WO2018016252A1 - 自動分析装置及び自動分析方法 - Google Patents

自動分析装置及び自動分析方法 Download PDF

Info

Publication number
WO2018016252A1
WO2018016252A1 PCT/JP2017/022334 JP2017022334W WO2018016252A1 WO 2018016252 A1 WO2018016252 A1 WO 2018016252A1 JP 2017022334 W JP2017022334 W JP 2017022334W WO 2018016252 A1 WO2018016252 A1 WO 2018016252A1
Authority
WO
WIPO (PCT)
Prior art keywords
photometer
photometers
value
quantitative
concentration
Prior art date
Application number
PCT/JP2017/022334
Other languages
English (en)
French (fr)
Inventor
佑斗 風間
昌彦 飯島
作一郎 足立
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to JP2018528455A priority Critical patent/JP6581726B2/ja
Priority to US16/308,516 priority patent/US10976333B2/en
Priority to EP17830772.4A priority patent/EP3489658A4/en
Priority to CN201780041441.8A priority patent/CN109416319B/zh
Publication of WO2018016252A1 publication Critical patent/WO2018016252A1/ja
Priority to US17/197,155 priority patent/US11674970B2/en
Priority to US18/140,657 priority patent/US11971425B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00623Quality control of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1734Sequential different kinds of measurements; Combining two or more methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1738Optionally different kinds of measurements; Method being valid for different kinds of measurement
    • G01N2021/1744Optionally different kinds of measurements; Method being valid for different kinds of measurement either absorption or scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • G01N2035/00386Holding samples at elevated temperature (incubation) using fluid heat transfer medium
    • G01N2035/00396Holding samples at elevated temperature (incubation) using fluid heat transfer medium where the fluid is a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00435Refrigerated reagent storage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0441Rotary sample carriers, i.e. carousels for samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0443Rotary sample carriers, i.e. carousels for reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0453Multiple carousels working in parallel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0475Details of actuating means for conveyors or pipettes electric, e.g. stepper motor, solenoid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/124Sensitivity
    • G01N2201/1241Multirange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/124Sensitivity
    • G01N2201/1242Validating, e.g. range invalidation, suspending operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes

Definitions

  • This disclosure relates to an automatic analyzer and an automatic analysis method for clinical examination.
  • An automatic analyzer for clinical testing is a device that optically detects the amount of a target component contained in a sample such as blood or urine.
  • a method for detecting a target component contained in a specimen there are many methods using an absorptiometric method for measuring the amount of light transmitted through the specimen.
  • the absorptiometry light from a light source is irradiated to a sample or a reaction mixture in which a sample and a reagent are mixed, and the amount of transmitted light of a single wavelength or a plurality of wavelengths obtained as a result is measured to calculate the absorbance.
  • the amount of the target component contained in the sample is determined from the relationship between the absorbance and the concentration.
  • the reaction between the specimen and the reagent two types of reactions, a color reaction using a reaction between a substrate and an enzyme, and an agglutination reaction between an antigen and an antibody, are roughly divided.
  • the color reaction is a biochemical analysis, and the amount of light absorbed by the colored reaction solution (absorbance) is measured to determine the amount of the target component in the sample.
  • the agglutination reaction is an immunoassay, and the turbidity (turbidity) of the reaction solution that changes due to the aggregation of antigen and antibody is measured from the change in the amount of transmitted light to determine the amount of the target component in the sample.
  • the target component (measuring substance) to be measured by immunoassay is usually required to have a low blood concentration and a highly sensitive detection system. Therefore, in immunoassay, the turbidity change is increased by using a reagent in which antibody or antigen is sensitized (bound) on the surface of latex particles, and the size of the aggregate produced by the antigen-antibody reaction is increased. Latex immunoturbidimetric methods and the like that enable accurate measurement have been developed.
  • an apparatus that attempts to increase the sensitivity of immunoassay using a light amount change of scattered light that easily captures a larger light amount change is known.
  • the aggregate produced by the antigen-antibody reaction is irradiated with light, the amount of light scattered by the aggregate and / or the intensity of scattered light is measured, and the amount of light and / or The component amount is obtained from the relationship between the scattered light intensity and the concentration.
  • the light scattering detection method is capable of high-sensitivity detection with a low-concentration sample, but with a high-concentration sample, a large amount of aggregates are produced, and the quantitativeness is degraded due to the influence of multiple scattering.
  • the absorptiometric method has poor measurement sensitivity for low-concentration samples, but has a higher quantitative property for high-concentration samples than the light scattering detection method, and has a wide range of quantifiable concentration ranges. Therefore, in recent years, an automatic analyzer that expands the dynamic range of measurement has been developed by using the difference in characteristics of these two photometers and mounting an absorptiometer and a scattered photometer together in one device. Has been.
  • Patent Document 2 and Patent Document 3 disclose an automatic analyzer in which an absorptiometer and a scattering photometer are mounted on the apparatus together. These extend the dynamic range by selecting a scattering photometer in the low concentration region and selecting an absorptiometer in the high concentration region.
  • Patent Document 3 discloses the method described in Patent Document 3 that enables measurement of immunological analysis items (target components in a sample) in a wide concentration range using the characteristics of a plurality of photometers.
  • a method of selecting a photometer that can be analyzed with high sensitivity based on variations in the measured values of standard solutions used to create a calibration curve of the meter is disclosed. Also disclosed is a method of switching between an absorptiometer and a scattered photometer depending on which of a plurality of concentration ranges a measurement value of a photometer falls in advance.
  • Patent Document 4 relates to a calibration curve used for determining the component amount of a target component contained in a specimen, and a specific analyte in the sample (target component in the specimen) and an analyte-specific reaction partner
  • a photometric assay for simultaneously measuring a reaction mixture reacted with a reagent at a first wavelength optimized for a specific analyte at a low concentration and a second wavelength optimized for a specific analyte at a high concentration is disclosed. Yes.
  • an optical signal of one wavelength is selected based on a threshold value from optical signals of the first and second wavelengths simultaneously measured, and a first calibration curve (first calibration curve) recorded at the first wavelength is selected. Line) or a calibration curve corresponding to the selected optical signal in the second calibration curve (second calibration curve) recorded at the second wavelength, the amount of a specific subject is quantified.
  • the selection method includes a method for selecting a photometer that can perform sensitive analysis based on variations in the measured values of the standard solution used to create a calibration curve for each photometer, and a purpose included in the sample calculated by the absorptiometer.
  • a method is shown in which the concentration of a component is roughly divided into three concentration ranges of low concentration, medium concentration, and high concentration, and a photometer set corresponding to each concentration range is selected.
  • the range of variation in the measured values of the absorptiometer and the scattered photometer is the same value, or the photometer on the side where the variation range of the measured value is large or small is used.
  • the selection method in the case of vibrating between the absorptiometer and the scattered photometer according to the measured value (component amount) of the concentration of the target component (both photometers are alternately switched) has not been considered. Concerning the setting of the concentration range, the concentration range that needs to be switched between the absorptiometer and the scattering photometer, and the method for determining the concentration range were not considered.
  • the concentrations calculated by the absorptiometer and the scattered photometer are outside the selection range for each photometer in relation to the above-described photometer confirmation method and selection criteria. Or it was in the selection range, and the problem that the selection error of the photometer occurred was not considered.
  • the concentrations of the specific analyte (target component in the specimen) calculated at the first wavelength and the second wavelength are the first wavelength and the second wavelength, respectively. Both of these are out of the selection range or within the selection range, and the problem that the selection error of the first wavelength and the second wavelength occurs has not been considered.
  • the present disclosure relates to an automatic analyzer equipped with an absorptiometer and a scattering photometer, and a selection error that makes it impossible to select a photometer occurs when determining the concentration of a target component for various specimens. It is an object of the present invention to provide an automatic analyzer and an automatic analysis method that contribute to high-precision and high-speed analysis.
  • the present disclosure is an automatic analyzer that includes a plurality of types of photometers that detect light from a light source irradiated to a reaction vessel, and when setting the concentration range of a target component that can be quantified according to each photometer, A switching region included in the concentration range of the target component where the calibration curves of the respective photometers overlap each other can be quantified with any of a plurality of types of photometers.
  • the photometer used for quantitative output of the target component, or the quantitative result of the target component is selected according to the determination result of whether or not the target component quantitative results by plural types of photometers are included in the switching region. .
  • FIG. 1 is a schematic overall configuration diagram of an embodiment of an automatic analyzer according to the present disclosure. It is a block diagram of one Example of the operation part for the analysis parameter setting in the automatic analyzer of a present Example. It is a schematic diagram of a calibration curve using transmitted light intensity and scattered light intensity applied in the automatic analyzer of this example. It is the figure which showed the relationship of the density
  • FIG. 1 is a schematic overall configuration diagram of an embodiment of an automatic analyzer according to the present disclosure.
  • the automatic analyzer 1 of this embodiment includes a sample disk 10, a reaction disk 20, a reagent disk 30, a sample dispensing mechanism 41, a reagent dispensing mechanism 42, an analysis control unit 50, an output unit 61, and an input unit 62. It is configured.
  • a plurality of sample cups 15 as sample containers for storing the sample 2 are mounted on the sample disk 10.
  • the sample cups 15 are held in parallel on the disk body 11 of the sample disk 10 so as to be spaced apart from each other along the disk circumferential direction.
  • the sample disk 10 includes a drive unit 12 that rotates the disk body 11 to move and displace the plurality of sample cups 15 along the circumferential direction of the disk.
  • the sample disk 10 is controlled by the drive unit 12 so that one sample cup 15 of the plurality of sample cups 15 mounted on the disk main body 11 is moved along a predetermined disk circumferential direction such as a sample inhalation position. Can be placed in position.
  • the sample disc 10 is shown in an example in which a plurality of sample cups 15 are arranged in a row on the disc main body 11 along the circumferential direction of the disc.
  • a plurality of sample cups may be concentrically arranged.
  • the configuration for holding the plurality of sample cups 15 is not limited to the sample disk 10, and a rack method using a sample rack that holds sample containers arranged one-dimensionally or two-dimensionally may be used.
  • the reaction disk 20 is provided adjacent to the sample disk 10, and a plurality of reaction containers 25 for preparing the reaction liquid 3 are held in the disk body 21.
  • the reaction containers 25 are arranged and held in parallel on the disk main body 21 so as to be separated from each other along the disk circumferential direction.
  • Each reaction vessel 25 is made of a translucent material for measurement by an absorptiometer 44 and a scattered photometer 45 described later.
  • the reaction disk 20 is provided with a drive unit 22 that rotates the disk body 21 to move and displace the plurality of reaction containers 25 along the circumferential direction of the disk.
  • the disk main body 21 is rotationally controlled by the drive control of the drive unit 22, and one reaction container 25 among a plurality of mounted reaction containers 25 is discharged, for example, by a sample dispensing mechanism 41.
  • the position can be moved to a predetermined position along the circumferential direction of the disk, such as the position, the reagent discharge position by the reagent dispensing mechanism 42, and the like.
  • the reaction disk 20 is provided with a thermostatic chamber 28.
  • the plurality of reaction vessels 25 respectively arranged on the disk main body 21 are always immersed in the constant temperature bath water (constant temperature fluid) in the constant temperature bath 28, and the reaction solution 3 in the container is allowed to have a constant reaction temperature (for example, about 37 ° C.). Can be kept in.
  • the temperature and flow rate of the thermostatic chamber water (constant fluid) in the thermostatic chamber 28 is controlled by a thermostatic fluid control unit 54 described later of the analysis control unit 50, and the amount of heat supplied to the reaction vessel 25 is controlled.
  • the positions of the stirring disk 43, the absorptiometer 44, the scattered photometer 45, and the washing are changed around the reaction disk 20 in addition to the sample dispensing mechanism 41 and the reagent dispensing mechanism 42.
  • a portion 46 is arranged.
  • the stirring unit 43 stirs the reaction solution 3 composed of the mixed solution of the sample 2 and the reagent 4 dispensed into the reaction container 25 by the sample dispensing mechanism 41 and the reagent dispensing mechanism 42, respectively. Thereby, the reaction liquid 3 in the reaction vessel 25 is uniformly stirred, and the reaction is promoted.
  • the stirring unit 43 includes, for example, a stirrer provided with a stirring blade or a stirring mechanism using ultrasonic waves.
  • the absorptiometer 44 and the scattered photometer 45 are arranged around the circumference of the reaction disk 20 so as to be positioned on the diagonal line passing through the rotation center of the reaction disk 20 with the reaction disk 20 interposed therebetween.
  • Both the absorptiometer 44 and the scattered photometer 45 have a structure having a light source and a light receiving part.
  • the absorptiometer 44 detects the transmitted light obtained from the reaction solution by the light receiving unit when the reaction solution is irradiated with light from the light source, and measures the amount of transmitted light having a single wavelength or a plurality of wavelengths.
  • the scattering photometer 45 detects the scattered light obtained from the reaction liquid by the light receiving unit, and measures the amount of light and / or the intensity of the scattered light scattered by the reaction liquid.
  • the cleaning unit 46 discharges the remaining reaction solution 3 from the reaction container 25 that has been analyzed, and cleans the reaction container 25.
  • the next specimen 2 is again dispensed from the specimen dispensing mechanism 41 into the washed reaction container 25, and the analysis item (target component) set in correspondence with the specimen 2 is designated from the reagent dispensing mechanism 42.
  • the reagent 4 used for quantification is dispensed.
  • the reagent disk 30 is provided adjacent to the reaction disk 20, and a plurality of reagent bottles 35 for storing the reagent 4 are mounted on the disk main body 31.
  • a reagent corresponding to a target component (analysis item) analyzed by the automatic analyzer 1 is stored separately by changing the bottle for each type of reagent.
  • the reagent bottles 35 are arranged and held side by side on the disk main body 31 so as to be spaced apart from each other along the disk circumferential direction.
  • the reagent disk 30 is provided with a drive unit 32 that rotates the disk body 31 to move and displace the plurality of reagent bottles 35 along the circumferential direction of the disk.
  • the reagent disk 30 is arranged along the circumferential direction of the disk, such as a reagent inhalation position, with a predetermined reagent bottle 35 used for measurement in a plurality of reagent bottles 35 mounted on the disk body 31 by drive control of the drive unit 32. It can be arranged at a predetermined position.
  • the reagent disk 30 is provided with a reagent cool box 38 having a cooling mechanism.
  • the plurality of reagent bottles 35 respectively arranged on the disk main body 31 are cooled while being kept in the cooling environment of the reagent cold storage 38 even when the disk main body 31 is rotated, and the deterioration of the reagent 4 is prevented.
  • a cooling mechanism provided in the reagent cold storage 38 for example, a method of circulating low-temperature water to a cooling tank in which the reaction vessel 25 is immersed, a method of cooling in a gas phase by a Peltier element, or the like is used.
  • the sample dispensing mechanism 41 is installed between the sample disk 10 and the reaction disk 20, and includes a movable arm and a dispensing nozzle including a pipette nozzle attached to the movable arm.
  • the sample dispensing mechanism 41 moves the dispensing nozzle to the sample inhaling position on the sample disk 10, and sucks and stores a predetermined amount of sample into the nozzle from the sample cup 15 arranged at the sample inhaling position. Thereafter, the sample dispensing mechanism 41 moves the dispensing nozzle to the sample discharge position on the reaction disk 20 and discharges the sample contained in the nozzle into the reaction container 25 arranged at the sample discharge position. To dispense the sample.
  • the reagent dispensing mechanism 42 is installed between the reaction disk 20 and the reagent disk 30, and similarly includes a movable arm and a dispensing nozzle.
  • the reagent dispensing mechanism 42 moves the dispensing nozzle to the reagent suction position on the reagent disk 30, and sucks and stores a predetermined amount of reagent into the nozzle from the reagent bottle 35 arranged at the reagent suction position. Thereafter, the reagent dispensing mechanism 42 moves the dispensing nozzle to the reagent discharge position on the reaction disk 20 and discharges the reagent contained in the nozzle into the reaction container 25 arranged at the reagent discharge position. Dispense the reagent.
  • the sample dispensing mechanism 41 and the reagent dispensing mechanism 42 are each provided with a washing tank for washing the dispensing nozzle that has been dispensed in preparation for dispensing different types of samples or reagents into the reaction container 25. ing. Each dispensing nozzle is washed in the washing tank before and after the specimen or reagent dispensing operation to prevent contamination between specimens or reagents.
  • the analysis control unit 50 includes a measurement unit 51, an analysis unit 52, a control unit 53, a constant temperature fluid control unit 54, a data storage unit 55, an absorption / scattering simultaneous analysis determination unit 56, a measurement abnormality check unit 57, a concentration range check unit 58, And a priority output determination unit 59.
  • the measurement unit 51 determines the amount of transmitted light and / or transmitted light intensity (hereinafter referred to as the amount of transmitted light and / or from the reaction liquid 3 obtained from the measured value of the transmitted light amount obtained from the absorptiometer 44). Or, the transmitted light intensity is collectively referred to as transmitted light intensity). In addition, the measurement unit 51 determines the amount of scattered light and / or the intensity of scattered light (or the intensity of scattered light from the reaction solution 3 obtained from the measured value of the amount of scattered light and / or the intensity of scattered light obtained from the scattered photometer 45 ( Hereinafter, the amount of scattered light and / or scattered light intensity is collectively referred to as scattered light intensity).
  • the transmitted light intensity and the scattered light intensity obtained by the measurement unit 51 are stored in the data storage unit 55 in association with the reaction container 25 that acquired the measurement value or the analysis request using the reaction container 25.
  • This analysis request includes information on the sample 2, the reagent 4, etc. used in the analysis.
  • the analysis unit 52 reads the transmitted light intensity and / or scattered light intensity of the predetermined reaction solution 3 measured by the measurement unit 51 and analyzes the target component in the reaction solution 3.
  • the analysis data after the analysis is stored in the data storage unit 55 by the analysis unit 52 in association with the reaction container 25 from which the measurement value is acquired or the analysis request of the sample 2 using the reaction container 25.
  • the analysis unit 52 uses the transmitted light intensity and / or scattered light intensity of the predetermined reaction solution 3 obtained by the measurement unit 51 as the calibration corresponding to the reagent 4 used in the predetermined reaction solution 3.
  • the component concentration (component amount) of the target component in the predetermined reaction solution 3 is calculated.
  • the calibration curve shows the relationship between the concentration of each component of the target component obtained using a sample such as a standard substance containing the target component having a known concentration, and the transmitted light intensity and / or scattered light intensity.
  • calibration curve data of each reagent stored in the reagent bottle 35 and mounted on the reagent disk 30 is stored in advance.
  • the analysis unit 52 calculates the component concentration of the target component in the reaction solution 3
  • measurement data such as the transmitted light intensity and / or the scattered light intensity of the predetermined reaction solution 3 obtained by the measurement unit 51.
  • the control result data of the mechanism related to the analysis of the predetermined reaction liquid 3 such as the specimen dispensing mechanism 41 and the reagent dispensing mechanism 42 is also read from the data storage unit 55 to control the measurement data itself and the mechanism. Whether or not an abnormality has occurred is checked.
  • the analysis part 52 confirms that abnormality has arisen in measurement data itself and control of a mechanism, the purpose calculated based on the transmitted light intensity and / or scattered light intensity of this predetermined reaction liquid 3
  • An error for example, a technical limit error or a sample shortage error
  • data is stored in association with the analysis request of the reaction container 25 that acquired the measurement value or the sample 2 using this reaction container 25. Stored in section 55.
  • the analysis unit 52 outputs the calculated component concentration of the target component to the simultaneous absorption / scattering analysis determination unit 56 described later, and via the absorption / scattering simultaneous analysis determination unit 56 or, if necessary, further abnormality during measurement.
  • the data is displayed and output to an output unit 61 configured by a display or the like via a check unit 57, a density range check unit 58, and a priority output determination unit 59 as appropriate.
  • the control unit 53 controls the drive units 12, 22, and 32 to rotate the sample disk 10, the reaction disk 20, and the reagent disk 30 based on each analysis request of the sample 2 stored in the data storage unit 55. To drive.
  • the control unit 53 controls the dispensing operation by the sample dispensing mechanism 41 and the reagent dispensing mechanism 42.
  • the control unit 53 adjusts the sample cup 5, the reaction container 25, and the reagent bottle 35 arranged at the prescribed positions of the corresponding disk by rotating the sample disk 10, the reaction disk 20, and the reagent disk 30.
  • the specified position of the sample disk 10 includes the sample inhalation position by the sample dispensing mechanism 41.
  • the specified position of the reaction disk 20 includes a sample discharge position by the sample dispensing mechanism 41, a reagent discharge position by the reagent dispensing mechanism 42, a stirring position by the stirring unit 43, a measurement position by the absorptiometer 44, and a scattering photometer 45.
  • the cleaning position by the cleaning unit 46 are included.
  • the specified position of the reagent disk 30 includes a reagent suction position by the reagent dispensing mechanism 42.
  • control unit 53 controls the rotation of each of the sample disk 10, the reaction disk 20, and the reagent disk 30, and controls the dispensing operation by the sample dispensing mechanism 41 and the reagent dispensing mechanism 42 to thereby react.
  • a predetermined reaction liquid 3 is prepared based on the analysis request of each specimen 2, and the transmitted light intensity and / or scattering of the prepared predetermined reaction liquid 3 is used. Perform a light intensity measurement.
  • the constant temperature fluid control unit 54 adjusts the temperature of the reaction liquid 3 in the reaction vessel 25 by controlling the temperature and flow rate of the constant temperature bath water (constant temperature fluid) in the constant temperature bath 28 provided in the reaction disk 20.
  • Measurement unit 51, analysis unit 52, control unit 53, constant temperature fluid control unit 54, simultaneous absorption / scattering analysis determination unit 56, measurement abnormality check unit 57, concentration range check unit 58, and priority output determination unit 59 in the analysis control unit 50 Is integrally configured by a microprocessor such as a CPU.
  • the microprocessor reads out the corresponding processing program of each of the constituent units 51 to 59 from a predetermined storage area of the data storage unit 55 configured by ROM, RAM, or the like, and executes the above-described processing for obtaining the analysis result.
  • the operation control of each part of the apparatus and the processing control of the measurement data are performed.
  • the analysis item of the sample (the target component of the specimen 2) is analyzed simultaneously by the absorptiometer 44 and the scattering photometer 45, and the reaction process of the reaction solution 3 is analyzed by the absorptiometer 44 and / or Or it is the structure which can be measured with the scattering photometer 45.
  • the concentration calculated from the measurement value of the absorptiometer 44 is used as the target component of the sample 2 or the sample 2.
  • the concentration calculated from the measurement value of the scattering photometer 45 can be output from the output unit 61 as the analysis result, and measurement with a wide dynamic range is possible.
  • the analysis units 51 to 59 of the analysis control unit 50 refer to when measuring with the scattering photometer 45 and the absorptiometer 44, respectively. Parameter setting and concentration output executed by the analysis control unit 50 in accordance with the set parameter will be described separately for each item.
  • FIG. 2 is a configuration diagram of an embodiment of an operation unit for setting analysis parameters in the automatic analyzer according to the present embodiment.
  • the operation unit 70 for setting analysis parameters has an application setting screen 71 as a GUI.
  • the application setting screen 71 is displayed on a display device such as a display included in the output unit 61 by a predetermined operation of an operation device such as a keyboard and a mouse included in the input unit 62.
  • the analysis parameters can be set and input via the input unit 62 on the application setting screen 71.
  • the application setting screen 71 includes an application setting item selection field 72 and a parameter setting field 73 for each selected item.
  • “Analysis” is selected in the item selection field 72, and the parameter setting field 73 shows a state in which a parameter setting field 73 ′ for setting analysis parameters is displayed.
  • a photometer common setting field 75 for setting and inputting analysis parameters common to the absorptiometer 44 and the scattering photometer 45, and an analysis parameter for only the absorptiometer 44
  • the screen configuration is divided into an absorptiometer dedicated setting field 76 for setting and inputting a scattering photometer, and a scattered photometer dedicated setting field 77 for setting and inputting an analysis parameter for only the scattered photometer 45.
  • CRP C-reactive protein (C-reactive protein)
  • item name representing the type of analysis item in the pull-down menu method
  • the state in which “simultaneous absorption / scattering analysis” is selected as the type of “analysis request method” is illustrated.
  • the component amount “3” is set as the “absorption scattering result difference check value”, and “mg / dl” is set as the “output unit” of the component amount.
  • “Simultaneous Absorption / Scattering Analysis” as a type of “Analysis Request Method” is switched to select a scattering photometer in the low concentration region and to select an absorptiometer in the high concentration region. It refers to the execution setting of the analysis method that expands the dynamic range of the target component by using the photometer and the scattering photometer together.
  • the spectrophotometer dedicated setting field 76 as a type of “analysis method”, a method of obtaining the concentration of the target component from two measured values, that is, a measured value before or immediately after the start of the reaction and a measured value at the end of the reaction.
  • “2 point end” is set to “800/450 [nm]” as the main / sub wavelength of the two wavelength photometry as the “measurement wavelength”.
  • “19” and “30” are set as “photometric points”, and “5 to 40” of the component amount (measured value of the concentration of the target component) is set as “switching area setting” as “quantitative range” by the absorptiometer 44.
  • “automatic” is selected, “2” is selected for “priority output determination / ranking”, and “6” is selected or set for the component amount of “absorption switching lower limit value”.
  • the type of analysis method in addition to this “two-point end”, for example, “1 point end” using the measured value at the end of the reaction by the same endpoint method, the reaction rate is measured and the concentration of the substance is determined.
  • the desired "rate method” can be selected using a pull-down menu method.
  • a state in which “2 point end” is set as the type of “analysis method” and “20 °” is set as the “light receiving angle” is illustrated.
  • “absorption / scattering simultaneous analysis” is selected as the classification request method in the photometer common setting field 75, and therefore, the application setting screen 71 has a setting field 76 and an exclusive setting field for the scattering photometer. 77 is displayed, but if “absorption analysis” or “scattered light analysis” is selected as the classification request method, the scattered photometer 45 or the absorptiometer 44 is not used for analysis.
  • the setting column 77 or the spectrophotometer dedicated setting column 76 may not be displayed.
  • FIG. 1 The “quantitative range” and “switching area setting” set in the absorptiometer dedicated setting field 76 and the scattered photometer dedicated setting field 77 shown in FIG.
  • the “scattering switching upper limit value” set in the scattering photometer dedicated setting field 77 will be described.
  • FIG. 3 is a schematic diagram of a calibration curve using transmitted light intensity and scattered light intensity applied in the automatic analyzer of this example.
  • the horizontal axis indicates the concentration (for example, [ng / ml], [ ⁇ g / ml], [mg / dl] are applied as units), and the vertical axis indicates the absorbance (for example, [Abs.] Is applied as the unit)
  • calibration curves L1 and L2 of transmitted light intensity and scattered light intensity are schematically shown on a graph obtained by taking scattered light intensity (for example, [count] is applied as a unit).
  • the absorption switching lower limit CSL “6” set in the absorptiometer dedicated setting column 76 and the scattering switching upper limit CSH set in the scattered photometer dedicated setting column 77 are set.
  • a photometer switching region RS between the absorptiometer 44 and the scattered photometer 45 defined by “9” is set.
  • the characteristics of the analysis parameters in the automatic analyzer 1 of this embodiment are (a) overlapping region RO, (b) switching region RS, (c) priority output order, and (d) absorbance / scattering result difference check.
  • the setting will be described.
  • the density width “5” of the overlapping region RO is the width of the variation in the concentration of the target component due to variations in the measured values AL1 and AL2 of the transmitted light intensity and scattered light intensity by the scattered photometer 45 and the absorptiometer 44, respectively. In comparison, it is set to a sufficiently wide width.
  • the density (C 7) as one point becomes a single switching threshold Cs of the photometers 44 and 45.
  • the concentration C is calculated using the absorptiometer 44 for the sample 2 having the concentration C (7 ⁇ C) equal to or higher than the threshold value Cs.
  • the concentration C is calculated using the scattering photometer 45.
  • the selection of the photometers 44 and 45 based on the switching threshold Cs causes a photometer selection error. May occur. It is also possible that two different measured concentrations are obtained from the two types of absorptiometers 44 and scattered photometers 45, respectively.
  • the reagent 4 has an overlap region RO whose target component is due to variations in the measured values AL of the absorptiometer 44 and the scattered photometer 45.
  • a reagent having a sufficiently wide concentration range of the overlapping region RO is used as compared with the range of variation in the concentration of.
  • the user Is a quantification lower limit value CL1 of the absorptiometer 44 and a quantification upper limit value of the scattered photometer 45 for switching a plurality of types of photometers based on the acquired information about the quantification ranges C1 and C2 and the overlapping region RO.
  • Analysis parameters such as CH2 can be set.
  • a concentration range that does not have any problem even if it is used for quantification is set in view of the performance of the apparatus 1 and the reagent 4 in consideration of the accuracy and precision required in the clinical field.
  • the analysis parameter for switching several types of photometers such as this fixed_quantity
  • the method of setting manually and the method of setting automatically with an apparatus are also considered.
  • a manual is used. It is possible to easily set analysis parameters for switching a plurality of types of photometers, compared to the method of setting with or the method of automatically setting with an apparatus.
  • the quantification ranges C1 and C2 of each photometer are, for example, (a1) variation of measured values AL1 and AL2, (a2) linearity of calibration curves CL1 and CL2, (a3) It is determined in consideration of the difference between the output values of the absorptiometer 44 and the scattered photometer 45, and the like.
  • Variation in measurement value AL is the measurement of transmitted light intensity AL1 and scattered light intensity when the same specimen is measured a plurality of times with absorptiometer 44 and scattered photometer 45, respectively. It is obtained by checking each variation of the value AL2. That is, the concentration ranges of the absorptiometer 44 and the scattered photometer 45 are set so that the variation of the measured value AL required in the clinical field is not more than an allowable value.
  • (a2) Linearity of the calibration curves L1 and L2 The linearity of the calibration curves L1 and L2 is obtained by measuring a plurality of standard substances with the absorptiometer 44 and the scattered photometer 45, respectively, and standard on the horizontal axis (x axis). The concentration C of the substance and the transmitted light intensity AL1 measured by the absorptiometer 44 or the scattered light intensity AL2 measured by the scattering photometer 45 are plotted on the vertical axis (y-axis). Then, the concentration ranges of the absorptiometer 44 and the scattered photometer 45 are set so that the slopes of the transmitted light intensity AL1 and scattered light intensity AL2 graphs are within the allowable values.
  • the overlap region RO of the quantitative ranges C1 and C2 between the absorptiometer 44 and the scattered photometer 45 described above is a concentration range of the specimen that can be quantified by each photometer.
  • the switching region RS is a concentration region in the same specimen in which variations in the measured values of the photometers are the same between the scattered photometer 45 and the absorptiometer 44, and the scattering region RS It can be defined by the switching upper limit value CSH of the photometer 45 and the switching lower limit value CSL of the absorptiometer 44.
  • the switching upper limit CSH of the scattering photometer 45 and the switching lower limit CSL of the absorptiometer 44 may not be set.
  • the difference between the absorptiometer 44 and the scattered photometer 45 is used. What is necessary is just to set the priority in the overlap area
  • the following methods (a), (b), and (c) can be adopted.
  • (A) Input the switching area RS determined from the lot of the reagent 4 in advance in a test or the like.
  • the switching region RS is determined from the measurement results of a plurality of optical systems, the sensitivity of the reagent 4, and the like, and the switching upper limit value CSH and the switching lower limit value CSL of the determined switching region RS are automatically set.
  • C The operator can freely input the switching upper limit value CSH and the switching lower limit value CSL. It can be set manually.
  • the user can also use information on the switching upper limit value CSH and the switching lower limit value CSL for the switching region RS determined for each reagent lot, for example, by a preliminary test.
  • the concentration Ca calculated from the measured value AL1 of the absorptiometer 44 and the measured value AL2 of the scattered photometer 45 are obtained.
  • the switching region RS is automatically set by plotting each of the concentrations Cb calculated from the above on the graph and analyzing the tendency of variation in the calculated concentrations Ca and Cb by the absorptiometer 44 and the scattered photometer 45, respectively. Can do.
  • FIG. 4 is a graph plotting the relationship between the concentration calculated from the measurement value of the absorptiometer and the concentration calculated from the measurement value of the scattering photometer.
  • the horizontal axis (x axis) is the concentration calculated from the measured value of the absorptiometer 44 (for example, [ng / ml], [ ⁇ g / ml], [mg / dl] is applied as a unit)
  • concentration (y-axis) as the concentration calculated from the measured value of the scattering photometer 45 (for example, [ng / ml], [ ⁇ g / ml], [mg / dl] are applied as units)
  • both photometers have variations in their measured values AL.
  • the dynamic range of the automatic analyzer 1 from the quantification lower limit value CL1 of the quantification range C1 of the absorptiometer 44 to the quantification upper limit value CH2 of the quantification range C2 of the scattering photometer 45 is also determined by the spectrophotometer 44 and scattering for each specimen.
  • the variation of the concentration Ca calculated from the actual measurement value AL1 of the absorptiometer 44 with the true value of the concentration Cb calculated from the actual measurement value AL2 of the scattered photometer 45 is approximately the same.
  • this point is set as a reference point BP
  • a density Cbp corresponding to this reference point BP is set as a density reference point
  • the concentration reference point Cbp is included in the area between the absorptiometer 44 and the scattered photometer 45.
  • RS can be set.
  • the concentration reference point Cbp of the switching region RS corresponding to the reference point BP is in a state where analysis data of a sufficient number of samples are accumulated in the data storage unit 55 of the automatic analyzer 1, for example, as follows. Can be obtained.
  • the concentration C calculated from the measured value AL1 by the absorptiometer 44 is “a”, and the scattered photometer The density C calculated from the measured value AL2 of 45 is “b”.
  • the intersection A ′ of the straight line y x and Intersection A ′ ((a + b) / 2, (a + b) / 2) It becomes.
  • the analysis control unit 50 calculates the distance information consisting of r and l each time the sample 2 is analyzed, and the sample 2 in which the reaction solution 3 is formed in the data storage unit 55. And it accumulates in association with reagent 4.
  • FIG. 5 is a diagram showing an example of calculating the concentration reference point of the switching region in the automatic analyzer 1 of the present embodiment.
  • the analysis control unit 50 includes an overlapping region RO in which the quantitative ranges C1 and C2 of the absorptiometer 44 and the scattered photometer 45 overlap with each other based on a predetermined unit distance. Divide into areas. Then, for each of the divided individual unit areas, for all the points A (a, b) of the distance r included in the individual unit areas, based on the value of the distance l of each point A (a, b), A variation degree (standard deviation) ⁇ of the distance l of the entire point A (a, b) in the individual unit region is calculated by the analysis control unit 50. In FIG. 5, the variation degree (standard deviation) ⁇ of the distance l of the entire individual unit area calculated for each individual unit area of the overlapping area RO is plotted using black circles ⁇ .
  • the horizontal axis corresponds to the size of the distance r from the origin O to the intersection A ′ shown in the graph of FIG.
  • region in the horizontal axis is density
  • concentration C of each of the absorptiometer 44 and the scattered photometer 45 in the applicable position part on the straight line y x shown in FIG. It corresponds also to.
  • the analysis control unit 50 determines the size of the distance r and the degree of variation (standard deviation) of the distance l of each individual unit region obtained by dividing the overlapping region RO of the quantitative ranges C2 and C1 of the absorptiometer 44 and the scattered photometer 45. From ⁇ , it is possible to grasp the tendency of the degree of divergence between the concentration Ca calculated from the actual measured value of the absorptiometer 44 and the concentration Cb calculated from the actual measured value of the scattered photometer 45 in the overlapping region RO. it can. Furthermore, it is also possible to grasp the tendency of individual unit regions in which variations in measured values are approximately the same between the absorptiometer 44 and the scattered photometer 45 within the overlapping region RO.
  • the analysis control unit 50 determines the concentration Ca by the absorptiometer 44 in the overlapping region RO based on the variation degree (standard deviation) ⁇ obtained and plotted for each individual unit region corresponding to the distance r.
  • a quadratic polynomial approximate curve or the like representing the tendency of the degree of deviation from the concentration Cb by the scattering photometer 45 is obtained, and the minimum value is calculated.
  • the analysis control unit 50 determines that the distance r corresponding to the minimum value, that is, the concentration C corresponding to the distance r has the same variation in the concentrations Ca and Cb measured by the absorptiometer 44 and the scattered photometer 45, respectively.
  • the concentration range is such that the measurement accuracy is switched between the absorptiometer 44 and the scattered photometer 45.
  • the analysis control unit 50 converts the distance r, which is the minimum value of the variation degree (standard deviation) ⁇ , into the concentration C of the photometer as a concentration reference point (that is, the concentration Cbp), and the overlapping region RO.
  • the photometer switching region RS is set in the inside.
  • the concentration width set as the absorbance / scattering result difference check value in the photometer common setting field 75 of the application setting screen 71 is set as the concentration width of the switching region RS.
  • the calculated reference point BP is close to the quantification limit value of one of the photometers (specifically, the quantification lower limit value CL1 of the absorptiometer 44 or the quantification upper limit value CH2 of the scattered photometer 45), and the reference point
  • the switching area RS is set with the value of one area end of the switching area RS being the same as the quantitative limit value.
  • a value position obtained by adding or subtracting the concentration range set in the absorbance / scattering result difference check from this quantitative limit value is set as the other area end of the overlapping area RO.
  • the switching region RS is shifted with respect to the reference point BP within the overlapping region RO so that the width of the switching region RS does not become smaller than the width of variation of the measured values AL of the absorptiometer 44 and the scattered photometer 45. I have to.
  • the width of the switching region RS is eight times the variation degree (standard deviation) ⁇ of the value of the distance l at the reference point BP, that is, the median value ⁇ 4 ⁇ of the switching region RS, and the absorptiometer 44 and the scattered photometer 45. It is good also as the density width of switching area
  • the photometer is not set using the setting value in the overlapping region RO without setting the switching region RS. Select.
  • the priority output order between the absorptiometer 44 and the scattered photometer 45 is set in order to selectively output the measurement result of the photometer having the higher reliability of the measurement value.
  • the set priority output order is that the concentration Ca calculated by the absorptiometer 44 as a result of measuring the specimen is not less than the switching lower limit value CSL of the switching region RS or the quantifying lower limit value CL1 of the quantifying range C1, and is scattered. This is effective when the concentration Cb calculated by the photometer 45 is equal to or lower than the switching upper limit value CSLH of the switching region RS or the quantitative upper limit value CH2 of the quantitative range C2.
  • the priority output order is determined in consideration of variations in the measured values AL of the absorptiometer 44 and the scattered photometer 45 and the influence of coexisting substances contained in the specimen.
  • the influence of the variation in the measurement value AL needs to be considered, for example, by the absorptiometer 44 in the overlapping region RO of the quantification ranges C1 and C2 of the absorptiometer 44 and the scattered photometer 45 by a prior test or the like. This is a case where there is a clear difference in the variation of the measured values AL between the absorptiometer 44 and the scattered photometer 45 with respect to the scattered photometer 45.
  • the priority output order of the photometer with the smaller variation in the measured value AL is set higher than the priority output order of the photometer with the larger variation in the measured value AL.
  • the priority output order setting information for example, the user can use information determined for each reagent lot by a prior test or the like.
  • the priority output order is determined in consideration of the influence of coexisting substances.
  • Specimens may contain coexisting substances that affect the analysis of the target component.
  • the coexisting substances include lipid, hemoglobin, bilirubin and the like, and abnormal specimens mixed with them are called chyle, hemolysis, and yellow, respectively. Since hemolysis and yellow cause a color change of the specimen, the influence mainly on the absorptiometer 44 is large. Milky milk causes a change in the turbidity of the specimen, so that the influence mainly on the scattered photometer 45 is large.
  • the automatic analyzer 1 is equipped with a function of analyzing the concentration of the coexisting substances, and the apparatus automatically sets the priority output order according to the calculated influence level of the coexisting substances. A specific setting example will be described below.
  • the level is divided into three stages from 1 to 3 according to the concentration and the degree of influence of coexisting substances contained in the specimen.
  • the hemolysis level is “1”
  • the level of milky milk is “2”.
  • the concentration calculated by the absorptiometer 44 is more accurate than the concentration calculated by the scattering photometer 45.
  • the priority output order of the absorptiometer 44 is set high.
  • the parameter setting for determining the priority output order there is a method of switching the order of priority by comparing the level of hemolysis and / or bilirubin as a coexisting substance in the sample with the level of milky milk as the coexisting substance. .
  • the set wavelength of the absorptiometer 44 (the main / secondary of the two-wavelength photometry) is set to a wavelength that is not affected by the coexisting substance, the milky milk of the coexisting substance having a large influence on the scattering photometer 45
  • There is a method of switching the priority order by setting a judgment criterion at the level of.
  • the component concentration of the specimen is calculated using the absorptiometer 44 when a level of milk that is equal to or higher than the set value is calculated. If the level is lower than the set value, the scattered photometer 45 is used. The component concentration of the specimen is calculated.
  • the priority output order may be set higher for either the absorptiometer 44 or the scattered photometer 45 on the application setting screen 71 shown in FIG. It is desirable to set a high priority output order of the absorptiometer 44 that is not easily affected. In this embodiment, the priority output order is set for each of the scattered photometer 45 and the absorptiometer 44. However, the same effect can be obtained by selecting a photometer for priority output.
  • the automatic analyzer 1 displays an alarm as a measurement abnormality when the data deviates beyond the absorbance / scattering result difference check value.
  • the sample concentration range set in the absorbance / scattering result difference check value on the application setting screen 71 is set to the maximum allowable range in consideration of variations in measured values and the influence of coexisting substances.
  • the determination of the occurrence of abnormality is performed by, for example, taking the difference between the concentration calculated by the scattering photometer 45 and the concentration calculated by the absorptiometer 44, and comparing it with the concentration width input in the parameter setting of the absorption scattering result difference check value. When the value is exceeded, an alarm is displayed.
  • the concentration range set by the absorption / scattering result difference check value is also used when setting the concentration range of the switching region Rs between the absorptiometer 44 and the scattered photometer 45 described above.
  • the purpose of setting the switching region RS between the absorptiometer 44 and the scattered photometer 45 is that although both the absorptiometer 44 and the scattered photometer 45 can calculate normal measured concentrations, It is to prevent the occurrence of a situation in which measurement errors are output due to variations in measured values, both of which are outside the quantification range. The above problem can be avoided by setting an allowable deviation width of the measured value and setting the deviation width as the density width of the switching region.
  • the same sample is measured using two photometers, the absorptiometer 44 and the scatterometer 45. It is determined by the control unit 53 as to whether or not the request has been set in advance using the application setting screen 71.
  • the control unit 53 sends the measurement unit 51 and the analysis unit 52 to the measurement values AL1 and AL2 obtained from the absorption photometer 44 and the scattering photometer 45. Analyze the sample that was requested to be analyzed.
  • the control unit 53 controls the measurement unit 51 and the analysis unit 52. Then, based on the measured value AL1 obtained from the corresponding absorptiometer 44 or AL2 obtained from the scattered photometer 45, the analysis process of the sample requested to be analyzed is performed.
  • the transmitted light intensity is measured based on the measured values AL1 and / or AL2 obtained by the measurement unit 51 from the absorptiometer 44 and / or the scattered photometer 45 for the sample requested to be analyzed. And / or determine the scattered light intensity. Then, the measurement unit 51 associates the obtained transmitted light intensity and / or scattered light intensity with the reaction container 25 into which the sample requested to be analyzed has been dispensed, or the analysis request for this sample 2, and the data storage unit Data is stored in 55.
  • the analysis unit 52 uses the calibration curve L1, L2 of the corresponding reagent prepared in advance for the transmitted light intensity and / or the scattered light intensity obtained by the measurement unit 51, and the component concentration Ca of the target component of the specimen. And / or converted to Cb. Then, the analysis unit 52 associates the calculated component concentration Ca and / or Cb of the target component of the sample with the reaction container 25 into which the sample requested for analysis has been dispensed, or the analysis request for this sample 2, Data is stored in the data storage unit 55.
  • the analysis unit 52 uses the absorptiometer 44 and the scattered photometer 45 in which the transmitted light intensity and / or scattered light intensity obtained from the measured values AL1 and / or AL2 are set in advance on the application setting screen 71. A technical limit check is performed to check whether it is within the fixed range C1 and C2. Then, the analysis unit 52 adds “technical limit error” to the calculated component concentration and stores the calculated component concentration in the data storage unit 55 when the quantitative ranges C1 and C2 are exceeded.
  • the analysis unit 52 checks the difference in the results of the absorption / scattering results. To do. This difference between the results of absorption / scattering scattering is shown in FIG. 2 between the concentration Ca calculated by the absorptiometer 44 and the concentration Cb calculated by the scattering photometer 45 due to variations in measured values and the influence of coexisting substances. It is confirmed whether or not a deviation exceeding the concentration value of “absorption scattering result difference check value” set in the application setting has occurred.
  • the absorptiometer 44 and the scattered photometer 45 are measured at the time of measurement due to variations in measured values and the influence of coexisting substances. An abnormality may have occurred in any of the photometers 45. If the difference between the concentrations Ca and Cb by the spectrophotometer 44 and the scattering photometer 45 exceeds the set value, the analysis unit 52 adds the “absorption-difference scattering result difference error” to the concentrations Ca and Cb, and the data Store in the storage unit 55.
  • the control unit 53 determines that an abnormality has occurred during the analysis work of the sample requested to be analyzed, and a measurement error due to the abnormality has occurred, the analysis unit 52 calculates the component concentration of the target component of the calculated sample.
  • Ca and / or Cb is stored in the data storage unit 55, an “error during analysis operation” is added.
  • the control unit 53 controls the operation of each component in the automatic analyzer 1 such as the disks 10, 20, 30, the dispensing mechanisms 41, 42, and the photometers 44, 45 during the analysis work. It monitors whether an abnormality has occurred.
  • the analysis control unit 50 outputs the analysis results from the measurement unit 51 and the analysis unit 52 for the sample requested to be analyzed, the simultaneous absorption / scattering analysis determination unit 56, the measurement abnormality check unit 57, and the concentration range check.
  • the output control of the analysis result is performed on the output unit 61 by the unit 58 and the priority output determination unit 59. The output control of the analysis result will be described with reference to FIG.
  • FIG. 6 is a concentration output determination flowchart for selecting a photometer to be used for concentration output of a target component using an absorptiometer and / or a scattering photometer.
  • the absorbance / scattering simultaneous analysis determination unit 56 scatters the same sample with the absorptiometer 44 in the sample measurement request format set on the application setting screen 71 at the time of requesting the analysis for the sample whose analysis result is output to the output unit 61. It is determined whether or not it is a request for “simultaneous absorption / scattering analysis” for measurement using two photometers of the photometer 45 (step S601).
  • the absorbance / scattering simultaneous analysis determination unit 56 confirms that the “absorbance / scattering / simultaneous analysis” request is not set, that is, the analysis request by either the absorptiometer 44 or the scattering photometer 45 is set. If it determines, all the data measured with either the set absorption photometer 44 or the scattered photometer 45 will be output to the output part 61 (step S602). Thereby, the data measured by the set photometer including the concentration by the set photometer is output from the output unit 61.
  • a measurement request format of a sample that is not a request for simultaneous absorption / scattering analysis a single item request using only the absorptiometer 44 or the scattering photometer 45, or a measurement target in the same reaction vessel using only the absorptiometer 44 is used.
  • a request for simultaneous absorption / absorption analysis for analyzing two types of target components of a specimen.
  • the absorbance / scattering simultaneous analysis determination unit 56 determines the concentration Ca calculated by the absorptiometer 44 for the sample for which the analysis request has been made. All data measured by the absorptiometer 44 and the scattered photometer 45, including the concentration Cb calculated by the scattered photometer 45, are output via the measurement abnormality check unit 57.
  • the measurement abnormality check unit 57 When the “absorption / scattering simultaneous analysis” request is set, whether the measurement abnormality check unit 57 has normally measured the concentrations Ca and Cb calculated by the absorption photometer 44 and the scattering photometer 45, respectively. It is determined whether or not (step S603). Specifically, the measurement abnormality check unit 57 adds “technical limit error” to either the concentration Ca or Cb for the concentrations Ca and Cb calculated by the absorptiometer 44 and the scattered photometer 45, respectively. Or not, whether or not “absorption scattering result difference error” is added to both of the concentrations Ca and Cb, and whether or not “error during analysis operation” is added to either of the concentrations Ca and Cb. Based on this, it is determined whether or not the concentrations Ca and Cb are normally measured.
  • “Technical limit error” indicates that the light intensity (transmitted light intensity or scattered light intensity) obtained by the measurement unit is not within the quantitative range (C1 or C2). It is added individually for each of the confirmed concentrations Ca and Cb. “Absorption / scattering result difference error” indicates that the concentrations Ca and Cb by the absorptiometer 44 and the scattering photometer 45 have deviated beyond the set values. If there is an error, both the concentrations Ca and Cb are present. Added to. “Error during analysis operation” indicates that a measurement error due to an abnormality has occurred during the analysis operation. If there is an error, it is added individually for each of the concentrations Ca and Cb for which the error has been confirmed.
  • the hour abnormality check unit 57 outputs only all data measured by the scattering photometer 45 including the concentration Cb by the scattering photometer 45 to the output unit 61 (step S606). Thereby, from the output part 61, the data measured with the scattered photometer 45 including the density Cb by the scattered photometer 45 with no error is output preferentially.
  • the unit 57 outputs only all data measured by the absorptiometer 44 including the concentration Ca by the absorptiometer 44 to the output unit 61 (step S608). Thereby, the data measured by the absorptiometer 44 including the concentration Ca by the absorptiometer 44 without error is preferentially output from the output unit 61.
  • the absorptiometer All data measured by the meter 44 and the scattered photometer 45 are output via the concentration range check unit 58.
  • This output data also includes the concentration Ca calculated by the absorptiometer 44 and the concentration Cb calculated by the scattered photometer 45 for the sample requested to be analyzed.
  • step S601 it is determined that the simultaneous absorption / scattering analysis request is set, and in steps S603, the concentrations Ca and Cb calculated by the absorptiometer 44 and the scattered photometer 45 are measured normally. If it is determined that there is, the concentration range check unit 58 checks the concentration ranges of the concentrations Ca and Cb calculated by the absorptiometer 44 and the scattered photometer 45, respectively (step S604). The concentration range check unit 58 determines whether or not the concentration Cb by the scattering photometer 45 is equal to or lower than the switching upper limit value CSH of the switching region RS for the concentrations Ca and Cb calculated by the absorptiometer 44 and the scattering photometer 45, respectively. It is determined whether or not the concentration Ca by the absorptiometer 44 is equal to or higher than the switching lower limit CSL.
  • the concentration range check unit 58 determines that the concentration Cb calculated by the scattering photometer 45 is equal to or lower than the switching upper limit value CSH, and the concentration output by the concentration Ca calculated by the absorptiometer 44 is smaller than the switching lower limit value CSL.
  • the density range check unit 58 outputs only all data measured by the scattering photometer 45 including the density Cb by the scattering photometer 45 to the output unit 61 (step S606).
  • This determination state indicates that the component concentration of the sample is in a concentration region where the variation of the measurement value AL1 of the absorptiometer 44 is large and the variation of the measurement value AL2 of the scattering photometer 45 is small. Thereby, only the data measured by the scattering photometer 45 including the concentration Cb calculated by the scattering photometer 45 is output from the output unit 61.
  • the concentration range check unit 58 determines that the concentration Cb calculated by the scattering photometer 45 exceeds the switching upper limit CSH and the concentration output by the concentration Ca calculated by the absorptiometer 44 is equal to or higher than the switching lower limit CSL.
  • the concentration range check unit 58 outputs only all data measured by the absorptiometer 44 including the concentration Ca by the absorptiometer 44 to the output unit 61 (step S608).
  • This determination state indicates that the component concentration of the specimen is in a concentration region where the variation in the measurement value AL1 of the absorptiometer 44 is small and the variation of the measurement value AL2 of the scattered photometer 45 is large. Thereby, only the data measured by the absorptiometer 44 including the concentration Ca calculated by the absorptiometer 44 is output from the output unit 61.
  • the concentration range check unit 58 is such that the concentration Cb calculated by the scattering photometer 45 exceeds the switching upper limit CSH and the concentration output by the concentration Ca calculated by the absorptiometer 44 is smaller than the switching lower limit CSL, or When it is determined that the concentration Cb calculated by the scattering photometer 45 is not more than the switching upper limit value CSH and the concentration Ca calculated by the absorptiometer 44 is not less than the switching lower limit value CSL, the concentration range check unit 58 All data measured by the meter 44 and the scattered photometer 45 are output via the priority output determination unit 59. This output data includes the concentration Ca calculated by the absorptiometer 44 and the concentration Cb calculated by the scattering photometer 45.
  • the fact that the concentration Cb calculated by the scattering photometer 45 exceeds the switching upper limit value CSH and the concentration output by the concentration Ca calculated by the absorptiometer 44 is smaller than the switching lower limit value CSL is determined by the absorptiometer 44. It means that both the calculated concentration Ca and the concentration Cb calculated by the scattering photometer 45 are out of the switching region RS. That is, this indicates that the deviation width between the concentration Ca calculated by the absorptiometer 44 and the concentration Cb calculated by the scattering photometer 45 exceeds the range of variation in the measured value allowed in the clinical field, “Absorption scattering result difference error” is added to both the calculated concentrations Ca and Cb.
  • the concentration Cb calculated by the scattering photometer 45 is not more than the switching upper limit CSH, and the concentration Ca calculated by the absorptiometer 44 is not less than the switching lower limit CSL. It means that both the photometers 45 are within the switching limit value and within the quantitative range C1, C2.
  • the fact that both the absorptiometer 44 and the scattered photometer 45 are within the switching limit values and within the quantification ranges C1 and C2 is either the concentration Ca calculated by the absorptiometer 44 or the concentration Cb calculated by the scatterometer 45. Includes being within the switching area RS.
  • step S601 it is determined that an absorption / scattering simultaneous analysis request is set, and in steps S603, the concentrations Ca and Cb calculated by the absorptiometer 44 and the scattered photometer 45, respectively, are measured normally.
  • step S604 it is determined that the concentration Cb by the scattering photometer 45 is not more than the switching upper limit value CSH of the switching region RS and the concentration Ca by the absorptiometer 44 is not less than the switching lower limit value CSL. If it is determined, the priority output determination unit 59 determines the priority output of the photometer for each of the absorptiometer 44 and the scattered photometer 45 (step S605).
  • the priority output determination unit 59 determines whether the absorptiometer 44, the scatterer is based on the “priority output determination / rank” of each of the absorptiometer 44 and the scatterometer 45 set on the application setting screen 71 when the analysis request is made. The priority output of each photometer 45 is determined.
  • the priority output determination unit 59 outputs only all data measured by the scattering photometer 45 including the density Cb by the scattering photometer 45 to the output unit 61 (step S606). Thereby, from the output part 61, the data measured with the scattered photometer 45 including the density Cb by the scattered photometer 45 with no error is output preferentially.
  • the priority output determination unit 59 includes the concentration Ca by the absorptiometer 44. Only all data measured by the absorptiometer 44 is output to the output unit 61 (step S608). Thereby, the data measured by the absorptiometer 44 including the concentration Cb by the absorptiometer 44 without error is preferentially output from the output unit 61.
  • the concentration Ca calculated by the absorptiometer 44 and the concentration Cb calculated by the scattered photometer 45 are included. All the data measured by the absorptiometer 44 and the scattered photometer 45 are output to the output unit 61 (step S607). As a result, all data measured by the absorptiometer 44 and the scattered photometer 45 including the concentration Ca by the absorptiometer 44 and the concentration Cb by the scatterometer 45 are output from the output unit 61.
  • the priority output determination unit 59 outputs the data measured by the absorptiometer 44 and / or the scattered photometer 45 as a result of the priority determination to the output unit 61 (steps S606, S607, and S608).
  • an error such as “absorption light scattering difference error” is added to the concentration Ca and / or the concentration Cb from the scattering photometer 45
  • the error is also added to the data output to the output unit 61 and output. Therefore, in the output from the output unit 61 in steps S606 to S608, if an error such as “absorption / scattering result difference error” is added, the data measured by the absorptiometer 44 and the scattered photometer 45 are included in the data. Correspondingly, the error content is also output.
  • the automatic analyzer includes the absorptiometer 44 and the scatterometer 45, and analyzes each analysis item with the two absorptiometers 44 and 45 at the same time.
  • the overlap region RO and / or the switching region RS that can be quantified by either photometer are set, and the priority output order of the photometers used for concentration output among the two photometers is set at the same time, and the two photometers are set.
  • the reference point BP and the concentration reference point Cbp are used for data output of the absorptiometer 44 and the scattered photometer 45 in order to create the switching region RS in the overlapping region RO.
  • the switching region RS is further divided into a plurality of sub switching regions rs based on the reference point BP and the concentration reference point Cbp, the concentrations measured by the absorptiometer 44 and the scattered photometer 45 are respectively Even if the data output of each of the absorptiometer 44 and the scattered photometer 45 is included in the switching region RS according to the pattern included in the plurality of sub switching regions rs, the sub switching region You may make it select automatically the photometer output corresponding to rs.
  • two photometers ie, the absorptiometer 44 and the scattered photometer 45 are used.
  • other types of photometers and a plurality of photometers having different methods are used.
  • the present disclosure is also applicable when using.
  • an automatic analyzer equipped with two scattering photometers having different wavelengths, light amounts, and light receiving angles of a light source an automatic analyzer equipped with two absorptiometers that change the optical path length transmitted through the reaction vessel.
  • Even an automatic analyzer equipped with three or more photometers combined with a scattering photometer or an absorptiometer can be applied in a concentration region where switching of the photometer is necessary.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

複数種類の光度計を備えた自動分析装置で、種々の検体に対して、目的成分の濃度を決定する際に、光度計の選択が不可能となる選択エラーが発生するのを防ぐために、自動分析装置1は、定量範囲が異なる複数種類の光度計44、45と、複数種類の光度計44、45の中から選択された一又は複数の光度計の測定値AL1,AL2を基に検体中の目的成分の定量を行う分析制御部50とを有する。分析制御部50は、複数種類の光度計44、45それぞれの定量範囲C1、C2の重複領域に、同一の検体についての各光度計44、45の測定値AL1、AL2を基にした目的成分の定量値Ca,Cbのばらつきよりも大きな領域幅を有する切替領域RSを設定し、切替領域RSに対応する定量範囲部分の定量値と、各光度計44、45の測定値AL1、AL2を基にした目的成分の定量値Ca,Cbとを比較して、複数種類の光度計44、45の中から目的成分の定量出力に用いる光度計を選択する。

Description

自動分析装置及び自動分析方法
 本開示は、臨床検査用の自動分析装置及び自動分析方法に関する。
 臨床検査用の自動分析装置は、血液や尿等の検体中に含まれる目的成分の成分量を光学的に検出する装置である。検体中に含まれる目的成分の検出方法としては、検体の透過光量を測定する吸光光度法を用いたものが多い。吸光光度法は、光源からの光を検体又は検体と試薬とが混合した反応液に照射し、その結果得られる単一又は複数の波長の透過光量を測定して吸光度を算出し、ランベルト・ベール(Lambert-Beer)の法則に従い、吸光度と濃度の関係から検体中に含まれる目的成分の成分量を求める。
 検体と試薬との反応には、基質と酵素との反応を用いた呈色反応と、抗原と抗体の凝集反応との、大きく分けて2種類の反応が用いられる。呈色反応は、生化学分析であり、呈色した反応液による光の吸収量(吸光度)を測定し、検体中の目的成分の成分量を求める。凝集反応は、免疫分析であり、抗原と抗体の凝集により変化する反応液の濁り(濁度)を透過光量の変化から測定し、検体中の目的成分の成分量を求める。
 免疫分析で測定される目的成分(測定物質)は通常、血中濃度が低く、高感度な検出システムが要求される。そのため、免疫分析では、ラテックス粒子表面に抗体又は抗原を感作(結合)させた試薬を用い、抗原抗体反応で生成する凝集塊のサイズを大きくすることで、濁度変化を大きくし、高感度な測定を可能とするラテックス免疫比濁法等が開発されてきた。
 臨床検査用の自動分析装置としては、例えば、特許文献1のように、より大きな光量変化を捉え易い散乱光の光量変化を用いて、免疫分析の高感度化を試みた装置が知られている。散乱光の光量変化を利用する散乱検出法では、抗原抗体反応により生成される凝集塊に光を照射し、その凝集塊によって散乱された光量及び/又は散乱光強度を計測し、光量及び/又は散乱光強度と濃度との関係から成分量を求める。しかし、一般的に、光散乱検出法は、低濃度検体では高感度な検出が可能であるが、高濃度検体では、生成される凝集塊が多くなり、多重散乱の影響で定量性が悪くなる。一方、吸光光度法は、低濃度検体の測定感度は悪いが、光散乱検出法と比べ高濃度検体に対して定量性が高く、定量可能な濃度範囲も広い。そこで、近年では、これら両光度計それぞれの特性の違いを利用し、吸光光度計、散乱光度計を一台の装置に一緒に搭載することで、測定のダイナミックレンジを広げた自動分析装置が開発されている。
 例えば、特許文献2や特許文献3では、吸光光度計と散乱光度計を装置に一緒に搭載した自動分析装置が開示されている。これらは、低濃度領域では散乱光度計を選択し、高濃度領域では吸光光度計を選択することで、ダイナミックレンジを広げている。特に、特許文献3に記載の、複数の光度計の特性を利用して免疫分析項目(検体中の目的成分)を幅広い濃度領域で測定可能とする方式では、光度計の選択基準について、各光度計の検量線作成に用いる標準液の測定値のばらつきから高感度に分析可能な光度計を選択する手法が開示されている。また、光度計の測定値が予め設定しておいた複数の濃度範囲の中のいずれに該当するものかに応じて吸光光度計と散乱光度計とを切り替える手法も開示されている。
 また、特許文献4には、検体中に含まれる目的成分の成分量を求めるために用いる検量線に係り、試料中の特定の被検体(検体中の目的成分)と被検体特異的反応パートナー(試薬)とを反応させた反応混合物を、低濃度の特定の被検体に最適化した第1波長及び高濃度の特定の被検体に最適化した第2波長で同時に測定する測光アッセイが開示されている。この測光アッセイでは、同時に測定された第1及び第2波長のそれぞれ光信号の中から閾値に基づいて一方の波長の光信号を選択し、第1波長で記録した第1校正曲線(第1検量線)又は第2波長で記録した第2校正曲線(第2検量線)の中の当該選択された光信号に対応する校正曲線を用いて、特定の被検体の量を定量する。
国際公開第2011/004781号 特開2005-189245号公報 特開2014-6160号公報 特表2015-515006号公報
 特許文献3に記載の自動分析装置では、吸光光度計、散乱光度計それぞれの選択方法について示されている。その選択方法として、各光度計の検量線作成に用いる標準液の測定値のばらつきから、感度の良い分析が可能な光度計を選択する手法や、吸光光度計が算出した検体中に含まれる目的成分の濃度を大まかに低濃度、中濃度、高濃度の3段階の濃度範囲に分け、それぞれ濃度範囲に対応して設定された光度計を選択する手法が示されている。
 しかしながら、上述した光度計の選択では、感度の良い分析が可能な光度計の確認方法の詳細や、光度計の選択基準になる濃度範囲の設定方法の詳細が不明であり、具体的な光度計の選択方法及び選択基準については考慮されていなかった。
 例えば、感度の良い光度計の確認については、吸光光度計、散乱光度計それぞれの測定値のばらつきの幅が同じ値を示していたり、測定値のばらつきの幅が大きい若しくは小さい側の光度計が吸光光度計と散乱光度計との間で目的成分の濃度の測定値(成分量)に応じて振動する(両光度計が交互に入れ替わる)場合の選択方法が考慮されていなかった。濃度範囲の設定については、吸光光度計と散乱光度計との間で切り替えが必要な濃度範囲や、その濃度範囲の決定方法については考慮されていなかった。
 さらに、特許文献3に記載の自動分析装置では、上述した光度計の確認方法及び選択基準に関係して、吸光光度計、散乱光度計それぞれが算出した濃度が各々の光度計についての選択範囲外又は選択範囲内となり、光度計の選択エラーが発生する問題について考慮されていなかった。
 一方、特許文献4に記載の自動分析装置の場合も、検量線の選択で使用される、その1点からなる光信号の閾値自体の具体的な決定方法については示されておらず、不明であった。また、特許文献3に記載の自動分析装置の場合と同様に、第1波長、第2波長それぞれで算出した特定の被検体(検体中の目的成分)の濃度が、第1波長、第2波長のいずれともが選択範囲外又は選択範囲内となり、第1波長、第2波長の選択エラーが発生する問題について考慮されていなかった。
 本開示は、吸光光度計及び散乱光度計を搭載した自動分析装置に係り、種々の検体に対して、目的成分の濃度を決定する際に、光度計の選択が不可能となる選択エラーが発生することを防いで、高精度且つ高速な分析に寄与する自動分析装置及び自動分析方法を提供するものである。
 本開示は、反応容器に照射された光源からの光を検出する複数種類の光度計を備えた自動分析装置で、光度計それぞれに応じた定量可能な目的成分の濃度範囲を設定する際に、複数種類の光度計いずれでも目的成分の定量が可能な、互いの光度計の検量線が重複する目的成分の濃度範囲に含まれる切替領域を設定する。目的成分の定量出力に用いる光度計、又は目的成分の定量結果は、複数種類の光度計による目的成分の定量結果それぞれについての、切替領域に含まれるか否かの判定結果に応じて選択される。
 本開示によれば、吸光光度計と散乱光度計との切り替え選択を、光度計の選択エラーを起こすことなく的確に行うとともに、検体中に含まれる目的成分の成分量の測定を高精度且つ高速に実行できる。
 また、本開示の上記した以外の、課題、構成及び効果については、以下の実施の形態の説明により明らかにされる。
本開示に係る自動分析装置の一実施例の概略全体構成図である。 本実施例の自動分析装置における分析パラメータ設定のための操作部の一実施例の構成図である。 本実施例の自動分析装置で適用される透過光強度及び散乱光強度を用いた検量線の模式図である。 本実施例の自動分析装置において、吸光光度計と散乱光度計とがそれぞれ算出した濃度の関係を示した図である。 本実施例の自動分析装置において、切替領域の濃度基準点を算出する例を示した図である。 本実施例の自動分析装置において、目的成分の定量出力(濃度出力)に用いる光度計又は目的成分の定量結果を選択する処理のフローチャートである。
 以下、本開示に係る自動分析装置及び自動分析方法の一実施形態について、図面に基づいて説明する。
 図1は、本開示に係る自動分析装置の一実施例の概略全体構成図である。
 本実施例の自動分析装置1は、検体ディスク10、反応ディスク20、試薬ディスク30、検体分注機構41、試薬分注機構42、分析制御部50、出力部61、及び入力部62を備えた構成になっている。
 検体ディスク10には、検体2を収容する検体容器としての検体カップ15が複数搭載される。各検体カップ15は、検体ディスク10のディスク本体11上に、ディスク周方向に沿って相互に離間させて並設配置されて保持されている。検体ディスク10には、ディスク本体11を回動させて、複数の検体カップ15をディスク周方向に沿って移動変位させる駆動部12が備えられている。検体ディスク10は、この駆動部12の駆動制御によって、ディスク本体11に搭載された複数の検体カップ15の中の一の検体カップ15を、例えば検体吸入位置といった、ディスクの周方向に沿った所定位置に配置することができる。
 なお、図1では、検体ディスク10は、複数の検体カップ15がディスク本体11上にディスク周方向に沿って一列に配置された例を示したが、同心円状に複数列配置する構成としてもよい。さらに、複数の検体カップ15を保持する構成は、検体ディスク10に限られるものではなく、一次元或いは2次元に検体容器を配列して保持する検体ラックを用いるラック方式としてもよい。
 反応ディスク20は、検体ディスク10と隣設され、そのディスク本体21には、反応液3が作製される反応容器25が複数保持されている。各反応容器25は、ディスク周方向に沿って相互に離間させて、ディスク本体21に並設配置されて保持されている。各反応容器25は、後述する吸光光度計44及び散乱光度計45による測定のために透光性材料により構成されている。反応ディスク20には、ディスク本体21を回動させて、複数の反応容器25をディスク周方向に沿って移動変位させる駆動部22が備えられている。
 反応ディスク20は、駆動部22の駆動制御によって、ディスク本体21が回動制御され、搭載された複数の反応容器25の中の一の反応容器25を、例えば、検体分注機構41による検体吐出位置、試薬分注機構42による試薬吐出位置等といった、ディスク周方向に沿って設けられた所定位置に移動配置することができる。
 また、反応ディスク20には、恒温槽28が備えられている。ディスク本体21上にそれぞれ配置された複数の反応容器25は、恒温槽28内の恒温槽水(恒温流体)に常時浸漬され、容器内の反応液3を一定の反応温度(例えば37℃程度)に保つことができる。恒温槽28内の恒温槽水(恒温流体)は、分析制御部50の後述する恒温流体制御部54によって、その温度と流量が制御され、反応容器25に供給される熱量が制御される。
 また、反応ディスク20の周回りには、検体分注機構41及び試薬分注機構42に加えて、それぞれ互いの位置を異ならせて、撹拌部43、吸光光度計44、散乱光度計45、洗浄部46が配置されている。
 撹拌部43は、検体分注機構41、試薬分注機構42それぞれにより反応容器25内に分注された検体2、試薬4の混合液からなる反応液3の攪拌を行う。これにより、反応容器25内の反応液3は、均一に攪拌されてその反応が促進される。撹拌部43には、例えば、攪拌翼を備える攪拌機、或いは超音波を用いた攪拌機構が備えられている。
 吸光光度計44と散乱光度計45は、図示の例では、反応ディスク20の回動中心を通る対角線上に反応ディスク20を挟んで互いに位置するように、反応ディスク20の周回りに配置されている。吸光光度計44及び散乱光度計45は、何れも光源と受光部を有する構造になっている。吸光光度計44は、光源から反応液に光を照射した際、反応液から得られる透過光を受光部によって検出し、単一又は複数の波長の透過光量を計測する。散乱光度計45は、光源から反応液に光を照射した際、反応液から得られる散乱光を受光部によって検出し、反応液によって散乱された光量及び/又は散乱光強度を計測する。
 洗浄部46は、分析が終了した反応容器25から残っている反応液3を排出し、反応容器25を洗浄する。洗浄された反応容器25には、再び検体分注機構41から、次の検体2が分注され、試薬分注機構42から、当該検体2に対応して設定された分析項目(目的成分)の定量に用いられる試薬4が分注される。
 試薬ディスク30は、反応ディスク20と隣設され、そのディスク本体31には、試薬4を収容する試薬ボトル35が複数搭載される。各試薬ボトル35には、自動分析装置1にて分析される目的成分(分析項目)に応じた試薬が、試薬の種類毎にボトルを変えて別々に収容されている。各試薬ボトル35は、ディスク周方向に沿って相互に離間させて、ディスク本体31上に並設配置されて保持されている。
 試薬ディスク30には、ディスク本体31を回動させて、複数の試薬ボトル35をディスク周方向に沿って移動変位させる駆動部32が備えられている。試薬ディスク30は、駆動部32の駆動制御によって、ディスク本体31に搭載された複数の試薬ボトル35の中の測定に使用する所定の試薬ボトル35を、試薬吸入位置といった、ディスクの周方向に沿った所定位置に配置することができる。
 また、試薬ディスク30には、冷却機構を備えた試薬保冷庫38が設けられている。ディスク本体31上にそれぞれ配置された複数の試薬ボトル35は、ディスク本体31が回動しても、試薬保冷庫38の冷却環境に常時保持された状態で冷却され、試薬4の劣化防止がはかられている。試薬保冷庫38に備えられた冷却機構としては、例えば、低温水を反応容器25が浸漬される冷却槽に循環する方式、或いはペルチェ素子により気相中にて冷却する方式等が用いられる。
 検体分注機構41は、検体ディスク10と反応ディスク20との間に設置され、可動アームと、これに取り付けられたピペットノズルからなる分注ノズルとを備えている。検体分注機構41は、その分注ノズルを検体ディスク10上の検体吸入位置に移動させ、検体吸入位置に配置された検体カップ15からノズル内に所定量の検体を吸入して収容する。その後、検体分注機構41は、分注ノズルを反応ディスク20上の検体吐出位置に移動させて、検体吐出位置に配置された反応容器25内に、ノズル内に収容されている検体を吐出して、検体の分注を行う。
 試薬分注機構42は、反応ディスク20と試薬ディスク30との間に設置され、同様に可動アームと分注ノズルとを備えている。試薬分注機構42は、その分注ノズルを試薬ディスク30上の試薬吸入位置に移動させ、試薬吸入位置に配置された試薬ボトル35からノズル内に所定量の試薬を吸入して収容する。その後、試薬分注機構42は、分注ノズルを反応ディスク20上の試薬吐出位置に移動させて、試薬吐出位置に配置された反応容器25内に、ノズル内に収容された試薬を吐出して、試薬の分注を行う。
 検体分注機構41及び試薬分注機構42には、それぞれ異なる種類の検体又は試薬の反応容器25への分注に備えて、分注を終えた分注ノズルを洗浄する洗浄槽がそれぞれ設けられている。それぞれの分注ノズルは、検体又は試薬の分注動作の前後に洗浄槽で洗浄され、検体同士又は試薬同士のコンタミを防止している。
 分析制御部50は、測定部51、解析部52、制御部53、恒温流体制御部54、データ格納部55、吸光散乱同時分析判定部56、測定時異常チェック部57、濃度範囲チェック部58、及び優先出力判定部59を備えている。
 測定部51は、吸光光度計44より得られる透過光量の測定値から、この測定値を取得した反応液3による透過光の光量及び/又は透過光強度(以下では、この透過光の光量及び/又は透過光強度のことを、透過光強度で総称する)を求める。また、測定部51は、散乱光度計45より得られる散乱された光量及び/又は散乱光強度の測定値から、この測定値を取得した反応液3による散乱光の光量及び/又は散乱光強度(以下では、散乱光の光量及び/又は散乱光強度のことを、散乱光強度で総称する)を求める。測定部51で求められた透過光強度及び散乱光強度は、測定値を取得した反応容器25、又はこの反応容器25が用いられた分析依頼と対応づけられて、データ格納部55に格納される。なお、この分析依頼には、分析で用いられる検体2、試薬4等の情報が含まれている。
 解析部52は、測定部51によって測定された所定の反応液3の透過光強度及び/又は散乱光強度を読み出して、この反応液3中の目的成分を解析する。解析後の解析データは、測定値を取得した反応容器25、又はこの反応容器25を用いた検体2の分析依頼と対応づけられて、解析部52によってデータ格納部55に格納される。
 具体的には、解析部52は、測定部51で求められた所定の反応液3の透過光強度及び/又は散乱光強度を、その所定の反応液3に用いられた試薬4に対応する検量線を参照して、所定の反応液3における目的成分の成分濃度(成分量)を算出する。検量線は、既知濃度の目的成分を含んでいる標準物質等の検体を用いて求めた目的成分の各成分濃度と、透過光強度及び/又は散乱光強度との関係を示したものである。データ格納部55には、試薬ボトル35に収容されて試薬ディスク30に搭載されている試薬それぞれの検量線データが予め記憶されている。
 さらに、解析部52は、この反応液3中の目的成分の成分濃度を算出する際には、測定部51で求められた所定の反応液3の透過光強度及び/又は散乱光強度といった測定データに加えて、検体分注機構41や試薬分注機構42等のこの所定の反応液3の分析に関わる機構の制御結果データについてもデータ格納部55から読み出して、測定データ自体や機構の制御に異常が生じていたか否かを確認するようになっている。
 そして、解析部52は、測定データ自体や機構の制御に異常が生じていたことを確認した場合には、この所定の反応液3の透過光強度及び/又は散乱光強度に基づいて算出した目的成分の成分濃度にはエラー(例えばテクニカルリミットエラーや検体不足エラー等)を付け加えて、測定値を取得した反応容器25、又はこの反応容器25を用いた検体2の分析依頼と対応づけてデータ格納部55に格納する。
 また、解析部52は、算出した目的成分の成分濃度を、後述する吸光散乱同時分析判定部56に出力し、吸光散乱同時分析判定部56を介して、又は必要に応じて、さらに測定時異常チェック部57、濃度範囲チェック部58、優先出力判定部59を適宜介して、ディスプレイ等により構成された出力部61へ表示出力する。
 制御部53は、データ格納部55に格納されている検体2それぞれの分析依頼に基づいて、駆動部12、22、32を制御して、検体ディスク10、反応ディスク20、試薬ディスク30を回動駆動する。また、制御部53は、検体分注機構41、試薬分注機構42による分注動作を制御する。
 制御部53は、検体ディスク10、反応ディスク20、試薬ディスク30それぞれを回動することにより、対応ディスクの規定位置に配置される検体カップ5、反応容器25、試薬ボトル35を調整する。この場合、検体ディスク10の規定位置には、検体分注機構41による検体吸入位置が含まれる。また、反応ディスク20の規定位置には、検体分注機構41による検体吐出位置、試薬分注機構42による試薬吐出位置、撹拌部43による撹拌位置、吸光光度計44による測定位置、散乱光度計45による測定位置、洗浄部46による洗浄位置が含まれる。また、試薬ディスク30の規定位置には、試薬分注機構42による試薬吸入位置が含まれる。
 制御部53は、このようにして検体ディスク10、反応ディスク20、試薬ディスク30それぞれの回動を制御し、検体分注機構41、試薬分注機構42による分注動作を制御することによって、反応ディスク20に複数保持されている反応容器25それぞれに対して、検体2それぞれの分析依頼に基づいた所定の反応液3の作製や、その作製した所定の反応液3の透過光強度及び/又は散乱光強度の測定を実行する。
 恒温流体制御部54は、反応ディスク20に備えられた恒温槽28内の恒温槽水(恒温流体)の温度及び流量を制御して、反応容器25内の反応液3の温度を調整する。
 分析制御部50における測定部51、解析部52、制御部53、恒温流体制御部54、吸光散乱同時分析判定部56、測定時異常チェック部57、濃度範囲チェック部58、及び優先出力判定部59は、例えば、CPU等のマイクロプロセッサによって一体的に構成される。この場合、マイクロプロセッサは、ROM又はRAM等により構成されるデータ格納部55の所定の記憶領域から各構成部51~59の対応処理プログラムを読み出して実行することにより、分析結果を得るための上述した装置各部の作動制御や測定データの処理制御を行う。
 本実施例の自動分析装置1では、試料の分析項目(検体2の目的成分)は、吸光光度計44と散乱光度計45で同時に分析し、反応液3の反応過程を吸光光度計44及び/又は散乱光度計45で測定可能な構成になっている。
 その際、本実施例の自動分析装置1では、検体2又は検体2の目的成分が高濃度の場合は、吸光光度計44の測定値から算出した濃度を、検体2又は検体2の目的成分が低濃度の場合は、散乱光度計45の測定値から算出した濃度を、分析結果として出力部61から出力することが可能となり、ダイナミックレンジの広い測定が可能になっている。
 次に、このように構成された本実施例の自動分析装置1において、散乱光度計45、吸光光度計44それぞれによる測定の際に、分析制御部50の各構成部51~59が参照する分析パラメータの設定、及びその設定されたパラメータに応じて分析制御部50が実行する濃度出力について、それぞれ項目別に分けて説明する。
(1)分析パラメータの設定
 図2は、本実施例の自動分析装置における分析パラメータ設定のための操作部の一実施例の構成図である。
 本実施例の自動分析装置1では、分析パラメータ設定のための操作部70は、GUIとしてのアプリケーション設定画面71を有して構成されている。アプリケーション設定画面71は、入力部62に含まれるキーボード、マウスといった操作機器の所定操作によって、出力部61に含まれるディスプレイ等の表示機器に表示される。分析パラメータは、このアプリケーション設定画面71上で、入力部62を介してその設定入力が行えるようになっている。
 アプリケーション設定画面71は、アプリケーション設定の項目選択欄72と、選択された項目毎のパラメータ設定欄73と有する。図示の例では、項目選択欄72で「分析」が選択され、パラメータ設定欄73には、分析パラメータ設定のためのパラメータ設定欄73’が表示されている状態が示されている。
 そして、分析パラメータ設定のためのパラメータ設定欄73’には、吸光光度計44及び散乱光度計45に共通な分析パラメータを設定入力する光度計共通設定欄75と、吸光光度計44だけの分析パラメータを設定入力する吸光光度計専用設定欄76と、散乱光度計45だけの分析パラメータを設定入力する散乱光度計専用設定欄77とに分けられた画面構成になっている。
 図2では、光度計共通設定欄75においては、プルダウンメニュー方式で、分析項目の種別を表す“項目名”として“CRP(C-リアクティブ・プロテイン(C-反応性タンパク質))”が、“分析依頼方法”の種別として“吸光散乱同時分析”がそれぞれ選択された状態が例示されている。そして、“検体量”として「5[μl]」が、“試薬分注量”として第1試薬“R1”、第2試薬“R2”には「140[μl]」、「70[μl]」が、“吸光散乱結果差チェック値”として成分量「3」が、成分量の“出力単位”として「mg/dl」が、それぞれ設定された状態が例示されている。
 ここで、“分析依頼方法”の種別としての“吸光散乱同時分析”は、低濃度領域では散乱光度計を選択し、高濃度領域では吸光光度計を選択するように切り替えて、特性の異なる吸光光度計、散乱光度計を一緒に用いることによって目的成分のダイナミックレンジを広げた分析方法の実行設定を指す。
 また、吸光光度計専用設定欄76においては、“分析法”の種別として、反応前若しくは反応開始直後の測定値と反応終了時の測定値との2つの測定値から目的成分の濃度を求める方法である“2ポイントエンド”が、“測定波長”として2波長測光の主/副波長に「800/450[nm]」がそれぞれ設定された状態が例示されている。そして、“測光ポイント”として「19」及び「30」が、吸光光度計44による“定量範囲”として成分量(目的成分の濃度の測定値)の「5~40」が、“切替領域設定”として「自動」が、“優先出力判定/順位”には「2」が、“吸光切替下限値”の成分量には「6」が、選択或いは設定された状態が例示されている。なお、分析法の種別については、この“2ポイントエンド”以外にも、例えば、同じエンドポイント法で反応終了時の測定値を用いる“1ポイントエンド”、反応速度を測定して物質の濃度を求める“レート法”が、プルダウンメニュー方式で選択できるようになっている。
 また、散乱光度計専用設定欄77においては、“分析法”の種別として“2ポイントエンド”が、“受光角度”として「20°」が設定された状態が例示されている。そして、“測光ポイント”として「21」及び「30」が、散乱光度計45による“定量範囲”として成分量の「0.1~10」が、“切替領域設定”として「自動」が、“優先出力判定/順位”として「1」が、“散乱切替上限値”として成分量「9」が、選択或いは入力設定された状態が例示されている。
 なお、図2では、光度計共通設定欄75に分類依頼方法として“吸光散乱同時分析”が選択されているため、アプリケーション設定画面71には吸光光度計専用設定欄76及び散乱光度計専用設定欄77が表示されているが、分類依頼方法として“吸光分析”又は“散乱光分析”が選択されている場合には、分析に使用されない散乱光度計45又は吸光光度計44に係る散乱光度計専用設定欄77又は吸光光度計専用設定欄76は表示しないようにしてもよい。
 また、図2に示されているように、光度計共通設定欄75に分類依頼方法として“吸光散乱同時分析”が選択されている場合は、吸光光度計専用設定欄76、散乱光度計専用設定欄77それぞれの“優先出力判定/順位”には、いずれかの一方の専用設定欄76(又は77)に優先出力順位(例えば「1」)を設定すれば、他方の専用設定欄77(又は76)には、先に設定した一方の優先出力順位(例えば「1」)に基づいて、相補的な優先出力順位(例えば「2」)が自動的に入力設定される。
 次に、本実施例の自動分析装置1で吸光光度計44、散乱光度計45による目的成分の定量に適用される透過光強度、散乱光強度の検量線L1,L2を参照しながら、図2に示した吸光光度計専用設定欄76及び散乱光度計専用設定欄77で設定する“定量範囲”並びに“切替領域設定”、吸光光度計専用設定欄76で設定する“吸光切替下限値”、並びに散乱光度計専用設定欄77で設定する“散乱切替上限値”について説明する。
 図3は、本実施例の自動分析装置で適用される透過光強度及び散乱光強度を用いた検量線の模式図である。図3では、横軸に濃度(単位として、例えば[ng/ml]、[μg/ml]、[mg/dl]を適用)、縦軸に吸光度(単位として、例えば[Abs.]を適用)又は散乱光強度(単位として、例えば[count]を適用)を取ったグラフ上に、透過光強度、散乱光強度の検量線L1,L2を模式的に示してある。
 本実施例の自動分析装置1の場合では、図3に示すように、
 ・吸光光度計44の定量範囲C1:5~40、
 ・散乱光度計45の定量範囲C2:0.1~10
になっている。その結果、吸光光度計44の定量範囲C1「5~40」の定量下限値CL1「5」が散乱光度計45の定量範囲C2「0.1~10」に含まれ、同様に散乱光度計45の定量範囲C2「0.1~10」の定量上限値CH2「10」が吸光光度計44の定量範囲C1「5~40」に含まれている。これに伴い、吸光光度計44の定量範囲C1「5~40」の検量線L1と散乱光度計45の定量範囲C2「0.1~10」の検量線L2との間には、吸光光度計44の定量下限値CL1「5」と散乱光度計45の定量上限値CH2「10」で規定される濃度領域の重複領域ROが形成されるようになっている。
 また、本実施例では、この重複領域RO内に、吸光光度計専用設定欄76で設定された吸光切替下限値CSL「6」と散乱光度計専用設定欄77で設定された散乱切替上限値CSH「9」とで規定される、吸光光度計44と散乱光度計45との間での光度計の切替領域RSが設定される。
 次に、本実施例の自動分析装置1における分析パラメータの特徴である、(a)重複領域RO、(b)切替領域RS、(c)優先出力順位、及び(d)吸光散乱結果差チェックの設定について説明する。
 (a) 重複領域ROの設定
 同時測定が可能な散乱光度計45、吸光光度計44それぞれの定量範囲C2、C1(C2:0.1~10、C1:5~40)の重複領域RO(RO:5~10)は、光度計共通設定欄75で分類依頼方法として“吸光散乱同時分析”が選択された状態で、散乱光度計専用設定欄77による散乱光度計45の定量範囲(散乱定量範囲)C2の入力と、吸光光度計専用設定欄76による吸光光度計44の定量範囲(吸光度定量範囲)C1の入力とによって設定される。その際、重複領域ROの濃度幅「5」は、散乱光度計45、吸光光度計44による透過光強度、散乱光強度それぞれの測定値AL1、AL2のばらつきによる目的成分の濃度のばらつきの幅と比べて、十分広い幅に設定される。
 例えば、重複領域ROの濃度幅を「0」、すなわち吸光光度計44の定量下限値CL1と散乱光度計45の定量上限値CH2とを同一の濃度C(例えば、C=CL1=CH2=7)に設定した場合は、1点としての濃度(C=7)が光度計44、45の単一な切り替え閾値Csとなる。
 このような1点の濃度C(=7)を閾値Csとする場合、閾値Cs以上の濃度C(7≦C)の検体2に対しては吸光光度計44を用いて濃度Cを算出し、閾値Csよりも小さな濃度C(C<7)の検体2に対しては散乱光度計45を用いて濃度Cを算出することになる。ところが、切り替え閾値Cs(=7)付近の濃度Cの検体2を測定した際には、この切り替え閾値Csを基準にした光度計44、45の択一的な選択では、光度計の選択エラーが発生する可能性がある。また、2種の吸光光度計44及び散乱光度計45から、それぞれによって2つの互いに異なる測定濃度が取得されることも起こり得る。
 閾値Cs(=7)付近の濃度Cの検体2を測定した場合、測定値ALのばらつきから、吸光光度計44では閾値Cs(=7)より低い濃度C(例えば、C=6.9)を算出し、散乱光度計45では閾値Cs(=7)より高い濃度C(例えば、C=7.1)を算出してしまう場合も生じる。その際、重複領域ROの濃度幅が「0」に設定されていると、どちらも閾値Cs(=7)を基準にした定量範囲外となってしまう。これは、吸光光度計44の閾値Cs(=7)を基準にした定量範囲が「7~40」になり、散乱光度計45の閾値Cs(=7)を基準にした定量範囲が「0.1~7」になることに因る。その結果、どちらの濃度C(吸光光度計:Ca=6.9、散乱光度計:Cb=7.1)も吸光光度計44及び散乱光度計45それぞれの本来の定量範囲(吸光光度計:5~40、散乱光度計:0.1~10)内で正常な測定ができているにもかかわらず、重複領域ROの濃度幅が「0」になっているがために、どちらの算出濃度C(吸光光度計:Ca=6.9、散乱光度計:Cb=7.1)も定量範囲外になってしまうため、測定エラーが出力されてしまう。
 また、反対に、吸光光度計44、散乱光度計45それぞれによる測定値ALのばらつきから、どちらの算出濃度C(吸光光度計:Ca=7.1、散乱光度計:Cb=6.9)も閾値Cs(=7)を基準にした定量範囲(吸光光度計:7~40、散乱光度計:0.1~7)になってしまった場合は、一つの検体2に対して二つの異なる算出濃度C(吸光光度計:Ca=7.1、散乱光度計:Cb=6.9)が取得されることになってしまう。
 このような事態が発生するのを避けるために、本実施例の自動分析装置1では、試薬4は、重複領域ROが吸光光度計44、散乱光度計45それぞれの測定値ALのばらつきによる目的成分の濃度のばらつきの幅に比べて、重複領域ROの濃度幅を十分広く持った試薬を利用する。
 例えば、事前の試験等により、試薬4のロット毎に光度計の種類それぞれの定量範囲C1、C2が決定され、その定量範囲C1、C2や重複領域ROについての情報が取得されていれば、ユーザは、その取得された定量範囲C1、C2や重複領域ROについての情報を基に、複数種類の光度計を切り替えるための、吸光光度計44の定量下限値CL1や散乱光度計45の定量上限値CH2といった分析パラメータを設定することができる。さらに、その設定の際も、臨床の現場で求められる正確さや精度を考慮して、装置1及び試薬4の性能上、定量に用いても問題の無い濃度範囲を設定する。また、この定量下限値CL1や定量上限値CH2といった、複数種類の光度計を切り替えるための分析パラメータについては、マニュアルで設定する方法や装置で自動設定する方法も考えられる。しかしながら、分析結果の濃度データの信頼性を確保するため、事前の試験等により取得される試薬4の種類毎の定量範囲C1、C2や重複領域ROについての情報を利用するようにすれば、マニュアルで設定する方法や装置で自動設定する方法よりも、複数種類の光度計を切り替えるための分析パラメータを容易に設定することができる。
 各光度計(吸光光度計44、散乱光度計45)の定量範囲C1、C2は、例えば、(a1)測定値AL1、AL2のばらつき、(a2)検量線CL1、CL2の直線性、(a3)吸光光度計44と散乱光度計45との出力値の乖離、等を考慮して決定される。
 (a1) 測定値ALのばらつき
 測定値ALのばらつきは、同一の検体を、吸光光度計44、散乱光度計45それぞれで複数回測定したときの透過光強度の測定値AL1、散乱光強度の測定値AL2のそれぞれのばらつきを確認することで得られる。すなわち、臨床の現場で求められる測定値ALのばらつきが許容値以下となるように、吸光光度計44、散乱光度計45それぞれの濃度範囲が設定される。
 (a2) 検量線L1、L2の直線性
 検量線L1、L2の直線性は、複数の濃度の標準物質を吸光光度計44、散乱光度計45それぞれで測定し、横軸(x軸)に標準物質の濃度C、縦軸(y軸)に吸光光度計44で測定された透過光強度AL1、又は散乱光度計45で測定された散乱光強度AL2をプロットする。その上で、透過光強度AL1、散乱光強度AL2それぞれのグラフの傾きが許容値内になる、吸光光度計44、散乱光度計45それぞれの濃度範囲が設定される。
 (a3) 吸光光度計44と散乱光度計45との間での濃度出力値の乖離
 散乱光度計45は高濃度領域では、多重散乱の影響により濃度変化量に対する散乱光強度変化量が減少し、実濃度よりも低い濃度を出力する可能性がある。このため、散乱光度計45による定量上限値CH2は、吸光光度計44と散乱光度計45の出力濃度の乖離が少ない濃度に設定される。
 上記のような要素を検討し、吸光光度計44、散乱光度計45それぞれの定量範囲C1、C2、及び吸光光度計44と散乱光度計45との間での、それぞれ定量範囲C1、C2の重複領域ROが決定される。
 (b) 切替領域RSの設定
 前述した、吸光光度計44と散乱光度計45との間での定量範囲C1、C2の重複領域ROは、各光度計による定量が可能な検体の濃度範囲であり、散乱光度計45の定量上限値CH2(定量範囲C2が「0.1~10」である場合の「10」)と吸光光度計44の定量下限値CL1(定量範囲C1が「5~40」である場合の「5」)で規定される。
 このような重複領域ROに対して、切替領域RSは、散乱光度計45と吸光光度計44との間で光度計それぞれの測定値のばらつきが同程度となる同一検体における濃度領域であり、散乱光度計45の切替上限値CSHと、吸光光度計44の切替下限値CSLとによって規定できる。
 事前の試験等により、重複領域ROにおける吸光光度計44と散乱光度計45との間で、光度計それぞれの測定値AL1、AL2のばらつきに明らかな差があることが判明している場合は、定量範囲C1、C2とは別に、さらに散乱光度計45の切替上限値CSHや吸光光度計44の切替下限値CSLは設定しなくてもよい。例えば、一方の光度計の測定値のばらつきに対して他方の光度計の測定値のばらつきが重複領域ROの全域に亘って小さい場合等は、吸光光度計44と散乱光度計45との間で重複領域ROにおいての優先順位を設定しておけばよい。
 しかしながら、どちらの光度計も測定値AL1、AL2のばらつきが同程度の場合、光度計の装置間での個体差の影響を考慮し、アプリケーション設定画面71で散乱光度計45の切替上限値CSH、吸光光度計44の切替下限値CSLを設定して、装置上で切替領域RSを決定することが望ましい。
 切替領域RSの設定においては、次の(ア)、(イ)、(ウ)の方法を採用し得る。
 (ア) 事前に試験等で、該当の試薬4のロットから決定した切替領域RSを入力する。
 (イ) 複数の光学系の測定結果、試薬4の感度等から切替領域RSを決定し、自動的にその決定した切替領域RSの切替上限値CSHと切替下限値CSLを設定する。
 (ウ) 切替上限値CSHと切替下限値CSLをオペレータが自由に入力することができる。マニュアルで設定可能である。
 上記(ア)では、ユーザは、例えば、事前の試験等によって、試薬のロット毎に決定した、切替領域RSについての切替上限値CSH、切替下限値CSLの情報を使用することも可能である。
 上記(イ)では、自動分析装置1に蓄積された濃度の測定結果から、重複領域ROの領域内における、さらに吸光光度計44と散乱光度計45との測定値のばらつきが同程度となる領域を求め、設定する。
 ここで、上記(イ)に係り、自動分析装置1のデータ格納部55に蓄積されたデータから切替領域RSを自動で設定するための処理フローについて説明する。なお、この場合は、自動分析装置1のデータ格納部55に十分なデータが蓄積するまでの間は、事前の試験の結果を基に決定した重複領域ROを用いて、目的成分の成分量の測定(濃度Cの測定)を行うことになる。
 事前の試験により自動分析装置1のデータ格納部55に十分なデータ蓄積結果が得られた後は、吸光光度計44の測定値AL1から算出した濃度Caそれぞれと、散乱光度計45の測定値AL2から算出した濃度Cbそれぞれとをグラフ上にプロットし、吸光光度計44、散乱光度計45それぞれによる算出濃度Ca、Cbのばらつきの傾向を分析することによって、切替領域RSを自動的に設定することができる。
 図4は、吸光光度計の測定値から算出した濃度と、散乱光度計の測定値から算出した濃度との関係を、プロットした図である。
 図4では、横軸(x軸)を吸光光度計44の測定値から算出される濃度(単位として、例えば[ng/ml]、[μg/ml]、[mg/dl]を適用)とし、縦軸(y軸)を散乱光度計45の測定値から算出される濃度(単位として、例えば[ng/ml]、[μg/ml]、[mg/dl]を適用)として示したグラフ上に、同じ検体2に含まれる目的成分について、吸光光度計44の実際の測定値AL1から算出した濃度(x=Ca)と散乱光度計45の実際の測定値AL2から算出した濃度(y=Cb)との組み合わせを、 (x,y)=(Ca,Cb)
として、プロットしたものである。
 ここで、吸光光度計44、散乱光度計45それぞれの実際の測定値AL1、AL2から算出した濃度Ca、Cbが、ともに実際の測定値AL1、AL2のばらつきがなく、常に真値を示す場合、両濃度Ca、Cbをプロットしたグラフは、吸光光度計44による濃度Caは散乱光度計45による濃度Cbと同じ値になり、両濃度Ca、Cbは、1:1(すなわち、Ca=Cb)の対応関係になる。したがって、両濃度Ca、Cbの関係は、図4に示したグラフにおいては、
       y=x
の式に従う。
 しかしながら、実際には、どちらの光度計もその測定値ALにはばらつきがある。通常、吸光度検出法は、低濃度側での測定値AL(=AL1)のばらつきが大きく、高濃度側では測定値AL1のばらつきが小さい傾向になる。これに対して、光散乱検出法では、低濃度側では測定値AL(=AL2)のばらつきが小さく、高濃度側では測定値AL2のばらつきが大きい傾向になる。
 そのため、図4に示したグラフにおいては、検体毎の吸光光度計44及び散乱光度計45それぞれの実際の測定値AL1、AL2から算出した濃度(x,y)=(Ca,Cb)のプロット群は、全てプロットがy=xで示される直線上に分布しておらず、y=xで示される直線を中心にして、ばらつきを有したプロット群となる。
 具体的には、低濃度側の濃度(x,y)=(Ca,Cb)のプロットでは、吸光光度計44の測定値AL1に生じるばらつきの影響を大きく受けることから、その吸光光度計44による濃度「Ca」は、y=xで示される直線上の真値から外れ、y=xで示される直線に対して大きくばらつくことになる。一方、高濃度側の濃度(x,y)=(Ca,Cb)のプロットでは、散乱光度計45の測定値AL2に生じるばらつきの影響を大きく受けることから、その散乱光度計45による濃度「Cb」は、y=xで示される直線上の真値から外れ、y=xで示される直線に対して大きくばらつくことになる。
 したがって、吸光光度計44の定量範囲C1の定量下限値CL1から散乱光度計45の定量範囲C2の定量上限値CH2までの自動分析装置1のダイナミックレンジについても、検体毎の吸光光度計44及び散乱光度計45それぞれの実際の測定値から算出した濃度(x,y)=(Ca,Cb)のプロット群は、その個々のプロットが上述した吸光光度計44、散乱光度計45それぞれの測定値AL1、AL2のばらつきの影響を受けて、重複領域ROの濃度幅、すなわちy=xで示される直線の長さ方向に沿って、y=xで示される直線に対してのばらつきの広がりが変化するプロットになる。ここで、ばらつきの広がりは、個々の濃度のプロット(x,y)=(Ca,Cb)から、y=xで示される直線に下ろした垂線の長さ、すなわち、y=xで示される直線からの距離lで表される。
 そして、検体毎の吸光光度計44及び散乱光度計45それぞれの実際の測定値AL1、AL2から算出した濃度(x,y)=(Ca,Cb)それぞれは、上述した吸光光度計44、散乱光度計45それぞれの測定値AL1、AL2のばらつきの影響から、次のような傾向を有する。
 すなわち、吸光光度計44の実際の測定値AL1から算出した濃度Caの真値に対するばらつきと、散乱光度計45の実際の測定値AL2から算出した濃度Cbの真値に対するばらつきとが同程度となる中間濃度領域では、低濃度側又は高濃度側になる中間濃度領域の両側の濃度領域に比べて、その中間濃度領域に含まれる濃度(x,y)=(Ca,Cb)のプロット全体が、y=xで示される直線からの距離lが近い位置に集まり、y=xで示される直線に対するばらつきの広がりが小さくなる。
 そこで、吸光光度計44、散乱光度計45それぞれの定量範囲C1、C2の重複領域ROにおいて、y=xで示される直線に対する濃度(x,y)=(Ca,Cb)に係るプロット群の最大乖離(ばらつき)が最も小さくなる、直線y=x上の点、すなわち点(x,y)=(Cap,Cbp)=(Cbp,Cbp)を算出する。そして、この点を基準点BPとして、この基準点BPに対応する濃度Cbpを濃度基準点とし、吸光光度計44と散乱光度計45との間でこの濃度基準点Cbpを領域内に含む切替領域RSを設定することができる。
 このような基準点BPに対応する切替領域RSの濃度基準点Cbpは、自動分析装置1のデータ格納部55に十分な数の検体の分析データが蓄積されている状態で、例えば、次のようにして取得することができる。
 例えば、自動分析装置1のデータ格納部55に蓄積されている一の検体Aの分析が行われたときに、吸光光度計44による測定値AL1から算出した濃度Cを「a」、散乱光度計45による測定値AL2から算出した濃度Cを「b」とする。
 その上で、図4に示したグラフにこの検体Aの濃度(x,y)=(a,b)をプロットし、そのプロットした点A(a,b)から直線y=xに下ろした垂線と直線y=xとの交点A’を求めると、 
    交点A’((a+b)/2,(a+b)/2)
となる。
 このとき、原点Oから交点A’までの距離rは
       r=(a+b)/√2
となり、
 また、点AA’間の距離lは、直線y=xより上部に位置する点からの距離を正とすると、
       l=(b-a)/√2
となる。
 そこで、自動分析装置1上では、分析制御部50は、検体2を分析する度に、このr、lからなる距離情報を算出して、データ格納部55にその反応液3を形成した検体2及び試薬4と対応づけて蓄積する。
 図5は、本実施例の自動分析装置1において切替領域の濃度基準点を算出する例を示した図である。
 分析制御部50は、図5に示すように、吸光光度計44と散乱光度計45の定量範囲C1,C2が重なる重複領域ROを、予め設定されている単位距離に基づいて、複数の個別単位領域に分割する。そして、この分割された個別単位領域毎に、当該個別単位領域に含まれる距離rの点A(a,b)全てについて、各点A(a,b)の距離lの値をもとに、当該個別単位領域における点A(a,b)全体の距離lのばらつき度合(標準偏差)σが、分析制御部50によって算出される。図5中では、重複領域ROの個別単位領域毎に算出された、個別単位領域全体の、距離lのばらつき度合(標準偏差)σが、黒丸点●を用いてプロットしてある。
 図5において、その横軸は、図4のグラフで示した原点Oから交点A’までの距離rの大きさに該当する。そして、その横軸における各個別単位領域に対応した距離rの大きさ部分は、図4に示した直線y=x上の該当位置部分における、吸光光度計44、散乱光度計45それぞれの濃度Cにも対応する。
 分析制御部50は、距離rの大きさ、及び吸光光度計44、散乱光度計45それぞれの定量範囲C2、C1の重複領域ROを分割した個別単位領域それぞれの距離lのばらつき度合(標準偏差)σから、重複領域RO内における、吸光光度計44の実際の測定値から算出した濃度Caと散乱光度計45の実際の測定値から算出した濃度Cbとの乖離度合の傾向を、把握することができる。さらに、重複領域ROの領域内において、吸光光度計44と散乱光度計45との間で、測定値のばらつきが同程度となる個別単位領域の傾向も把握することができる。
 そこで、分析制御部50は、図5において、距離rに応じた個別単位領域毎に求められてプロットされたばらつき度合(標準偏差)σを基に、重複領域ROにおける吸光光度計44よる濃度Caと散乱光度計45よる濃度Cbとの乖離度合の傾向を表した2次の多項式近似曲線等を求め、その極小値を算出する。そして、分析制御部50は、その極小値に該当する距離r、すなわちこの距離rに対応した濃度Cが、吸光光度計44と散乱光度計45それぞれにより測定された濃度Ca、Cbのばらつきが同程度となり、吸光光度計44と散乱光度計45との間で測定精度の高低が入れ替わる濃度領域であることを推定することができる。
 その上で、分析制御部50は、ばらつき度合(標準偏差)σの極小値になる距離rを、光度計の濃度Cに変換したものを濃度基準点(すなわち、濃度Cbp)として、重複領域RO内に光度計の切替領域RSを設定する。その際、切替領域RSの濃度幅は、アプリケーション設定画面71の光度計共通設定欄75により、吸光散乱結果差チェック値として設定した濃度幅が設定される。
 なお、算出した基準点BPが、どちらか一方の光度計の定量限界値(具体的には、吸光光度計44の定量下限値CL1又は散乱光度計45の定量上限値CH2)に近く、基準点BP濃度に対応する濃度基準点Cbpを切替領域RSの中心値に設定できない場合は、切替領域RSの一方の領域端の値をこの定量限界値と同一にして、切替領域RSを設定する。この場合は、この定量限界値から吸光散乱結果差チェックで設定した濃度幅を加えた値位置、または減じた値位置が、重複領域ROのもう一方の領域端として設定される。これにより、切替領域RSは、重複領域RO内で、基準点BPに対してずらされ、吸光光度計44、散乱光度計45それぞれの測定値ALのばらつきの幅に比べてその幅が小さくならないようにしている。
 また、切替領域RSの幅は、基準点BPにおける距離lの値のばらつき度合(標準偏差)σの8倍幅、すなわち切替領域RSの中央値±4σを、吸光光度計44、散乱光度計45それぞれの定量範囲C1,C2が重なる重複領域ROにおける、切替領域RSの濃度幅としてもよい。
 また、吸光光度計44と散乱光度計45の定量範囲が重なる重複領域RO内で、極小値が算出できない場合は、切替領域RSを設定せず、重複領域RO内における設定値を用いて光度計を選択する。
 (c) 優先出力順位の設定
 吸光光度計44、散乱光度計45間における優先出力順位は、測定値の信頼性が高い方の光度計の測定結果を選択的に出力するために設定される。設定された優先出力順位は、検体を測定した結果、吸光光度計44が算出した濃度Caが、切替領域RSの切替下限値CSL、又は定量範囲C1の定量下限値CL1以上であり、かつ、散乱光度計45が算出した濃度Cbが、切替領域RSの切替上限値CSLH、又は定量範囲C2の定量上限値CH2以下であるときに、有効になる。
 優先出力順位は、吸光光度計44、散乱光度計45それぞれの測定値ALのばらつきや、検体に含まれる共存物質の影響を考慮して決定される。測定値ALのばらつきの影響を考慮する必要があるのは、例えば、事前の試験等により吸光光度計44、散乱光度計45それぞれの定量範囲C1、C2の重複領域ROにおける、吸光光度計44と散乱光度計45との間で、吸光光度計44、散乱光度計45それぞれの測定値ALのばらつきに明らかな差がある場合である。この場合は、測定値ALのばらつきの大きい方の光度計の優先出力順位よりも、測定値ALのばらつきの小さい方の光度計の優先出力順位を高く設定する。優先出力順位の設定情報は、例えば、事前の試験等により試薬のロット毎に決定された情報をユーザが利用することも可能である。
 吸光光度計44、散乱光度計45それぞれの測定値ALのばらつきが同程度の場合は、共存物質の影響を考慮して優先出力順位を決定する。
 検体には、目的成分の分析に影響を与える共存物質が混入している場合がある。共存物質には、脂質、ヘモグロビン、ビリルビン等があり、それらが混入した異常検体は、それぞれ乳び、溶血、黄色と呼ばれる。溶血と黄色は、検体の色変化を起こすため、主に吸光光度計44への影響が大きく、乳ビは、検体の濁度変化を起こすため、主に散乱光度計45への影響が大きい。自動分析装置1には、上記共存物質の濃度を分析する機能が搭載されており、算出された共存物質の影響レベルによって、装置が自動で優先出力順位を設定する。具体的な設定例を以下に説明する。
 自動分析装置1では、検体に含まれる共存物質の濃度や影響度合いに応じて、1から3の3段階にレベル分けを行う。検体の共存物質を測定した結果、例えば、溶血のレベルが「1」、乳ビのレベルが「2」と判定され、吸光光度計44への影響が大きい溶血よりも散乱光度計45への影響が大きい乳ビの影響度合いが大きくなることが予想された場合には、散乱光度計45が算出した濃度に比べ、吸光光度計44が算出した濃度の方が、正確性が高い、と言えるため、吸光光度計44の優先出力順位を高く設定する。
 優先出力順位の決定のためのパラメータ設定では、検体中の共存物質としての溶血及び/又はビリルビンのレベルと、共存物質としての乳ビのレベルとの大小を比較し、優先順位を切り替える方法がある。また、吸光光度計44の設定波長(2波長測光の主/副)が、共存物質の影響を受けない波長に設定されていた場合は、散乱光度計45への影響が大きい共存物質の乳ビのレベルに判定基準を設定して優先順位を切り替える方法がある。この方法では、設定値以上のレベルの乳ビが算出されたときには、吸光光度計44を用いて検体の成分濃度を算出し、設定値以下のレベルの場合には、散乱光度計45を用いて検体の成分濃度を算出する。
 乳ビと溶血及び/又は黄色とで、検体の共存物質の混入レベルが同程度の場合は、測定値のばらつきも同程度となるように、定量範囲C1,C2の重複領域ROにおける切替領域RSが設定されていることから、どちらの光度計を選択しても同等の正確さを持った濃度を出力することができる。そのため、図2に示したアプリケーション設定画面71により、優先出力順位は、吸光光度計44と散乱光度計45のどちらを高く設定してもよいが、反応容器25の傷や検体中の気泡の影響を受けにくい吸光光度計44の優先出力順位を高く設定することが望ましい。本実施例では、散乱光度計45と吸光光度計44とにそれぞれ優先出力順位を設定する例を示したが、優先出力する光度計を選択する形態をとっても同様な効果が得られる。
 (d) 吸光散乱結果差チェックの設定
 本実施例の自動分析装置1において、吸光散乱同時分析を実施した場合、同一の検体に対し、吸光光度計44と散乱光度計45とを用いて、検体の成分濃度を測定する。吸光光度計44、散乱光度計45それぞれの定量範囲の重複領域ROにおいては、上述したとおり、測定値のばらつきや共存物質の影響から、散乱光度計45が算出した濃度と吸光光度計44が算出した濃度とに、乖離が発生する。その乖離幅が、臨床の現場で許容される測定値のばらつきの幅を超えた場合、測定時に散乱光度計45、吸光光度計44の中のいずれかの光度計で異常が発生した可能性がある。自動分析装置1は、データが吸光散乱結果差チェック値を超えて乖離した場合、測定異常としてアラームを表示させる。
 その際、アプリケーション設定画面71の吸光散乱結果差チェック値に設定する検体の濃度幅は、測定値のばらつきや共存物質の影響を考慮し、許容できる最大幅に設定する。異常発生の判定は、例えば、散乱光度計45が算出した濃度と吸光光度計44が算出した濃度との差分をとり、吸光散乱結果差チェック値のパラメータ設定で入力した濃度幅と比較し、設定値を超えた場合にはアラームを表示する形態をとる。
 また、吸光散乱結果差チェック値で設定した濃度幅は、上述した吸光光度計44と散乱光度計45との間での切替領域Rsの濃度幅を設定する際にも利用される。吸光光度計44と散乱光度計45との間での切替領域RSを設定する目的は、吸光光度計44と散乱光度計45とがどちらも正常な測定濃度が算出できているにもかかわらず、測定値のばらつきから、どちらも定量範囲外となり、測定エラーが出力されてしまう事態が発生することを防ぐことである。許容される測定値の乖離幅を設定し、その乖離幅を切替領域の濃度幅とすることで、上記問題を回避することができる。
 (2) 濃度出力方法
 本実施例の自動分析装置1による濃度出力方法について説明するに当たって、まず、分析制御部50の測定部51、解析部52、及び制御部53によって行われる、分析依頼があった検体についての分析処理について説明する。
 自動分析装置1の分析制御部50では、分析依頼があった検体の分析処理について、同一の検体を吸光光度計44と散乱光度計45の2つの光度計を用いて測定する“吸光散乱同時分析”依頼が、予めアプリケーション設定画面71を用いて設定されているか否かについて、制御部53によって判定される。
 制御部53は、“吸光散乱同時分析”依頼が設定されている場合は、測定部51及び解析部52に、吸光光度計44及び散乱光度計45から得られる測定値AL1及びAL2を基に、分析依頼があった検体の分析処理を行わせる。“吸光散乱同時分析”依頼が設定されておらず、吸光光度計44又は散乱光度計45のいずれか一方による分析依頼が設定されている場合は、制御部53は、測定部51及び解析部52に、対応する吸光光度計44から得られる測定値AL1又は散乱光度計45から得られるAL2を基に、分析依頼があった検体の分析処理を行わせる。
 これにより、分析制御部50では、分析依頼のあった検体について、測定部51が、吸光光度計44及び/又は散乱光度計45から得られる測定値AL1及び/又はAL2を基に、透過光強度及び/又は散乱光強度を求める。そして、測定部51は、求めた透過光強度及び/又は散乱光強度を、分析依頼のあった検体が分注された反応容器25、又はこの検体2の分析依頼と対応づけて、データ格納部55にデータを格納する。
 一方、解析部52は、測定部51によって求めた透過光強度及び/又は散乱光強度を、事前に作成してある対応試薬の検量線L1,L2を用いて、検体の目的成分の成分濃度Ca及び/又はCbに換算する。そして、解析部52は、算出した検体の目的成分の成分濃度Ca及び/又はCbを、分析依頼のあった検体が分注された反応容器25、又はこの検体2の分析依頼と対応づけて、データ格納部55にデータを格納する。
 その際、解析部52は、測定値AL1及び/又はAL2から求めた透過光強度及び/又は散乱光強度が、事前にアプリケーション設定画面71で設定してある吸光光度計44、散乱光度計45の定量範囲C1、C2内に収まっているかをチェックするテクニカルリミットチェックを実施する。そして、解析部52は、定量範囲C1、C2を超えている場合は、算出した成分濃度に“テクニカルリミットエラー”を付け加えて、データ格納部55に格納する。
 また、分析依頼方法として“吸光散乱同時分析”が設定され、吸光光度計44と散乱光度計45とを用いて同一の検体を分析した場合は、解析部52は、吸光散乱結果差チェックを実施する。この吸光散乱結果差チェックでは、測定値のばらつきや共存物質の影響から、吸光光度計44により算出された濃度Caと散乱光度計45により算出された濃度Cbとの間に、図2に示したアプリケーション設定で設定した“吸光散乱結果差チェック値”の濃度値を超える乖離が発生しているか否かが確認される。吸光光度計44、散乱光度計45が算出した濃度Ca,Cbの乖離幅が設定値を超えている場合は、測定値のばらつきや共存物質の影響から、測定時に吸光光度計44、散乱光度計45の中のいずれかの光度計で異常が発生した可能性がある。解析部52は、吸光光度計44、散乱光度計45それぞれによる濃度Ca,Cbの乖離幅が設定値を超えている場合は、濃度Ca,Cbに“吸光散乱結果差エラー”を付け加えて、データ格納部55に格納する。
 また、この分析依頼のあった検体の分析作業中に制御部53が異常の発生を判定し、異常による測定エラーが生じている場合は、解析部52は、算出した検体の目的成分の成分濃度Ca及び/又はCbをデータ格納部55に格納する際、“分析操作中のエラー”を付け加える。制御部53は、分析作業中、ディスク10、20、30、分注機構41、42、光度計44、45等の自動分析装置1におけるそれぞれの構成部の作動制御を行うとともに、これらいずれかに異常が発生したか否かを監視している。
 その上で、分析制御部50では、分析依頼があった検体について、測定部51及び解析部52による分析結果の出力は、吸光散乱同時分析判定部56、測定時異常チェック部57、濃度範囲チェック部58、及び優先出力判定部59によって、出力部61に対し、分析結果の出力制御が行われる。この分析結果の出力制御について、図6を参照しながら説明する。
 図6は、吸光光度計及び/又は散乱光度計を用いて、目的成分の濃度出力に用いる光度計を選択する濃度出力判定フローチャートである。
 吸光散乱同時分析判定部56は、分析結果を出力部61に出力する検体について、分析依頼の際にアプリケーション設定画面71で設定された検体の測定依頼形式が、同一検体を吸光光度計44と散乱光度計45の2つの光度計を用いて測定する“吸光散乱同時分析”依頼であるか否かを判定する(ステップS601)。
 吸光散乱同時分析判定部56は、“吸光散乱同時分析”依頼が設定されていないこと、すなわち、吸光光度計44又は散乱光度計45の中のいずれか一方による分析依頼が設定されていることを判定すると、設定された吸光光度計44又は散乱光度計45のいずれかで測定した全てのデータを、出力部61へ出力する(ステップS602)。これにより、出力部61からは、設定された光度計による濃度を含む、設定された光度計で測定したデータが出力される。
 なお、吸光散乱同時分析依頼でない検体の測定依頼形式としては、吸光光度計44又は散乱光度計45のみを用いた単項目依頼や、吸光光度計44のみを用いて測定対象として同一反応容器内の検体の2種類の目的成分を分析する吸光吸光同時分析依頼等がある。
 これに対し、吸光散乱同時分析判定部56は、“吸光散乱同時分析”依頼が設定されていることを判定すると、分析依頼があった検体についての、吸光光度計44により算出された濃度Caと散乱光度計45により算出された濃度Cbとを含む、吸光光度計44及び散乱光度計45で測定した全てのデータを、測定時異常チェック部57を介して出力する。
 “吸光散乱同時分析”依頼が設定されている場合、測定時異常チェック部57は、吸光光度計44、散乱光度計45それぞれにより算出された濃度Ca、Cbが正常に測定されたものであるか否か、を判定する(ステップS603)。具体的には、測定時異常チェック部57は、吸光光度計44、散乱光度計45それぞれにより算出された濃度Ca、Cbについて、濃度Ca、Cbのいずれかに “テクニカルリミットエラー”が付け加えられているか否か、濃度Ca、Cbの両方に“吸光散乱結果差エラー”が付け加えられているか否か、及び濃度Ca、Cbのいずれかに“分析操作中のエラー”が付け加えられているか否かに基づいて、濃度Ca、Cbが正常に測定されたものであるか否か、を判定する。
 “テクニカルリミットエラー”は、測定部によって求められた光強度(透過光強度又は散乱光強度)が定量範囲(C1又はC2)内に収まっていないことを示し、エラーがあった場合は、エラーが確認された濃度Ca、Cb毎に個別に付け加えられる。“吸光散乱結果差エラー”は、吸光光度計44、散乱光度計45それぞれによる濃度Ca,Cbが設定値を超えて乖離していることを示し、エラーがあった場合は、濃度Ca、Cb両方に付け加えられる。“分析操作中のエラー”は、分析作業中に異常発生による測定エラーが発生していることを示し、エラーがあった場合は、エラーが確認された濃度Ca、Cb毎に個別に付け加えられる。
 この判定の結果、吸光光度計44から得られた測定値AL1及び透過光強度にエラーがあり、散乱光度計45から得られた測定値AL2及び散乱光強度にエラーがないことを判定すると、測定時異常チェック部57は、散乱光度計45による濃度Cbを含む、散乱光度計45で測定した全てのデータだけを出力部61へ出力する(ステップS606)。これにより、出力部61からは、エラーがない、散乱光度計45による濃度Cbを含む散乱光度計45で測定したデータが、優先的に出力される。
 一方、吸光光度計44から得られた測定値AL1及び透過光強度にエラーがなく、散乱光度計45から得られた測定値AL2及び散乱光強度にエラーがあることを判定すると、測定時異常チェック部57は、吸光光度計44による濃度Caを含む、吸光光度計44で測定した全てのデータだけを出力部61へ出力する(ステップS608)。これにより、出力部61からは、エラーがない、吸光光度計44による濃度Caを含む、吸光光度計44で測定したデータが、優先的に出力される。
 また、測定時異常チェック部57は、吸光光度計44、散乱光度計45それぞれにより算出された濃度Ca、Cbがどちらも正常出力であり、或いはどちらもエラー出力であることを判定すると、吸光光度計44及び散乱光度計45で測定した全てのデータを、濃度範囲チェック部58を介して出力する。この出力データには、分析依頼があった検体についての、吸光光度計44により算出された濃度Caや、散乱光度計45により算出された濃度Cbも含まれている。
 ステップS601で、吸光散乱同時分析依頼が設定されていることが判定され、かつステップS603で、吸光光度計44、散乱光度計45それぞれにより算出された濃度Ca、Cbが正常に測定されたものであることが判定された場合、濃度範囲チェック部58は、吸光光度計44、散乱光度計45それぞれにより算出された濃度Ca、Cbの濃度範囲チェックを行う(ステップS604)。濃度範囲チェック部58は、吸光光度計44、散乱光度計45それぞれにより算出した濃度Ca、Cbについて、散乱光度計45による濃度Cbが切替領域RSの切替上限値CSH以下であるか否か、及び吸光光度計44による濃度Caが切替下限値CSL以上であるか否かを判定する。
 濃度範囲チェック部58が、散乱光度計45により算出した濃度Cbが切替上限値CSH以下であり、吸光光度計44により算出した濃度Caの出力した濃度が切替下限値CSLよりも小さいことを判定すると、濃度範囲チェック部58は、散乱光度計45による濃度Cbを含む、散乱光度計45で測定した全てのデータだけを出力部61へ出力する(ステップS606)。この判定状態は、検体の成分濃度が、吸光光度計44の測定値AL1のばらつきが大きく、散乱光度計45の測定値AL2のばらつきが小さい濃度領域にあることを示す。これにより、出力部61からは、散乱光度計45により算出した濃度Cbを含む、散乱光度計45で測定したデータだけが出力される。
 濃度範囲チェック部58が、散乱光度計45により算出した濃度Cbが切替上限値CSHを超え、吸光光度計44により算出した濃度Caの出力した濃度が切替下限値CSL以上であることを判定すると、濃度範囲チェック部58は、吸光光度計44による濃度Caを含む、吸光光度計44で測定した全てのデータだけを出力部61へ出力する(ステップS608)。この判定状態は、検体の成分濃度が、吸光光度計44の測定値AL1のばらつきが小さく、散乱光度計45の測定値AL2のばらつきが大きい濃度領域にあることを示す。これにより、出力部61からは、吸光光度計44により算出した濃度Caを含む、吸光光度計44で測定したデータだけが出力される。
 濃度範囲チェック部58は、散乱光度計45により算出した濃度Cbが切替上限値CSHを超え、かつ吸光光度計44により算出した濃度Caの出力した濃度が切替下限値CSLよりも小さいこと、又は、散乱光度計45により算出した濃度Cbが切替上限値CSH以下であり、かつ吸光光度計44により算出した濃度Caが切替下限値CSL以上であることを判定すると、濃度範囲チェック部58は、吸光光度計44及び散乱光度計45で測定した全てのデータを、優先出力判定部59を介して出力する。この出力データには、吸光光度計44により算出された濃度Caや、散乱光度計45により算出された濃度Cbも含まれている。
 この判定において、散乱光度計45により算出した濃度Cbが切替上限値CSHを超え、吸光光度計44により算出した濃度Caの出力した濃度が切替下限値CSLよりも小さいことは、吸光光度計44により算出した濃度Ca及び散乱光度計45により算出した濃度Cbのどちらもが切替領域RSを外れていることを意味する。すなわち、これは、吸光光度計44により算出した濃度Caと散乱光度計45により算出した濃度Cbの乖離幅が、臨床の現場で許容される測定値のばらつきの幅を超えていることを示し、算出された濃度Ca、Cbの両方には“吸光散乱結果差エラー”が付け加えられている。
 また、この判定において、散乱光度計45により算出した濃度Cbが切替上限値CSH以下であり、吸光光度計44により算出した濃度Caが切替下限値CSL以上であることは、吸光光度計44、散乱光度計45いずれも切替限界値内で、定量範囲C1,C2内であることを意味する。この吸光光度計44、散乱光度計45いずれも切替限界値内で、定量範囲C1,C2内であることは、吸光光度計44により算出した濃度Ca及び散乱光度計45により算出した濃度Cbのどちらもが切替領域RS内であることを含む。
 ステップS601で、吸光散乱同時分析依頼が設定されていることが判定され、ステップS603で、吸光光度計44、散乱光度計45それぞれにより算出された濃度Ca、Cbがいずれも正常に測定されたものであることが判定され、かつステップS604で、散乱光度計45による濃度Cbが切替領域RSの切替上限値CSH以下で、吸光光度計44による濃度Caが切替下限値CSL以上であることが判定された場合は、優先出力判定部59は、吸光光度計44、散乱光度計45それぞれについて、光度計の優先出力判定を行う(ステップS605)。すなわち、優先出力判定部59は、分析依頼の際にアプリケーション設定画面71で設定された吸光光度計44、散乱光度計45それぞれの“優先出力判定/順位”に基づいて、吸光光度計44、散乱光度計45それぞれの優先出力を判定する。
 具体的には、図2に示したアプリケーション設定画面71に示したように、散乱光度計45による濃度Cbの出力が、吸光光度計44による濃度Caの出力に対して、優先設定されている場合、優先出力判定部59は、散乱光度計45による濃度Cbを含む、散乱光度計45で測定した全てのデータだけを出力部61へ出力する(ステップS606)。これにより、出力部61からは、エラーがない、散乱光度計45による濃度Cbを含む散乱光度計45で測定したデータが、優先的に出力される。
 反対に、吸光光度計44による濃度Caの出力が、散乱光度計45による濃度Cbの出力に対して、優先設定されている場合、優先出力判定部59は、吸光光度計44による濃度Caを含む、吸光光度計44で測定した全てのデータだけを出力部61へ出力する(ステップS608)。これにより、出力部61からは、エラーがない、吸光光度計44による濃度Cbを含む吸光光度計44で測定したデータが、優先的に出力される。
 また、吸光光度計44と散乱光度計45との間で優先出力順位が設定されていない場合は、吸光光度計44により算出された濃度Caと散乱光度計45により算出された濃度Cbとを含む、吸光光度計44及び散乱光度計45で測定した全てのデータを、出力部61へ出力する(ステップS607)。これにより、出力部61からは、吸光光度計44による濃度Caと散乱光度計45による濃度Cbとを含む、吸光光度計44及び散乱光度計45で測定した全てのデータが、出力される。
 なお、優先出力判定部59は、優先判定した結果の吸光光度計44及び/又は散乱光度計45で測定したデータを出力部61へ出力する際(ステップS606、S607、S608)、吸光光度計44による濃度Ca及び/又は散乱光度計45による濃度Cbに“吸光散乱結果差エラー”のようなエラーが付け加えられている場合は、出力部61に出力するデータにも、エラーを付け加えて出力する。したがって、ステップS606~S608での出力部61からの出力では、“吸光散乱結果差エラー”のようなエラーが付け加えられている場合は、吸光光度計44、散乱光度計45それぞれで測定したデータに対応させて、そのエラー内容も出力される。
 以上のように、本実施例の自動分析装置は、吸光光度計44と散乱光度計45とを備え、各分析項目について吸光光度計44と散乱光度計45との2つの光度計で同時に分析し、どちらの光度計でも定量が可能な重複領域RO及び/又は切替領域RSを設定し、同時に上記2つの光度計のうち濃度出力に用いる光度計の優先出力順位を設定し、上記2つの光度計のそれぞれが算出した試料の濃度が、どちらも定量可能な濃度範囲C1、C2に存在するとき、設定した光度計の優先出力順位に基づき優先度の高い光度計を選択し、選択した光度計が検出した光に基づく濃度を上記試料の濃度に決定する、構成とした。これにより、吸光光度計44と散乱光度計45との選択が必要な濃度範囲において、光度計の選択エラーを起こすことなく測定結果を出力することができ、臨床サイドはエラーに伴う再検査を実施する必要がなくなる。これにより、吸光光度計44と散乱光度計45との切り替え選択を、光度計の選択エラーを起こすことなく的確に行うとともに、検体中に含まれる目的成分の成分量の測定を高精度且つ高速に実行できる。
 なお、上述した実施例においては、重複領域RO内に切替領域RSを作製するために基準点BP及び濃度基準点Cbpは、吸光光度計44、散乱光度計45それぞれのデータ出力の際は使用していないが、切替領域RS内をさらに基準点BP及び濃度基準点Cbpを基準にして複数のサブ切替領域rsに分けて、吸光光度計44、散乱光度計45それぞれにより測定された濃度が、この複数のサブ切替領域rsの中のいずれに含まれるかのパターンに応じて、切替領域RSに吸光光度計44、散乱光度計45それぞれのデータ出力が含まれる場合であっても、そのサブ切替領域rsに対応させて出力する光度計を自動で選択させようにしてもよい。
 なお、上述した例においては、吸光光度計44と散乱光度計45との2つの光度計を使用する場合の例であるが、その他の方式の光度計であって、方式が異なる複数の光度計を使用する場合にも、本開示は適用可能である。例えば、光源の波長や光量、受光角度が異なる2つの散乱光度計を搭載した自動分析装置や、反応容器を透過する光路長を変化させた2つの吸光光度計を搭載した自動分析装置、これらの散乱光度計や吸光光度計を組み合わせた3つ以上の光度計を搭載した自動分析装置においても、光度計の切り替えが必要な濃度領域において適用可能である。
 1 自動分析装置、 2 検体、 3 反応液、 4 試薬、
 10 検体ディスク、 11 ディスク本体、 12 駆動部、
 15 検体カップ、 20 反応ディスク、 21 ディスク本体、
 22 駆動部、 25 反応容器、 28 恒温槽、 30 試薬ディスク、
 31 ディスク本体、 32 駆動部、 35 試薬ボトル、
 38 試薬保冷庫、 41 検体分注機構、 42 試薬分注機構、
 43 撹拌部、 44 吸光光度計、 45 散乱光度計、 46 洗浄部、
 50 分析制御部、 51 測定部、 52 解析部、 53 制御部、
 54 恒温流体制御部、 55 データ格納部、
 56 吸光散乱同時分析判定部、  57 測定時異常チェック部、
 58 濃度範囲チェック部、  59 優先出力判定部、 61 出力部、
 62 入力部、 70 操作部、 71 アプリケーション設定画面、
 72 項目選択欄、 73 パラメータ設定欄、 75 光度計共通設定欄、
 76 吸光光度計専用設定欄、 77 散乱光度計専用設定欄、
 L1 吸光光度計の検量線、 AL2 測定データ、 AL1 測定データ、
 L2 散乱光度計の検量線、 C1 吸光光度計の定量範囲、
 C2 散乱光度計の定量範囲、 CL1 吸光光度計の定量下限値、
 CH2 散乱光度計の定量上限値、 RO 重複領域、 RS 切替領域、
 Cs 切り替え閾値、 CSH 散乱光度計の切替上限値、
 CSL 吸光光度計の切替下限値、 BP 基準点、
 r 距離、 I 距離、 CF 回帰曲線、
 Ca 吸光光度計による算出濃度、 Cb 散乱光度計による算出濃度、
 Cbp 基準点BPに対応する濃度基準点。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (16)

  1.  定量範囲が異なる複数種類の光度計と、
     前記複数種類の光度計の中から選択された一又は複数の光度計の測定値を基に検体中の目的成分の定量を行う分析制御部と、を有し、
     前記分析制御部は、
     前記複数種類の光度計それぞれの定量範囲の重複領域に、同一の検体についての前記各光度計の測定値を基にした目的成分の定量値のばらつきよりも大きな領域幅を有する切替領域を設定し、
     前記切替領域に対応する定量範囲部分の定量値と、前記各光度計の測定値を基にした目的成分の定量値とを比較して、前記複数種類の光度計の中から目的成分の定量出力に用いる光度計を選択する、
    自動分析装置。
  2.  前記切替領域は、
     前記切替領域に対応する定量範囲部分の定量値のうち、
     低濃度側の領域端の定量値が、前記切替領域に対して高濃度側に定量範囲が延びる高濃度測定用の光度計の選択を取り消す低濃度側切替限界値になり、
     高濃度側の領域端の定量値が、前記切替領域に対して低濃度側に定量範囲が延びる低濃度測定用の光度計の選択を取り消す高濃度側切替限界値になっている、
    請求項1に記載の自動分析装置。
  3.  前記切替領域は、前記重複領域内において、
     前記重複領域に対して高濃度側に定量範囲が延びる高濃度測定用の光度計の測定値を基にした目的成分のばらつきと、前記重複領域に対して低濃度側に定量範囲が延びる低濃度測定用の光度計の測定値を基にした目的成分のばらつきとが同程度になる基準点を基に形成される、
    請求項1に記載の自動分析装置。
  4.  前記切替領域は、
     前記重複領域内において前記基準点が発生しない場合は、前記重複領域に一致する、
    請求項3に記載の自動分析装置。
  5.  前記基準点は、
     前記高濃度測定用の光度計による濃度測定値xと前記低濃度測定用の光度計の測定値yとが1:1の対応関係になっている、y=xの直線上に位置する、
    請求項3に記載の自動分析装置。
  6.  前記複数種類の光度計は、透過光光度計及び散乱光度計である、
    請求項1に記載の自動分析装置。
  7.  前記複数種類の光度計は、光源の波長若しくは光量、又は受光角度が異なる複数の散乱光度計である、
    請求項1に記載の自動分析装置。
  8.  前記切替領域を設定するための設定部を備え、
     前記設定部は、
     検体の情報や、前記複数種類の光度計の中から分析に使用する光度計を設定する光度計共通設定欄と、
     前記複数種類の光度計毎に、目的成分を定量するためのプリセット情報を設定する光度計個別設定欄と
    を備える請求項1に記載の自動分析装置。
  9.  前記複数種類の光度計それぞれの定量範囲の重複領域で、前記複数種類の光度計間の測定値を比較し、前記複数種類の光度計間においての測定値の差を基に、目的成分の定量値の測定エラーを検出するエラー検出手段
    を備える請求項1に記載の自動分析装置。
  10.  高濃度測定用の光度計の測定値を基にした目的成分の定量値が低濃度側切替限界値以上であり、
     低濃度測定用の光度計の測定値を基にした目的成分の定量値が高濃度側切替限界値以下であるとき、
     予め高濃度測定用の光度計と低濃度測定用の光度計との間で設定された優先順位に基づいて、優先順位が高い側の光度計の測定値を基にした目的成分の定量値を出力用定量値に決定する優先出力判定部
    を備える請求項2に記載の自動分析装置。
  11.  複数種類の光度計間の定量範囲の重複領域において、同一の検体についての前記各光度計の測定値を基にした目的成分のばらつきを収集するステップと、
     前記重複領域における前記各光度計の測定値を基にした目的成分のばらつきから、前記重複領域内で、前記光度計同士の測定値を基にした目的成分のばらつきが同程度になる基準点を取得するステップと、
     当該基準点に対応する定量値を中心にして、前記複数種類の光度計の中から目的成分の定量出力に用いる光度計を切り替えるための切替領域を、重複領域内に形成するステップと
    を有する自動分析方法。
  12.  定量範囲が異なる複数種類の光度計と、
     前記複数種類の光度計の中から選択された一又は複数の光度計の測定値を基に検体中の目的成分の定量を行う分析制御部と、を有し、
     前記分析制御部は、
     前記複数種類の光度計それぞれの定量範囲の重複領域を設定し、
     前記重複領域に対応する定量範囲部分の定量値と、前記各光度計の測定値を基にした目的成分の定量値とを比較して、前記複数種類の光度計の中から目的成分の定量出力に用いる光度計を選択する、
    自動分析装置。
  13.  前記複数種類の光度計は、透過光光度計及び散乱光度計である、
    請求項12に記載の自動分析装置。
  14.  前記複数種類の光度計は、光源の波長若しくは光量、又は受光角度が異なる複数の散乱光度計である、
    請求項12に記載の自動分析装置。
  15.  前記重複領域を設定するための設定部を備え、
     前記設定部は、
     検体の情報や、前記複数種類の光度計の中から分析に使用する光度計を設定する光度計共通設定欄と、
     前記複数種類の光度計毎に、目的成分を定量するためのプリセット情報を設定する光度計個別設定欄と
    を備える請求項12に記載の自動分析装置。
  16.  前記複数種類の光度計それぞれの定量範囲の重複領域で、前記複数種類の光度計間の測定値を比較し、前記複数種類の光度計間においての測定値の差を基に、目的成分の定量値の測定エラーを検出するエラー検出手段
    を備える請求項12に記載の自動分析装置。
PCT/JP2017/022334 2016-07-19 2017-06-16 自動分析装置及び自動分析方法 WO2018016252A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018528455A JP6581726B2 (ja) 2016-07-19 2017-06-16 自動分析装置及び自動分析方法
US16/308,516 US10976333B2 (en) 2016-07-19 2017-06-16 Automatic analysis device and automatic analysis method
EP17830772.4A EP3489658A4 (en) 2016-07-19 2017-06-16 AUTOMATIC ANALYSIS DEVICE AND AUTOMATIC ANALYSIS METHOD
CN201780041441.8A CN109416319B (zh) 2016-07-19 2017-06-16 自动分析装置及自动分析方法
US17/197,155 US11674970B2 (en) 2016-07-19 2021-03-10 Automatic analysis device and automatic analysis method
US18/140,657 US11971425B2 (en) 2016-07-19 2023-04-28 Automatic analysis device and automatic analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016141689 2016-07-19
JP2016-141689 2016-07-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/308,516 A-371-Of-International US10976333B2 (en) 2016-07-19 2017-06-16 Automatic analysis device and automatic analysis method
US17/197,155 Continuation US11674970B2 (en) 2016-07-19 2021-03-10 Automatic analysis device and automatic analysis method

Publications (1)

Publication Number Publication Date
WO2018016252A1 true WO2018016252A1 (ja) 2018-01-25

Family

ID=60992104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022334 WO2018016252A1 (ja) 2016-07-19 2017-06-16 自動分析装置及び自動分析方法

Country Status (5)

Country Link
US (3) US10976333B2 (ja)
EP (1) EP3489658A4 (ja)
JP (1) JP6581726B2 (ja)
CN (2) CN109416319B (ja)
WO (1) WO2018016252A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138249A1 (ja) * 2020-12-22 2022-06-30 株式会社日立ハイテク 自動分析装置および分析方法
WO2022255140A1 (ja) * 2021-05-31 2022-12-08 株式会社日立ハイテク 自動分析装置および検体分析方法
WO2023037726A1 (ja) * 2021-09-10 2023-03-16 株式会社日立ハイテク 自動分析装置、データ処理装置、および自動分析装置の精度管理方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3594688B1 (en) * 2017-03-07 2023-08-16 Hitachi High-Tech Corporation Automatic analysis device
CN110914673B (zh) 2017-04-20 2023-10-24 生物梅里埃公司 光密度仪器及使用光密度仪器的***和方法
CN110296944A (zh) * 2019-04-30 2019-10-01 宁波普瑞柏生物技术股份有限公司 一种提高免疫比浊检测灵敏度和线性的方法
CN111323393A (zh) * 2020-04-07 2020-06-23 宁波普瑞柏生物技术股份有限公司 一种联合散射比浊法和透射比浊法的测量方法
CN112362620A (zh) * 2020-10-16 2021-02-12 石家庄禾柏生物技术股份有限公司 一种多方法学组合光路
CN114047328B (zh) * 2022-01-10 2022-06-21 深圳市帝迈生物技术有限公司 一种样本分析仪及其检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694717A (ja) * 1992-09-10 1994-04-08 Shimadzu Corp 抗原抗体反応におけるプロゾーン判定方法及び分析方法
JP2012237691A (ja) * 2011-05-13 2012-12-06 Hitachi High-Technologies Corp 自動分析装置
JP2013057587A (ja) * 2011-09-08 2013-03-28 Hitachi High-Technologies Corp 自動分析装置
JP2014006160A (ja) * 2012-06-25 2014-01-16 Hitachi High-Technologies Corp 自動分析装置及び試料測定方法
JP2014021079A (ja) * 2012-07-24 2014-02-03 Hitachi High-Technologies Corp 自動分析装置
JP2014020999A (ja) * 2012-07-20 2014-02-03 Hitachi High-Technologies Corp 自動分析装置
JP2014021008A (ja) * 2012-07-20 2014-02-03 Hitachi High-Technologies Corp 自動分析装置及び自動分析方法
JP2015021952A (ja) * 2013-07-23 2015-02-02 株式会社日立ハイテクノロジーズ 自動分析装置および分析方法
JP2015132634A (ja) * 2015-04-27 2015-07-23 株式会社日立ハイテクノロジーズ 自動分析装置及び分析方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344439A (ja) * 1998-06-02 1999-12-14 Shimadzu Corp 吸光光度分析装置
DE60032853T2 (de) * 1999-10-28 2007-11-15 Matsushita Electric Industrial Co., Ltd., Kadoma Verfahren zur Messung der Konzentration einer Lösung
JP2005189245A (ja) 1999-10-28 2005-07-14 Matsushita Electric Ind Co Ltd 溶液濃度計測方法および溶液濃度計測装置
GB0303453D0 (en) * 2003-02-14 2003-03-19 Thermo Clinical Labsystems Oy Automated sample analyzer and cuvette
WO2011004781A1 (ja) 2009-07-10 2011-01-13 株式会社日立ハイテクノロジーズ 自動分析装置
CN103238062B (zh) * 2010-12-08 2016-04-20 株式会社日立高新技术 自动分析装置
JP5897323B2 (ja) * 2011-12-26 2016-03-30 株式会社日立ハイテクノロジーズ 自動分析装置および測定値異常検出方法
EP2657681A1 (en) * 2012-04-26 2013-10-30 Roche Diagnostics GmbH Improvement of the sensitivity and the dynamic range of photometric assays by generating multiple calibration curves
KR102302678B1 (ko) * 2013-05-31 2021-09-27 주식회사 히타치하이테크 면역 응집 측정법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694717A (ja) * 1992-09-10 1994-04-08 Shimadzu Corp 抗原抗体反応におけるプロゾーン判定方法及び分析方法
JP2012237691A (ja) * 2011-05-13 2012-12-06 Hitachi High-Technologies Corp 自動分析装置
JP2013057587A (ja) * 2011-09-08 2013-03-28 Hitachi High-Technologies Corp 自動分析装置
JP2014006160A (ja) * 2012-06-25 2014-01-16 Hitachi High-Technologies Corp 自動分析装置及び試料測定方法
JP2014020999A (ja) * 2012-07-20 2014-02-03 Hitachi High-Technologies Corp 自動分析装置
JP2014021008A (ja) * 2012-07-20 2014-02-03 Hitachi High-Technologies Corp 自動分析装置及び自動分析方法
JP2014021079A (ja) * 2012-07-24 2014-02-03 Hitachi High-Technologies Corp 自動分析装置
JP2015021952A (ja) * 2013-07-23 2015-02-02 株式会社日立ハイテクノロジーズ 自動分析装置および分析方法
JP2015132634A (ja) * 2015-04-27 2015-07-23 株式会社日立ハイテクノロジーズ 自動分析装置及び分析方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138249A1 (ja) * 2020-12-22 2022-06-30 株式会社日立ハイテク 自動分析装置および分析方法
JP7420976B2 (ja) 2020-12-22 2024-01-23 株式会社日立ハイテク 自動分析装置および分析方法
WO2022255140A1 (ja) * 2021-05-31 2022-12-08 株式会社日立ハイテク 自動分析装置および検体分析方法
WO2023037726A1 (ja) * 2021-09-10 2023-03-16 株式会社日立ハイテク 自動分析装置、データ処理装置、および自動分析装置の精度管理方法

Also Published As

Publication number Publication date
EP3489658A4 (en) 2020-02-26
JPWO2018016252A1 (ja) 2019-05-16
US20210190806A1 (en) 2021-06-24
US20230266352A1 (en) 2023-08-24
CN109416319B (zh) 2021-07-13
US11971425B2 (en) 2024-04-30
US11674970B2 (en) 2023-06-13
US20190162744A1 (en) 2019-05-30
EP3489658A1 (en) 2019-05-29
CN113281284A (zh) 2021-08-20
US10976333B2 (en) 2021-04-13
JP6581726B2 (ja) 2019-09-25
CN109416319A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
JP6581726B2 (ja) 自動分析装置及び自動分析方法
JP6013796B2 (ja) 自動分析装置及び試料測定方法
JP5984290B2 (ja) 自動分析装置
US20210405079A1 (en) Automated Analyzer and Automated Analysis Method
JP5932540B2 (ja) 自動分析装置
WO2013099486A1 (ja) 自動分析装置および測定値異常検出方法
JP5296015B2 (ja) 自動分析装置
EP2988111B1 (en) Analyzer and automatic analyzer
WO2011162139A1 (ja) 自動分析装置および自動分析方法
JP6785989B2 (ja) 自動分析装置
CN115516312A (zh) 通过胶乳凝集法测定目标物质的方法及其试剂
JP7420976B2 (ja) 自動分析装置および分析方法
JP6657016B2 (ja) 自動分析装置
WO2023037726A1 (ja) 自動分析装置、データ処理装置、および自動分析装置の精度管理方法
JP7327944B2 (ja) ラテックス凝集法による目的物質の測定方法、およびその試薬
WO2022255140A1 (ja) 自動分析装置および検体分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528455

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017830772

Country of ref document: EP

Effective date: 20190219