WO2018014583A1 - 一种石墨烯纤维无纺布及其制备方法 - Google Patents

一种石墨烯纤维无纺布及其制备方法 Download PDF

Info

Publication number
WO2018014583A1
WO2018014583A1 PCT/CN2017/078393 CN2017078393W WO2018014583A1 WO 2018014583 A1 WO2018014583 A1 WO 2018014583A1 CN 2017078393 W CN2017078393 W CN 2017078393W WO 2018014583 A1 WO2018014583 A1 WO 2018014583A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
nonwoven fabric
fibers
fiber nonwoven
woven fabric
Prior art date
Application number
PCT/CN2017/078393
Other languages
English (en)
French (fr)
Other versions
WO2018014583A8 (zh
Inventor
高超
李拯
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US15/576,601 priority Critical patent/US20180282917A1/en
Priority to JP2017547570A priority patent/JP6483275B2/ja
Publication of WO2018014583A1 publication Critical patent/WO2018014583A1/zh
Publication of WO2018014583A8 publication Critical patent/WO2018014583A8/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D7/00Collecting the newly-spun products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/724Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged forming webs during fibre formation, e.g. flash-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment

Definitions

  • the invention relates to a graphene fabric, in particular to a non-woven fabric composed of graphene fibers and a preparation method thereof.
  • Graphene is an allotrope of carbon with a single atomic layer thickness, with the highest strength, high thermal conductivity and carrier mobility in known materials, so since it was reported by Geim et al. in 2004 (Science , 2004, 306: 666-669), caused great concern.
  • Graphene fiber is a two-dimensional assembled structure of graphene sheets at one-dimensional macroscopic scale, showing high strength and high conductivity and thermal conductivity. This macro material benefits from the excellent properties of graphene itself. Therefore, it has great potential and value.
  • One of the strategies to promote the further practical application of graphene fibers is to weave them to obtain flexible fabrics with high flexibility and high thermal conductivity.
  • the addition of graphene to the fabric can improve the properties of the fabric, such as a polymer fiber fabric as a skeleton, on which a graphene oxide solution is immersed and then reduced to obtain a graphene coating (Carbon, 2010, 48(12) : 3340-3345), or by adding graphene to polymer fibers to prepare composite fibers (Macromolecules, 2010, 43 (16): 6716-6723), and then making a fabric.
  • the fabric obtained by the above method improves the performance to some extent with the addition of graphene, it is not a complete graphene fabric, the graphene content cannot reach a high level, and the performance of the polymer material itself is more. Limited, it also limits the acquisition of extremely high conductivity and thermal conductivity.
  • fabrics composed entirely of graphene fibers have not been reported.
  • the present graphene modified fabric has a small graphene content, which restricts the performance in actual use.
  • the present invention provides a nonwoven fabric composed of pure graphene fibers and a preparation method thereof.
  • the invention is realized by the following technical scheme: a graphene fiber non-woven fabric, wherein the non-woven fabrics are overlapped by graphene fibers having a diameter of 1 to 1000 ⁇ m to form a network structure, and the graphene fibers at the grid nodes are fused with each other.
  • the graphene fiber is formed by arranging the graphene sheets in the axial direction.
  • the graphene fiber has a diameter of 1 to 100 ⁇ m.
  • a method for preparing a graphene fiber nonwoven fabric comprising the following specific steps:
  • a graphene oxide dispersion having a concentration of 1 to 15 mg/mL is disposed, and the solvent is N,N-dimethylformamide, which is used as a spinning solution.
  • the spinning solution is passed through a spinning tube with a diameter of 10 to 1000 ⁇ m into a coagulating liquid at an extrusion speed of 0.01 to 10 mL/min, and immersed in a coagulating liquid for 30 to 200 minutes, and then solidified into a wire, collected by vacuum filtration, and left at room temperature. 5-30h, vacuum drying at 60 ° C, to obtain a film composed of graphene oxide fibers.
  • the film obtained in the step 2 is redispersed in a mixture of water and ethanol to obtain a suspension of graphene oxide fibers, which is deposited by filtration through a filter, and a graphene oxide fiber nonwoven fabric is obtained on the filter;
  • the olefin fiber nonwoven fabric was washed three times with ethanol and dried at 80 °C.
  • the coagulating liquid is ethyl acetate.
  • the coagulating liquid is placed in a rotatable circular container, and the length of the graphene fiber is 2 mm or more by controlling the ratio of the rotational speed of the circular container to the extrusion speed of the spinning solution.
  • the sieve for collecting the graphene short fibers is a microporous membrane, a gauze or a stainless steel metal mesh having a pore diameter in the range of 0.2 to 100 ⁇ m.
  • the reduction method is reduction using a chemical reducing agent such as hydriodic acid, hydrazine hydrate, vitamin C or sodium borohydride or thermal reduction at 100 to 3000 °C.
  • a chemical reducing agent such as hydriodic acid, hydrazine hydrate, vitamin C or sodium borohydride or thermal reduction at 100 to 3000 °C.
  • the invention has the following beneficial effects:
  • the obtained graphene fiber nonwoven fabric is entirely composed of graphene fibers, and is not added with a weak conductive heat conductive material such as a high molecular polymer, and utilizes a graphene sheet layer between the orientation alignment of the fibers and the graphene fibers.
  • the mutual overlapping constitutes a conductive network, so that it has higher conductivity and heat conduction properties after reduction, and has wide application prospects.
  • the structure and properties of the obtained graphene fiber nonwoven fabric can be highly controllable by adjusting the diameter and length of the graphene fiber.
  • the obtained graphene fiber nonwoven fabric has good strength and toughness.
  • Fig. 1 is a scanning electron micrograph of a typical graphene fiber nonwoven fabric, showing that its internal structure is formed by stacking of disordered graphene fibers.
  • the invention discloses a graphene fiber non-woven fabric.
  • the non-woven fabric is only overlapped by graphene fibers having a diameter of 1 to 1000 ⁇ m to form a network structure, and the graphene fibers are arranged in the axial direction by graphene sheets, and the graphite is arranged.
  • the properties such as conduction and heat conduction are remarkably improved.
  • the present invention re-disperses and deposits a film composed of graphene oxide fibers obtained by wet spinning to obtain a graph of a graphene-bonded nonwoven fabric having a fiber lap and a flat shape.
  • step 3 Re-dispersing, depositing (ie, step 3) redispersing the agglomerated graphene fibers obtained in step 2 in solution,
  • the amount of solvent contained in the fiber is greatly reduced, thereby significantly reducing the volume shrinkage of the graphene oxide fiber during the drying process, so that the structure of the graphene oxide fiber nonwoven fabric can be maintained, and the solvent removal process of the wet spinning fiber is solved due to serious
  • the redispersed graphene oxide fiber has a low degree of swelling state, and the surface structure of the fiber is loose, so that fusion occurs at the joint nodes at the time of deposition, and the fibers are no longer weak friction, and can provide More strong ⁇ - ⁇ interactions.
  • the fibers are fused to form a monolithic conduction network, which avoids the energy loss caused by the transition at the fiber lap during the conduction process, and thus has better electrical and thermal conductivity.
  • the graphene fiber nonwoven fabric of the present invention is desirably applied to electrodes and separator materials in the field of catalysis and energy.
  • the dispersion (mixed solution of water and ethanol) used is subjected to strict control.
  • a large number of experiments have found that if the proportion of water is too large, the shrinkage is severe during drying, and the nonwoven fabric cannot be obtained; if the ratio of ethanol is too large, the graphene oxide fiber film obtained in the step 2 cannot be redispersed. This may be because the affinity of water and graphene oxide causes the dried and agglomerated graphene oxide fibers in step 2 to swell and redisperse; the effect of ethanol is to inhibit excessive water absorption and swelling of the fibers, and avoid excessive in the drying process. shrink. Therefore, it is finally determined that the volume ratio of water to ethanol is from 3:1 to 1:3.
  • a graphene oxide dispersion having a concentration of 5 mg/mL was disposed, and the solvent was N,N-dimethylformamide, which was used as a spinning solution.
  • the spinning solution was passed through a spinning tube having a diameter of 100 ⁇ m at an extrusion speed of 0.04 mL/min into an ethyl acetate coagulating liquid, and the rotation speed of the coagulation bath was controlled to be 100 rpm, and the length of the graphene short fibers was maintained at 20 ⁇ . 40mm, soaked in coagulating liquid for 30min, solidified into silk, collected by vacuum filtration, placed at room temperature for 5h, vacuum dried at 60 °C for 3h, to obtain a film composed of graphene oxide fibers.
  • a graphene fiber nonwoven fabric is obtained after reduction at 3000 °C.
  • the microstructure of the obtained graphene fiber non-woven fabric is disorderly stacked graphene short fibers, the short fibers are strip-shaped, the width is 10-30 ⁇ m, and the density of the non-woven fabric is about 0.22 mg/cm 3 .
  • the overall tensile strength is 0.5 to 1.0 MPa, the elongation at break is 3.5% to 5%, and the toughness is good, and the electrical conductivity is 25,000 to 30,000 S/m.
  • a graphene oxide dispersion having a concentration of 6 mg/mL was disposed, and the solvent was N,N-dimethylformamide, which was used as a spinning solution.
  • the spinning solution was passed through a spinning tube having a diameter of 200 ⁇ m at an extrusion speed of 0.06 mL/min into an ethyl acetate coagulating liquid, and the rotation speed of the coagulation bath was controlled to be 120 rpm, and the length of the graphene short fibers was maintained at 20 ⁇ . 40mm, soaked in coagulating liquid for 200min, solidified into silk, collected by vacuum filtration, placed at room temperature for 30h, vacuum dried at 60 °C for 3h, to obtain a film composed of graphene oxide fibers.
  • the dried graphene oxide fiber film is redispersed in a mixture of water and ethanol in a volume ratio of 1:2 to obtain a suspension of graphene oxide short fibers, which is deposited by gauze having a pore size of 500 ⁇ m, and washed with ethanol. Three times, drying at 80 ° C for 24 h, a graphene oxide fiber nonwoven fabric was obtained.
  • a graphene fiber nonwoven fabric is obtained after reduction at 3000 °C.
  • the microstructure of the graphene fiber nonwoven fabric is a disorderly stacked graphene short fiber, the short fiber is strip-shaped, the width is 40-100 ⁇ m, and the density of the non-woven fabric is about 0.20 mg/cm 3 .
  • the tensile strength is 0.2 to 0.3 MPa, the elongation at break is 15% to 20%, and the electrical conductivity is 10,000 to 13,000 S/m.
  • Step 1 is the same as in Embodiment 1.
  • Step 2 is: the spinning solution is passed through a 200 ⁇ m diameter spinning tube into the coagulating liquid at an extrusion speed of 10 mL/min, into the ethyl acetate coagulating liquid, and the rotation speed of the coagulation bath is controlled to be 200 rpm to make the length of the graphene short fibers.
  • Steps 3 and 4 are the same as in the first embodiment.
  • the width of the graphene staple fiber constituting the graphene fiber nonwoven fabric is 60 to 200 ⁇ m
  • the density of the nonwoven fabric is about 0.21 mg/cm 3
  • the overall tensile strength is 0.7 to 0.9 MPa
  • the elongation at break is 2.2% to 3.5%, with good toughness, conductivity 8000 ⁇ 12000S / m.
  • Step 1-3 is the same as in Example 1, and step 4 is chemical reduction using hydroiodic acid.
  • the obtained graphene fiber nonwoven fabric has a density of about 0.25 mg/cm 3 , a strength of 0.5 to 1 MPa, an elongation at break of 1.5% to 2%, and a conductivity of 250 to 300 S/m.
  • a graphene oxide dispersion having a concentration of 1 mg/mL was disposed, and the solvent was N,N-dimethylformamide, which was used as a spinning solution.
  • the spinning solution was passed through a spinning tube having a diameter of 10 ⁇ m at an extrusion speed of 0.01 mL/min into an ethyl acetate coagulating liquid, and the rotation speed of the coagulation bath was controlled to be 100 rpm, and the length of the graphene short fibers was maintained at 20 ⁇ . 40mm, soaked in coagulating liquid for 200min, solidified into silk, collected by vacuum filtration, placed at room temperature for 5h, vacuum dried at 60 ° C, to obtain a film composed of graphene oxide fibers.
  • the film obtained in the step 2 is redispersed in a mixture of water and ethanol, and the volume ratio of water to ethanol is 3:1, and a suspension of graphene oxide fibers is obtained, which is deposited by gauze filtration and obtained on the yarn web.
  • a graphene oxide fiber nonwoven fabric; the graphene oxide fiber nonwoven fabric was washed three times with ethanol and dried at 80 °C.
  • a graphene oxide dispersion having a concentration of 15 mg/mL was disposed, and the solvent was N,N-dimethylformamide, which was used as a spinning solution.
  • the spinning solution was passed through a spinning tube having a diameter of 1000 ⁇ m into an ethyl acetate coagulating liquid at an extrusion speed of 0.1 mL/min, and the rotation speed of the coagulation bath was controlled to be 220 rpm, and the length of the graphene short fibers was maintained at 20 ⁇ . 40mm, solidified After immersing in the liquid for 200 min, it was solidified into silk, collected by vacuum filtration, placed at room temperature for 5 h, and dried under vacuum at 60 ° C to obtain a film composed of graphene oxide fibers.
  • the film obtained in the step 2 is redispersed in a mixture of water and ethanol, and the volume ratio of water to ethanol is 3:1, and a suspension of graphene oxide fibers is obtained, which is deposited by gauze filtration and obtained on the yarn web.
  • a graphene oxide fiber nonwoven fabric; the graphene oxide fiber nonwoven fabric was washed three times with ethanol and dried at 80 °C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Nonwoven Fabrics (AREA)
  • Woven Fabrics (AREA)
  • Inorganic Fibers (AREA)
  • Artificial Filaments (AREA)
  • Filtering Materials (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

一种石墨烯纤维无纺布及其制备方法,该无纺布由石墨烯短纤分散液经滤网过滤沉积并干燥还原得到,因此无纺布的结构单元为无序堆积且相互粘结的石墨烯短纤维,并由纤维搭接成大量可通过液体或气体的孔洞。该石墨烯纤维无纺布具有较好的力学强度和韧性,并且完全由石墨烯纤维构成,不含有高分子材料做骨架或粘接剂等,石墨烯纤维搭接成的网络结构经还原后的导电导热性能优异,可用作多功能的高性能织物。

Description

一种石墨烯纤维无纺布及其制备方法 技术领域
本发明涉及石墨烯织物,尤其涉及一种石墨烯纤维构成的无纺布及其制备方法。
背景技术
石墨烯是仅有单原子层厚度的碳的同素异形体,具有已知材料中最高的强度,高的热导率和载流子迁移率,因此自2004年由Geim等人报道以来(Science,2004,306:666-669),引起了极大的关注。石墨烯纤维是二维的石墨烯片层在一维宏观尺度下的组装结构,表现出较高的强度和极高的导电、导热等性能,这种宏观材料得益于石墨烯自身的优异性能,因此具有极大的潜力和价值。推动石墨烯纤维进一步走向实际应用的策略之一是将其编织以得到具有一定柔性的、高导电、高导热的功能性织物。
另一方面,在织物中加入石墨烯可改善织物的性能,如以聚合物纤维织物为骨架,在其上浸涂氧化石墨烯溶液再还原得到石墨烯涂层(Carbon,2010,48(12):3340-3345),或将石墨烯加入聚合物纤维中制备复合材料纤维(Macromolecules,2010,43(16):6716-6723),再做成织物。然而,以上方法得到的织物虽然随着石墨烯的加入一定程度上提升了性能,却不是完全的石墨烯织物,石墨烯含量无法达到较高的水平,而含量更多的高分子材料本身的性能有限,也就制约了极高的导电、导热性能的获得。目前,完全由石墨烯纤维组成的织物并未见诸报道。
发明内容
现有石墨烯改性织物的石墨烯含量少,制约着实际使用中的性能,针对该问题,本发明提供一种由纯石墨烯纤维构成的无纺布及其制备方法。
本发明通过以下技术方案实现:一种石墨烯纤维无纺布,该无纺布由直径为1~1000μm的石墨烯纤维相互搭接形成网络结构,网格节点处的石墨烯纤维之间相互融合,所述石墨烯纤维由石墨烯片沿轴向定向排列而成。
进一步地,所述石墨烯纤维的直径为1~100μm。
一种石墨烯纤维无纺布的制备方法,包括以下具体步骤:
(1)配置浓度为1~15mg/mL的氧化石墨烯分散液,溶剂为N,N-二甲基甲酰胺,并将其作为纺丝液。
(2)使纺丝液以0.01~10mL/min挤出速度通过直径为10~1000μm的纺丝管进入凝固液中,凝固液中浸泡30~200min后凝固成丝,真空抽滤收集,室温放置5-30h,60℃真空干燥,得到氧化石墨烯纤维组成的薄膜。
(3)将步骤2得到的薄膜在水和乙醇的混合液中重新分散,得到氧化石墨烯纤维的悬浮液,经过滤网过滤沉积,在过滤网上得到氧化石墨烯纤维无纺布;将氧化石墨烯纤维无纺布用乙醇洗涤三遍,80℃干燥。
(4)将干燥后的氧化石墨烯纤维无纺布还原,得到石墨烯纤维无纺布。
进一步地,所述凝固液为乙酸乙酯。
进一步地,凝固液置于可旋转的圆形容器中,通过控制圆形容器的旋转速度与纺丝液挤出速度的比值,使得石墨烯纤维的长度在2mm以上。
进一步地,用于重新分散石墨烯纤维薄膜的水和乙醇混合液的成分按照体积比为水:乙醇=3:1~1:3。
进一步地,收集石墨烯短纤维的滤网为孔径在0.2~100μm范围的微孔滤膜、纱网或不锈钢金属网。
进一步地,还原方法为使用氢碘酸、水合肼、维他命C、硼氢化钠等化学还原剂进行还原或100~3000℃热还原。
本发明与现有技术相比,具有以下有益效果:
(1)制得的石墨烯纤维无纺布完全由石墨烯纤维构成,无高分子聚合物等弱导电导热材料的添加,并且利用石墨烯片层在纤维内部的取向排列和石墨烯纤维之间的相互搭接构成传导网络,因此还原后具有更高的导电导热等性能,具有广泛的应用前景。
(2)采用溶液纺丝的方法直接获得石墨烯短纤维,并组成石墨烯纤维无纺布,方法简单,易于批量制备。
(3)制得的石墨烯纤维无纺布的结构和性能可以通过调节石墨烯纤维的直径和长度实现高度可控。
(4)制得的石墨烯纤维无纺布具有较好的强度和韧性。
附图说明
图1是典型的石墨烯纤维无纺布的扫描电子显微镜照片,表明其内部结构由无序的石墨烯纤维堆积而成。
具体实施方式
本发明公开了一种石墨烯纤维无纺布,无纺布仅由直径为1~1000μm的石墨烯纤维相互搭接形成网络结构,所述石墨烯纤维由石墨烯片沿轴向定向排列,石墨烯纤维之间具有一定的粘结和融合,大大增强了纤维之间的相互作用。相比于现有的含有聚合物的石墨烯改性织物,显著提高了导电导热等性能。
为搭建仅由石墨烯构成的网络结构的无纺布,本发明通过将湿纺得到的氧化石墨烯纤维组成的薄膜重新分散、沉积,得到纤维搭接、形状平整的氧化石墨烯无纺布结构,重新分散、沉积(即步骤3)使步骤2得到的团聚的石墨烯纤维重新分散在溶液中,同 时纤维含有的溶剂量大大减少,从而显著降低氧化石墨烯纤维在干燥过程中的体积收缩,使得氧化石墨烯纤维无纺布的结构能够保持,解决了湿纺纤维溶剂脱除过程中由于严重的体积收缩而无法成型为无纺布的技术问题,最终得到的石墨烯纤维无纺布显现出密度低,孔隙率高,比表面积大的特点。此外,重新分散后的氧化石墨烯纤维呈低程度的溶胀状态,纤维表面结构疏松,因此沉积时在相互搭接的节点处会发生融合,纤维之间不再是较弱的摩擦力,能提供更多的强π-π相互作用。同时,纤维融合后形成整体式的传导网络,避免了传导过程中在纤维搭接处跃迁所导致的能量损耗,因此具有更好的导电导热性能。
基于以上特征,本发明的石墨烯纤维无纺布有希望应用于催化领域以及能源领域的电极和隔膜材料等。
需要说明的是,上述分散过程中,所使用的分散液(水和乙醇的混合溶液)经过严格的控制。经大量实验发现,若水的比例过大,干燥时收缩严重,无法得到无纺布;若乙醇的比例过大,步骤2得到的氧化石墨烯纤维薄膜无法实现重分散。这可能是因为水与氧化石墨烯的亲和性使得步骤2中干燥和团聚的氧化石墨烯纤维溶胀,实现重新分散;乙醇的作用则是抑制纤维的过度吸水和溶胀,避免干燥过程中的过度收缩。因此,最终确定水和乙醇的体积比为3:1~1:3。
下面通过实施例对本发明进行具体描述,本实施例只用于对本发明做进一步的说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据上述发明的内容做出一些非本质的改变和调整,均属于本发明的保护范围。
实施例1:
(1)配置浓度为5mg/mL的氧化石墨烯分散液,溶剂为N,N-二甲基甲酰胺,并将其作为纺丝液。
(2)使纺丝液以0.04mL/min挤出速度通过直径为100μm的纺丝管进入乙酸乙酯凝固液中,控制凝固浴旋转速度为100rpm,使石墨烯短纤维的长度维持在20~40mm,凝固液中浸泡30min后凝固成丝,真空抽滤收集,室温放置5h,60℃真空干燥3h,得到氧化石墨烯纤维组成的薄膜。
(3)干燥后的氧化石墨烯纤维薄膜在水和乙醇混合液中重新分散,其中使用的水和乙醇体积比如表1所示。经实验确定最佳体积比为水:乙醇=3:1,于是得到氧化石墨烯短纤维的悬浮液,经过孔径为500μm的纱网过滤沉积,乙醇洗涤三遍,80℃干燥10h,得到氧化石墨烯纤维无纺布。
(4)经3000℃还原后得到石墨烯纤维无纺布。
经过以上步骤,得到的石墨烯纤维无纺布的微观结构为无序堆积的石墨烯短纤维,短纤维呈带状,宽度为10~30μm,无纺布的密度约为0.22mg/cm3,整体拉伸强度为 0.5~1.0MPa,断裂伸长率3.5%~5%,具有较好的韧性,导电率25000~30000S/m。
表1 水和乙醇体积比对制备石墨烯纤维无纺布的影响
Figure PCTCN2017078393-appb-000001
实施例2:
(1)配置浓度为6mg/mL的氧化石墨烯分散液,溶剂为N,N-二甲基甲酰胺,并将其作为纺丝液。
(2)使纺丝液以0.06mL/min挤出速度通过直径为200μm的纺丝管进入乙酸乙酯凝固液中,控制凝固浴旋转速度为120rpm,使石墨烯短纤维的长度维持在20~40mm,凝固液中浸泡200min后凝固成丝,真空抽滤收集,室温放置30h,60℃真空干燥3h,得到氧化石墨烯纤维组成的薄膜。
(3)干燥后的氧化石墨烯纤维薄膜在水和乙醇以体积比1:2的混合液中重新分散,得到氧化石墨烯短纤维的悬浮液,经过孔径为500μm的纱网过滤沉积,乙醇洗涤三遍,80℃干燥24h,得到氧化石墨烯纤维无纺布。
(4)经3000℃还原后得到石墨烯纤维无纺布。
经过以上步骤,组成石墨烯纤维无纺布的微观结构为无序堆积的石墨烯短纤维,短纤维呈带状,宽度为40~100μm,无纺布的密度约为0.20mg/cm3,整体拉伸强度为0.2~0.3MPa,断裂伸长率15%~20%,导电率10000~13000S/m。
实施例3:
步骤1同实施例1。
步骤2为:将纺丝液以10mL/min的挤出速度通过直径200μm的纺丝管进入凝固液,进入乙酸乙酯凝固液中,控制凝固浴旋转速度为200rpm,使石墨烯短纤维的长度维持在20~40mm,凝固液中浸泡60min后凝固成丝,真空抽滤收集,室温放置20h,60℃真空干燥3h,得到石墨烯纤维组成的薄膜。
步骤3、4同实施例1。
经过以上步骤,组成石墨烯纤维无纺布的石墨烯短纤的宽度为60~200μm,无纺布的密度约为0.21mg/cm3,整体拉伸强度为0.7~0.9MPa,断裂伸长率2.2%~3.5%,具有较好的韧性,导电率8000~12000S/m。
实施例4:
步骤1-3同实施例1,步骤4为使用氢碘酸进行化学还原。所得石墨烯纤维无纺布的密度约为0.25mg/cm3,强度0.5~1MPa,断裂伸长率1.5%~2%,导电率250~300S/m。
实施例5:
(1)配置浓度为1mg/mL的氧化石墨烯分散液,溶剂为N,N-二甲基甲酰胺,并将其作为纺丝液。
(2)使纺丝液以0.01mL/min挤出速度通过直径为10μm的纺丝管进入乙酸乙酯凝固液中,控制凝固浴旋转速度为100rpm,使石墨烯短纤维的长度维持在20~40mm,凝固液中浸泡200min后凝固成丝,真空抽滤收集,室温放置5h,60℃真空干燥,得到氧化石墨烯纤维组成的薄膜。
(3)将步骤2得到的薄膜在水和乙醇的混合液中重新分散,水和乙醇的体积比为3:1,得到氧化石墨烯纤维的悬浮液,经过纱网过滤沉积,在纱网上得到氧化石墨烯纤维无纺布;将氧化石墨烯纤维无纺布用乙醇洗涤三遍,80℃干燥。
(4)将干燥后的氧化石墨烯纤维无纺布3000℃热还原,得到石墨烯纤维无纺布。
实施例6:
(1)配置浓度为15mg/mL的氧化石墨烯分散液,溶剂为N,N-二甲基甲酰胺,并将其作为纺丝液。
(2)使纺丝液以0.1mL/min挤出速度通过直径为1000μm的纺丝管进入乙酸乙酯凝固液中,控制凝固浴旋转速度为220rpm,使石墨烯短纤维的长度维持在20~40mm,凝固 液中浸泡200min后凝固成丝,真空抽滤收集,室温放置5h,60℃真空干燥,得到氧化石墨烯纤维组成的薄膜。
(3)将步骤2得到的薄膜在水和乙醇的混合液中重新分散,水和乙醇的体积比为3:1,得到氧化石墨烯纤维的悬浮液,经过纱网过滤沉积,在纱网上得到氧化石墨烯纤维无纺布;将氧化石墨烯纤维无纺布用乙醇洗涤三遍,80℃干燥。
(4)将干燥后的氧化石墨烯纤维无纺布3000℃热还原,得到石墨烯纤维无纺布。

Claims (8)

  1. 一种石墨烯纤维无纺布,其特征在于,该无纺布由直径约为1~1000μm的石墨烯纤维相互搭接形成网络结构,网格节点处的石墨烯纤维之间相互融合,所述石墨烯纤维由石墨烯片沿轴向定向排列而成。
  2. 根据权利要求1所述的石墨烯纤维无纺布,其特征在于,所述石墨烯纤维的直径为1~100μm左右。
  3. 一种权利要求1所述的石墨烯纤维无纺布的制备方法,其特征在于,包括以下具体步骤:
    (1)配置浓度为1~15mg/mL的氧化石墨烯分散液,溶剂为N,N-二甲基甲酰胺,并将其作为纺丝液。
    (2)使纺丝液以0.01~10mL/min挤出速度通过直径为10~1000μm的纺丝管进入凝固液中,凝固液中浸泡30~200min后凝固成丝,真空抽滤收集,室温放置5-30h,60℃真空干燥,得到氧化石墨烯纤维组成的薄膜。
    (3)将步骤2得到的薄膜在水和乙醇的混合液中重新分散,得到氧化石墨烯纤维的悬浮液,经过滤网过滤沉积,在过滤网上得到氧化石墨烯纤维无纺布;将氧化石墨烯纤维无纺布用乙醇洗涤三遍,80℃干燥。
    (4)将干燥后的氧化石墨烯纤维无纺布还原,得到石墨烯纤维无纺布。
  4. 根据权利要求3所述的石墨烯纤维无纺布制备方法,其特征在于,所述凝固液为乙酸乙酯。
  5. 根据权利要求3所述的石墨烯纤维无纺布制备方法,其特征在于,凝固液置于可旋转的圆形容器中,通过控制圆形容器的旋转速度与纺丝液挤出速度的比值,使得石墨烯纤维的长度在2mm以上。
  6. 根据权利要求3所述的石墨烯纤维无纺布制备方法,其特征在于,用于重新分散石墨烯纤维薄膜的水和乙醇混合液的成分按照体积比为水:乙醇=3:1~1:3。
  7. 根据权利要求3所述的石墨烯纤维无纺布制备方法,其特征在于,收集石墨烯短纤维的滤网为孔径在0.2~100μm范围的微孔滤膜、纱网或不锈钢金属网。
  8. 根据权利要求3所述的石墨烯纤维无纺布制备方法,其特征在于,还原方法为使用氢碘酸、水合肼、维他命C、硼氢化钠等化学还原剂进行还原或100~3000℃热还原。
PCT/CN2017/078393 2016-07-18 2017-03-28 一种石墨烯纤维无纺布及其制备方法 WO2018014583A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/576,601 US20180282917A1 (en) 2016-07-18 2017-03-28 Non-woven graphene fiber fabric and preparing method thereof
JP2017547570A JP6483275B2 (ja) 2016-07-18 2017-03-28 グラフェン繊維不織布の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610568052.8 2016-07-18
CN2016105680520.8 2016-07-18
CN201610568052.8A CN106192201B (zh) 2016-07-18 2016-07-18 一种石墨烯纤维无纺布及其制备方法

Publications (2)

Publication Number Publication Date
WO2018014583A1 true WO2018014583A1 (zh) 2018-01-25
WO2018014583A8 WO2018014583A8 (zh) 2018-07-26

Family

ID=57494018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078393 WO2018014583A1 (zh) 2016-07-18 2017-03-28 一种石墨烯纤维无纺布及其制备方法

Country Status (4)

Country Link
US (1) US20180282917A1 (zh)
JP (1) JP6483275B2 (zh)
CN (1) CN106192201B (zh)
WO (1) WO2018014583A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323451A (zh) * 2019-04-28 2019-10-11 中国科学院山西煤炭化学研究所 一种基于石墨烯与高分子纤维的多功能复合材料及其制备方法和应用
WO2020032684A1 (en) * 2018-08-09 2020-02-13 Industry-University Cooperation Foundation Hanyang University Graphene wet spinning coagulation bath and method for manufacturing graphene oxide fiber using the same
CN112522796A (zh) * 2020-11-13 2021-03-19 浙江大学 一种纳米纤维及其制备方法
JP2022531167A (ja) * 2019-04-30 2022-07-06 青島大学 酸化グラフェン繊維の製造方法および得られた繊維
CN115323611A (zh) * 2022-09-02 2022-11-11 南通大学 一种自灭菌高效防寒保暖非织造材料及其制备方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106192201B (zh) * 2016-07-18 2018-09-14 浙江大学 一种石墨烯纤维无纺布及其制备方法
CN106968128B (zh) * 2017-04-12 2018-04-03 株洲时代新材料科技股份有限公司 一种柔性石墨烯基复合纸及其制备方法
CN107137753B (zh) * 2017-05-09 2020-03-31 重庆大学 一种石墨烯/碳纳米纤维生物医用外敷无纺布的制备方法
CN107502995B (zh) * 2017-08-08 2019-08-16 杭州高烯科技有限公司 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法
CN108004674B (zh) * 2017-10-18 2023-06-20 厦门源创力科技服务有限公司 一种设有石墨烯涂层的吸收芯体包裹层用非织造布
CN107638727A (zh) * 2017-11-14 2018-01-30 如皋千骏工具有限公司 一种新型杂质过滤球
JP7139627B2 (ja) * 2018-03-07 2022-09-21 日本ゼオン株式会社 不織布およびその製造方法
CN108707998A (zh) * 2018-04-11 2018-10-26 杭州牛墨科技有限公司 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法
CN108812436A (zh) * 2018-06-25 2018-11-16 桐乡守敬应用技术研究院有限公司 一种自动温控孵化袋
CN109130360B (zh) * 2018-08-28 2023-09-01 福建福联精编有限公司 石墨烯纤维3d微升导热散热气候层产品及制备方法
CN109280336B (zh) * 2018-09-12 2021-05-11 浙江理工大学 一种多重驱动型形状记忆复合材料及其制备方法
CN109355799A (zh) * 2018-09-21 2019-02-19 杭州高烯科技有限公司 一种氮掺杂的石墨烯纤维无纺布及其制备方法
CN109267416A (zh) * 2018-09-21 2019-01-25 杭州高烯科技有限公司 一种自融合的还原石墨烯纤维纸及其制备方法
CN109281224A (zh) * 2018-09-21 2019-01-29 杭州高烯科技有限公司 一种多孔石墨烯纤维无纺布及其制备方法
CN109295796A (zh) * 2018-09-21 2019-02-01 杭州高烯科技有限公司 一种自融合的氧化石墨烯纤维纸及其制备方法
CN109621898A (zh) * 2019-01-16 2019-04-16 河北科技大学 一种石墨烯口罩滤芯的制备方法
CN109646180A (zh) * 2019-02-02 2019-04-19 广州生美生物科技有限公司 一种石墨烯蒸汽眼罩及其制作方法
US10875773B2 (en) * 2019-04-11 2020-12-29 Cornell University Method for storage or transportation of graphene oxide
CN110184859B (zh) * 2019-05-16 2021-08-27 西安石油大学 一种多层石墨烯纤维纸及其制备方法
CN112647158B (zh) * 2019-10-10 2023-08-29 中国科学技术大学 一种石墨烯基微米棒的宏量制备方法
CN111074380B (zh) * 2019-12-31 2022-08-02 杭州高烯科技有限公司 一种氧化石墨烯/聚丙烯酸钠的拉伸流体及其在制备石墨烯中的应用
CN111439744B (zh) * 2020-04-01 2022-07-29 福建滤冠新型材料科技有限公司 一种石墨烯纳米纤维膜片的制备方法
CN111733481B (zh) * 2020-05-20 2022-08-16 深圳大学 一种具有光电效应的碲烯/石墨烯杂化纤维膜及其制备方法和应用
CN112680957A (zh) * 2020-12-15 2021-04-20 浙江大学 一种石墨烯纤维无纺布的增强方法及高性能石墨烯无纺布的连续制备方法
CN112844074A (zh) * 2021-01-15 2021-05-28 任国峰 一种石墨烯复合聚丙烯腈中空纤维膜及其制备方法
CN113215857B (zh) * 2021-04-13 2022-07-08 中国科学院电工研究所 一种杂原子掺杂的石墨烯纳米纤维无纺布及其制备方法
KR102538786B1 (ko) * 2021-09-14 2023-05-31 김도경 3층 구조 방진망 및 이의 제조방법
CN114250529B (zh) * 2021-12-14 2023-08-22 浙江大学 具有特定截面形态特征的气凝胶纤维及其制备方法与装置
CN114507981A (zh) * 2022-01-28 2022-05-17 南京工业大学 一种石墨烯/二硫化钼复合纤维织物的制备方法
CN114411285B (zh) * 2022-03-07 2023-01-31 南京工业大学 一种石墨烯/石墨烯量子点垂直纤维及其制备方法与应用
CN114775285A (zh) * 2022-03-17 2022-07-22 中交四航工程研究院有限公司 一种制备ecc混凝土的pva纤维分散处理方法
CN115000355B (zh) * 2022-06-06 2024-01-30 中汽创智科技有限公司 一种三维金属锂-氧化物复合负极、其制备方法和应用
CN115467082A (zh) * 2022-10-08 2022-12-13 哈尔滨工业大学 轻质高效电磁屏蔽用MXene纤维无纺布的制备方法
CN116377714A (zh) * 2023-05-23 2023-07-04 江苏欣晨雅新材料有限公司 复合石墨烯无纺布、其制备方法和应用
CN117085524B (zh) * 2023-10-07 2024-04-19 安庆市长三角未来产业研究院 一种以无纺布为支撑层的高通量纳滤膜及其制备方法与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534869A (zh) * 2012-01-05 2012-07-04 浙江大学 由大尺寸氧化石墨烯片制备高强度导电石墨烯纤维的方法
CN102534868A (zh) * 2011-12-26 2012-07-04 浙江大学 一种高强度宏观石墨烯导电纤维的制备方法
CN102926020A (zh) * 2012-11-14 2013-02-13 浙江大学 一种导电的高强度的聚合物接枝石墨烯层状纤维的制备方法
EP2698457A2 (en) * 2011-03-15 2014-02-19 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Hybrid polymer composite fiber including graphene and carbon nanotube, and method for manufacturing same
CN104451925A (zh) * 2014-11-21 2015-03-25 东华大学 一种水溶性聚合物/石墨烯复合纤维及其制备方法和应用
CN105442302A (zh) * 2015-12-07 2016-03-30 江南石墨烯研究院 一种基于氧化石墨烯的水处理复合织网、制备方法及其应用
CN105568555A (zh) * 2016-02-19 2016-05-11 江苏亿茂滤材有限公司 一种空气过滤石墨烯纤维膜的制备方法
CN105603582A (zh) * 2016-01-27 2016-05-25 浙江碳谷上希材料科技有限公司 一种高强度连续石墨烯纤维及其制备方法
CN105648579A (zh) * 2016-03-31 2016-06-08 浙江大学 一种超细石墨烯纤维及其制备方法
CN106192201A (zh) * 2016-07-18 2016-12-07 浙江大学 一种石墨烯纤维无纺布及其制备方法
CN106183142A (zh) * 2016-07-18 2016-12-07 浙江大学 一种基于石墨烯纤维无纺布的自热膜

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345334A (ja) * 1989-07-13 1991-02-26 Toyobo Co Ltd 繊維強化プラスチックおよびその補強材
JP5633821B2 (ja) * 2009-12-18 2014-12-03 国立大学法人北海道大学 酸化グラフェンシート及びこれを還元して得られるグラフェン含有物質を含有する物品、並びに、その製造方法
EP2392700B1 (en) * 2010-04-28 2012-06-20 Teijin Aramid B.V. Process for spinning graphene ribbon fibers
CN102040714B (zh) * 2010-11-02 2012-12-05 浙江大学 聚合物接枝石墨烯的制备方法
JP5532334B2 (ja) * 2010-11-02 2014-06-25 三菱レイヨン株式会社 多孔質電極基材及びその製造方法
CN104099687B (zh) * 2013-04-10 2016-12-28 华为技术有限公司 一种石墨烯纤维及其制备方法
CN103541043A (zh) * 2013-08-01 2014-01-29 华为技术有限公司 一种电石墨烯复合纤维的制备方法
US9284193B2 (en) * 2013-10-21 2016-03-15 The Penn State Research Foundation Method for preparing graphene oxide films and fibers
CN104562682B (zh) * 2015-01-16 2017-01-18 浙江大学 一种耐冲洗、选择性阻隔紫外线的无纺布
US10327429B2 (en) * 2015-06-02 2019-06-25 G-Rods International Llc Incorporation of graphene in various components and method of manufacturing

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698457A2 (en) * 2011-03-15 2014-02-19 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Hybrid polymer composite fiber including graphene and carbon nanotube, and method for manufacturing same
CN102534868A (zh) * 2011-12-26 2012-07-04 浙江大学 一种高强度宏观石墨烯导电纤维的制备方法
CN102534869A (zh) * 2012-01-05 2012-07-04 浙江大学 由大尺寸氧化石墨烯片制备高强度导电石墨烯纤维的方法
CN102926020A (zh) * 2012-11-14 2013-02-13 浙江大学 一种导电的高强度的聚合物接枝石墨烯层状纤维的制备方法
CN104451925A (zh) * 2014-11-21 2015-03-25 东华大学 一种水溶性聚合物/石墨烯复合纤维及其制备方法和应用
CN105442302A (zh) * 2015-12-07 2016-03-30 江南石墨烯研究院 一种基于氧化石墨烯的水处理复合织网、制备方法及其应用
CN105603582A (zh) * 2016-01-27 2016-05-25 浙江碳谷上希材料科技有限公司 一种高强度连续石墨烯纤维及其制备方法
CN105568555A (zh) * 2016-02-19 2016-05-11 江苏亿茂滤材有限公司 一种空气过滤石墨烯纤维膜的制备方法
CN105648579A (zh) * 2016-03-31 2016-06-08 浙江大学 一种超细石墨烯纤维及其制备方法
CN106192201A (zh) * 2016-07-18 2016-12-07 浙江大学 一种石墨烯纤维无纺布及其制备方法
CN106183142A (zh) * 2016-07-18 2016-12-07 浙江大学 一种基于石墨烯纤维无纺布的自热膜

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032684A1 (en) * 2018-08-09 2020-02-13 Industry-University Cooperation Foundation Hanyang University Graphene wet spinning coagulation bath and method for manufacturing graphene oxide fiber using the same
KR20200017679A (ko) * 2018-08-09 2020-02-19 한양대학교 산학협력단 그래핀 습식방사 응고욕 및 이를 이용한 그래핀 옥사이드 섬유 제조방법
KR102467629B1 (ko) 2018-08-09 2022-11-18 아톰 드레드즈 코퍼레이션 그래핀 습식방사 응고욕 및 이를 이용한 그래핀 옥사이드 섬유 제조방법
CN110323451A (zh) * 2019-04-28 2019-10-11 中国科学院山西煤炭化学研究所 一种基于石墨烯与高分子纤维的多功能复合材料及其制备方法和应用
CN110323451B (zh) * 2019-04-28 2022-03-22 中国科学院山西煤炭化学研究所 一种基于石墨烯与高分子纤维的多功能复合材料及其制备方法和应用
JP2022531167A (ja) * 2019-04-30 2022-07-06 青島大学 酸化グラフェン繊維の製造方法および得られた繊維
JP7377564B2 (ja) 2019-04-30 2023-11-10 青島大学 酸化グラフェン繊維の製造方法および得られた繊維
CN112522796A (zh) * 2020-11-13 2021-03-19 浙江大学 一种纳米纤维及其制备方法
CN112522796B (zh) * 2020-11-13 2021-09-28 浙江大学 一种纳米纤维及其制备方法
CN115323611A (zh) * 2022-09-02 2022-11-11 南通大学 一种自灭菌高效防寒保暖非织造材料及其制备方法
CN115323611B (zh) * 2022-09-02 2023-12-08 南通大学 一种自灭菌高效防寒保暖非织造材料及其制备方法

Also Published As

Publication number Publication date
CN106192201A (zh) 2016-12-07
WO2018014583A8 (zh) 2018-07-26
US20180282917A1 (en) 2018-10-04
CN106192201B (zh) 2018-09-14
JP6483275B2 (ja) 2019-03-13
JP2018524482A (ja) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2018014583A1 (zh) 一种石墨烯纤维无纺布及其制备方法
WO2019029191A1 (zh) 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法
Wang et al. Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery
Li et al. Research progress of ultrafine alumina fiber prepared by sol-gel method: A review
Chhetri et al. A review on nanofiber reinforced aerogels for energy storage and conversion applications
CN109192985B (zh) 一种zif-9基多孔碳/碳纤维复合材料及其制备方法
JP5318120B2 (ja) 複合型炭素およびその製造方法
CN108315834A (zh) 一种阵列式磁性还原氧化石墨烯-炭纳米纤维的制备方法
CN104332640B (zh) 全钒液流电池用热还原氧化石墨烯/纳米碳纤维复合电极制备方法
Li et al. A novel modified PP separator by grafting PAN for high-performance lithium–sulfur batteries
Hu et al. Lignin-based/polypyrrole carbon nanofiber electrode with enhanced electrochemical properties by electrospun method
CN109355799A (zh) 一种氮掺杂的石墨烯纤维无纺布及其制备方法
Hasan et al. Recent advances in aerogel materials from electrospun nanofibers: a review
CN102704351B (zh) 一种碳纳米管无纺布的制备方法
CN109360739B (zh) 负载镍/氧化镍的碳纳米纤维电极材料的制备方法
CN115538209B (zh) 一种MXene纤维无纺布及其制备方法
CN109629227B (zh) 一种纤维基碳纳米管导电材料的制备方法
CN109103026A (zh) 一种氟、氮共掺杂细菌纤维素衍生碳纳米纤维膜的制备方法
Ramı́rez et al. Adding a micropore framework to a parent activated carbon by carbon deposition from methane or ethylene
CN111180219B (zh) 一种基于PI/ZrO2纳米纤维碳气凝胶柔性超级电容器的制备方法
CN110323431B (zh) 一种多孔碳微球的制备及其在锂硫电池中的应用
US20220241733A1 (en) Carbon nanotube/nanofiber conductive composite membrane and preparation method thereof
CN111106292A (zh) 一种亲水耐热型锂离子电池隔膜及制备方法
Zhang et al. Mass Production of Polymer-Derived Ceramic Nanofibers through Solution Blow Spinning: Implications for Flexible Thermal Insulation and Protection
EP2406430B1 (de) Netzwerke aus kohlenstoff-nanomaterialien und verfahren zu deren herstellung

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017547570

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15576601

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830225

Country of ref document: EP

Kind code of ref document: A1