WO2017221493A1 - 直流電気回路保護装置およびアーク検出方法 - Google Patents

直流電気回路保護装置およびアーク検出方法 Download PDF

Info

Publication number
WO2017221493A1
WO2017221493A1 PCT/JP2017/012065 JP2017012065W WO2017221493A1 WO 2017221493 A1 WO2017221493 A1 WO 2017221493A1 JP 2017012065 W JP2017012065 W JP 2017012065W WO 2017221493 A1 WO2017221493 A1 WO 2017221493A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
electric circuit
current
noise
circuit
Prior art date
Application number
PCT/JP2017/012065
Other languages
English (en)
French (fr)
Inventor
誠 金丸
貢 森
月間 満
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112017003081.1T priority Critical patent/DE112017003081T5/de
Priority to US16/304,398 priority patent/US11277000B2/en
Priority to JP2017540663A priority patent/JP6234647B1/ja
Priority to CN201780037251.9A priority patent/CN109417285B/zh
Publication of WO2017221493A1 publication Critical patent/WO2017221493A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/38Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to both voltage and current; responsive to phase angle between voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/06Details with automatic reconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/06Details with automatic reconnection
    • H02H3/07Details with automatic reconnection and with permanent disconnection after a predetermined number of reconnection cycles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/10Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current additionally responsive to some other abnormal electrical conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/44Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the rate of change of electrical quantities
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems

Definitions

  • the present invention relates to a DC electric circuit protection device and an arc detection method for detecting an arc generated in a DC electric circuit and protecting the DC electric circuit in order to protect the DC electric circuit from a DC arc.
  • an arc noise analysis unit that detects an arc generated in the DC power generation system based on noise of a signal of a current sensor.
  • the output current fluctuation of each string (a module circuit connected in series in series) is analyzed by the signal from the current sensor, and the fluctuation of the current value before and after the arc is detected
  • the current fluctuation analysis unit for identifying the occurrence of the arc, and the arc detection device having a switch control unit for controlling the opening and closing of the switch based on the arc identification result in the current fluctuation analysis unit
  • the present invention has been made to solve the above-mentioned problem, and identifies a DC electric circuit in which an arc has occurred from a complicated configuration including a plurality of DC electric circuits, and the circuit in which the arc has occurred.
  • the purpose of this is to isolate the system from the entire system and enable operation with a sound circuit.
  • a plurality of DC electric circuits having a current sensor provided in at least one of the positive electrode circuit and the negative electrode circuit; means for absorbing arc noise upstream of the current sensor; and the current sensor of the DC electric circuit.
  • An arc detection device for comparing arc noise signal intensity for each DC electric circuit from the detected current signal and identifying a circuit in which an arc has occurred from the DC electric circuit based on the arc noise signal intensity. It is provided.
  • the direct-current power supply system by Embodiment 1 of this invention it is a block diagram which shows the structure provided with the filter in the upstream of the current sensor. It is a flowchart of the arc detection of the direct-current power supply system by Embodiment 1 of this invention. It is a block diagram which shows the structure of the DC power supply system by Embodiment 2 of this invention. It is a flowchart of the arc detection of the DC power supply system by Embodiment 2 of this invention. It is a flowchart of the arc detection of the DC power supply system by Embodiment 2 of this invention. It is a block diagram which shows the structure of the direct-current power supply system by Embodiment 3 of this invention.
  • Embodiment 1 1 is a circuit diagram showing a schematic configuration of a DC power feeding system according to Embodiment 1 of the present invention.
  • An AC power source 1 is connected to an input terminal of an AC / DC conversion circuit 3 via an AC circuit 2.
  • a plurality of AC / DC conversion circuits 3 may be connected to the AC power supply 1 in parallel.
  • An output terminal of the AC / DC conversion circuit 3 is connected to the circuit breaker 4 and is divided into a plurality of electric paths 5 from the circuit breaker 4 through the trunk line.
  • Each electric circuit 5 is connected to a distribution board 6.
  • a plurality of DC electric circuits 20A, 20B, and 20C connected to the plurality of loads 10A, 10B, and 10C, respectively, are provided.
  • capacitors 7A, 7B, 7C are provided between the positive electrode and the negative electrode circuit, and switches 8A, 8B, 8C are provided on the positive electrode and the negative electrode circuit.
  • Current sensors 9A, 9B, and 9C are provided in any one of the negative electrode circuits.
  • the current sensors 9A, 9B, 9C are arranged so as to be located on the load 10A, 10B, 10C side with respect to the capacitors 7A, 7B, 7C.
  • the current sensors 9A, 9B, and 9C of the DC electric circuits 20A, 20B, and 20C detect the currents of the DC electric circuits 20A, 20B, and 20C, and outputs the detected results to the arc detector 100. It is configured to be. In the case of an actual data center, there may be three or more electric circuits 5, but in FIG. 1, only three electric circuits 5 are shown for convenience. In the drawings, the same reference numerals denote the same or corresponding parts.
  • FIG. 2 is a block diagram showing a configuration of arc detection device 100 of the DC power supply system according to Embodiment 1 of the present invention.
  • the arc detection apparatus 100 is divided into an input unit 110, an analysis unit 120, a determination unit 130, an output unit 140, and a display unit 150.
  • the input unit 110 includes a current signal input unit 111 and an arc detection time setting unit 112.
  • the input unit 110 takes in the signal data of the current detected by the current sensors 9A, 9B, 9C from the current signal input unit 111 into the arc detection device 100.
  • the acquired data is transmitted to the analysis unit 120.
  • the arc detection time setting unit 112 sets time information of the detected arc.
  • the analysis unit 120 includes an arc noise frequency analysis unit 121 and an arc noise signal strength comparison unit 122.
  • the arc noise frequency analysis unit 121 performs processing for converting high frequency noise at the time of arc occurrence from time series data to frequency series data.
  • As a process for converting time series data to frequency series data there is a method using not only FFT analysis but also a bandpass filter that extracts only signal strength of a specific frequency band.
  • the arc noise signal intensity comparison unit 122 compares the arc noise signal intensity for each of the DC electric circuits 20A, 20B, and 20C based on the analyzed frequency series data, and performs analysis for specifying the arc occurrence location. For example, when the signal strength is the highest and the signal strength is greater than a certain value compared to the signal strength in the other DC electric circuits 20A, 20B, and 20C, it is determined that the circuit has an arc. Furthermore, it is preferable to add means for capturing a steep current fluctuation at the time of arc occurrence.
  • the steep current fluctuation is a phenomenon that occurs only in the arc accident occurrence section, and by combining with the arc noise intensity comparison result, the arc accident occurrence section can be detected with high accuracy. However, it is possible to specify the arc accident occurrence section simply by comparing the arc noise.
  • the arc noise intensity comparison unit 122 compares the intensity of current signals preferably within a frequency range of 10 kHz to 100 kHz based on the result of FFT analysis of current sensor signals such as Hall elements and Rogowski coils. is doing.
  • the frequency range of 10 kHz to 100 kHz is a frequency range in which arc noise can be easily detected from arc characteristics.
  • the determination unit 130 selects a switch to be electrically disconnected from the switches 8A, 8B, and 8C. Based on the result of the arc noise signal intensity comparison unit 122, the switch control unit 131 receives the result and selects the switches 8A, 8B, 8C of the circuit to be electrically disconnected.
  • the output unit 140 includes a switch control signal output unit 141 and a contact signal output unit 142. Based on the result of the switch control unit 131 of the determination unit 130, the switch control signal output unit 141 outputs a signal for electrical disconnection to any of the switches 8A, 8B, 8C. Thereby, among the DC electric circuits 20A, 20B, and 20C in the arc generation section, the electric circuit 5 determined to have generated the arc is interrupted, and the loads 10A, 10B, and 10C can be protected from the arc. Furthermore, in a huge system such as a data center, operation information of communication devices is centrally managed, so an arc is generated by a person who operates based on the contact signal output from the contact signal output unit 142. For example, you can check in the central control room. In addition, in order to confirm in the central control room, not only a contact signal but another signal may be used.
  • the display unit 150 includes a normal display unit 151 and an arc generation display unit 152.
  • a display indicating that it is operating normally is performed on the normal display unit 151.
  • the arc generation display unit 152 displays the fact that the arc has occurred on the electric circuit where the arc has occurred.
  • the circuit breakers 4 can be triggered by, for example, remote operation to make the switches 8A, 8B, and 8C conductive.
  • the trigger can be operated manually.
  • a trigger is automatically sent to the circuit breaker 4 after a certain period of time to make the switches 8A, 8B, and 8C conductive. You can also.
  • the fixed time is preferably about several minutes to several tens of minutes.
  • the electric circuit 5 where the arc is generated is again electrically disconnected by the switches 8A, 8B and 8C.
  • a trigger is automatically sent to the circuit breaker 4 after a certain period of time to turn on the switches 8A, 8B, 8C. This is repeated within a predetermined period, and when the number of repetitions reaches a predetermined number, the operation is stopped and a warning is indicated. For example, if the number of repetitions is 5 times a day and 5 times or more, the switch 8A, 8B, 8C is stopped conducting. If the arc is not detected again after the switches 8A, 8B, and 8C are automatically turned on, normal operation is performed.
  • the circuit where the arc is generated is electrically disconnected by the switches 8A, 8B, and 8C to extinguish the arc, and then the insulation of the arc generating portion is restored, and the arc is not generated again. There is a case.
  • the system can be quickly restored.
  • FIG. 3 is a flowchart for explaining the operation of the arc detection apparatus 100 of the DC power supply system according to the first embodiment shown in FIG.
  • the arc noise frequency analysis unit 121 performs an arc noise frequency analysis such as FTT analysis.
  • Step S2 the arc noise frequency analysis unit 121 performs an arc noise frequency analysis such as FTT analysis.
  • Step S3 the respective signal intensities are compared.
  • k represents the number of input of the arc noise signal intensity for each DC electric circuit, and indicates that the DC electric circuits are switched in order and the analysis results are sequentially matched.
  • the arc noise signal intensity of the first DC electric circuit 20A is the maximum (PSDmax)
  • the arc noise signal intensity of other DC electric circuits is compared. That is, it is compared with the arc noise signal intensity (PSDk) of the DC electric circuit inputted kth (step S4).
  • PSDmax the arc noise signal intensity of the kth DC electric circuit is updated as PSDmax (step S5). This comparison and update is performed for all the DC electric circuits connected to the arc detection device 100.
  • PSD is power spectral density and represents power distribution for each unit frequency.
  • the number of circuits to be compared and determined is defined as N.
  • the process is repeated until the input number k of the arc noise signal intensity exceeds the circuit number N, and steps S3 to S5 are repeated.
  • the DC electric circuit having the largest value among the arc noise signal intensities of the DC electric circuits in the DC power feeding system is determined.
  • the maximum signal strength is compared with the signal strength of each circuit (step S6).
  • the difference between the arc noise signal intensity of the DC electric circuit having the largest value and the signal intensity of the other electric circuit is compared with a threshold ⁇ (step S7). This comparison is also repeated until the number k exceeds the number N of circuits.
  • the circuit having the arc noise signal strength is specified as the arc generation circuit (step S8). Then, the switch controller 131 selects the switch to be electrically disconnected, and cuts off the circuit (step S9). Thus, the electric circuit in which the arc is generated can be disconnected. It is possible to set a threshold value ⁇ for arc location determination in advance. Alternatively, the threshold value can be statistically calculated and set by acquiring a plurality of current signal data after the device is attached to the circuit without being set in advance.
  • a DC arc is formed between the tips of circuit parts connected to an unexpectedly damaged or disconnected electric wire under load.
  • This direct-current arc is generated between the ends of damaged wires, near the terminal block, near the outlet, etc., due to cable deterioration, construction mistakes, loose screws, or the like.
  • the DC arc mainly assumes a series arc.
  • arc noise is generally generated in the range of about 1 kHz to 1 MHz.
  • Arc noise has a 1 / f characteristic, and in the case of a photovoltaic power generation system, minute noise is superimposed on the entire circuit.
  • noise intensity when no arc is generated there is a clear difference especially in the range from 1 kHz to 100 kHz, so high-frequency noise in the range from at least 1 kHz to 100 kHz is detected as arc noise superimposed on the current. By doing so, it is possible to determine the occurrence of an arc.
  • the propagation of arc noise is known.
  • FIG. 4 shows a schematic diagram when an arc is generated. It is assumed that the arc generation point occurs between the capacitors 7A, 7B, and 7C and the loads 10A, 10B, and 10C. Either the upper side or the lower side of the current sensor 9 may be used. When a parallel arc or a positive / negative electric circuit is short-circuited, the circuit breaker operates, so a fault accident due to a series arc is assumed here. Or it includes the case where the arc when the outlet is pulled out is not extinguished as expected. As shown in FIG. 4, an example of arc noise intensity when an arc 25 is generated at a place where a load is connected is shown in FIG.
  • FIG. 5 is a characteristic diagram showing the noise spectrum intensity waveform 30 with the horizontal axis representing frequency and the vertical axis representing noise spectrum intensity.
  • the noise signal intensity 31 of the arc generation circuit and the noise signal intensity 32 of the arc non-generation circuit are shown.
  • the noise signal strength 31 of the arc generation circuit is larger than the noise signal strength 32 of the arc non-generation circuit. This is because the capacitor 7 between the positive electrode and the negative electrode, which is installed for preventing an instantaneous voltage drop in the DC power supply system, serves as a filter. Due to the presence of the capacitor 7, arc noise does not propagate to other circuits. Further, since the inverter noise generated in the AC / DC conversion circuit 3 is also reduced by the capacitor 7, it becomes easy to detect the arc noise.
  • the capacitor 7 is not installed between the positive electrode and the negative electrode, similarly, by providing the filters 11A, 11B, and 11C to the current sensors 9A, 9B, and 9C as shown in FIG. It can be used for the determination of the arc generating circuit and the arc non-generating circuit. That is, by providing the filter 11 as means having a function of absorbing arc noise on the upstream side of the current sensor, it is possible to determine the arc generating circuit and the arc non-generating circuit using the arc noise.
  • the filter 11 is a filter that cuts a signal of 10 kHz to 100 kHz. Moreover, it is preferable to provide the filter which absorbs arc noise on both the electric circuit high voltage side and the electric circuit low voltage side.
  • FIG. 7 is a flowchart for explaining another operation of the arc detection apparatus 100 of the DC power supply system according to the first embodiment shown in FIG.
  • the arc noise frequency analysis unit 121 performs an arc noise frequency analysis (step S12).
  • the respective signal intensities are compared (step S13).
  • the arc noise signal intensity of the electric circuit is compared with the threshold ⁇ (step S14). This is repeated sequentially until the number k of comparisons exceeds the number N of circuits.
  • the circuit of the arc noise signal intensity is specified as an arc generation circuit (step S15). Then, the switch controller 131 selects the switch to be electrically disconnected (step S16), shuts off the circuit whose arc noise signal intensity is equal to or greater than the threshold value ⁇ , and protects other circuits from the arc.
  • FIG. 8 shows a configuration in which a current sensor 9D is added to the junction of the positive electrode and the negative electrode circuit as the second embodiment.
  • the same reference numerals as those used in FIG. 1 indicate the same or corresponding parts.
  • FIG. 9 is a flowchart for explaining the operation of the arc detection apparatus 100 of the DC power supply system according to the second embodiment of the present invention.
  • Steps 1 to 7 and steps 8 to 9 are the same as those in FIG. Step 10 is inserted between Step 7 and Step 8.
  • the first threshold value ⁇ 1 is set as the threshold value, and the difference between the arc noise signal strength and the signal strength of the other electric circuit is compared with the first threshold value ⁇ 1.
  • the arc noise signal intensity obtained by the current sensor 9D is determined by comparison with a predetermined second threshold ⁇ 2.
  • the determination in step 10 is preferably performed after confirming that no arc has occurred in any string as a result of determining the arc noise intensity of each string.
  • the threshold value ⁇ 2 of step 10 is already determined before the device is installed, or the data when the circuit after the device is installed is statistically processed to calculate the standard deviation ⁇ , for example, 3 ⁇ as the threshold value
  • the current sensors 9A, 9B, and 9C provided in each circuit have a capacitor inserted in the electric circuit serving as a filter to reduce the arc noise signal intensity.
  • the current sensor 9D at the joining location can detect noise because there is nothing to absorb noise between the arc sensor 21 and the current sensor 9D.
  • step 17 is included between step 14 and step 15.
  • processing similar to that described in FIG. 9 is added.
  • the arc generation circuit determination and the switch tripping determination are the same methods as described in FIG.
  • FIG. 11 shows a configuration in which voltage sensors 12A, 12B, and 12C are added between the positive and negative circuit in the configuration of the first embodiment shown in FIG.
  • the same reference numerals as those used in FIG. 1 indicate the same or corresponding parts.
  • a block diagram of the configuration of the arc detection device 100 of the DC power supply system is as shown in FIG.
  • the block diagram shown in FIG. 12 is obtained by adding a voltage signal input unit 113 to the block diagram of the arc detection device 100 shown in FIG.
  • the same reference numerals as those used in FIG. 2 indicate the same or corresponding parts.
  • the voltage signal input unit 113 is provided to receive voltage signals from the voltage sensors 12A, 12B, and 12C shown in FIG.
  • FIG. 13 shows a flowchart of the operation of the arc detection apparatus 100.
  • the flowchart shown in FIG. 13 is the same as FIG. That is, in step 1, information from the voltage sensors 12A, 12B, and 12C is input, and arc noise superimposed on the voltage sensors 12A, 12B, and 12C is detected by each string.
  • the processing performed in Step 2 to Step 9 is the same processing as that described in FIG. Since the determination can be made only with the voltage information, the input of the current signal is not necessarily required. However, in order to improve the arc detection accuracy rather than selectively using either one, it is effective to perform both the arc noise comparison of the current signal and the arc noise comparison of the voltage signal.
  • the flow shown in FIG. 14 can be developed.
  • the flowchart shown in FIG. 14 is the same as the flowchart shown in FIG. Step 11 is the same as that described in FIG. 7 except that information from voltage sensors 12A, 12B, and 12C is input.
  • the arc generation interval can be specified by comparing the arc noise superimposed on the voltage. From this, it can be developed and configured to detect not only noise superimposed on current but also noise superimposed on voltage.
  • the DC electric circuit protection device is used as a control center, a distribution board, a UPS, a circuit breaker, and a power conditioner. Furthermore, there is a configuration in which the DC electric circuit protection device is connected to the system of the central management room. When roughly classified, the DC electric circuit protection device has a configuration of a stand-alone type, an inverter-mounted type, or a distributed system type, and any of the configurations of the present invention can be adopted.
  • the present invention is not limited to the configurations and operations of these embodiments, and any component of the embodiments can be appropriately changed or omitted within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

複数の直流電気回路が組み合わされて構成されている直流給電システムでは、アーク事故が発生した際に、アークが発生した直流電気回路を特定することが困難であった。このため、正極電路および負極電路の少なくとも一方の電路に設けられた電流センサと、前記電流センサの上流側にアークノイズを吸収する手段とを有する複数の直流電気回路、および前記直流電気回路の前記電流センサで検出された電流信号から前記直流電気回路毎のアークノイズの信号強度を比較し、信号強度に基づいて、アークの発生した回路を特定するアーク検出装置を備え、アークが発生した直流電気回路を特定するようにした直流電気回路保護装置とした。

Description

直流電気回路保護装置およびアーク検出方法
 この発明は、直流電気回路を直流アークから保護するために、直流電気回路に発生したアークの検出を行い直流電気回路の保護を行う直流電気回路保護装置およびアーク検出方法に関するものである。
 情報端末の普及拡大、機器のIT化やクラウドコンピューティング技術の台頭で、ネットワークサーバ等で処理するデータ量が近年格段に増加している。処理するデータ量が増加するほど、情報通信機器に掛かる電力負荷が大きくなる。一般にデータセンターの情報通信機器でこれら処理を行っており、電力消費量の約3分の1は、情報通信機器由来であると言われている。そのため、省エネを実現するために電力効率のよい高電圧直流給電システムが普及しつつある。このシステムは、直流を交流に変換するロスを削減できるため、電力消費量を現在と比較し20%削減できると報告されている。
 しかしながら、高電圧直流給電システムは、その名の通り直流電圧電流を供給するため、直流アーク事故による電気火災被害の危険性が存在する。交流電気回路の場合には、電流零点が必ず存在するため、アークを消弧しやすい。一方、直流電気回路の場合には、一定電流が流れ続けるため電流零点が存在せず、一度発生したアークは消弧が難しい。また、このような事故が発生した際には、遮断器がトリップする電流にまで達しないため、アークの発生を検出することが難しい。さらに、データセンターのような巨大な電気回路システムへの影響は大きく、その事故箇所を特定して、事故の部分を分離し、システム全体の停止を回避することが必要となる。このため、直流電気回路においてアークが発生し、事故に結びつくような場合には、それを早急に検出すると共に、事故箇所の特定が可能な直流電気回路の保護体制を確立する必要がある。
 このアーク発生に対して保護を高めた直流発電システムとしては、電流センサの信号のノイズに基づいて直流発電システムに発生するアークを検出するアークノイズ解析部と。
アークノイズ解析部においてアークが検出された場合に、電流センサからの信号により各ストリング(一連で直列につながったモジュール回路)の出力電流変動を解析し、アークが検出された前後の電流値の変動に基づいて、アークの発生個所を特定する電流変動解析部と、電流変動解析部におけるアーク特定結果に基づいて開閉器の開閉を制御する開閉器制御部を有するアーク検出装置を備えたものが、特許文献1において提案されている。
特開2015‐211606号公報
 特許文献1において提案されているアーク検出装置は、太陽光発電システム特有の特性を利用しているため、一般的な直流電気回路においては、直流アークの発生個所を特定することができず、データセンター向けの直流給電システムのように複数の直流電気回路が組み合わされて構成されている場合には、複数の直流電気回路の中から、アークが発生した直流電気回路を特定することができないという問題があった。
 この発明は、前述の問題を解決するためになされたもので、複数の直流電気回路で構成された複雑な構成の中から、アークが発生した直流電気回路を特定し、そのアークの発生した回路を全体の系から切離し、健全な回路による運転を可能にすることを目的とするものである。
 正極電路および負極電路の少なくとも一方の電路に設けられた電流センサと、前記電流センサの上流側にアークノイズを吸収する手段とを有する複数の直流電気回路、および前記直流電気回路の前記電流センサで検出された電流信号から前記直流電気回路毎のアークノイズの信号強度を比較し、前記アークノイズの信号強度に基づいて、前記直流電気回路の中からアークの発生した回路を特定するアーク検出装置を備えたものである。
 この発明によれば、直流給電システム内で発生したアーク故障について、アーク発生箇所を特定し、アーク故障区間のみを切り離すことが可能となる。
この発明の実施の形態1による直流給電システムの構成を示す構成図である。 この発明の実施の形態1による直流給電システムのアーク検出装置の構成を示すブロック図である。 この発明の実施の形態1による直流給電システムのアーク検出のフロー図である。 この発明の実施の形態1による直流給電システムにおいて直流電路で直流アークが発生した時の状況を説明するための概略図である。 この発明の実施の形態1による直流給電システムにおけるノイズ信号強度を表す特性図である。 この発明の実施の形態1による直流給電システムにおいて、電流センサの上流側にフィルタを備えた構成を示す構成図である。 この発明の実施の形態1による直流給電システムのアーク検出のフロー図である。 この発明の実施の形態2による直流給電システムの構成を示す構成図である。 この発明の実施の形態2による直流給電システムのアーク検出のフロー図である。 この発明の実施の形態2による直流給電システムのアーク検出のフロー図である。 この発明の実施の形態3による直流給電システムの構成を示す構成図である。 この発明の実施の形態3による直流給電システムのアーク検出装置の構成を示すブロック図である。 この発明の実施の形態3による直流給電システムのアーク検出のフロー図である。 この発明の実施の形態3による直流給電システムのアーク検出のフロー図である。
実施の形態1
 図1は、この発明の実施の形態1による直流給電システムの概略構成を示す回路図である。交流電源1が交流電路2を介して交流直流変換回路3の入力端子に接続されている。交流直流変換回路3は、交流電源1に対して複数並列に接続される場合もある。交流直流変換回路3の出力端子は、遮断器4に接続され、遮断器4から幹線を経て複数の電路5に分かれている。各々の電路5は、分電盤6に接続される。分電盤6の内部には、複数の負荷10A、10B、10Cにそれぞれ対応して接続される複数の直流電気回路20A、20B、20Cが設けられている。それぞれの直流電気回路20A、20B、20Cの内部には、正極と負極電路間にコンデンサ7A、7B、7Cが設けられ、正極と負極電路に開閉器8A、8B、8Cが設けられ、正極電路と負極電路のいずれか一方に電流センサ9A、9B、9Cがそれぞれ設けられている。なお、この電流センサ9A、9B、9Cは、コンデンサ7A、7B、7Cよりも負荷10A、10B、10C側に位置するように配置されている。
 直流電気回路20A、20B、20Cのそれぞれの電流センサ9A、9B、9Cは、それぞれの直流電気回路20A、20B、20Cの電流を検出し、その検出した結果の出力は、アーク検出装置100に送られるように構成されている。なお、実際のデータセンターの場合には、3つ以上の電路5が存在することもあるが、図1では便宜的に3つの電路5のみ図示している。なお、図中、同一符号は、各々同一または相当する部分を示している。
 図2は、この発明の実施の形態1による直流給電システムのアーク検出装置100の構成を示すブロック図である。図2に示すように、アーク検出装置100は、入力部110、解析部120、判定部130、出力部140、および表示部150に分かれている。
 入力部110は、電流信号入力部111とアーク検知時間設定部112を備えている。入力部110は、電流センサ9A、9B、9Cにより検出された電流の信号データを電流信号入力部111からアーク検出装置100内に取り込む。取り込まれたデータは、解析部120に伝送される。また、アーク検知時間設定部112は、検出されたアークの時間情報を設定する。
 解析部120は、アークノイズ周波数解析部121とアークノイズ信号強度比較部122を備えている。アークノイズ周波数解析部121は、アーク発生時の高周波ノイズを時間系列データから周波数系列データに変換する処理を行う。時間系列データから周波数系列データに変換する処理は、FFT解析だけでなく、特定の周波数帯の信号強度のみを抽出するバンドパスフィルタを使用する方法がある。または、ガウス関数と抽出したい周波数の正弦波との積を取る方法等がある。アークノイズ信号強度比較部122では、各直流電気回路20A、20B、20Cについて、解析された周波数系列データを基に、アークノイズ信号強度を比較し、アーク発生箇所を特定するための解析を行う。例えば、信号強度が最も大きく、かつ他の直流電気回路20A、20B、20Cにおける信号強度と比較して一定値以上大きい場合に、アークが発生している回路であると判定する。さらに、アーク発生時の急峻な電流変動を捉える手段を追加するとよい。急峻な電流変動は、アーク事故発生区間のみに生じる現象であり、アークノイズの強度の比較結果と組み合わせることで、高精度にアーク事故発生区間を検出することが可能となる。ただし、簡易的にはアークノイズ比較のみでアーク事故発生区間を特定することが可能である。
 このアークノイズ信号強度比較部122においてアークノイズの強度を比較する場合、全ての直流電気回路20A、20B、20Cに対応する全ての電流センサ9A、9B、9Cの電流信号を基にアークノイズの強度比較を行うことが、アークの発生した回路の確実な抽出につながることになる。
 また、アークノイズ信号強度比較部122では、ホール素子やロゴスキーコイル等の電流測定可能な電流センサの信号をFFT解析した結果に基づき、好ましくは10kHzから100kHzの周波数範囲内の電流信号を強度比較している。10kHzから100kHzの周波数範囲は、アークの特性からアークノイズを検出し易い周波数範囲である。10kHz以下の範囲は、交流直流変換回路3から発生する電源周波数(50Hz、60Hz等)の高調波成分とアークノイズの区別が困難である。また、100kHz以上は、電磁波ノイズ等との区別が困難である。そのため、10kHzから100kHzの信号に着目することでアークの検知精度を向上させることができる。
 解析部120の結果を基に、判定部130において、開閉器8A、8B、8Cのうち電気的に切り離す開閉器を選定する。アークノイズ信号強度比較部122の結果を基に、その結果を受け、開閉器制御部131が、電気的に切り離す回路の開閉器8A、8B、8Cを選択する。
 出力部140は、開閉器制御信号出力部141と接点信号出力部142を備えている。判定部130の開閉器制御部131の結果を基に、開閉器制御信号出力部141が電気的に切り離すための信号をいずれかの開閉器8A、8B、8Cに出力する。これにより、アーク発生区間にある直流電気回路20A、20B、20Cのうちアークが発生したと判断された電路5が遮断され、アークから負荷10A、10B、10Cを保護できる。さらに、データセンターのような巨大なシステムでは、通信機器類の運転情報を集中管理しているため、接点信号出力部142から出力された接点信号を基に、操作する者が、どこでアークが発生したかを例えば集中管理室で確認できる。なお、集中管理室で確認するには接点信号に限らず、他の信号であっても良い。
 表示部150は、正常表示部151、アーク発生表示部152を備えている。アーク検出装置100が正常に動作中である場合には、正常に動作中であることを示す表示が正常表示部151で行われる。アークが発生した電路に対して、アーク発生表示部152で、アークが発生したことが分かる表示を行う。
 アークの発生した電路5を開閉器8A、8B、8Cで電気的に切り離した後、例えば遠隔操作によって遮断器4にトリガを掛けて開閉器8A、8B、8Cを導通させることができる。トリガは、マニュアル操作が可能である。また、アークの発生した回路を開閉器8A、8B、8Cで電気的に切り離した後、ある一定時間あけて、自動的に遮断器4にトリガを送り開閉器8A、8B、8Cを導通させることもできる。一定時間とは、好ましくは数分間から数十分間程度である。仮に、自動的に開閉器8A、8B、8Cを導通させた後に再びアークを検知した場合には、再度、アークの発生した電路5を開閉器8A、8B、8Cによって電気的に切り離す。その後、一定時間あけて自動的に遮断器4にトリガを送り開閉器8A、8B、8Cを導通させる。これを、予め定めた期間内で繰り返し、その繰り返し回数が所定回数に達すれば、その動作を停止し、警告を表す。例えば、1日最大5回繰り返し、5回以上になれば、開閉器8A、8B、8Cを導通させることを停止する。
 自動的に開閉器8A、8B、8Cを導通させた後に、再びアークを検知しなければ、通常通りの運転を行うこととする。直列アーク発生に関しては、アークの発生した回路を開閉器8A、8B、8Cで電気的に切り離してアークを消滅させた後、アーク発生部の絶縁が回復し、再びアークを発生すること無く、導通する場合がある。自動的に遮断器4にトリガを送り開閉器8A、8B、8Cを導通させることによって、早急にシステムを復旧させることが可能となる。
 図3は、図2に示した実施の形態1による直流給電システムのアーク検出装置100の動作を説明するフロー図である。アーク検出装置100において、入力部110から入力された電流信号I1、I2、I3が更新される(ステップS1)と、アークノイズ周波数解析部121で例えばFTT解析などのアークノイズ周波数解析が実施される(ステップS2)。次に、各直流電気回路20A、20B、20Cのアークノイズ周波数解析の結果を比較するために、それぞれの信号強度が比較される(ステップS3)。ここで、kは、直流電気回路毎のアークノイズ信号強度の入力されてくる回数を表し、直流電気回路を順番に切り換え、順次解析結果を突き合わせることを示している。例えば、第1の直流電気回路20Aのアークノイズ信号強度が最大(PSDmax)であった場合、他の直流電気回路のアークノイズ信号強度と比較する。すなわち第k番目に入力されてきた直流電気回路のアークノイズ信号強度(PSDk)と比較する(ステップS4)。このとき、第k番目の直流電気回路のアークノイズ信号強度の方が大きい場合には、第k番目の直流電気回路のアークノイズ信号強度がPSDmaxとして更新される(ステップS5)。この比較と更新は、アーク検出装置100に接続された全ての直流電気回路について行われる。なお、PSDとは、パワースペクトル密度であって、単位周波数毎のパワー分布を表すものである。
 ここで、比較および判定の対象とする回路数をNと定めている。入力されてくるアークノイズ信号強度の回数kが回路数Nを上回るまで繰り返し、ステップS3からステップS5を繰り返す。そして、直流給電システム内の各直流電気回路のアークノイズ信号強度の中で最も値の大きい直流電気回路を判定する。次に、最大信号強度と各回路の信号強度を比較する(ステップS6)。最も値の大きい直流電気回路のアークノイズ信号強度と他の電路の信号強度の差分を、閾値δと比較する(ステップS7)。この比較についても回数kが回路数Nを上回るまで繰り返し行う。そして、比較した結果、閾値δ以上であった場合に、そのアークノイズ信号強度の回路がアーク発生回路として特定する(ステップS8)。そして、開閉器制御部131により、電気的に切り離す開閉器を選択し、その回路を遮断する(ステップS9)。このようにアークの発生している電気回路を切離すことができる。アーク箇所判定用の閾値δを事前に設定することは可能である。または、事前に設定せず、装置を回路に取り付けた後で複数の電流信号データを取得することにより統計的に閾値を算出し、設定することも可能である。
 一般的に、直流アークは、負荷を受けた電線に不測の破損や切断が発生した場合に、それにつながっている回路部分の先端間に形成される。この直流アークは、破損した電線の先端間、端子台付近やコンセント付近などで、ケーブルの劣化や施工ミス、ねじの緩みなどが原因で発生する。
 ここで、直流アークは、主に直列アークを想定している。直列アークが発生すると一般に1kHzから1MHz程度の範囲でアークノイズが発生する。アークノイズは1/fの特性を有しており、太陽光発電システムの場合では、回路全体に微小のノイズを重畳させる。アークが発生していない時のノイズ強度と比較して、特に1kHzから100kHzまでの範囲において明確な違いがあるため、電流に重畳したアークノイズとして、少なくとも1kHzから100kHzまでの範囲の高周波ノイズを検知することで、アーク発生を判定することが可能である。アークノイズの伝播については、知られている。ただし、太陽光発電システムの場合には、アーク発生をアークノイズのみで判定すると複数並列回路においては全てのアーク検出装置がアーク発生ありと判定してしまう。なぜなら、アークノイズが回路全体に伝播するためである。しかしながら、この発明の実施の形態1の構成においては、直流給電システムの直流電気回路の電路内に瞬時電圧低下防止用のコンデンサが備えられているため、アークの発生した回路とアークが未発生の回路とでは、それぞれの回路に設けられた電流センサが検出するアークノイズ信号強度が異なる。
 図4に、アーク発生時の概略図を示す。アーク発生箇所は、コンデンサ7A、7B、7Cと負荷10A、10B、10Cの間において発生するものと想定している。電流センサ9の上位側、下位側のいずれでもよい。並列アークや正極・負極電路間が短絡した場合には、遮断器が動作するため、ここでは直列アークによる故障事故を想定している。もしくは、コンセント引抜き時のアークが想定通りに消弧されない場合も含む。
 図4に示すように、負荷の接続されている箇所でアーク25が発生した際のアークノイズ強度の例を図5に示す。
 図5は、横軸に周波数を表し、縦軸にノイズスペクトル強度を表してノイズスペクトル強度波形30を表す特性図である。アーク発生回路のノイズ信号強度31とアーク未発生回路のノイズ信号強度32を示している。アーク発生回路のノイズ信号強度31は、アーク未発生回路のノイズ信号強度32と比較して大きい。これは、直流給電システムの瞬時電圧低下防止用に設置された正極・負極間のコンデンサ7がフィルタの役割を果たすためである。このコンデンサ7の存在によって、アークノイズは、他の回路には伝搬しない。また、交流直流変換回路3で発生するインバータノイズも、コンデンサ7によって低減されるためアークノイズを検知し易くなる。
 仮に、正極・負極間にコンデンサ7が設置されていない場合には、図6のように電流センサ9A、9B、9Cのそれぞれに、フィルタ11A、11B、11Cを設けることによって同様に、アークノイズを、アーク発生回路とアーク未発生回路との判定に使用することが可能になる。すなわち、電流センサの上流側にアークノイズを吸収する機能を有する手段として、フィルタ11を設けることによって、アークノイズを用いてアーク発生回路とアーク未発生回路との判定を可能にしている。ここで、フィルタ11は、10kHzから100kHzの信号をカットするフィルタである。また、アークノイズを吸収するフィルタは、電路高圧側と電路低圧側の両方に備えると好ましい。
 図7は、図2に示した実施の形態1による直流給電システムのアーク検出装置100の他の動作を説明するフロー図である。アーク検出装置100において入力部110から入力される電流信号が更新される(ステップS11)と、アークノイズ周波数解析部121でアークノイズ周波数解析が実施される(ステップS12)。次に、各直流電気回路20A、20B、20Cにおけるアークノイズ周波数解析の結果を比較するために、それぞれの信号強度を比較する(ステップS13)。その後、電路のアークノイズ信号強度と閾値δを比較する(ステップS14)。これを順次繰り返し、比較の回数kが回路数Nを上回るまで繰り返し行う。アークノイズ信号強度が閾値δ以上であった場合に、そのアークノイズ信号強度の回路をアーク発生回路として特定する(ステップS15)。そして、開閉器制御部131により、電気的に切り離す開閉器を選択し(ステップS16)、アークノイズ信号強度が閾値δ以上であった回路を遮断し、その他の回路をアークから保護する。
実施の形態2
 図8に実施の形態2として、正極と負極電路の合流箇所に電流センサ9Dを追加した構成を示す。なお、図において、図1に使用している符号と同一の符号は、各々同一または相当部分を示している。正極と負極電路の合流箇所に電流センサ9Dを追加することで、合流箇所の電路において発生したアーク25を検知することが可能となる。これによって、アークの発生を検知できる区間を拡大させることができる。このアーク25の発生の検知は、実施の形態1と同様のアークノイズ周波数解析部121とアークノイズ強度比較部122を用いることによって行うことができる。
 図9は、この発明の実施の形態2による直流給電システムのアーク検出装置100の動作を説明するフロー図である。ステップ1からステップ7およびステップ8からステップ9は、図3と同様である。ステップ7とステップ8の間にステップ10が入る。この場合、スッテプ7では、閾値として第1の閾値δ1を設定して、アークノイズ信号強度と他の電路の信号強度の差分を第1の閾値δ1と比較しているのに対して、ステップ10においては、電流センサ9Dによって得たアークノイズ信号強度について予め定められた第2の閾値δ2との比較によって判定を行う。ステップ10における判定は、各ストリングのアークノイズ強度判定を行った結果、いずれのストリングにおいてもアークが発生していないことを確認してから実施するのが良い。
 また、ステップ10の閾値δ2は、装置設置前に既に決定しておくか、もしくは装置設置後の回路が正常な時のデータを統計処理して、標準偏差σを計算し、例えば3σを閾値と設定する等の方法もある。アーク25が発生した時、各回路に備えられた電流センサ9A、9B、9Cは、電路に挿入されたコンデンサがフィルタの役割を果たしアークノイズ信号強度を低減させる。一方、合流箇所の電流センサ9Dはアーク21との間にノイズを吸収するものがないためノイズを検知することができる。
 また、図10に示すフローに発展させることができる。この図10に示すフロー図は、ステップ11からステップ14およびステップ15からステップ16までは、図7に示したフローと同様である。ステップ14とステップ15の間にステップ17が入っているところが異なる。このステップ17において、図9に説明した処理と同様の処理を追加する。なお、図9、図10に示したフローにおいて、アーク発生回路判定と開閉器引き外し判定は、図3において説明したと同様の手法である。
実施の形態3
 図11に実施の形態3として、図1に示した実施の形態1の構成において、正極と負極電路の電路間に電圧センサ12A、12B、12Cを追加した構成を示す。なお、図において、図1に使用している符号と同一の符号は、各々同一または相当部分を示している。このとき、直流給電システムのアーク検出装置100の構成のブロック図は、図12に示すようになっている。この図12に示したブロック図は、図2に示したアーク検出装置100のブロック図に、電圧信号入力部113が追加されたものである。なお、図において、図2に使用している符号と同一の符号は、各々同一又は相当部分を示している。この電圧信号入力部113は、図11に示した電圧センサ12A、12B、12Cからの電圧信号を受けるために設けられたものである。
 アーク検出装置100の動作のフロー図を図13に示す。この図13に示したフロー図は、図3と同様である。すなわち、ステップ1で電圧センサ12A、12B、12Cからの情報が入力され、電圧センサ12A、12B、12Cに重畳されるアークノイズを各ストリングで検知する。ステップ2からステップ9において行われる処理は、図3において説明した内容と同様の処理である。電圧情報のみで判定できることから、電流信号の入力を必ずしも必要とはならない。しかし、いずれか一方を選択的に使用するよりも、アーク検知精度を向上させるためには、電流信号のアークノイズ比較と電圧信号のアークノイズ比較の両方を行うことが有効である。
 また、実施の形態3においても、図14に示すフローに発展させることができる。この図14に示すフロー図は、図7に示したフローと同様である。ステップ11において、電圧センサ12A、12B、12Cからの情報が入力される以外は、図7において説明した内容と同じである。
 アークが発生すると電流だけでなく、電圧にもアークノイズが重畳する。このため、電圧に重畳するアークノイズを比較することによってアーク発生区間を特定できる。このことから、電流に重畳するノイズだけでなく、電圧に重畳するノイズを検知するように発展させて構成することもできる。
 この発明による直流電気回路保護装置は、コントロールセンタ、分電盤、UPS、遮断器、パワーコンディショナとして用いられる。さらには、直流電気回路保護装置が中央管理室のシステムと繋がる構成もある。大きく分類すると、直流電気回路保護装置は、スタンドアローン型、インバータ搭載型、分散システム型の構成となるが、いずれにおいてもこの発明の構成を採用することができる。
 この発明は、これら実施の形態の構成、動作に限定されるものでなく、この発明の範囲内において、実施の形態の任意の構成要素を適宜、変更または省略することが可能である。
 

Claims (13)

  1.  複数の直流電気回路の正極電路および負極電路の少なくとも一方の電路に設けられた電流センサと、前記電流センサで検出された電流信号から前記直流電気回路毎のアークノイズの信号強度を比較し、前記アークノイズの信号強度に基づいて、前記直流電気回路の中からアークの発生した前記直流電気回路を特定するアーク検出装置とを備えたことを特徴とする直流電気回路保護装置。
  2.  前記電流センサの上流側にアークノイズを吸収する手段を備えたことを特徴とする請求項1に記載の直流電気回路保護装置。
  3.  前記アーク検出装置のアークノイズの信号強度の比較は、負荷が接続されている複数の前記直流電気回路のそれぞれに取り付けられた全ての前記電流センサの前記電流信号を基にアークノイズの強度比較を行うことを特徴とする請求項1に記載の直流電気回路保護装置。
  4.  前記直流電気回路毎に開閉器が設けられ、前記アーク検出装置によって特定された前記アークの発生した前記直流電気回路を電気的に切り離し得るようにしたことを特徴とする請求項1に記載の直流電気回路保護装置。
  5.  前記開閉器を復旧させる手段を有し、所定時間の後に前記電気的に切り離した前記開閉器を復旧させるようにしたことを特徴とする請求項4に記載の直流電気回路保護装置。
  6.  前記アークノイズを吸収する手段が、前記開閉器と前記電路の間に設けられたコンデンサであることを特徴とする請求項4に記載の直流電気回路保護装置。
  7.  前記アークノイズを吸収する手段が、前記開閉器と前記電路の間に設けられ、10kHzから100kHzの信号をカットするフィルタであることを特徴とする請求項4に記載の直流電気回路保護装置。
  8.  前記直流電気回路の正極電路の合流箇所および負極電路の合流箇所の少なくとも一方の電路に第2の電流センサが設けられ、前記アーク検出装置は、前記直流電気回路の前記電流センサで検出された電流信号と前記第2の電流センサで検出された電流信号から前記直流電気回路毎のアークノイズの信号強度を比較し、前記アークノイズの信号強度に基づいて、複数の前記直流電気回路の中からアークの発生した前記直流電気回路を特定するようにしたことを特徴とする請求項1に記載の直流電気回路保護装置。
  9.  前記直流電気回路の前記正極電路および前記負極電路間に電圧センサを有し、前記アーク検出装置は、前記電圧センサで検出された電圧信号から前記直流電気回路毎のアークノイズの信号強度を比較し、前記アークノイズの信号強度に基づいて、前記直流電気回路の中からアークの発生した前記直流電気回路を特定するようにしたことを特徴とする請求項2に記載の直流電気回路保護装置。
  10.  正極電路および負極電路の少なくとも一方の電路に設けられた電流センサと、前記電流センサの上流側にアークノイズを吸収する手段とを有する複数の直流電気回路、および前記直流電気回路の前記電流センサで検出された電流信号から前記直流電気回路毎のアークノイズの信号強度を比較し、前記アークノイズの信号強度に基づいて、前記直流電気回路の中からアークの発生した回路を特定するアーク検出方法であって、前記電流センサで検出された前記電流信号から周波数解析するアークノイズ周波数解析ステップと、前記アークノイズ周波数解析ステップにて解析されたノイズ周波数の信号強度を前記電流センサから検出された前記電流信号毎に比較して、アーク発生回路を特定するアークノイズ強度比較ステップを備えたことを特徴とするアーク検出方法。
  11.  前記アークノイズ強度比較ステップは、すべての前記電流センサからの前記電流信号の中から信号強度が最大のものを選択し、その最大値に対して信号強度の差が一定値以上あるかどうかを判定し、一定値以上の差がある場合に、信号強度が最大値を示した前記直流電気回路でアークが発生したと判定することを特徴とする請求項10に記載のアーク検出方法。
  12.  前記アークノイズ強度比較ステップは、信号強度の値が所定値以上ある場合の前記直流電気回路においてアークが発生したと判定することを特徴とする請求項10に記載のアーク検出方法。
  13.  前記アークノイズ強度比較ステップは、複数の前記電流センサからの前記電流信号のデータを取得して閾値を設定していることを特徴とする請求項10に記載のアーク検出方法。
     
PCT/JP2017/012065 2016-06-21 2017-03-24 直流電気回路保護装置およびアーク検出方法 WO2017221493A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017003081.1T DE112017003081T5 (de) 2016-06-21 2017-03-24 Schutzvorrichtung für eine elektrische dc-schaltung und lichtbogen-detektionsverfahren
US16/304,398 US11277000B2 (en) 2016-06-21 2017-03-24 DC electrical circuit protection apparatus and ARC detection method
JP2017540663A JP6234647B1 (ja) 2016-06-21 2017-03-24 直流電気回路保護装置およびアーク検出方法
CN201780037251.9A CN109417285B (zh) 2016-06-21 2017-03-24 直流电气回路保护装置及电弧检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-122422 2016-06-21
JP2016122422 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017221493A1 true WO2017221493A1 (ja) 2017-12-28

Family

ID=60783929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012065 WO2017221493A1 (ja) 2016-06-21 2017-03-24 直流電気回路保護装置およびアーク検出方法

Country Status (3)

Country Link
CN (1) CN109417285B (ja)
DE (1) DE112017003081T5 (ja)
WO (1) WO2017221493A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159582A1 (ja) * 2018-02-15 2019-08-22 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱
JP6567230B1 (ja) * 2019-01-08 2019-08-28 三菱電機株式会社 アーク地絡の検出方法
WO2019208026A1 (ja) * 2018-04-25 2019-10-31 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱、アーク検出方法およびプログラム
KR102066713B1 (ko) * 2019-09-03 2020-01-15 김성웅 선로별 아크 감지 장치
JP2020195241A (ja) * 2019-05-29 2020-12-03 パナソニックIpマネジメント株式会社 アーク検出システム、アーク検出方法、プログラム、及び分電盤
WO2021044686A1 (ja) * 2019-09-02 2021-03-11 三菱電機株式会社 直流配電システム
WO2021234788A1 (ja) * 2020-05-18 2021-11-25 日本電信電話株式会社 給電システム、保護協調方法、及びプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6907967B2 (ja) 2018-02-23 2021-07-21 オムロン株式会社 アーク放電検知装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509396A (ja) * 2011-02-28 2014-04-17 エスエムエー ソーラー テクノロジー アーゲー 電力回路におけるアーク故障を検出するための方法およびシステム
WO2014168194A1 (ja) * 2013-04-12 2014-10-16 旭東電気株式会社 開閉器
JP2015524240A (ja) * 2012-05-18 2015-08-20 エスエムエー ソーラー テクノロジー アーゲー アークの場所を突き止めて消滅させるための方法および装置
JP2016032369A (ja) * 2014-07-29 2016-03-07 オムロン株式会社 太陽光発電システムの保護装置および太陽光発電システムの保護方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012109749A1 (de) * 2011-10-14 2013-04-18 Sma Solar Technology Ag Verfahren und Vorrichtung zum Erkennen eines Lichtbogens in einem Gleichstromkreis
JP6164848B2 (ja) * 2013-01-10 2017-07-19 三菱電機株式会社 アーク検出装置
EP3041104B1 (en) * 2013-08-26 2021-06-02 Mitsubishi Electric Corporation Dc power generation system and protection method for dc power generation system
JP6246062B2 (ja) 2014-04-30 2017-12-13 三菱電機株式会社 直流発電システムおよび直流発電システムの保護方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509396A (ja) * 2011-02-28 2014-04-17 エスエムエー ソーラー テクノロジー アーゲー 電力回路におけるアーク故障を検出するための方法およびシステム
JP2015524240A (ja) * 2012-05-18 2015-08-20 エスエムエー ソーラー テクノロジー アーゲー アークの場所を突き止めて消滅させるための方法および装置
WO2014168194A1 (ja) * 2013-04-12 2014-10-16 旭東電気株式会社 開閉器
JP2016032369A (ja) * 2014-07-29 2016-03-07 オムロン株式会社 太陽光発電システムの保護装置および太陽光発電システムの保護方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019159582A1 (ja) * 2018-02-15 2020-10-22 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱
WO2019159582A1 (ja) * 2018-02-15 2019-08-22 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱
WO2019208026A1 (ja) * 2018-04-25 2019-10-31 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱、アーク検出方法およびプログラム
JP7117630B2 (ja) 2018-04-25 2022-08-15 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱、アーク検出方法およびプログラム
JPWO2019208026A1 (ja) * 2018-04-25 2021-07-01 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱、アーク検出方法およびプログラム
CN113228443A (zh) * 2019-01-08 2021-08-06 三菱电机株式会社 电弧接地检测装置
JP6567230B1 (ja) * 2019-01-08 2019-08-28 三菱電機株式会社 アーク地絡の検出方法
WO2020144734A1 (ja) * 2019-01-08 2020-07-16 三菱電機株式会社 アーク地絡検出装置
JP7236637B2 (ja) 2019-05-29 2023-03-10 パナソニックIpマネジメント株式会社 アーク検出システム、アーク検出方法、プログラム、及び分電盤
JP2020195241A (ja) * 2019-05-29 2020-12-03 パナソニックIpマネジメント株式会社 アーク検出システム、アーク検出方法、プログラム、及び分電盤
JPWO2021044686A1 (ja) * 2019-09-02 2021-03-11
US20220247173A1 (en) * 2019-09-02 2022-08-04 Mitsubishi Electric Corporation Dc power distribution system
WO2021044686A1 (ja) * 2019-09-02 2021-03-11 三菱電機株式会社 直流配電システム
JP7203236B2 (ja) 2019-09-02 2023-01-12 三菱電機株式会社 直流配電システム
US11824353B2 (en) * 2019-09-02 2023-11-21 Mitsubishi Electric Corporation DC power distribution system
KR102066713B1 (ko) * 2019-09-03 2020-01-15 김성웅 선로별 아크 감지 장치
WO2021234788A1 (ja) * 2020-05-18 2021-11-25 日本電信電話株式会社 給電システム、保護協調方法、及びプログラム
JP7414132B2 (ja) 2020-05-18 2024-01-16 日本電信電話株式会社 給電システム、保護協調方法、及びプログラム

Also Published As

Publication number Publication date
DE112017003081T5 (de) 2019-03-14
CN109417285A (zh) 2019-03-01
CN109417285B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
JP6234647B1 (ja) 直流電気回路保護装置およびアーク検出方法
WO2017221493A1 (ja) 直流電気回路保護装置およびアーク検出方法
US9722535B2 (en) Method and device for ARC fault detection for photovoltaic inverter and photovoltaic inverter using the same
JP6132919B2 (ja) 直流発電システムおよび直流発電システムの保護方法
JP6114749B2 (ja) 光起電力システムのためのセーフティデバイス
JP6246062B2 (ja) 直流発電システムおよび直流発電システムの保護方法
US7103486B2 (en) Device for monitoring a neutral and earth break and electrical switchgear apparatus comprising such a device
EP4016776A1 (en) Arc detection and prevention in a power generation system
US20150309104A1 (en) Differential current monitoring device with arc detection
JP2014509176A (ja) 光起電力システムのための保護デバイス
US20170317500A1 (en) System and method of sensing and isolating a ground fault in a dc-to-ac power conversion system
CN102332699A (zh) 地线安全电压控制***
KR101365398B1 (ko) 지진 재난방재 시스템을 내장한 수배전반(고압반, 저압반, 전동제어반, 분전반) 및 그 제어방법
KR20120133753A (ko) 전력 종합 모니터링 시스템
JP2018121434A (ja) アーク故障検出装置
US9851403B2 (en) Safety device and method for an electric installation
CN109451770B (zh) 故障电弧识别单元
CN202159961U (zh) 地线安全电压控制***
JP2018028498A (ja) アーク故障検出システム
RU2342711C2 (ru) Способ предупреждения пожара от неисправности в электрической сети или электроустановке и устройство для его осуществления
KR101490770B1 (ko) 지락 검출 장치
JP2007057319A (ja) 地絡事故点検出装置
KR20120086558A (ko) 감시 및 중성선 대체기능이 구비된 태양광 발전시스템
KR101227537B1 (ko) 중성선 복구 기능이 구비된 분배전반
CN109478775A (zh) 故障电弧识别单元

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017540663

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814965

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17814965

Country of ref document: EP

Kind code of ref document: A1