WO2017210976A1 - 一种尿液分析***及其尿液分析方法 - Google Patents

一种尿液分析***及其尿液分析方法 Download PDF

Info

Publication number
WO2017210976A1
WO2017210976A1 PCT/CN2016/092713 CN2016092713W WO2017210976A1 WO 2017210976 A1 WO2017210976 A1 WO 2017210976A1 CN 2016092713 W CN2016092713 W CN 2016092713W WO 2017210976 A1 WO2017210976 A1 WO 2017210976A1
Authority
WO
WIPO (PCT)
Prior art keywords
urine
urine analysis
microfluidic chip
unloading
analysis system
Prior art date
Application number
PCT/CN2016/092713
Other languages
English (en)
French (fr)
Inventor
牛振兴
王达
Original Assignee
深圳小孚医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳小孚医疗科技有限公司 filed Critical 深圳小孚医疗科技有限公司
Priority to US16/307,835 priority Critical patent/US20190302097A1/en
Publication of WO2017210976A1 publication Critical patent/WO2017210976A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/493Physical analysis of biological material of liquid biological material urine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • B01L2400/049Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0275Interchangeable or disposable dispensing tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7756Sensor type
    • G01N2021/7759Dipstick; Test strip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00108Test strips, e.g. paper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1062General features of the devices using the transfer device for another function for testing the liquid while it is in the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value

Definitions

  • the invention relates to the field of medical devices and microfluidic control, in particular to a urine analysis system and a urine analysis method thereof.
  • Urine analysis is an important test in clinical testing. Urine analysis systems are commonly used in hospitals and medical institutions. The basic working mode of the urine analysis system is to use the test piece to react with the components in the urine to change color, use light to illuminate the test piece immersed in the urine, and detect the color and intensity information of the reflected light. Calculate the concentration of chemical components in the urine.
  • Urine analysis using a urine analysis system requires the use of a urine analysis test strip.
  • the usual urine analysis test strips are made into strips with a plurality of rectangular test strips on one side, one for each test strip.
  • the test piece is made of a material that is easy to absorb water (filter paper) and is added with a specific reagent. The test piece is easy to absorb water.
  • filter paper filter paper
  • the test piece is easy to absorb water.
  • the urine analysis system generally has a strict set of reaction time for the test strip, and the reaction time is too long or too short to make the test result inaccurate.
  • Urine analysis systems using test strips are generally classified into semi-automatic and fully automatic.
  • the fully automated urine analysis system ensures consistent reaction times due to automated sampling and test strip reactions, test strip transport and read color steps.
  • it is necessary to manually participate in the test process complete the step of immersing the urine into the test strip, and then put the test strip into the strip of the test strip of the semi-automatic urine meter for the subsequent specific time.
  • test strip The work of transporting the test strip and reading the color is given to the instrument. Normally, after the operator immerses the test strip in the urine, the test strip is cleaned with a blotting paper or other water absorbing device to remove excess urine between the back side of the test strip, the side and the test strip. Such an operation is completely impossible for a person to determine an accurate operating time for all test strips. The result is that for semi-automatic urine analysis systems, the reaction time of the test strips cannot be determined and the accuracy of the test results cannot be guaranteed.
  • the optical system of the urine analysis system generally reads the color of the test piece from the front side of the test piece, and the urine is also immersed in the test piece from the front side of the test piece, the operation of the urine has great uncertainty, and may cause a part of the test piece. Residual urine droplets on the surface change the reflective properties of the surface of the test strip, thereby affecting the accuracy of the color reading device reading the color of the test strip.
  • an object of the present invention is to provide a urine analysis system and a method for analyzing the same, which are infiltrated with a test piece by means of a method of automatically sucking urine.
  • a urine analysis system comprising: a urine analyzer and a microfluidic chip, wherein
  • the microfluidic chip is provided with a plurality of urine analysis test strips, and a fluid passage corresponding to each of the urine analysis test strips;
  • the urine analyzer includes detection means for detecting the urine analysis test strip for connecting a connection port of the microfluidic chip;
  • a suction device is coupled to the liquid outflow end.
  • the urine analysis system includes, but is not limited to, urobilinogen, bilirubin, ketone body, nitrite, red blood cell, leukocyte esterase, specific gravity, One or more of PH value, protein, microalbumin, glucose, ascorbic acid, creatinine, calcium, and urine color.
  • the fluid passage has N strips
  • N urine analysis test strips are disposed in the N fluid passages, and each of the urine analysis test strips Corresponding to one of the fluid passages, the N is an integer not less than 1 and not more than 15; and the urine analysis test piece is changed in response to a urine sample to be detected flowing through the fluid passage colour.
  • the urine analysis system wherein the urine analysis test strip has two sides with a large area, wherein at least one of the sides is in a light-transmissive package.
  • the urine analysis system wherein the urine analysis test strip has two sides with a large area, wherein at least one of the sides is in a package form exposed to the air.
  • the urine analysis system wherein the microfluidic chip is rectangular, and the fluid channels are distributed in parallel on the microfluidic chip.
  • the urine analysis system wherein the microfluidic chip is in the shape of a disk, and the fluid channel is radially distributed on the microfluidic chip.
  • the urine analysis system wherein the microfluidic chip has a cylindrical shape, and the urine analysis test strip is distributed The side of the cylinder.
  • the urine analysis system is characterized in that the microfluidic chip is in the shape of a truncated cone, and the urine analysis test strip is distributed on a side of the truncated cone.
  • the urine analysis system wherein the urine analyzer further comprises an unloading device for unloading the microfluidic chip.
  • the urine analysis system is provided, wherein the detecting device is disposed at a side of the microfluidic chip, and includes a movable detecting sensor.
  • the urine analysis system wherein the detecting means comprises N detecting sensors, that is, the number of detecting sensors is the same as the number of the urine analyzing test strips.
  • the urine analysis system wherein the detecting device comprises a detecting sensor and a mechanical device for driving the movement of the microfluidic chip; the detecting sensor is configured to collect the urine analyzing test piece Color data.
  • the urine analysis system further comprises a top and a side casing, a bottom casing, and a display screen, a sampling button and an unloading button on the top, wherein the sampling A suction device is connected below the button; the unloading device is also connected under the unloading button; the suction device has a cylindrical structure, and the unloading device is nested outside the suction device; the suction device passes through the inside thereof The pipe is connected to the connection port.
  • the urine analysis system is characterized in that the detecting device is disposed on a side of the microfluidic chip, and the detecting device further comprises: a main circuit board fixed on one side of the frame, and a straight line with a lead screw
  • the motor is disposed inside the frame in parallel with the two sliding guides.
  • the moving circuit board straddles two interactive guides and is connected to a linear motor with a lead screw.
  • the detecting sensor is arranged on the moving circuit board, and the moving circuit board passes The flexible cable is connected to the main circuit board.
  • the urine analysis system wherein the urine analyzer is in the form of a hand-held pipette, comprising a top outer casing and a bottom outer casing, the side of the top outer casing being integrated with a main electrical component, the main electrical
  • the component comprises a circuit board, a button and a display screen, a battery and a wireless connection module;
  • the top of the urine analyzer is further provided with a sampling button connected to the suction device, and an unloading button connecting the unloading device;
  • the unloading device is concentric sleeve It is disposed outside the suction device; the lower portion of the suction device is connected to the microfluidic chip as a connection port.
  • the urine analysis system wherein the detecting device comprises a detecting sensor including a sensor, a motor for driving the microfluidic chip to rotate, a transmission gear, and a device for The rotating mechanism in which the microfluidic chip rotates and the test strip is sequentially moved to the detecting sensor.
  • a detecting sensor including a sensor, a motor for driving the microfluidic chip to rotate, a transmission gear, and a device for The rotating mechanism in which the microfluidic chip rotates and the test strip is sequentially moved to the detecting sensor.
  • the urine analysis system wherein the urine analyzer has a casing in a hand shape, and has a display screen at the top thereof, the casing is provided with a suction sampling button, an unloading button, and a circuit is provided inside the casing.
  • a plate, a battery is connected to the microfluidic chip through the connection port, and an electromagnet and an unloading arm for unloading the microfluidic chip are disposed at a side of the connection port; the suction device and the chip unloading device Use electric control.
  • the urine analysis system wherein the detecting device comprises a rotating electric machine connected to the connecting port, and a connecting pump connected to the connecting port through a pipe is disposed on the microfluidic chip Side detection sensor.
  • a urine analysis method comprising the following steps:
  • S1) loading a chip inserting a microfluidic chip for urine analysis into a urine analysis system such that a liquid outflow end of a fluid channel of the microfluidic chip is associated with a suction device in the urine analysis system Connecting, wherein the microfluidic chip is provided with a urine analysis test paper block that can react with the urine sample to be detected;
  • suction sampling inserting the liquid inflow end of the microfluidic chip into the urine sample to be detected, starting the suction device, and causing the urine sample to be detected to flow into the microfluidic chip;
  • the urine analysis system has a detecting device, and the detecting device reads a urine analysis in the microfluidic chip that reacts with the urine sample to be detected to generate a color change.
  • the color of the test strip
  • analysis result the urine analysis system analyzes the concentration of the component in the urine sample to be detected according to the color of the urine analysis test piece read in the above S4), and obtains a urine analysis result;
  • the urine analysis method includes, but is not limited to, urobilinogen, bilirubin, ketone body, nitrite, red blood cell, leukocyte esterase, specific gravity, One or more of PH value, protein, microalbumin, glucose, ascorbic acid, creatinine, calcium, and urine color.
  • the fluid passage has N strips
  • N urine analysis test strips are arranged in the N fluid passages, and each of the urine analysis test strips Corresponding to one of the fluid passages, the N is an integer not less than 1 and not more than 15; and the urine analysis test piece is changed in response to a urine sample to be detected flowing through the fluid passage colour.
  • the microfluidic chip is rectangular, and the fluid channels are distributed in parallel on the microfluidic chip.
  • the microfluidic chip is in the shape of a disk, and the fluid channel is radially distributed on the microfluidic chip.
  • the microfluidic chip has a cylindrical shape, and the urine analysis test strip is distributed on a side of the cylinder.
  • the microfluidic chip is in the shape of a truncated cone, and the urine analysis test strip is distributed on a side surface of the truncated cone.
  • the urine analysis method wherein the urine analyzer further comprises an unloading device for unloading the microfluidic chip.
  • the urine analysis method is provided, wherein the detecting device is disposed at a side of the microfluidic chip, and includes a movable detecting sensor; the detecting sensor is moved to the microfluidic chip The color data of the urine analysis test strip is collected on the side of each test piece.
  • the urine analysis method wherein the detecting device comprises N detecting sensors, that is, the number of detecting sensors is the same as the number of the urine analysis test strips; and the N detecting sensors are respectively corresponding to the collecting N test strip color data in the microfluidic chip.
  • the urine analysis method wherein the detecting device comprises a detecting sensor and a mechanical device for driving the movement of the microfluidic chip; the mechanical device driving the microfluidic chip to move Each of the test strips of the microfluidic chip is sequentially adjacent to the detecting sensor; and the detecting sensor is configured to collect color data of the urine analyzing test strip.
  • the urine analysis method further comprises a top and a side casing, a bottom casing, and a display screen, a sampling button and an unloading button on the top, wherein the sampling A suction device is connected below the button; the unloading device is also connected under the unloading button; the suction device has a cylindrical structure, and the unloading device is nested outside the suction device; the suction device passes through the inside thereof The pipe is connected to the connection port.
  • the detecting device is disposed on a side of the microfluidic chip, and the detecting device further comprises: a main circuit board fixed on one side of the frame, and a straight line with a lead screw
  • the motor is disposed inside the frame in parallel with the two sliding guides.
  • the moving circuit board straddles two interactive guides and is connected to a linear motor with a lead screw.
  • the detecting sensor is arranged on the moving circuit board, and the moving circuit board passes The flexible cable is connected to the main circuit board.
  • the urine analysis method wherein the urine analyzer is in the form of a hand-held pipette, comprising a top casing and a bottom casing, the side of the top casing being integrated with a main electrical component, the main electrical
  • the component comprises a circuit board, a button and a display screen, a battery and a wireless connection module;
  • the top of the urine analyzer is further provided with a sampling button connected to the suction device, and an unloading button connecting the unloading device;
  • the unloading device is concentric sleeve It is disposed outside the suction device; the lower portion of the suction device is connected to the microfluidic chip as a connection port.
  • the detecting device comprises a detecting sensor including a sensor, a motor for driving the microfluidic chip to rotate, a transmission gear, and a device for The rotating mechanism in which the microfluidic chip rotates and the test strip is sequentially moved to the detecting sensor.
  • the housing of the urine analyzer is in the form of a hand-held device, and has a display screen at the top thereof, and the housing is provided with a suction sampling button, an unloading button, and a circuit inside the housing.
  • a plate, a battery is connected to the microfluidic chip through the connection port, and an electromagnet and an unloading arm for unloading the microfluidic chip are disposed at a side of the connection port; the suction device and the chip unloading device Use electric control.
  • the detecting device includes a rotating electric machine connected to the connecting port, and a connecting pump connected to the connecting port through a pipe, and is disposed on the microfluidic chip Side detection sensor.
  • the urine analysis method wherein the portion of the microfluidic chip facing the detecting device is in a transparent or exposed package form.
  • the urine analysis system of the present invention makes the manual operation part of the semi-automatic urine analysis system change from the operation of the artificial test strip to the operation of manually installing the microfluidic chip, so that the test piece is immersed in the urine.
  • the key steps become automatic completion of the machine, ensuring the consistency of the reaction time, thereby improving the detection accuracy, and using the chip to automatically absorb the urine to infiltrate the test piece without manual intervention, so that the semi-automatic urine analysis has higher precision and accuracy.
  • the urine analysis method of this case is convenient to operate.
  • the manual operation part only installs the microfluidic chip into the urine analysis system, which not only avoids the time uncertainty caused by the manual sampling. It also makes the entire operation process more hygienic and safe, and the process does not require professional personnel to operate.
  • FIG. 1 is a schematic structural view of a urine analysis system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a microfluidic chip in a urine analysis system according to an embodiment of the invention
  • FIG. 3 is a schematic view of a urine sample taken by a urine analysis system according to an embodiment of the invention.
  • FIG. 4 is a schematic view showing the color of a reading test strip of a urine analysis system according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram of an unloading microfluidic chip of a urine analysis system according to an embodiment of the invention.
  • Figure 6 is a schematic structural view of a urine analysis system according to an embodiment of the present invention.
  • Figure 7 is a schematic view showing the steps of a urine analysis method according to an embodiment of the present invention.
  • Figure 8 is a schematic view showing a first preferred embodiment of the microfluidic chip in the urine analysis system of the present invention.
  • FIG. 9 is a perspective assembled view of a first preferred embodiment of a microfluidic chip in a urine analysis system according to the present invention.
  • Figure 10 is a schematic view showing a second preferred embodiment of the microfluidic chip in the urine analysis system of the present invention.
  • Figure 11 is a perspective view of a second preferred embodiment of the microfluidic chip in the urine analysis system of the present invention.
  • Figure 12 is a schematic view showing a third preferred embodiment of the microfluidic chip in the urine analysis system of the present invention.
  • Figure 13 is a perspective view of a third preferred embodiment of the microfluidic chip in the urine analysis system of the present invention.
  • Figure 14 is a schematic view showing a fourth preferred embodiment of the microfluidic chip in the urine analysis system of the present invention.
  • Figure 15 is a perspective view of a fourth preferred embodiment of a microfluidic chip in the urine analysis system of the present invention.
  • 16a is a schematic structural view of a urine analyzer 1 in a urine analysis system according to an embodiment of the present invention
  • 16b is a schematic view showing the internal structure of a urine analyzer 1 in a urine analysis system according to an embodiment of the present invention
  • Figure 16c is a perspective view showing the three-dimensional assembly of the urine analyzer 1 in the urine analysis system according to an embodiment of the present invention
  • Figure 16d is a schematic structural view of a detecting device 1 in a urine analysis system according to an embodiment of the present invention.
  • Figure 17a is a schematic structural view of a urine analyzer 2 in a urine analysis system according to an embodiment of the present invention.
  • Figure 17b is a schematic view showing the internal structure of a urine analyzer 2 in a urine analysis system according to an embodiment of the present invention
  • Figure 17c is a schematic structural view of a detecting device 2 in a urine analysis system according to an embodiment of the present invention.
  • 18a is a schematic structural view of a urine analyzer 3 in a urine analysis system according to an embodiment of the present invention.
  • 18b is a schematic diagram showing the internal structure of a urine analyzer 3 in a urine analysis system according to an embodiment of the present invention
  • Figure 18c is a perspective view showing the three-dimensional assembly of the urine analyzer 3 in the urine analysis system according to an embodiment of the present invention.
  • Figure 18d is a schematic diagram showing three structures of a detecting device in a urine analysis system according to an embodiment of the present invention.
  • Figure 19a is a schematic structural view of a detecting device 4 in a urine analysis system according to an embodiment of the present invention.
  • Figure 19b is a schematic view showing the internal structure of a detecting device 4 in a urine analysis system according to an embodiment of the present invention.
  • a urine analysis system comprising: a urine analyzer 10 and a microfluidic chip 1 , wherein the microfluidic chip is provided with a plurality of urine analysis test strips 2, and with each of the urine
  • the test paper block corresponds to the communicating fluid channel 3; and the liquid inflow end 5 is disposed at the lower end of the microfluidic chip and connected to one end of the fluid channel; the liquid outflow end 4 is disposed on the microfluidic chip An upper end connected to the other end of the fluid passage; the urine analyzer comprising a detecting device 8 for detecting the urine analysis test strip, a connection port 6 for connecting the microfluidic chip; and a suction A device 7 is connected to the liquid outflow end of the microfluidic chip through the connection port.
  • the detection items of the urine analysis system include, but are not limited to, urobilinogen, bilirubin, further, the fluid passage has N strips, and N urines are arranged in the N fluid passages.
  • An analysis test piece each of the urine analysis test strips corresponding to one of the fluid passages, wherein N is an integer not less than 1 and not more than 15; and the urine analysis test piece is in the fluid passage.
  • the urine analysis test strip has two sides with a larger area, and at least one of the sides has a light-transmissive package.
  • the urine analysis test strip has two sides with a large area, and at least one of the sides is in a package form exposed to the air.
  • a urine analysis method comprising the following steps:
  • S1) loading a chip inserting a microfluidic chip for urine analysis into a urine analysis system such that a liquid outflow end of a fluid channel of the microfluidic chip is associated with a suction device in the urine analysis system Connecting, wherein the microfluidic chip is provided with a urine analysis test paper block that can react with the urine sample to be detected;
  • suction sampling inserting the liquid inflow end of the microfluidic chip into the urine sample to be detected, starting the suction device, and causing the urine sample to be detected to flow into the microfluidic chip;
  • the urine analysis system has a detecting device, and the detecting device reads a urine analysis in the microfluidic chip that reacts with the urine sample to be detected to generate a color change.
  • the color of the test strip
  • analysis result the urine analysis system analyzes the concentration of the component in the urine sample to be detected according to the color of the urine analysis test piece read in the above S4), and obtains a urine analysis result;
  • the detection items of the urine analysis method include, but are not limited to, urobilinogen, bilirubin, and further, the fluid channel has N strips, and N urine analysis test strips are arranged in the N fluid passages, each of the urine analysis test strips corresponds to one of the fluid passages, and the N is not less than 1 and not more than 15 An integer; and the urine analysis test strip is colored to react with a urine sample to be detected flowing through the fluid passage.
  • the time from the urine analysis test piece immersed in the urine to the detection probe reading the color of the urine analysis test piece is 30 seconds to 90 seconds.
  • the portion of the microfluidic chip facing the detecting device is in a transparent or exposed package form.
  • the urine analysis test strip 2 is packaged into the microfluidic chip 1, and the microfluidic chip 1 has a fluid passage 3 therein, and the shape of the fluid passage 3 causes the inside to flow through the urine to be detected.
  • each of the test strips 2 is immersed in the urine sample 11 to be detected.
  • the microfluidic chip 1 also has a liquid inflow end 5 and a liquid outflow end 4.
  • the microfluidic chip 1 is first inserted into the urine analyzer 10, and the suction device 7 in the urine analyzer 10 is connected to the liquid outflow end 4 of the microfluidic chip 1 through the connection port 6. As shown in FIG.
  • the urine sample 11 to be tested is placed under the urine analyzer 10, and the liquid suction end 5 of the microfluidic chip 1 is immersed in the urine sample 11.
  • the suction device 7 of the urine analyzer 10 sucks up the liquid, so that the urine sample 11 is sucked into the microfluidic chip 1 and immersed in the test strip 2.
  • the chemical reaction in the test strip 2 is completed, and the detecting device 8 of the urine analyzer 10 is moved to the microfluidic chip 1, one by one.
  • the color of the test strip 2 in the microfluidic chip 1 is read.
  • the unloading device 9 in the urine analyzer 10 moves downward to disengage the microfluidic chip 1 from the urine analyzer 10.
  • the detection device 8 is made stationary, and correspondingly, the microfluidic chip 1 is movable.
  • the microfluidic chip 1 is formed into a disk shape, a cylindrical shape or a truncated cone shape, and can perform a circular motion.
  • the detecting device 8 is fixed at a distance from the microfluidic chip.
  • the urine analysis test strip 2 is packaged in the microfluidic chip 1, the microfluidic chip 1 has a fluid passage 3 therein, and the shape of the fluid passage 3 causes the inside to flow through the sample liquid 11, each of which The test piece 2 is immersed in the sample liquid 11.
  • the microfluidic chip 1 also has a liquid inflow end 5 and a liquid outflow end 4.
  • the microfluidic chip 1 when performing urine analysis, the microfluidic chip 1 is first inserted into the urine analyzer 10, and the suction device 7 in the urine analyzer 10 is connected to the liquid of the microfluidic chip 1 through the connection port 6. Outflow end 4.
  • the operations here can be done manually. As shown in FIG.
  • the urine sample 11 to be tested is placed under the urine analyzer 10, and the liquid inflow end 5 of the microfluidic chip 1 is immersed in the urine sample 11.
  • the suction device 7 of the urine analyzer 10 sucks up the liquid, so that the urine sample 11 is sucked into the microfluidic chip 1 and immersed in the test strip 2.
  • the detecting device 8 of the urine analyzer 10 is moved to the microfluidic chip 1, and the color of the test strip 2 in the microfluidic chip 1 is read block by block.
  • the unloading device 9 in the urine analyzer 10 moves downward to disengage the microfluidic chip 1 from the urine analyzer 10.
  • the manual operation part only installs the microfluidic chip 1 into the urine analyzer 10, which not only avoids the time uncertainty caused by the manual sampling, but also makes the whole operation process more sanitary and safe.
  • the microfluidic chip comprises: a liquid inflow end 5, a liquid outflow end 4, N fluid passages 3 communicating the liquid inflow end and the liquid outflow end, wherein the N test strips 2 Disposed within the N fluid channels 3, each of the test strips corresponds to one of the fluid passages, and the test strip can react with the liquid flowing through the fluid passage to change color.
  • the microfluidic chip 1 is inserted into the urine analyzer 10, and the suction device 7 in the urine analyzer 10 is connected to the connection end 4 of the microfluidic chip 1 through the connection port 6.
  • the urine sample 11 to be tested is placed under the urine analyzer 10, and the liquid suction end 5 of the microfluidic chip 1 is immersed in the urine sample 11.
  • the suction device 7 of the urine analyzer 10 sucks up the liquid, so that the urine sample 11 is sucked into the microfluidic chip 1 and immersed in the test strip 2.
  • the detecting device 8 of the urine analyzer 10 is moved to the microfluidic chip 1 to read the color of the test strip 2 in the microfluidic chip 1 block by block.
  • the unloading device 9 in the urine analyzer 10 moves downward to disengage the microfluidic chip 1 from the urine analyzer 10.
  • the detecting device 8 of the urine analyzer 10 can be stationary. In this case, the microfluidic chip 1 can be moved, thereby reading the color of the test strip 2 in the microfluidic chip 1 block by block.
  • This figure uses a transparent representation of some parts.
  • the liquid inflow end 5 is a long liquid-like tube with a bullet-like shape inside the flow hole, and the liquid outflow end. 4 is a block-shaped part having a large cross-sectional area inside and having a square outer shape.
  • the six fluid passages 3 of the microfluidic chip 1 can be constructed in a three-dimensional assembly diagram; as shown in FIG.
  • the microfluidic chip 1 is made of a transparent sheet layer 101, a sheet layer 102, and a sheet layer 103 bonded to each other.
  • the fluid channel 3 is divided into a channel 301 at the slice 102, a channel 302 at the layer 102, and 303 at the layer 103.
  • the test strip 2 is located at the sheet layer 102.
  • the channel 301, the channel 302, and the square hole on which the test strip 2 is mounted are all penetrated in the thickness direction, and the channel 303 on the sheet 103 is not in the thickness direction of the sheet. Through.
  • the sample liquid enters the microfluidic chip 1 from the liquid inflow end 5, it flows into the 303 section through the 301 section of the fluid passage 3, then flows into the 302 section, flows out from the liquid outflow end 4, and the sample liquid flows in the 303 section.
  • the test strip 2 is contacted, and the test strip 2 is chemically reacted and discolored.
  • the test items represented by the six test strips may be urine protein, urine microalbumin, glucose, ketone bodies, pH, specific gravity.
  • the operator can use the sheet layer 101, the sheet layer 102, and the sheet layer 103 in the embodiment of the present invention to perform the same expression of the fluid channel which is different from the embodiment by using the technical means in the prior art.
  • the technical effects such as simply changing the position of the sheet layer 101 and the sheet layer 103, placing a part of the passage in a sheet layer different from the embodiment, etc., should be regarded as equivalent to the present embodiment.
  • the liquid inflow end 5 is a long liquid-shaped liquid pipe with a bullet shape outside the flow hole.
  • the liquid outflow end 4 is a columnar part having a cylindrical shape with a large cross-sectional area inside and a cylindrical shape.
  • the five fluid channels 3 of the microfluidic chip 1 can be constructed in a three-dimensional assembly view; as shown in FIG.
  • the microfluidic chip 1 is made of a sheet layer 104, a sheet layer 105, and a transparent sheet layer 106 bonded to each other.
  • the fluid channel 3 is divided into a channel 304 at the slice 104, a channel 305 at the layer 105, and a 306 at the layer 106.
  • the test strip 2 is located at the sheet layer 105.
  • the channel 305 on the sheet layer 105 and the square hole in which the test strip 2 is mounted are penetrated in the thickness direction, and the channel 304 on the sheet layer 104 and the channel 306 on the sheet layer 106 are on the sheet layer.
  • the thickness direction is not penetrated.
  • the sample liquid enters the microfluidic chip 1 from the liquid inflow end 5, it flows into the 305 section through the 304 section of the fluid passage 3, then flows into the 306 section, flows out from the liquid outflow end 4, and the sample liquid flows in the 304 section.
  • the test strip 2 is contacted, and the test strip 2 is chemically reacted and discolored.
  • the test items represented by the five test strips may be urinary occult blood, leukocyte esterase, nitrite, urobilinogen, and bilirubin.
  • the performance of the fluid channel that is not identical to the embodiment can be used on the basis of the slice 104, the slice 105, and the slice 106 in the embodiment of the present invention, using techniques conventional in the art.
  • the form achieves the same technical effect, such as simply changing the position of the sheet layer 104 and the sheet layer 106, placing a part of the passage in a sheet layer different from the embodiment, and the like, and should be regarded as equivalent to the embodiment.
  • This figure adopts a transparent expression mode for some parts.
  • the liquid inflow end 5 is a long liquid-shaped liquid pipe with a cylindrical shape inside and a cylindrical shape, and the liquid flows out.
  • the end 4 has a large cross-sectional area inside and the outer shape of the flow hole is cylindrical.
  • the 15 fluid channels 3 of the microfluidic chip 1 can be constructed in a three-dimensional assembly diagram; as shown in FIG.
  • the microfluidic chip 1 is formed by bonding the bottom layer 107, the intermediate layer 108, and the top layer 109 to each other, and the liquid flows in.
  • End 5 and bottom layer 107 are fabricated as one piece
  • liquid outflow end 4 and top layer 109 are formed as one piece
  • bottom layer 107 also has a transparent annular side wall 110 that can enclose intermediate layer 108.
  • the fluid passage 3 is formed as a passage 307 directly on the lower surface of the intermediate layer 108, a passage 308 on the side surface, and a passage 309 on the upper surface.
  • the test strip 2 is located at the side of the intermediate layer 108 and is in contact with the channel 308.
  • the test strip 2 is contacted, and the test strip 2 is chemically reacted and discolored.
  • the test items represented by the 15 test strips may be urine occult blood, leukocyte esterase, nitrite, urobilinogen, bilirubin, urine protein, urine microalbumin, glucose, ketone body, pH value. , specific gravity, color.
  • the expression of the fluid channel which is not identical to the embodiment can be used by using the technical means in the art.
  • the same technical effect is achieved, such as simply changing the annular sidewall 110 of the bottom layer 107 to the top layer 109, or directly forming the annular sidewall 110 portion into a single piece, or placing the channel on the intermediate layer 108.
  • the top layer 109, the bottom layer 107, and the like which are different from the present embodiment should be regarded as equivalent to the present embodiment.
  • This figure adopts a transparent expression mode for some parts.
  • the liquid inflow end 5 is a long liquid-shaped liquid pipe with a cylindrical shape inside and a cylindrical shape, and the liquid flows out.
  • the end 4 has a large cross-sectional area inside and the outer shape of the flow hole is cylindrical.
  • the 15 fluid channels 3 of the microfluidic chip 1 can be constructed in a three-dimensional assembly diagram; as shown in FIG.
  • the microfluidic chip 1 is formed by bonding the bottom layer 111, the intermediate layer 112, and the top layer 113 to each other, and the liquid flows in.
  • the end 5 and the bottom layer 111 are formed as one piece, the liquid outflow end 4 and the top layer 113 are made into one part, and the top layer 113 also has a window 114 corresponding to each of the test strips 2.
  • the fluid passage 3 is formed as a passage 307 directly on the lower surface of the intermediate layer 112, a passage 308 on the side surface, and a passage 309 on the upper surface.
  • the test strip 2 is located at the side of the intermediate layer 112 and is in contact with the channel 308.
  • the test strip 2 is contacted, and the test strip 2 is chemically reacted and discolored.
  • the test items represented by the 15 test strips may be urine occult blood, leukocyte esterase, nitrite, urobilinogen, bilirubin, urine protein, urine microalbumin, glucose, ketone body, pH value. , specific gravity, color.
  • the technical means of the prior art can be used to realize the expression of the fluid channel which is not identical to the embodiment.
  • the same technical effect such as simply canceling the window structure of the top layer 113, directly using a transparent material, or interchanging the upper and lower layers of the truncated cone shape, etc., should be considered equivalent to the present embodiment.
  • FIG. 16a, 16b, 16c, and 16d A preferred embodiment of the urine analyzer in the urine analysis system of the present invention is shown in Figures 16a, 16b, 16c, and 16d.
  • a rectangular microfluidic chip is used, correspondingly, a urine analyzer.
  • the shape is a cuboid.
  • the urine analyzer 10 of the present embodiment has an outer portion of a top and a side outer casing 1001 and a bottom outer casing 1003.
  • the top portion further has a display screen 1002, a sampling button 701 and an unloading button 901.
  • the suction button 702 is directly connected under the sampling button 701; the unloading device 902 is directly connected under the unloading button 901; the suction device 702 is formed into a cylindrical structure, and the unloading device 902 is nested outside the cylindrical suction device 702, and is connected with a spring.
  • the suction device 702 is connected to the connection port 601 through an internal pipe; in actual use, the microfluidic chip 1 is inserted into the urine analyzer from the gap in the middle of the bottom casing 1003 of the urine analyzer, so that the microfluidic chip 1 is The liquid outlet 4 at the top is connected to the connection port 601.
  • the detecting device 8 is disposed on the side of the microfluidic chip 1, the main circuit board 807 is fixed on one side of the frame 801, and the linear motor 802 with the lead screw is disposed in parallel with the two sliding guides 806 inside the frame 801, and the moving circuit board is disposed.
  • the 803 spans the two interactive guides 806 and is coupled to a linear motor 802 with a lead screw.
  • the detection sensor 805 is disposed on the mobile circuit board 803, and the mobile circuit board 803 is coupled to the main circuit board 807 via a flexible cable 804.
  • the linear motor 802 with the lead screw operates to drive the moving circuit board 803 and the detecting sensor 805 to move in the direction of the sliding guide 806.
  • the rectangular microfluidic chip 1 used in which the inner test strips 2 are sequentially arranged in a row, is just next to the moving path of the detecting sensor 805.
  • the detecting sensor 805 sequentially reads the color data of each of the test strips 2 during the movement.
  • FIG. 17a, 17b, and 17c A second preferred embodiment of the urine analyzer in the urine analysis system of the present invention is shown in Figs. 17a, 17b, and 17c.
  • the urine analyzer 10 is fabricated as a hand-held pipette.
  • the shape, correspondingly, the disc-shaped microfluidic chip 1 is replaceably mounted on the bottom of the urine analyzer 10 in the form of a pipetting head.
  • the outer casing 1005 is formed in the shape of a pipette, and the top side thereof is integrated with a main electrical component 1004.
  • the main electrical component 1004 should include at least a circuit board, and may also include buttons and a display screen, a battery, and a wireless connection module.
  • a detection device 8 is arranged inside the outer casing portion 1006.
  • the detecting device 8 here is different from the manner in which the detecting head reads the color of the test piece one by one in the movement in the first embodiment, and adopts a method in which the detecting sensor and the test piece are in one-to-one correspondence, and the same detection as the number of test strips is arranged. sensor.
  • the top of the urine analyzer 10 is provided with two buttons for facilitating the operation of the thumb, which are a sampling button 703 for directly connecting the suction device 704, and an unload button 903 for directly connecting the unloading device 904.
  • the unloading device 904 is concentrically disposed outside of the suction device 704.
  • the lower portion of the suction device 704 can be directly connected to the microfluidic chip 1 as a connection port 602.
  • the user can activate the electrical part of the urine analyzer, and then install the microfluidic chip into the bottom of the urine analyzer, and then hold the urine analysis in a single hand.
  • the instrument immerses the liquid inflow end of the microfluidic chip at the bottom of the urine analyzer into the urine to be detected, and presses the sampling button on the thumb to cause the urine sample to be sucked into the microfluidic chip, waiting for a period of time, the reaction is completed and the urine is
  • the analyzer completes the color reading of the test piece and obtains the detection result; after that, the urine analyzer can be held by one hand, and the unloading button can be pressed by the thumb, so that the used microfluidic chip can be separated from the urine analyzer.
  • a third preferred embodiment of the urine analyzer in the urine analysis system of the present invention is shown in Figures 18a, 18b, 18c, and 18d.
  • the microfluidic chip 1 adopts a cylindrical shape, and the detecting device 8 inside the urine analyzer 10 is relatively complicated, and has a rotating mechanism, which can rotate the microfluidic chip 1 to make the test piece in the microfluidic chip 1. Move to the detection sensor 810 in sequence.
  • the urine analyzer 10 of the present embodiment includes a housing 1007, a keyboard and a circuit board 1008, a display screen 1009, a printing module 1010, an electrically driven suction device 705, a connection port 603, an unloading device 905, and the detection having the features of the present embodiment.
  • the detecting device 8 of the present embodiment includes a detecting sensor 810 having only one sensor, a motor 808 for driving the microfluidic chip to rotate, and a transmission gear 809.
  • the urine analyzer is formed into the shape of a hand-held electronic thermometer as shown in Figs. 19a and 19b.
  • This embodiment adopts a truncated microfluidic chip.
  • the housing 1011 of the urine analyzer has the shape of a handheld electronic thermometer having a display screen 1012 at the top, a suction sample button 706 at the front of the handle, and an unload button 906 having a circuit board 1013 and a battery 1014 inside the handle portion.
  • the inside of the instrument is directly connected to the microfluidic chip 1 by a connection port 604.
  • the connection port 604 is directly connected to the rotary motor 811.
  • the connection port 604 is connected to the pump 707 through a pipe.
  • the side of the microfluidic chip 1 is provided with a detection sensor 812.
  • An electromagnet 907 and an unloading arm 908 for unloading the microfluidic chip 1 are disposed at the side of the connection port 604.
  • both the suction device 7 and the chip unloading device 9 use an electric control mode.
  • the present invention includes, but is not limited to, that the microfluidic chip and the detecting device are relatively stationary (ie, a plurality of sensors are disposed, and the sensors are in one-to-one correspondence with the test strips), the detecting device is stationary, and the microfluidic chip is moved relative to the detecting device.
  • the microfluidic chip is stationary and the detecting device moves relative to the microfluidic chip, so that the urine analysis test strips are detected one by one, wherein the sensor movement in the detecting device can be linear or rotational;
  • the chip motion scheme The above embodiments are all rotary motions, and the actual design can also be a long strip chip for linear motion. All of the above methods fall within the scope of protection of this case.
  • the sensor movement scheme can be selected according to the appearance and structure design of the instrument. Or microfluidic chip motion program. Combining the above schemes or replacing designs is a common technical means by those skilled in the art.
  • the suction device, the detecting device and the unloading device have different expressions, and those skilled in the art can simply correlate the urine analyzer and the microfluidic chip.
  • a new technical solution can be obtained, for example, in the urine analyzer of the second embodiment in the form of a pipette, using an electrically driven suction device, or using an electrically driven unloading device, and the like. It should be regarded as equivalent to the technical solution of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Biophysics (AREA)
  • Hydrology & Water Resources (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种尿液分析***及其尿液分析方法,包括:尿液分析仪(10)和微流控芯片(1),其中,所述微流控芯片(1)上设有若干个尿液分析试纸块(2),以及与每个所述尿液分析试纸块(2)对应相通的流体通道(3);和液体流入端(5),其连接至所述流体通道(3)一端;液体流出端(4),其连接至所述流体通道(3)另一端;所述尿液分析仪(10)包括用于检测所述尿液分析试纸块(2)的检测装置(8),用于连接所述微流控芯片(1)的连接口(6);以及吸取装置(7),其连接所述液体流出端(4)。使用本***的人工操作部分仅为将微流控芯片(1)安装到尿液分析***中,不仅避免了人工蘸取样本带来的时间不确定性,还使整个操作过程更加卫生安全。

Description

一种尿液分析***及其尿液分析方法 技术领域
本发明涉及医疗器械领域和微流控制领域,特别是涉及一种尿液分析***及其尿液分析方法。
背景技术
尿液分析是临床检验中的重要检验手段,尿液分析***常用于医院及各医疗机构。尿液分析***的基本工作方式是:利用试纸块与尿液中成分发生化学反应而变色的现象,利用光线对浸入尿液的试纸块进行照射,并检测其反射光的颜色和强度信息,从而计算出尿液中的化学成分的浓度。
使用尿液分析***进行尿液分析,需要用到尿液分析试纸条。通常的尿液分析试纸条被制作成长条状,其一侧带有多个矩形的试纸块,每一个试纸块对应一个检测项目。试纸块由容易吸水的材质(滤纸)为基础,加入特定试剂制作而成。试纸块容易吸水,当试纸条浸入尿液后,试纸块吸入尿液,尿液中的化学成分会与试纸块内预先加入的试剂发生化学反应,从而使试纸块发生变色。
由于试纸颜色变化是由化学反应引起的,而部分化学反应尤其是酶促反应需要时间,因此反应时间与颜色直接相关。尿液分析***一般对于试纸条的反应时间有严格的设定,反应时间过长或过短都会使测试结果不准确。使用试纸条的尿液分析***,一般分为半自动和全自动两种。全自动的尿液分析***,由于取样和试纸反应、试纸运输和读取颜色步骤全都自动化进行,可以保证反应时间的一致性。然而对于半自动的尿液分析***,需要人工参与测试过程,完成将尿液浸入试纸条的步骤,然后将试纸条放到半自动尿仪的试纸条进条区域,将后续的特定时间内运送试纸条并读取颜色的工作交给仪器。通常情况下,操作人员将试纸条浸入尿液以后,会用一个吸水纸或是其它吸水装置对试纸条进行清理,以清除试纸条背面、侧面和试纸块之间的多余尿液。这样的操作对于人来说,完全无法确定一个对于所有试纸条都适用的准确操作时间。由此带来的结果就是,对于半自动的尿液分析***,试纸的反应时间不能确定,测试结果的准确性也不能得到保证。另外,由于尿液分析***的光学***一般从试纸块正面读取试纸块颜色,而尿液也从试纸块正面浸入试纸块,尿液的操作具有很大的不确定性,可能使部分试纸块表面残留尿液液滴,改变试纸块表面的反光特性,从而影响颜色读取装置读取试纸块颜色的准确性。
发明内容
为克服现有技术的不足,本发明的目的在于提供一种使用芯片自动吸取尿液的方式浸润试纸块,精度更高的尿液分析***及其分析方法。
为实现上述目的,本发明通过以下技术方案实现:
一种尿液分析***,包括:尿液分析仪和微流控芯片,其中,
所述微流控芯片上设有若干个尿液分析试纸块,以及与每个所述尿液分析试纸块对应相通的流体通道;和
液体流入端,其连接至所述流体通道一端;
液体流出端,其连接至所述流体通道另一端;
所述尿液分析仪包括用于检测所述尿液分析试纸块的检测装置,用于连接所述微流控芯片的连接口;以及
吸取装置,其连接所述液体流出端。
优选的是,所述的尿液分析***,其中,所述尿液分析***的检测项目包括但不限于尿胆原、胆红素、酮体、亚硝酸盐、红细胞、白细胞酯酶、比重、PH值、蛋白质、微白蛋白、葡萄糖、抗坏血酸、肌酐、钙、尿颜色中的一种及一种以上。
优选的是,所述的尿液分析***,其中,所述流体通道有N条,且在所述N条流体通道内布置有N个尿液分析试纸块,每个所述尿液分析试纸块对应一条所述流体通道,所述N为不小于1且不大于15的整数;且所述尿液分析试纸块为可与所述流体通道内流过的待检测的尿液样本发生反应而改变颜色。
优选的是,所述的尿液分析***,其中,所述尿液分析试纸块面积较大的两个侧面,其中有至少一个侧面处采用透光的封装形式。
优选的是,所述的尿液分析***,其中,所述尿液分析试纸块面积较大的两个侧面,其中有至少一个侧面处采用外露在空气中的封装形式。
优选的是,所述的尿液分析***,其中,所述微流控芯片为长方形状,且所述流体通道平行的分布在所述微流控芯片上。
优选的是,所述的尿液分析***,其中,所述微流控芯片为圆盘形状,且所述流体通道呈放射状的分布在所述微流控芯片上。
优选的是,所述的尿液分析***,其中,所述微流控芯片为圆柱形状,且所述尿液分析试纸块分布在 所述圆柱的侧面。
优选的是,所述的尿液分析***,其中,所述微流控芯片为圆台形状,且所述尿液分析试纸块分布在所述圆台的侧面。
优选的是,所述的尿液分析***,其中,所述尿液分析仪还包括一个用于卸载微流控芯片的卸载装置。
优选的是,所述的尿液分析***,其中,所述检测装置设于所述微流控芯片的侧面,其包括一个可移动的检测传感器。
优选的是,所述的尿液分析***,其中,所述检测装置包括N个检测传感器,即所述检测传感器数量与所述尿液分析试纸块数量相同。
优选的是,所述的尿液分析***,其中,所述检测装置包括一个检测传感器和一个驱动所述微流控芯片运动的机械装置;所述检测传感器用于采集所述尿液分析试纸块的颜色数据。
优选的是,所述的尿液分析***,其中,所述尿液分析仪还包括顶部和侧部外壳、底部外壳,其顶部还设有显示屏、采样按键和卸载按键,其中,所述采样按键下方连接有吸取装置;所述卸载按键下方还连接有所述卸载装置;所述吸取装置为圆柱形结构,所述卸载装置嵌套在所述吸取装置的外部;所述吸取装置通过其内部的管道与所述连接口相连接。
优选的是,所述的尿液分析***,其中,所述检测装置设于所述微流控芯片的侧面,所述检测装置还包括:主电路板固定在框架一侧,带丝杠的直线电机与两个滑动导杆平行的布置在框架内部,移动电路板横跨两个互动导杆且与带丝杠的直线电机相连接,所述检测传感器布置在移动电路板上,移动电路板通过柔性排线连接到主电路板。
优选的是,所述的尿液分析***,其中,所述尿液分析仪呈手持式移液器状,包括顶部外壳、底部外壳,所述顶部外壳的侧面集成有主电气部件,该主电气部件包括电路板、按键和显示屏、电池和无线连接模块;所述尿液分析仪的顶部还设置有连接吸取装置的采样按键,以及连接所述卸载装置的卸载按键;该卸载装置同心的套设在所述吸取装置的外部;所述吸取装置的下部作为连接口与微流控芯片相连接。
优选的是,所述的尿液分析***,其中,所述检测装置包括含有一枚传感器的检测传感器,用于驱动所述微流控芯片转动的电机,传动齿轮,还包括一个用于使所述微流控芯片发生旋转运动、使所述试纸块依次运动到所述检测传感器处的转动机构。
优选的是,所述的尿液分析***,其中,所述尿液分析仪的外壳呈手持状,其顶部具有显示屏,该外壳上设有吸取样本按键,卸载按键,该外壳内部设有电路板,电池;其通过所述连接口与所述微流控芯片相连接,所述连接口的侧面处设有用于卸载微流控芯片的电磁铁和卸载臂;所述吸取装置和芯片卸载装置采用电操控方式。
优选的是,所述的尿液分析***,其中,所述检测装置包括与所述连接口连接的转动电机,与所述连接口通过管道连接的连接泵,设于所述微流控芯片的侧面的检测传感器。
一种尿液分析方法,包括以下步骤:
S1)加载芯片:将用于尿液分析的微流控芯片***到尿液分析***中,使所述微流控芯片的流体通道的液体流出端与所述尿液分析***中的吸取装置相连接,其中,所述微流控芯片内设有可与待检测的尿液样本发生反应的尿液分析试纸块;
S2)吸取样本:将所述微流控芯片的液体流入端***待检测的尿液样本内,启动所述吸取装置,促使所述待检测的尿液样本流入到所述微流控芯片内;
S3)发生反应:待所述S2)中所述微流控芯片内吸取满所述待检测的尿液样本之后,所述尿液分析试纸块与所述待检测的尿液样本发生反应而产生颜色改变;
S4)读取颜色:所述尿液分析***中具有检测装置,所述检测装置读取所述微流控芯片内的与所述待检测的尿液样本发生反应而产生颜色改变的尿液分析试纸块的颜色;
S5)分析结果:所述尿液分析***根据所述S4)中读取到的所述尿液分析试纸块颜色,分析所述待检测的尿液样本中成分的浓度,得到尿液分析结果;
S6)卸载芯片:将所述微流控芯片从所述尿液分析***上卸载。
优选的是,所述的尿液分析方法,其中,所述尿液分析方法的检测项目包括但不限于尿胆原、胆红素、酮体、亚硝酸盐、红细胞、白细胞酯酶、比重、PH值、蛋白质、微白蛋白、葡萄糖、抗坏血酸、肌酐、钙、尿颜色中的一种及一种以上。
优选的是,所述的尿液分析方法,其中,所述流体通道有N条,且在所述N条流体通道内布置有N个尿液分析试纸块,每个所述尿液分析试纸块对应一条所述流体通道,所述N为不小于1且不大于15的整数;且所述尿液分析试纸块为可与所述流体通道内流过的待检测的尿液样本发生反应而改变颜色。
优选的是,所述的尿液分析方法,其中,所述微流控芯片为长方形状,且所述流体通道平行的分布在所述微流控芯片上。
优选的是,所述的尿液分析方法,其中,所述微流控芯片为圆盘形状,且所述流体通道呈放射状的分布在所述微流控芯片上。
优选的是,所述的尿液分析方法,其中,所述微流控芯片为圆柱形状,且所述尿液分析试纸块分布在所述圆柱的侧面。
优选的是,所述的尿液分析方法,其中,所述微流控芯片为圆台形状,且所述尿液分析试纸块分布在所述圆台的侧面。
优选的是,所述的尿液分析方法,其中,所述尿液分析仪还包括一个用于卸载微流控芯片的卸载装置。
优选的是,所述的尿液分析方法,其中,所述检测装置设于所述微流控芯片的侧面,其包括一个可移动的检测传感器;所述检测传感器移动到所述微流控芯片的各试纸块侧面,采集所述尿液分析试纸块的颜色数据。
优选的是,所述的尿液分析方法,其中,所述检测装置包括N个检测传感器,即所述检测传感器数量与所述尿液分析试纸块数量相同;所述N个检测传感器分别对应采集所述微流控芯片内N个试纸块颜色数据。
优选的是,所述的尿液分析方法,其中,所述检测装置包括一个检测传感器和一个驱动所述微流控芯片运动的机械装置;所述机械装置驱动所述微流控芯片运动,令所述微流控芯片的各试纸块依次靠近所述检测传感器;所述检测传感器用于采集所述尿液分析试纸块的颜色数据。
优选的是,所述的尿液分析方法,其中,所述尿液分析仪还包括顶部和侧部外壳、底部外壳,其顶部还设有显示屏、采样按键和卸载按键,其中,所述采样按键下方连接有吸取装置;所述卸载按键下方还连接有所述卸载装置;所述吸取装置为圆柱形结构,所述卸载装置嵌套在所述吸取装置的外部;所述吸取装置通过其内部的管道与所述连接口相连接。
优选的是,所述的尿液分析方法,其中,所述检测装置设于所述微流控芯片的侧面,所述检测装置还包括:主电路板固定在框架一侧,带丝杠的直线电机与两个滑动导杆平行的布置在框架内部,移动电路板横跨两个互动导杆且与带丝杠的直线电机相连接,所述检测传感器布置在移动电路板上,移动电路板通过柔性排线连接到主电路板。
优选的是,所述的尿液分析方法,其中,所述尿液分析仪呈手持式移液器状,包括顶部外壳、底部外壳,所述顶部外壳的侧面集成有主电气部件,该主电气部件包括电路板、按键和显示屏、电池和无线连接模块;所述尿液分析仪的顶部还设置有连接吸取装置的采样按键,以及连接所述卸载装置的卸载按键;该卸载装置同心的套设在所述吸取装置的外部;所述吸取装置的下部作为连接口与微流控芯片相连接。
优选的是,所述的尿液分析方法,其中,所述检测装置包括含有一枚传感器的检测传感器,用于驱动所述微流控芯片转动的电机,传动齿轮,还包括一个用于使所述微流控芯片发生旋转运动、使所述试纸块依次运动到所述检测传感器处的转动机构。
优选的是,所述的尿液分析方法,其中,所述尿液分析仪的外壳呈手持状,其顶部具有显示屏,该外壳上设有吸取样本按键,卸载按键,该外壳内部设有电路板,电池;其通过所述连接口与所述微流控芯片相连接,所述连接口的侧面处设有用于卸载微流控芯片的电磁铁和卸载臂;所述吸取装置和芯片卸载装置采用电操控方式。
优选的是,所述的尿液分析方法,其中,所述检测装置包括与所述连接口连接的转动电机,与所述连接口通过管道连接的连接泵,设于所述微流控芯片的侧面的检测传感器。
优选的是,所述的尿液分析方法,其中,所述微流控芯片朝向所述检测装置的部分为透明或外露的封装形式。
本发明的有益效果:本案的尿液分析***,使半自动尿液分析***的人工操作部分由人工试纸条蘸尿的操作变成人工安装微流控芯片的操作,使试纸块浸入尿液的关键步骤变为机器自动完成,保证了反应时间的一致性,从而提高检测准确度,使用芯片自动吸取尿液的方式浸润试纸块,无需人工干预,使半自动尿液分析的精度更高,准确度更高;本案的尿液分析方法操作便捷,整个操作过程中,人工操作部分仅为将微流控芯片安装到尿液分析***中,不仅避免了人工蘸取样本带来的时间不确定性,还使整个操作过程更加卫生安全,该过程不需要专业人士即可操作。
附图说明
附图1为本发明一实施例所述的尿液分析***的结构示意图;
附图2为本发明一实施例所述的尿液分析***中的微流控芯片示意图;
附图3为本发明一实施例所述的尿液分析***的吸入尿液样本示意图;
附图4为本发明一实施例所述的尿液分析***的读取试纸条颜色示意图;
附图5为本发明一实施例所述的尿液分析***的卸载微流控芯片示意图;
附图6为本发明一实施例所述的尿液分析***的结构示意图;
附图7为本发明一实施例所述的尿液分析方法的步骤示意图;
附图8为本发明所述的尿液分析***中的微流控芯片的第一较佳实施例示意图;
附图9为本发明所述的尿液分析***中的微流控芯片的第一较佳实施例立体装配图;
附图10为本发明所述的尿液分析***中的微流控芯片的第二较佳实施例示意图;
附图11为本发明所述的尿液分析***中的微流控芯片的第二较佳实施例立体装配图;
附图12为本发明所述的尿液分析***中的微流控芯片的第三较佳实施例示意图;
附图13为本发明所述的尿液分析***中的微流控芯片的第三较佳实施例立体装配图;
附图14为本发明所述的尿液分析***中的微流控芯片的第四较佳实施例示意图;
附图15为本发明所述的尿液分析***中的微流控芯片的第四较佳实施例立体装配图;
附图16a为本发明一实施例所述的尿液分析***中的尿液分析仪一的结构示意图;
附图16b为本发明一实施例所述的尿液分析***中的尿液分析仪一的内部结构示意图;
附图16c为本发明一实施例所述的尿液分析***中的尿液分析仪一的立体装配示意图;
附图16d为本发明一实施例所述的尿液分析***中的检测装置一的结构示意图;
附图17a为本发明一实施例所述的尿液分析***中的尿液分析仪二的结构示意图;
附图17b为本发明一实施例所述的尿液分析***中的尿液分析仪二的内部结构示意图;
附图17c为本发明一实施例所述的尿液分析***中的检测装置二的结构示意图;
附图18a为本发明一实施例所述的尿液分析***中的尿液分析仪三的结构示意图;
附图18b为本发明一实施例所述的尿液分析***中的尿液分析仪三的内部结构示意图;
附图18c为本发明一实施例所述的尿液分析***中的尿液分析仪三的立体装配示意图;
附图18d为本发明一实施例所述的尿液分析***中的检测装置的三结构示意图;
附图19a为本发明一实施例所述的尿液分析***中的检测装置四的结构示意图;
附图19b为本发明一实施例所述的尿液分析***中的检测装置四的内部结构示意图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
一种尿液分析***,包括:包括尿液分析仪10和微流控芯片1,其中,所述微流控芯片上设有若干个尿液分析试纸块2,以及与每个所述尿液分析试纸块对应相通的流体通道3;和液体流入端5,其设于所述微流控芯片下端,并连接至所述流体通道一端;液体流出端4,其设于所述微流控芯片上端,并连接至所述流体通道另一端;所述尿液分析仪包括用于检测所述尿液分析试纸块的检测装置8,用于连接所述微流控芯片的连接口6;以及吸取装置7,其通过所述连接口连接所述微流控芯片的所述液体流出端。
进一步的,所述尿液分析***的检测项目包括但不限于尿胆原、胆红素、进一步的,所述流体通道有N条,且在所述N条流体通道内布置有N个尿液分析试纸块,每个所述尿液分析试纸块对应一条所述流体通道,所述N为不小于1且不大于15的整数;且所述尿液分析试纸块为可与所述流体通道内流过的待检测的尿液样本发生反应而改变颜色。
进一步的,所述尿液分析试纸块面积较大的两个侧面,其中有至少一个侧面处采用透光的封装形式。
进一步的,所述尿液分析试纸块面积较大的两个侧面,其中有至少一个侧面处采用外露在空气中的封装形式。
一种尿液分析方法,包括以下步骤:
S1)加载芯片:将用于尿液分析的微流控芯片***到尿液分析***中,使所述微流控芯片的流体通道的液体流出端与所述尿液分析***中的吸取装置相连接,其中,所述微流控芯片内设有可与待检测的尿液样本发生反应的尿液分析试纸块;
S2)吸取样本:将所述微流控芯片的液体流入端***待检测的尿液样本内,启动所述吸取装置,促使所述待检测的尿液样本流入到所述微流控芯片内;
S3)发生反应:待所述S2)中所述微流控芯片内吸取满所述待检测的尿液样本之后,所述尿液分析试纸块与所述待检测的尿液样本发生反应而产生颜色改变;
S4)读取颜色:所述尿液分析***中具有检测装置,所述检测装置读取所述微流控芯片内的与所述待检测的尿液样本发生反应而产生颜色改变的尿液分析试纸块的颜色;
S5)分析结果:所述尿液分析***根据所述S4)中读取到的所述尿液分析试纸块颜色,分析所述待检测的尿液样本中成分的浓度,得到尿液分析结果;
S6)卸载芯片:将所述微流控芯片从所述尿液分析***上卸载。
进一步的,所述尿液分析方法的检测项目包括但不限于尿胆原、胆红素、进一步的,所述流体通道有 N条,且在所述N条流体通道内布置有N个尿液分析试纸块,每个所述尿液分析试纸块对应一条所述流体通道,所述N为不小于1且不大于15的整数;且所述尿液分析试纸块为可与所述流体通道内流过的待检测的尿液样本发生反应而改变颜色。
进一步的,从所述尿液分析试纸块浸入尿液到所述检测探头读取到所述尿液分析试纸块颜色的时间为30秒-90秒。
进一步的,所述微流控芯片朝向所述检测装置的部分为透明或外露的封装形式。
具体的,如图2所示,将尿液分析试纸块2封装到微流控芯片1中,微流控芯片1内有流体通道3,流体通道3的形状使其内部流过待检测的尿液样本11时,每一个试纸块2都被待检测的尿液样本11浸入。微流控芯片1还具有液体流入端5,液体流出端4。进行尿液分析时,首先将微流控芯片1***尿液分析仪10,使尿液分析仪10内的吸取装置7通过连接口6连接到微流控芯片1的液体流出端4。如图3所示,将待测试的尿液样本11放置在尿液分析仪10下方,使微流控芯片1的液体吸入端5浸入到尿液样本11中。尿液分析仪10的吸取装置7吸取液体,使尿液样本11被吸入到微流控芯片1内,并浸入试纸块2。如图4所示,在尿液样本浸入试纸块2大约30到90秒之后,试纸块2内的化学反应完成,尿液分析仪10的检测装置8运动到微流控芯片1处,逐块读取微流控芯片1内试纸块2的颜色。如图5所示,尿液分析仪10内的卸载装置9向下运动,使微流控芯片1脱离尿液分析仪10。
在本发明的另一实施例中,检测装置8被制作成固定的,相应的,微流控芯片1是可以进行运动的。在本实施例中,微流控芯片1被制作成圆盘形、圆柱形或圆台形,可以进行圆周运动,图6所示为圆柱形的情况,检测装置8被固定在距离微流控芯片的试纸块很近的位置,需要读取微流控芯片1内试纸块2的颜色时,令微流控芯片1进行转动,即可使检测装置8完成对所有试纸块的颜色读取。
具体的操作步骤详细过程如图2到图7所示。如图2所示,将尿液分析试纸块2封装到微流控芯片1中,微流控芯片1内有流体通道3,流体通道3的形状使其内部流过样本液体11时,每一个试纸块2都被样本液体11浸入。微流控芯片1还具有液体流入端5,液体流出端4。如图3所示,进行尿液分析时,首先将微流控芯片1***尿液分析仪10,使尿液分析仪10内的吸取装置7通过连接口6连接到微流控芯片1的液体流出端4。此处的操作可以由人工完成。如图4所示,将待测试的尿液样本11放置在尿液分析仪10下方,使微流控芯片1的液体流入端5浸入到尿液样本11中。尿液分析仪10的吸取装置7吸取液体,使尿液样本11被吸入到微流控芯片1内,并浸入试纸块2。如图5所示,试纸块2内的化学反应完成后,尿液分析仪10的检测装置8运动到微流控芯片1处,逐块读取微流控芯片1内试纸块2的颜色。如图6所示,尿液分析仪10内的卸载装置9向下运动,使微流控芯片1脱离尿液分析仪10。整个操作过程中,人工操作部分仅为将微流控芯片1安装到尿液分析仪10中,不仅避免了人工蘸取样本带来的时间不确定性,还使整个操作过程更加卫生安全。
如图2所示,其中微流控芯片包括:液体流入端5、液体流出端4、连通所述液体流入端和所述液体流出端的N条流体通道3,其特征在于,N个试纸块2布置在所述N条流体通道3内,每个所述试纸块对应一条所述流体通道,且所述试纸块可以与所述流体通道内流过的液体发生反应而改变颜色。
将微流控芯片1***尿液分析仪10,使尿液分析仪10内的吸取装置7通过连接口6连接到微流控芯片1的连接端4。将待测试的尿液样本11放置在尿液分析仪10下方,使微流控芯片1的液体吸入端5浸入到尿液样本11中。尿液分析仪10的吸取装置7吸取液体,使尿液样本11被吸入到微流控芯片1内,并浸入试纸块2。试纸块2内的化学反应完成后,尿液分析仪10的检测装置8运动到微流控芯片1处,逐块读取微流控芯片1内试纸块2的颜色。尿液分析仪10内的卸载装置9向下运动,使微流控芯片1脱离尿液分析仪10。
其中,尿液分析仪10的检测装置8,可以是静止不动的,此时可以令微流控芯片1运动,从而实现逐块读取微流控芯片1内试纸块2的颜色。
本发明的尿液分析***中的微流控芯片的一个较佳实施例中,微流控芯片被制作成长方形,流体通道数N=6,其结构三维模型如图8所示(为使图中各部分的相互关系能够更清晰的体现,本图对部分零件采用了透明的表现方式),液体流入端5为内部具有流通孔外部形状类似子弹状的长条状导液管,液体流出端4为内部具有较大截面积流通孔外部形状为方形的块状零件。微流控芯片1的6条流体通道3,其构造方式可以如立体装配图;如图9所示,微流控芯片1由透明片层101,片层102,片层103相互粘结制成,流体通道3被分割成位于片层102的通道301,位于片层102的通道302,以及位于片层103的303。试纸块2位于片层102处。在加工过程中,片层102上的通道301、通道302和安装试纸块2的方孔,在厚度方向上均为贯通,而片层103上的通道303,在片层的厚度方向上并不贯通。在实际使用过程中,样本液体从液体流入端5进入微流控芯片1后,经过流体通道3的301段流入303段,再流入302段,从液体流出端4流出,样本液体在303段流动过程中接触试纸块2,使试纸块2发生化学反应并变色。该实施例中,6个试纸块所代表的检测项目可以为尿蛋白、尿微量白蛋白、葡萄糖、酮体、PH值、比重。对于本领域技 术人员,可以在本发明实施例中的片层101,片层102,片层103的基础上,使用本领域惯用技术手段,即可用与本实施例不完全相同的流体通道的表现形式完成相同的技术效果,如简单更换片层101与片层103的位置、将部分通道安置在与本实施例不相同的片层内等,都应视作等同本实施例。
本发明的尿液分析***中的微流控芯片的第二较佳实施例中,微流控芯片被制作成圆盘形,流体通道数N=5,其结构三维模型如图10所示(为使图中各部分的相互关系能够更清晰的体现,本图对部分零件采用了透明的表现方式),液体流入端5为内部具有流通孔外部形状类似子弹状的长条状导液管,液体流出端4为内部具有较大截面积流通孔外部形状为圆柱形的柱状零件。微流控芯片1的5条流体通道3,其构造方式可以如立体装配图;如图11所示,微流控芯片1由片层104,片层105,透明片层106相互粘结制成,流体通道3被分割成位于片层104的通道304,位于片层105的通道305,以及位于片层106的306。试纸块2位于片层105处。在加工过程中,片层105上的通道305和安装试纸块2的方孔,在厚度方向上均为贯通,而片层104上的通道304,以及片层106上的通道306,在片层的厚度方向上并不贯通。在实际使用过程中,样本液体从液体流入端5进入微流控芯片1后,经过流体通道3的304段流入305段,再流入306段,从液体流出端4流出,样本液体在304段流动过程中接触试纸块2,使试纸块2发生化学反应并变色。该实施例中,5个试纸块所代表的检测项目可以为尿隐血、白细胞酯酶、亚硝酸盐、尿胆原、胆红素。对于本领域技术人员,可以在本发明实施例中的片层104,片层105,片层106的基础上,使用本领域惯用技术手段,即可用与本实施例不完全相同的流体通道的表现形式实现相同的技术效果,如简单更换片层104与片层106的位置、将部分通道安置在与本实施例不相同的片层内等,都应视作等同本实施例。
本发明的尿液分析***中的微流控芯片的第三较佳实施例中,微流控芯片被制作成圆柱形,流体通道数N=15,其结构三维模型如图12所示(为使图中各部分的相互关系能够更清晰的体现,本图对部分零件采用了透明的表现方式),液体流入端5为内部具有流通孔外部形状为圆柱的长条状导液管,液体流出端4为内部具有较大截面积流通孔外部形状为圆柱形。微流控芯片1的15条流体通道3,其构造方式可以如立体装配图;如图13所示,微流控芯片1由底层107,中间层108,顶层109相互粘结制成,液体流入端5与底层107被制作成一个零件,液体流出端4与顶层109被制作成一个零件,底层107还具有能够包围住中间层108的透明的圆环状侧壁110。流体通道3被制作成直接位于中间层108的下表面的通道307、侧表面的通道308和上表面的通道309。试纸块2位于中间层108的侧面处且与通道308相接触。在实际使用过程中,样本液体从液体流入端5进入微流控芯片1后,经过流体通道3的307段流入308段,再流入309段,从液体流出端4流出,样本液体在308段流动过程中接触试纸块2,使试纸块2发生化学反应并变色。该实施例中,15个试纸块所代表的检测项目可以为尿隐血、白细胞酯酶、亚硝酸盐、尿胆原、胆红素、尿蛋白、尿微量白蛋白、葡萄糖、酮体、PH值、比重、颜色。对于本领域技术人员,可以在本发明实施例中的底层107,中间层108,项层109的基础上,使用本领域惯用技术手段,即可用与本实施例不完全相同的流体通道的表现形式实现相同的技术效果,如简单的将底层107的环状侧壁110更改到顶层109处、或直接将环状侧壁110部分制作成一个单独的零件,或将位于中间层108上的通道安置在与本实施例不相同的顶层109、底层107内等,都应视作等同于本实施例。
本发明的尿液分析***中的微流控芯片的第四较佳实施例中,微流控芯片被制作成圆台形,流体通道数N=15,其结构三维模型如图14所示(为使图中各部分的相互关系能够更清晰的体现,本图对部分零件采用了透明的表现方式),液体流入端5为内部具有流通孔外部形状为圆柱的长条状导液管,液体流出端4为内部具有较大截面积流通孔外部形状为圆柱形。微流控芯片1的15条流体通道3,其构造方式可以如立体装配图;如图15所示,微流控芯片1由底层111,中间层112,顶层113相互粘结制成,液体流入端5与底层111被制作成一个零件,液体流出端4与顶层113被制作成一个零件,顶层113还具有对应于每一个试纸块2的窗口114。流体通道3被制作成直接位于中间层112下表面的通道307、侧表面的通道308和上表面的通道309。试纸块2位于中间层112的侧面处且与通道308相接触。在实际使用过程中,样本液体从液体流入端5进入微流控芯片1后,经过流体通道3的307段流入308段,再流入309段,从液体流出端4流出,样本液体在308段流动过程中接触试纸块2,使试纸块2发生化学反应并变色。该实施例中,15个试纸块所代表的检测项目可以为尿隐血、白细胞酯酶、亚硝酸盐、尿胆原、胆红素、尿蛋白、尿微量白蛋白、葡萄糖、酮体、PH值、比重、颜色。对于本领域技术人员,可以在本发明实施例中的底层111,中间层112,顶层113的基础上,使用本领域惯用技术手段,即可用与本实施例不完全相同的流体通道的表现形式实现相同的技术效果,如简单的将顶层113的窗口结构取消,改为直接采用透明材料,或将圆台形状的上层、下层相互调换等,都应视作等同于本实施例。
本发明的尿液分析***中的尿液分析仪的一个较佳实施例如图16a、16b、16c、16d所示,在本实施例中,使用长方形微流控芯片,相应的,尿液分析仪的形状为长方体。本实施例的尿液分析仪10,其外部是顶部和侧部外壳1001、底部外壳1003,顶部还具有显示屏1002、采样按键701和卸载按键901,其中, 采样按键701下方直接连接吸取装置702;卸载按键901下方直接连接卸载装置902;吸取装置702制作成一个圆柱形结构,卸载装置902上嵌套在圆柱形的吸取装置702的外部,并且连接一个弹簧装置;吸取装置702通过内部的管道与连接口601相连接;实际使用时,将微流控芯片1从尿液分析仪底部外壳1003中间的缝隙***尿液分析仪,使将微流控芯片1顶部的液体出口4与连接口601相连接。检测装置8布置在微流控芯片1的侧面,主电路板807固定在框架801个一侧,带丝杠的直线电机802与两个滑动导杆806平行的布置在框架801内部,移动电路板803横跨两个互动导杆806且与带丝杠的直线电机802相连接,检测传感器805布置在移动电路板803上,移动电路板803通过柔性排线804连接到主电路板807。在进行样本测试的过程中,带丝杠的直线电机802运行,驱动移动电路板803和检测传感器805沿着滑动导杆806的方向移动。在本实施例中,使用的长方形微流控芯片1,其内部的试纸块2依次排列成一排,且恰好处在检测传感器805的移动路径旁边。检测传感器805在移动的过程中,依次读取各个试纸块2的颜色数据。
本发明的尿液分析***中的尿液分析仪的第二个较佳实施例如图17a、17b、17c所示,在本实施例中,尿液分析仪10被制作成手持式移液器的形状,相应的,圆盘形微流控芯片1以移液头的方式可替换的安装在尿液分析仪10底部。被制作成移液器形状的外壳1005,其顶部侧面集成了主电气部件1004,主电气部件1004至少应包括电路板,也可以包括按键和显示屏、电池和无线连接模块。底部的外壳部分1006内部布置有检测装置8。此处的检测装置8与第一实施例中检测头在运动中逐个读取试纸块颜色的方式有所不同,采用了检测传感器与试纸块一一对应的方式,布置与试纸块数量相同的检测传感器。尿液分析仪10的顶部设置有两个方便用大拇指操作的按键,分别是直接连接吸取装置704的采样按键703,以及直接连接卸载装置904的卸载按键903。卸载装置904同心的套设在吸取装置704的外部。吸取装置704的下部可以直接作为连接口602与微流控芯片1相连接。使用本实施例的尿液分析仪进行尿液分析的时候,使用者可以启动尿液分析仪的电气部分,再将微流控芯片安装入尿液分析仪的底部,然后单手持握尿液分析仪,将尿液分析仪底部微流控芯片的液体流入端浸入待检测的尿液中,大拇指按压采样按键使尿液样本被吸入微流控芯片内,等待一段时间,反应完成且尿液分析仪完成试纸块颜色读取,得到检测结果;此后可以单手持握尿液分析仪,拇指按压卸载按键,可以令本次使用过的微流控芯片脱离尿液分析仪。
本发明的尿液分析***中的尿液分析仪的第三个较佳实施例如图18a、18b、18c、18d所示。微流控芯片1采用圆柱形,尿液分析仪10内部的检测装置8部分较为复杂,有一个转动机构,可以使微流控芯片1发生旋转运动,从而使微流控芯片1内的试纸块依次运动到检测传感器810处。本实施例的尿液分析仪10包括外壳1007,键盘和电路板1008,显示屏1009,打印模块1010,电驱动的吸取装置705,连接口603,卸载装置905,以及具有本实施例特点的检测装置8。本实施例的检测装置8,包括仅有一枚传感器的检测传感器810,驱动微流控芯片转动的电机808,和传动齿轮809。
本发明的尿液分析仪的第四实施例中,尿液分析仪被制作成如图19a、19b所示的手持式电子体温计的形状。本实施例采用圆台状的微流控芯片。尿液分析仪的外壳1011具有手持式电子体温计的形状,其顶部具有显示屏1012,手柄前段具有吸取样本按键706,和卸载按键906,手柄部分内部有电路板1013,电池1014。仪器内部与微流控芯片1直接相连接的是连接口604,连接口604直接连接转动电机811,连接口604通过管道连接泵707,微流控芯片1的侧面设有检测传感器812。连接口604的侧面处设置有用于卸载微流控芯片1的电磁铁907和卸载臂908。本实施例中,吸取装置7和芯片卸载装置9均使用了电操控方式。
需要说明的是,本案包含但不限于微流控芯片与检测装置相对静止(即设置多个传感器,且传感器与试纸块一一对应)、检测装置静止而微流控芯片相对于检测装置运动、微流控芯片静止而检测装置相对于微流控芯片运动这三种方式,使得尿液分析试纸块一一得到检测,其中,检测装置中的传感器移动,可以是直线移动,也可以旋转运动;芯片运动的方案也是一样,上述实施例里面都是旋转运动,实际设计也可以是长条状芯片做直线运动。上述方式均落入本案的保护范围,例如,检测项目较少的,可以使用多个传感器与微流控芯片相对静止的方案;检测项目多的,可以根据仪器外观和结构设计,选择传感器移动方案或是微流控芯片运动方案。对上述方案进行组合、或是替换设计,都是本领域技术人员的惯用技术手段。
本发明的尿液分析仪的上述实施例,其中的吸取装置、检测装置、卸载装置,具有不相同的表现形式,本领域技术人员可以简单的对上述尿液分析仪和微流控芯片进行相关替换组合设计,即可得到一个新的技术方案,例如在第二实施例的形如移液器的尿液分析仪中,使用电驱动的吸取装置,或使用电驱动的卸载装置,诸如此类,均应视作等同于本发明的技术方案。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (37)

  1. 一种尿液分析***,其特征在于,包括:尿液分析仪和微流控芯片,其中,
    所述微流控芯片上设有若干个尿液分析试纸块,以及与每个所述尿液分析试纸块对应相通的流体通道;和
    液体流入端,其连接至所述流体通道一端;
    液体流出端,其连接至所述流体通道另一端;
    所述尿液分析仪包括用于检测所述尿液分析试纸块的检测装置,用于连接所述微流控芯片的连接口;以及吸取装置,其连接所述液体流出端。
  2. 如权利要求1所述的尿液分析***,其特征在于,所述尿液分析***的检测项目包括但不限于尿胆原、胆红素、酮体、亚硝酸盐、红细胞、白细胞酯酶、比重、PH值、蛋白质、微白蛋白、葡萄糖、抗坏血酸、肌酐、钙、尿颜色中的一种及一种以上。
  3. 如权利要求2所述的尿液分析***,其特征在于,所述流体通道有N条,且在所述N条流体通道内布置有N个尿液分析试纸块,每个所述尿液分析试纸块对应一条所述流体通道,所述N为不小于1且不大于15的整数;且所述尿液分析试纸块为可与所述流体通道内流过的待检测的尿液样本发生反应而改变颜色。
  4. 如权利要求3所述的尿液分析***,其特征在于,所述尿液分析试纸块面积较大的两个侧面,其中有至少一个侧面处采用透光的封装形式。
  5. 如权利要求4所述的尿液分析***,其特征在于,所述尿液分析试纸块面积较大的两个侧面,其中有至少一个侧面处采用外露在空气中的封装形式。
  6. 如权利要求3所述的尿液分析***,其特征在于,所述微流控芯片为长方形状,且所述流体通道平行的分布在所述微流控芯片上。
  7. 如权利要求3所述的尿液分析***,其特征在于,所述微流控芯片为圆盘形状,且所述流体通道呈放射状的分布在所述微流控芯片上。
  8. 如权利要求3所述的尿液分析***,其特征在于,所述微流控芯片为圆柱形状,且所述尿液分析试纸块分布在所述圆柱的侧面。
  9. 如权利要求3所述的尿液分析***,其特征在于,所述微流控芯片为圆台形状,且所述尿液分析试纸块分布在所述圆台的侧面。
  10. 如权利要求1所述的尿液分析***,其特征在于,所述尿液分析仪还包括一个用于卸载微流控芯片的卸载装置。
  11. 如权利要求10所述的尿液分析***,其特征在于,所述检测装置设于所述微流控芯片的侧面,其包括一个可移动的检测传感器。
  12. 如权利要求10所述的尿液分析***,其特征在于,所述检测装置包括N个检测传感器,即所述检测传感器数量与所述尿液分析试纸块数量相同。
  13. 如权利要求10所述的尿液分析***,其特征在于,所述检测装置包括一个检测传感器和一个驱动所述微流控芯片运动的机械装置;所述检测传感器用于采集所述尿液分析试纸块的颜色数据。
  14. 如权利要求10所述的尿液分析***,其特征在于,所述尿液分析仪还包括顶部和侧部外壳、底部外壳,其顶部还设有显示屏、采样按键和卸载按键,其中,所述采样按键下方连接有吸取装置;所述卸载按键下方还连接有所述卸载装置;所述吸取装置为圆柱形结构,所述卸载装置嵌套在所述吸取装置的外部;所述吸取装置通过其内部的管道与所述连接口相连接。
  15. 如权利要求10所述的尿液分析***,其特征在于,所述检测装置设于所述微流控芯片的侧面,所述检测装置还包括:主电路板固定在框架一侧,带丝杠的直线电机与两个滑动导杆平行的布置在框架内部,移动电路板横跨两个互动导杆且与带丝杠的直线电机相连接,所述检测传感器布置在移动电路板上,移动电路板通过柔性排线连接到主电路板。
  16. 如权利要求10所述的尿液分析***,其特征在于,所述尿液分析仪呈手持式移液器状,包括顶部外壳、底部外壳,所述顶部外壳的侧面集成有主电气部件,该主电气部件包括电路板、按键和显示屏、电池和无线连接模块;所述尿液分析仪的顶部还设置有连接吸取装置的采样按键,以及连接所述卸载装置的 卸载按键;该卸载装置同心的套设在所述吸取装置的外部;所述吸取装置的下部作为连接口与微流控芯片相连接。
  17. 如权利要求10所述的尿液分析***,其特征在于,所述检测装置包括含有一枚传感器的检测传感器,用于驱动所述微流控芯片转动的电机,传动齿轮,还包括一个用于使所述微流控芯片发生旋转运动、使所述试纸块依次运动到所述检测传感器处的转动机构。
  18. 如权利要求10所述的尿液分析***,其特征在于,所述尿液分析仪的外壳呈手持状,其顶部具有显示屏,该外壳上设有吸取样本按键,卸载按键,该外壳内部设有电路板,电池:其通过所述连接口与所述微流控芯片相连接,所述连接口的侧面处设有用于卸载微流控芯片的电磁铁和卸载臂;所述吸取装置和芯片卸载装置采用电操控方式。
  19. 如权利要求10所述的尿液分析***,其特征在于,所述检测装置包括与所述连接口连接的转动电机,与所述连接口通过管道连接的连接泵,设于所述微流控芯片的侧面的检测传感器。
  20. 一种尿液分析方法,其特征在于,包括以下步骤:
    S1)加载芯片:将用于尿液分析的微流控芯片***到尿液分析***中,使所述微流控芯片的流体通道的液体流出端与所述尿液分析***中的吸取装置相连接,其中,所述微流控芯片内设有可与待检测的尿液样本发生反应的尿液分析试纸块;
    S2)吸取样本:将所述微流控芯片的液体流入端***待检测的尿液样本内,启动所述吸取装置,促使所述待检测的尿液样本流入到所述微流控芯片内;
    S3)发生反应:待所述S2)中所述微流控芯片内吸取满所述待检测的尿液样本之后,所述尿液分析试纸块与所述待检测的尿液样本发生反应而产生颜色改变;
    S4)读取颜色:所述尿液分析***中具有检测装置,所述检测装置读取所述微流控芯片内的与所述待检测的尿液样本发生反应而产生颜色改变的尿液分析试纸块的颜色;
    S5)分析结果:所述尿液分析***根据所述S4)中读取到的所述尿液分析试纸块颜色,分析所述待检测的尿液样本中成分的浓度,得到尿液分析结果;
    S6)卸载芯片:将所述微流控芯片从所述尿液分析***上卸载。
  21. 如权利要求20所述的尿液分析方法,其特征在于,所述尿液分析方法的检测项目包括但不限于尿胆原、胆红素、酮体、亚硝酸盐、红细胞、白细胞酯酶、比重、PH值、蛋白质、微白蛋白、葡萄糖、抗坏血酸、肌酐、钙、尿颜色中的一种及一种以上。
  22. 如权利要求21所述的尿液分析方法,其特征在于,所述流体通道有N条,且在所述N条流体通道内布置有N个尿液分析试纸块,每个所述尿液分析试纸块对应一条所述流体通道,所述N为不小于1且不大于15的整数;且所述尿液分析试纸块为可与所述流体通道内流过的待检测的尿液样本发生反应而改变颜色。
  23. 如权利要求21所述的尿液分析方法,其特征在于,所述微流控芯片为长方形状,且所述流体通道平行的分布在所述微流控芯片上。
  24. 如权利要求21所述的尿液分析方法,其特征在于,所述微流控芯片为圆盘形状,且所述流体通道呈放射状的分布在所述微流控芯片上。
  25. 如权利要求21所述的尿液分析方法,其特征在于,所述微流控芯片为圆柱形状,且所述尿液分析试纸块分布在所述圆柱的侧面。
  26. 如权利要求21所述的尿液分析方法,其特征在于,所述微流控芯片为圆台形状,且所述尿液分析试纸块分布在所述圆台的侧面。
  27. 如权利要求21所述的尿液分析方法,其特征在于,所述尿液分析仪还包括一个用于卸载微流控芯片的卸载装置。
  28. 如权利要求21所述的尿液分析方法,其特征在于,所述检测装置设于所述微流控芯片的侧面,其包括一个可移动的检测传感器;所述检测传感器移动到所述微流控芯片的各试纸块侧面,采集所述尿液分析试纸块的颜色数据。
  29. 如权利要求21所述的尿液分析方法,其特征在于,所述检测装置包括N个检测传感器,即所述检 测传感器数量与所述尿液分析试纸块数量相同;所述N个检测传感器分别对应采集所述微流控芯片内N个试纸块颜色数据。
  30. 如权利要求21所述的尿液分析方法,其特征在于,所述检测装置包括一个检测传感器和一个驱动所述微流控芯片运动的机械装置;所述机械装置驱动所述微流控芯片运动,令所述微流控芯片的各试纸块依次靠近所述检测传感器;所述检测传感器用于采集所述尿液分析试纸块的颜色数据。
  31. 如权利要求21所述的尿液分析方法,其特征在于,所述尿液分析仪还包括顶部和侧部外壳、底部外壳,其顶部还设有显示屏、采样按键和卸载按键,其中,所述采样按键下方连接有吸取装置;所述卸载按键下方还连接有所述卸载装置;所述吸取装置为圆柱形结构,所述卸载装置嵌套在所述吸取装置的外部;所述吸取装置通过其内部的管道与所述连接口相连接。
  32. 如权利要求21所述的尿液分析方法,其特征在于,所述检测装置设于所述微流控芯片的侧面,所述检测装置还包括:主电路板固定在框架一侧,带丝杠的直线电机与两个滑动导杆平行的布置在框架内部,移动电路板横跨两个互动导杆且与带丝杠的直线电机相连接,所述检测传感器布置在移动电路板上,移动电路板通过柔性排线连接到主电路板。
  33. 如权利要求21所述的尿液分析方法,其特征在于,所述尿液分析仪呈手持式移液器状,包括顶部外壳、底部外壳,所述顶部外壳的侧面集成有主电气部件,该主电气部件包括电路板、按键和显示屏、电池和无线连接模块;所述尿液分析仪的顶部还设置有连接吸取装置的采样按键,以及连接所述卸载装置的卸载按键;该卸载装置同心的套设在所述吸取装置的外部;所述吸取装置的下部作为连接口与微流控芯片相连接。
  34. 如权利要求21所述的尿液分析方法,其特征在于,所述检测装置包括含有一枚传感器的检测传感器,用于驱动所述微流控芯片转动的电机,传动齿轮,还包括一个用于使所述微流控芯片发生旋转运动、使所述试纸块依次运动到所述检测传感器处的转动机构。
  35. 如权利要求21所述的尿液分析方法,其特征在于,所述尿液分析仪的外壳呈手持状,其顶部具有显示屏,该外壳上设有吸取样本按键,卸载按键,该外壳内部设有电路板,电池;其通过所述连接口与所述微流控芯片相连接,所述连接口的侧面处设有用于卸载微流控芯片的电磁铁和卸载臂;所述吸取装置和芯片卸载装置采用电操控方式。
  36. 如权利要求21所述的尿液分析方法,其特征在于,所述检测装置包括与所述连接口连接的转动电机,与所述连接口通过管道连接的连接泵,设于所述微流控芯片的侧面的检测传感器。
  37. 如权利要求21所述的尿液分析方法,其特征在于,所述微流控芯片朝向所述检测装置的部分为透明或外露的封装形式。
PCT/CN2016/092713 2016-06-06 2016-08-01 一种尿液分析***及其尿液分析方法 WO2017210976A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/307,835 US20190302097A1 (en) 2016-06-06 2016-08-01 A urine analysis system and a method for urine analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610394118.6A CN105890927B (zh) 2016-06-06 2016-06-06 一种尿液分析***及其尿液分析方法
CN201610394118.6 2016-06-06

Publications (1)

Publication Number Publication Date
WO2017210976A1 true WO2017210976A1 (zh) 2017-12-14

Family

ID=56711552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092713 WO2017210976A1 (zh) 2016-06-06 2016-08-01 一种尿液分析***及其尿液分析方法

Country Status (3)

Country Link
US (1) US20190302097A1 (zh)
CN (1) CN105890927B (zh)
WO (1) WO2017210976A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11291997B2 (en) * 2018-08-02 2022-04-05 Colorado State University Research Foundation Rotary manifold for paper-based immunoassays
EP3978118A4 (en) * 2019-08-19 2022-07-27 Hemosmart Medical Technology Ltd. MICROFLUIDIC SAMPLE PROCESSING DEVICE

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106442020B (zh) * 2016-11-18 2022-05-24 何耀 一种尿液取样检测装置
CN107132352B (zh) * 2017-07-07 2019-02-19 济南齐鲁医学检验有限公司 一种微量白蛋白肌酐比值(arc)检测装置
US10921310B2 (en) * 2017-07-27 2021-02-16 Asghar D. Mostafa Bio-fluid analysis and reporting system and method
CN107942044B (zh) * 2017-10-26 2020-04-14 厦门波耐模型设计有限责任公司 一种***物检测测试盘及其制作方法
KR102401909B1 (ko) * 2018-08-30 2022-05-24 주식회사 엘지화학 반응 최적화를 위한 고속 스크리닝 분석 시스템
CN109030369B (zh) * 2018-09-08 2023-07-14 重庆科技学院 一种与比色皿联用的多通道微流控芯片
CN109374617A (zh) * 2018-12-12 2019-02-22 江苏经贸职业技术学院 一种用于熏肉检测的添加剂检测装置及方法
CN113711056A (zh) * 2019-04-18 2021-11-26 美国西门子医学诊断股份有限公司 具有移液器适配性的集成微流控设备
CN110068695B (zh) * 2019-04-19 2024-02-06 成都恩普生医疗科技有限公司 一种手持便携式自动尿液分析仪器装置
US11717823B2 (en) 2020-01-06 2023-08-08 Bisu, Inc. Microfluidic system, device and method
CN115349088A (zh) * 2020-03-27 2022-11-15 朱子诚 电化学分析芯片
US11618032B2 (en) 2020-08-31 2023-04-04 International Business Machines Corporation Multiplexed testing strip device
CN114376619A (zh) * 2020-10-20 2022-04-22 中国计量大学 一种多指标女性***检测***
WO2022113124A1 (en) * 2020-11-30 2022-06-02 Ominar Innovations Private Limited A diagnostic device and method of diagnosis thereof for kidney functioning
WO2022174676A1 (zh) * 2021-02-22 2022-08-25 杉木(深圳)生物科技有限公司 微流控芯片、尿液分析方法及装置、马桶

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1786710A (zh) * 2004-12-06 2006-06-14 财团法人工业技术研究院 检体分析微流体芯片及其方法
US20070099290A1 (en) * 2003-09-02 2007-05-03 Kazuhiro Iida Customizable chip and method of manufacturing the same
CN102378595A (zh) * 2009-03-31 2012-03-14 森西勒Pat股份公司 测量分析物浓度的医疗设备
CN102483402A (zh) * 2009-09-09 2012-05-30 韩国电子通信研究院 用于尿分析的便携式数字读出器
CN202494684U (zh) * 2012-01-19 2012-10-17 湖州凯立特医疗器械有限公司 便携式检测仪器的自校准多次测量模块
CN202814969U (zh) * 2012-10-08 2013-03-20 江西恒盛晶微技术有限公司 一种配套手持式快速检测分析装置的抛弃式消耗品
CN103348245A (zh) * 2011-02-07 2013-10-09 多检测技术有限公司 基于微流体的分析装置
CN104237212A (zh) * 2013-06-17 2014-12-24 张荣法 手持化学检测装置及应用于该化学检测装置的试片
CN105531591A (zh) * 2013-08-09 2016-04-27 加利福尼亚大学董事会 数字流体样品分离设备和用于一步定量样品分析的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019901A (ja) * 1996-06-27 1998-01-23 Shimadzu Corp 自動分析装置
CN2395278Y (zh) * 1999-11-04 2000-09-06 桂林市医疗电子仪器厂 尿分析仪的转盘式送检自动卸载装置
CN200989882Y (zh) * 2006-12-29 2007-12-12 河南农业大学 便捷更换表面等离子共振生物芯片装置
KR101189724B1 (ko) * 2010-07-19 2012-10-11 주식회사 필로시스 뇨 분석장치 및 이를 이용한 뇨 분석방법
CN204479584U (zh) * 2015-03-11 2015-07-15 厦门为正生物科技有限公司 生物检测液智能分析装置
CN205280741U (zh) * 2016-01-09 2016-06-01 秦培强 一种尿液分析仪
CN205991901U (zh) * 2016-06-06 2017-03-01 长春小孚科技有限公司 一种尿液分析***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070099290A1 (en) * 2003-09-02 2007-05-03 Kazuhiro Iida Customizable chip and method of manufacturing the same
CN1786710A (zh) * 2004-12-06 2006-06-14 财团法人工业技术研究院 检体分析微流体芯片及其方法
CN102378595A (zh) * 2009-03-31 2012-03-14 森西勒Pat股份公司 测量分析物浓度的医疗设备
CN102483402A (zh) * 2009-09-09 2012-05-30 韩国电子通信研究院 用于尿分析的便携式数字读出器
CN103348245A (zh) * 2011-02-07 2013-10-09 多检测技术有限公司 基于微流体的分析装置
CN202494684U (zh) * 2012-01-19 2012-10-17 湖州凯立特医疗器械有限公司 便携式检测仪器的自校准多次测量模块
CN202814969U (zh) * 2012-10-08 2013-03-20 江西恒盛晶微技术有限公司 一种配套手持式快速检测分析装置的抛弃式消耗品
CN104237212A (zh) * 2013-06-17 2014-12-24 张荣法 手持化学检测装置及应用于该化学检测装置的试片
CN105531591A (zh) * 2013-08-09 2016-04-27 加利福尼亚大学董事会 数字流体样品分离设备和用于一步定量样品分析的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11291997B2 (en) * 2018-08-02 2022-04-05 Colorado State University Research Foundation Rotary manifold for paper-based immunoassays
EP3978118A4 (en) * 2019-08-19 2022-07-27 Hemosmart Medical Technology Ltd. MICROFLUIDIC SAMPLE PROCESSING DEVICE

Also Published As

Publication number Publication date
CN105890927A (zh) 2016-08-24
CN105890927B (zh) 2019-05-07
US20190302097A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
WO2017210976A1 (zh) 一种尿液分析***及其尿液分析方法
US20130041236A1 (en) Sample analysis system and method of use
KR101879526B1 (ko) 회전가능한 뚜껑을 구비한 카트리지
CN107073470B (zh) 护理点分析处理***
CN106932601B (zh) 一种生化分析仪及其检测方法
JPH076974B2 (ja) ガス混合物のガス・蒸気状成分の濃度測定装置および該装置で用いられる支持体
JP4477398B2 (ja) 固定多機能プローブを有する分析装置
EP2810044B1 (en) Mechanical washing and measuring device for performing analyses
CN205333638U (zh) 一种poct化学发光免疫分析***
WO2010059569A2 (en) Analyzers and methods related thereto
CN110869745B (zh) 用于执行光学测定的设备、***和方法
CN108414522B (zh) 用于微流控芯片和nc膜多通量检测的一体机
JP2012047604A (ja) 検査用シート、化学分析装置及び検査用シートの製造方法
CN205991901U (zh) 一种尿液分析***
WO2018002693A1 (en) Mobile hand-held device with reusable biosensor cartridge
US20080044842A1 (en) Biological Test Strip
JPH04372861A (ja) 液面検出装置
CN114200134B (zh) 用于微生物检测的自动化快速检测装置、***及方法
CN201540245U (zh) 妇科联检分析仪
CN101504418B (zh) 一种生物检验传感器
WO2022227467A1 (zh) 生化分析仪
US20170167985A1 (en) Specimen analysis apparatus and method of analyzing specimen using the same
KR101181898B1 (ko) 평행이동 면역크로마토그래피를 이용한 생체물질의 정밀 분석 장치
CN209821209U (zh) 检测试剂盒
CN208407028U (zh) 用于微流控芯片检测的液路气路模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16904425

Country of ref document: EP

Kind code of ref document: A1