WO2018019101A1 - 一种蓄电池实时荷电状态的测算方法及测算装置、存储介质 - Google Patents

一种蓄电池实时荷电状态的测算方法及测算装置、存储介质 Download PDF

Info

Publication number
WO2018019101A1
WO2018019101A1 PCT/CN2017/091820 CN2017091820W WO2018019101A1 WO 2018019101 A1 WO2018019101 A1 WO 2018019101A1 CN 2017091820 W CN2017091820 W CN 2017091820W WO 2018019101 A1 WO2018019101 A1 WO 2018019101A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
tested
discharge
charging
current
Prior art date
Application number
PCT/CN2017/091820
Other languages
English (en)
French (fr)
Inventor
吴来强
汪勇
杨安
龙明星
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018019101A1 publication Critical patent/WO2018019101A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration

Definitions

  • the invention relates to the technical field of battery management, in particular to a method for calculating a state of charge of a battery.
  • the invention also relates to a measuring device and a storage medium for real-time state of charge of a battery.
  • batteries are increasingly used in the field of communication, and have become an indispensable part of the base station system, and the state of charge of the battery (State of Charge, The calculation of SOC) is again a top priority.
  • the state of charge is also called the remaining capacity, which represents the ratio of the remaining capacity of the battery after a period of use or long-term suspension, to the capacity of its fully charged state, expressed as a percentage.
  • the accurate estimation of the battery SOC not only facilitates the implementation of some battery refinement management strategies for the current state of charge of the battery, but also maximizes the usable performance of the battery and extends the service life of the battery.
  • the existing techniques for measuring battery SOC mainly include open circuit voltage method, Kalman filter and direct cum accumulation method.
  • the open circuit voltage method requires the battery to be tested in the open state, and the battery in the communication power supply as the backup battery does not allow the battery to be disconnected, so the open circuit voltage method is not suitable for the online estimation of the battery SOC in the communication power source.
  • the Kalman filter method needs to accurately estimate the statistical properties of the noise in the state equation and the observation equation. Otherwise, the filter will be diverged and even an abnormal battery SOC estimation value will be obtained.
  • the Kalman filter algorithm depends on the battery.
  • the open circuit voltage which results in an inaccurate estimation of the state of charge of the battery during the constant voltage phase of battery charging.
  • the direct cumulation method is only the accumulation of the product of current and time.
  • the technical problem to be solved by the present invention is to provide a method for calculating a real-time state of charge of a battery, a measuring device, and a storage medium.
  • the technical solution of the present invention fully evaluates the state of health (SOH) of the battery, combined with the charging process.
  • SOH state of health
  • an embodiment of the present invention provides a method for calculating a real-time state of charge of a battery, and calculates a real-time state of charge of the battery by using an ampere-hour accumulation method, including the following steps:
  • the change of the state of charge of the battery to be tested is calculated by ampere-hour accumulation, and the aging time accumulation parameter is corrected by using the charging efficiency, the aging degree and the rate of change of the discharge capacity.
  • the modified ampere-hour accumulation parameter comprises: the charging process of the battery to be tested adopts the aging degree and the charging efficiency to correct the ampere-accumulated parameter of the state of charge, and the aging degree and the discharge capacity are adopted in the discharging process.
  • the rate of change corrects the cumulated cumulative parameters of the state of charge.
  • the charging efficiency coefficient E is used to measure the charging efficiency of the battery to be tested, and E is the ratio of the accumulated electric quantity of the battery charging to the discharge capacity, which is 1 in the discharging process;
  • the health state value SOH is used.
  • the aging degree of the battery to be tested, SOH is the ratio of the actual usable capacity of the battery to the nominal capacity;
  • the Puckett correction coefficient ⁇ i is used to measure the rate of change of the discharge capacity of the battery to be tested, and ⁇ i is the rated discharge of the battery respectively
  • the ratio of the discharge capacity at the current and the discharge at the current i is 1 in the charging process;
  • the formula for calculating the change in the state of charge by correcting the ampere-hour is:
  • SOC k is the state of charge state at the kth time point
  • SOC k-1 is the state of charge state of the adjacent k-1 point
  • ⁇ t is between the k-1 point and the k point Time interval
  • C is the nominal capacity of the battery to be tested
  • i is positive during charging and negative during discharging.
  • the step of calibrating the charging efficiency coefficient E of the battery to be tested comprises: performing a charge and discharge test using the same type of battery of the battery to be tested, discharging the battery to a predetermined discharge depth at a rated discharge current; and respectively selecting the charging current Charging the battery to a set charging depth; then discharging the battery to the predetermined depth of discharge with the reference current again; the charging efficiency coefficient of the battery for charging and discharging is:
  • Q 1 is the amount of electricity charged by the battery
  • Q 2 is the amount of electricity discharged by the battery
  • batteries of different degrees of aging are selected, and a plurality of different depths of discharge, charging current and charging depth are respectively selected, and the charging and discharging are repeated a plurality of times.
  • the test based on the obtained test data, fits a functional expression of E with respect to the battery previous discharge depth value DOD, the health state value SOH, and the charging current.
  • the step of estimating the battery health status value SOH of the battery to be tested comprises: first discharging the battery to be tested to a cut-off voltage with a rated discharge current, and then charging the battery to be tested; setting a calibration coefficient ⁇ , when the current value of the charging is lowered When it is ⁇ C, the ampere-hour integrated value of the charge amount at this time is taken as the actual usable capacity of the battery to be tested.
  • the value of the calibration coefficient ⁇ is 0.01
  • the step of calibrating the Pucker correction coefficient ⁇ i of the battery to be tested comprises: discharging the battery to be tested through a rated discharge current and a plurality of discharge currents smaller than and greater than the rated discharge current to a cut-off voltage, respectively.
  • the cumulative calculation calculates the actual discharge capacity of the battery under test at different discharge currents, and calculates the corresponding relationship between ⁇ i of the battery to be tested and different current i values.
  • the embodiment of the invention further provides a measuring device for real-time state of charge of the battery, comprising a voltage detecting unit and a current detecting unit respectively connected in parallel and in series with the battery to be tested, and further comprising a centralized controller, wherein:
  • the centralized controller is connected to the voltage detecting unit and the current detecting unit; and has a built-in measuring program for measuring the real-time state of charge of the battery, and is used for controlling the state of charge of the battery to be tested during charging and discharging, and the calculating
  • the steps of the program include:
  • the change of the state of charge of the battery to be tested is calculated by ampere-hour accumulation, and the aging time accumulation parameter is corrected by using the charging efficiency, the aging degree and the rate of change of the discharge capacity.
  • the calculating procedure specifically includes: measuring a charging efficiency of the battery to be tested by using a charging efficiency coefficient E, and E is a ratio of an accumulated electric quantity of the battery charged to a discharge capacity; and adopting a health state value SOH metric Describe the aging degree of the battery to be tested, SOH is the ratio of the actual usable capacity of the battery to the nominal capacity; the Puckett correction coefficient ⁇ i is used to measure the rate of change of the discharge capacity of the battery to be tested, and ⁇ i is the rated discharge current of the battery respectively The ratio of the discharge capacity at the time of discharge under current i.
  • the measuring program further comprises: setting ⁇ i to 1 during the charging process of the battery to be tested, taking the current i to be positive, calculating E according to the current i value; setting E to 1 during the discharging of the battery to be tested , taking the negative current i, [omega] i is calculated from the current value of i; change of the state of charge is obtained by integrating the calculation of the correction Ann:
  • SOC k is the state of charge state at the kth time point
  • SOC k-1 is the state of charge state of the adjacent k-1 point
  • ⁇ t is between the k-1 point and the k point Time interval
  • C is the nominal capacity of the battery to be tested.
  • the SOH is calculated and updated when the preset calculation condition is met.
  • a display connected to the centralized controller is further included.
  • a battery protection unit in series with the battery to be tested is further included.
  • the embodiment of the invention further provides a storage medium, wherein the storage medium comprises a stored program, wherein the method for calculating the real-time state of charge of the battery is executed when the program is running.
  • Embodiments of the present invention provide a new method and apparatus for measuring battery SOC, which is The technical solution is to improve the existing ampere-accumulation method by evaluating the state of health (SOH) of the battery, the charging efficiency during charging, and the effect of the discharge current during discharge on the SOC of the battery.
  • SOH state of health
  • the above technical solution has the beneficial effects of fully considering the influence of the power efficiency conversion during the charging process of the battery, the aging of the battery and the actual discharge capacity during the discharge process on the state of charge, and the charging of the battery.
  • the state has a more scientific and reasonable understanding, which can more accurately estimate the state of charge of the battery; at the same time, it can improve the stability of the estimation result and avoid the abnormal jump of the estimated value caused by the Kalman filter divergence.
  • FIG. 1 is a schematic diagram of basic steps of measuring a real-time SOC of a battery according to an embodiment of the present invention
  • FIG. 2 is a flowchart of measuring a real-time SOC according to an embodiment of the present invention
  • FIG. 3 is a system connection diagram when real-time SOC measurement is performed according to an embodiment of the present invention.
  • Figure 4 is a comparison chart of the theoretical and estimated SOC values measured by the method of the method of the present invention.
  • Figure 5 is a comparison of the theoretical and estimated SOC values measured by the method of the embodiment of the method of the present invention.
  • 1-centralized controller 2-voltage detecting unit; 3-current detecting unit; 4-display; 5-battery protection unit; 6-battery to be tested; 7-AC power supply; 8-rectifier;
  • the technical scheme adopted by the invention improves the existing ampere-accumulation method by evaluating the health state of the battery, the charging efficiency during charging, and the magnitude of the discharge current during the discharge process, thereby being more accurate. Get the real-time SOC of the battery.
  • FIG. 1 is a method for measuring a state of charge of a battery according to an embodiment of the present invention, and calculating a real-time state of charge of the battery to be tested by using an ampere-time accumulation method, including the following steps:
  • the charging efficiency of the battery to be tested is measured by a charging efficiency coefficient E, and the degree of aging of the battery to be tested is measured by a health state value SOH; the battery to be tested is measured by a Puckett correction coefficient ⁇ i The rate of change in discharge capacity at the time of discharge of current i.
  • the charging efficiency coefficient E refers to the ratio of the accumulated electric quantity of the battery charged to the discharge capacity, which is usually expressed as a percentage, which is the same as the Depth of Discharge (DOD), SOH, and the current of the charging current. related.
  • the battery will be discharged to the reference current I base to a predetermined depth of discharge, the reference current I base for the battery discharge rate corresponding to the nominal rated discharge current; separately and then to select
  • the charging current I charges the battery to a preset charging depth, and then discharges the battery to the preset discharge depth again by I base ; the battery (Ah) charged with the battery is Q 1 , and the battery is discharged.
  • the electric quantity is Q 2
  • the charging efficiency of the battery charging and discharging is:
  • the health status value SOH refers to the ratio of the actual available capacity of the battery to the nominal capacity, which reflects the degree of aging of the battery.
  • the battery to be tested is discharged to a cut-off voltage by a constant current of the current I base , and then the battery to be tested is charged; the calibration coefficient ⁇ is set, and when the current value of the charging is reduced to ⁇ C, the battery is charged at this time.
  • the accumulated value is taken as the actual available capacity of the battery to be tested.
  • C is the nominal capacity value of the battery
  • the unit of ⁇ C is the current unit safety (A).
  • the capacity of lead-acid batteries varies with the magnitude of the discharge current.
  • Peukert proposed in 1898 the empirical formula for the relationship between the capacity or discharge time of lead-acid batteries and the discharge current, that is, the Peukert equation, which is expressed in the form of :
  • C represents the actual usable capacity of the battery
  • t is the discharge time
  • I is the discharge current
  • n is the Puckert constant, and is related to the battery structure, especially the thickness of the plate
  • K is a constant indicating the theoretical capacity of the battery, and the battery The amount of active substance is related.
  • the Puckett correction coefficient ⁇ i refers to the ratio of the discharge capacity of the battery at the rated discharge current and the discharge at the current i respectively.
  • the discharge capacity is taken as the actual usable capacity at a specific current, which can be obtained by the aforementioned Puckert equation. Push the following formula:
  • C I represents the discharge capacity that the battery can discharge with a constant current discharge of current I
  • C i represents the discharge capacity that the battery can discharge with a constant current discharge of current i
  • n is the Pockert constant to be measured
  • ⁇ i Specter correction coefficient
  • the preferred method for calibrating the Pockett correction coefficient ⁇ i in the embodiment of the present invention is:
  • the charging efficiency coefficient E, the health state value SOH, and the Puckett correction coefficient ⁇ i can be obtained, and the parameters accumulated by the above-mentioned parameters are corrected, and the formula for calculating the SOC change by the chronograph is:
  • SOC k is the state of charge state at the kth time point
  • SOC k-1 is the state of charge state of the adjacent k-1 point
  • ⁇ t is the k-1 point and k point
  • C is the nominal capacity of the battery to be tested
  • the real-time SOC value of the battery to be tested is obtained by accumulating the segmental SOC calculated separately during the charging and discharging process, and the specificity of the SOC is measured in this embodiment.
  • the process is shown in Figure 2 and includes:
  • the charging efficiency coefficient E is calculated, and the ampere-hour cumulative parameter is corrected in combination with the pre-measured health state value SOH to calculate the SOC value change during the charging process; when the SOH calculation condition is satisfied, Calculate and update the SOH. The subsequent calculations are all based on the updated SOH.
  • the SOC value of the battery to be tested can be obtained more accurately.
  • the calculation condition of the SOH can be set in advance, such as timing calculation or other trigger conditions, such as Wait Measure the number of battery cycles, etc., and can be freely set according to requirements during the specific implementation process;
  • the Pucker correction coefficient ⁇ i is calculated, and the SOH is used to correct the cumulating parameter, and the SOC value change during the discharging process is calculated;
  • the SOC value increases with time during charging, while the SOC value decreases with time during discharge, and the cumulated cumulative parameters as described above have different corrections during charging and discharging, so when calculating the SOC change using the above formula
  • the current i value is taken as positive, and the ⁇ i value is set to a constant 1; during the discharging process, the current i value is taken to be negative, and the E value is set to a constant 1 .
  • Another embodiment of the present invention provides a measuring device for measuring a battery SOC using the foregoing method.
  • the voltage detecting unit 2 and the current detecting unit 3 are respectively connected in parallel and in series with the battery 6 to be tested, and further includes a centralized controller. 1, where:
  • the centralized controller 1 is connected to the voltage detecting unit 2 and the current detecting unit 3, and has a built-in measuring program for measuring the real-time SOC of the battery, and can control the battery 6 to be tested for SOC calculation during charging and discharging, and the measuring program is
  • the foregoing real-time SOC calculation method is set, and the steps thereof include:
  • SOC k is the state of charge state at the kth time point
  • SOC k-1 is the state of charge state of the adjacent k-1 point
  • ⁇ t is between the k-1 point and the k point Time interval
  • C is the nominal capacity of the battery 6 to be tested
  • the centralized controller 1 may also be connected to other measuring components, such as a temperature measuring unit for measuring the temperature of the battery, etc.; the measuring device further includes a display 4 connected to the centralized controller 1 in the connecting circuit. It is also possible to increase the power storage in series with the battery 6 to be tested. Pool protection unit 5.
  • the centralized controller 1 When the measuring device is in operation, the centralized controller 1 is responsible for controlling each unit to monitor the voltage, current, temperature of the battery 6 to be tested and executing a built-in program for measuring the real-time SOC of the battery; the circuit of the battery 6 to be tested and the AC power source 7 and the rectifier 8 When it is turned on, charging starts, and the centralized controller 1 starts the SOC measurement of the charging process; when the circuit of the battery 6 to be tested and the load 9 is turned on, the discharge starts, and the centralized controller 1 starts the SOC measurement of the discharging process.
  • the preset discharge depth is set, that is, the DOD values are 90%, 70%, 60%, and 40%, respectively; the test can be fitted to obtain E as the battery DOD, SOH.
  • the preset discharge depth is set, that is, the DOD values are 90%, 70%, 60%, and 40%, respectively; the test can be fitted to obtain E as the battery DOD, SOH.
  • the specific expression of the function of the current is selected from
  • the battery to be tested is charged in a constant current-constant voltage mode, that is, the first stage of charging is charged with a constant current, and when the voltage reaches a predetermined value, it is transferred to the second stage for constant voltage charging, at which time the charging current is gradually decreased, and the charging current is selected.
  • the total discharge capacity can be calculated according to the above formula of discharge current and discharge capacity derived from the Pockert equation; after having the value of n, the Pockert correction can be obtained in real time according to the current value i of the discharge. coefficient ⁇ i.
  • the real-time SOC is measured according to the flow shown in Fig. 2.
  • the battery SOC measurement results as shown in FIGS. 4 and 5 can be obtained.
  • the abscissa represents the time scale in seconds (s)
  • the left ordinate represents the battery voltage in volts (V)
  • the right ordinate represents the SOC value of the battery
  • the triangle marked curve represents the battery voltage
  • the solid black mark The curve is a SOC theoretical curve obtained from the simulation of the total discharge capacity, and the square-marked curve is the SOC curve estimated by the method described in the embodiment of the present invention.
  • Figure 4 is a comparison chart of the theoretical and estimated SOC values obtained by charging the battery to about 65% and re-discharging. It can be seen from the figure that the maximum error between the estimated value and the theoretical value is about 3%, which is in line with the actual use requirements;
  • Fig. 5 is a comparison chart of the theoretical value and estimated value of the SOC obtained by charging the battery to about 97% and re-discharging. It can be seen from the figure that the maximum error between the estimated value and the theoretical value is about 4%, which is in accordance with the actual use requirements.
  • the technical solution adopted by the battery is to evaluate the state of health (SOH) of the battery, the charging efficiency during the charging process, and the discharge current during the discharging process. Influence, thereby improving the existing ampere-accumulation method.
  • the embodiment of the invention fully considers the influence of the power efficiency conversion during the charging process of the battery, the aging of the battery and the actual discharge capacity during the discharge process on the state of charge, and has a more scientific and reasonable understanding of the state of charge of the battery, which can be more Accurately estimate the state of charge of the battery; at the same time, it can improve the stability of the estimation result and avoid the abnormal jump of the estimated value caused by the Kalman filter divergence.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种蓄电池实时荷电状态的测算方法、测算装置及存储介质,通过获取待测蓄电池的充电效率系数E、健康状态值SOH和普克特校正系数ω i评估待测蓄电池的充电过程中的充电效率、健康状态及放电过程中放电电流大小对蓄电池SOC的影响,改进直接安时累计法。该测算方法充分考虑了蓄电池充电过程中的电量效率转换、放电过程中的实际放电容量和蓄电池的老化因素,对蓄电池的荷电状态有了更科学合理的认识,可以更加准确的估算蓄电池的荷电状态;同时也提高了估算的稳定性,不会出现卡尔曼滤波发散导致估算值异常跳变的情况。

Description

一种蓄电池实时荷电状态的测算方法及测算装置、存储介质 技术领域
本发明涉及电池管理技术领域,特别涉及到蓄电池荷电状态的测算方法。本发明还涉及了一种蓄电池实时荷电状态的测算装置、存储介质。
背景技术
蓄电池,特别是铅酸蓄电池作为一种低成本高效能的储能电源被越来越多地应用于通信领域,已经成为基站***不可或缺的一部分,而蓄电池的荷电状态(State of Charge,SOC)的测算又是重中之重。荷电状态也叫剩余电量,代表的是蓄电池使用一段时间或长期搁置不用后的剩余容量与其完全充电状态的容量的比值,常用百分数表示。精确的蓄电池SOC的估算不仅有利于针对蓄电池的当前荷电状态实施一些蓄电池精细化管理策略,而且可以最大程度地发挥蓄电池的可用性能和延长蓄电池的使用寿命。
现有的测算电池SOC的技术主要有开路电压法、卡尔曼滤波和直接安时累计法等。开路电压法需要电池在断路状态下进行测试,而通信电源中的蓄电池做为备用电池是不允许蓄电池断路的,所以开路电压法不适合通信电源中蓄电池SOC的在线估算。卡尔曼滤波法需要对状态方程和观测方程中噪声的统计特性有准确的估算,否则会导致滤波器发散,甚至得到异常的蓄电池SOC的估算值;另一方面,卡尔曼滤波算法依赖于电池的开路电压,这导致在蓄电池充电的恒压阶段无法准确估算蓄电池的荷电状态。直接安时累计法仅仅是电流和时间乘积的累计,没有考虑充电过程中的效率转换问题和放电过程中由于放电电流大小的不同对SOC的影响,从而造成误差,更糟糕的是这种误差会累计,最终导致估算的SOC值失效。另外,卡尔曼滤波和直接安时法也没有考虑蓄电池老化对蓄电池SOC的影响。
发明内容
本发明要解决的技术问题是提供一种蓄电池实时荷电状态的测算方法及测算装置、存储介质,本发明技术方案充分评估了蓄电池的健康状态(State of Health,SOH),结合充电过程中的充电效率以及放电过程中放电电流的大小对蓄电池SOC的影响,更好的改进了现有安时累计法,可以更准确的获取蓄电池的实时SOC。
为解决上述技术问题,本发明实施例提供了一种蓄电池实时荷电状态的测算方法,使用安时累计法计算蓄电池实时的荷电状态,包括以下步骤:
获取待测蓄电池对应不同充电电流的充电效率;
获取所述待测蓄电池的老化程度;
获取所述待测蓄电池在不同放电电流下的放电容量变化率;
通过安时累计计算所述待测蓄电池的荷电状态变化,计算时采用所述充电效率、老化程度和放电容量变化率修正安时累计参数。
优选的,所述修正安时累计参数包括:所述待测蓄电池的充电过程采用所述老化程度和充电效率对荷电状态的安时累计参数进行修正,放电过程采用所述老化程度和放电容量变化率对荷电状态的安时累计参数进行修正。
优选的,采用充电效率系数E度量所述待测蓄电池的充电效率,E为蓄电池充入的安时累计电量可转换为放电容量的比率,放电过程中取值为1;采用健康状态值SOH度量所述待测蓄电池的老化程度,SOH为蓄电池实际可用容量与标称容量的比值;采用普克特校正系数ωi度量所述待测蓄电池的放电容量变化率,ωi为蓄电池分别在额定放电电流下和在电流i下放电时的放电容量比值,充电过程中取值为1;通过修正安时累计计算所述荷电状态变化的公式为:
Figure PCTCN2017091820-appb-000001
其中,SOCk为第k个时点的荷电状态值,SOCk-1为相邻的k-1时点的荷电状态值,Δt为所述k-1时点和k时点间的时间间隔;C为待测蓄电池 的标称容量;i在充电过程中取正,在放电过程中取负。
作为优选,标定待测蓄电池充电效率系数E的步骤包括:使用待测蓄电池的同型蓄电池进行充放电测试,将蓄电池以额定放电电流放电到预设的放电深度;再分别以选定的充电电流将蓄电池充电至设定的充电深度;然后再次以基准电流将蓄电池放电到所述预设的放电深度;蓄电池该次充放电的充电效率系数为:
E=(Q2/Q1)×100%
其中,Q1为蓄电池充入的电量,Q2为蓄电池放出的电量;选择不同老化程度的蓄电池,并分别选取多个不同的放电深度、充电电流和充电深度,重复进行多次所述充放电测试,根据获得的测试数据拟合出E相对蓄电池前次放电深度值DOD、健康状态值SOH和充电电流的函数表达式。
作为优选,估算待测蓄电池健康状态值SOH的步骤包括:先将待测蓄电池以额定放电电流恒流放电至截止电压,然后给待测蓄电池充电;设定标定系数η,当充电的电流值降至η·C时,将此时充入电量的安时累计值作为待测蓄电池的所述实际可用容量。
优选的,所述标定系数η的值取0.01
作为优选,标定待测蓄电池普克特校正系数ωi的步骤包括:将待测蓄电池通过额定放电电流以及小于和大于所述额定放电电流的多个放电电流分别恒流放电到截止电压,通过安时累计计算获得待测蓄电池在不同放电电流下实际的放电容量,计算得出待测蓄电池的ωi与不同的电流i值的对应关系。
本发明的实施例还提供了一种蓄电池实时荷电状态的测算装置,包括分别与待测蓄电池并联和串联的电压检测单元和电流检测单元,还包括集中控制器,其中:
所述集中控制器连接所述电压检测单元和电流检测单元;其内置有测算蓄电池实时荷电状态的测算程序,用于在充电和放电过程中控制待测蓄电池进行荷电状态测算,所述测算程序的步骤包括:
获取待测蓄电池对应不同充电电流的充电效率;
获取所述待测蓄电池的老化程度;
获取所述待测蓄电池在不同放电电流下的放电容量变化率;
通过安时累计计算所述待测蓄电池的荷电状态变化,计算时采用所述充电效率、老化程度和放电容量变化率修正安时累计参数。
优选的,所述测算程序具体包括:采用充电效率系数E度量所述待测蓄电池的充电效率,E为蓄电池充入的安时累计电量可转换为放电容量的比率;采用健康状态值SOH度量所述待测蓄电池的老化程度,SOH为蓄电池实际可用容量与标称容量的比值;采用普克特校正系数ωi度量所述待测蓄电池的放电容量变化率,ωi为蓄电池分别在额定放电电流下和在电流i下放电时的放电容量比值。
优选的,所述测算程序还包括:在待测蓄电池充电过程中,将ωi设置为1,电流i取正,根据电流i值计算E;在待测蓄电池放电过程中,将E设置为1,电流i取负,根据电流i值计算ωi;通过修正的安时累计计算获得所述荷电状态变化:
Figure PCTCN2017091820-appb-000002
其中,SOCk为第k个时点的荷电状态值,SOCk-1为相邻的k-1时点的荷电状态值,Δt为所述k-1时点和k时点间的时间间隔;C为待测蓄电池的标称容量。
优选的,待测蓄电池充电过程中,满足预设的计算条件时计算并更新SOH。
作为前述测算装置的优选,还包括连接所述集中控制器的显示器。
作为前述测算装置的优选,还包括与待测蓄电池串联的蓄电池保护单元。
本发明实施例还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述蓄电池实时荷电状态的测算方法。
本发明实施例提供了新的测算蓄电池SOC的方法与装置,其采用的 技术方案是通过评估蓄电池的健康状态(State of Health,SOH)、充电过程中的充电效率及放电过程中放电电流大小对蓄电池SOC的影响,从而改进修正现有的安时累计法。
与现有技术相比,上述技术方案的有益效果为:充分考虑了蓄电池充电过程中的电量效率转换、蓄电池的老化和放电过程中的实际放电容量对荷电状态的影响,对蓄电池的荷电状态有了更科学合理的认识,可以更加准确的估算蓄电池的荷电状态值;同时也可以提高估算结果的稳定性,避免了出现卡尔曼滤波发散导致的估算值异常跳变的情况。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例测算蓄电池实时SOC的基本步骤示意图;
图2为本发明实施例测算实时SOC的流程图;
图3为本发明实施例进行实时SOC测算时的***连接图;
图4为采用本发明方法实施例方法所测得的SOC理论值与估算值对比图之一;
图5为采用本发明方法实施例方法所测得的SOC理论值与估算值对比图之二。
[主要元件符号说明]
1-集中控制器;2-电压检测单元;3-电流检测单元;4-显示器;5-蓄电池保护单元;6-待测蓄电池;7-交流电源;8-整流器;9-负载。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例对本发明的技术方案做进一步的详细说明。
本发明采用的技术方案是通过评估电池的健康状态、充电过程中的充电效率以及放电过程中放电电流的大小对电池荷电状态的影响,改进现有的安时累计法,从而可更准确的获取蓄电池的实时SOC。
如图1所示为本发明一实施例所述的测算蓄电池荷电状态的方法,使用安时累计法计算待测蓄电池的实时荷电状态,包括以下步骤:
S1.获取待测蓄电池对应不同充电电流的充电效率;
S2.获取所述待测蓄电池的老化程度;
S3.获取所述待测蓄电池在不同放电电流下的放电容量变化率;
S4.通过安时累计计算所述待测蓄电池的荷电状态变化,计算时采用所述充电效率、老化程度和放电容量变化率修正安时累计参数;作为修正安时累计参数的实施方式,所述待测蓄电池的充电过程采用所述老化程度和充电效率对荷电状态的安时累计参数进行修正,放电过程采用所述老化程度和放电容量变化率对荷电状态的安时累计参数进行修正。
作为具体的实施方式,以充电效率系数E度量所述待测蓄电池的充电效率,以健康状态值SOH度量所述待测蓄电池的老化程度;以普克特校正系数ωi度量所述待测蓄电池以电流i放电时的放电容量变化率。
具体实施方式包括:
1.标定充电效率系数E
充电效率系数E指的是电池充入的安时累计电量可转换为放电容量的比率,通常以百分比表示,其与电池的前次放电深度(Depth of Discharge,DOD)、SOH以及充电的电流大小有关。
本发明实施例中优选的标定充电效率的方法为:
对具有不同SOH值的同型蓄电池进行充放电测试,将蓄电池以基准电流Ibase放电到预设的放电深度,所述基准电流Ibase为蓄电池额定放电率对应的额定放电电流;再分别以选定的充电电流I将蓄电池充电至预设的充电深度,然后再次以Ibase将蓄电池放电到所述预设的放电深度;以蓄电池充入的安时(Ah)电量为Q1,蓄电池放出的安时电量为Q2,则蓄电池该次充放电测算的充电效率为:
E=(Q2/Q1)×100%
选择不同SOH的蓄电池,并分别选取多个不同的DOD值、电流I和充电深度,重复进行多次所述的充放电测试,通过分析测试数据可拟合出充电效率系数E关于蓄电池DOD、SOH和充电电流I的关系式,即E=F(SOH,DOD,I)。
2.估算健康状态值SOH
健康状态值SOH指电池实际可用容量与标称容量的比值,可反映出电池的老化程度。
本发明实施例中优选的估算待测蓄电池SOH值的方法为:
先将待测蓄电池以电流Ibase恒流放电至截止电压,然后给待测蓄电池充电;设定标定系数η,当充电的电流值降至η·C时,将此时充入电量的安时累计值作为待测蓄电池的所述实际可用容量。此处C为蓄电池的标称容量值,η·C的单位为电流单位安(A)。
3.标定普克特校正系数ωi
通常铅酸蓄电池的容量随放电电流的大小而改变,Peukert于1898年提出铅酸蓄电池的容量或放电时间与放电电流之间关系的经验公式,即普克特(Peukert)方程,其表达形式为:
Int=K或C=KI1-n
上式中,C表示电池的实际可用容量,t为放电时间,I为放电电流,n为普克特常数,与蓄电池结构特别是极板厚度有关,K为表示蓄电池理论容量的常数,与蓄电池中活性物质的量有关。
普克特校正系数ωi指电池分别在额定放电电流下和在电流i下放电时的放电容量比值,本实施例中以放电容量作为特定电流下的实际可用容量,由前述普克特方程可推得以下公式:
Figure PCTCN2017091820-appb-000003
上式中,CI表示蓄电池以电流I恒流放电可放出的放电容量,Ci表示蓄电池以电流i恒流放电可放出的放电容量,n为待测量的普克特常数,ωi 为普克特校正系数;上式反映了放电容量与放电电流的关系,放电电流越大,蓄电池放出的容量越少;放电电流越小,蓄电池放出的容量越大;其中,Ci是准确估算蓄电池SOC的必要量之一,将通过多次测量计算得出的n值代入上式即可求得对应不同的电流i的Ci值;取CI为蓄电池在放电电流I取基准电流Ibase时的放电容量,根据电流i的值可推算出蓄电池在以电流i放电时的放电容量Ci的值。
本发明实施例中优选的标定普克特校正系数ωi的方法为:
选取Ibase以及其它小于Ibase和大于Ibase的多个放电电流,将蓄电池恒流放电到截止电压,计算多个不同电流放电的放电容量;通过分析多组放电容量的测试数据,就可以反推得出不同电流i对应的n的取值,从而得到以Ibase为基准的对应不同电流i的普克特校正系数ωi
4.计算蓄电池荷电状态SOC
通过上述步骤1至3,可以得到充电效率系数E、健康状态值SOH以及普克特校正系数ωi,通过上述参数对安时累计的参数进行修正,安时累计计算SOC变化的公式为:
Figure PCTCN2017091820-appb-000004
上式中,SOCk为第k个时点的荷电状态值,SOCk-1为相邻的k-1时点的荷电状态值,Δt为所述k-1时点和k时点间的时间间隔;C为待测蓄电池的标称容量;如上式所示,待测蓄电池的实时SOC值由充电和放电过程中分别计算的分段SOC累计得到,本实施例中测算SOC的具体流程参见图2所示,包括:
获取两个测算时点间的待测蓄电池电流i和Δt;判断待测蓄电池状态:
当待测蓄电池处于充电状态时,计算充电效率系数E,结合预先测量的待测健康状态值SOH对安时累计参数进行修正,计算充电过程中的SOC值变化;当满足SOH的计算条件时,计算并更新SOH,之后的计算均基于更新后的SOH进行修正,可更准确的获得待测蓄电池的SOC值;预先设定SOH的计算条件,如可设定为定时计算或其它触发条件,如待 测蓄电池循环次数等,具体实施过程中可根据需要自由设定;
当待测蓄电池处于放电状态时,计算普克特校正系数ωi,结合SOH对安时累计参数进行修正,计算放电过程中的SOC值变化;
充电过程中SOC值随时间增大,而放电过程中SOC值随时间减小,且如上所述的安时累计参数在充电和放电过程中具有不同的修正,因此在使用上式计算SOC变化时,充电过程中将电流i值取正,且将ωi值设为常数1;放电过程中将电流i值取负,且将E值设为常数1。
本发明另一实施例提供了使用前述方法测算蓄电池SOC的测算装置,如图3所示,包括分别与待测蓄电池6并联和串联的电压检测单元2和电流检测单元3,还包括集中控制器1,其中:
所述集中控制器1连接所述电压检测单元2和电流检测单元3,其内置测算蓄电池实时SOC的测算程序,可在充电和放电过程中控制待测蓄电池6进行SOC测算,所述测算程序按照前述实时SOC的测算方法设置,其步骤包括:
标定待测蓄电池6的充电效率系数E;估算待测蓄电池6的健康状态值SOH;标定对应电流i的待测蓄电池6的普克特校正系数ωi;在待测蓄电池6充电过程中,将ωi设置为1,电流i取正,根据电流i值计算E,且在满足预设的计算条件时计算并更新SOH;在待测蓄电池6放电过程中,将E设置为1,电流i取负,根据电流i值计算ωi;使用修正后的安时累计法计算所述荷电状态变化:
Figure PCTCN2017091820-appb-000005
其中,SOCk为第k个时点的荷电状态值,SOCk-1为相邻的k-1时点的荷电状态值,Δt为所述k-1时点和k时点间的时间间隔;C为待测蓄电池6的标称容量;
作为可选的实施方式,所述集中控制器1还可以连接其它测量元件,如测量蓄电池温度的温度测量单元等;所述测算装置还包括连接所述集中控制器1的显示器4,连接电路中还可以增加与待测蓄电池6串联的蓄电 池保护单元5。
所述测算装置工作时,集中控制器1负责控制各单元监测待测蓄电池6的电压、电流、温度以及执行内置的测算蓄电池实时SOC的程序;待测蓄电池6与交流电源7和整流器8的回路接通时,开始充电,集中控制器1启动充电过程的SOC测算;待测蓄电池6与负载9的回路接通时,开始放电,集中控制器1启动放电过程的SOC测算。
选用四组老化程度不一致的普通铅酸蓄电池作为实验对象,所述蓄电池的标称容量均为4×12V-100Ah,额定放电率为0.05C,具体步骤为:
1.获取充电效率系数E表达式
充电电流Ichg选取0.1C、0.15C和0.2C;充电深度以电流Ideep值作为标识,Ideep=C1×Ichg,C1分别选定为0.7、0.5、0.2和0.1,充电电流Ichg降至Ideep时认为本次充电完成;设定预设的放电深度,即DOD值分别为90%、70%、60%和40%;通过测试计算可拟合获得E作为蓄电池DOD、SOH和电流的函数的具体表达式。
2.获取健康状态值SOH值
将待测蓄电池以恒流-恒压方式充电,即充电第一阶段以恒定电流充电,当电压达到预定值时转入第二阶段进行恒压充电,此时充电电流逐渐减小,充电电流选取0.05C-0.4C之间的值;当充电电流降至η·C安时,取此时的安时累计值为待测蓄电池当前的SOH值;其中η为SOH标定系数,C为待测蓄电池标称容量,本实施例中选取η值为0.01。
3.获取普克特校正系数ωi与i的对应关系
以上述步骤中获得的待测蓄电池的SOH值为准,分别选取0.02C、0.05C、0.08C、0.15C、0.2C和0.25C给待测蓄电池放电至截止电压,并分别记录每次放出的总放电容量,按照前述由普克特方程推导出的放电电流与放电容量的公式可计算出n的取值;具备了n的值后,就可以根据放电的电流值i实时获得普克特校正系数ωi
4.计算待测蓄电池的SOC值
按照图3所示搭建测算***,以上述步骤1至3中获得的数据为准,按照图2所示流程测算实时SOC。
采用上述实施例的方法以及获得的E、SOH和ωi的相关数据,可得到如图4和图5所示的蓄电池SOC测算结果。图中横坐标表示时间刻度,单位为秒(s),左边纵坐标表示蓄电池电压,单位为伏(V),右边纵坐标表示蓄电池的SOC值;三角标记的曲线代表蓄电池电压,实心黑点标记的曲线为根据放电总容量仿真得到的SOC理论曲线,正方形标记的曲线为采用本发明实施例所述方法估算的SOC曲线。
图4为将蓄电池充电到65%左右再放电所得到的SOC理论值与估算值对比图,从图中可以看出,估算值与理论值最大误差约3%,符合实际使用要求;
图5是将蓄电池充电到97%左右再放电所得到的SOC理论值与估算值对比图,从图中可以看出,估算值与理论值误差最大误差约4%,符合实际使用要求。
下表所示为采用上述实施例中修正的安时累计法与采用直接安时累计法分别测算同一蓄电池放电过程的SOC的结果对照:
Figure PCTCN2017091820-appb-000006
从上表中可以看出,采用本发明实施例提供的技术方案进行蓄电池实时SOC的测算时,测得结果的误差远小于直接安时累计法的测算结果,本发明的技术方案具有明显的有益效果。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
在本发明实施例测算蓄电池SOC方法的过程中,其采用的技术方案是通过评估蓄电池的健康状态(State of Health,SOH)、充电过程中的充电效率及放电过程中放电电流大小对蓄电池SOC的影响,从而改进修正现有的安时累计法。本发明实施例充分考虑了蓄电池充电过程中的电量效率转换、蓄电池的老化和放电过程中的实际放电容量对荷电状态的影响,对蓄电池的荷电状态有了更科学合理的认识,可以更加准确的估算蓄电池的荷电状态值;同时也可以提高估算结果的稳定性,避免了出现卡尔曼滤波发散导致的估算值异常跳变的情况。

Claims (14)

  1. 一种蓄电池实时荷电状态的测算方法,包括以下步骤:
    获取待测蓄电池对应不同充电电流的充电效率;
    获取所述待测蓄电池的老化程度;
    获取所述待测蓄电池在不同放电电流下的放电容量变化率;
    通过安时累计计算所述待测蓄电池的荷电状态变化,计算时采用所述充电效率、老化程度和放电容量变化率修正安时累计参数。
  2. 根据权利要求1所述的测算方法,其中,所述修正安时累计参数包括:
    所述待测蓄电池的充电过程采用所述老化程度和充电效率对荷电状态的安时累计参数进行修正,放电过程采用所述老化程度和放电容量变化率对荷电状态的安时累计参数进行修正。
  3. 根据权利要求2所述的测算方法,其中:
    采用充电效率系数E度量所述待测蓄电池的充电效率,E为蓄电池充入的安时累计电量可转换为放电容量的比率,放电过程中取值为1;
    采用健康状态值SOH度量所述待测蓄电池的老化程度,SOH为蓄电池实际可用容量与标称容量的比值;
    采用普克特校正系数ωi度量所述待测蓄电池的放电容量变化率,ωi为蓄电池分别在额定放电电流下和在电流i下放电时的放电容量比值,充电过程中取值为1;
    通过修正安时累计计算所述荷电状态变化的公式为:
    Figure -appb-100001
    其中,SOCk为第k个时点的荷电状态值,SOCk-1为相邻的k-1时点的荷电状态值,Δt为所述k-1时点和k时点间的时间间隔;C为待测蓄电池的标称容量;i在充电过程中取正,在放电过程中取负。
  4. 根据权利要求3所述的测算方法,其中,标定待测蓄电池充电效率系数E的步骤包括:
    使用待测蓄电池的同型蓄电池进行充放电测试,将蓄电池以额定放电 电流放电到预设的放电深度;再分别以选定的充电电流将蓄电池充电至设定的充电深度;然后再次以基准电流将蓄电池放电到所述预设的放电深度;蓄电池该次充放电的充电效率系数为:
    E=(Q2/Q1)×100%
    其中,Q1为蓄电池充入的电量,Q2为蓄电池放出的电量;
    选择不同老化程度的蓄电池,并分别选取多个不同的放电深度、充电电流和充电深度,重复进行多次所述充放电测试,根据获得的测试数据拟合出E相对蓄电池前次放电深度值DOD、健康状态值SOH和充电电流的函数表达式。
  5. 根据权利要求3所述的测算方法,其中,估算待测蓄电池健康状态值SOH的步骤包括:
    先将待测蓄电池以额定放电电流恒流放电至截止电压,然后给待测蓄电池充电;设定标定系数η,当充电的电流值降至η·C时,将此时充入电量的安时累计值作为待测蓄电池的所述实际可用容量。
  6. 根据权利要求5所述的测算方法,其中,所述标定系数η的值取0.01。
  7. 根据权利要求3所述的测算方法,其中,标定待测蓄电池普克特校正系数ωi的步骤包括:
    将待测蓄电池通过额定放电电流以及小于和大于所述额定放电电流的多个放电电流分别恒流放电到截止电压,通过安时累计计算获得待测蓄电池在不同放电电流下实际的放电容量,计算得出待测蓄电池的ωi与不同的电流i值的对应关系。
  8. 一种蓄电池实时荷电状态的测算装置,包括分别与待测蓄电池(6)并联和串联的电压检测单元(2)和电流检测单元(3),还包括集中控制器(1),其中:
    所述集中控制器(1)连接所述电压检测单元(2)和电流检测单元(3);其内置有测算蓄电池实时荷电状态的测算程序,设置为在充电和放电过程 中控制待测蓄电池(6)进行荷电状态测算,所述测算程序的步骤包括:
    获取待测蓄电池(6)对应不同充电电流的充电效率;
    获取所述待测蓄电池(6)的老化程度;
    获取所述待测蓄电池(6)在不同放电电流下的放电容量变化率;
    通过安时累计计算所述待测蓄电池(6)的荷电状态变化,计算时采用所述充电效率、老化程度和放电容量变化率修正安时累计参数。
  9. 根据权利要求8所述的测算装置,其中,所述测算程序具体包括:
    采用充电效率系数E度量所述待测蓄电池(6)的充电效率,E为蓄电池充入的安时累计电量可转换为放电容量的比率;
    采用健康状态值SOH度量所述待测蓄电池(6)的老化程度,SOH为蓄电池实际可用容量与标称容量的比值;
    采用普克特校正系数ωi度量所述待测蓄电池(6)的放电容量变化率,ωi为蓄电池分别在额定放电电流下和在电流i下放电时的放电容量比值。
  10. 根据权利要求9所述的测算装置,其中,所述测算程序还包括:
    在待测蓄电池(6)充电过程中,将ωi设置为1,电流i取正,根据电流i值计算E;在待测蓄电池(6)放电过程中,将E设置为1,电流i取负,根据电流i值计算ωi;通过修正的安时累计计算获得所述荷电状态变化:
    Figure -appb-100002
    其中,SOCk为第k个时点的荷电状态值,SOCk-1为相邻的k-1时点的荷电状态值,Δt为所述k-1时点和k时点间的时间间隔;C为待测蓄电池(6)的标称容量。
  11. 根据权利要求10所述的测算装置,其中,所述测算程序还包括:
    待测蓄电池(6)充电过程中,满足预设的计算条件时计算并更新SOH。
  12. 根据权利要求8至11任一项所述的测算装置,其中,还包括连接所述集中控制器(1)的显示器(4)。
  13. 根据权利要求8至11任一项所述的测算装置,其中,还包括与待 测蓄电池(6)串联的蓄电池保护单元(5)。
  14. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至7中任一项所述的方法。
PCT/CN2017/091820 2016-07-28 2017-07-05 一种蓄电池实时荷电状态的测算方法及测算装置、存储介质 WO2018019101A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610605555.8 2016-07-28
CN201610605555.8A CN107664751A (zh) 2016-07-28 2016-07-28 一种蓄电池实时荷电状态的测算方法及测算装置

Publications (1)

Publication Number Publication Date
WO2018019101A1 true WO2018019101A1 (zh) 2018-02-01

Family

ID=61015535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091820 WO2018019101A1 (zh) 2016-07-28 2017-07-05 一种蓄电池实时荷电状态的测算方法及测算装置、存储介质

Country Status (2)

Country Link
CN (1) CN107664751A (zh)
WO (1) WO2018019101A1 (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109917292A (zh) * 2019-03-28 2019-06-21 首都师范大学 一种基于daupf的锂离子电池寿命预测方法
CN110879364A (zh) * 2018-08-27 2020-03-13 比亚迪股份有限公司 一种修正电池荷电状态soc显示的方法、装置、电子设备
CN111036584A (zh) * 2019-11-19 2020-04-21 中国电力科学研究院有限公司 一种退役电池分选方法及装置
CN111064253A (zh) * 2019-12-30 2020-04-24 上海电力大学 一种基于平均离散Fréchet距离的电池健康度快速评估方法
CN111142038A (zh) * 2019-12-31 2020-05-12 浙江吉利新能源商用车集团有限公司 一种蓄电池健康状态评估方法及装置
CN112083335A (zh) * 2020-09-28 2020-12-15 国联汽车动力电池研究院有限责任公司 一种车用蓄电池的快充方法及***
CN112305429A (zh) * 2020-09-28 2021-02-02 合肥国轩高科动力能源有限公司 一种锂离子电池放电深度的估算方法
CN112379289A (zh) * 2020-10-31 2021-02-19 浙江锋锂新能源科技有限公司 一种锂离子电池最大电流的测试方法
CN112505564A (zh) * 2020-11-16 2021-03-16 湖北亿纬动力有限公司 一种电池soc-ocv曲线的测定方法
CN112557920A (zh) * 2020-11-20 2021-03-26 天津力神电池股份有限公司 一种快速评测高电压锂离子电池体系稳定性的方法
CN112731162A (zh) * 2021-02-08 2021-04-30 武汉蔚能电池资产有限公司 一种基于v2g使用场景下的电池健康度检测方法
CN112782590A (zh) * 2021-02-06 2021-05-11 郑州意昂新能源汽车科技有限公司 一种不依赖放电深度和放电速率的电池健康状态估计方法
CN112858927A (zh) * 2021-01-11 2021-05-28 东风汽车股份有限公司 一种电动汽车显示soc自适应校准方法
CN113030739A (zh) * 2021-02-22 2021-06-25 福建星云电子股份有限公司 一种在充电过程估算电池性能指标的方法
CN113419185A (zh) * 2021-06-22 2021-09-21 盛德东南(福建)新能源科技有限公司 一种锂离子动力蓄电池的单体容量检测方法和***
CN113484777A (zh) * 2021-07-12 2021-10-08 度普(苏州)新能源科技有限公司 一种动力电池soc精度测试方法及装置
CN113687255A (zh) * 2020-05-19 2021-11-23 国家能源投资集团有限责任公司 一种电池单体的状态诊断方法、设备及存储介质
CN114137422A (zh) * 2021-11-23 2022-03-04 雅迪科技集团有限公司 一种电动车剩余电量的确定方法及装置
CN114200313A (zh) * 2021-11-29 2022-03-18 重庆长安汽车股份有限公司 铅酸蓄电池健康分析方法、***及存储介质
CN114428214A (zh) * 2022-01-04 2022-05-03 苏州禾望电气有限公司 一种变桨***的电池备用电源管理监测方法
CN116754980A (zh) * 2023-08-14 2023-09-15 宁德时代新能源科技股份有限公司 确定电池soh值的方法、装置、用电装置及存储介质
CN116908704A (zh) * 2023-09-07 2023-10-20 江西五十铃汽车有限公司 动力电池soh估算修正方法、设备和介质
CN117368767A (zh) * 2023-10-07 2024-01-09 上海正泰电源***有限公司 一种基于安时积分法的锂电池荷电状态预估方法及***
CN117572269A (zh) * 2023-11-09 2024-02-20 东莞市科路得新能源科技有限公司 一种soc测算方法及显示其值的方法
CN117647743A (zh) * 2024-01-30 2024-03-05 宁德时代新能源科技股份有限公司 电池容量的确定方法、装置、设备及存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110850296A (zh) * 2018-08-01 2020-02-28 北京京东尚科信息技术有限公司 一种评估电池健康度的方法和装置
CN110927586A (zh) * 2018-09-04 2020-03-27 湖南中车时代电动汽车股份有限公司 一种电池健康度计算方法
CN109444598B (zh) * 2018-11-30 2021-07-02 广东电网有限责任公司 一种超级电容器的性能测试方法
CN112147524B (zh) * 2019-06-28 2022-04-15 比亚迪股份有限公司 电池容量校准方法、装置及存储介质、电子设备
CN111830411B (zh) * 2020-06-15 2024-04-26 联合汽车电子有限公司 车用蓄电池老化控制***及交通工具
CN111679212B (zh) * 2020-06-19 2022-10-14 中国电力科学研究院有限公司 计算电池在不同温度和充放电倍率下soc的方法及***和装置
CN111983479B (zh) * 2020-08-04 2021-05-04 珠海迈巨微电子有限责任公司 电池物理模型实时建立方法、更新方法及电池监控设备
CN112305432B (zh) * 2020-09-18 2022-12-16 傲普(上海)新能源有限公司 一种大型储能***电池的soc校准方法
CN113147630B (zh) * 2021-04-30 2023-04-25 江铃汽车股份有限公司 一种模式控制方法、***、可读存储介质及车辆
CN113419181B (zh) * 2021-06-09 2024-06-14 浙江超恒动力科技有限公司 一种电动自行车电池的工况测试方法
CN113466716A (zh) * 2021-06-17 2021-10-01 深圳市道通科技股份有限公司 电池健康状态测算方法以及相关设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300209A (ja) * 2008-06-12 2009-12-24 Furukawa Electric Co Ltd:The バッテリ状態検知方法、状態検知装置及びバッテリ電源システム
CN102930173A (zh) * 2012-11-16 2013-02-13 重庆长安汽车股份有限公司 一种锂离子电池荷电状态在线估算方法
CN103078153A (zh) * 2013-01-17 2013-05-01 北京汽车新能源汽车有限公司 一种动力电池***的荷电状态修正及充放电控制方法
CN104704380A (zh) * 2012-10-05 2015-06-10 日本康奈可株式会社 用于估计电池参数的装置以及估计方法
CN105116350A (zh) * 2015-09-30 2015-12-02 南京林业大学 动力电池放电时soc变化量及放电电量折算系数测量方法
CN105353313A (zh) * 2015-09-28 2016-02-24 欣旺达电子股份有限公司 电池荷电状态的估算方法和装置
CN105353316A (zh) * 2015-09-30 2016-02-24 南京林业大学 动力电池充电时soc变化量及充电电量折算系数测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300209A (ja) * 2008-06-12 2009-12-24 Furukawa Electric Co Ltd:The バッテリ状態検知方法、状態検知装置及びバッテリ電源システム
CN104704380A (zh) * 2012-10-05 2015-06-10 日本康奈可株式会社 用于估计电池参数的装置以及估计方法
CN102930173A (zh) * 2012-11-16 2013-02-13 重庆长安汽车股份有限公司 一种锂离子电池荷电状态在线估算方法
CN103078153A (zh) * 2013-01-17 2013-05-01 北京汽车新能源汽车有限公司 一种动力电池***的荷电状态修正及充放电控制方法
CN105353313A (zh) * 2015-09-28 2016-02-24 欣旺达电子股份有限公司 电池荷电状态的估算方法和装置
CN105116350A (zh) * 2015-09-30 2015-12-02 南京林业大学 动力电池放电时soc变化量及放电电量折算系数测量方法
CN105353316A (zh) * 2015-09-30 2016-02-24 南京林业大学 动力电池充电时soc变化量及充电电量折算系数测量方法

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110879364A (zh) * 2018-08-27 2020-03-13 比亚迪股份有限公司 一种修正电池荷电状态soc显示的方法、装置、电子设备
CN110879364B (zh) * 2018-08-27 2022-03-18 比亚迪股份有限公司 一种修正电池荷电状态soc显示的方法、装置、电子设备
CN109917292A (zh) * 2019-03-28 2019-06-21 首都师范大学 一种基于daupf的锂离子电池寿命预测方法
CN111036584A (zh) * 2019-11-19 2020-04-21 中国电力科学研究院有限公司 一种退役电池分选方法及装置
CN111036584B (zh) * 2019-11-19 2024-04-16 中国电力科学研究院有限公司 一种退役电池分选方法及装置
CN111064253A (zh) * 2019-12-30 2020-04-24 上海电力大学 一种基于平均离散Fréchet距离的电池健康度快速评估方法
CN111142038A (zh) * 2019-12-31 2020-05-12 浙江吉利新能源商用车集团有限公司 一种蓄电池健康状态评估方法及装置
CN113687255A (zh) * 2020-05-19 2021-11-23 国家能源投资集团有限责任公司 一种电池单体的状态诊断方法、设备及存储介质
CN112083335A (zh) * 2020-09-28 2020-12-15 国联汽车动力电池研究院有限责任公司 一种车用蓄电池的快充方法及***
CN112305429A (zh) * 2020-09-28 2021-02-02 合肥国轩高科动力能源有限公司 一种锂离子电池放电深度的估算方法
CN112083335B (zh) * 2020-09-28 2023-10-17 国联汽车动力电池研究院有限责任公司 一种车用蓄电池的快充方法及***
CN112305429B (zh) * 2020-09-28 2022-08-09 合肥国轩高科动力能源有限公司 一种锂离子电池放电深度的估算方法
CN112379289A (zh) * 2020-10-31 2021-02-19 浙江锋锂新能源科技有限公司 一种锂离子电池最大电流的测试方法
CN112379289B (zh) * 2020-10-31 2024-03-29 浙江锋锂新能源科技有限公司 一种锂离子电池最大电流的测试方法
CN112505564A (zh) * 2020-11-16 2021-03-16 湖北亿纬动力有限公司 一种电池soc-ocv曲线的测定方法
CN112557920A (zh) * 2020-11-20 2021-03-26 天津力神电池股份有限公司 一种快速评测高电压锂离子电池体系稳定性的方法
CN112858927A (zh) * 2021-01-11 2021-05-28 东风汽车股份有限公司 一种电动汽车显示soc自适应校准方法
CN112858927B (zh) * 2021-01-11 2023-06-06 东风汽车股份有限公司 一种电动汽车显示soc自适应校准方法
CN112782590B (zh) * 2021-02-06 2024-04-26 郑州意昂新能源汽车科技有限公司 一种不依赖放电深度和放电速率的电池健康状态估计方法
CN112782590A (zh) * 2021-02-06 2021-05-11 郑州意昂新能源汽车科技有限公司 一种不依赖放电深度和放电速率的电池健康状态估计方法
CN112731162A (zh) * 2021-02-08 2021-04-30 武汉蔚能电池资产有限公司 一种基于v2g使用场景下的电池健康度检测方法
CN112731162B (zh) * 2021-02-08 2024-05-03 武汉蔚能电池资产有限公司 一种基于v2g使用场景下的电池健康度检测方法
CN113030739A (zh) * 2021-02-22 2021-06-25 福建星云电子股份有限公司 一种在充电过程估算电池性能指标的方法
CN113419185B (zh) * 2021-06-22 2024-02-02 盛德东南(福建)新能源科技有限公司 一种锂离子动力蓄电池的单体容量检测方法和***
CN113419185A (zh) * 2021-06-22 2021-09-21 盛德东南(福建)新能源科技有限公司 一种锂离子动力蓄电池的单体容量检测方法和***
CN113484777A (zh) * 2021-07-12 2021-10-08 度普(苏州)新能源科技有限公司 一种动力电池soc精度测试方法及装置
CN113484777B (zh) * 2021-07-12 2023-11-21 度普(苏州)新能源科技有限公司 一种动力电池soc精度测试方法及装置
CN114137422A (zh) * 2021-11-23 2022-03-04 雅迪科技集团有限公司 一种电动车剩余电量的确定方法及装置
CN114137422B (zh) * 2021-11-23 2024-04-02 雅迪科技集团有限公司 一种电动车剩余电量的确定方法及装置
CN114200313A (zh) * 2021-11-29 2022-03-18 重庆长安汽车股份有限公司 铅酸蓄电池健康分析方法、***及存储介质
CN114200313B (zh) * 2021-11-29 2024-03-08 重庆长安汽车股份有限公司 铅酸蓄电池健康分析方法、***及存储介质
CN114428214A (zh) * 2022-01-04 2022-05-03 苏州禾望电气有限公司 一种变桨***的电池备用电源管理监测方法
CN116754980B (zh) * 2023-08-14 2024-01-05 宁德时代新能源科技股份有限公司 确定电池soh值的方法、装置、用电装置及存储介质
CN116754980A (zh) * 2023-08-14 2023-09-15 宁德时代新能源科技股份有限公司 确定电池soh值的方法、装置、用电装置及存储介质
CN116908704B (zh) * 2023-09-07 2024-04-09 江西五十铃汽车有限公司 动力电池soh估算修正方法、设备和介质
CN116908704A (zh) * 2023-09-07 2023-10-20 江西五十铃汽车有限公司 动力电池soh估算修正方法、设备和介质
CN117368767A (zh) * 2023-10-07 2024-01-09 上海正泰电源***有限公司 一种基于安时积分法的锂电池荷电状态预估方法及***
CN117572269A (zh) * 2023-11-09 2024-02-20 东莞市科路得新能源科技有限公司 一种soc测算方法及显示其值的方法
CN117572269B (zh) * 2023-11-09 2024-05-31 东莞市科路得新能源科技有限公司 一种soc测算方法及显示其值的方法
CN117647743A (zh) * 2024-01-30 2024-03-05 宁德时代新能源科技股份有限公司 电池容量的确定方法、装置、设备及存储介质
CN117647743B (zh) * 2024-01-30 2024-06-07 宁德时代新能源科技股份有限公司 电池容量的确定方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN107664751A (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
WO2018019101A1 (zh) 一种蓄电池实时荷电状态的测算方法及测算装置、存储介质
JP6153528B2 (ja) 電池監視のためのシステムおよび方法
CN103823188B (zh) 锂离子电池组健康状态的评估方法
TWI641855B (zh) Battery and battery pack state detecting method and device
CN111381178B (zh) 锂离子电池的健康状态的估算方法及***
KR101160545B1 (ko) 이차전지 건강상태 진단장치
WO2015106691A1 (zh) 一种混合动力车用动力电池soc估算方法
US11022653B2 (en) Deterioration degree estimation device and deterioration degree estimation method
US20180067170A1 (en) Battery dc impedance measurement
JP5997081B2 (ja) 二次電池の状態推定装置及び二次電池の状態推定方法
JP6548387B2 (ja) 二次電池の充電状態推定方法および推定装置
CN109856548B (zh) 动力电池容量估算方法
CN109031133B (zh) 一种动力电池的soc修正方法
JP6534746B2 (ja) 電池制御装置及び電池システム
CN105093128A (zh) 基于扩展卡尔曼滤波的蓄电池荷电状态估算方法
WO2014147899A1 (ja) 満充電容量推定方法及び装置
US20160190827A1 (en) Charging device and method for the same, and discharging device and method for the same
US10444296B2 (en) Control device, control method, and recording medium
US10634724B2 (en) Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
CN112415411A (zh) 估算电池soc的方法和装置及车辆、存储介质
KR20140052558A (ko) 배터리의 잔존수명 추정방법
CN108120932B (zh) 对充电电池的电池健康状态进行估算的方法和装置
CN104833917B (zh) 用于锂蓄电池中荷电状态实时估算的标称电池电阻的确定
JP2012185124A (ja) 充電率推定装置、充電率推定方法、及びプログラム
JP2014068468A (ja) 充電制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833404

Country of ref document: EP

Kind code of ref document: A1