WO2018006746A1 - 一种基于石墨烯自支撑材料的空气过滤装置 - Google Patents

一种基于石墨烯自支撑材料的空气过滤装置 Download PDF

Info

Publication number
WO2018006746A1
WO2018006746A1 PCT/CN2017/090725 CN2017090725W WO2018006746A1 WO 2018006746 A1 WO2018006746 A1 WO 2018006746A1 CN 2017090725 W CN2017090725 W CN 2017090725W WO 2018006746 A1 WO2018006746 A1 WO 2018006746A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
filtering device
gas
self
gas filtering
Prior art date
Application number
PCT/CN2017/090725
Other languages
English (en)
French (fr)
Inventor
张麟德
Original Assignee
张麟德
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张麟德 filed Critical 张麟德
Priority to US16/315,657 priority Critical patent/US20190308131A1/en
Publication of WO2018006746A1 publication Critical patent/WO2018006746A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2058Carbonaceous material the material being particulate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0654Support layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material

Definitions

  • the present invention relates to the field of gas filtration technology, and in particular to a gas filtration device. Furthermore, the invention relates to an air filtration system.
  • aerosol pollutants include various salts (such as ammonium, potassium, sodium, magnesium, calcium and other cationic salts, sulfate, nitrate, chloride, organic acid and other anionic salts), metal particles, sand, Inorganic carbon particles (such as black carbon, high molecular carbon particles, etc.) and organic matter (such as volatile organic compound droplets, polycyclic aromatic hydrocarbon droplets, etc.); and gaseous pollutants include nitrogen oxides, sulfur Volatile organic compounds such as oxides, carbon monoxide, and lower alkanes, and hydrogen halides, hydrogen sulfide, ammonia, organic amines, and the like.
  • salts such as ammonium, potassium, sodium, magnesium, calcium and other cationic salts, sulfate, nitrate, chloride, organic acid and other anionic salts
  • metal particles such as black carbon, high molecular carbon particles, etc.
  • organic matter such as volatile organic compound droplets, polycyclic aromatic hydrocarbon droplets, etc.
  • the HEPA filter is mostly used for filtering air.
  • the HEPA filter is made of a polymer material such as polypropylene or an inorganic material such as glass fiber.
  • the filter can effectively trap particles in aerosol pollutants.
  • the removal rate of particulate matter above micron reached 99.7%.
  • the removal effect of the HEPA filter is poor, which is a problem to be solved by those skilled in the art.
  • the present invention is directed to a gas filtration device having a better pollutant removal effect.
  • a gas filtration device comprising a graphene self-supporting layer made of a graphene material; the graphene material comprising graphene and/or functionalized graphene; the functionalized graphene comprising an amination Graphene, carboxylated graphene, cyano graphene, nitrographene, borate-based graphene, phosphate-based graphene, hydroxylated graphene, fluorenated graphene, methylated graphene, allylated graphene , trifluoromethylated graphene, dodecylated graphene, octadecylated graphene, graphene oxide, graphene fluoride, graphene bromide, graphene chloride and graphene iodide One or more.
  • the graphene self-supporting layer is selected from a graphene material powder self-supporting layer and/or graphite.
  • a material aerogel self-supporting layer is selected from a graphene material powder self-supporting layer and/or graphite.
  • the above graphene material includes graphene, graphene oxide, carboxylated graphene, and fluorenated graphene.
  • the gas filtering device further includes a filter aid layer disposed on both sides of the graphene self-supporting layer.
  • the gas filtering device described above further includes an outer cladding layer disposed outside the filter aid layer.
  • a method of manufacturing a gas filtering device comprising the steps of: placing a graphene material powder between the filter layers, and calendering at a pressure of 0.15 to 0.5 MPa to obtain the gas filtering device.
  • a third aspect there is provided another method of producing a gas filtering device comprising the steps of: calendering a graphene material aerogel at a pressure of 0.15 to 0.5 MPa to obtain the gas filtering device.
  • an air filtration system comprising the gas filtration device described above.
  • the air filtration system described above further includes an ultraviolet device disposed between the gas filtering device and an air outlet of the air filter.
  • HEPA filters have a good effect on the interception of particulate matter in aerosol pollutants, but the surface of these particulates tends to adsorb a large number of semi-volatile compounds such as PAHs (polycyclic aromatic hydrocarbons) and VOCs (volatile organic compounds).
  • PAHs polycyclic aromatic hydrocarbons
  • VOCs volatile organic compounds
  • the gas filtering device in the above technical solution includes a graphene self-supporting layer made of a graphene material, on the one hand, enhances the filtering effect on pollutants in the atmosphere, and on the other hand, effectively avoids secondary pollution. Specifically:
  • Graphene material is a two-dimensional material with large specific surface area and good affinity for free radicals. Therefore, it has good adsorption and can effectively adsorb gas pollutants in atmospheric pollutants.
  • the graphene material provides a Pz orbital for each carbon and the electrons participate in the formation of a large ⁇ bond on the surface of the graphene
  • the surface of the entire graphene can be considered to be covered by a large ⁇ bond
  • the surface of the PAHs is also With a large ⁇ bond system, when the PAHs are in contact with the graphene, the ⁇ bonds of the two systems overlap, thereby forming a strong ⁇ - ⁇ interaction force between the graphene and the PAHs, and thus the graphene material for the PAHs
  • the adsorption is firm and it is not easy to break off.
  • the graphene self-supporting layer made of graphene material has a self-supporting permeable structural layer, and a structure similar to a HEPA filter is arranged inside, which can ensure the smooth circulation of air and at the same time filter aerosol-like pollutants.
  • the interception effect is generated; for smaller-sized particles, the particles enter the structure of the graphene self-supporting layer, and are disturbed by different airflows when flowing therein, and finally lose kinetic energy and stay in the graphene self-supporting layer.
  • the graphene self-supporting layer has a certain adsorption force to adsorb it.
  • Functionalized graphene in graphene materials can have a stronger adsorption effect on specific compounds because functional groups on functionalized graphene have directivity and can form chemical bonds with chemical species of specific structures (ion bonds, The covalent bond or the secondary bond), so that the chemical species of the specific structure form chemisorption, and the chemical adsorption has higher adsorption intensity and is more targeted than the conventional physical adsorption.
  • the gas filtering device in the above technical solution can simultaneously adsorb gas-based pollutants and aerosol-like pollutants in atmospheric pollutants, and has a strong adsorption effect and is not easy to fall off.
  • the combination of various graphene materials can be targeted according to the different components of atmospheric pollutants, so that the filtration effect is further enhanced. Therefore, the gas filtering device of the above technical solution preferably enhances the filtering effect on pollutants in the atmosphere, and on the other hand, effectively adsorbs semi-volatile compounds such as PAHs and VOCs on aerosol-based pollutants, thereby avoiding Secondary pollution.
  • FIG. 1 is a schematic structural view of one embodiment of a gas filtering device provided by the present invention.
  • FIG. 2 is a schematic view showing the structure of a specific embodiment of a gas contaminant detecting device of the present invention.
  • Fig. 3 is a schematic view showing the structure of a specific embodiment of the particulate matter detecting device of the present invention.
  • gas filtering devices b1, b3 gas filtering devices b1, b3; air tester b2; U-shaped absorber tube b4; absorption solvent b5; alumina sieve plate b6, air sampling pump b7.
  • HEPA filters have a good effect on the interception of particulate matter in aerosol pollutants, but the surface of these particulates tends to adsorb a large number of semi-volatile compounds such as PAHs (polycyclic aromatic hydrocarbons) and VOCs (volatile organic compounds).
  • PAHs polycyclic aromatic hydrocarbons
  • VOCs volatile organic compounds
  • a gas filtering device comprising a graphene self-supporting layer 1 made of a graphene material; the graphene material comprises graphene and/or functionalized graphene;
  • Functionalized graphene includes aminated graphene, carboxylated graphene, cyano graphene, nitrographene, borate-based graphene, phosphate-based graphene, hydroxylated graphene, fluorenated graphene, methylated graphene , allylated graphene, trifluoromethylated graphene, dodecylated graphene, octadecylated graphene, graphene oxide, graphene fluoride, graphene bromide, graphene chloride And one or more of graphene iodide.
  • the graphene self-supporting layer 1 described above refers to a graphene layer which has a certain self-supporting ability and can maintain a specific structure even when it is supported by an external force.
  • the graphene self-supporting layer 1 can be extruded by a graphene material under a certain pressure.
  • the rolling process is a process method, which refers to a process in which a raw material is made into a film or the like through a nip between two rolls which are relatively rotated and horizontally disposed.
  • the gas filtering device described above includes a graphene self-supporting layer 1 made of a graphene material, on the one hand, enhances the filtering effect on pollutants in the atmosphere, and on the other hand, effectively avoids secondary pollution. Specifically:
  • Graphene material is a two-dimensional material with large specific surface area and good affinity for free radicals. Therefore, it has good adsorption and can effectively adsorb gas pollutants in atmospheric pollutants.
  • the graphene material provides a Pz orbital for each carbon and the electrons participate in the formation of a large ⁇ bond on the surface of the graphene
  • the surface of the entire graphene can be considered to be covered by a large ⁇ bond
  • the surface of the PAHs is also With a large ⁇ bond system, when the PAHs are in contact with the graphene, the ⁇ bonds of the two systems overlap, thereby forming a strong ⁇ - ⁇ interaction force between the graphene and the PAHs, and thus the graphene material for the PAHs
  • the adsorption is firm and it is not easy to break off.
  • the graphene self-supporting layer 1 made of graphene material has a certain self-supporting permeable structure layer, and a structure similar to a HEPA filter is arranged inside, which can ensure the smooth circulation of air and at the same time filter aerosol-like pollutants.
  • the interception effect is generated; for smaller-sized particles, the particles enter the structure of the graphene self-supporting layer 1 and are disturbed by different air flows when flowing therein, and finally lose kinetic energy to stay in the graphene self-supporting layer. 1; for smaller size particles, the graphene has a certain adsorption force from the support layer 1 to adsorb it.
  • Functionalized graphene in graphene materials can have a stronger adsorption effect on specific compounds because functional groups on functionalized graphene have directivity and can form chemical bonds with chemical species of specific structures (ion bonds, The covalent bond or the secondary bond), so that the chemical species of the specific structure form chemisorption, and the chemical adsorption has higher adsorption intensity and is more targeted than the conventional physical adsorption.
  • the above gas filtering device can simultaneously adsorb gas-like pollutants and aerosol-like pollutants in atmospheric pollutants, and has a strong adsorption effect and is not easy to fall off.
  • the combination of various graphene materials can be targeted according to the different components of atmospheric pollutants, so that the filtration effect is further enhanced. Therefore, the gas filtering device described above preferably enhances the filtering effect on pollutants in the atmosphere, and on the other hand, effectively adsorbs semi-volatile compounds such as PAHs and VOCs on aerosol-based pollutants, thereby avoiding secondary Pollution.
  • the graphene self-supporting layer 1 is selected from the group consisting of a graphene material powder self-supporting layer and/or a graphene material aerogel self-supporting layer.
  • the graphene material powder self-supporting layer refers to the graphene self-supporting layer 1 obtained by stretching one or more of the above graphene materials under a certain pressure.
  • Graphene Material Aerogel self-supporting layer refers to a graphene self-supporting layer 1 obtained by stretching aerogel of one or more of the above graphene materials under a certain pressure.
  • the graphene material powder and the graphene material aerogel can be produced by a known method such as a redox method, a hydrothermal method, a dry pyrolysis method, a vapor phase chemical deposition method, a physical stripping method, and a solvent stripping method.
  • the graphene self-supporting layer 1 made of graphene materials of different states has the above-mentioned common beneficial effects, it also has some different filtering characteristics, which can be more targeted according to different working conditions and filtering targets.
  • the combination for example, as can be seen from the results of the test in Example 10, including graphene
  • the gas filtration device of the material aerogel self-supporting layer and the gas filtering device including the self-supporting layer of the graphene material powder have different focus on the pollutants when filtering the gas, and the two are semi-volatile compounds such as PAHs and VOCs.
  • Inorganic gases, heavy metals and suspended solids have good removal effects, but the gas filtration device including the graphene material aerogel self-supporting layer is relatively better at removing semi-volatile compounds such as PAHs, almost 100%.
  • the gas filtering device including the self-supporting layer of the graphene material powder has better effects in removing VOCs, heavy metals and suspended particles.
  • the above graphene material comprises graphene, graphene oxide, carboxylated graphene and fluorenated graphene.
  • graphene has a strong adsorption capacity for PAHs
  • graphene oxide has a strong adsorption capacity for formaldehyde
  • carboxylated graphene is a weakly acidic group modified graphene, for basic substances (mainly nitrogen-containing compounds such as Ammonia, nitrogen dioxide, etc.) have strong adsorption capacity
  • thiolated graphene has strong adsorption capacity for heavy metals (such as lead, mercury, etc.).
  • the graphene self-supporting layer 1 and the gas filtering device including the above graphene material can simultaneously have better adsorption ability to PAHs, formaldehyde, alkaline substances, and heavy metals in the air.
  • the mass ratio of the four components can be adjusted according to the filtration target gas. It can also be seen from the detection results of Example 10 that when the graphene material includes graphene, graphene oxide, carboxylated graphene, and fluorenated graphene, the above gas filtering device removes VOCs such as formaldehyde, inorganic gases such as ammonia, lead, and the like. The effect of heavy metals, as well as particulate suspensions, is further enhanced.
  • the gas filtering device may further include a filter aid layer 2 disposed on both sides of the graphene self-supporting layer 1 .
  • a filter aid layer 2 is disposed on each side of the graphene self-supporting layer 1. It can assist the filtration of the graphene self-supporting layer 1, that is, the effect of coarse filtration, first filtering a part of the pollutants through the filter layer 2, thereby improving the filtering effect of the whole gas filtering device on the one hand, and helping on the other hand.
  • the filter saturation time of the graphene self-supporting layer 1 is prolonged, the frequency of replacement is reduced, and the use cost is reduced. It can also be seen from the test results of Example 10 that when the gas filtering device includes the filter aid layer 2, the effect of removing particulate suspended matter, especially PM2.5, is further improved.
  • the graphene self-supporting layer 1 in the gas filtering device has a certain self-supporting ability
  • the stability can be improved, and the use of the filter-protecting layer 2 can also serve to assist the stable graphene self-supporting layer 1 structure. The role of further support.
  • materials having good gas permeability, filterability and support including polypropylene needle punched nonwoven fabric, polypropylene spunlace nonwoven fabric, polypropylene staple fiber filter cloth, polypropylene long fiber filter cloth, and polyphenylene terephthalate.
  • the gas filtering device may further include an outer cladding 3 disposed outside the filter aid layer 2 .
  • the outer cladding 3 is disposed outside the filter aid layer 2, that is, the filter aid layer 2 and the graphene self-supporting layer 1 are covered from the outermost surface.
  • the outer layer 3 plays a role in stabilizing the support and maintaining the ventilation.
  • materials having good structural strength and gas permeability are used, including pure cotton gauze, pure cotton crepe cloth, pure cotton long fiber filter cloth, pure cotton staple fiber filter cloth, polypropylene long fiber filter cloth, polypropylene staple fiber filter cloth, polypropylene One or more of the frame and the polyethylene frame.
  • a method for manufacturing a gas filtering device comprising the steps of: placing a graphene material powder between the filter layers 2 at 0.15-0.5 MPa.
  • the gas filtration device is obtained by calendering under pressure.
  • a gas filtering device comprising the steps of calendering a graphene material aerogel at a pressure of 0.15 to 0.5 MPa to obtain a gas filtering device.
  • the graphene material powder is not easy to be formed, and the graphene material powder is placed between the filter aid layers 2, sandwiched by the filter aid layer 2, and then calendered under a pressure of 0.15 to 0.5 MPa, and the obtained gas filter device is obtained.
  • the filtering effect is better. It can be seen from the test results of Example 10 that the difference in calendering pressure when preparing the gas filtering device has an effect on the removal rate of the contaminant, and the calcining pressure is lower than 0.15 MPa or higher than 0.5 Mpa, although the gas filtering device as a whole still has a comparative effect. Good effect of removing contaminants, but the filtration effect is reduced compared with the calendering pressure of 0.15Mpa to 0.5Mpa.
  • Another embodiment of the present invention provides an air filtration system including the above gas filtration device.
  • the gas filtering device has the above-mentioned advantageous effects, and therefore the air filtering system having the above gas filtering device also has corresponding technical effects, which will not be described herein.
  • the air filtration system further includes an ultraviolet device disposed between the gas filtering device and the air outlet of the air filter.
  • the ultraviolet device is disposed between the gas filtering device and the air outlet of the air filtering system, and can effectively kill bacteria and viruses in the gas passing through the gas filtering device.
  • Example 1 Method for preparing gas filtration device
  • the single-layer graphene aerogel was used as a raw material, and the graphene aerogel was calendered under a pressure of 0.15 MPa, and a filter device including a graphene aerogel self-supporting layer was obtained after the sheet was cut.
  • the single-layer graphene aerogel was used as a raw material, and the graphene aerogel was calendered under a pressure of 0.6 MPa, and a filter device including a graphene aerogel self-supporting layer was obtained after the sheet was cut.
  • the graphene powder is used as a raw material, and the graphene powder is calendered under a pressure of 0.5 MPa, and a filter device including a graphene powder self-supporting layer is obtained after the sheet is cut.
  • the graphene powder is used as a raw material, and the graphene powder is calendered under a pressure of 0.1 MPa, and a filter device including a graphene powder self-supporting layer is obtained after the sheet is cut.
  • the hydroxylated graphene powder was used as a raw material, and the graphene powder was calendered under a pressure of 0.5 MPa, and a filter device including a hydroxylated graphene powder self-supporting layer was obtained after the sheet was cut.
  • the graphite powder, the carboxylated graphene powder, the graphene oxide powder and the fluorenated graphene powder are used as raw materials, and the above four powders of the same quality are taken, and the four powders are uniformly mixed at 0.5 MPa. Under pressure After the calendering treatment, a filter device comprising a powder self-supporting layer of four kinds of graphene materials is obtained.
  • the graphite powder, the carboxylated graphene powder, the graphene oxide powder and the fluorenated graphene powder are used as raw materials, and the melt-blown polyester nonwoven fabric is used as the filter layer.
  • the above four kinds of powders of the same quality were taken, and the four kinds of powders were uniformly mixed, sandwiched between melt-blown polyester non-woven fabrics, calendered under a pressure of 0.5 MPa, and powders including four kinds of graphene materials were obtained after cutting.
  • a filter device for the body self-supporting layer The above four kinds of powders of the same quality were taken, and the four kinds of powders were uniformly mixed, sandwiched between melt-blown polyester non-woven fabrics, calendered under a pressure of 0.5 MPa, and powders including four kinds of graphene materials were obtained after cutting.
  • a filter device for the body self-supporting layer was used as raw materials, and the melt-blown polyester nonwoven fabric.
  • the graphite powder, the carboxylated graphene powder, the graphene oxide powder and the fluorenated graphene powder are used as raw materials, the melt-blown polyester non-woven fabric is used as the filter aid layer, and the pure cotton staple fiber filter cloth is used as the outer layer.
  • the above four kinds of powders of the same quality are taken, and the four kinds of powders are uniformly mixed, sandwiched between melt-blown polyester non-woven fabrics, and calendered under a pressure of 0.5 MPa. After completion, the pure cotton staple fiber filter cloth is outsourced. After sewing, a filter device comprising a powder self-supporting layer of four graphene materials is obtained after the sheet is cut.
  • Graphene aerogel, carboxylated graphene aerogel, graphene oxide aerogel and fluorenated graphene aerogel are used as raw materials, polypropylene needle-punched nonwoven fabric is used as filter aid layer, and pure cotton gauze is used as outer layer. .
  • the above four kinds of aerogels of the same quality were taken, and the four kinds of aerogels were uniformly mixed and calendered under a pressure of 0.2 MPa. After completion, they were sandwiched between the filter layers formed by the polypropylene needle-punched nonwoven fabric, and then The cotton gauze was outsourced, and after stitching, a filter device including an aerogel self-supporting layer of four kinds of graphene materials was obtained.
  • the device shown in Scheme 2 is used for gas filtration testing. It consists of the following five parts: gas filtration device b3; U-shaped absorption tube b4; absorption solvent b5; alumina sieve plate b6, air sampling pump b7. The role of each part is as follows:
  • Gas filtering device b3 for filtering the gas
  • U-shaped absorber tube b4 used to support the absorption solvent b5 and prevent the solvent from being sucked into the air sampler.
  • Absorbing solvent b5 for dissolving artificial flue gas.
  • Alumina sieve plate b6 used to prevent back suction, using the hole of the porous sieve plate as a boiling core, in the process of drawing vacuum, the solvent can be boiled without directly sucking into the atmospheric sampler.
  • Air sampler b7 ie atmospheric sampler: used to extract vacuum and provide negative pressure, under certain circumstances The test is also used to store atmospheric samples.
  • the structure is the device shown in Figure 3 for particulate matter detection. It consists of the following two parts: a gas filter device b1; an air tester b2. The role of each part is as follows:
  • Gas filtering device b1 for filtering the gas
  • Air Tester b2 Used to detect the amount of particulate matter in the gas.
  • the gas filtering device b1 is set to be empty, and the artificial flue gas is directly detected by the air tester b2, and the content of the particulate matter is obtained, and is referred to as the reference amount k0.
  • a different gas filtering device b3 is provided. After the artificial flue gas passes through the gas filtering device b3, it is detected by the air tester b2 to obtain the content of the particulate matter, which is recorded as the residual amount k1.
  • the contaminant removal rate of the gas filtering device of Example 1 can be seen in comparison with Example 3, the gas filtering device of the present invention comprising a graphene material aerogel self-supporting layer and gas filtering comprising a graphene material powder self-supporting layer
  • concentration of the pollutants in the device is different when filtering the gas. Both of them have better removal effects on semi-volatile compounds such as PAHs, VOCs, inorganic gases, heavy metals and suspended solids, but include graphene aerogels.
  • the gas-filtering device of the self-supporting layer relatively better removes semi-volatile compounds such as PAHs, nearly 100%, and the gas filtering device including the graphene material powder self-supporting layer removes VOCs, heavy metals and suspended particles. better result.
  • the contaminant removal rate of the gas filtration device of Example 1 was compared with that of Example 2, and the contaminant removal rate of the gas filtration device of Example 3 was comparable to that of Example 4, and the calendering pressure of the gas filtration device of the present invention was prepared.
  • Different for the removal rate of pollutants when the rolling pressure is lower than 0.15Mpa or higher than 0.5Mpa, although the gas filtration device as a whole still has a good effect of removing pollutants, but the rolling pressure is between 0.15Mpa and 0.5Mpa. In comparison, the filtering effect is reduced.
  • the pollutant removal rate of the gas filtering device of Example 3 can be seen in comparison with Example 6, when the graphene material includes graphene, graphene oxide, carboxylated graphene, and fluorenated graphene, the gas filtering device of the present invention removes formaldehyde.
  • the effects of VOCs, inorganic gases such as ammonia, heavy metals such as lead, and particulate suspensions are further improved.
  • the contaminant removal rate of the gas filtering device of Example 6 can be seen as compared with Example 7, and when the gas filtering device of the present invention includes the filter aid layer, the effect of removing the particulate suspended matter, especially PM2.5, is further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Geology (AREA)
  • Filtering Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

一种气体过滤装置,包括由石墨烯材料制成的石墨烯自支撑层(1),石墨烯材料包括石墨烯和/或官能化石墨烯;该气体过滤装置增强了对大气中污染物的过滤作用,并且有效避免了二次污染。

Description

一种基于石墨烯自支撑材料的空气过滤装置
本申请要求于2016年07月08日提交中国专利局,申请号为201610539545.9、发明名称为“一种基于石墨烯自支撑材料的空气过滤装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及气体过滤技术领域,特别是涉及一种气体过滤装置。此外,本发明还涉及一种空气过滤***。
背景技术
伴随着人类工业技术的发展,人类对自然的影响日益显著,大气污染物也逐渐增多。大气污染物大致可以分为两类:气溶胶类污染物和气体类污染物。其中,气溶胶类污染物包括各种盐类(如铵根、钾、钠、镁、钙等阳离子盐,硫酸根、硝酸根、氯离子、有机酸根等阴离子盐),金属颗粒,沙尘,无机碳颗粒(如黑碳,高分子碳颗粒等)以及有机物(如挥发性有机化合物小液滴、多环芳烃类化合物小液滴等);而气体类污染物则包括了氮氧化物、硫氧化物、一氧化碳、低级烷烃等挥发性有机化合物,以及卤化氢、硫化氢、氨、有机胺等。
现有技术中,过滤空气多选用HEPA过滤网,HEPA过滤网由聚丙烯等高分子材料或玻璃纤维等无机材料制成,这种过滤网能够有效地截留气溶胶类污染物中的微粒,0.3微米以上的微粒物的去除率达到99.7%。但对于气体类污染物,HEPA过滤网的去除效果较差,这是本领域技术人员亟待解决的问题。
发明内容
因此,本发明旨在提供一种污染物去除效果更好的气体过滤装置。
一方面,提供了一种气体过滤装置,包括由石墨烯材料制成的石墨烯自支撑层;所述石墨烯材料包括石墨烯和/或官能化石墨烯;所述官能化石墨烯包括氨基化石墨烯、羧基化石墨烯、氰基石墨烯、硝基石墨烯、硼酸基石墨烯、磷酸基石墨烯、羟基化石墨烯、巯基化石墨烯、甲基化石墨烯、烯丙基化石墨烯、三氟甲基化石墨烯、十二烷基化石墨烯、十八烷基化石墨烯、氧化石墨烯、氟化石墨烯、溴化石墨烯、氯化石墨烯及碘化石墨烯中的一种或多种。
进一步地,上述的石墨烯自支撑层选自石墨烯材料粉体自支撑层和/或石墨 烯材料气凝胶自支撑层。
进一步地,上述石墨烯材料包括石墨烯、氧化石墨烯、羧基化石墨烯和巯基化石墨烯。
进一步地,上述的气体过滤装置还包括设于石墨烯自支撑层两侧的助滤层。
进一步地,上述的气体过滤装置还包括设于助滤层外侧的外包层。
第二方面,还提供了一种气体过滤装置的制造方法,包括以下步骤:将石墨烯材料粉体置于助滤层之间,在0.15~0.5Mpa的压力下压延得到所述气体过滤装置。
第三方面,还提供了另一种气体过滤装置的制造方法,包括以下步骤:将石墨烯材料气凝胶在0.15~0.5Mpa的压力下压延得到所述气体过滤装置。
第四方面,还提供一种空气过滤***,包括上述的气体过滤装置。
进一步地,上述的空气过滤***,还包括设置于所述气体过滤装置和所述空气过滤器的出风口之间的紫外线装置。
发明人经过分析发现,现有技术中的过滤材料,例如HEPA过滤网,不但对于气体类污染物的去除效果较差,而且容易引起二次污染。HEPA过滤网对于气溶胶类污染物中的颗粒物的截留效果好,但这些颗粒物的表面往往吸附了大量PAHs(多环芳烃类化合物)等半挥发性化合物以及VOCs(挥发性有机化合物),当颗粒物被截留在HEPA过滤网上后,PAHs及VOCs等又从颗粒物上挥发释放,以气体的方式随新风穿过HEPA过滤网,从而二次污染了已过滤的气体。
上述技术方案中的气体过滤装置,包括由石墨烯材料制成的石墨烯自支撑层,一方面,增强了对大气中污染物的过滤作用,另一方面,有效避免了二次污染。具体来说:
石墨烯材料是一种二维材料,比表面积大,对自由基具有良好的亲和性,因此本身具有较好的吸附性,能够有效吸附大气污染物中的气体类污染物。例如对于PAHs,由于石墨烯材料每个碳都提供一个Pz轨道,和电子参与形成石墨烯表面的大π键,整个石墨烯的表面可以被认为是由大π键所覆盖着的,PAHs表面也具有大π键体系,这使PAHs与石墨烯相接触时,两个体系的π键会有所重叠,从而使石墨烯与PAHs间形成强π-π相互作用力,进而石墨烯材料对于PAHs的吸附牢固,不易发生脱离。
由石墨烯材料制成的石墨烯自支撑层具有一定的自支撑能力的透气结构层,其内部存在类似HEPA过滤网的结构,可以确保空气顺利流通,同时还能过滤气溶胶类污染物。对于大尺寸的颗粒物产生拦截作用;对于较小尺寸的颗粒物,颗粒物进入石墨烯自支撑层的结构内部,并在其中流动时受到不同的气流的干扰,最终失去动能停留在石墨烯自支撑层中;对于更小尺寸的颗粒物,石墨烯自支撑层存在一定的吸附力从而将其吸附。
石墨烯材料中的官能化石墨烯可以对特定的化合物具有更为牢固的吸附效果,这是因为官能化石墨烯上的官能团具有指向性,能够与一些特定结构的化学物种形成化学键(离子键、共价键或次级键),从而使该类特定结构的化学物种形成化学吸附,相对于传统的物理吸附,化学吸附的吸附强度更高,也亦具有更强的针对性。
因此,上述技术方案中的气体过滤装置能够同时吸附大气污染物中的气体类污染物和气溶胶类污染物,并且吸附作用牢固,不易脱落。多种石墨烯材料的组合可以根据大气污染物成分的不同进行针对性搭配,使得过滤效果进一步增强。所以说,上述技术方案的气体过滤装置一方面较好的增强了对大气中污染物的过滤效果,另一方面也有效吸附气溶胶类污染物上的PAHs等半挥发性化合物以及VOCs,进而避免二次污染。
附图说明
图1为本发明所提供气体过滤装置的其中一个具体实施方式的结构示意图。
图2为本发明的气体污染物的检测装置的一个具体实施方式的结构示意图。
图3为本发明的颗粒物检测装置的一个具体实施方式的结构示意图。
附图标记说明:
图1中:石墨烯自支撑层1;助滤层2;外包层3。
图2和图3中:气体过滤装置b1,b3;空气测试仪b2;U型吸收管b4;吸收溶剂b5;氧化铝筛板b6,空气采样泵b7。
具体实施方式
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的 装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
发明人经过分析发现,现有技术中的过滤材料,例如HEPA过滤网,不但对于气体类污染物的去除效果较差,而且容易引起二次污染。HEPA过滤网对于气溶胶类污染物中的颗粒物的截留效果好,但这些颗粒物的表面往往吸附了大量PAHs(多环芳烃类化合物)等半挥发性化合物以及VOCs(挥发性有机化合物),当颗粒物被截留在HEPA过滤网上后,PAHs及VOCs等又从颗粒物上挥发释放,以气体的方式随新风穿过HEPA过滤网,从而二次污染了已过滤的气体。
因此,在本发明的一个具体的实施方式中,首先提供一种气体过滤装置,包括由石墨烯材料制成的石墨烯自支撑层1;石墨烯材料包括石墨烯和/或官能化石墨烯;官能化石墨烯包括氨基化石墨烯、羧基化石墨烯、氰基石墨烯、硝基石墨烯、硼酸基石墨烯、磷酸基石墨烯、羟基化石墨烯、巯基化石墨烯、甲基化石墨烯、烯丙基化石墨烯、三氟甲基化石墨烯、十二烷基化石墨烯、十八烷基化石墨烯、氧化石墨烯、氟化石墨烯、溴化石墨烯、氯化石墨烯及碘化石墨烯中的一种或多种。
上述的石墨烯自支撑层1系指在具有一定自支撑能力,在没有外力支撑时也能保持特定结构的石墨烯层。石墨烯自支撑层1可以通过石墨烯材料在一定压力下进行延压制得。延压是一种工艺处理方法,系指原材料通过相对旋转、水平设置的两辊筒之间的辊隙,制成胶片等产品的工艺。
上述的气体过滤装置,包括由石墨烯材料制成的石墨烯自支撑层1,一方面,增强了对大气中污染物的过滤作用,另一方面,有效避免了二次污染。具体来说:
石墨烯材料是一种二维材料,比表面积大,对自由基具有良好的亲和性,因此本身具有较好的吸附性,能够有效吸附大气污染物中的气体类污染物。例如对于PAHs,由于石墨烯材料每个碳都提供一个Pz轨道,和电子参与形成石墨烯表面的大π键,整个石墨烯的表面可以被认为是由大π键所覆盖着的,PAHs表面也具有大π键体系,这使PAHs与石墨烯相接触时,两个体系的π键会有所重叠,从而使石墨烯与PAHs间形成强π-π相互作用力,进而石墨烯材料对于PAHs的 吸附牢固,不易发生脱离。
由石墨烯材料制成的石墨烯自支撑层1具有一定的自支撑能力的透气结构层,其内部存在类似HEPA过滤网的结构,可以确保空气顺利流通,同时还能过滤气溶胶类污染物。对于大尺寸的颗粒物产生拦截作用;对于较小尺寸的颗粒物,颗粒物进入石墨烯自支撑层1的结构内部,并在其中流动时受到不同的气流的干扰,最终失去动能停留在石墨烯自支撑层1中;对于更小尺寸的颗粒物,石墨烯自支撑层1存在一定的吸附力从而将其吸附。
石墨烯材料中的官能化石墨烯可以对特定的化合物具有更为牢固的吸附效果,这是因为官能化石墨烯上的官能团具有指向性,能够与一些特定结构的化学物种形成化学键(离子键、共价键或次级键),从而使该类特定结构的化学物种形成化学吸附,相对于传统的物理吸附,化学吸附的吸附强度更高,也亦具有更强的针对性。
因此,上述的气体过滤装置能够同时吸附大气污染物中的气体类污染物和气溶胶类污染物,并且吸附作用牢固,不易脱落。多种石墨烯材料的组合可以根据大气污染物成分的不同进行针对性搭配,使得过滤效果进一步增强。所以说,上述的气体过滤装置一方面较好的增强了对大气中污染物的过滤效果,另一方面也有效吸附气溶胶类污染物上的PAHs等半挥发性化合物以及VOCs,进而避免二次污染。
进一步地,在另一个具体实施方式中,上述石墨烯自支撑层1选自石墨烯材料粉体自支撑层和/或石墨烯材料气凝胶自支撑层。
上述的石墨烯材料粉体自支撑层是指一种或多种上述的石墨烯材料的粉体在一定压力下进行延压所制得的石墨烯自支撑层1。石墨烯材料气凝胶自支撑层是指一种或多种上述的石墨烯材料的气凝胶在一定压力下进行延压所制得的石墨烯自支撑层1。石墨烯材料粉体及石墨烯材料气凝胶可以采用已知的方法制造,如氧化还原法、水热法、干燥热解法、气相化学沉积法、物理剥离法与溶剂剥离法等。
由不同状态的石墨烯材料制成的石墨烯自支撑层1尽管都具有上述的共同的有益效果,但同时也具有一些不同的过滤特性,可以根据工况和过滤目标的不同进行更有针对性的组合。例如,从实施例10中的检测结果可见,包括石墨烯 材料气凝胶自支撑层的气体过滤装置与包括石墨烯材料粉体自支撑层的气体过滤装置在过滤气体时的重点针对的污染物有所差异,二者对于PAHs等半挥发性化合物、VOCs、无机气体、重金属及颗粒悬浮物的去除效果均较好,但包括石墨烯材料气凝胶自支撑层的气体过滤装置相对而言去除PAHs等半挥发性化合物的效果更好,几近100%,而包括石墨烯材料粉体自支撑层的气体过滤装置去除VOCs、重金属及颗粒悬浮物的效果更好。
优选的,在一个具体实施方式中,上述石墨烯材料包括石墨烯、氧化石墨烯、羧基化石墨烯和巯基化石墨烯。
不同官能化石墨烯因为官能团的不同,能够与一些特定结构的化学物种形成化学键(离子键、共价键或次级键),从而使该类特定结构的化学物种形成化学吸附。例如,石墨烯对PAHs具有极强的吸附能力;氧化石墨烯对甲醛的吸附能力较强;羧基化石墨烯为弱酸性基团修饰的石墨烯,对碱性物质(主要是含氮化合物,如氨,二氧化氮等)吸附能力较强;巯基化石墨烯对重金属(如铅、汞等)的吸附能力极强。由此,包括有上述石墨烯材料的石墨烯自支撑层1和气体过滤装置,能够同时对空气中的PAHs、甲醛、碱性物质以及重金属都具有更好的吸附能力。四种组分的质量比可以根据过滤目标气体进行调整。从实施例10的检测结果亦可见,石墨烯材料包括石墨烯、氧化石墨烯、羧基化石墨烯和巯基化石墨烯时,上述的气体过滤装置去除甲醛等VOCs、氨等无机气体类、铅等重金属,以及颗粒悬浮物的效果得到进一步提高。
请参考图1,进一步地,在另一个具体实施方式中,气体过滤装置还可以包括设于石墨烯自支撑层1两侧的助滤层2。
在石墨烯自支撑层1两侧分别设置助滤层2。可以辅助石墨烯自支撑层1的过滤,即起到粗过滤的效果,先将一部分污染物通过助滤层2过滤,从而一方面提高了整个气体过滤装置的过滤效果,另一方面也有助于延长石墨烯自支撑层1的过滤饱和时间,减少更换频率,降低使用成本。从实施例10的检测结果也可见,气体过滤装置包括助滤层2时,去除颗粒悬浮物,尤其是PM2.5的效果得到进一步提高。
此外,气体过滤装置中的石墨烯自支撑层1虽然具有一定的自支撑能力,但是稳定性仍可以提高,使用助滤层2还可以起到辅助稳定石墨烯自支撑层1结构 的作用,即进一步起到支撑作用。
优选采用具有良好透气性、过滤性和支撑性的材料,包括聚丙烯类针刺无纺布、聚丙烯类水刺无纺布、丙纶短纤滤布、丙纶长纤滤布、聚对苯二甲酸酯类针刺无纺布、聚对苯二甲酸酯类水刺无纺布、涤纶长纤滤布、涤纶短纤滤布、纯棉针刺无纺布、纯棉水刺无纺布、纯棉长纤滤布、纯棉短纤滤布、聚丙烯滤纸、玻璃纤维、复合聚丙烯-聚对苯二甲酸乙二醇酯滤纸、熔喷涤纶无纺布、熔喷玻璃纤维、微孔陶瓷滤板、微孔聚丙烯滤板、醋酸纤维素丝束滤芯、聚丙烯丝束滤芯和棉花滤芯中的一种或多种。
请参见图1,在另一个具体的实施方式中,气体过滤装置还可以包括设于助滤层2外侧的外包层3。
外包层3设置在助滤层2的外侧,即从最外面包覆住助滤层2和石墨烯自支撑层1。外包层3最主要起到稳定支撑作用和保持透气的作用。优选采用具有较好结构强度和透气性的材料,包括纯棉纱布、纯棉绉布、纯棉长纤滤布、纯棉短纤滤布、丙纶长纤滤布、丙纶短纤滤布、聚丙烯框架和聚乙烯框架中的一种或多种。
另一方面,在本发明的另一个具体实施方式中,还提供一种气体过滤装置的制造方法,包括以下步骤:将石墨烯材料粉体置于助滤层2之间,在0.15~0.5Mpa的压力下压延得到气体过滤装置。
在本发明的另一个具体实施方式中,还提供另一种气体过滤装置的制造方法,包括以下步骤:将石墨烯材料气凝胶在0.15~0.5Mpa的压力下压延得到气体过滤装置。
石墨烯材料粉体不易成型,将石墨烯材料粉体置于助滤层2之间,用助滤层2包夹住后再在0.15~0.5Mpa的压力下压延,所制得的气体过滤装置的过滤效果更好。通过实施例10的检测结果亦可见,制备气体过滤装置时压延压力的不同对于污染物的去除率有所影响,压延压力低于0.15Mpa或高于0.5Mpa时,尽管气体过滤装置整体仍具有较好的去除污染物的效果,但与压延压力处于0.15Mpa~0.5Mpa相比,过滤效果有所降低。
此外,本发明的另一个具体实施方式中还提供一种空气过滤***,包括上述的气体过滤装置。
气体过滤装置具备上述的有益效果,因此具有上述气体过滤装置的空气过滤***也具有相应的技术效果,此处不再赘述。
在另一个具体实施方式中,上述空气过滤***,还包括设置于气体过滤装置和空气过滤器的出风口之间的紫外线装置。
污染物上吸附了大量细菌和病毒,气体过滤装置拦截过滤了污染可以有效杀物,细菌和病毒也附着于气体过滤装置上,随着空气过滤装置使用时间的增加,细菌和病毒不断累计,容易对已经过滤的空气进行二次污染。将紫外线装置设置于气体过滤装置和空气过滤***的出风口之间,可以有效杀灭通过气体过滤装置以后的气体中的细菌和病毒。
下面结合具体的实施例对本发明的方案进一步描述。下述实施例中所用的材料、试剂、仪器等,如无特殊说明,均可从商业途径得到。
实施例1 气体过滤装置的制备方法
以单层石墨烯气凝胶为原料,将石墨烯气凝胶在0.15Mpa的压力下压延处理,裁片后获得包括石墨烯气凝胶自支撑层的过滤装置。
实施例2 气体过滤装置的制备方法
以单层石墨烯气凝胶为原料,将石墨烯气凝胶在0.6Mpa的压力下压延处理,裁片后获得包括石墨烯气凝胶自支撑层的过滤装置。
实施例3 气体过滤装置的制备方法
以石墨烯粉体为原料,将石墨烯粉体在0.5Mpa的压力下压延处理,裁片后获得包括石墨烯粉体自支撑层的过滤装置。
实施例4 气体过滤装置的制备方法
以石墨烯粉体为原料,将石墨烯粉体在0.1Mpa的压力下压延处理,裁片后获得包括石墨烯粉体自支撑层的过滤装置。
实施例5 气体过滤装置的制备方法
以羟基化石墨烯粉体为原料,将石墨烯粉体在0.5Mpa的压力下压延处理,裁片后获得包括羟基化石墨烯粉体自支撑层的过滤装置。
实施例6 气体过滤装置的制备方法
以石墨体粉体、羧基化石墨烯粉体、氧化石墨烯粉体和巯基化石墨烯粉体为原料,取相同质量的上面4种粉体,将4种粉体混合均匀,在0.5Mpa的压力下 压延处理,裁片后获得包括4种石墨烯材料的粉体自支撑层的过滤装置。
实施例7 气体过滤装置的制备方法
以石墨体粉体、羧基化石墨烯粉体、氧化石墨烯粉体和巯基化石墨烯粉体为原料,熔喷涤纶无纺布作为助滤层。取相同质量的上面4种粉体,将4种粉体混合均匀,包夹在熔喷涤纶无纺布间,在0.5Mpa的压力下压延处理,裁片后获得包括4种石墨烯材料的粉体自支撑层的过滤装置。
实施例8 气体过滤装置的制备方法
以石墨体粉体、羧基化石墨烯粉体、氧化石墨烯粉体和巯基化石墨烯粉体为原料,熔喷涤纶无纺布作为助滤层,纯棉短纤滤布作为外包层。取相同质量的上面4种粉体,将4种粉体混合均匀,包夹在熔喷涤纶无纺布间,在0.5Mpa的压力下压延处理,完成后,将纯棉短纤滤布外包,经过缝合,裁片后获得包括4种石墨烯材料的粉体自支撑层的过滤装置。
实施例9 气体过滤装置的制备方法
以石墨烯气凝胶、羧基化石墨烯气凝胶、氧化石墨烯气凝胶和巯基化石墨烯气凝胶为原料,聚丙烯针刺无纺布作为助滤层,纯棉纱布作为外包层。取相同质量的上面4种气凝胶,将4种气凝胶混合均匀,在0.2Mpa的压力下压延处理,完成后,包夹在聚丙烯针刺无纺布形成的助滤层间,再将纯棉纱布外包,经过缝合,裁片后获得包括4种石墨烯材料的气凝胶自支撑层的过滤装置。
实施例10 污染物去除率检测
【检测装置】
结构示意图2所示的装置,用于气体过滤检测。由以下五部分组成:气体过滤装置b3;U型吸收管b4;吸收溶剂b5;氧化铝筛板b6,空气采样泵b7。各部分的作用如下:
气体过滤装置b3:用于对气体进行过滤;
U型吸收管b4:用于支撑吸收溶剂b5,并防止溶剂倒吸入空气采样器中。
吸收溶剂b5:用于溶解人造烟气。
氧化铝筛板b6:用于防止倒吸,利用多孔筛板的孔作为沸腾核,在吸取真空的过程中,可以使溶剂沸腾而不直接吸入大气采样仪。
空气采样器b7,即大气采样仪:用来抽取真空和提供负压,一定情况下的 测试也用于储存大气样品。
结构是图3所示的装置,用于颗粒物过滤检测。由以下两部分组成:气体过滤装置b1;空气测试仪b2。各部分的作用如下:
气体过滤装置b1:用于对气体进行过滤;
空气测试仪b2:用于检测气体中的颗粒物含量。
【检测方法】
气体污染物检测方法
(1)设置气体过滤装置b3为空,人造烟气直接用吸收溶剂b5吸收,实验持续5min后停止测试;取出吸收溶剂b5,通过GC-MS、HPLC、ICP-MS、AAS或其他的测试方法测试吸收完成的溶剂中待检测化合物的含量,作为参照量t0。
(2)设置不同的气体过滤装置b3,人造烟气经过气体过滤装置b3后,再用吸收溶剂b5吸收,实验持续5min后停止测试,取出吸收溶剂b5,通过GC-MS、HPLC、ICP-MS、AAS或其他的测试方法测试吸收完成的溶剂中待检测化合物的含量,作为残余量t1;
(3)计算气体污染物去除率:化合物去除率(%)=1-残余量t1/参照量t0。
颗粒物检测方法
(1)设置气体过滤装置b1为空,人造烟气直接用空气测试仪b2检测,获得颗粒物的含量,记为参照量k0。
(2)设置不同的气体过滤装置b3,人造烟气经过气体过滤装置b3后,再用空气测试仪b2检测,获得颗粒物的含量,记为残余量k1。
(3)计算颗粒物去除率:化合物去除率(%)=1-残余量k1/参照量k0。
【检测样品】
实施例1~4及实施例6~7所制得的气体过滤装置。
【检测结果】
如表一所示。
表一不同气体过滤装置污染物去除率统计表
Figure PCTCN2017090725-appb-000001
Figure PCTCN2017090725-appb-000002
通过实施例1气体过滤装置的污染物去除率和实施例3相比可见,本发明的包括石墨烯材料气凝胶自支撑层的气体过滤装置与包括石墨烯材料粉体自支撑层的气体过滤装置在过滤气体时的重点针对的污染物有所差异,二者对于PAHs等半挥发性化合物、VOCs、无机气体、重金属及颗粒悬浮物的去除效果均较好,但包括石墨烯材料气凝胶自支撑层的气体过滤装置相对而言去除PAHs等半挥发性化合物的效果更好,几近100%,而包括石墨烯材料粉体自支撑层的气体过滤装置去除VOCs、重金属及颗粒悬浮物的效果更好。
通过实施例1气体过滤装置的污染物去除率和实施例2相比,以及实施例3气体过滤装置的污染物去除率和实施例4相比可见,制备本发明的气体过滤装置时压延压力的不同对于污染物的去除率有所影响,压延压力低于0.15Mpa或高于0.5Mpa时,尽管气体过滤装置整体仍具有较好的去除污染物的效果,但与压延压力处于0.15Mpa~0.5Mpa相比,过滤效果有所降低。
通过实施例3气体过滤装置的污染物去除率和实施例6相比可见,石墨烯材料包括石墨烯、氧化石墨烯、羧基化石墨烯和巯基化石墨烯时,本发明的气体过滤装置去除甲醛等VOCs、氨等无机气体类、铅等重金属,以及颗粒悬浮物的效果得到进一步提高。
通过实施例6气体过滤装置的污染物去除率和实施例7相比可见,本发明的气体过滤装置包括助滤层时,去除颗粒悬浮物,尤其是PM2.5的效果得到进一步提高。
以上对本发明所提供的气体过滤装置及空气过滤***进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (9)

  1. 一种气体过滤装置,其特征在于,包括由石墨烯材料制成的石墨烯自支撑层;所述石墨烯材料包括石墨烯和/或官能化石墨烯;所述官能化石墨烯包括氨基化石墨烯、羧基化石墨烯、氰基石墨烯、硝基石墨烯、硼酸基石墨烯、磷酸基石墨烯、羟基化石墨烯、巯基化石墨烯、甲基化石墨烯、烯丙基化石墨烯、三氟甲基化石墨烯、十二烷基化石墨烯、十八烷基化石墨烯、氧化石墨烯、氟化石墨烯、溴化石墨烯、氯化石墨烯及碘化石墨烯中的一种或多种。
  2. 如权利要求1所述的气体过滤装置,其特征在于,所述石墨烯自支撑层选自石墨烯材料粉体自支撑层和/或石墨烯材料气凝胶自支撑层。
  3. 如权利要求1或2所述的气体过滤装置,其特征在于,所述石墨烯材料包括石墨烯、氧化石墨烯、羧基化石墨烯和巯基化石墨烯。
  4. 如权利要求1或2所述的气体过滤装置,其特征在于,还包括设于所述石墨烯自支撑层两侧的助滤层。
  5. 如权利要求4所述的气体过滤装置,其特征在于,还包括设于所述助滤层外侧的外包层。
  6. 一种气体过滤装置的制造方法,其特征在于,包括以下步骤:将石墨烯材料粉体置于所述助滤层之间,在0.15~0.5Mpa的压力下压延得到所述气体过滤装置。
  7. 一种气体过滤装置的制造方法,其特征在于,包括以下步骤:将石墨烯材料气凝胶在0.15~0.5Mpa的压力下压延得到所述气体过滤装置。
  8. 一种空气过滤***,其特征在于,包括权利要求1~5任一项所述的气体过滤装置。
  9. 如权利要求5所述的空气过滤***,其特征在于,还包括设置于所述气体过滤装置和所述空气过滤器的出风口之间的紫外线装置。
PCT/CN2017/090725 2016-07-08 2017-06-29 一种基于石墨烯自支撑材料的空气过滤装置 WO2018006746A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/315,657 US20190308131A1 (en) 2016-07-08 2017-06-29 Air filtration device utilizing self-supporting graphene material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610539545.9A CN105944502B (zh) 2016-07-08 2016-07-08 一种气体过滤装置及空气过滤***
CN201610539545.9 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018006746A1 true WO2018006746A1 (zh) 2018-01-11

Family

ID=56900627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090725 WO2018006746A1 (zh) 2016-07-08 2017-06-29 一种基于石墨烯自支撑材料的空气过滤装置

Country Status (3)

Country Link
US (1) US20190308131A1 (zh)
CN (1) CN105944502B (zh)
WO (1) WO2018006746A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282354A (zh) * 2018-09-21 2019-01-29 南通强生石墨烯科技有限公司 一种空调空气净化一体装置
TWI687669B (zh) * 2018-11-15 2020-03-11 崑山科技大學 利用碳氣凝膠吸附材檢測氣體的方法
US20210346831A1 (en) * 2020-05-08 2021-11-11 G6 Materials Corp. Antiviral graphene oxide air filtration device and associated methods
US20210370213A1 (en) * 2020-05-28 2021-12-02 Joseph Priorello Air filtration systems, methods, and apparatuses

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105944502B (zh) * 2016-07-08 2019-02-22 张麟德 一种气体过滤装置及空气过滤***
CN109420387A (zh) * 2017-08-25 2019-03-05 研能科技股份有限公司 气体清净装置
CN107588470A (zh) * 2017-09-11 2018-01-16 上海乔辉新材料科技有限公司 植入式流动气体净化装置
CN107803066A (zh) * 2017-12-06 2018-03-16 范鸣 一种多种材料组合的拼接型空气净化器滤材
CN108324998B (zh) * 2018-04-19 2021-02-26 四川之江高新材料股份有限公司 聚氨酯多通道血管内支架的制备方法及所用的镀膜液
CN112013533A (zh) * 2019-05-30 2020-12-01 佛山市南海区永利兴塑料丝织五金有限公司 一种空调耐高温过滤网
CN110736722B (zh) * 2019-10-29 2022-04-08 广州特种承压设备检测研究院 一种石墨烯量子点复合材料光纤气体传感器制作方法
CN111013255B (zh) * 2019-12-31 2021-06-11 江南大学 一种微/纳米纤维气凝胶复合滤料的制备方法
CN111544795A (zh) * 2020-04-08 2020-08-18 常州美洛医疗科技有限公司 石墨烯过滤颗粒物呼吸器抗菌滤芯制备方法及制备的滤芯
CN111617556B (zh) * 2020-06-12 2022-02-15 上海支米空气净化科技有限公司 过滤材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104606802A (zh) * 2015-01-22 2015-05-13 东南大学 滤芯及其制备方法和应用
CN204996240U (zh) * 2015-07-15 2016-01-27 河南省安克林滤业有限公司 一种航天用环保过滤材料
CN205340343U (zh) * 2016-02-03 2016-06-29 山东巴锐汽车零部件股份有限公司 一种含石墨烯材料和竹原纤维的空气过滤布
CN105944502A (zh) * 2016-07-08 2016-09-21 张麟德 一种气体过滤装置及空气过滤***
CN106192376A (zh) * 2016-07-08 2016-12-07 张麟德 石墨烯材料涂层及其制备方法、以及空气过滤装置及***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2235245B1 (en) * 2007-12-31 2015-12-02 3M Innovative Properties Company Composite non-woven fibrous webs having continuous particulate phase and methods of making and using the same
CN203068673U (zh) * 2013-02-04 2013-07-17 于纵海 多功能有害空气净化器
CN105268327A (zh) * 2015-03-17 2016-01-27 青岛瑞利特新材料科技有限公司 石墨烯防pm2.5口罩滤片功能层及其在滤片中的应用
CN105533802A (zh) * 2016-01-18 2016-05-04 张麟德 烟气过滤装置和烟草制品
CN105603718B (zh) * 2016-02-05 2019-02-19 济南圣泉集团股份有限公司 一种复合纤维、及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104606802A (zh) * 2015-01-22 2015-05-13 东南大学 滤芯及其制备方法和应用
CN204996240U (zh) * 2015-07-15 2016-01-27 河南省安克林滤业有限公司 一种航天用环保过滤材料
CN205340343U (zh) * 2016-02-03 2016-06-29 山东巴锐汽车零部件股份有限公司 一种含石墨烯材料和竹原纤维的空气过滤布
CN105944502A (zh) * 2016-07-08 2016-09-21 张麟德 一种气体过滤装置及空气过滤***
CN106192376A (zh) * 2016-07-08 2016-12-07 张麟德 石墨烯材料涂层及其制备方法、以及空气过滤装置及***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282354A (zh) * 2018-09-21 2019-01-29 南通强生石墨烯科技有限公司 一种空调空气净化一体装置
TWI687669B (zh) * 2018-11-15 2020-03-11 崑山科技大學 利用碳氣凝膠吸附材檢測氣體的方法
US20210346831A1 (en) * 2020-05-08 2021-11-11 G6 Materials Corp. Antiviral graphene oxide air filtration device and associated methods
US20210370213A1 (en) * 2020-05-28 2021-12-02 Joseph Priorello Air filtration systems, methods, and apparatuses

Also Published As

Publication number Publication date
CN105944502A (zh) 2016-09-21
CN105944502B (zh) 2019-02-22
US20190308131A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2018006746A1 (zh) 一种基于石墨烯自支撑材料的空气过滤装置
WO2018006744A1 (zh) 石墨烯材料涂层及其制备方法、以及空气过滤装置及***
Feng et al. Multifunctional metal organic framework and carbon nanotube-modified filter for combined ultrafine dust capture and SO 2 dynamic adsorption
Ma et al. Immobilization of Cibacron blue F3GA on electrospun polysulphone ultra-fine fiber surfaces towards developing an affinity membrane for albumin adsorption
KR101936451B1 (ko) 미세다공성 막 층들 및 나노섬유 층을 포함하는 다공성 복합막
CN110719805B (zh) 包含用于醛的聚合物吸附剂的空气过滤器
Zhang et al. Mussel-inspired approach to cross-linked functional 3D nanofibrous aerogels for energy-efficient filtration of ultrafine airborne particles
KR20190040275A (ko) 개선된 실내 공기 청정기 및 여과 매체
KR20190012868A (ko) 미세먼지 저감용 부직포 필터 및 이의 제조방법
JP2014144421A (ja) 脱臭・ガス除去用フィルタ
Lee et al. Multi-scale nanofiber membrane functionalized with metal-organic frameworks for efficient filtration of both PM2. 5 and CH3CHO with colorimetric NH3 detection
Koh et al. Preparation and modification of an embossed nanofibrous materials for robust filtration performance of PM0. 2 removal
WO2020244611A1 (zh) 一种具有过滤voc气体性能的汽车空调过滤材料及其工艺
US7922791B2 (en) Filtering system for a semiconductor processing tool
WO2018110547A1 (ja) 放射性物質除去フィルタ、それを用いる放射性物質除去フィルタユニット及び放射性物質の除去方法
Zhang et al. A Novel Sustainable Semiconductor/Metal-organic Framework Coated Electret Filter for Simultaneous Removal of PM2. 5 and VOCs
JPH11221414A (ja) 空気清浄フィルタユニット
JP4369629B2 (ja) ケミカルフィルタ用濾材およびケミカルフィルタユニット
Robert et al. Molecular entrapment of formaldehyde and filtering particulate matter using electrospun polyacrylonitrile/polyethylenimine nanofibers
JP4454886B2 (ja) ケミカルフィルタ
JP2009090177A (ja) フィルター
Kadam et al. Nanofibres for Clean Air Breathing
KR20030031512A (ko) 공기 정화용 탄소 나노소재 복합 허니컴 필터
CN218096432U (zh) 滤材及包括滤材的滤网和空气净化器
CN210631897U (zh) 一种活性炭吸附塔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823558

Country of ref document: EP

Kind code of ref document: A1