WO2017219828A1 - 一种高强高延伸率的镀锡原板及其二次冷轧方法 - Google Patents

一种高强高延伸率的镀锡原板及其二次冷轧方法 Download PDF

Info

Publication number
WO2017219828A1
WO2017219828A1 PCT/CN2017/086173 CN2017086173W WO2017219828A1 WO 2017219828 A1 WO2017219828 A1 WO 2017219828A1 CN 2017086173 W CN2017086173 W CN 2017086173W WO 2017219828 A1 WO2017219828 A1 WO 2017219828A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
original plate
cold rolling
elongation
secondary cold
Prior art date
Application number
PCT/CN2017/086173
Other languages
English (en)
French (fr)
Inventor
连福亮
班必俊
梁高飞
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to US16/303,779 priority Critical patent/US11519059B2/en
Priority to MYPI2018001973A priority patent/MY193533A/en
Priority to EP17814566.0A priority patent/EP3476965B1/en
Priority to PL17814566T priority patent/PL3476965T3/pl
Publication of WO2017219828A1 publication Critical patent/WO2017219828A1/zh
Priority to PH12018502396A priority patent/PH12018502396A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Definitions

  • the invention relates to a tin plate manufacturing technology, in particular to a high-strength and high-elongation tin-plated original plate and a secondary cold-rolling (DCR) method thereof.
  • the tin-plated original plate has a yield strength RP 0.2 ⁇ 520 MPa after bake hardening, in three The elongation A ⁇ 10% in the direction (rolling direction RD, 45° direction, vertical direction TD).
  • DCR Secondary cold rolling
  • SCR single cold rolling
  • U.S. Patent No. 7,001,031 B2 discloses a component mass percentage of C: 0.003% to 0.005%, Si ⁇ 0.04%, Mn ⁇ 0.6%, P: 0.005 to 0.03%, S ⁇ 0.02%, and Al ⁇ 0.005 to 0.1%, N ⁇ 0.005% of the steel grade, the steel grade is suitable for both SCR and DCR methods, and can obtain different steel plates with hardness of 61 ⁇ 3 to 76 ⁇ 3 (HR30T), and ensure that ⁇ r is small.
  • Chinese patent CN102234736A discloses a method for manufacturing a high-strength, excellent isotropic secondary cold-rolled tin-plated original plate, which has the following composition: C: 0.02% - 0.06%, Si ⁇ 0.03%, Mn: 0.10 - 0.30%, P ⁇ 0.015%, S ⁇ 0.015%, Al: 0.03 ⁇ 0.10% low carbon steel for hot rolling Control: heating temperature ⁇ 1180 ° C, finishing temperature above Ar3, coiling temperature 620 ⁇ 750 ° C, primary cold rolling control: reduction rate 75 ⁇ 90%, continuous annealing control: annealing temperature: 640 ⁇ 700 ° C, annealing time 50 ⁇ 150s, secondary cold rolling control: reduction ratio of 15 to 35%, obtaining HR30T60 ⁇ 80, ear production rate ⁇ 5% of DCR tin plate.
  • the secondary cold rolling rate of the above patents tends to cause the anisotropy of the final steel sheet to become large, and the elongation in the transverse direction is greatly reduced.
  • Chinese patent CN101649381A discloses a method for producing a DCR tin-plated original plate, which performs a cold rolling control on a low carbon steel: a rolling reduction rate of 85 to 90%, a hood annealing control: an annealing temperature of 510 to 560 ° C, and a secondary cooling.
  • Rolling control The rolling reduction rate is 30 to 40%, and the steel sheet having the advantages of thin thickness, high hardness, good corrosion resistance, and deep drawing processing performance is obtained.
  • the hood annealing tends to obtain a combination of lower strength and higher elongation, and the reduction ratio of the secondary cold rolling section of the above patent is large.
  • the international patent WO2008/018531A1 discloses a method for manufacturing a DCR tin-plated original plate, which has a composition of C: 0.02-0.06%, Si ⁇ 0.03%, Mn: 0.05-0.5%, P ⁇ 0.02%, S ⁇ 0.02. %, Al: 0.02 ⁇ 0.1%, N: 0.008 ⁇ 0.015% of low carbon steel production control: heating temperature ⁇ 1200 ° C, coiling temperature ⁇ 600 ° C, one cold rolling reduction rate ⁇ 80%, secondary cold rolling The reduction ratio was 6 to 15%, and a DCR plate having an elongation in the RD direction of 10% and an elongation in the TD direction of 5% or more was obtained.
  • US Pat. No. 7,197,243 B2 discloses a relationship between the tensile strength Rm of the obtained DCR material and the elongation to elongation A% when the cooling rate in the continuous annealing stage is 100 ° C/s or more: (640 - Rm) / 10 ⁇ A% ⁇ (700 ⁇ Rm)/11.
  • the object of the present invention is to provide a high-strength and high-elongation tin-plated original plate and a secondary cold-rolling method thereof.
  • the tin-plated original plate obtained by the method can ensure that the RD, 45° and TD are still in the three directions after the baking of the steel plate.
  • High yield strength and elongation, the yield strength after bake hardening is RP 0.2 ⁇ 520 MPa, and the elongation A in the rolling direction RD, 45° direction and vertical direction TD are both 10% or more.
  • the tin-plated original plate is suitable for easy opening. Processing of parts such as covers and standard covers.
  • a high-strength and high-elasticity tin-plated original plate whose compositional mass percentage is: C: 0.065 ⁇ 0.12%, Mn: 0.2 ⁇ 0.8%, Al: 0.01 ⁇ 0.08%, N: 0.003 ⁇ 0.015%, the rest is Fe and inevitable impurities; the original plate needs secondary cold rolling, secondary cold rolling reduction rate
  • the control is 5 to 13%, and the rolling tension is 50 to 100 MPa.
  • the tin-plated original plate component further contains: B: 0.001% to 0.005%, Cr: 0.01 to 0.05%, Ti: 0.001 to 0.1%, Nb: 0.001 to 0.2%, Cu: 0.01 to 0.03%, Mo: 0.002 One or more of % to 0.008%, in terms of mass percentage.
  • the tin-plated original sheet has a yield strength RP 0.2 ⁇ 520 MPa after bake hardening, and an elongation in the rolling direction RD, 45° direction, and vertical direction TD is 10% or more.
  • the microstructure of the tin-plated original plate is ferrite + band-like distributed granular cementite.
  • the C element is solid-solved in the form of interstitial atoms in the material or precipitated in the matrix as cementite, and acts to strengthen the solid solution and precipitate and strengthen the steel sheet to increase the yield strength of the steel sheet.
  • the other components are unchanged.
  • the C content of the steel plate is stronger than that of the steel plate. Therefore, the C content of the tin-plated original plate of the present invention is controlled to be 0.065% or more. However, if the C content is too high, the plasticity is lowered, and the final processing property and isotropy of the product, especially the anti-aging property of the material, are adversely affected. Therefore, the upper limit of the C content of the tin-plated original plate of the present invention is controlled to be less than 0.12%.
  • the Mn element is a strengthening element in steel and desulfurization, but the excessive content is unfavorable for the press working property of the material.
  • the Mn content of the steel suitable for the present invention is controlled to be 0.2 to 0.8%.
  • the Al element acts mainly as a deoxidizer in the steel, and the N element in the steel forms AlN precipitation with Al, eliminating the influence of the N element on the aging properties of the steel.
  • the Al content of the steel suitable for the present invention is controlled at 0.01 to 0.08%;
  • the solid solution energy greatly increases the strength of the steel, and the N content is too high, resulting in poor aging properties and isotropy of the steel.
  • the N content of the steel suitable for the present invention is controlled to be 0.003% to 0.015%.
  • the tin-plated original plate component further contains: B: 0.001% to 0.005%, Cr: 0.01 to 0.05%, Ti: 0.001 to 0.1%, Nb: 0.001 to 0.2%, Cu: 0.01 to 0.03%, Mo: 0.002 One or more of % to 0.008%, in terms of mass percentage.
  • B 0.001% to 0.005%
  • Cr 0.01 to 0.05%
  • Ti 0.001 to 0.1%
  • Nb 0.001 to 0.2%
  • Cu 0.01 to 0.03%
  • Mo 0.002
  • the addition of the B element further reduces the loss of elongation of the steel sheet during baking aging
  • the addition of Cr, Ti, Nb, Cu, and Mo serves to further increase the strength of the steel sheet. According to the specific requirements of strength and elongation after baking aging in practical applications, the above components can be added to fine-tune the properties of the steel sheet.
  • the tin-plated original plate of the invention needs to be subjected to secondary cold rolling, and the secondary cold rolling reduction rate is controlled to be 5 to 13%.
  • the rolling tension is 50 to 100 MPa.
  • Secondary cold rolling is often used to increase the yield strength of the steel sheet.
  • the secondary cold rolling reduction rate is more than 15%.
  • the structure is rolled into a strip shape, and there is a higher dislocation density in the crystal grains.
  • the dislocations are intensified during the movement, which increases the resistance and causes the deformation resistance to increase. Large, plastic deformation is difficult, and finally the strength of the steel plate is increased, and the elongation is lowered.
  • the increase of the secondary cold rolling reduction rate particularly increases the anisotropy of the steel sheet, and the elongation in the vertical rolling direction is drastically deteriorated. Therefore, in order to ensure the strengthening of the steel sheet, a certain elongation is also ensured in all directions, and the secondary cold rolling reduction ratio in the secondary cold rolling method of the present invention is controlled within a range of 5 to 13%.
  • the main role of tension in secondary cold rolling is to control the shape of the rolled steel sheet.
  • the secondary cold rolling tension is 110 to 150 MPa.
  • the larger tension is equivalent to the tensile deformation of the steel sheet in one rolling direction, so the anisotropy of the steel sheet is often further increased, especially for the anisotropy after baking aging after the secondary cold rolled steel sheet: the greater the tension, The elongation is more obvious in the direction perpendicular to the rolling direction after baking; and the tension is too small to ensure a good shape of the steel strip. Therefore, the rolling tension control range of the secondary cold rolling in the present invention is 50 to 100 MPa.
  • the alloy composition and the secondary cold rolling process are matched and unique.
  • the alloy composition is added for alloy strengthening in the composition design, such as C and Mn two typical steel strengthening elements; considering the tin-plated original plate before being used for canning or capping Need to be baked, so the right amount of N is added to the steel so that the yield strength of the tin-plated original plate can be further improved after aging; at the same time, to eliminate the negative impression of the post-aging elongation caused by the addition of N in the steel, at the same time to ensure The purity of the steel adds an appropriate amount of Al to the steel.
  • the addition of other elements B, Cr, Ti, Nb, Cu, Mo can further adjust the strengthening ability and baking aging characteristics of the steel.
  • composition determines the "potential" of the steel, and the secondary cold rolling process of the present invention exerts its "potential”.
  • the secondary cold rolling method of the present invention further improves the yield strength of the steel sheet by using deformation of the steel sheet on the one hand, but at the same time controls the reduction ratio to be in a lower range, thereby preventing the problem that the elongation of the steel sheet is lowered due to excessive reduction ratio;
  • the control of the tension in the secondary cold rolling method is a major innovation of the present invention. We have found that the tension in the transverse direction of the steel sheet is greatly reduced after the aging of the aging. When the tension is 50-100 MPa, combined with the secondary cold rolling reduction ratio of 5 to 13%, it can be ensured that the secondary cold rolling method can increase the yield strength of the steel sheet, but does not weaken the steel sheet elongation, especially the lateral elongation.
  • the tin-plated original plate structure is finally obtained as ferrite plus undissolved band-shaped cementite particles.
  • the final yield of the tin-plated original plate after bake hardening is RP 0.2 ⁇ 520 MPa, and the elongation in the rolling direction RD, 45° direction, and vertical direction TD is 10% or more.
  • the component mass percentage of the tin-plated original plate is: C: 0.065-0.12%, Mn: 0.2-0.8%, Al: 0.01- 0.08%, N: 0.003 ⁇ 0.015%, the rest is Fe and inevitable impurities; the original plate is subjected to secondary cold rolling, the secondary cold rolling reduction rate is controlled at 5 to 13%, and the rolling tension is 50 to 100 MPa.
  • the tin-plated original plate component further contains: B: 0.001% to 0.005%, Cr: 0.01 to 0.05%, Ti: 0.001 to 0.1%, Nb: 0.001 to 0.2%, Cu: 0.01 to 0.03%, Mo: 0.002 One or more elements in % to 0.008%, in mass percent.
  • the production steps before the secondary cold rolling of the tin-plated original plate are: converter steel making, continuous casting blank, hot rolling, pickling, primary cold rolling and continuous annealing.
  • the hot rolling step before the secondary cold rolling of the steel plate is: the slab is heated to ⁇ 1120 ° C, the finishing rolling temperature is ⁇ 840 ° C, and the coiling temperature is ⁇ 650 ° C.
  • the reduction ratio of the primary cold rolling before the secondary cold rolling of the tin-plated original plate is 85% to 90%.
  • the annealing temperature is 620-680 ° C.
  • the tin-plated original plate of the present invention has a yield strength of RP 0.2 ⁇ 520 MPa after bake hardening, and an elongation of TD in the rolling direction RD, 45° direction and vertical direction is 10% or more.
  • microstructure of the tin-plated original plate of the present invention is ferrite + band-like distributed granular cementite.
  • the steel of the invention is before secondary cold rolling:
  • the yield strength of the present invention is applicable to the hot rolling temperature of steel ⁇ 1120 ° C.
  • the hot rolling finish rolling temperature is too low, it will enter the ferrite + austenite two-phase zone rolling, which will easily lead to uneven grain rolling in the final rolling, and finally affect the uniformity of the performance of the steel sheet after the secondary cold rolling.
  • the present invention is suitable for hot rolling of steel.
  • the finishing rolling temperature is ⁇ 840°C; the hot rolling coiling temperature is too high, which leads to the accumulation of carbides or the formation of coarse pearlite structure, which leads to the reduction of the strength of the final secondary cold rolled steel.
  • the present invention is applicable to the hot rolling coiling temperature of steel ⁇ 650 ° C.
  • the first cold rolling after hot rolling, the lower cold rolling reduction rate will lead to the final secondary cold rolling steel
  • the yield strength is too low, and the reduction ratio is too high, which is unfavorable to isotropy, and the equipment requirements are higher.
  • the present invention is applicable to the primary cold rolling reduction ratio of steel of 85% to 90%; the annealing after cold rolling is effectively eliminated.
  • the internal stress in the steel adjusts the isotropy of the steel and promotes a stage of grain recrystallization in the steel. Too high causes the strength of the steel to decrease, and too low leads to insufficient recrystallization, which affects the isotropy of the steel.
  • the continuous annealing temperature of the steel to which the present invention is applied is 620 to 680 °C.
  • the composition of the steel alloy disclosed in the present invention is very different, especially the C content is one order of magnitude higher.
  • the difference of C inevitably leads to two kinds.
  • the yield strength of steel under the same process will be very different, and the ultra-low carbon steel of the above patent invention has strict requirements on steelmaking and inclusion control, and the composition of the invention has low steelmaking cost and is easy to control.
  • the alloy composition of the present invention is also very different from the large secondary cold rolling rate requirement, and the secondary cold rolling method disclosed by the present invention has a reduction ratio significantly lower than the above patent, and the low rolling tension is low. Lower energy consumption.
  • This large secondary cold rolling rate tends to cause the anisotropy of the final steel sheet to become large, and the elongation in the transverse direction is greatly reduced.
  • the annealing process of the cover annealing is adopted, and the annealing section of the tin-plated original plate is continuous annealing, which is fundamentally different from the cover-annealing method of the above patent: the hood annealing is often obtained lower.
  • the combination of strength and higher elongation is higher in strength and lower in elongation.
  • the reduction rate of the secondary cold rolling section also varies greatly.
  • the invention adopts the continuous retreating process to obtain the performance stability of the steel plate is stronger, and the energy consumption and the cost are low.
  • the composition of the tin-plated original plate alloy of the present invention is greatly different from the above patents.
  • the tin-plated original plate of the invention can still maintain the TD direction elongation after the bake hardening is more than 10%, and the performance is better.
  • the invention not only controls the secondary cold rolling rolling rate: 5-13%, but also controls the rolling tension range: 50-100 MPa, and obtains the tin-plated original plate after bake hardening yield strength RP 0.2 ⁇ 520 MPa in the rolling direction.
  • the elongation of RD, 45° direction, and vertical direction TD are both 10% or more, which is superior to the above patent performance.
  • the method of the present invention is completely different, and the high-speed annealing method invented in the U.S. patent has high requirements on equipment, and it is easy to bring the board in the production of the thin plate.
  • the problem of poor type is not conducive to the production of wider specifications of tin plate.
  • the continuous annealing section temperature of the tin-plated original plate of the invention is 620-680 ° C, and the cooling section is cooled according to conventional requirements without rapid cooling.
  • the above patent is completely different from the production method of the invention.
  • Fig. 1 is a schematic view showing the influence of the change of the secondary cold rolling rate on the yield strength Rp 0.2 and the elongation A% in the three directions after the bake hardening of the steel sheet.
  • FIG. 2 is a schematic view showing the influence of rolling tension on the yield strength Rp 0.2 and the elongation A% in three directions after bake hardening of the steel sheet.
  • Table 1 lists the alloy compositions of Examples 1 to 7 and Comparative Examples 1 and 2 of the present invention.
  • Table 2 illustrates the processes of the steel sheets before the second cold rolling of Examples 1 to 7 and Comparative Examples 1 and 2 of the present invention.
  • Tables 3 to 5 illustrate the properties after bake hardening of the examples and comparative examples of the present invention: Table 3 shows the steel sheets obtained by secondary cold rolling at different reduction ratios of the steel sheets of Example 1 (Examples 1-1, 1-2) 1 to 3, Comparative Examples 1 to 1, 1 to 2) properties after bake hardening; Table 4 shows steel sheets obtained by secondary cold rolling under different tensions of the steel sheets of Example 2 (Examples 2 to 1, Comparative Example 2) ⁇ 1) Properties after bake hardening; Table 5 shows the properties of the steel sheets of Examples 3 to 7 and Comparative Examples 1 to 4 which were subjected to post-baking hardening at different reduction ratios and secondary cold rolling under tension.
  • Example 1 0.08 0.3 0.01 0.005 0 0 0 0 0 0.005
  • Example 2 0.12 0.3 0.03 0.015 0.002 0.03 0 0 0 0
  • Example 3 0.08 0.8 0.05 0.007 0 0 0 0.01 0.02 0
  • Example 4 0.10 0.6 0.06 0.005 0 0 0.005 0.005 0 0
  • Example 5 0.12 0.6 0.03 0.010 0.002 0.02 0 0.005 0 0
  • Example 6 0.07 0.4 0.03 0.012 0.002 0.005 0 0.02 0
  • Example 7 0.08 0.3 0.03 0.015 0.002 0.02 0.005 0 0 0 0 Comparative example 1 0.05 0.3 0.03 0.005 0 0 0 0.005 0 0 Comparative example 2 0.15 0.1 0.04 0.003 0.002 0 0 0 0 0 0 Comparative example 3 0.10 0.6 0.06 0.005 0.005 0 0 0.005 0 0 Comparative example 4 0.08 0.8 0.05 0.007 0 0.02 0 0.01 0 0 0 0
  • the steel plate obtained by secondary cold rolling is subjected to bake hardening at 200 ° C for 30 min to determine the mechanical properties.
  • the mechanical properties are determined according to the JIS 5 standard tensile test.
  • Rp0.2 is the stress value of 0.2% residual deformation.
  • the strength value, A% is the elongation at break, and the gauge length is 50 mm.
  • the steel plate obtained by secondary cold rolling is subjected to bake hardening at 200 ° C for 30 min, and the mechanical properties are determined.
  • the mechanical properties are determined according to the JIS5 standard processing tensile sample, and Rp0.2 is 0.2%.
  • the residual deformation stress value is its yield strength value, A% is the elongation at break, and the measurement gauge length is 50 mm.
  • Figure 1 illustrates the yield strength in the three directions after the bake hardening of the steel plate by the change of the secondary cold rolling rate.
  • the influence of Rp0.2 and elongation A% It is based on Examples 1 to 1, 1 to 2, 1 to 3, and Comparative Examples 1 to 1, 1 to 2.
  • the solid line in the figure is the Rp0.2 curve, and the broken line is the A% curve.
  • the secondary cold rolling rate increases, the strength increases, and the elongation in the three directions decreases.
  • Figure 2 illustrates the effect of rolling tension on the yield strength Rp0.2 and elongation A% in three directions after bake hardening of the steel sheet. It is based on Examples 1 to 3 and 2 to 1, and Comparative Examples 2 to 1.
  • the solid line in the figure is the RP0.2 curve, and the dotted line is the A% curve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

一种高强高延伸率的镀锡原板及其二次冷轧方法,其镀锡原板成分质量百分比为:C:0.065~0.12%,Mn:0.2~0.8%,Al:0.01~0.08%,N:0.003~0.015%,其余为Fe和不可避免杂质;该原板需经二次冷轧,二次冷轧压下率控制在5~13%,轧制张力50~100MPa。该镀锡原板烘烤硬化后屈服强度RP0.2≥520MPa,轧制方向RD、45°方向、垂直方向TD的延伸率A均大于等于10%。

Description

一种高强高延伸率的镀锡原板及其二次冷轧方法 技术领域
本发明涉及镀锡板制造技术,特别涉及一种高强高延伸率的镀锡原板及其二次冷轧(DCR)方法,该镀锡原板烘烤硬化后屈服强度RP0.2≥520MPa,在三个方向(轧制方向RD、45°方向、垂直方向TD)上延伸率A≥10%。
背景技术
二次冷轧(DCR)目前被大量应用在镀锡板的制造中,相较于一次冷轧(SCR)方法获得的镀锡板,DCR获得的镀锡板具有更高的强度、更薄的厚度,从而能有效地实现食品、饮料、化工用罐、盖材料的减薄、降低成本。不过,DCR方法相较于SCR往往导致钢板延伸率更低,特别是45°方向和垂直方向TD的延伸率。在用于一些对各向延伸率有较高要求的部件如易开盖、标准盖生产时,冲制成形前往往还需要表面涂漆并烘烤处理(烘烤温度约200℃,时间10~30min),这导致基板因烘烤硬化而各向延伸率进一步降低,从而使得易开盖、标准盖更容易在基板延伸率最低方向上冲制开裂。如何能控制DCR环节,在提高镀锡板强度的同时,保证烘烤硬化后基板RD、45°和TD这三个方向的延伸率,是拓展DCR镀锡板市场应用的主要课题。
目前国内外公开的相关DCR方法的专利如下:
美国专利US7501031B2公开了一种成分质量百分比为C:0.003%~0.005%,Si≤0.04%,Mn≤0.6%,P:0.005~0.03%,S≤0.02%,Al≥0.005~0.1%,N≤0.005%的钢种,该钢种适用于SCR、DCR两种方法,能获得硬度61±3到76±3(HR30T)的不同钢板,且保证Δr较小。
中国专利CN102234736A公开了一种高强度、优良各向同性二次冷轧镀锡原板的制造方法,通过对一种合金成分为:C:0.02%~0.06%,Si≤0.03%,Mn:0.10~0.30%,P≤0.015%,S≤0.015%,Al:0.03~0.10%低碳钢进行热轧 控制:加热温度≤1180℃,终轧温度Ar3以上,卷取温度620~750℃、一次冷轧控制:压下率75~90%、连续退火控制:退火温度:640~700℃,退火时间50~150s、二次冷轧控制:压下率15~35%,获得HR30T60~80、制耳率≤5%的DCR镀锡原板。
以上专利二次冷轧率大,往往导致最终钢板各向异性变大,横向上延伸率会大大降低。
中国专利CN101649381A公开了一种DCR镀锡原板的生产方法,对一种低碳钢进行一次冷轧控制:轧下率85~90%,罩式退火控制:退火温度510~560℃、二次冷轧控制:轧下率30~40%,获得了具有厚度薄、硬度高、耐腐蚀性能好、深冲加工性能好等优点的钢板。
罩式退火往往获得较低强度加较高延伸率的配合,且以上专利二次冷轧段压下率大。
国际专利WO2008/018531A1公开了一种DCR镀锡原板的制造方法,通过对一种成分为C:0.02~0.06%,Si≤0.03%,Mn:0.05~0.5%,P≤0.02%,S≤0.02%,Al:0.02~0.1%,N:0.008~0.015%的低碳钢进行生产控制:加热温度≥1200℃,卷取温度≤600℃,一次冷轧压下率≥80%,二次冷轧压下率6~15%,获得了RD方向延伸率达到10%、TD方向延伸率达到5%以上的DCR板。
美国US7169243B2公开了连续退火阶段冷却速度100℃/s以上时,获得的DCR材的抗拉强度Rm与轧向延伸率A%的对应关系式:(640~Rm)/10≤A%≤(700~Rm)/11。
发明内容
本发明的目的在于提供一种高强高延伸率的镀锡原板及其二次冷轧方法,通过该方法获得的镀锡原板可保证钢板烘烤后RD、45°和TD三个方向仍具有较高的屈服强度和延伸率,其烘烤硬化后屈服强度RP0.2≥520MPa,轧制方向RD、45°方向、垂直方向TD的延伸率A均大于等于10%,该镀锡原板适用于易开盖和标准盖等部件的加工成形。
为达到上述目的,本发明的技术方案是:
一种高强高延伸率的镀锡原板,其成分质量百分比为:C: 0.065~0.12%,Mn:0.2~0.8%,Al:0.01~0.08%,N:0.003~0.015%,其余为Fe和不可避免杂质;该原板需经二次冷轧,二次冷轧压下率控制在5~13%,轧制张力50~100MPa。
进一步,所述镀锡原板成分还含有:B:0.001%~0.005%,Cr:0.01~0.05%,Ti:0.001~0.1%,Nb:0.001~0.2%,Cu:0.01~0.03%,Mo:0.002%~0.008%中一种或一种以上,以质量百分比计。
又进一步,所述镀锡原板烘烤硬化后屈服强度RP0.2≥520MPa,在轧制方向RD、45°方向、垂直方向TD的延伸率均大于等于10%。
所述镀锡原板的显微组织为铁素体+带状分布的颗粒状渗碳体。
在本发明钢的成分设计中:
C元素在材料中以间隙原子形式固溶或以渗碳体形式析出在基体中,对钢板起到固溶强化和析出强化从而提高钢板屈服强度的作用,其他成分不变的情况下,越高的C含量对钢板的强化效果越强,因此本发明镀锡原板C含量控制在0.065%以上。但C含量过高容易导致塑性降低,对产品最终加工性能、各向同性,尤其是材料抗时效性能均有不利影响,因此本发明镀锡原板C含量上限控制在0.12%以下。
Mn元素是钢中的强化元素、脱硫,但含量过高对材料冲压加工性能不利。本发明适用钢的Mn含量控制在0.2~0.8%。
Al元素在钢中主要起脱氧剂的作用,同时钢中N元素与Al形成AlN析出,消除N元素对钢的时效性能的影响,本发明适用钢的Al含量控制在0.01~0.08%;N元素的固溶能大大提高钢的强度,同时N含量太高导致钢的时效性能差、各向同性也会受到影响,本发明适用钢的N含量控制在0.003%~0.015%。
进一步,所述镀锡原板成分还含有:B:0.001%~0.005%,Cr:0.01~0.05%,Ti:0.001~0.1%,Nb:0.001~0.2%,Cu:0.01~0.03%,Mo:0.002%~0.008%中一种或一种以上,以质量百分比计。其中,B元素的添加进一步减少钢板烘烤时效时延伸率的损失,Cr、Ti、Nb、Cu、Mo的添加均起到进一步提高钢板强度的作用。根据实际应用中对烘烤时效后强度和延伸率的具体要求,可添加以上成分对钢板性能进行微调。
另外,本发明镀锡原板需经二次冷轧,二次冷轧压下率控制在5~13%, 轧制张力50~100MPa。
二次冷轧往往被用于提高钢板的屈服强度。一般二次冷轧压下率15%以上,此时组织轧制成带状,晶粒内存在更高的位错密度,位错在运动时相互交割加剧,使得阻力增大,引起变形抗力增大,塑性变形困难,最终导致钢板强度提高,延伸率降低;二次冷轧压下率的提高尤其使得钢板各向异性也增大,垂直轧制方向上的延伸率会急剧恶化。因此为保证对钢板强化的同时,各方向上也保证一定延伸率,本发明的二次冷轧方法中二次冷轧压下率控制在5~13%的范围内。
二次冷轧中张力的主要作用在于控制轧钢板形。一般二次冷轧张力110~150MPa。较大的张力相当于给钢板一个轧向的拉伸变形,因此往往会进一步提高钢板的各向异性,尤其对二次冷轧钢板烘烤时效后的各向异性有显著影响:张力越大,烘烤后垂直于轧制方向上延伸率降低越明显;而张力太小,无法保证钢带板形良好,因此本发明中二次冷轧的轧制张力控制范围为50~100MPa。
本发明中合金成分与二次冷轧工艺相互匹配,且唯一。为保证镀锡原板二次冷轧后屈服强度指标,成分设计时添加合金成分进行合金强化,如C、Mn两种典型的钢中强化元素;考虑到镀锡原板在用于制罐或盖前需要经过烘烤,因此钢中添加了适量的N以此使得时效后镀锡原板的屈服强度能进一步提高;同时为消除钢中添加N带来的对时效后延伸率的不利印象,同时为保证钢的纯净度,钢中添加了适量的Al。其他元素B、Cr、Ti、Nb、Cu、Mo的适量添加可进一步调节钢的强化能力及烘烤时效特性。
成分决定了该钢的“潜力”,本发明的二次冷轧方法发挥了其“潜力”。
本发明的二次冷轧方法一方面采用对钢板的变形进一步提高钢板的屈服强度,但同时控制压下率在较低的范围,防止了因压下率过大时钢板延伸率降低的问题;二次冷轧方法中对张力的控制是本发明的一大创新,我们发现,张力太大烘烤时效后钢板横向上延伸率会大大降低。当张力50~100MPa时,结合5~13%的二次冷轧压下率,才能保证该二次冷轧方法能提高钢板屈服强度,但不消弱钢板延伸率,尤其是横向延伸率。
基于以上两关键技术的结合最终获得镀锡原板组织为铁素体加未固溶的带状分布渗碳体颗粒。该镀锡原板最终烘烤硬化后屈服强度 RP0.2≥520MPa,在轧制方向RD、45°方向、垂直方向TD的延伸率均大于等于10%。
另外,本发明的一种高强高延伸率的镀锡原板的二次冷轧方法,该镀锡原板的成分质量百分比为:C:0.065~0.12%,Mn:0.2~0.8%,Al:0.01~0.08%,N:0.003~0.015%,其余为Fe和不可避免杂质;该原板经二次冷轧,二次冷轧压下率控制在5~13%,轧制张力50~100MPa。
进一步,所述镀锡原板成分还含有:B:0.001%~0.005%,Cr:0.01~0.05%,Ti:0.001~0.1%,Nb:0.001~0.2%,Cu:0.01~0.03%,Mo:0.002%~0.008%中一种或一种以上元素,以质量百分比计。
优选的,所述镀锡原板二次冷轧前的生产步骤为:转炉炼钢、连续铸坯、热轧、酸洗、一次冷轧及连续退火。
优选的,所述钢板二次冷轧前的热轧步骤为:板坯加热至≥1120℃,终轧温度≥840℃,卷取温度≤650℃。
优选的,所述镀锡原板二次冷轧前的一次冷轧的压下率为85%~90%。
优选的,所述镀锡原板二次冷轧前的连续退火步骤中,退火温度为620~680℃。
本发明所述镀锡原板烘烤硬化后烘烤硬化后屈服强度RP0.2≥520MPa,在轧制方向RD、45°方向、垂直方向TD的延伸率均大于等于10%。
本发明所述镀锡原板的显微组织为铁素体+带状分布的颗粒状渗碳体。
本发明钢在二次冷轧前:
热轧工序中,加热温度太低会导致钢中奥氏体无法完全再结晶,从而影响热轧后晶粒的细化;C、N元素无法有效固溶,可能影响最终二次冷轧后钢的屈服强度,本发明适用钢热轧加热温度≥1120℃。
热轧终轧温度过低导致进入铁素体+奥氏体两相区轧制,容易导致终轧晶粒不均匀,最终影响二次冷轧后钢板的性能均匀性,本发明适用钢热轧终轧温度≥840℃;热轧卷取温度太高,导致碳化物聚集长大或者形成粗大珠光体组织,这样导致最终二次冷轧钢的强度降低,本发明适用钢热轧卷取温度≤650℃。
热轧后进行第一次冷轧,选取冷轧压下率较低会导致最终二次冷轧钢 的屈服强度偏低,压下率过高对各向同性不利,且设备要求会更高,本发明适用钢一次冷轧压下率范围为85%~90%;冷轧后的退火是有效消除钢中内应力,调整钢的各向同性,促进钢中晶粒再结晶的一个阶段。过高导致钢的强度会降低,过低导致再结晶不充分,影响钢的各向同性。本发明适用钢的连续退火温度为620~680℃。
与现有技术相比,本发明的有益效果明显:
相较美国专利US7501031B2公开的超低碳成分钢种,本发明中公开钢种合金成分与之差别很大,尤其C含量高一个数量级,作为一种钢中强化元素,C的差异必然导致两种钢相同工艺下屈服强度会有很大差异,且以上专利发明的这种超低碳钢对炼钢、夹杂控制要求较为严格,本发明成分炼钢成本低,夹杂易于控制。
相较于中国专利CN102234736A对大的二次冷轧率要求,本发明与之合金成分也存在很大不同,且本发明公开的二次冷轧方法压下率明显小于以上专利,低轧制张力能耗更低。这种大二次冷轧率往往导致最终钢板各向异性变大,横向上延伸率会大大降低。
相较于中国专利CN101649381A采用罩式退火的连退工艺,本发明公开镀锡原板退火段采用的是连续退火,与以上专利的罩式退火方式获得钢板存在根本不同:罩式退火往往获得较低强度加较高延伸率的配合,连退相比而言强度更高,延伸率更低。且二次冷轧段压下率也差异很大。且本发明采用连退工艺获得钢板性能稳定性更强,且能耗及成本较低。
且以上三专利与本发明获得钢板最终性能指标不同,以上专利未做对烘烤时效后各向高延伸率的保证要求。
相较国际专利WO2008/018531A1,本发明公开镀锡原板合金成分与以上专利存在很大差异。本发明镀锡原板烘烤硬化后TD方向延伸率仍能保持大于10%,性能更优。本发明通过除了控制二次冷轧轧下率:5~13%,还控制了轧制张力范围:50~100MPa,获得的镀锡原板烘烤硬化后屈服强度RP0.2≥520MPa,在轧制方向RD、45°方向、垂直方向TD的延伸率均大于等于10%,比以上专利性能更加优异。
相较美国US7169243B2,本发明采用方法完全不同,且美国专利中发明这种高冷速退火方法对设备要求较高,且在薄板的生产中很容易带来板 型不好的问题,不利于生产较宽规格镀锡原板。本发明镀锡原板连续退火段温度620~680℃,冷却段按照常规冷却,无快速冷却的要求,上述专利与本发明生产方法完全不同。
附图说明
图1为二次冷轧率变化对钢板烘烤硬化后三方向上的屈服强度Rp0.2和延伸率A%的影响规律的示意图。
图2为轧制张力对钢板烘烤硬化后三方向上的屈服强度Rp0.2和延伸率A%的影响规律的示意图。
具体实施方式
下面结合实施例和附图对本发明做进一步说明。
表1列出了本发明实施例1~7和对比例1~2的合金成分。表2说明了本发明实施例1~7和对比例1~2二次冷轧前钢板的工艺。
表3~5说明了本发明实施例和比较例烘烤硬化后的性能:表3为对实施例1的钢板不同压下率二次冷轧获得的钢板(实施例1~1、1~2、1~3,对比例1~1、1~2)烘烤硬化后性能;表4为对实施例2的钢板不同张力下二次冷轧获得的钢板(实施例2~1,对比例2~1)烘烤硬化后性能;表5为对实施例3~7,对比例1~4的钢板进行不同压下率、张力下二次冷轧获得钢板的烘烤硬化后性能。
表1     单位:质量百分比
  C Mn Al N B Cr Ti Nb Cu Mo
实施例1 0.08 0.3 0.01 0.005 0 0 0 0 0 0.005
实施例2 0.12 0.3 0.03 0.015 0.002 0.03 0 0 0 0
实施例3 0.08 0.8 0.05 0.007 0 0 0 0.01 0.02 0
实施例4 0.10 0.6 0.06 0.005 0 0 0.005 0.005 0 0
实施例5 0.12 0.6 0.03 0.010 0.002 0.02 0 0.005 0 0
实施例6 0.07 0.4 0.03 0.012 0.002   0.005 0 0.02 0
实施例7 0.08 0.3 0.03 0.015 0.002 0.02 0.005 0 0 0
对比例1 0.05 0.3 0.03 0.005 0 0 0 0.005 0 0
对比例2 0.15 0.1 0.04 0.003 0.002 0 0 0 0 0
对比例3 0.10 0.6 0.06 0.005 0.005 0 0 0.005 0 0
对比例4 0.08 0.8 0.05 0.007 0 0.02 0 0.01 0 0
表2
Figure PCTCN2017086173-appb-000001
表3
Figure PCTCN2017086173-appb-000002
注:二次冷轧获得的钢板经200℃保温30min进行烘烤硬化后测定力学性能,力学性能按照JIS5标准加工拉伸样测定,Rp0.2为以产生0.2%残余变形的应力值为其屈服强度值,A%为断裂延伸率,测量标距为50mm。
表4
Figure PCTCN2017086173-appb-000003
注:二次冷轧获得的钢板经200℃保温30min进行烘烤硬化后测定力学性能,力学性能按照JIS5标准加工拉伸样测定,Rp0.2为以产生0.2% 残余变形的应力值为其屈服强度值,A%为断裂延伸率,测量标距为50mm。
表5
Figure PCTCN2017086173-appb-000004
图1说明了二次冷轧率变化对钢板烘烤硬化后三方向上的屈服强度 Rp0.2和延伸率A%的影响规律。其依据实施例1~1、1~2、1~3,比较例1~1、1~2。图中实线为Rp0.2变化曲线,虚线为A%变化曲线。二次冷轧率升高,强度升高,三方向上延伸率降低。
图2说明了轧制张力对钢板烘烤硬化后三方向上的屈服强度Rp0.2和延伸率A%的影响规律。其依据实施例1~3、2~1,比较例2~1。图中实线为RP0.2变化曲线,虚线为A%变化曲线。当轧制张力增大,影响最明显的是TD方向上延伸率会急剧降低。

Claims (12)

  1. 一种高强高延伸率的镀锡原板,其成分质量百分比为:C:0.065~0.12%,Mn:0.2~0.8%,Al:0.01~0.08%,N:0.003~0.015%,其余为Fe和不可避免杂质;该原板需经二次冷轧,二次冷轧压下率控制在5~13%,轧制张力50~100MPa。
  2. 如权利要求1所述的高强高延伸率的镀锡原板,其特征在于:其成分还含有:B:0.001%~0.005%,Cr:0.01~0.05%,Ti:0.001~0.1%,Nb:0.001~0.2%,Cu:0.01~0.03%,Mo:0.002%~0.008%中一种或一种以上,以质量百分比计。
  3. 如权利要求1或2所述的高强高延伸率的镀锡原板,其特征在于:所述镀锡原板烘烤硬化后屈服强度RP0.2≥520MPa,在轧制方向RD、45°方向、垂直方向TD的延伸率均大于等于10%。
  4. 如权利要求1或2或3所述的高强高延伸率的镀锡原板,其特征在于:所述镀锡原板的显微组织为铁素体+带状分布的颗粒状渗碳体。
  5. 一种高强高延伸率的镀锡原板的二次冷轧方法,其特征是,该镀锡原板的成分质量百分比为:C:0.065~0.12%,Mn:0.2~0.8%,Al:0.01~0.08%,N:0.003~0.015%,其余为Fe和不可避免杂质;该原板经二次冷轧,二次冷轧压下率控制在5~13%,轧制张力50~100MPa。
  6. 如权利要求5所述的高强高延伸率的镀锡原板的二次冷轧方法,其特征是,所述镀锡原板成分还含有:B:0.001%~0.005%,Cr:0.01~0.05%,Ti:0.001~0.1%,Nb:0.001~0.2%,Cu:0.01~0.03%,Mo:0.002%~0.008%中一种或一种以上元素,以质量百分比计。
  7. 如权利要求5所述的高强高延伸率的镀锡原板的二次冷轧方法,其特征是,所述镀锡原板二次冷轧前的生产步骤为:转炉炼钢、连续铸坯、热轧、酸洗、一次冷轧及连续退火。
  8. 如权利要求7所述的高强高延伸率的镀锡原板的二次冷轧方法,其特征是,所述钢板二次冷轧前的热轧步骤为:板坯加热至≥1120℃,终轧温度≥840℃,卷取温度≤650℃。
  9. 如权利要求7所述的高强高延伸率的镀锡原板的二次冷轧方法,其特征是,所述镀锡原板二次冷轧前一次冷轧的压下率为85%~90%。
  10. 如权利要求7所述的高强高延伸率的镀锡原板的二次冷轧方法,其特征是,所述镀锡原板二次冷轧前的连续退火步骤中,退火温度为620~680℃。
  11. 如权利要求5所述的高强高延伸率的镀锡原板的二次冷轧方法,其特征是:所述镀锡原板烘烤硬化后屈服强度RP0.2≥520MPa,在轧制方向RD、45°方向、垂直方向TD的延伸率均大于等于10%。
  12. 如权利要求5所述的高强高延伸率的镀锡原板的二次冷轧方法,其特征是:所述镀锡原板的显微组织为铁素体+带状分布的颗粒状渗碳体。
PCT/CN2017/086173 2016-06-23 2017-05-26 一种高强高延伸率的镀锡原板及其二次冷轧方法 WO2017219828A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/303,779 US11519059B2 (en) 2016-06-23 2017-05-26 High-strength high-elongation tinned primary plate and double cold reduction method therefor
MYPI2018001973A MY193533A (en) 2016-06-23 2017-05-26 High-strength high-elongation tinned primary plate and double cold reduction method therefor
EP17814566.0A EP3476965B1 (en) 2016-06-23 2017-05-26 High-strength high-elongation tinned primary plate and double cold reduction method therefor
PL17814566T PL3476965T3 (pl) 2016-06-23 2017-05-26 Blacha ocynowana o wysokiej wytrzymałości i wysokim wydłużeniu oraz sposób jej podwójnej zimnej redukcji
PH12018502396A PH12018502396A1 (en) 2016-06-23 2018-11-13 High-strength high-elongation tinned primary plate and double cold reduction method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610466945.1 2016-06-23
CN201610466945.1A CN106086643B (zh) 2016-06-23 2016-06-23 一种高强高延伸率的镀锡原板及其二次冷轧方法

Publications (1)

Publication Number Publication Date
WO2017219828A1 true WO2017219828A1 (zh) 2017-12-28

Family

ID=57253593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086173 WO2017219828A1 (zh) 2016-06-23 2017-05-26 一种高强高延伸率的镀锡原板及其二次冷轧方法

Country Status (7)

Country Link
US (1) US11519059B2 (zh)
EP (1) EP3476965B1 (zh)
CN (1) CN106086643B (zh)
MY (1) MY193533A (zh)
PH (1) PH12018502396A1 (zh)
PL (1) PL3476965T3 (zh)
WO (1) WO2017219828A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086643B (zh) 2016-06-23 2018-03-30 宝山钢铁股份有限公司 一种高强高延伸率的镀锡原板及其二次冷轧方法
CN108118248A (zh) * 2016-11-30 2018-06-05 宝山钢铁股份有限公司 一种高强镀锡原板及其制造方法
CN107177788B (zh) * 2017-06-01 2019-05-24 首钢集团有限公司 一种二次冷轧镀锡板及其生产方法
CN109423577B (zh) * 2017-08-30 2021-01-12 宝山钢铁股份有限公司 一种高强多相钢镀锡原板及其制造方法
CN108396243B (zh) * 2018-01-18 2019-12-24 唐山钢铁集团有限责任公司 一种瓶盖用硬质镀锡基板及其生产方法
CN108504947A (zh) * 2018-04-04 2018-09-07 首钢集团有限公司 一种二次冷轧镀锡板及其生产方法
US20220018003A1 (en) * 2018-11-21 2022-01-20 Jfe Steel Corporation Steel sheet for cans and method for manufacturing the same
MY196420A (en) * 2019-03-29 2023-03-30 Jfe Steel Corp Steel Sheet for Cans and Method for Manufacturing the same
CN111763875A (zh) * 2019-04-02 2020-10-13 上海梅山钢铁股份有限公司 一种瓶盖用高硬度冷轧电镀锡基板及其生产方法
CN112853221A (zh) * 2019-11-28 2021-05-28 宝山钢铁股份有限公司 一种易开盖用镀铬板及其加工方法
KR102326324B1 (ko) * 2019-12-20 2021-11-12 주식회사 포스코 고강도 주석 도금원판 및 그 제조방법
KR102353731B1 (ko) * 2019-12-20 2022-01-19 주식회사 포스코 가공용 주석 도금원판 및 그 제조방법
CN115125434B (zh) * 2021-03-29 2023-05-09 宝山钢铁股份有限公司 一种低碳高氮镀锡基板及其板坯连铸生产方法
CN114058946B (zh) * 2021-10-14 2022-12-16 首钢集团有限公司 一种低各向异性高强高延伸钢基体和镀锡板及其制备方法
CN114635095B (zh) * 2022-03-23 2023-04-07 邯郸市金泰包装材料有限公司 一种含有太阳花图案的气雾罐底盖用镀锡板及其生产方法
CN114686666A (zh) * 2022-03-31 2022-07-01 天津太钢天管不锈钢有限公司 一种建筑预埋件用304奥氏体不锈钢及其制造方法
CN115747633A (zh) * 2022-09-29 2023-03-07 首钢集团有限公司 一种钢材及其制备方法、包装用钢、金属罐
CN117004890B (zh) * 2023-06-29 2024-04-02 邯郸市金泰包装材料有限公司 一种高锡量气雾阀门用镀锡铁及其制造方法
CN117587330A (zh) * 2024-01-19 2024-02-23 江苏省沙钢钢铁研究院有限公司 一种高氮高纯净度镀锡板及其生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110238A (ja) * 1996-10-08 1998-04-28 Nippon Steel Corp 高い降伏強度を有する溶接缶胴用鋼板及びその製造方法
JP2007177315A (ja) * 2005-12-28 2007-07-12 Nippon Steel Corp フランジ加工性に優れた溶接缶用連続焼鈍dr鋼板およびその製造方法
CN101983251A (zh) * 2008-04-03 2011-03-02 杰富意钢铁株式会社 高强度罐用钢板及其制造方法
CN106086643A (zh) * 2016-06-23 2016-11-09 宝山钢铁股份有限公司 一种高强高延伸率的镀锡原板及其二次冷轧方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045690B2 (ja) * 1982-03-04 1985-10-11 川崎製鉄株式会社 面内異方性の小さい缶用極薄鋼板の製造方法
FR2795742B1 (fr) 1999-07-01 2001-08-03 Lorraine Laminage Tole d'acier a moyen carbone calme a l'aluminium pour emballage
JP4284815B2 (ja) * 1999-08-04 2009-06-24 Jfeスチール株式会社 高強度缶用鋼板およびその製造方法
JP4164589B2 (ja) * 1999-08-31 2008-10-15 独立行政法人物質・材料研究機構 超微細組織鋼の製造方法
JP4559918B2 (ja) * 2004-06-18 2010-10-13 新日本製鐵株式会社 加工性に優れたブリキおよびテインフリースチール用鋼板およびその製造方法
EP1806420A4 (en) * 2004-09-09 2008-04-23 Nippon Steel Corp STEEL PLATE FOR EXTREMELY THIN CONTAINERS AND RELATED MANUFACTURING METHOD
WO2006045622A1 (en) * 2004-10-26 2006-05-04 Hille & Müller GMBH Process for the manufacture of a containment device and a containment device manufactured thereby
TW200827460A (en) * 2006-08-11 2008-07-01 Nippon Steel Corp DR steel sheet and manufacturing method thereof
CN101657556B (zh) * 2007-04-18 2012-07-18 新日本制铁株式会社 软质镀锡钢板及其制造方法
JP5453884B2 (ja) * 2008-04-03 2014-03-26 Jfeスチール株式会社 高強度容器用鋼板およびその製造方法
CN101649381B (zh) 2009-09-10 2011-06-22 武汉钢铁(集团)公司 二次冷轧镀锡原板的生产方法
US8557065B2 (en) * 2009-12-02 2013-10-15 Jfe Steel Corporation Steel sheet for cans and method for manufacturing the same
CN102234736A (zh) 2010-04-22 2011-11-09 宝山钢铁股份有限公司 各向同性优良的二次冷轧高硬度冲压用钢及其制造方法
CN102286688A (zh) * 2010-06-21 2011-12-21 宝山钢铁股份有限公司 一种高硬度镀锡原板用钢及其制造方法
WO2013089095A1 (ja) * 2011-12-15 2013-06-20 株式会社神戸製鋼所 強度および延性のばらつきの小さい高強度冷延鋼板およびその製造方法
BR112016025118B1 (pt) * 2014-04-30 2021-02-17 Jfe Steel Corporation chapa de aço de alta resistência e método para fabricação da mesma
CN104060159A (zh) * 2014-06-26 2014-09-24 宝山钢铁股份有限公司 二次冷轧镀锡板的基板及其制造方法以及二次冷轧镀锡板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110238A (ja) * 1996-10-08 1998-04-28 Nippon Steel Corp 高い降伏強度を有する溶接缶胴用鋼板及びその製造方法
JP2007177315A (ja) * 2005-12-28 2007-07-12 Nippon Steel Corp フランジ加工性に優れた溶接缶用連続焼鈍dr鋼板およびその製造方法
CN101983251A (zh) * 2008-04-03 2011-03-02 杰富意钢铁株式会社 高强度罐用钢板及其制造方法
CN106086643A (zh) * 2016-06-23 2016-11-09 宝山钢铁股份有限公司 一种高强高延伸率的镀锡原板及其二次冷轧方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3476965A4 *

Also Published As

Publication number Publication date
CN106086643B (zh) 2018-03-30
MY193533A (en) 2022-10-18
EP3476965A4 (en) 2019-12-04
EP3476965B1 (en) 2021-12-29
US20200318224A1 (en) 2020-10-08
US11519059B2 (en) 2022-12-06
PH12018502396A1 (en) 2019-07-15
EP3476965A1 (en) 2019-05-01
PL3476965T3 (pl) 2022-05-02
CN106086643A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2017219828A1 (zh) 一种高强高延伸率的镀锡原板及其二次冷轧方法
US8795443B2 (en) Lacquered baked steel sheet for can
TWI604067B (zh) 兩片式罐用鋼板及其製造方法
JP5162924B2 (ja) 缶用鋼板およびその製造方法
WO2015043411A1 (zh) 一种高成形性冷轧双相带钢及其制造方法
EP3705594B1 (en) High-strength multiphase tinned steel raw plate and manufacturing method therefor
US20080185077A1 (en) Cold Rolled Steel Sheet Having High Yield Ratio And Less Anisotropy, Process For Producing The Same
WO2020103927A1 (zh) 一种高屈强比冷轧双相钢及其制造方法
KR101128315B1 (ko) 캔용 강판의 제조 방법
US20070289679A1 (en) High Strength Cold Rolled Steel Sheet Having Excellent Shape Freezability, and Method for Manufacturing the Same
WO2019001424A1 (zh) 一种冷轧退火双相钢、钢板及其制造方法
EP1888799B1 (en) Cold rolled steel sheet having superior formability, process for producing the same
JP4265574B2 (ja) 2ピース変形缶用鋼板およびその製造方法
EP3231886B1 (en) Complex-phase steel sheet with excellent formability and manufacturing method therefor
CN115505847B (zh) 一种具有优异冲击性能的冷轧超高强钢板及其制备方法
CN109722604B (zh) 一种两片喷雾罐用镀锡板及其制造方法
JP4962527B2 (ja) 成形性、形状凍結性、表面外観に優れた冷延鋼板、およびその製造方法
CN109385569B (zh) 一种高硬度冷轧电镀锡钢板及其生产方法
JP5655839B2 (ja) 缶用鋼板の母材に用いる熱延鋼板およびその製造方法
EP1885899B1 (en) Cold rolled steel sheet having high yield ratio and less anisotropy, process for producing the same
TWI427161B (zh) 冷軋鋼板及其製造方法
CN112853221A (zh) 一种易开盖用镀铬板及其加工方法
CN117966011A (zh) 一种易开盖拉环用热镀锌钢板及其制造方法
JP5481920B2 (ja) 成形性と形状凍結性に優れた冷延鋼板、およびその製造方法
CN117926122A (zh) 扩孔性能优良的汽车用高强热轧钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017814566

Country of ref document: EP

Effective date: 20190123