WO2018110547A1 - 放射性物質除去フィルタ、それを用いる放射性物質除去フィルタユニット及び放射性物質の除去方法 - Google Patents

放射性物質除去フィルタ、それを用いる放射性物質除去フィルタユニット及び放射性物質の除去方法 Download PDF

Info

Publication number
WO2018110547A1
WO2018110547A1 PCT/JP2017/044560 JP2017044560W WO2018110547A1 WO 2018110547 A1 WO2018110547 A1 WO 2018110547A1 JP 2017044560 W JP2017044560 W JP 2017044560W WO 2018110547 A1 WO2018110547 A1 WO 2018110547A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
radioactive substance
removal filter
substance removal
amine compound
Prior art date
Application number
PCT/JP2017/044560
Other languages
English (en)
French (fr)
Inventor
増森 忠雄
靖夫 若井田
憲夫 野川
Original Assignee
東洋紡株式会社
株式会社ワカイダ・エンジニアリング
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社, 株式会社ワカイダ・エンジニアリング, 国立大学法人東京大学 filed Critical 東洋紡株式会社
Priority to KR1020197012138A priority Critical patent/KR102526926B1/ko
Priority to CN201780077292.0A priority patent/CN110073444B/zh
Publication of WO2018110547A1 publication Critical patent/WO2018110547A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2065Carbonaceous material the material being fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases

Definitions

  • the present invention relates to a radioactive substance removal filter, and more particularly to a radioactive substance removal filter that removes radioactive substances contained in a gas, particularly radioactive iodine and organic iodine compounds.
  • radioactive substance removal filters are used.
  • a radioactive substance removal filter for removing gaseous iodine a processing method for collecting and removing gaseous iodine by allowing air to pass through an activated carbonized sheet-shaped charcoal filter is known (for example, Patent Documents). 1).
  • the pore volume with a pore diameter of 3 to 30 nm is 0.15 cc / g or less and the pore diameter is 3 nm or less.
  • a radioactive substance removal filter having a filter medium formed by attaching an amine to a sheet made of activated carbon having a volume of 0.50 cc / g or more and laminating a protective sheet on at least one of the sheets made of activated carbon for example, Patent Document 2.
  • liquid scintillation counters are used to measure radiation.
  • a liquid scintillation cocktail used for a liquid scintillation counter an organic solvent having a boiling point of 120 ° C. or higher and a high boiling point compound such as 1,2,4-trimethylbenzene and linear dodecylbenzene is used.
  • the exhaust gas of the facility contains a trace amount of these organic solvents (VOC) in addition to gaseous radioactive substances.
  • VOC organic solvent of a high boiling point compound adheres to the radioactive substance removal filter like patent document 1 and patent document 2, and becomes a reduction factor of the removal performance of the radioactive substance using these radioactive substance removal filters.
  • the present invention has been made in view of the above circumstances, and its purpose is to provide radioactive iodine and organic matter even when a gaseous organic solvent, particularly a high boiling point compound having a boiling point of 120 ° C. or more, is contained in the gas.
  • An object of the present invention is to provide a radioactive substance removal filter that can suppress a reduction in the removal performance of radioactive substances such as iodine compounds, a radioactive substance removal filter unit using the radioactive substance removal filter, and a radioactive substance removal method.
  • the radioactive substance removal filter of the present invention that has been able to solve the above-mentioned problem comprises an activated carbon fiber layer on the downstream side and an activated carbon particle layer on the upstream side, and the activated carbon fiber layer is a fibrous material to which an amine compound is attached. It has activated carbon, and the ratio of the amount of amine compound attached to the activated carbon particle layer to the amount of amine compound attached to the activated carbon fiber layer (the amount of amine compound attached to the activated carbon particle layer / the amount of amine compound attached to the activated carbon fiber layer) is 0. .1 or less (including 0).
  • the radioactive substance removal filter of the present invention adsorbs the organic solvent in the gas in the upstream activated carbon particle layer, the activated carbon fiber layer on the downstream side deteriorates the removal performance of radioactive iodine and organic iodine compound by the organic solvent. Can be prevented.
  • the amine compound is preferably water-soluble, and more preferably triethylenediamine.
  • the amount of the amine compound attached to the activated carbon fiber layer is preferably 5% by mass or more and 20% by mass or less of the fibrous activated carbon.
  • the basis weight of the fibrous activated carbon of the activated carbon fiber layer is preferably 150 g / m 2 or more and 900 g / m 2 or less.
  • the basis weight of the granular activated carbon of the activated carbon particle layer is preferably 150 g / m 2 or more and 900 g / m 2 or less.
  • the fibrous activated carbon preferably has a BET specific surface area of 800 m 2 / g or more.
  • the granular activated carbon preferably has a BET specific surface area of 800 m 2 / g or more.
  • the total pore volume of the fibrous activated carbon is preferably 0.3 cc / g or more.
  • the total pore volume of the granular activated carbon is preferably 0.3 cc / g or more.
  • the average fiber diameter of the fibrous activated carbon is preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • the average particle diameter of the granular activated carbon is preferably 200 ⁇ m or more and 700 ⁇ m or less.
  • the activated carbon fiber layer and the activated carbon particle layer are laminated and preferably have a pleated shape.
  • the present invention includes a radioactive substance removal filter unit characterized by having the radioactive substance removal filter and a radioactive substance removal method.
  • the radioactive substance removal filter of the present invention is characterized in that an activated carbon fiber layer having fibrous activated carbon to which an amine compound is attached is provided on the downstream side, and an activated carbon particle layer having granular activated carbon is provided on the upstream side.
  • an activated carbon fiber layer on the downstream side and an activated carbon particle layer on the upstream side the radioactive substance removal filter removes radioactive substances such as radioactive iodine and organic iodine compounds even if organic solvents are contained in the gas. It becomes possible to suppress that performance falls, and the radioactive substance removal effect of a radioactive substance removal filter can be exhibited over a long period of time.
  • the schematic of the radioactive substance removal filter in embodiment of this invention is represented.
  • the schematic sectional drawing after the pleating process of the radioactive substance removal filter in embodiment of this invention is represented.
  • the perspective view of the radioactive substance removal filter unit in embodiment of this invention is represented.
  • the radioactive substance removal filter according to the present invention will be described in detail with reference to the drawings.
  • the present invention is not limited to the illustrated examples, and is suitable as long as it can meet the purpose described above and below. It is also possible to carry out by modifying the above, and they are all included in the technical scope of the present invention.
  • the radioactive substance removal filter according to the present invention includes an activated carbon fiber layer on the downstream side and an activated carbon particle layer on the upstream side, and the activated carbon fiber layer includes fibrous activated carbon to which an amine compound is attached, and the activated carbon particle layer
  • the ratio between the amount of the amine compound attached to the activated carbon fiber layer and the amount of the amine compound attached to the activated carbon fiber layer is 0.1 or less (including 0).
  • the downstream side is the side after the gas passes through the filter, and means the gas outflow side.
  • the upstream side is the side opposite to the downstream side, before the gas passes through the filter, and means the gas inflow side.
  • the arrows in FIGS. 1 and 2 indicate the gas flow, and the upper side in FIGS. 1 and 2 is the upstream side, and the lower side is the downstream side.
  • the activated carbon fiber layer 2 is a layer having fibrous activated carbon to which an amine compound is attached.
  • Fibrous activated carbon is fibrous activated carbon obtained by carbonizing natural fiber, regenerated fiber or synthetic fiber and performing an activation reaction by gas activation.
  • the activated carbon fiber layer 2 is obtained by laminating non-woven fabrics on both sides of a sheet-like fibrous activated carbon and performing an integration treatment.
  • the BET specific surface area of the fibrous activated carbon is preferably 800 m 2 / g or more, more preferably 1000 m 2 / g or more, and further preferably 1200 m 2 / g or more.
  • the lower limit value of the BET specific surface area of the fibrous activated carbon is this value, the radioactive substance removing effect of the activated carbon fiber layer 2 can be enhanced.
  • the total pore volume of the fibrous activated carbon is preferably 0.3 cc / g or more, more preferably 0.4 cc / g or more, and further preferably 0.5 cc / g or more.
  • the lower limit value of the total pore volume of the fibrous activated carbon is this value, the effect of removing the radioactive substance in the activated carbon fiber layer 2 is enhanced.
  • the average fiber diameter of the fibrous activated carbon is preferably 10 ⁇ m or more, and more preferably 12 ⁇ m or more.
  • the average fiber diameter of the fibrous activated carbon is preferably 40 ⁇ m or less, more preferably 35 ⁇ m or less, and further preferably 30 ⁇ m or less.
  • the upper limit value of the average fiber diameter of the fibrous activated carbon is such a value, the surface area of the activated carbon fiber layer 2 is increased, and the radioactive substance removal efficiency is improved.
  • the fibrous activated carbon is observed with an electron microscope at a magnification of 500 times, and the fiber diameter is measured. Arbitrary 100 fiber diameters are arithmetically averaged, and this average value is taken as the average fiber diameter of the fibrous activated carbon.
  • amine compound examples include 1,4-diazabicyclo [2,2,2] octane (triethylenediamine), N, N′-bis (3-aminopropyl) piperazine, N, N-dimethylaminoethyl methacrylate, N, N-dimethylaminopropylamine, 3-aminopropyltrimethoxysilane, 1,5-diazabicycloundecene, polyethyleneimine, 1,5-diazabicyclo [4.3.0] nonene, 1,8-diazabicyclo [ 5.4.0] -7-undecene, 2-methyl-1,4-diazabicyclo [2.2.2] octane, phenylhydrazine, 2-cyanopyridine, diisopropylamine, N, N ′, N′-trimethylamino Examples include ethyl piperazine, hexamethylene tetramine, and polyalkyl polyamine.
  • the amine compound used is preferably water-soluble, and more preferably 1,4-diazabicyclo [2,2,2] octane (triethylenediamine).
  • triethylenediamine 1,4-diazabicyclo [2,2,2] octane
  • the amount of the amine compound attached to the activated carbon fiber layer 2 is preferably 5% by mass or more, more preferably 7% by mass or more, and further preferably 10% by mass or more of the fibrous activated carbon.
  • the radioactive organic iodine compound can be sufficiently adsorbed.
  • the amount of the amine compound attached to the activated carbon fiber layer 2 is preferably 20% by mass or less, more preferably 17% by mass or less, and further preferably 15% by mass or less of the fibrous activated carbon. .
  • the upper limit value of the amount of the amine compound attached to the activated carbon fiber layer 2 is this value, the cost can be suppressed while maintaining a sufficient radioactive substance removing effect.
  • the method of attaching the amine compound to the activated carbon fiber layer 2 includes a method of immersing and drying a sheet-like fibrous activated carbon in an amine compound solution, a method of spraying and drying the amine compound solution on a sheet-like fibrous activated carbon, Examples thereof include a method in which fibrous activated carbon is immersed in an amine compound solution and dried to form a sheet. Especially, it is preferable to make an amine compound adhere to the activated carbon fiber layer 2 by the method of immersing a sheet-like fibrous activated carbon in the solution of an amine compound, and drying. By attaching the amine compound to the activated carbon fiber layer 2 in this way, the amine compound can be uniformly attached to the fibrous activated carbon, and the radioactive substance removing effect of the activated carbon fiber layer 2 is enhanced.
  • the basis weight of the fibrous activated carbon in the activated carbon fiber layer 2 is preferably 150 g / m 2 or more, more preferably 200 g / m 2 or more, and further preferably 400 g / m 2 or more.
  • the basis weight of the fibrous activated carbon in the activated carbon fiber layer 2 is preferably 900 g / m 2 or less, more preferably 800 g / m 2 or less, and further preferably 700 g / m 2 or less.
  • the activated carbon particle layer 3 is a layer having granular activated carbon.
  • the granular activated carbon is a granular activated carbon obtained by performing an activation reaction by gas activation or chemical activation on carbonized palm shell, sawdust, bamboo or the like, coal, pitch or the like. Examples of the granular activated carbon include crushed charcoal, granular charcoal, and formed charcoal, and any type can be suitably used.
  • powdered activated carbon which is powdered activated carbon, can be used, but granular activated carbon is preferably used in order to reduce pressure loss.
  • the activated carbon particle layer 3 is obtained by mixing granular activated carbon and a thermoplastic resin, sandwiching the mixture between nonwoven fabrics, and performing a heat treatment.
  • the BET specific surface area of the granular activated carbon is preferably 800 m 2 / g or more, more preferably 900 m 2 / g or more, and further preferably 1000 m 2 / g or more.
  • the lower limit value of the BET specific surface area of the granular activated carbon is this value, the effect of the activated carbon particle layer 3 removing the organic solvent can be enhanced.
  • the total pore volume of the granular activated carbon is preferably 0.3 cc / g or more, more preferably 0.4 cc / g or more, and further preferably 0.5 cc / g or more.
  • the lower limit value of the total pore volume of the granular activated carbon is this value, the effect of removing the organic solvent from the activated carbon particle layer 3 is improved.
  • the average particle diameter of the granular activated carbon is preferably 200 ⁇ m or more, and more preferably 250 ⁇ m or more.
  • the air permeability of the activated carbon particle layer 3 can be improved.
  • the average particle diameter of the granular activated carbon is preferably 700 ⁇ m or less, more preferably 625 ⁇ m or less, and further preferably 550 ⁇ m or less.
  • the upper limit value of the average particle diameter of the granular activated carbon is such a value, the surface area of the activated carbon particle layer 3 is increased, and the efficiency of removing the organic solvent is improved.
  • the granular activated carbon is observed at a magnification of 35 times using an optical microscope, and the particle diameter is measured. Arbitrary 100 particle sizes are arithmetically averaged, and this average value is taken as the average particle size of the granular activated carbon.
  • the basis weight of the granular activated carbon in the activated carbon particle layer 3 is preferably 150 g / m 2 or more, more preferably 200 g / m 2 or more, and further preferably 250 g / m 2 or more.
  • the activated carbon particle layer 3 can have a sufficient organic solvent removing effect.
  • the basis weight of the granular activated carbon in the activated carbon particle layer 3 is preferably 900 g / m 2 or less, more preferably 800 g / m 2 or less, and further preferably 700 g / m 2 or less. Since the upper limit of the basis weight of the granular activated carbon in the activated carbon particle layer 3 is this value, the activated carbon particle layer 3 can be made lightweight and the pressure loss can be reduced.
  • the ratio of the amount of amine compound attached to the activated carbon particle layer 3 and the amount of amine compound attached to the activated carbon fiber layer 2 is: It is 0.1 or less, preferably 0.08 or less, and more preferably 0.06 or less.
  • the ratio of the amine compound adhesion amount of the activated carbon particle layer 3 and the amine compound adhesion amount of the activated carbon fiber layer 2 includes 0.
  • the ratio of the amine compound adhesion amount of the activated carbon particle layer 3 and the amine compound adhesion amount of the activated carbon fiber layer 2 is this value, the organic solvent in the gas is removed to the activated carbon particle layer 3 and the organic The solvent is prevented from adhering to the activated carbon fiber layer 2. Therefore, it is possible to suppress a decrease in the radioactive substance removal performance of the radioactive substance removal filter 1, and it is possible to extend the lifetime of the radioactive substance removal filter.
  • the activated carbon fiber layer 2 and the activated carbon particle layer 3 are preferably laminated in the thickness direction, and preferably have a pleated shape that is repeatedly folded and folded repeatedly. Since the activated carbon fiber layer 2 and the activated carbon particle layer 3 are laminated, the radioactive substance removal filter 1 can be downsized. In addition, since the activated carbon fiber layer 2 and the activated carbon particle layer 3 are pleated, the area in contact with the gas is increased, and the radioactive material in the gas can be efficiently removed.
  • the radioactive substance removal filter 1 according to the present invention can be used for the radioactive substance removal filter unit 11.
  • the radioactive substance removal filter unit 11 can be manufactured by housing the radioactive substance removal filter 1 in a frame 12 as an example of the embodiment.
  • the material of the frame 12 is not particularly limited, and examples thereof include metals, synthetic resins, and wood. Among these, a metal is preferable. Since the frame body 12 is made of metal, the strength of the radioactive substance removal filter unit 11 can be increased.
  • a gas containing a radioactive substance such as gaseous iodine or an organic iodine compound is passed through the radioactive substance removal filter 1 of the present invention.
  • a radioactive substance such as gaseous iodine or an organic iodine compound
  • the radioactive substance removal filter 1 of the present invention it becomes possible to remove radioactive substances from the gas.
  • an organic solvent is contained in the gas, the organic solvent is removed from the gas by the activated carbon particle layer 3 of the radioactive substance removal filter 1, so that the organic solvent does not easily adhere to the activated carbon fiber layer 2, and activated carbon. It can prevent that the radioactive substance removal performance of the fiber layer 2 falls.
  • An activated carbon fiber layer was prepared by laminating a spunlace made of polypropylene (weight per unit area: 35 g / m 2 ) on both sides of a sheet-like fibrous activated carbon or a laminate of a plurality of sheets and integrating them by needle punching. .
  • the prepared mixed powder was sprayed on a thermal bond nonwoven fabric (weighing 27 g / m 2 ), and the same thermal bond nonwoven fabric was superimposed thereon, followed by heat treatment to produce an activated carbon particle layer.
  • the surface area analysis range is set to 0.01 to 0.15 under the BET conditions, and the BET specific surface area [m 2 / g]. Further, the total pore volume [cc / g] was determined from the data of the relative pressure 0.95.
  • Example 1 625 mg of triethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 250 g of ion-exchanged water to prepare a triethylenediamine aqueous solution.
  • Sheet of the fibrous activated carbon 6 g (BET specific surface area: 1460 m 2 / g, total pore volume: 0.63cc / g, basis weight: 200 g / m 2, average fiber diameter: 13 .mu.m), and the aqueous solution previously prepared After the addition, the mixture was stirred at room temperature for 12 hours. Thereafter, the sheet-like fibrous activated carbon was separated by filtration and dried at 80 ° C. for 2 hours.
  • a sheet-like amine compound-attached fibrous activated carbon having an amine compound adhesion amount of 10.3% by mass was obtained.
  • Three sheets of the obtained sheet-like amine compound-attached fibrous activated carbon were laminated to produce an activated carbon fiber layer.
  • Coconut shell granular activated carbon with an amine compound adhesion of 0% by mass (below the detection limit) (BET specific surface area: 1350 m 2 / g, total pore volume: 0.62 cc / g, particle diameter: 250 to 500 ⁇ m, average particle diameter: 320 ⁇ m ) was used to prepare an activated carbon particle layer so that the granular activated carbon basis weight was 600 g / m 2 .
  • the produced activated carbon particle layer was disposed on the upstream side, and the activated carbon fiber layer was disposed on the downstream side, and an organic solvent load test was performed. Then, the methyl iodide removal rate was measured using the sample after the organic solvent load test.
  • Example 2 An activated carbon fiber layer was produced in the same manner as in Example 1 except that the amount of triethylenediamine used was 1.88 g.
  • a triethylenediamine aqueous solution was prepared by dissolving 45 mg of triethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) in 8 g of ion-exchanged water. Further, 6 g of palm activated carbon activated carbon (BET specific surface area: 1350 m 2 / g, total pore volume: 0.62 cc / g, particle diameter: 250 to 500 ⁇ m, average particle diameter: 320 ⁇ m) was mixed with the previously prepared aqueous solution. Then, it was dried at 80 ° C. for 2 hours.
  • An amine compound-attached granular activated carbon having an amine compound adhesion amount of 0.7% by mass was obtained.
  • the activated carbon particle layer was produced using the obtained amine compound adhesion granular activated carbon so that granular activated carbon basis weight might be 600 g / m ⁇ 2 >.
  • the produced activated carbon particle layer was disposed on the upstream side, and the activated carbon fiber layer was disposed on the downstream side, and an organic solvent load test was performed. Then, the methyl iodide removal rate was measured using the sample after the organic solvent load test.
  • Example 3 The same operation as in Example 1 was conducted except that the amount of triethylenediamine used was 4.38 g. The amine compound adhesion amount was 14.8% by mass.
  • Example 4 The same procedure as in Example 1 was performed except that the activated carbon particle layer had a granular activated carbon basis weight of 300 g / m 2 .
  • Example 5 The same procedure as in Example 3 was performed except that the activated carbon particle layer had a granular activated carbon basis weight of 300 g / m 2 .
  • An amine compound-attached granular activated carbon having an amine compound adhesion amount of 12.1% by mass was obtained.
  • the activated carbon particle layer was produced using the obtained amine compound adhesion granular activated carbon so that granular activated carbon basis weight might be 300 g / m ⁇ 2 >.
  • the produced activated carbon particle layer was disposed on the upstream side, and the activated carbon fiber layer was disposed on the downstream side, and an organic solvent load test was performed. Then, the methyl iodide removal rate was measured using the sample after the organic solvent load test.
  • Example 2 An activated carbon particle layer and an activated carbon fiber layer were prepared in the same manner as in Example 5, the activated carbon fiber layer was disposed on the upstream side, the activated carbon particle layer was disposed on the downstream side, and an organic solvent load test was performed. Then, the methyl iodide removal rate was measured using the sample after the organic solvent load test.
  • Example 3 An activated carbon particle layer similar to that in Example 4 is disposed on the upstream side, and the activated carbon particle layer is disposed on the downstream side in the same manner as in Comparative Example 1 except that the granular activated carbon basis weight is 600 g / m 2. A load test was performed. Then, the methyl iodide removal rate was measured using the sample after the organic solvent load test.
  • the organic solvent in the gas can be removed only with the activated carbon particle layer. Instead, the organic solvent reaches the activated carbon fiber layer, and the organic solvent adheres to the activated carbon fiber layer. Therefore, the thing of the comparative example 1 compared with the thing of Example 5 which made the amine compound adhere only to the activated carbon fiber layer of the downstream, without attaching an amine compound to the activated carbon particle layer of the upstream, The removal effect of radioactive material is reduced. Therefore, it is preferable that the amine compound is not attached to the upstream layer, and the amine compound is attached only to the downstream layer.
  • the activated carbon fiber layer has better radioactive substance removal performance than the activated carbon particle layer.
  • the organic solvent in the gas adheres, and the radioactive substance removal performance of the activated carbon fiber layer decreases. Therefore, the comparative example 2 is less effective in removing the radioactive substance than the example 5 in which the activated carbon particle layer is disposed on the upstream side and the activated carbon fiber layer is disposed on the downstream side. Yes. Therefore, it is preferable that the activated carbon particle layer is disposed on the upstream side and the activated carbon fiber layer is disposed on the downstream side.
  • the radioactive substance removal performance is superior to the activated carbon particle layer. Since the activated carbon fiber layer is not used, the radioactive substance removal effect is reduced. Therefore, it is preferable to use both the activated carbon particle layer and the activated carbon fiber layer instead of using only the activated carbon particle layer.
  • the amine compound is attached to the downstream activated carbon particle layer, but compared to Examples 4 and 5 in which the amine compound is attached to the downstream activated carbon fiber layer, the radioactive compound is used.
  • the substance removal effect is reduced. Therefore, it is preferable to attach the amine compound to the activated carbon fiber layer rather than attaching the amine compound to the activated carbon particle layer.
  • the activated carbon fiber layer when the activated carbon fiber layer is disposed on both the upstream side and the downstream side, it is necessary to increase the basis weight of the activated carbon fiber layer in order to provide sufficient radioactive substance removal performance.
  • the basis weight of the activated carbon fiber layer is increased, the thickness increases, and the thickness of the radioactive substance removal filter also increases. As a result, there is a problem that the radioactive substance removing filter is enlarged and it is difficult to pleat the radioactive substance removing filter. Therefore, it is preferable to use both the activated carbon particle layer and the activated carbon fiber layer instead of using only the activated carbon fiber layer.
  • the radioactive substance removal filter of the present invention includes an activated carbon fiber layer on the downstream side and an activated carbon particle layer on the upstream side, and the activated carbon fiber layer has fibrous activated carbon to which an amine compound is attached,
  • the ratio of the amount of amine compound attached to the activated carbon particle layer to the amount of amine compound attached to the activated carbon fiber layer is 0.1 or less (0 Including).
  • Radioactive substance removal filter 2 Activated carbon fiber layer 3: Activated carbon particle layer 11: Radioactive substance removal filter unit 12: Frame

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

気体中に有機溶剤、特に沸点が120度以上の高沸点化合物が含まれていても、放射性物質の除去性能低下を抑制することができる放射性物質除去フィルタ、この放射性物質除去フィルタを用いた放射性物質除去フィルタユニット及び放射性物質除去方法を提供する。 下流側に活性炭素繊維層2と上流側に活性炭素粒子層3とを備え、活性炭素繊維層2はアミン化合物が付着した繊維状活性炭を有し、活性炭素粒子層3のアミン化合物付着量と活性炭素繊維層2のアミン化合物付着量との比(活性炭素粒子層3のアミン化合物付着量/活性炭素繊維層2のアミン化合物付着量)が0.1以下(0を含む)である。

Description

放射性物質除去フィルタ、それを用いる放射性物質除去フィルタユニット及び放射性物質の除去方法
 本発明は放射性物質除去フィルタに関するものであり、詳細には気体中に含まれる放射性物質、特に放射性のヨウ素及び有機ヨウ素化合物を取り除く放射性物質除去フィルタに関するものである。
 医療施設や原子力施設等の放射性物質を取り扱う施設では、発生したガス状の放射性物質を空気中から除去する必要があり、放射性物質除去フィルタが使用されている。ガス状ヨウ素を取り除くための放射性物質除去フィルタとして、活性炭化されたシート状のチャコールフィルターへ空気を通過させることによりガス状ヨウ素の捕集除去を行う処理方法が知られている(例えば、特許文献1参照)。
 ガス状ヨウ素と併せて、有機ヨウ素化合物も取り除くための放射性物質除去フィルタとしては、細孔直径3~30nmの細孔容積が0.15cc/g以下であって、細孔直径3nm以下の細孔容積が0.50cc/g以上の活性炭からなるシートにアミンを添着し、該活性炭からなるシートの少なくとも一方に保護シートを積層してなる濾材を有する放射性物質除去フィルタが知られている(例えば、特許文献2参照)。
特開2003-66191号公報 特開2004-205490号公報
 しかし、これらのような放射性物質を取り扱う施設では、放射線を測定するために液体シンチレーションカウンターが使用されている。液体シンチレーションカウンターに用いられる液体シンチレーションカクテルには、1,2,4-トリメチルベンゼン、直鎖ドデシルベンゼン等、沸点が120度以上と高沸点化合物である有機溶剤が使用されている。そのため、施設の排気ガス中には、ガス状の放射性物質以外に、ガス状のこれらの有機溶剤(VOC)が微量に含まれている。高沸点化合物の有機溶剤は、特許文献1や特許文献2のような放射性物質除去フィルタに付着し、これらの放射性物質除去フィルタを用いた放射性物質の除去性能の低下要因となっている。
 本発明は、前記の事情に鑑みてなされたものであり、その目的は、気体中にガス状の有機溶剤、特に沸点が120度以上の高沸点化合物が含まれていても、放射性ヨウ素及び有機ヨウ素化合物のような放射性物質に対する除去性能低下を抑制することができる放射性物質除去フィルタ、この放射性物質除去フィルタを用いた放射性物質除去フィルタユニット及び放射性物質の除去方法を提供することにある。
 前記課題を解決することができた本発明の放射性物質除去フィルタは、下流側に活性炭素繊維層と、上流側に活性炭素粒子層とを備え、活性炭素繊維層はアミン化合物が付着した繊維状活性炭を有し、活性炭素粒子層のアミン化合物付着量と活性炭素繊維層のアミン化合物付着量との比(活性炭素粒子層のアミン化合物付着量/活性炭素繊維層のアミン化合物付着量)が0.1以下(0を含む)であることを特徴とするものである。 
 本発明の放射性物質除去フィルタは、上流側の活性炭素粒子層にて気体中の有機溶剤を吸着するため、下流側の活性炭素繊維層は有機溶剤による放射性ヨウ素及び有機ヨウ素化合物の除去性能の低下を防ぐことが可能となる。
 本発明の放射性物質除去フィルタにおいて、アミン化合物は水溶性であることが好ましく、トリエチレンジアミンであることがより好ましい。
 本発明の放射性物質除去フィルタにおいて、活性炭素繊維層のアミン化合物の付着量は繊維状活性炭の5質量%以上20質量%以下であることが好ましい。
 本発明の放射性物質除去フィルタにおいて、活性炭素繊維層の繊維状活性炭の目付は150g/m以上900g/m以下であることが好ましい。
 本発明の放射性物質除去フィルタにおいて、活性炭素粒子層の粒状活性炭の目付は150g/m以上900g/m以下であることが好ましい。
 本発明の放射性物質除去フィルタにおいて、繊維状活性炭のBET比表面積は800m/g以上であることが好ましい。
 本発明の放射性物質除去フィルタにおいて、粒状活性炭のBET比表面積は800m/g以上であることが好ましい。
 本発明の放射性物質除去フィルタにおいて、繊維状活性炭の全細孔容積は0.3cc/g以上であることが好ましい。
 本発明の放射性物質除去フィルタにおいて、粒状活性炭の全細孔容積は0.3cc/g以上であることが好ましい。
 本発明の放射性物質除去フィルタにおいて、繊維状活性炭の平均繊維径は10μm以上40μm以下であることが好ましい。
 本発明の放射性物質除去フィルタにおいて、粒状活性炭の平均粒子径は200μm以上700μm以下であることが好ましい。
 本発明の放射性物質除去フィルタにおいて、活性炭素繊維層と活性炭素粒子層は積層されており、プリーツ形状であることが好ましい。
 本発明には、当該放射性物質除去フィルタを有することを特徴とする放射性物質除去フィルタユニット及び放射性物質の除去方法も含まれる。
 本発明の放射性物質除去フィルタは、アミン化合物が付着した繊維状活性炭を有する活性炭素繊維層を下流側に備え、粒状活性炭を有する活性炭素粒子層を上流側に備えることを特徴とする。下流側に活性炭素繊維層を、上流側に活性炭素粒子層を有することにより、気体中に有機溶剤が含まれていても、放射性物質除去フィルタの放射性ヨウ素及び有機ヨウ素化合物等の放射性物質に対する除去性能が低下することを抑制することが可能となり、長期間にわたって放射性物質除去フィルタの放射性物質除去効果を発揮することができる。
本発明の実施の形態における放射性物質除去フィルタの概略図を表す。 本発明の実施の形態における放射性物質除去フィルタのプリーツ加工後の概略断面図を表す。 本発明の実施の形態における放射性物質除去フィルタユニットの斜視図を表す。
 以下、本発明に係る放射性物質除去フィルタに関して、図面を参照しつつ具体的に説明するが、本発明はもとより図示例に限定される訳ではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
 本発明に係る放射性物質除去フィルタは、下流側に活性炭素繊維層と上流側に活性炭素粒子層とを備え、活性炭素繊維層はアミン化合物が付着した繊維状活性炭を有し、活性炭素粒子層のアミン化合物付着量と活性炭素繊維層のアミン化合物付着量との比が0.1以下(0を含む)であることを特徴とするものである。以下、本発明における下流側、上流側、活性炭素繊維層、活性炭素粒子層についてそれぞれ説明する。
 本発明において、下流側とは、気体がフィルタを通過した後の側であり、気体流出側を意味する。上流側とは、下流側とは反対の、気体がフィルタを通過する前の側であり、気体流入側を意味する。図1及び図2の矢印は気体の流れを示し、図1及び図2の上側が上流側であり、下側が下流側である。
 活性炭素繊維層2は、アミン化合物が付着した繊維状活性炭を有する層である。繊維状活性炭とは、天然繊維、再生繊維または合成繊維を炭化し、ガス賦活による活性化反応を行うことによって得られる繊維状の活性炭である。
 活性炭素繊維層2は、シート状の繊維状活性炭の両面に不織布を積層し、一体化処理を施すことにより得られる。
 繊維状活性炭のBET比表面積は、800m/g以上であることが好ましく、1000m/g以上であることがより好ましく、1200m/g以上であることがさらに好ましい。繊維状活性炭のBET比表面積の下限値がこの値となっていることにより、活性炭素繊維層2の放射性物質除去効果を高めることができる。
 繊維状活性炭の全細孔容積は、0.3cc/g以上であることが好ましく、0.4cc/g以上であることがより好ましく、0.5cc/g以上であることがさらに好ましい。繊維状活性炭の全細孔容積の下限値がこの値となっていることにより、活性炭素繊維層2における放射性物質を取り除く効果が高くなる。
 繊維状活性炭の平均繊維径は、10μm以上が好ましく、12μm以上がより好ましい。繊維状活性炭の平均繊維径の下限値がこのような値となっていることにより、活性炭素繊維層2の通気性をよくすることができる。また、繊維状活性炭の平均繊維径は、40μm以下が好ましく、35μm以下がより好ましく、30μm以下がさらに好ましい。繊維状活性炭の平均繊維径の上限値がこのような値となっていることにより、活性炭素繊維層2の表面積が大きくなり、放射性物質の除去効率が向上する。
 繊維状活性炭を、電子顕微鏡を用いて倍率500倍にて観察し、繊維径を測定する。任意の100本の繊維径を相加平均し、この平均値を繊維状活性炭の平均繊維径とする。
 アミン化合物の具体例としては、1,4-ジアザビシクロ[2,2,2]オクタン(トリエチレンジアミン)、N,N’-ビス(3-アミノプロピル)ピペラジン、N,N-ジメチルアミノエチルメタクリラート、N,N-ジメチルアミノプロピルアミン、3-アミノプロピルトリメトキシシラン、1,5-ジアザビシクロウンデセン、ポリエチレンイミン、1,5-ジアザビシクロ[4.3.0]ノネン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、2-メチル-1,4-ジアザビシクロ[2.2.2]オクタン、フェニルヒドラジン、2-シアノピリジン、ジイソプロピルアミン、N,N’,N’-トリメチルアミノエチルピペラジン、ヘキサメチレンテトラミン、ポリアルキルポリアミン等が挙げられる。中でも、用いるアミン化合物は、水溶性であることが好ましく、1,4-ジアザビシクロ[2,2,2]オクタン(トリエチレンジアミン)であることがより好ましい。水溶性のアミン化合物を用いることにより、活性炭素繊維層2の製造が容易となり、トリエチレンジアミンを用いることにより、高い放射性物質除去効果を得ることができる。
 活性炭素繊維層2のアミン化合物の付着量は、繊維状活性炭の5質量%以上が好ましく、7質量%以上がより好ましく、10質量%以上がさらに好ましい。活性炭素繊維層2のアミン化合物の付着量の下限値がこの値となっていることにより、放射性有機ヨウ素化合物を十分に吸着することができる。また、活性炭素繊維層2のアミン化合物の付着量は、繊維状活性炭の20質量%以下であることが好ましく、17質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。活性炭素繊維層2のアミン化合物の付着量の上限値がこの値となっていることにより、十分な放射性物質除去効果を保ちつつ、コストを抑えることができる。
 活性炭素繊維層2へアミン化合物を付着させる方法は、アミン化合物の溶液にシート状の繊維状活性炭を浸漬し乾燥させる方法、アミン化合物の溶液をシート状の繊維状活性炭に噴霧し乾燥させる方法、繊維状活性炭をアミン化合物の溶液に浸漬し乾燥させた後にシート状に形成する方法等が挙げられる。中でも、アミン化合物の溶液にシート状の繊維状活性炭を浸漬、乾燥させる方法によりアミン化合物を活性炭素繊維層2に付着させることが好ましい。このようにして活性炭素繊維層2にアミン化合物を付着させることにより、繊維状活性炭へ均一にアミン化合物を付着させることができ、活性炭素繊維層2の放射性物質除去効果が高くなる。
 活性炭素繊維層2における繊維状活性炭の目付は、150g/m以上であることが好ましく、200g/m以上であることがより好ましく、400g/m以上であることがさらに好ましい。活性炭素繊維層2における繊維状活性炭の目付の下限値がこの値となっていることにより、活性炭素繊維層2の放射性物質除去効果が十分なものとなる。また、活性炭素繊維層2における繊維状活性炭の目付は、900g/m以下であることが好ましく、800g/m以下であることがより好ましく、700g/m以下であることがさらに好ましい。活性炭素繊維層2における繊維状活性炭の目付の上限値がこの値となっていることにより、活性炭素繊維層2の軽量化を図ることができ、また、圧力損失を低下させることができる。
 活性炭素粒子層3は、粒状活性炭を有する層である。粒状活性炭とは、ヤシ殻、おが屑、竹等を炭化させたもの、石炭、ピッチ等に、ガス賦活または薬品賦活による活性化反応を行うことによって得られる粒状の活性炭である。粒状活性炭の種類としては、破砕炭、顆粒炭、成形炭等があり、いずれの種類のものも好適に使用することができる。粒状活性炭の他に、粉末状の活性炭である粉末活性炭を用いることも可能であるが、圧力損失を小さくするために粒状活性炭を用いることが好ましい。
 活性炭素粒子層3は、粒状活性炭と熱可塑性樹脂を混合し、混合物を不織布で挟み、加熱処理を行うことにより得られる。
 粒状活性炭のBET比表面積は、800m/g以上であることが好ましく、900m/g以上であることがより好ましく、1000m/g以上であることがさらに好ましい。粒状活性炭のBET比表面積の下限値がこの値となっていることにより、活性炭素粒子層3が有機溶剤を除去する効果を高めることができる。
 粒状活性炭の全細孔容積は、0.3cc/g以上であることが好ましく、0.4cc/g以上であることがより好ましく、0.5cc/g以上であることがさらに好ましい。粒状活性炭の全細孔容積の下限値がこの値となっていることにより、活性炭素粒子層3の有機溶剤除去の効果が向上する。
 粒状活性炭の平均粒子径は、200μm以上が好ましく、250μm以上がより好ましい。粒状活性炭の平均粒子径の下限値がこのような値となっていることにより、活性炭素粒子層3の通気性を高めることができる。また、粒状活性炭の平均粒子径は、700μm以下が好ましく、625μm以下がより好ましく、550μm以下がさらに好ましい。粒状活性炭の平均粒子径の上限値がこのような値となっていることにより、活性炭素粒子層3の表面積が大きくなり、有機溶剤を取り除く効率がよくなる。
 粒状活性炭を、光学顕微鏡を用いて倍率35倍にて観察し、粒子径を測定する。任意の100個の粒子径を相加平均し、この平均値を粒状活性炭の平均粒子径とする。
 活性炭素粒子層3における粒状活性炭の目付は、150g/m以上であることが好ましく、200g/m以上であることがより好ましく、250g/m以上であることがさらに好ましい。活性炭素粒子層3における粒状活性炭の目付の下限値がこの値となっていることにより、活性炭素粒子層3に十分な有機溶剤除去効果をもたせることが可能となる。また、活性炭素粒子層3における粒状活性炭の目付は、900g/m以下であることが好ましく、800g/m以下であることがより好ましく、700g/m以下であることがさらに好ましい。活性炭素粒子層3における粒状活性炭の目付の上限値がこの値となっていることにより、活性炭素粒子層3を軽量なものとすることができ、また、圧力損失を小さくすることができる。
 活性炭素粒子層3のアミン化合物付着量と、活性炭素繊維層2のアミン化合物付着量との比(活性炭素粒子層3のアミン化合物付着量/活性炭素繊維層2のアミン化合物付着量)は、0.1以下であり、0.08以下であることが好ましく、0.06以下であることがより好ましい。なお、活性炭素粒子層3のアミン化合物付着量と、活性炭素繊維層2のアミン化合物付着量との比は0であることを含む。活性炭素粒子層3のアミン化合物付着量と活性炭素繊維層2のアミン化合物付着量との比がこの値となっていることにより、気体中の有機溶剤は活性炭素粒子層3に除去され、有機溶剤が活性炭素繊維層2に付着することが防がれる。そのため、放射性物質除去フィルタ1の放射性物質除去性能の低下を抑制することができ、放射性物質除去フィルタを長寿命とすることが可能となる。
 活性炭素繊維層2と活性炭素粒子層3は、厚み方向に重ねて積層されており、山折りと谷折りを交互に繰り返して折り曲げ加工をするプリーツ形状であることが好ましい。活性炭素繊維層2と活性炭素粒子層3とが積層されていることにより、放射性物質除去フィルタ1を小型化することが可能となる。また、活性炭素繊維層2と活性炭素粒子層3とがプリーツ形状であることにより、気体と接する面積が大きくなり、気体中の放射性物質を効率よく除去することができる。
 本発明に係る放射性物質除去フィルタ1は、放射性物質除去フィルタユニット11に用いることが可能である。放射性物質除去フィルタユニット11は、実施形態の一例として、図3に示すように、放射性物質除去フィルタ1を枠体12に収めることにより作製することができる。枠体12の材質は特に限定されず、例えば、金属、合成樹脂、木材等が挙げられる。中でも、金属であることが好ましい。枠体12が金属製であることにより、放射性物質除去フィルタユニット11の強度を高めることができる。
 本発明に係る放射性物質の除去方法では、ガス状ヨウ素や有機ヨウ素化合物等の放射性物質を含む気体を、本発明の放射性物質除去フィルタ1に通過させる。これにより、該気体中から放射性物質を除去することが可能となる。気体中に有機溶剤が含まれていても、放射性物質除去フィルタ1の活性炭素粒子層3によって有機溶剤が気体中から取り除かれるため、活性炭素繊維層2に有機溶剤が付着しにくくなり、活性炭素繊維層2の放射性物質除去性能が低下することを防ぐことができる。
 本願は、2016年12月15日に出願された日本国特許出願第2016-243467号に基づく優先権の利益を主張するものである。2016年12月15日に出願された日本国特許出願第2016-243467号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例によって本発明の作用効果をより具体的に示す。下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に沿って設計変更することはいずれも本発明の技術的範囲に含まれるものである。
(活性炭素繊維層の作製方法)
 シート状の繊維状活性炭1枚、もしくは、複数枚を積層したものの両面にポリプロピレン製スパンレース(目付け35g/m)を積層し、ニードルパンチ処理によって一体化することにより活性炭素繊維層を作製した。
(活性炭素粒子層の作製方法)
 粒状活性炭と熱可塑性粉末樹脂SK-PE20L(セイシン企業製)を質量比で粒状活性炭:粉末樹脂=10:1となるように混合粉末を調製した。調製した混合粉末をサーマルボンド不織布(目付け27g/m)上に散布し、さらに、その上から、同じサーマルボンド不織布を重ね合わせ、続いて加熱処理を行うことにより活性炭素粒子層を作製した。
(BET比表面積、全細孔容積の測定方法)
 粒状活性炭、及び、繊維状活性炭のそれぞれから約100mgのサンプルを採取し、120℃にて24時間真空乾燥した後、秤量した。自動比表面積測定装置ジェミニ2375(マイクロメリティックス社製)を使用し、液体窒素の沸点(-195.8℃)における窒素ガスの吸着量を相対圧が0.02~0.95の範囲にて徐々に高めながら40点測定し、前記サンプルの吸着等温線を作成した。自動比表面積測定装置ジェミニ2375に付属の解析ソフト(GEMINI-PCW version1.01)にて、BET条件で、表面積解析範囲を0.01~0.15に設定して、BET比表面積[m/g]を求めた。また、相対圧0.95のデータより全細孔容積[cc/g]を求めた。
(アミン化合物付着量の測定方法)
 粒状活性炭、もしくは、繊維状活性炭から約300mgのサンプルを採取し、クロロホルム10mLにて抽出した液について、GC/MS(7890A/5975C、アジレント・テクノロジー製)を使用して、そのアミン化合物含有量を測定し、さらに、それをサンプルの重量で割ることにより、アミン化合物付着量[質量%]を算出した。
(有機溶剤負荷試験)
 サンプルを内径φ44mmのガラス管中にセットし、1,2,4―トリメチルベンゼン(沸点169℃)を100ppm含有する、温度25℃、湿度0%RHの空気を6L/minにて連続的に270分間流通させた。
(ヨウ化メチル除去率の測定方法)
 サンプルを内径φ25mmのガラス管中にセットし、ヨウ化メチルを10ppm含有する、温度25℃、湿度0%RHの空気を5L/minにて連続的に流通させた。流通開始5分後に、サンプルの入口側と出口側のガスを採取し、ECD付きガスクロマトグラフ(GC-2014、島津製作所製)において、ヨウ化メチル濃度を測定し、その比からヨウ化メチル除去率[%]を算出した。
(実施例1)
 トリエチレンジアミン(東京化成工業製)625mgをイオン交換水250gに溶解させ、トリエチレンジアミン水溶液を調製した。シート状の繊維状活性炭6g(BET比表面積:1460m/g、全細孔容積:0.63cc/g、目付:200g/m、平均繊維径:13μm)を、先に調製した水溶液中に投入した後、室温にて12時間撹拌した。その後、シート状の繊維状活性炭を濾別し、80℃条件にて2時間乾燥させたところ、アミン化合物付着量10.3質量%のシート状アミン化合物付着繊維状活性炭が得られた。得られたシート状アミン化合物付着繊維状活性炭を3枚積層させ、活性炭素繊維層を作製した。
 アミン化合物付着量0質量%(検出限界以下)のヤシガラ系粒状活性炭(BET比表面積:1350m/g、全細孔容積:0.62cc/g、粒子直径:250~500μm、平均粒子径:320μm)を使用して、粒状活性炭目付が600g/mとなるように活性炭素粒子層を作製した。
 作製した活性炭素粒子層を上流側に、活性炭素繊維層を下流側に配置し、有機溶剤負荷試験を実施した。その後、有機溶剤負荷試験後の試料を用いて、ヨウ化メチル除去率を測定した。
(実施例2)
 トリエチレンジアミンの使用量が1.88gであること以外は実施例1と同様に、活性炭素繊維層を作製した。
 トリエチレンジアミン(東京化成工業製)45mgをイオン交換水8gに溶解させ、トリエチレンジアミン水溶液を調製した。さらに、ヤシガラ系粒状活性炭6g(BET比表面積:1350m/g、全細孔容積:0.62cc/g、粒子直径:250~500μm、平均粒子径:320μm)を、先に調製した水溶液と混合した後、80℃条件にて2時間乾燥させた。アミン化合物付着量0.7質量%のアミン化合物付着粒状活性炭が得られた。得られたアミン化合物付着粒状活性炭を使用して、粒状活性炭目付が600g/mとなるように活性炭素粒子層を作製した。
 作製した活性炭素粒子層を上流側に、活性炭素繊維層を下流側に配置し、有機溶剤負荷試験を実施した。その後、有機溶剤負荷試験後の試料を用いて、ヨウ化メチル除去率を測定した。
(実施例3)
 トリエチレンジアミンの使用量が4.38gであること以外は実施例1と同様に行った。なお、アミン化合物付着量は14.8質量%であった。
(実施例4)
 活性炭素粒子層の粒状活性炭目付が300g/mであること以外は実施例1と同様に行った。
(実施例5)
 活性炭素粒子層の粒状活性炭目付が300g/mであること以外は実施例3と同様に行った。
(比較例1)
 実施例3と同様に活性炭素繊維層を作製した。
 トリエチレンジアミン(東京化成工業製)780mgをイオン交換水8gに溶解させ、トリエチレンジアミン水溶液を調製した。さらに、ヤシガラ系粒状活性炭6g(BET比表面積:1350m/g、全細孔容積:0.62cc/g、粒子直径:250~500μm、平均粒子径:320μm)を、先に調製した水溶液と混合した後、80℃条件にて2時間乾燥させた。アミン化合物付着量12.1質量%のアミン化合物付着粒状活性炭が得られた。得られたアミン化合物付着粒状活性炭を使用して、粒状活性炭目付が300g/mとなるように活性炭素粒子層を作製した。
 作製した活性炭素粒子層を上流側に、活性炭素繊維層を下流側に配置し、有機溶剤負荷試験を実施した。その後、有機溶剤負荷試験後の試料を用いて、ヨウ化メチル除去率を測定した。
(比較例2)
 実施例5と同様に活性炭素粒子層及び活性炭素繊維層を作製し、活性炭素繊維層を上流側に配置し、活性炭素粒子層を下流側に配置し、有機溶剤負荷試験を実施した。その後、有機溶剤負荷試験後の試料を用いて、ヨウ化メチル除去率を測定した。
(比較例3)
 実施例4と同様の活性炭素粒子層を上流側に配置し、粒状活性炭目付が600g/mであること以外は比較例1と同様に、活性炭素粒子層を下流側に配置し、有機溶剤負荷試験を実施した。その後、有機溶剤負荷試験後の試料を用いて、ヨウ化メチル除去率を測定した。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~5では何れもヨウ化メチル除去率が高く、高沸点化合物に対する耐久性が高くなっていることが分かる。これに対して活性炭素粒子層のアミン化合物付着量と活性炭素繊維層のアミン化合物付着量の比が0.1より大きい場合(比較例1)、上流側に活性炭素繊維層が配置された場合(比較例2)、下流側に活性炭素繊維層が配置されない場合(比較例3)は、いずれもヨウ化メチル除去率が低く、高沸点化合物に対する耐久性が低いことが分かる。
 比較例1の試料である、下流側の活性炭素繊維層だけでなく上流側の活性炭素粒子層にもアミン化合物を付着させた場合では、気体中の有機溶剤が活性炭素粒子層だけでは取り除ききれずに、有機溶剤が活性炭素繊維層にまで到達し、活性炭素繊維層に有機溶剤が付着する。そのため、比較例1のものは、上流側の活性炭素粒子層にはアミン化合物を付着させず、下流側の活性炭素繊維層のみにアミン化合物を付着させた実施例5のものと比較して、放射性物質の除去効果が低下している。よって、上流側の層にはアミン化合物を付着させず、下流側の層のみにアミン化合物を付着させることが好ましい。
 比較例2の試料である、上流側に活性炭素繊維層が配置され、下流側に活性炭素粒子層が配置された場合では、活性炭素粒子層よりも放射性物質除去性能が優れる活性炭素繊維層に、気体中の有機溶剤が付着し、活性炭素繊維層の放射性物質除去性能が低下する。そのため、比較例2のものは、上流側に活性炭素粒子層が配置され、下流側に活性炭素繊維層が配置された実施例5のものと比較して、放射性物質の除去効果が低下している。よって、上流側に活性炭素粒子層が配置され、下流側に活性炭素繊維層が配置されることが好ましい。
 比較例3の試料である、下流側に活性炭素繊維層が配置されず上流側及び下流側の両方に活性炭素粒子層が配置される場合では、活性炭素粒子層よりも放射性物質除去性能が優れる活性炭素繊維層を用いていないため、放射性物質の除去効果が低下している。よって、活性炭素粒子層のみ用いるのではなく、活性炭素粒子層と活性炭素繊維層の両方を用いることが好ましい。
 また、比較例3では、下流側の活性炭素粒子層にアミン化合物を付着させているが、下流側の活性炭素繊維層にアミン化合物を付着させている実施例4及び5と比較して、放射性物質の除去効果が低下している。よって、活性炭素粒子層にアミン化合物を付着させるのではなく、活性炭素繊維層にアミン化合物を付着させることが好ましい。
 なお、上流側及び下流側の両方に活性炭素繊維層が配置される場合、十分な放射性物質除去性能を持たせるためには活性炭素繊維層の目付を大きくする必要がある。活性炭素繊維層の目付を大きくすると厚みが増し、放射性物質除去フィルタの厚みも大きくなってしまう。その結果、放射性物質除去フィルタが大型化する、放射性物質除去フィルタのプリーツ加工が困難になる、といった問題がある。よって、活性炭素繊維層のみを用いるのではなく、活性炭素粒子層と活性炭素繊維層の両方を用いることが好ましい。
 以上のように、本発明の放射性物質除去フィルタは、下流側に活性炭素繊維層と上流側に活性炭素粒子層とを備え、活性炭素繊維層はアミン化合物が付着した繊維状活性炭を有し、活性炭素粒子層のアミン化合物付着量と活性炭素繊維層のアミン化合物付着量との比(活性炭素粒子層のアミン化合物付着量/活性炭素繊維層のアミン化合物付着量)が0.1以下(0を含む)であることを特徴とする。このような構成であることにより、気体中に有機溶剤、特に沸点が120度以上の高沸点化合物が含まれていても、放射性ヨウ素や有機ヨウ素化合物等の放射性物質の除去性能低下を抑制することができる。
 1:放射性物質除去フィルタ
 2:活性炭素繊維層
 3:活性炭素粒子層
 11:放射性物質除去フィルタユニット
 12:枠体

Claims (15)

  1.  下流側に活性炭素繊維層と、上流側に活性炭素粒子層とを備え、
     前記活性炭素繊維層は、アミン化合物が付着している繊維状活性炭を有し、
     前記活性炭素粒子層のアミン化合物付着量と前記活性炭素繊維層の前記アミン化合物付着量との比(活性炭素粒子層のアミン化合物付着量/活性炭素繊維層のアミン化合物付着量)が0.1以下(0を含む)であることを特徴とする放射性物質除去フィルタ。
  2.  前記アミン化合物は、水溶性である請求項1に記載の放射性物質除去フィルタ。
  3.  前記アミン化合物は、トリエチレンジアミンである請求項1または2に記載の放射性物質除去フィルタ。
  4.  前記活性炭素繊維層の前記アミン化合物の付着量は、前記繊維状活性炭の5質量%以上20質量%以下である請求項1~3のいずれか一項に記載の放射性物質除去フィルタ。
  5.  前記活性炭素繊維層における前記繊維状活性炭の目付は、150g/m以上900g/m以下である請求項1~4のいずれか一項に記載の放射性物質除去フィルタ。
  6.  前記活性炭素粒子層における粒状活性炭の目付は、150g/m以上900g/m以下である請求項1~5のいずれか一項に記載の放射性物質除去フィルタ。
  7.  前記繊維状活性炭のBET比表面積は、800m/g以上である請求項1~6のいずれか一項に記載の放射性物質除去フィルタ。
  8.  前記粒状活性炭のBET比表面積は、800m/g以上である請求項1~7のいずれか一項に記載の放射性物質除去フィルタ。
  9.  前記繊維状活性炭の全細孔容積は、0.3cc/g以上である請求項1~8のいずれか一項に記載の放射性物質除去フィルタ。
  10.  前記粒状活性炭の全細孔容積は、0.3cc/g以上である請求項1~9のいずれか一項に記載の放射性物質除去フィルタ。
  11.  前記繊維状活性炭の平均繊維径は、10μm以上40μm以下である請求項1~10のいずれか一項に記載の放射性物質除去フィルタ。
  12.  前記粒状活性炭の平均粒子径は、200μm以上700μm以下である請求項1~11のいずれか一項に記載の放射性物質除去フィルタ。
  13.  前記活性炭素繊維層と前記活性炭素粒子層は、積層されており、プリーツ形状である請求項1~12のいずれか一項に記載の放射性物質除去フィルタ。
  14.  請求項1~13のいずれかに記載の放射性物質除去フィルタを有することを特徴とする放射性物質除去フィルタユニット。
  15.  請求項1~13のいずれかに記載の放射性物質除去フィルタに、放射性物質を含む気体を通過させ、前記気体から前記放射性物質を除去することを特徴とする放射性物質の除去方法。
PCT/JP2017/044560 2016-12-15 2017-12-12 放射性物質除去フィルタ、それを用いる放射性物質除去フィルタユニット及び放射性物質の除去方法 WO2018110547A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197012138A KR102526926B1 (ko) 2016-12-15 2017-12-12 방사성 물질 제거 필터, 그것을 사용하는 방사성 물질 제거 필터 유닛 및 방사성 물질의 제거 방법
CN201780077292.0A CN110073444B (zh) 2016-12-15 2017-12-12 放射性物质去除过滤器、使用其的放射性物质去除过滤器单元及放射性物质的去除方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-243467 2016-12-15
JP2016243467A JP6928928B2 (ja) 2016-12-15 2016-12-15 放射性物質除去フィルタ、それを用いる放射性物質除去フィルタユニット及び放射性物質の除去方法

Publications (1)

Publication Number Publication Date
WO2018110547A1 true WO2018110547A1 (ja) 2018-06-21

Family

ID=62558516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044560 WO2018110547A1 (ja) 2016-12-15 2017-12-12 放射性物質除去フィルタ、それを用いる放射性物質除去フィルタユニット及び放射性物質の除去方法

Country Status (4)

Country Link
JP (1) JP6928928B2 (ja)
KR (1) KR102526926B1 (ja)
CN (1) CN110073444B (ja)
WO (1) WO2018110547A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102258789B1 (ko) * 2019-07-19 2021-05-31 한국수력원자력 주식회사 방사성 기체 제거용 활성탄소섬유 흡착제 및 그 제조방법
CN114130355B (zh) * 2021-11-18 2024-05-03 中广核研究院有限公司 活性碳纤维在制备气体吸附材料或制造碘过滤装置中的用途、气体吸附材料和碘过滤装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205490A (ja) * 2002-11-05 2004-07-22 Toyobo Co Ltd 放射性物質除去フィルター
JP2008116280A (ja) * 2006-11-02 2008-05-22 Toyobo Co Ltd 放射性ヨウ素捕集材およびその捕集方法
JP2012247337A (ja) * 2011-05-30 2012-12-13 Japan Environment Research Co Ltd 放射性有機ヨウ素除去フィルタおよび放射性有機ヨウ素除去方法
JP2015203578A (ja) * 2014-04-11 2015-11-16 株式会社ワカイダ・エンジニアリング 放射性物質を除去する方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616385Y2 (ja) * 1989-03-11 1994-04-27 大阪瓦斯株式会社 放射性物質除去用ケースの吸着部材
JP2003066191A (ja) 2001-08-29 2003-03-05 Wakaida Eng:Kk 放射性気体の処理方法、及び、放射性気体の吸着用フィルター装置
JP2006112820A (ja) * 2004-10-12 2006-04-27 Toyobo Co Ltd 放射性物質除去フィルター及びそれを用いるフィルターユニット
JP4549388B2 (ja) * 2005-04-06 2010-09-22 東洋紡績株式会社 放射性物質除去フィルター及びそれを用いるフィルターユニット
KR100898277B1 (ko) * 2007-04-20 2009-05-18 주식회사 로지텍 복합형 탈취필터 및 그의 제조방법
KR100874750B1 (ko) * 2007-05-18 2008-12-19 웅진코웨이주식회사 활성탄 필터장치
JP2013250270A (ja) * 2012-05-02 2013-12-12 Wakaida Eng:Kk 一般施設内に設置される放射性物質除去用の空気浄化システム、及び、その空気浄化装置
JP6106952B2 (ja) * 2012-05-29 2017-04-05 栗田工業株式会社 放射性物質吸着材、並びにそれを用いた吸着容器、吸着塔、及び水処理装置
JP2014073358A (ja) * 2012-09-13 2014-04-24 Japan Environment Research Co Ltd 放射性有機ヨウ素を捕集・吸着可能な使い捨てマスク
JP6224379B2 (ja) * 2013-08-28 2017-11-01 三菱重工業株式会社 放射性ヨウ素除去装置
JP5504368B1 (ja) * 2013-10-23 2014-05-28 ラサ工業株式会社 放射性ヨウ素吸着剤、及び放射性ヨウ素の処理方法
CN105457444A (zh) * 2014-09-10 2016-04-06 中国辐射防护研究院 一种用于放射性碘测量的活性炭取样滤膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205490A (ja) * 2002-11-05 2004-07-22 Toyobo Co Ltd 放射性物質除去フィルター
JP2008116280A (ja) * 2006-11-02 2008-05-22 Toyobo Co Ltd 放射性ヨウ素捕集材およびその捕集方法
JP2012247337A (ja) * 2011-05-30 2012-12-13 Japan Environment Research Co Ltd 放射性有機ヨウ素除去フィルタおよび放射性有機ヨウ素除去方法
JP2015203578A (ja) * 2014-04-11 2015-11-16 株式会社ワカイダ・エンジニアリング 放射性物質を除去する方法

Also Published As

Publication number Publication date
CN110073444A (zh) 2019-07-30
CN110073444B (zh) 2023-10-27
JP2018096909A (ja) 2018-06-21
JP6928928B2 (ja) 2021-09-01
KR102526926B1 (ko) 2023-04-28
KR20190092373A (ko) 2019-08-07

Similar Documents

Publication Publication Date Title
CN105944502B (zh) 一种气体过滤装置及空气过滤***
JP6807834B2 (ja) 空気清浄機のための濾過装置
US20040074391A1 (en) Filter system
CN101804275A (zh) 纳米光触媒-活性炭纤维复合过滤介质
US20090211453A1 (en) Filtration Media for the Removal of Basic Molecular Contaminants for Use in a Clean Environment
JP6070850B2 (ja) ガス吸着剤およびガス吸着シートならびにエアフィルター
CA2646192A1 (en) Non-woven media incorporating ultrafine or nanosize powders
JP6988477B2 (ja) 空気清浄用濾材
Jahangiri et al. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge
WO2013159797A1 (en) Filtering material and use thereof
WO2018110547A1 (ja) 放射性物質除去フィルタ、それを用いる放射性物質除去フィルタユニット及び放射性物質の除去方法
CN107198906A (zh) 一种空气过滤材料
JP6023553B2 (ja) セシウム吸着材及びセシウム吸着フィルター体
JP2013094367A (ja) 空気清浄用濾材
JP2006326405A (ja) 浄水フィルター
JP6910955B2 (ja) 複合ガス吸着材およびそれを用いた吸着フィルター並びに複合ガス吸着材の製造方法
EP2841182A1 (en) Filtering material and use thereof
JP6194579B2 (ja) 空気清浄用濾材
CN214075611U (zh) 一种气体过滤器
EP1144109A1 (en) Broad spectrum filter system for filtering contaminants from air or other gases
JP6264859B2 (ja) シロキサン除去剤およびそれを用いたシロキサン除去フィルタ
JPH0515716A (ja) 海塩粒子除去用エレクトレツトエアフイルター
JP4454886B2 (ja) ケミカルフィルタ
CN111841498B (zh) 用于除醛的胍盐改性活性炭、其制备方法、包括其的复合滤网及空气净装置
WO2019186986A1 (ja) 脱臭材、その製造方法、脱臭方法、及び脱臭シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197012138

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881872

Country of ref document: EP

Kind code of ref document: A1