 상온에서 주입한 후 80 에서 12시간 동안 환류 교반 하여 2-methyl-4-(1-naphthyl)indene 얻었다. 2-methyl-4-(1-naphthyl)indene을 톨루엔 50 ml에 넣고 n-BuLi (7.8 mL, 1.1 eq, 1.6 M in Hexane)을 -30 ℃에서 천천히 첨가한 후 온도를 서서히 상온으로 올려 12 시간 동안 교반한다. 생성된 고체를 여과하여 Hexane으로 세척한 후 진공 하에서 건조하여 2-methyl-4-(1-naphthyl)indenyl lithium 을 얻었다.
2-methyl-4-(1-naphthyl)indenyl lithium (1.88g, 2eq) 톨루엔 13 mL, THF, 3 mL에 SiMe2Cl2(462 mg, 1 eq)를 -30 ℃에서 천천히 첨가한 후 온도를 서서히 올려 55 ℃에서 12시간 동안 교반하여 Dimethylbis{2-methyl-4-(1-naphthyl)indenyl)}silane 1.97g(97%) 얻었다.
제조예 5-2: 제 2 메탈로센 화합물 제조
제조예 5-1 화합물 (0.4 g, 1 eq)을 THF(tetrahydro furan) 15ml에 넣고 n-BuLi (1.32mL, 2.2eq, 1.6M in Hexane)을 -30 ℃에서 천천히 첨가한 후 온도를 서서히 상온으로 올려 12시간 동안 교반 하여 디리튬염(Dilithium salt)을 만든 후 디리튬염(Dilithium salt) 슬러리 용액에 ZrCl4(435 mg, 1 eq)를 천천히 첨가한 후 12시간동안 교반한다. 진공으로 용매를 제거하고, THF, MC로 세척하여 Me2Si{2-methyl-4-(1-naphthyl)}2ZrCl2을 얻었다(수율 94%) 얻었다.
2메탈로센 화합물 제조예 6. Me2Si{2-methyl-4-(2-naphthyl)}2ZrCl2
제조예 6-1: 리간드 화합물 제조
2-methyl-7-(2-naphthyl)indene을 이용하여 제조예 5-1과 같은 방법으로 제조하여 Dimethylbis{2-methyl-4-(2-naphthyl) indenyl)}silane (수율: 51%) 얻었다.
제조예 6-2: 제 2 메탈로센 화합물 제조
제조예 6-1 화합물을 이용하여 제조예 5-2와 같은 방법으로 Me2Si{2-methyl-4-(2-naphthyl)}2ZrCl2을 얻었다(수율 90%).
2메탈로센 화합물 제조예 7. (Me2Si(2-methyl-4-phenyl indenyl)2ZrCl2)
제조예 7-1: 리간드 화합물 제조
2-methyl-4-bromo indene(2 g, 1 eq) (7 g, 1 eq), Ni(dppp)Cl2(363 mg, 0.02 eq)을 Ether (100 mL)에 넣고 0 ℃에서 PhMgBr 3.0 M in ether(13.3 g, 1.05 eq)을 1시간 동안 첨가한다. 온도를 서서히 상온(25 ℃)으로 올린 후 50 ℃에서 12시간 동안 환류 교반한다. 반응 종결 후 용액을 Ice bath에 담근 후 1N HCl 산첨가를 하여 pH 4까지 낮춘다. 분별깔때기로 유기층을 추출한 후 MgSO4처리를 하여 물을 제거한다. 여과하고 용매를 건조하여 2-methyl-4-(phenyl)indene(수율: 97%)를 얻는다. 2-methyl-4-(phenyl)indene을 이용하여 제조예 5-1과 동일한 방법으로 Me2Si(2-methyl-4-phenyl indenyl)2 제조하였다(수율: 95%). 여기서 dppp는 1,3-Bis(diphenylphosphino)propane를 의미한다.
제조예 7-2: 제 2 메탈로센 화합물 제조
Me2Si(2-methyl-4-phenylindene)2 를 이용하여 이용하여 제조예 5-2와 동일한 방법으로 Me2Si(2-methyl-4-phenyl indenyl)2ZrCl2 를 제조하였다(수율 90%).
혼성 담지 메탈로센 촉매 제조예 8
제 1 및 제2메탈로센 화합물과 조촉매인 메틸알루미늄옥산(MAO)은 공기 중의 수분 또는 산소와 반응하면 활성을 잃어버리므로, 모든 실험은 글러브박스, 슈렝크 테크닉을 이용하여 질소조건 하에서 진행하였다. 10L 담지 촉매 반응기는 세척하여 이물을 제거하고 110 ℃에서 3 시간 이상 건조하면서 반응기를 밀폐한 이후에 진공을 이용하여 수분 등을 완전히 제거한 상태로 사용하였다.
제조예 1 화합물 2.862 g, 제조예 7-2 화합물 3.46 9g 에 10 wt% 메틸알루미늄옥산(MAO) 용액(메틸알루미늄옥산: 1188 g)을 가해주고 1시간 동안 상온에서 교반하였다. 실리카(XPO2402) 300 g을 반응기에 투입한 후, 정제된 톨루엔 900 mL 를 반응기에 가하고 교반하였다. 1시간 동안의 교반 단계가 완료된 후, 반응기를 교반하면서 제1메탈로센 화합물, 제 2메탈로센 화합물 및 메틸알루미늄옥산 혼합 용액을 투입하였다. 반응기를 60 ℃까지 승온시킨 후, 2시간 동안 교반한다.
침전반응 이후 상등액을 제거하고 톨루엔 1L로 세척한 후 60 ℃에서 12시간 진공 건조하였다.
혼성 담지 메탈로센 촉매 제조예 9
2.389 g의 제조예 2 화합물, 제조예 7-2 화합물 4.387 g을 사용한 것을 제외하고는 제조예 8와 동일한 방법으로 제조 하였다.
혼성 담지 메탈로센 촉매 제조예 10
2.712 g의 제조예 3 화합물, 제조예 6-2 화합물 3.046 g을 사용한 것을 제외하고는 제조예 8와 동일한 방법으로 제조 하였다.
혼성 담지 메탈로센 촉매 제조예 11
2.662 g의 제조예 4 화합물, 제조예 5-2 화합물 3.712 g을 사용한 것을 제외하고는 제조예 8와 동일한 방법으로 제조 하였다.
실시예 1
상기 제조예 8에서 얻어진 혼성 담지 메탈로센 촉매를 fluidized bed gas process연속 중합기에 투입하여 올레핀 중합체를 제조하였다. 공단량체로는 1-헥센을 사용하였고, 반응기 에틸렌 압력은 15 bar, 중합 온도는 80 ~ 90 로 유지하였다.
실시예 2 내지 8
각각 제조예 9 내지 11의 혼성 담지 메탈로센 촉매를 이용한 것을 제외하고는, 실시예 1과 동일한 방법으로 올레핀 중합체를 제조하였다.
비교예 1
상업제품 HDPE 7303(SK 종합화학)를 사용하였다.
비교예 1은 ASTM D1505에 따른 밀도가 0.9523 g/cm3 이고, ASTM D1238에 따른 용융지수(MI)는 2.1 g/10min 이다.
비교예 2
상업제품 HDPE ME2500(LG화학)를 사용하였다.
비교예 2는 ASTM D1505에 따른 밀도가 0.9538 g/cm3 이고, ASTM D1238에 따른 용융지수(MI)는 2.1 g/10min 이다.
비교예 3
상업제품 HDPE C910A(한화토탈)를 사용하였다.
비교예 3은 ASTM D1505에 따른 밀도가 0.9556 g/cm3 이고, ASTM D1238에 따른 용융지수(MI)는 2.4 g/10min 이다.
비교예 4
상업제품 HDPE 7390(한화케미칼)를 사용하였다.
비교예 4는 ASTM D1505에 따른 밀도가 0.9532 g/cm3 이고, ASTM D1238에 따른 용융지수(MI)는 4.2 g/10min 이다.
비교예 5
상업제품 HDPE M850(대한유화)를 사용하였다.
비교예 5는 ASTM D1505에 따른 밀도가 0.9642 g/cm3 이고, ASTM D1238에 따른 용융지수(MI)는 4.9 g/10min 이다.
비교예 6
상업제품 HDPE 2200J(롯데케미칼)를 사용하였다.
비교예 6은 ASTM D1505에 따른 밀도가 0.9582 g/cm3 이고, ASTM D1238에 따른 용융지수(MI)는 5.1 g/10min 이다.
비교예 7
상업제품 ME6000(LG화학)를 사용하였다.
비교예 7은 ASTM D1505에 따른 밀도가 0.9621 g/cm3 이고, ASTM D1238에 따른 용융지수(MI)는 5.8 g/10min 이다.
비교예 8
상업제품 HDPE 7210(SK 종합화학)를 사용하였다.
비교예 8은 ASTM D1505에 따른 밀도가 0.9579 g/cm3 이고, ASTM D1238에 따른 용융지수(MI)는 6.1 g/10min 이다.
비교예 9
상업제품 HDPE M680(대한유화)를 사용하였다.
비교예 9는 ASTM D1505에 따른 밀도가 0.9562 g/cm3 이고, ASTM D1238에 따른 용융지수(MI)는 6.9 g/10min 이다.
비교예 10
상업제품 HDPE 7600(한화케미칼)를 사용하였다.
비교예 10은 ASTM D1505에 따른 밀도가 0.9592 g/cm3 이고, ASTM D1238에 따른 용융지수(MI)는 7.2 g/10min 이다.
비교예 11
상업제품 HDPE 2210J(롯데케미칼)를 사용하였다.
비교예 11은 ASTM D1505에 따른 밀도가 0.9580 g/cm3 이고, ASTM D1238에 따른 용융지수(MI)는 8.0 g/10min 이다.
비교예 12
상업제품 ME8000(LG화학)를 사용하였다.
비교예 12는 ASTM D1505에 따른 밀도가 0.9592 g/cm3 이고, ASTM D1238에 따른 용융지수(MI)는 8.0 g/10min 이다.
<물성 측정 방법>
1) 밀도는 ASTM D1505 에 따라 측정되었다.
2) MI, MFI 및 MFR
용융유동성 MI는 2.16 kg의 하중에서 10분간의 압출량이고, 측정 온도 190 ℃에서 ASTM 1238 에 따라 측정되었다.
MFI는 21.6 kg의 하중에서 10분간의 압출량이고, 측정 온도 190 ℃에서 ASTM 1238 에 따라 측정되었다.
MFR은 MI와 MFI의 비, 즉 MFI/MI를 나타낸다.
3) 주파수(frequency)에 대한 복소점도(complex viscosity)의 측정은 TA사의 ARES 유변물성측정장비로 측정되었다. 190 ℃의 측정온도에서 30초의 예열시간을 가진 뒤, 주파수 0.1 rad/s 에서 500 rad/s 까지 측정하였다.
4) 응력완화특정시간(Characteristic relaxation time,λ)은 앞서 명시한 주파수에 대한 복소점도의 값을 크로스 모델(Cross model)을 통하여 곡선 적합(curve fitting) 된 값을 사용한다.
여기서 ASTM은 규격 명으로 1) 해당분야에서의 공통용어의 정의, 2) 주어진 과제를 달성하기 위해서 적절하다고 생각되는 순서, 3) 주어진 측정을 하기 위한 수법, 4) 대상물이나 개념을 그룹으로 나누는 기준, 5) 제품이나 재료의 특성의 범위나 한계를 정하는 것 등 5종으로 나누고 있다.
또한 MI, 즉 용융지수란 일정하중, 일정온도에서 가지는 플라스틱 재료의 용융 흐름성을 나타내는 말로, 이 용융지수가 높은 것은 고분자의 가공성이 우수하다는 의미이며, 분자량과는 반비례 관계가 성립한다. 폴리올레핀 수지는 여러가지 성형방법이 있으나 이들의 방법의 공통점은 수지를 먼저 가열함으로써 용융상태로 하고 이것을 성형한다는 점이다. 따라서 용융 특성은 폴리올레핀계 수지를 성형 가공함에 있어서 극히 중요한 물성이다. 특히 압출, 압축, 사출, 회전 성형 등의 성형에 있어서, 용융 특성, 즉 용융 흐름성은 만족스러운 성형성을 좌우하는 본질적 물성이다. 용융 흐름 지수의 크기가 커지면 유동이 그만큼 용이하다는 말이 된다.
본 발명에서 MI는 190 ℃에서 2.16 kg 하중에서의 흐름성을 나타내고, MFI는 190 ℃에서 21.6 kg 하중에서의 흐름성을 나타낸다. MFR은 MI와 MFI의 비, 즉 MFI/MI를 나타낸다.
Characteristic relaxation time(λ)은 전술한 바와 같다.
표 1에서는 실시예 1 내지 8의 중합조건을 표로 나타내었다.
에틸렌 압력(bar) 수소/에틸렌 몰비(%) 1-헥센/에틸렌 몰비(%) 촉매활성(gPE/gCat)
실시예 1 15.0 0.084 0.128 4800
실시예 2 14.4 0.101 0.161 4900
실시예 3 14.7 0.082 0.131 4800
실시예 4 15.0 0.125 0.157 5100
실시예 5 14.6 0.116 0.141 4900
실시예 6 15.2 0.137 0.154 5000
실시예 7 14.9 0.136 0.147 5100
실시예 8 14.8 0.152 0.152 5200
하기 표 2에서는 전술한 물성측정 data를 나타내었다. 또한 종래 상업적으로 이용되는 HDPE 12가지와 비교하여 본 발명의 실시예의 고밀도 폴리에틸렌 공중합체는 용융유동성이 우수함을 확인하였다.
밀도(g/cm3) MI(g/10min) MFR 응력완화특정시간Characteristic relaxation time(s)
실시예 1 0.9542 1.1 56.1 1.530
실시예 2 0.9582 1.6 46.9 0.902
실시예 3 0.9572 2.5 43.6 1.168
실시예 4 0.9563 2.6 42.7 0.751
실시예 5 0.9567 3.1 44.4 0.803
실시예 6 0.9562 6.3 40.5 0.532
실시예 7 0.9534 6.9 39.7 0.508
실시예 8 0.9560 8.5 37.0 0.636
비교예 1 0.9523 2.1 37.4 0.267
비교예 2 0.9538 2.1 28.5 0.088
비교예 3 0.9556 2.4 28.5 0.058
비교예 4 0.9532 4.2 26.1 0.026
비교예 5 0.9642 4.9 34.9 0.116
비교예 6 0.9582 5.1 32.6 0.101
비교예 7 0.9621 5.8 30.1 0.041
비교예 8 0.9579 6.1 35.4 0.113
비교예 9 0.9562 6.9 30.4 0.045
비교예 10 0.9592 7.2 27.8 0.06
비교예 11 0.9580 8.0 27.6 0.021
비교예 12 0.9592 8.0 28.5 0.026
혼성 담지 메탈로센 제조에 있어서 본 발명의 화학식 1의 제1 메탈로센의 비대칭 구조는 리간드에서 중심금속으로 전자를 주는 전자 주기 현상이 동일하지 않아 중심금속과 리간드 간의 결합 길이가 서로 달라지게 되므로 촉매 활성점으로 단량체가 접근할 때 받는 입체 장애가 낮다.
화학식 2의 제2 메탈로센은 다리구조 형태를 갖고 있어서 촉매 활성점을 보호하고 촉매 활성점으로의 공단량체 접근성을 용이하게 하여 공단량체 침입이 우수한 특성을 갖는 특성을 가진다. 또한 리간드가 서로 연결되어 있지 않은 구조인 비다리 구조에 비해 촉매 활성점이 안정화 되어 고분자량을 형성 하는 특성을 가진다.
그러나 화학식 2의 메탈로센 단독일 경우 활성이 너무 낮아 경제적이지 못하고 고분자량체가 너무 많이 생겨 가공성이 악화 되는 문제점이 있다.
본 발명의 혼합 메탈로센 촉매를 이용하여 제조한 고밀도 폴리에틸렌 수지는 기울기가 큰 전단담화(shear thinning)를 나타내어, 우수한 가공성을 가지게 한다.
표 2로부터 화학식 1의 제1 메탈로센 화학식 2의 제 2 메탈로센을 혼성 담지한 메탈로센 촉매는 높은 MFR을 나타내어 사출 가공성이 우수함을 나타낸다.
일반적으로 MI가 낮으면 기계적 물성을 향상 시킬 수 있으나 용융유동성이 악화되어 가공성을 악화 시킨다. 그러나 본 발명의 고밀도 폴리에틸렌 수지는 낮은 MI를 가지고 있어 기계적 물성이 우수하다.
또한, 상기 실시예의 에틸렌계 중합체는 van Gurp-Palmen 그래프를 도식화한 도면 5 내지 7 및 응력완화특정시간(Characteristic relaxation time, λ)로부터 장쇄 분지를 포함하고 있음을 확인할 수 있으며, 이는 가공성이 우수한 특징을 나타낸다.
더불어, 각 실시예는 장쇄 분지를 포함함에 따라 응력완화특정시간이 높음을 알 수 있고, 전술한 바와 같이 응력완화특정시간이 높은 고분자는 가공성이 우수한 바 본 발명은 복소점도의 값을 크로스 모델(Cross model)을 통하여 곡선 적합(curve fitting) 된 값으로 구해진 응력완화특정시간이 비교적 높다는 것을 통해 가공성이 우수함을 확인할 수 있다.
이상에서는 본 발명의 바람직한 실시예에 대해서 예시하였으나, 본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구 범위 기재의 범위 내에 있게 된다.

Claims (18)

  1. 에틸렌 및 알파올레핀계 단량체로 이루어진 군으로부터 선택된 적어도 어느 하나 이상의 중합으로 제조되며;
    밀도가 0.930 내지 0.970 g/cm3 이며;
    MI가 0.1 내지 50 g/10min 이며,
    MFR이 35 내지 100이며;
    응력완화특정시간(Characteristic relaxation time, λ)은 190 ℃에서 0.3 내지 2.0 s인 것을 특징으로 하는 고밀도 에틸렌계 중합체.
  2. 제 1항에 있어서,
    MI와 응력완화특정시간(characteristic relaxation time, λ)의 관계가 하기의 식 1로 표현되는 것을 특징으로 하는 고밀도 에틸렌계 중합체.
    [식 1]
    Figure PCTKR2017003840-appb-I000054
  3. 제 1항에 있어서,
    상기 중합체는 장쇄분지(Long Chain Branch, LCB)를 포함하는 것을 특징으로 하는 고밀도 에틸렌계 중합체.
  4. 제 1항에 있어서,
    상기 알파 올레핀계 단량체는,
    프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센 및 1-아이토센으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 고밀도 에틸렌계 중합체.
  5. 제 1항에 있어서,
    상기 고밀도 에틸렌계 중합체가 상기 에틸렌 및 상기 알파 올레핀계 단량체의 공중합체인 경우, 상기 알파 올레핀계 단량체의 함량이 0.1 내지 10 중량%인 것을 특징으로 하는 고밀도 에틸렌계 중합체.
  6. 제 1항에 있어서,
    상기 에틸렌계 중합체는 사출, 압축, 회전 성형 재료임을 특징으로 하는 고밀도 에틸렌계 중합체.
  7. 제 1항에 있어서,
    상기 고밀도 에틸렌계 중합체는,
    하기의 화학식 1로 표시되는 적어도 1종 이상의 제 1메탈로센 화합물, 하기의 화학식 2로 표시되는 적어도 1종 이상의 제 2메탈로센 화합물, 적어도 1종 이상의 조촉매 화합물 및 담체로 이루어진 혼성담지 메탈로센 촉매를 이용하여 중합되는 것을 특징으로 하는 고밀도 에틸렌계 중합체.
    [화학식 1]
    Figure PCTKR2017003840-appb-I000055
    상기 화학식 1에서,
    M1은 원소 주기율표의 4족 전이금속이며;
    X1, X2는 각각 독립적으로 할로겐 원자, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 2 내지 20의 알키닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 40의 알킬아릴기, 탄소수 7 내지 40의 아릴알킬기, 탄소수 1 내지 20의 알킬아미도기, 탄소수 6 내지 20의 아릴아미도기 또는 탄소수 1 내지 20의 알킬리덴기이며;
    R1 내지R12 은 각각 독립적으로 수소 원자, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 알킬아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 아릴알킬기 또는 치환 또는 비치환된 탄소수 1 내지 20의 실릴이며, 서로 연결되어 고리를 형성할 수 있으며;
    R1 내지 R5와 결합하는 사이클로펜타디엔과 R6 내지 R12와 결합하는 인덴은 서로 다른 구조를 가지는 비대칭 구조이며;
    상기 사이클로펜타디엔과 상기 인덴이 서로 연결되어 있지 않으므로 비다리 구조를 형성하며;
    [화학식 2]
    Figure PCTKR2017003840-appb-I000056
    상기 화학식 2에서,
    M2은 원소 주기율표의 4족 전이금속이며;
    X3, X4는 각각 독립적으로 할로겐 원자, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 2 내지 20의 알키닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 40의 알킬아릴기, 탄소수 7 내지 40의 아릴알킬기, 탄소수 1 내지 20의 알킬아미도기, 탄소수 6 내지 20의 아릴아미도기 또는 탄소수 1 내지 20의 알킬리덴기이며;
    R13 내지 R18 은 각각 독립적으로 수소 원자, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 알킬아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 아릴알킬기, 또는 치환 또는 비치환된 탄소수 1 내지 20의 실릴기이고, 서로 연결되어 고리를 형성할 수 있으며;
    R21 내지 R26 은 각각 독립적으로 수소 원자, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 알킬아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 아릴알킬기 또는 치환 또는 비치환된 탄소수 1 내지 20의 실릴기이고, 서로 연결되어 고리를 형성할 수 있으며;
    R19, R20 은 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 알킬아릴기, 치환 또는 비치환된 탄소수 7 내지 40의 아릴알킬기 또는 치환 또는 비치환된 탄소수 1 내지 20의 실릴기이고, 서로 연결되어 고리를 형성할 수 있으며;
    R13 내지 R18과 결합하는 인덴과 R21 내지 R26과 결합하는 인덴은 서로 같은 구조이거나 다른 구조일 수 있으며;
    상기 R13 내지 R18과 결합하는 인덴과 R21 내지 R26과 결합하는 인덴은 서로 Si과 연결되어 있으므로 다리구조를 형성함.
  8. 제 7항에 있어서,
    상기 제 1메탈로센 화합물은 하기의 구조를 가지는 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 포함하는 것을 특징으로 하는 고밀도 에틸렌계 중합체.
    Figure PCTKR2017003840-appb-I000057
    Figure PCTKR2017003840-appb-I000058
    Figure PCTKR2017003840-appb-I000059
    Figure PCTKR2017003840-appb-I000060
    Figure PCTKR2017003840-appb-I000061
    Figure PCTKR2017003840-appb-I000062
    Figure PCTKR2017003840-appb-I000063
    Figure PCTKR2017003840-appb-I000064
    Figure PCTKR2017003840-appb-I000065
    Figure PCTKR2017003840-appb-I000066
    Figure PCTKR2017003840-appb-I000067
    Figure PCTKR2017003840-appb-I000068
    Figure PCTKR2017003840-appb-I000069
    Figure PCTKR2017003840-appb-I000070
    Figure PCTKR2017003840-appb-I000071
    Figure PCTKR2017003840-appb-I000072
    Figure PCTKR2017003840-appb-I000073
    Figure PCTKR2017003840-appb-I000074
    Figure PCTKR2017003840-appb-I000075
    Figure PCTKR2017003840-appb-I000076
    Figure PCTKR2017003840-appb-I000077
    Figure PCTKR2017003840-appb-I000078
    Figure PCTKR2017003840-appb-I000079
    Figure PCTKR2017003840-appb-I000080
  9. 제 7항에 있어서,
    상기 제 2메탈로센 화합물은 하기의 구조를 가진 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 포함하는 것을 특징으로 하는 고밀도 에틸렌계 중합체.
    Figure PCTKR2017003840-appb-I000081
    Figure PCTKR2017003840-appb-I000082
    Figure PCTKR2017003840-appb-I000083
    Figure PCTKR2017003840-appb-I000084
    Figure PCTKR2017003840-appb-I000085
    Figure PCTKR2017003840-appb-I000086
    Figure PCTKR2017003840-appb-I000087
    Figure PCTKR2017003840-appb-I000088
    Figure PCTKR2017003840-appb-I000089
    Figure PCTKR2017003840-appb-I000090
    Figure PCTKR2017003840-appb-I000091
    Figure PCTKR2017003840-appb-I000092
    Figure PCTKR2017003840-appb-I000093
    Figure PCTKR2017003840-appb-I000094
    Figure PCTKR2017003840-appb-I000095
    Figure PCTKR2017003840-appb-I000096
    Figure PCTKR2017003840-appb-I000097
    Figure PCTKR2017003840-appb-I000098
    Figure PCTKR2017003840-appb-I000099
    Figure PCTKR2017003840-appb-I000100
    Figure PCTKR2017003840-appb-I000101
    Figure PCTKR2017003840-appb-I000102
    Figure PCTKR2017003840-appb-I000103
    Figure PCTKR2017003840-appb-I000104
    Figure PCTKR2017003840-appb-I000105
    Figure PCTKR2017003840-appb-I000106
    Figure PCTKR2017003840-appb-I000107
    Figure PCTKR2017003840-appb-I000108
  10. 제 7항에 있어서,
    상기 조촉매 화합물은 하기 화학식 3 내지 6으로 표시되는 화합물을 포함하는 것을 특징으로 하는 고밀도 에틸렌계 중합체.
    [화학식 3]
    Figure PCTKR2017003840-appb-I000109
    상기 화학식 3에서,
    AL은 알루미늄이며;
    R27은 할로겐 원자, 탄소수 1 내지 20의 탄화수소기 또는 탄소수 1 내지 20의 할로겐으로 치환된 탄화수소기이며;
    a는 2 이상의 정수이며;
    [화학식 4]
    Figure PCTKR2017003840-appb-I000110
    상기 화학식 4에서,
    A1는 알루미늄 또는 보론이며;
    R28은 할로겐 원자, 탄소수 1 내지 20의 탄화수소기, 탄소수 1 내지 20의 할로겐으로 치환된 탄화수소기 또는 탄소수 1 내지 20의 알콕시이며,
    [화학식 5]
    Figure PCTKR2017003840-appb-I000111
    [화학식 6]
    Figure PCTKR2017003840-appb-I000112
    상기 화학식 5 및 6에서,
    L1 및 L2는 중성 또는 양이온성 루이스 산이며;
    Z1 및 Z2는 원소 주기율표의 13족 원소이며;
    A2 및 A3는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기임.
  11. 제 10항에 있어서,
    상기 화학식 3으로 표시되는 조촉매 화합물은,
    메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 및 부틸알루미녹산로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함하는 것을 특징으로 하는 고밀도 에틸렌계 중합체.
  12. 제 10항에 있어서,
    상기 화학식 4로 표시되는 조촉매 화합물은,
    트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리시클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 및 트리펜타플루오로페닐보론으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 포함하는 것을 특징으로 하는 고밀도 에틸렌계 중합체.
  13. 제 10항에 있어서,
    상기 화학식 5 또는 6으로 표시되는 조촉매 화합물은,
    각각 독립적으로 메틸디옥타테실암모늄테트라키스 (펜타플루오로페닐) 보레이트, 트리메틸암모늄 테트라키스(페닐)보레이트, 트리에틸암모늄 테트라키스(페닐)보레이트, 트리프로필암모늄 테트라키스(페닐)보레이트, 트리부틸암모늄 테트라키스(페닐)보레이트, 트리메틸암모늄 테트라키스(p-톨릴)보레이트, 트리프로필암모늄 테트라키스(p-톨릴)보레이트, 트리메틸암모늄 테트라키스(o,p-디메틸페닐)보레이트, 트리에틸암모늄 테트라키스(o,p-디메틸페닐)보레이트, 트리메틸암모늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리부틸암모늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리부틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 디에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리페닐포스포늄 테트라키스(페닐)보레이트, 트리메틸포스포늄 테트라키스(페닐)보레이트, N,N-디에틸아닐리늄 테트라키스(페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, 트리페닐카보늄 테트라키스(p-트리플루오로메틸페닐)보레이트, 트리페닐카보늄 테트라키스(펜타플루오로페닐)보레이트, 트리메틸암모늄 테트라키스(페닐)알루미네이트, 트리에틸암모늄 테트라키스(페닐)알루미네이트, 트리프로필암모늄 테트라키스(페닐)알루미네이트, 트리부틸암모늄 테트라키스(페닐)알루미네이트, 트리메틸암모늄 테트라키스(p-톨릴)알루미네이트, 트리프로필암모늄 테트라키스(p-톨릴)알루미네이트, 트리에틸암모늄 테트라키스(o,p-디메틸페닐)알루미네이트, 트리부틸암모늄 테트라키스(p-트리플루오로메틸페닐)알루미네이트, 트리메틸암모늄 테트라키스(p-트리플루오로메틸페닐)알루미네이트, 트리부틸암모늄 테트라키스(펜타플루오로페닐)알루미네이트, N,N-디에틸아닐리늄 테트라키스(페닐)알루미네이트, N,N-디에틸아닐리늄 테트라키스(페닐)알루미네이트, N,N-디에틸아닐리늄 테트라키스(펜타플루오로페닐)알루미네이트, 디에틸암모늄 테트라키스(펜타플루오로페닐)알루미네이트, 트리페닐포스포늄 테트라키스(페닐)알루미네이트, 트리메틸포스포늄 테트라키스(페닐)알루미네이트, 트리에틸암모늄 테트라키스(페닐)알루미네이트, 및 트리부틸암모늄 테트라키스(페닐)알루미네이트로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함하는 것을 특징으로 하는 고밀도 에틸렌계 중합체.
  14. 제 7항에 있어서,
    상기 제 1메탈로센 화합물 및 상기 제 2메탈로센 화합물의 전이금속의 총 질량과 상기 담체의 질량비는 1:1 내지 1:1000 이며;
    상기 제 1메탈로센 화합물 대 상기 제 2메탈로센 화합물의 질량비는 1:100 내지 100:1 인 것을 특징으로 하는 고밀도 에틸렌계 중합체.
  15. 제 10항에 있어서,
    상기 화학식 3 및 4로 표시되는 조촉매 화합물 대 상기 담체의 질량비는 1:100 내지 100:1 이며;
    상기 화학식 5 및 6으로 표시되는 조촉매 화학물 대 상기 담체의 질량비는 1:20 내지 20:1 인 것을 특징으로 하는 고밀도 에틸렌계 중합체.
  16. 제 7항에 있어서,
    상기 담체는,
    실리카, 알루미나, 산화티탄, 제올라이트, 산화아연 및 전분으로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함하며;
    상기 담체는 평균입도가 10 내지 250 마이크론이며;
    미세기공 부피는 0.1 내지 10cc/g 이며;
    비표면적은 1 내지 1000 m2/g 인 것을 특징으로 하는 고밀도 에틸렌계 중합체.
  17. 오토클레이브 반응기 또는 기상중합 반응기에 제7항에 따른 혼성 담지 촉매와 에틸렌 및 알파 올레핀으로 이루어진 군으로부터 선택된 적어도 하나 이상의 알파 올레핀 단량체를 투입하여 온도는 0 내지 120 ℃, 압력은 1 내지 150 바의 환경에서 고밀도 에틸렌계 중합체로 중합하는 단계를 더 포함하는 것을 특징으로 하는 고밀도 에틸렌계 중합체 제조방법.
  18. 제 17항에 있어서,
    상기 알파 올레핀 단량체는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 및 1-아이토센으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 고밀도 에틸렌계 중합체 제조방법.
PCT/KR2017/003840 2016-07-28 2017-04-07 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법 WO2018021656A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019503944A JP6772365B2 (ja) 2016-07-28 2017-04-07 混成担持メタロセン触媒を用いた高加工性高密度エチレン系重合体及び製造方法
EP17834601.1A EP3492498A4 (en) 2016-07-28 2017-04-07 HIGH DENSITY ETHYLENE-BASED ETHYLENE-BASED POLYMER WITH GOOD PROCESSABILITY USING A HYBRID-CARRIED METALLOCEN CATALYST AND PRODUCTION METHOD THEREFOR
US16/321,114 US10975173B2 (en) 2016-07-28 2017-04-07 High-processability high-density ethylene-based polymer using hybrid supported metallocene catalyst, and preparation method therefor
CN201780046389.5A CN109496219A (zh) 2016-07-28 2017-04-07 利用复合负载型茂金属催化剂的高加工性高密度乙烯类聚合物及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160096133A KR101723774B1 (ko) 2016-07-28 2016-07-28 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법
KR10-2016-0096133 2016-07-28

Publications (1)

Publication Number Publication Date
WO2018021656A1 true WO2018021656A1 (ko) 2018-02-01

Family

ID=58703830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003840 WO2018021656A1 (ko) 2016-07-28 2017-04-07 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법

Country Status (6)

Country Link
US (1) US10975173B2 (ko)
EP (1) EP3492498A4 (ko)
JP (1) JP6772365B2 (ko)
KR (1) KR101723774B1 (ko)
CN (1) CN109496219A (ko)
WO (1) WO2018021656A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142894A (zh) * 2019-09-25 2020-12-29 中国科学院化学研究所 有机硅烷在制备高密度聚乙烯中的应用和高密度聚乙烯及其制备方法和应用
US11084894B2 (en) 2018-02-12 2021-08-10 Exxonmobil Chemical Patents Inc. Catalyst systems and processes for poly alpha-olefin having high vinylidene content
CN113302211A (zh) * 2018-12-03 2021-08-24 韩华思路信株式会社 用于聚合烯烃的催化剂的制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101711788B1 (ko) 2016-03-09 2017-03-14 한화케미칼 주식회사 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
KR101692346B1 (ko) * 2016-04-27 2017-01-03 한화케미칼 주식회사 혼성 담지 메탈로센 촉매를 이용한 고밀도 에틸렌계 중합체 및 제조방법
CN115575437A (zh) 2017-08-22 2023-01-06 Lg化学株式会社 用于评价塑料树脂的注射物理性质的方法,以及用于注射成型的聚乙烯树脂
KR20190071187A (ko) * 2017-12-14 2019-06-24 한화케미칼 주식회사 장기 내압 특성이 우수한 에틸렌계 중합체 및 이를 이용한 파이프
KR102285143B1 (ko) * 2018-11-19 2021-08-02 한화솔루션 주식회사 올레핀 중합용 촉매의 제조방법
KR102427756B1 (ko) 2018-12-10 2022-08-01 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
KR102431339B1 (ko) 2018-12-10 2022-08-10 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
CN117229436A (zh) * 2018-12-10 2023-12-15 Lg化学株式会社 聚乙烯及其氯化聚乙烯
WO2020122562A1 (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2020122561A1 (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2020122563A1 (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
KR102427755B1 (ko) 2018-12-10 2022-08-01 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525150B1 (en) 1999-04-23 2003-02-25 Jsr Corporation Olefin polymerization catalysts and olefin polymer production methods using said olefin polymerization catalysts
KR20040093465A (ko) * 2003-04-28 2004-11-05 도소 가부시키가이샤 폴리에틸렌 조성물 및 그 제조방법
JP2007177168A (ja) * 2005-12-28 2007-07-12 Nippon Polyethylene Kk ポリエチレン系フィルム及びその積層フィルム並びにそれらから形成される包装用袋体
JP2007197722A (ja) * 2005-12-28 2007-08-09 Nippon Polyethylene Kk エチレン系樹脂組成物によるフィルム
JP2011117006A (ja) * 2004-01-09 2011-06-16 Chevron Phillips Chemical Co Lp 触媒組成物及び押出コーティング用途のポリオレフィン
KR20140004116A (ko) * 2010-12-02 2014-01-10 에이비비 오와이 프로펠러 샤프트를 위한 밀봉 장치, 및 프로펠러 샤프트를 밀봉하는 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149761A (ja) * 2002-09-02 2004-05-27 Sumitomo Chem Co Ltd エチレン重合体
KR100579843B1 (ko) 2003-04-01 2006-05-12 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 그의 제조방법과 이를 이용한폴리올레핀의 제조방법
US7226886B2 (en) 2005-09-15 2007-06-05 Chevron Phillips Chemical Company, L.P. Polymerization catalysts and process for producing bimodal polymers in a single reactor
JP2009533513A (ja) * 2006-04-13 2009-09-17 トータル・ペトロケミカルズ・リサーチ・フエリユイ 低密度および中密度の分岐ポリエチレン
WO2008136621A1 (en) 2007-05-02 2008-11-13 Lg Chem, Ltd. Polyolefin and preparation method thereof
JP5392015B2 (ja) * 2008-11-11 2014-01-22 住友化学株式会社 エチレン−α−オレフィン共重合体及び成形体
KR101528603B1 (ko) 2012-09-27 2015-06-12 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
JP6065797B2 (ja) * 2013-03-28 2017-01-25 日本ポリエチレン株式会社 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP6065796B2 (ja) * 2013-03-28 2017-01-25 日本ポリエチレン株式会社 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
WO2016036204A1 (ko) 2014-09-05 2016-03-10 주식회사 엘지화학 가공성이 우수한 올레핀계 중합체
EP3274381B1 (en) * 2015-04-20 2019-05-15 ExxonMobil Chemical Patents Inc. Catalyst composition comprising fluorided support and processes for use thereof
WO2017115927A1 (ko) * 2015-12-31 2017-07-06 한화케미칼 주식회사 혼성 메탈로센 담지 촉매, 이를 이용한 올레핀 중합체의 제조방법 및 용융강도가 향상된 올레핀 중합체
KR101711788B1 (ko) * 2016-03-09 2017-03-14 한화케미칼 주식회사 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525150B1 (en) 1999-04-23 2003-02-25 Jsr Corporation Olefin polymerization catalysts and olefin polymer production methods using said olefin polymerization catalysts
KR20040093465A (ko) * 2003-04-28 2004-11-05 도소 가부시키가이샤 폴리에틸렌 조성물 및 그 제조방법
JP2011117006A (ja) * 2004-01-09 2011-06-16 Chevron Phillips Chemical Co Lp 触媒組成物及び押出コーティング用途のポリオレフィン
JP2007177168A (ja) * 2005-12-28 2007-07-12 Nippon Polyethylene Kk ポリエチレン系フィルム及びその積層フィルム並びにそれらから形成される包装用袋体
JP2007197722A (ja) * 2005-12-28 2007-08-09 Nippon Polyethylene Kk エチレン系樹脂組成物によるフィルム
KR20140004116A (ko) * 2010-12-02 2014-01-10 에이비비 오와이 프로펠러 샤프트를 위한 밀봉 장치, 및 프로펠러 샤프트를 밀봉하는 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3492498A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11084894B2 (en) 2018-02-12 2021-08-10 Exxonmobil Chemical Patents Inc. Catalyst systems and processes for poly alpha-olefin having high vinylidene content
CN113302211A (zh) * 2018-12-03 2021-08-24 韩华思路信株式会社 用于聚合烯烃的催化剂的制备方法
EP3875496A4 (en) * 2018-12-03 2022-08-10 Hanwha Solutions Corporation CATALYST PREPARATION PROCESS FOR OLEFIN POLYMERIZATION
CN112142894A (zh) * 2019-09-25 2020-12-29 中国科学院化学研究所 有机硅烷在制备高密度聚乙烯中的应用和高密度聚乙烯及其制备方法和应用
CN112142894B (zh) * 2019-09-25 2021-05-25 中国科学院化学研究所 有机硅烷在制备高密度聚乙烯中的应用和高密度聚乙烯及其制备方法和应用

Also Published As

Publication number Publication date
JP2019523325A (ja) 2019-08-22
JP6772365B2 (ja) 2020-10-21
CN109496219A (zh) 2019-03-19
EP3492498A4 (en) 2020-04-15
US10975173B2 (en) 2021-04-13
US20190169323A1 (en) 2019-06-06
EP3492498A1 (en) 2019-06-05
KR101723774B1 (ko) 2017-04-18

Similar Documents

Publication Publication Date Title
WO2018021656A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법
WO2017188569A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고밀도 에틸렌계 중합체 및 제조방법
WO2017209372A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고밀도 에틸렌계 중합체 및 제조방법
WO2017188602A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
WO2017155149A1 (ko) 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
WO2018110915A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법
WO2019125050A1 (ko) 올레핀계 중합체
WO2015046931A1 (ko) 올레핀계 중합체의 제조방법 및 이에 의해 제조된 올레핀계 중합체
WO2019117443A1 (ko) 장기 내압 특성이 우수한 에틸렌계 중합체 및 이를 이용한 파이프
WO2017099491A1 (ko) 올레핀계 중합체
WO2019212303A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
WO2021040139A1 (ko) 올레핀계 공중합체 및 이의 제조방법
WO2020171631A1 (ko) 올레핀계 중합체
WO2017176074A1 (ko) 용융 장력이 우수한 프로필렌-디엔 공중합체 수지
WO2019132475A1 (ko) 올레핀계 중합체
WO2019212309A1 (ko) 에틸렌/알파-올레핀 공중합체를 포함하는 접착제 조성물
WO2019093630A1 (ko) 고용융장력 폴리프로필렌 수지 제조방법
WO2019212310A1 (ko) 에틸렌/알파-올레핀 공중합체를 포함하는 접착제 조성물
WO2019013595A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고밀도 에틸렌계 중합체 및 이를 이용한 파이프
WO2019212304A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
WO2020101373A1 (ko) 프로필렌 중합용 담지촉매 및 이를 이용하는 폴리프로필렌 수지의 제조방법
WO2019132471A1 (ko) 올레핀계 중합체
WO2021075788A1 (ko) 올레핀 중합용 혼성 촉매의 제조방법, 올레핀 중합용 혼성 촉매 및 올레핀계 중합체
WO2019234637A1 (en) Ethylene polymer mixture, method of preparing the same, and molded article using the same
WO2017003262A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503944

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834601

Country of ref document: EP

Effective date: 20190228