WO2018012006A1 - 回路基板の製造方法及び回路基板 - Google Patents

回路基板の製造方法及び回路基板 Download PDF

Info

Publication number
WO2018012006A1
WO2018012006A1 PCT/JP2016/085937 JP2016085937W WO2018012006A1 WO 2018012006 A1 WO2018012006 A1 WO 2018012006A1 JP 2016085937 W JP2016085937 W JP 2016085937W WO 2018012006 A1 WO2018012006 A1 WO 2018012006A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
insulating layer
circuit board
thickness
resin
Prior art date
Application number
PCT/JP2016/085937
Other languages
English (en)
French (fr)
Inventor
智雄 西山
戸川 光生
安 克彦
竹澤 由高
靖夫 宮崎
原 直樹
光信 平林
真司 天沼
拓哉 早風
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to EP16908905.9A priority Critical patent/EP3481163A4/en
Priority to CN201680087501.5A priority patent/CN109479374A/zh
Priority to JP2018527376A priority patent/JPWO2018012006A1/ja
Publication of WO2018012006A1 publication Critical patent/WO2018012006A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/007Manufacture or processing of a substrate for a printed circuit board supported by a temporary or sacrificial carrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/103Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding or embedding conductive wires or strips
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/202Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using self-supporting metal foil pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders
    • H05K2203/0152Temporary metallic carrier, e.g. for transferring material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders
    • H05K2203/0156Temporary polymeric carrier or foil, e.g. for processing or transferring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders
    • H05K2203/016Temporary inorganic, non-metallic carrier, e.g. for processing or transferring

Definitions

  • the present invention relates to a circuit board manufacturing method and a circuit board.
  • printed circuit boards are widely used as circuit boards capable of mounting electronic components on a board at high density.
  • a printed circuit board is manufactured by attaching a metal foil to a substrate and etching it to process it into a desired circuit shape.
  • circuit board current capacity larger current
  • the current capacity of the circuit board can be increased by increasing the cross-sectional area of the circuit.
  • it is technically difficult to increase the thickness of the circuit by a technique in which a circuit is formed by etching on a printed circuit board for example, it is difficult to ensure insulation between circuits because the circuit is tapered.
  • the thickness of the circuit is increased, the immersion time in the etching solution becomes longer, and there is a concern about the influence on the quality.
  • it is necessary to increase the width instead of increasing the thickness of the wiring As a result, it may not be possible to meet the demand for circuit board miniaturization.
  • a circuit board is manufactured by pushing a metal member into an insulating layer softened by heat.
  • voids are generated at the interface between the metal member and the insulating layer, the metal member is displaced, the extruded resin is swelled, etc., and the dimensions are changed. As a result, the insulation reliability may be reduced.
  • an object of the present invention is to provide a circuit board manufacturing method capable of manufacturing a circuit board having a large current capacity and excellent insulation reliability, and a circuit board having a large current capacity and excellent insulation reliability.
  • ⁇ 1> a step of removing the temporary base material from a circuit formed on the temporary base material; Disposing the circuit on an insulating layer, The circuit board manufacturing method is such that the arrangement is performed such that a side of the circuit facing the temporary base material faces the insulating layer.
  • ⁇ 2> The circuit board manufacturing method according to ⁇ 1>, wherein the circuit is formed by removing the bridge from a metal member having a circuit portion and a bridge arranged on the temporary base material.
  • ⁇ 3> The method for producing a circuit board according to ⁇ 1> or ⁇ 2>, further comprising a step of filling a space between the circuits formed on the temporary base material with a resin.
  • ⁇ 4> The method for manufacturing a circuit board according to any one of ⁇ 1> to ⁇ 3>, wherein the thickness of the circuit is 350 ⁇ m or more.
  • ⁇ 5> The method for manufacturing a circuit board according to any one of ⁇ 1> to ⁇ 4>, wherein a thickness of the insulating layer is smaller than a thickness of the circuit.
  • ⁇ 6> A circuit board having an insulating layer and a circuit disposed on the insulating layer, wherein the thickness of the circuit is 350 ⁇ m or more.
  • ⁇ 7> The circuit board according to ⁇ 6>, further including a resin filling between the circuits.
  • ⁇ 8> The circuit board according to ⁇ 6> or ⁇ 7>, wherein a thickness of the insulating layer is smaller than a thickness of the circuit.
  • a circuit board manufacturing method capable of manufacturing a circuit board having a large current capacity and excellent insulation reliability, and a circuit board having a large current capacity and excellent insulation reliability are provided.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
  • the method for manufacturing a circuit board according to the present embodiment includes a step of removing the temporary base material from a circuit formed on the temporary base material, and a step of placing the circuit on an insulating layer. The circuit is performed so that the side of the circuit facing the temporary base material faces the insulating layer.
  • the thickness of the circuit formed on the insulating layer is 350 ⁇ m or more. In some embodiments, the thickness of the insulating layer is less than the thickness of the circuit. In one embodiment, when the thickness of the insulating layer is A and the thickness of the circuit is B, the value of A / B may be 0.8 or less and may be 0.5 or less.
  • the temporary base material is removed from the circuit formed on the temporary base material, and the circuit is placed on the insulating layer so that the side of the circuit facing the temporary base material faces the insulating layer.
  • a circuit is formed on the insulating layer. For this reason, there is no possibility that voids are generated at the interface between the circuit and the insulating layer by pushing the circuit into the insulating layer. Moreover, there is no possibility that the circuit is displaced by pushing the circuit into the insulating layer and the dimensional stability is not impaired. As a result, a circuit board having excellent insulation reliability can be manufactured.
  • a circuit is formed using a circuit previously formed on a temporary base material. For this reason, it is possible to form a circuit having a larger thickness than the case where the circuit is formed on the insulating layer by etching. Therefore, the cross-sectional area can be increased without increasing the width of the circuit, and an increase in current can be achieved while corresponding to downsizing of the circuit board. In addition, by forming a circuit with a large thickness, the circuit promotes the diffusion of heat in the surface direction, so that an effect of suppressing the temperature rise of the circuit board can be expected.
  • the circuit when the circuit is “arranged” on the insulating layer, the circuit is not embedded in the insulating layer at all (the embedded depth is 0 ⁇ m), and the embedded depth of the circuit in the insulating layer is Is included within 20 ⁇ m.
  • the “embedding depth” of a circuit refers to the upper surface of the insulating layer (the surface facing the circuit and the surface before being deformed by embedding the circuit) and the bottom surface of the circuit (facing the insulating layer It means the distance between the surface and the surface after being embedded.
  • the portion of the circuit board where the circuit is formed after the circuit is placed on the insulating layer A value obtained by subtracting the thickness C (A + BC) or a value obtained by observing a cross section of the circuit board and measuring the embedding depth may be used. .
  • the average value of the embedding depths measured at five locations is defined as “embedding depth”.
  • the case where the circuit embedding depth exceeds 20 ⁇ m is also referred to as “embedding”.
  • the method for removing the temporary base material from the circuit formed on the temporary base material is not particularly limited.
  • a flexible sheet may be used as the temporary base material and this may be peeled off from the circuit.
  • the method for arranging the circuit from which the temporary base material has been removed is not particularly limited.
  • the circuit may be up when viewed in the direction of gravity, the insulating layer may be up when viewed in the direction of gravity, or other methods may be used.
  • the heating temperature is not particularly limited. For example, it can be selected from the range of 50 ° C to 250 ° C.
  • the pressure of the pressurization is not particularly limited. For example, it can be selected from the range of 0.1 MPa to 50 MPa.
  • the insulating layer used in the manufacturing method of the present embodiment may include a resin.
  • the resin contained in the insulating layer is not particularly limited, and examples thereof include thermosetting resins such as epoxy resins, phenol resins, urea resins, melamine resins, urethane resins, silicone resins, unsaturated polyester resins, and acrylic resins.
  • the resin contained in the insulating layer may be one type or two or more types. From the viewpoint of electrical insulation and circuit adhesion, the insulating layer preferably contains at least one selected from the group consisting of epoxy resins, silicone resins, and urethane resins.
  • the insulating layer may contain a component other than a resin such as a filler as necessary.
  • the thickness of the insulating layer is not particularly limited and can be selected according to the use of the circuit board. From the viewpoint of ensuring sufficient insulation, the thickness of the insulating layer is preferably 60 ⁇ m or more, more preferably 90 ⁇ m or more, and further preferably 120 ⁇ m or more.
  • the thinner the thickness of the insulating layer is preferably 230 ⁇ m or less, more preferably 210 ⁇ m or less, and even more preferably 190 ⁇ m or less.
  • the insulating layer may be formed from an independent member (resin sheet or the like), or may be formed by applying an insulating layer material on a base plate disposed under the circuit board. Good.
  • the insulating layer is formed of an independent member, the circuit board can be easily manufactured in a large area, which tends to be advantageous in terms of productivity.
  • the insulating layer is formed on the base plate, the adhesion between the base plate and the insulating layer tends to be improved.
  • the method for applying the material for the insulating layer onto the base plate is not particularly limited, and examples thereof include a dispensing method, a spray method, a gravure method, and a printing method such as screen printing.
  • the insulating layer is preferably in a B-stage state when the circuit is arranged. More specifically, the thermosetting resin contained in the insulating layer is preferably in a semi-cured state.
  • the B stage means that the viscosity of the insulating layer is 10 4 Pa ⁇ s to 10 9 Pa ⁇ s at room temperature (25 ° C.), and 10 2 Pa ⁇ s to 10 7 Pa ⁇ s at 100 ° C. Yes, the viscosity decreases by 0.001% to 50% due to the temperature change from room temperature (25 ° C.) to 100 ° C. Further, the cured insulating layer is not melted by heating.
  • the viscosity can be measured by dynamic viscoelasticity measurement (frequency 1 Hz, load 40 g, temperature increase rate 3 ° C./min).
  • the thickness of the circuit disposed on the insulating layer is not particularly limited, and can be selected according to the use of the circuit board. From the viewpoint of increasing the current of the circuit board, the thickness of the circuit is preferably 350 ⁇ m or more, more preferably 400 ⁇ m or more, and even more preferably 500 ⁇ m or more. From the viewpoint of the volume of the circuit board itself, the thickness of the circuit is preferably 5000 ⁇ m or less. In this specification, the thickness of the circuit means the thickness of the circuit itself. When the circuit is embedded in the insulating layer, the thickness of the embedded portion is also included in the thickness of the circuit.
  • the width and length of the circuit on the circuit board are not particularly limited, and can be selected according to the use of the circuit board. For example, it can be selected from the range of 350 ⁇ m to 20000 ⁇ m.
  • the material of the circuit is not particularly limited.
  • copper, silver, chromium copper, tungsten copper, nickel, nickel-plated copper, aluminum, aluminum whose surface is modified to anodized, and the like can be given.
  • the surface of the circuit on the side in contact with the insulating layer is preferably in a state where there is little generation of voids and can be sufficiently adhered to the insulating layer.
  • irregularities serving as anchors may be formed on the surface of the circuit in contact with the insulating layer by roughening treatment or the like.
  • the method of roughening treatment is not particularly limited, and may be performed by a physical method or a chemical method. Examples of physical methods include sanding, sandblasting, and laser irradiation, and examples of chemical methods include magmit processing, CZ processing, blackening processing, and etching processing.
  • the roughening treatment may be performed by any one of the methods, by combining the physical method and the chemical method, or by combining the chemical methods. You may carry out in combination.
  • the circuit before being placed on the insulating layer is formed on the temporary base material by placing a metal member having a circuit portion and a bridge on the temporary base material, and then removing the bridge from the metal member.
  • the circuit portion of the metal member is a portion that becomes a circuit of the circuit board.
  • the bridge is a part that connects the circuit parts or the circuit part and the outer frame in order to fix the position of the circuit part in the metal member, and is removed after the metal member is arranged on the temporary base material.
  • the method for forming the circuit portion and the bridge on the metal member is not particularly limited. For example, it can be performed by a method such as cutting, etching, punching, or buffing. From the viewpoint of removing the bridge by leaving the circuit portion after the metal member is disposed on the temporary base material, the thickness of the bridge is preferably smaller than the thickness of the circuit portion.
  • the method for removing the bridge from the metal member after the metal member is disposed on the temporary base material is not particularly limited. For example, it can be performed by a method such as punching, cutting, etching, or cutting with a laser.
  • the manufacturing method of the present embodiment may further include a step of filling a space between circuits formed on the temporary base material with a resin.
  • a resin By filling the space between the circuits with resin, the moisture resistance reliability of the circuit board can be sufficiently secured, and the occurrence of creeping discharge, partial discharge, tracking, migration, etc. tends to be suppressed.
  • the resin can be sufficiently distributed between the circuits as compared with the method in which the circuit is pushed into the insulating layer, and the insulation reliability is further improved.
  • the resin used for filling is not particularly limited. Examples thereof include thermosetting resins such as epoxy resins, phenol resins, urea resins, melamine resins, urethane resins, silicone resins, unsaturated polyester resins, and acrylic resins.
  • the resin used for filling may be one type or two or more types. From the viewpoint of electrical insulation and adhesiveness, the resin used for filling preferably contains at least one selected from the group consisting of epoxy resins, silicone resins and urethane resins. Resin used for filling may contain components other than resin, such as a filler, as needed.
  • the method for filling the space between the circuits with resin is not particularly limited. For example, it can be performed by a molding method using a powdered resin material, a casting method using a liquid resin, a coating method, a pressing method in which a solid resin is melted and pressed into a gap, or an extrusion molding method. .
  • the amount of resin to be filled between the circuits may be such that the height of the filled resin is the same as the height of the circuit or the amount that is lower than the height of the circuit. It may be an amount that exceeds the height.
  • the height of the filled resin is lower than the height of the circuit, it is preferable that pressure is applied when the circuit is placed on the insulating layer so that voids are not generated in the filled resin.
  • the height of the filled resin is the same as the height of the circuit.
  • the amount is preferably an amount that is slightly lower than the height of the circuit, including the deformation of the resin.
  • the manufacturing method of the present embodiment may have other steps other than the steps described above as necessary. For example, there are a step of curing a thermosetting resin, a step of further providing a layer intended for insulation on a circuit formed on the insulating layer, a step of cutting the manufactured circuit board into a desired shape, and the like. You may do it.
  • the circuit board of this embodiment has an insulating layer containing resin and a circuit disposed on the insulating layer, and the thickness of the circuit is 350 ⁇ m or more.
  • the circuit board of this embodiment is superior in insulation reliability as compared with a circuit board in which a circuit is embedded in an insulating layer.
  • the reason for this is not clear, but voids are less likely to occur at the interface between the circuit and the insulating layer than when the circuit is pushed into the insulating layer, and circuit displacement occurs compared to when the circuit is pushed into the insulating layer. It is difficult to consider and excellent in dimensional stability.
  • the circuit board of this embodiment has a circuit thickness of 350 ⁇ m or more.
  • the cross-sectional area can be increased without increasing the width of the circuit as compared with a circuit board in which a circuit is formed on an insulating layer by etching, and a large current can be achieved while corresponding to downsizing of the circuit board. Can do.
  • the circuit promotes the diffusion of heat in the surface direction, so that an effect of suppressing the temperature rise of the circuit board can be expected.
  • the thickness of the insulating layer of the circuit board is less than the thickness of the circuit.
  • the details and preferred aspects of the insulating layer and circuit used in the circuit board of the present embodiment are the same as the details and preferred aspects of the insulating layer and circuit used in the method for manufacturing a circuit board described above.
  • the embedded depth of the insulating layer of the circuit is Both are included within 20 ⁇ m.
  • the “embedding depth” of a circuit refers to the upper surface of the insulating layer (the surface facing the circuit and the surface before being deformed by embedding the circuit) and the bottom surface of the circuit (facing the insulating layer It means the distance between the surface and the surface after being embedded.
  • the portion of the circuit board where the circuit is formed after the circuit is placed on the insulating layer A value obtained by subtracting the thickness C (A + BC) or a value obtained by observing a cross section of the circuit board and measuring the embedding depth may be used.
  • the embedding depth in the circuit board is not constant, the average value of the embedding depths measured at five locations is defined as “embedding depth”.
  • the circuit board of the present embodiment may be filled with resin between the circuits. Details and preferred embodiments of the resin used for filling are the same as the details and preferred embodiments of the resin used for filling between the circuits in the above-described circuit board manufacturing method.
  • the circuit board according to the present embodiment may include a circuit, an insulating layer, and a member other than the resin that fills the space between the circuits as necessary.
  • members such as a base plate and a heat spreader may be arranged on the side opposite to the side where the circuit of the insulating layer is arranged.
  • the material of these members is not particularly limited, and examples thereof include copper alloys such as copper, aluminum, tungsten copper, and molybdenum copper, and nickel plated copper.
  • FIG. 1 is a perspective view conceptually showing a state in which a metal member having a circuit portion 1 and a bridge 2 is arranged on a temporary base material 10
  • FIG. 2 is a sectional view conceptually showing the state.
  • bridging 2 has connected the circuit parts 1 of metal members, or the circuit parts 1 and the outer frame of a metal member. Thereby, a metal member can be easily arrange
  • the thickness of the bridge 2 is smaller than the thickness of the circuit portion 1. Thereby, after arrange
  • FIG. 3 is a perspective view conceptually showing a state after the bridge 2 is removed from the metal member
  • FIG. 4 is a sectional view conceptually showing the state. As shown in FIGS. 3 and 4, by removing the bridge 2, only the circuit unit 1 is placed on the temporary base material 10.
  • FIG. 5 is a perspective view conceptually showing a state in which the space between the circuit portions 1 is filled with the resin 5
  • FIG. 6 is a sectional view conceptually showing the state.
  • FIG. 7 is a perspective view conceptually showing a state in which the circuit portion 1 after removing the temporary base material 10 is disposed on the insulating layer 4 together with the resin 5, and
  • FIG. 8 is a cross-sectional view conceptually showing the state.
  • the heat spreader 3 is arrange
  • FIG. 9 is a perspective view conceptually showing a circuit board (prior art) having the circuit 1 formed by etching
  • FIG. 10 is a sectional view conceptually showing the state.
  • the thickness of a circuit that can be formed is generally limited to about 200 ⁇ m for reasons such as concern over the quality when the immersion time in the etching solution is long. Therefore, by increasing the width of the circuit, the current capacity is increased, and the concentration of heat on components such as chips and capacitors on the circuit is reduced.
  • the area occupied by the circuit increases, it is disadvantageous for miniaturization of the circuit board.
  • Example 1 A metal member having a circuit portion and a bridge was manufactured by cutting and punching using a copper plate having a thickness of 500 ⁇ m. This metal member was placed on a temporary substrate (PET film), a bridge was removed to form a circuit, and a space between the circuits was filled using a resin (CEL-C-3900, manufactured by Hitachi Chemical Co., Ltd.).
  • Protective PET film from one side of a resin sheet (B stage sheet using an epoxy resin composition, manufactured by Hitachi Chemical Co., Ltd., model number “HTX”, filler filling rate 85 mass%, thickness 150 ⁇ m) serving as an insulating layer was peeled off. Subsequently, the resin sheet was arrange
  • the temporary base material was peeled off from the circuit formed on the temporary base material, and the circuit was placed on the resin sheet.
  • the circuit was arranged so that the surface facing the temporary base material was opposed to the surface of the resin sheet from which the other protective PET film was peeled off.
  • the circuit was arranged by vacuum thermocompression bonding. Specifically, the press temperature was raised to 180 ° C. under a condition of 3 ° C./min starting at 50 ° C., held at 180 ° C. for 2 hours, and then cooled to 50 ° C. while being pressurized. During this time, the degree of vacuum was set to 1 kPa or less from the start of temperature rise to the completion of cooling, and the press pressure was set to 10 MPa. In this way, a circuit board was produced.
  • Example 2 Other than using a metal member produced using a 1000 ⁇ m thick copper plate instead of a 500 ⁇ m thick copper plate and using a 1000 ⁇ m thick copper plate as a heat spreader instead of a 500 ⁇ m thick copper plate Produced a circuit board in the same manner as in Example 1.
  • Example 3 Other than using a metal member made using a 2000 ⁇ m thick copper plate instead of a 500 ⁇ m thick copper plate, and using a 2000 ⁇ m thick copper plate instead of a 500 ⁇ m thick copper plate as a heat spreader Produced a circuit board in the same manner as in Example 1.
  • Examples 4 to 6 A circuit board was produced in the same manner as in Examples 1 to 3, respectively, except that the pressing pressure for placing the circuit on the insulating layer was changed from 10 MPa to 30 MPa.
  • Example 1 A circuit was formed on the temporary substrate in the same manner as in Example 1 except that the space between the circuits was not filled with resin. Subsequently, the laminated body obtained by laminating
  • ⁇ Comparative example 2> The use of a metal member produced using a 1000 ⁇ m thick copper plate instead of a 500 ⁇ m thick copper plate, and the use of a 1000 ⁇ m thick copper plate as a heat spreader instead of a 500 ⁇ m thick copper plate
  • a laminate obtained by laminating nine resin sheets as the insulating layer was used and a 2200 ⁇ m spacer was used instead of the 1200 ⁇ m spacer, the circuit was in the insulating layer.
  • a circuit board embedded in was fabricated.
  • ⁇ Comparative Example 3> Using a metal member produced using a 2000 ⁇ m thick copper plate instead of a 500 ⁇ m thick copper plate, and using a 2000 ⁇ m thick copper plate as a heat spreader instead of a 500 ⁇ m thick copper plate; In the same manner as in Comparative Example 1, except that a laminate obtained by laminating 16 resin sheets as the insulating layer was used and a 4200 ⁇ m spacer was used instead of the 1200 ⁇ m spacer, the circuit was in the insulating layer. A circuit board embedded in was fabricated.
  • the produced circuit board was cut into a size of 10 mm ⁇ 10 mm to produce a sample for measuring thermal resistance.
  • This sample was in close contact with a thermal resistance evaluation apparatus (manufactured by Yamayo Tester Co., Ltd., model number YST-901S) using silicone grease (X-22-7868-2D, manufactured by Shin-Etsu Chemical Co., Ltd.) under a load of 1 MPa.
  • the input power was 13 W
  • the sample temperature was 50 ° C.
  • the water temperature was 30 ° C.
  • the temperature difference ⁇ T between the upper and lower surfaces of the sample was measured
  • the thermal resistance value was measured by the following equation.
  • Thermal resistance (° C / W) ⁇ T / input heat quantity-device constant
  • the embedded depth in the insulating layer is 20 ⁇ m.
  • the circuit boards of Comparative Examples 1 to 3 which exceeded the values of thermal resistance and dielectric breakdown voltage, they were small. Also, the evaluation of the positional deviation of the circuit was good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Structure Of Printed Boards (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

仮基材上に形成された回路から前記仮基材を除去する工程と、前記回路を絶縁層上に配置する工程と、を含み、前記配置は、前記回路の前記仮基材と対向していた側が前記絶縁層に対向するように行われる、回路基板の製造方法。

Description

回路基板の製造方法及び回路基板
 本発明は、回路基板の製造方法及び回路基板に関する。
 電子機器の小型化及び高機能化の進展に伴い、電子部品を基板上に高密度実装することが可能な回路基板としてプリント基板が広く用いられている。プリント基板は一般に、基板に金属箔を貼り付け、これをエッチングして所望の回路形状に加工することで製造されている。
 一方、電子機器の使用環境の多様化に伴い、回路基板の電流容量の増大(大電流化)が求められている。回路基板の電流容量は、回路の断面積を大きくすることで増大させることができる。しかし、プリント基板においてエッチングにより回路を形成される手法で回路の厚さを厚くするのは技術的に困難である(例えば、回路がテーパー状になって回路間の絶縁性を確保しにくい)。また、回路の厚さを厚くするとエッチング液への浸漬時間が長くなって品質への影響が懸念される。このため、エッチングにより形成される回路の断面積を大きくするためには、配線の厚さを厚くする代わりに幅を広げる必要がある。その結果、回路基板の小型化の要請に応えられない場合がある。
 回路基板の小型化に対応しつつ大電流化する方法として、あらかじめ回路が形成された金属部材を樹脂を含む絶縁層中に埋設する方法が提案されている(例えば、特許文献1参照)。
特開2001-36201号公報
 特許文献1に記載の方法では、金属部材を熱で軟らかくなった絶縁層に押し込むことによって回路基板が製造される。しかしながらこの方法では、金属部材を樹脂基材に押し込む際に金属部材と絶縁層の界面にボイドが生じたり、金属部材の位置ずれ、押し出された樹脂の盛り上がり等が生じて寸法が変化したりする結果、絶縁信頼性が低下する可能性がある。
 本発明は上記事情に鑑み、電流容量が大きく絶縁信頼性に優れる回路基板を製造可能な回路基板の製造方法、及び電流容量が大きく絶縁信頼性に優れる回路基板を提供することを課題とする。
 上記課題を提供するための具体的な手段には、以下の実施態様が含まれる。
<1>仮基材上に形成された回路から前記仮基材を除去する工程と、
 前記回路を絶縁層上に配置する工程と、を含み、
 前記配置は、前記回路の前記仮基材と対向していた側が前記絶縁層に対向するように行われる、回路基板の製造方法。
<2>前記回路は、前記仮基材上に配置された回路部とブリッジとを有する金属部材から前記ブリッジを除去することによって形成される、<1>に記載の回路基板の製造方法。
<3>前記仮基材上に形成された前記回路の間を樹脂で充填する工程をさらに含む、<1>又は<2>に記載の回路基板の製造方法。
<4>前記回路の厚さが350μm以上である、<1>~<3>のいずれか1項に記載の回路基板の製造方法。
<5>前記絶縁層の厚さが前記回路の厚さよりも小さい、<1>~<4>のいずれか1項に記載の回路基板の製造方法。
<6>絶縁層と、前記絶縁層上に配置された回路を有し、前記回路の厚さが350μ以上である、回路基板。
<7>前記回路の間を充填する樹脂をさらに含む、<6>に記載の回路基板。
<8>前記絶縁層の厚さが前記回路の厚さよりも小さい、<6>又は<7>に記載の回路基板。
 本発明によれば、電流容量が大きく絶縁信頼性に優れる回路基板を製造可能な回路基板の製造方法、及び電流容量が大きく絶縁信頼性に優れる回路基板が提供される。
回路部とブリッジとを有する金属部材を仮基材上に配置した状態を概念的に示す斜視図である。 回路部とブリッジとを有する金属部材を仮基材上に配置した状態を概念的に示す断面図である。 金属部材からブリッジを除去した後の状態を概念的に示す斜視図である。 金属部材からブリッジを除去した後の状態を概念的に示す断面図である。 回路の間を樹脂で充填した状態を概念的に示す斜視図である。 回路の間を樹脂で充填した状態を概念的に示す断面図である。 絶縁層上に回路が配置された状態を概念的に示す斜視図である。 絶縁層上に回路が配置された状態を概念的に示す断面図である。 エッチングにより形成された回路を有する回路基板(従来技術)を概念的に示す斜視図である。 エッチングにより形成された回路を有する回路基板(従来技術)を概念的に示す断面図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 また本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
<回路基板の製造方法>
 本実施形態の回路基板の製造方法は、仮基材上に形成された回路から前記仮基材を除去する工程と、前記回路を絶縁層上に配置する工程と、を含み、前記配置は、前記回路の前記仮基材と対向していた側が前記絶縁層に対向するように行われる。
 ある実施態様では、絶縁層上に形成される回路の厚さが350μm以上である。またある実施態様では、絶縁層の厚さが回路の厚さよりも小さい。またある実施態様では、絶縁層の厚さをA、回路の厚さをBとしたとき、A/Bの値が0.8以下であってよく、0.5以下であってよい。
 本実施形態の製造方法では、仮基材上に形成されていた回路から仮基材を除去し、回路の仮基材と対向していた側が絶縁層に対向するように回路を絶縁層上に配置することで、絶縁層上に回路を形成する。このため、回路を絶縁層に押し込むことで回路と絶縁層の界面にボイドが生じるおそれがない。また、回路を絶縁層に押し込むことにより回路の位置ずれが生じて寸法安定性が損なわれるおそれがない。その結果、絶縁信頼性に優れる回路基板を製造することができる。
 さらに本実施形態の製造方法では、あらかじめ仮基材上に形成された回路を用いて回路を形成する。このため、絶縁層上にエッチングにより回路を形成する場合に比べて厚さの大きい回路を形成することができる。従って、回路の幅を大きくせずにその断面積を大きくでき、回路基板の小型化に対応しつつ大電流化を達成することができる。また、厚さの大きい回路を形成することで、回路が面方向への熱の拡散を促すため、回路基板の温度上昇を抑制する効果も期待できる。
 本明細書において回路が絶縁層上に「配置」された状態には、回路が絶縁層にまったく埋め込まれていない場合(埋め込み深さが0μmである)と、回路の絶縁層への埋め込み深さが20μm以内である場合との両方が含まれる。
 本明細書において回路の「埋め込み深さ」とは、絶縁層の上面(回路に対向する面であって、回路の埋め込みにより変形する前の状態の面)と、回路の底面(絶縁層に対向する面であって、埋め込まれた後の状態の面)との間の距離を意味する。具体的には、絶縁層上に配置する前の回路の厚さAと絶縁層の厚さBの合計値から、回路を絶縁層上に配置した後の回路基板の回路が形成された部分における厚さCを差し引いて得られる値(A+B-C)として計算して得られる値であっても、回路基板の断面を観察して埋め込み深さを測定して得られた値であってもよい。
 回路基板における埋め込み深さが一定でない場合は、5箇所において測定した埋め込み深さの平均値を「埋め込み深さ」とする。なお本明細書において回路の埋め込み深さが20μmを超える場合を「埋設」とも称する。
 本実施形態の製造方法において、仮基材上に形成された回路から仮基材を除去する方法は特に制限されない。例えば、仮基材として可とう性を有するシートを使用し、これを回路から剥離することで行ってもよい。
 本実施形態の製造方法において、仮基材を除去した回路を絶縁層上に配置する方法は特に制限されない。例えば、重力方向にみて回路が上になるようにして行っても、重力方向にみて絶縁層が上になるようにして行っても、その他の方法で行ってもよい。
 回路と絶縁層との密着性を高める観点からは、回路を絶縁層上に配置する際に加熱及び加圧の少なくとも一方を行うことが好ましい。回路を絶縁層上に配置する際に加熱する場合、加熱の温度は特に制限されない。例えば、50℃~250℃の範囲から選択することができる。回路を絶縁層上に配置する際に加圧する場合、加圧の圧力は特に制限されない。例えば、0.1MPa~50MPaの範囲から選択することができる。
(絶縁層)
 本実施形態の製造方法で使用する絶縁層は、樹脂を含むものであってよい。絶縁層に含まれる樹脂は特に制限されず、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ウレタン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、アクリル樹脂等の熱硬化性樹脂が挙げられる。絶縁層に含まれる樹脂は、1種であっても2種以上であってもよい。電気絶縁性と回路に対する接着性の観点からは、絶縁層はエポキシ樹脂、シリコーン樹脂及びウレタン樹脂からなる群より選択される少なくとも1種を含むことが好ましい。絶縁層は、必要に応じてフィラー等の樹脂以外の成分を含んでもよい。
 絶縁層の厚さは特に制限されず、回路基板の用途等に応じて選択できる。充分な絶縁性を確保する観点からは、絶縁層の厚さは60μm以上であることが好ましく、90μm以上であることがより好ましく、120μm以上であることがさらに好ましい。
 充分な放熱性を確保する観点からは、絶縁層の厚さは小さいほど好ましい。例えば、230μm以下であることが好ましく、210μm以下であることがより好ましく、190μm以下であることがさらに好ましい。
 絶縁層は、独立した部材(樹脂シート等)から形成されるものであっても、回路基板の下側に配置されるベースプレート上に絶縁層の材料を付与して形成されるものであってもよい。絶縁層が独立した部材から形成される場合は、回路基板の製造を大面積で行いやすく、生産性の面で有利となる傾向にある。一方、絶縁層がベースプレート上に形成される場合は、ベースプレートと絶縁層との密着性が向上する傾向にある。絶縁層の材料をベースプレート上に付与する方法は特に制限されず、ディスペンス方式、スプレー方式、グラビア方式、スクリーン印刷等の印刷方式などが挙げられる。
 回路の絶縁層への埋め込みを抑制しつつ、回路と絶縁層との接着性を高める観点からは、絶縁層は、回路が配置される際にBステージの状態であることが好ましい。より具体的には、絶縁層に含まれる熱硬化性樹脂が半硬化した状態であることが好ましい。ここでBステージとは、絶縁層の粘度が、常温(25℃)においては10Pa・s~10Pa・sであり、100℃においては10Pa・s~10Pa・sであり、常温(25℃)から100℃への温度変化により、粘度が0.001%~50%低下するものである。
また、硬化後の絶縁層は、加温によっても溶融することはない。なお、上記粘度は、動的粘弾性測定(周波数1ヘルツ、荷重40g、昇温速度3℃/分)によって測定されうるものである。
(回路)
 本実施形態の製造方法において、絶縁層上に配置される回路の厚さは特に制限されず、回路基板の用途等に応じて選択できる。回路基板の大電流化の観点からは、回路の厚さは350μm以上であることが好ましく、400μm以上であることがより好ましく、500μm以上であることがさらに好ましい。回路基板自体の容積の観点からは、回路の厚さは5000μm以下であることが好ましい。本明細書において回路の厚さは回路自体の厚さを意味し、絶縁層に回路が埋め込まれている場合は埋め込まれている部分の厚さも回路の厚さに含まれる。
 回路基板における回路の幅及び長さは特に制限されず、回路基板の用途等に応じて選択できる。例えば、350μm~20000μmの範囲から選択できる。
 回路の材質は、特に制限されない。例えば、銅、銀、クロム銅、タングステン銅、ニッケル、ニッケルメッキ銅、アルミニウム、アルマイトに表面修飾したアルミニウム等が挙げられる。
 回路の絶縁層と接する側の面は、ボイドの発生が少なく絶縁層と充分に密着できる状態であることが好ましい。温度、湿度等に対する耐環境性を向上させるため、粗化処理等によって回路の絶縁層と接する側の面にアンカーとなる凸凹を形成してもよい。粗化処理の方法は特に制限されず、物理的な方法で行っても、化学的な方法で行ってもよい。物理的な方法としては、やすりがけ、サンドブラスト処理、レーザー照射等が挙げられ、化学的な方法としては、マグダミット処理、CZ処理、黒化処理、エッチング処理等が挙げられる。粗化処理は、いずれか1種の方法により行っても、物理的な方法と化学的な方法を組み合わせて行っても、化学的な方法同士を組み合わせて行っても、物理的な方法同士を組み合わせて行ってもよい。
 絶縁層上に配置される前の回路は、回路部とブリッジとを有する金属部材を仮基材上に配置し、次いで金属部材からブリッジを除去することによって仮基材上に形成されたものであることが好ましい。金属部材の回路部は、回路基板の回路となる部分である。ブリッジは、金属部材における回路部の位置を固定するために回路部同士又は回路部と外枠とを繋ぐ部分であり、金属部材を仮基材上に配置した後に除去される。
 金属部材に回路部とブリッジを形成する方法は特に制限されない。例えば、切削、エッチング、打ち抜き、バフ等の方法により行うことができる。金属部材を仮基材上に配置した後に回路部を残してブリッジを除去する観点からは、ブリッジの厚さは回路部の厚さより小さいことが好ましい。
 金属部材を仮基材上に配置した後に金属部材からブリッジを除去する方法は特に制限されない。例えば、打ち抜き、切削、エッチング、レーザーによる切断等の方法により行うことができる。
 本実施形態の製造方法は、仮基材上に形成された回路の間を樹脂で充填する工程をさらに含んでもよい。回路の間を樹脂で充填することで、回路基板の耐湿信頼性が充分確保でき、沿面放電、部分放電、トラッキング、マイグレーション等の発生が抑制される傾向にある。また、複雑な形状の回路パターンであっても絶縁層に回路を押し込む方法に比べて回路の間に充分に樹脂を行き渡らせることができ、絶縁信頼性がより向上すると考えられる。
 充填に用いる樹脂は、特に制限されない。例えば、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ウレタン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、アクリル樹脂等の熱硬化性樹脂が挙げられる。充填に用いる樹脂は、1種であっても2種以上であってもよい。電気絶縁性と接着性の観点からは、充填に用いる樹脂はエポキシ樹脂、シリコーン樹脂及びウレタン樹脂からなる群より選択される少なくとも1種を含むことが好ましい。充填に用いる樹脂は、必要に応じてフィラー等の樹脂以外の成分を含んでもよい。
 回路の間を樹脂で充填する方法は特に制限されない。例えば、粉末状の樹脂材料を用いたモールディング法、液状の樹脂を用いた注型法、塗布法、固体状の樹脂を溶融し隙間に押し込むプレス法又は押出成形法等の方法により行うことができる。
 回路の間に充填する樹脂の量は、充填された樹脂の高さが回路の高さと同じ高さとなる量であっても、回路の高さより低い高さとなる量であっても、回路の高さを超える高さとなる量であってもよい。
 充填された樹脂の高さが回路の高さより低い場合、回路を絶縁層上に配置する際に加圧して空隙が充填した樹脂中に生じないようにすることが好ましい。
 回路を絶縁層上に配置する際に加える圧力の分布を平均化し、絶縁性の不充分な箇所の発生を抑制する観点からは、充填された樹脂の高さが回路の高さと同じ高さとなる量であるか、回路の高さより樹脂の変形分を含めたやや低い高さとなる量であることが好ましい。
 本実施形態の製造方法は、必要に応じて上述した工程以外のその他の工程を有していてもよい。例えば、熱硬化性樹脂を硬化させる工程、絶縁層上に形成された回路の上に絶縁等を目的とする層をさらに設ける工程、製造された回路基板を所望の形状に切断する工程などを有していてもよい。
<回路基板>
 本実施形態の回路基板は、樹脂を含む絶縁層と、前記絶縁層上に配置される回路と、を有し、前記回路の厚さが350μm以上である。
 本実施形態の回路基板は、回路が絶縁層に埋設された状態である回路基板に比べて絶縁信頼性に優れている。その理由は明らかではないが、回路を絶縁層に押し込んで形成する場合に比べて回路と絶縁層の界面にボイドが生じにくいこと、絶縁層に回路を押し込む場合に比べて回路の位置ずれが生じにくく、寸法安定性に優れていること等が考えられる。
 さらに本実施形態の回路基板は、回路の厚さが350μm以上である。このため、エッチングにより絶縁層上に回路が形成された回路基板に比べて回路の幅を大きくせずにその断面積を大きくでき、回路基板の小型化に対応しつつ大電流化を達成することができる。
また、厚さの大きい回路を形成することで、回路が面方向への熱の拡散を促すため、回路基板の温度上昇を抑制する効果も期待できる。
 ある実施態様では、回路基板の絶縁層の厚さが回路の厚さよりも小さい。
 本実施形態の回路基板に使用される絶縁層及び回路の詳細及び好ましい態様は、上述した回路基板の製造方法に使用される絶縁層及び回路の詳細及び好ましい態様と同様である。
 本明細書において回路が絶縁層上に「配置」された状態には、回路が絶縁層にまったく埋め込まれていない場合(埋め込み深さが0μmである)と、回路の絶縁層の埋め込み深さが20μm以内である場合の両方が含まれる。
 本明細書において回路の「埋め込み深さ」とは、絶縁層の上面(回路に対向する面であって、回路の埋め込みにより変形する前の状態の面)と、回路の底面(絶縁層に対向する面であって、埋め込まれた後の状態の面)との間の距離を意味する。具体的には、絶縁層上に配置する前の回路の厚さAと絶縁層の厚さBの合計値から、回路を絶縁層上に配置した後の回路基板の回路が形成された部分における厚さCを差し引いて得られる値(A+B-C)として計算して得られる値であっても、回路基板の断面を観察して埋め込み深さを測定して得られた値であってもよい。
 回路基板における埋め込み深さが一定でない場合は、5箇所において測定した埋め込み深さの平均値を「埋め込み深さ」とする。
 本実施形態の回路基板は、回路の間が樹脂で充填されていてよい。充填に用いる樹脂の詳細及び好ましい態様は、上述した回路基板の製造方法において回路の間の充填に用いる樹脂の詳細及び好ましい態様と同様である。
 本実施形態の回路基板は、必要に応じて回路、絶縁層、及び回路の間を充填する樹脂以外の部材を有していてもよい。例えば、絶縁層の回路が配置される側とは逆側にベースプレート、ヒートスプレッダ等の部材が配置されてもよい。これらの部材の材質は特に制限されず、銅、アルミニウム、タングステン銅、モリブデン銅等の銅合金、ニッケルめっき銅などが挙げられる。
 以下、図面を参照して本実施形態の回路基板の製造方法及び回路基板の具体例について説明するが、本実施形態はこれに限定されるものではない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
 図1は、回路部1とブリッジ2とを有する金属部材を仮基材10の上に配置した状態を概念的に示す斜視図であり、図2はその状態を概念的に示す断面図である。図1及び図2に示すように、ブリッジ2が金属部材の回路部1同士、又は回路部1と金属部材の外枠とを繋いでいる。これにより、金属部材を仮基材10の上に容易に配置することができる。
また、ブリッジ2の厚さは回路部1の厚さより小さい。これにより、金属部材を仮基材10の上に配置した後にブリッジ2のみを容易に除去することができる。
 図3は、金属部材からブリッジ2を除去した後の状態を概念的に示す斜視図であり、図4はその状態を概念的に示す断面図である。図3及び図4に示すように、ブリッジ2を除去することで回路部1のみが仮基材10の上に配置された状態となる。
 図5は、回路部1の間を樹脂5で充填した状態を概念的に示す斜視図であり、図6はその状態を概念的に示す断面図である。
 図7は、仮基材10を除去した後の回路部1を、樹脂5とともに絶縁層4上に配置した状態を概念的に示す斜視図であり、図8はその状態を概念的に示す断面図である。図7及び図8では、絶縁層4の回路部1が配置される側とは逆側にヒートスプレッダ3が配置されている。
 図9は、エッチングにより形成された回路1を有する回路基板(従来技術)を概念的に示す斜視図であり、図10はその状態を概念的に示す断面図である。エッチングにより回路を形成する場合、回路の厚さを厚くすると形成される回路がテーパー状になりやすく、回路間が狭くなって絶縁性の保持が難しくなる傾向にある。また、エッチング液への浸漬時間が長くなると品質への影響が懸念される等の理由から、形成可能な回路の厚さは一般に200μm程度が限界である。従って、回路の幅を広くすることで電流容量を大きくし、また、回路上のチップ、コンデンサ等の部品への熱の集中を緩和している。反面、回路の占める面積が増大するために、回路基板の小型化には不利である。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
 厚さが500μmの銅板を用いて切削及び打ち抜きにより回路部とブリッジとを有する金属部材を作製した。この金属部材を仮基材(PETフィルム)上に配置し、ブリッジを除去して回路を形成し、回路の間を樹脂(日立化成株式会社製、CEL-C-3900)を用いて充填した。
 絶縁層となる樹脂シート(エポキシ樹脂組成物を用いたBステージシート、日立化成株式会社製、型番「HTX」、フィラーの充填率85質量%、厚さ150μm)の一方の面から保護用PETフィルムを剥離した。次いで、ヒートスプレッダとなる銅板(厚さ500μm)の上に、保護用PETフィルムを剥離した面が対向するように樹脂シートを配置した。
 次いで、仮基材上に形成した回路から仮基材を剥離し、回路を樹脂シート上に配置した。回路の配置は、仮基材に対向していた面が樹脂シートのもう一方の保護用PETフィルムを剥離した面に対向するように配置した。回路の配置は、真空熱圧着により行った。具体的には、プレス温度は50℃を開始温度として3℃/分の条件で180℃まで昇温し、180℃で2時間保持し、その後、加圧したまま50℃まで冷却した。この間の真空度は昇温開始前より冷却完了まで1kPa以下とし、プレス圧は10MPaとした。このようにして、回路基板を作製した。
<実施例2>
 厚さが500μmの銅板の代わりに厚さが1000μmの銅板を用いて作製した金属部材を用いたことと、ヒートスプレッダとして厚さが500μmの銅板の代わりに厚さが1000μmの銅板を用いたこと以外は実施例1と同様にして、回路基板を作製した。
<実施例3>
 厚さが500μmの銅板の代わりに厚さが2000μmの銅板を用いて作製した金属部材を用いたことと、ヒートスプレッダとして厚さが500μmの銅板の代わりに厚さが2000μmの銅板を用いたこと以外は実施例1と同様にして、回路基板を作製した。
<実施例4~6>
 絶縁層上に回路を配置する際のプレス圧を10MPaから30MPaに変更したこと以外はそれぞれ実施例1~3と同様にして、回路基板を作製した。
<比較例1>
 回路の間を樹脂で充填しなかった以外は実施例1と同様にして、仮基材上に回路を形成した。次いで、実施例1で使用した樹脂シートを6枚積層して得た積層体を絶縁層として、ヒートスプレッダとなる銅板(厚さ500 μm)の上に配置した。この絶縁層の上に仮基材を除去した回路を配置し、絶縁層の厚さの保持のために1200μmのスペーサを設置した。回路の配置は、真空熱圧着により行った。具体的には、プレス温度は50℃を開始温度として3℃/分の条件で180℃まで昇温し、180℃で2時間保持し、その後、加圧したまま50℃まで冷却した。この間の真空度は昇温開始前より冷却完了まで1kPa以下とし、プレス圧は15MPaとした。このようにして、回路が絶縁層中に埋設された状態の回路基板を作製した。
<比較例2>
 厚さが500μmの銅板の代わりに厚さが1000μmの銅板を用いて作製した金属部材を用いたことと、厚さが500μmの銅板の代わりに厚さが1000μmの銅板をヒートスプレッダとして用いたことと、絶縁層として樹脂シートを9枚積層して得た積層体を用いたことと、1200μmのスペーサの代わりに2200μmのスペーサを用いたこと以外は比較例1と同様にして、回路が絶縁層中に埋設された状態の回路基板を作製した。
<比較例3>
 厚さが500μmの銅板の代わりに厚さが2000μmの銅板を用いて作製した金属部材を用いたことと、厚さが500μmの銅板の代わりに厚さが2000μmの銅板をヒートスプレッダとして用いたことと、絶縁層として樹脂シートを16枚積層して得た積層体を用いたことと、1200μmのスペーサの代わりに4200μmのスペーサを用いたこと以外は比較例1と同様にして、回路が絶縁層中に埋設された状態の回路基板を作製した。
(埋め込み深さの測定)
 作製した回路基板の回路が形成された部分における厚さを三次元測定機(株式会社キーエンス製、型式:VR-3000D)により定量して得られた値Cと、回路の作製に用いた銅板の厚さA及び絶縁層の厚さBとから回路の埋め込み深さ(A+B-C)を算出した。結果を表1に示す。
(絶縁破壊電圧の測定)
 回路基板の回路が形成された側の面と、ヒートスプレッダの面を、電極にそれぞれ接続した。その後、回路基板の全体をフロリナートに入れて絶縁破壊電圧の測定を行った。測定条件は、測定開始電圧を500(V)とし、500(V)ずつ段階的に電圧を上げて30秒保持することを繰り返し、電流値が0.2(mA)を超えたときの電圧を絶縁破壊電圧とした。結果を表1に示す。
(熱抵抗の測定)
 作製した回路基板を10mm×10mmの大きさに切断して、熱抵抗測定用の試料を作製した。この試料をシリコーングリース(信越化学株式会社製、X-22-7868-2D)を用いて、荷重を1MPa掛けて熱抵抗評価装置(ヤマヨ試験機有限会社製、型番 YST-901S)に密着した。次いで、入力電力を13W、試料の温度を50℃、水温を30℃として、試料の上下面の温度差ΔTを測定し、下式にて熱抵抗値を測定した。
  熱抵抗値(℃/W)=ΔT/入力熱量-装置定数
(位置ずれの評価)
 回路基板における回路の位置ずれの有無を光学顕微鏡により確認した。具体的には、回路基板の高さ方向における回路の位置が所定の位置から50μm以上ずれている箇所がある場合は「不合格」とし、回路の位置が所定の位置から50μm以上ずれている箇所がない場合は「合格」とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、回路が絶縁層に埋め込まれていないか、絶縁層への埋め込み深さが20μm以下である実施例1~6の回路基板は、絶縁層への埋め込み深さが20μmを超えている比較例1~3の回路基板に比べて熱抵抗値及び絶縁破壊電圧の値が小さかった。
また、回路の位置ずれの評価も良好であった。
1 回路部
2 ブリッジ
3 ヒートスプレッダ
4 絶縁層
5 樹脂
6 回路
7 樹脂
10 仮基材

Claims (8)

  1.  仮基材上に形成された回路から前記仮基材を除去する工程と、
     前記回路を絶縁層上に配置する工程と、を含み、
     前記配置は、前記回路の前記仮基材と対向していた側が前記絶縁層に対向するように行われる、回路基板の製造方法。
  2.  前記回路は、前記仮基材上に配置された回路部とブリッジとを有する金属部材から前記ブリッジを除去することによって形成される、請求項1に記載の回路基板の製造方法。
  3.  前記仮基材上に形成された前記回路の間を樹脂で充填する工程をさらに含む、請求項1又は請求項2に記載の回路基板の製造方法。
  4.  前記回路の厚さが350μm以上である、請求項1~請求項3のいずれか1項に記載の回路基板の製造方法。
  5.  前記絶縁層の厚さが前記回路の厚さよりも小さい、請求項1~請求項4のいずれか1項に記載の回路基板の製造方法。
  6.  絶縁層と、前記絶縁層上に配置された回路を有し、前記回路の厚さが350μ以上である、回路基板。
  7.  前記回路の間を充填する樹脂をさらに含む、請求項6に記載の回路基板。
  8.  前記絶縁層の厚さが前記回路の厚さよりも小さい、請求項6又は請求項7に記載の回路基板。
PCT/JP2016/085937 2016-07-12 2016-12-02 回路基板の製造方法及び回路基板 WO2018012006A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16908905.9A EP3481163A4 (en) 2016-07-12 2016-12-02 METHOD FOR MANUFACTURING A CIRCUIT BOARD AND CIRCUIT BOARD
CN201680087501.5A CN109479374A (zh) 2016-07-12 2016-12-02 电路基板的制造方法和电路基板
JP2018527376A JPWO2018012006A1 (ja) 2016-07-12 2016-12-02 回路基板の製造方法及び回路基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-137462 2016-07-12
JP2016137462 2016-07-12

Publications (1)

Publication Number Publication Date
WO2018012006A1 true WO2018012006A1 (ja) 2018-01-18

Family

ID=60952512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085937 WO2018012006A1 (ja) 2016-07-12 2016-12-02 回路基板の製造方法及び回路基板

Country Status (5)

Country Link
EP (1) EP3481163A4 (ja)
JP (1) JPWO2018012006A1 (ja)
CN (1) CN109479374A (ja)
TW (1) TW201803423A (ja)
WO (1) WO2018012006A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142282A1 (ja) * 2018-01-17 2019-07-25 日立化成株式会社 回路シートの製造方法、回路基板の製造方法、回路シート、及び回路基板
JP2020043195A (ja) * 2018-09-10 2020-03-19 日立化成株式会社 半導体装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216499A (ja) * 1993-01-19 1994-08-05 Toshiba Corp 銅回路基板の製造方法
JPH0786704A (ja) * 1993-09-10 1995-03-31 Matsushita Electric Ind Co Ltd パワー回路用配線基板及びその製造方法
WO2009110376A1 (ja) * 2008-03-06 2009-09-11 三菱電機株式会社 リードフレーム基板、半導体モジュール、及びリードフレーム基板の製造方法
US20140262439A1 (en) * 2013-03-13 2014-09-18 GM Global Technology Operations LLC Method of manufacturing electrical circuit traces

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL93768C (ja) * 1957-06-07 1960-03-15 Philips Nv
JP3452678B2 (ja) * 1995-03-03 2003-09-29 三菱電機株式会社 配線構成体の製造方法
JP5664679B2 (ja) * 2013-03-07 2015-02-04 三菱マテリアル株式会社 パワーモジュール用基板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216499A (ja) * 1993-01-19 1994-08-05 Toshiba Corp 銅回路基板の製造方法
JPH0786704A (ja) * 1993-09-10 1995-03-31 Matsushita Electric Ind Co Ltd パワー回路用配線基板及びその製造方法
WO2009110376A1 (ja) * 2008-03-06 2009-09-11 三菱電機株式会社 リードフレーム基板、半導体モジュール、及びリードフレーム基板の製造方法
US20140262439A1 (en) * 2013-03-13 2014-09-18 GM Global Technology Operations LLC Method of manufacturing electrical circuit traces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3481163A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142282A1 (ja) * 2018-01-17 2019-07-25 日立化成株式会社 回路シートの製造方法、回路基板の製造方法、回路シート、及び回路基板
JP2020043195A (ja) * 2018-09-10 2020-03-19 日立化成株式会社 半導体装置の製造方法
JP7187906B2 (ja) 2018-09-10 2022-12-13 昭和電工マテリアルズ株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
CN109479374A (zh) 2019-03-15
TW201803423A (zh) 2018-01-16
JPWO2018012006A1 (ja) 2019-05-16
EP3481163A1 (en) 2019-05-08
EP3481163A4 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP2007324550A (ja) 多層基板
JP2010272836A (ja) 放熱基板およびその製造方法
JP5885630B2 (ja) プリント基板
JP2004274035A (ja) 電子部品内蔵モジュールとその製造方法
WO2018012006A1 (ja) 回路基板の製造方法及び回路基板
JP2010161298A (ja) 導電ペーストの充填方法及び多層基板の製造方法
CN112825616A (zh) 3d电磁屏蔽件及其制备方法
JP5011845B2 (ja) 熱伝導基板の製造方法及びこれによって製造した熱伝導基板
JP2005191549A (ja) 部品内蔵モジュールの製造方法及び部品内蔵モジュール
JPWO2018189797A1 (ja) 回路基板の製造方法、回路シート及び回路基板
CN107667419B (zh) 用于制造电路载体的方法
WO2019142282A1 (ja) 回路シートの製造方法、回路基板の製造方法、回路シート、及び回路基板
KR20140060517A (ko) 부품 내장 기판의 제조 방법 및 이를 이용한 부품 내장 기판
JP4933893B2 (ja) 熱プレス方法
JP4348893B2 (ja) 熱伝導性基板の製造方法
JP2001077488A (ja) 回路基板とその製造方法およびリードフレーム
JP5186927B2 (ja) 立体プリント配線板
JP4093425B2 (ja) 積層基板の製造方法
JP2002270744A (ja) リードフレームおよびその製造方法、ならびに熱伝導性基板の製造方法
JP3985558B2 (ja) 熱伝導性基板の製造方法
WO2020161796A1 (ja) 回路基板の製造方法、回路基板、半導体装置、半導体装置の製造方法、回路基板用部材の製造方法、金属板、及び回路基板用部材
JP2005093582A (ja) 放熱用基板およびその製造方法
JP2008004787A (ja) 熱伝導基板の製造方法及びこれによって製造した熱伝導基板
JP2021034534A (ja) 回路基板の製造方法及び接合体の製造方法
JP2002359315A (ja) 熱伝導性基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018527376

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016908905

Country of ref document: EP

Effective date: 20190129