WO2017209246A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2017209246A1
WO2017209246A1 PCT/JP2017/020445 JP2017020445W WO2017209246A1 WO 2017209246 A1 WO2017209246 A1 WO 2017209246A1 JP 2017020445 W JP2017020445 W JP 2017020445W WO 2017209246 A1 WO2017209246 A1 WO 2017209246A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
magnetic flux
rotor
magnetic
magnetic pole
Prior art date
Application number
PCT/JP2017/020445
Other languages
English (en)
French (fr)
Inventor
高橋 裕樹
友和 久田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017089433A external-priority patent/JP6597705B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017002761.6T priority Critical patent/DE112017002761T5/de
Priority to CN201780034353.5A priority patent/CN109219915B/zh
Priority to US16/305,847 priority patent/US10790734B2/en
Publication of WO2017209246A1 publication Critical patent/WO2017209246A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/22Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators

Definitions

  • the present disclosure relates to a rotating electric machine that is mounted on, for example, an automobile or a truck and used as an electric motor or a generator.
  • Patent Document 2 has a magnetic pole tube portion (magnetic flux short-circuit member) disposed on the outer peripheral side of the claw-shaped magnetic pole piece, and a convex surface corresponding to the contour shape of the claw-shaped magnetic pole piece on the outer diameter side surface of the magnetic flux short-circuit member. And a recess corresponding to the gap between adjacent claw-shaped magnetic pole pieces. Patent Document 2 also describes that the convex portion and the concave portion are connected in a slope shape.
  • the magnetic flux short-circuit member is provided on the outer peripheral side of the claw-shaped magnetic pole piece of the rotor (rotor) as in Patent Document 2, the eddy current can be reduced and the reliability is improved.
  • the magnetic flux between the N pole and the S pole of the magnetic pole piece is short-circuited and the output is reduced.
  • a rotor composed of a magnet and a claw-shaped magnetic pole piece increases the amount of deformation of the claw-shaped magnetic pole piece radially outward due to centrifugal force, as the magnet weight increases. To do.
  • the air gap between the stator and the rotor is widened. There is a need. However, when the air gap is widened, the magnetic flux generation capability due to the field current of the rotor decreases due to an increase in the magnetic resistance.
  • the rotor must not allow contact with the stator due to the air gap after allowing the disturbance generated on the rotating shaft.
  • the air gap is designed in consideration of disturbance and deformation of the rotor itself due to centrifugal force.
  • the deformation of the claw-shaped magnetic pole piece is particularly taken into consideration. Therefore, in order to increase the weight of the magnet between the claw-shaped magnetic pole pieces and maintain the reliability, it is necessary to make the air gap larger in the magnet-equipped utzl type rotor than in the magnet-less utzl type rotor. Therefore, it is necessary to increase the field current, and a new problem arises that copper loss increases and heat generation increases.
  • the magnetic flux generated at the boss part of the rotor by the excitation of the field winding is designed to be guided from the disk part to the claw-shaped magnetic pole piece, magnetic flux leakage is taken into account based on the sectional area of a part of the rotor.
  • the magnetic characteristics are constantly or gently dropped from the boss to the claw-shaped pole piece.
  • the weight of the magnet is about 0.3 to 0.7 times the weight of the claw-shaped magnetic pole piece, and the weight of the claw-shaped magnetic pole piece of the Landell rotor with magnet is 1. It can be easily assumed that the range does not deviate significantly from the range of 3 to 1.7 times.
  • FIG. 25 is a characteristic diagram in which the horizontal axis represents the ampere-turn (AT), which is a unit of magnetomotive force, and the vertical axis represents the field characteristics of the rotating electrical machine when the air gap is 0.3 mm and 0.4 mm.
  • AT ampere-turn
  • the vertical axis represents the field characteristics of the rotating electrical machine when the air gap is 0.3 mm and 0.4 mm.
  • the field capacity is designed to match the existing brush capacity, it is difficult to use the same magnetic flux as the conventional magnetless Landell rotor in the current range where continuous rating is possible due to the heat resistance of the brush. it is conceivable that.
  • the present disclosure secures sufficient strength reliability while suppressing the expansion of the air gap, achieves high output by improving the field characteristics and maximum magnetic flux, and reduces the amount of heat generated by the field winding. It is an issue to be solved to provide a rotating electrical machine that can ensure thermal reliability.
  • a rotating electrical machine comprising: a stator in which an armature winding is wound around a stator core; and a rotor disposed radially opposite to the inner peripheral side of the stator,
  • the rotor is A cylindrical core boss, and a field core having a plurality of claw-shaped magnetic pole portions arranged on the outer peripheral side of the boss portion and formed with magnetic poles having different polarities alternately in the circumferential direction;
  • a permanent magnet disposed between the claw-shaped magnetic pole portions adjacent to each other in the circumferential direction so that an easy magnetization axis is directed in the circumferential direction and the polarity thereof coincides with the polarity alternately appearing in the claw-shaped magnetic pole portions by excitation;
  • a magnetic flux short-circuit member having a short-circuit portion that magnetically connects the claw-shaped magnetic pole portions having different polarities
  • the magnetic force ⁇ m of the permanent magnet makes it possible to draw out an increase in magnetic force that is equal to or greater than the decrease in capacity due to magnetic flux leakage at the short-circuited portion provided between the conventional claw-shaped magnetic poles, and the field characteristics and maximum magnetic flux are set high. It is possible to achieve high output.
  • the magnetic flux short-circuit member is disposed between the claw-shaped magnetic pole portions having different polarities in the circumferential direction including the outer peripheral side and the inner peripheral side of the claw-shaped magnetic pole portion, and is disposed in a space excluding the permanent magnet.
  • the magnetic flux short-circuit member is arranged on the outer peripheral side of the claw-shaped magnetic pole portion, the radial strength of the claw-shaped magnetic pole portion due to centrifugal force is increased, so that the claw-shaped magnetic pole portion expands radially outward due to the centrifugal force. Can be suppressed. Therefore, the air gap between the stator and the rotor can be set to the same level as that of a conventional magnetless Landell rotor that occupies many circulations.
  • FIG. 3 is an axial sectional view of the rotating electrical machine according to the first embodiment. It is a perspective view in the state where the magnetic flux short circuit member of the rotor concerning Embodiment 1 was removed. It is a perspective view of the state where the magnetic flux short circuit member of the rotor concerning Embodiment 1 was equipped. It is the front view seen from the axial direction of the rotor which concerns on Embodiment 1. FIG. It is explanatory drawing which shows the various dimensions of the field core which concerns on Embodiment 1. FIG. It is the partial expanded view which expand
  • FIG. 6 is a characteristic diagram showing a relationship between the amount of flux linkage to the armature winding and As / Ab in the first embodiment.
  • FIG. 6 is a characteristic diagram showing a relationship between the amount of flux linkage to the armature winding and S / ⁇ n in the first embodiment.
  • It is explanatory drawing which shows the positional relationship of the short circuit part of a magnetic flux short circuit member, and a stator in the modification 1.
  • FIG. 10 is a perspective view of a rotor according to Modification 2.
  • FIG. 4 is an axial sectional view of a rotating electrical machine according to a second embodiment.
  • FIG. 6 is a partial perspective view showing a part of a rotor according to a second embodiment.
  • FIG. 6 is a partial perspective view showing a part of a pole core of a rotor according to a second embodiment.
  • 6 is a partial plan view showing a part of a core member of a rotor according to Embodiment 2.
  • FIG. It is an axial sectional view of the rotating electrical machine according to the third embodiment.
  • 6 is a partial cross-sectional perspective view showing a core member of a rotor according to Embodiment 3.
  • FIG. 6 is a perspective view showing a magnetic flux short-circuit member according to Embodiment 3.
  • FIG. It is a fragmentary top view which shows the magnetic circuit of d axis
  • FIG. It is a graph which shows the relationship between a field current and permeance. It is a schematic diagram which shows the example of arrangement
  • FIG. 7 is a characteristic diagram showing the relationship between the ampere turn and the saturation magnetic flux for a rotating electrical machine having a configuration in which the air gap is set to 0.3 mm and 0.4 mm, and various combinations of the presence or absence of a magnet.
  • the magnetic flux short-circuit member is provided on the outer peripheral side of the rotor claw-shaped magnetic pole piece as in Patent Document 2, the current state is that the field characteristic is degraded due to a change from the thin broken line in FIG. 7 to the thick broken line.
  • This idea is the source of the idea of reducing the dimension between the claw-shaped pole pieces of the magnetic flux short-circuit member as much as possible. That is, the idea is that the flux linkage to the armature winding is reduced by the amount of magnetic flux leaking to the magnetic flux short-circuit member.
  • the magnet magnetic force ⁇ m draws a curve because the magnetic resistance on the boss portion side increases as the field boss portion saturates, so that it easily flows out to the stator side. After the boss portion is saturated, demagnetization occurs due to the demagnetizing field due to the field current AT, and the effective magnetic flux density Bd decreases.
  • Ab cross-sectional area of boss part
  • Bs boss part B50
  • Am surface area of magnetic flux inflow / outflow surface of permanent magnet
  • Br magnet residual magnetic flux density.
  • the boss section cross-sectional area Ab is a value obtained by dividing the cross-sectional area of the entire boss section by the number of pole pairs of the rotor.
  • the magnetic field of the rotating electrical machine of the present disclosure is assumed to be a neodymium magnet having a coercive force of about 100 kA / m with respect to a magnet thickness of 5 to 10 mm. Adopt value. If the magnetic flux value of B50 is electromagnetic soft iron, there is generally no difference of about 10% from Bs. In the approximate case, it can be applied with little error.
  • Embodiment 1 The rotating electrical machine according to the first embodiment will be described with reference to FIGS. 1 to 11, FIG. 19, and FIG.
  • the rotating electrical machine according to the first embodiment is a vehicle AC generator that is mounted on a vehicle and used as a generator.
  • the vehicle alternator 1 of Embodiment 1 includes a housing 10, a stator 20, a rotor 30, a field winding power feeding device, a rectifier 45, and the like, as shown in FIG.
  • the housing 10 includes a bottomed cylindrical front housing 11 and a rear housing 12 each having an open end.
  • the front housing 11 and the rear housing 12 are fastened by bolts 13 in a state where the openings are joined to each other.
  • the stator 20 includes an annular stator core 21 having a plurality of slots 22 and a plurality of teeth 23 shown in FIGS. 19 and 20 arranged in the circumferential direction, and a three-phase phase winding wound around the slots 22 of the stator core 21. And an armature winding 25 made of wire.
  • the plurality of teeth 23 are portions extending in the radial direction from the stator core 21.
  • the plurality of slots 22 are spaces formed between the teeth 23 adjacent in the circumferential direction, and are portions that accommodate the armature windings 25.
  • the stator 20 is fixed to the inner peripheral surfaces of the peripheral walls of the front housing 11 and the rear housing 12 while being sandwiched in the axial direction.
  • the field core 32 includes a first pole core 32a fixed to the front side (left side in FIG. 1) of the rotary shaft 31 and the rear side (right side in FIG. 1) of the rotary shaft 31.
  • the second pole core 32b is fixed.
  • the first pole core 32a includes a cylindrical first boss portion 321a, a first disk portion 322a, and a first claw-shaped magnetic pole portion 323a.
  • the first boss portion 321 a causes the field magnetic flux to flow in the axial direction on the radially inner side of the field winding 33.
  • the first disk portion 322a extends radially outward from the front end in the axial direction of the first boss portion 321a at a predetermined pitch in the circumferential direction, and causes field flux to flow in the radial direction.
  • the first claw-shaped magnetic pole portion 323a extends in the axial direction so as to surround the field winding 33 from the tip of the first disk portion 322a, and exchanges magnetic flux with the stator core 21.
  • the first pole core 32a and the second pole core 32b are formed so that the first claw-shaped magnetic pole portions 323a and the second claw-shaped magnetic pole portions 323b face each other alternately so that the axial rear end surface of the first pole core 32a and the second pole core 32b It is assembled in a state in which the front end surface in the axial direction is in contact.
  • the first claw-shaped magnetic pole portions 323a of the first pole core 32a and the second claw-shaped magnetic pole portions 323b of the second pole core 32b are alternately arranged in the circumferential direction.
  • Each of the first and second pole cores 32a and 32b has eight claw-shaped magnetic pole portions 323.
  • a 16-pole (N pole: 8, S pole: 8) Landell rotor core is formed. .
  • the field winding 33 is wound around the outer peripheral surfaces of the first and second boss portions 321a and 321b while being electrically insulated from the field core 32, and the first and second claw-shaped magnetic pole portions 323a. , 323b.
  • the field winding 33 generates a magnetomotive force in the boss portion 321 when a field current If is supplied from a field current control circuit (not shown).
  • a field current control circuit not shown.
  • magnetic poles having different polarities are formed on the first claw-shaped magnetic pole portion 323a and the second claw-shaped magnetic pole portion 323b of the first and second pole cores 32a and 32b, respectively.
  • the first claw-shaped magnetic pole part 323a is magnetized to the S pole
  • the second claw-shaped magnetic pole part 323b is magnetized to the N pole.
  • the magnetic flux generated in the boss part 321 of the field core 32 by the field winding 33 flows from the first boss part 321a of the first pole core 32a to the first disk part 322a and the first claw-shaped magnetic pole part 323a, for example.
  • the first claw-shaped magnetic pole portion 323a flows to the second claw-shaped magnetic pole portion 323b of the second pole core 32b via the stator core 21, and the second claw-shaped magnetic pole portion 323b, the second disk portion 322b, and the second boss portion.
  • a magnetic circuit that returns to the first boss portion 321a via 321b is formed.
  • This magnetic circuit is a magnetic circuit that generates a counter electromotive force of the rotor 30.
  • each permanent magnet 34 is arranged in each gap.
  • Each permanent magnet 34 has a rectangular parallelepiped outer shape, and the easy axis of magnetization is directed in the circumferential direction.
  • Each permanent magnet 34 has first and second claw-shaped magnetic poles in a state where end surfaces (flux inflow / outflow surfaces) on both sides in the circumferential direction are in contact with the circumferential side surfaces of the first and second claw-shaped magnetic pole portions 323a and 323b, respectively. It is hold
  • each permanent magnet 34 is arranged so that the polarity thereof coincides with the polarity appearing alternately in the first and second claw-shaped magnetic pole portions 323a and 323b by the excitation of the field winding 33 (see FIG. 6). ).
  • the magnetic flux short-circuit member 35 is formed in a hollow cylindrical shape having a constant axial cross-sectional area (thickness) in the circumferential direction by a soft magnetic material (see FIG. 4).
  • the outer peripheral side of the core 32 is fitted and fixed in contact with the outer peripheral surface of each claw-shaped magnetic pole portion 323. That is, the magnetic flux short-circuit member 35 has short-circuit portions 35a that magnetically connect the claw-shaped magnetic pole portions 323 having different polarities arranged alternately in the circumferential direction.
  • the first embodiment as shown in FIG.
  • the magnetic flux short-circuit member 35 has an axial length L1 that is larger than the axial length L2 of the stator core 21, and the entire length of the axial length L1 is a short-circuit portion 35a.
  • the short circuit part 35a is provided so that the axial both ends may protrude to the axial direction outer side of the opposing surface which opposes the radial direction of the rotor 30 and the stator core 21.
  • the cross-sectional area As in the axial direction of the short-circuit portion 35a is constant in the circumferential direction. That is, the short-circuit portion 35a is not provided with an uneven portion or a hole whose thickness changes in the circumferential direction.
  • the member of the short-circuit portion 35a is preferably made of a material having a relative permeability higher than that of the material of the field core 32 (particularly the boss portion 321) in order to reduce the counter electromotive force.
  • the field winding power supply device is a device for supplying power to the field winding 33, and includes a pair of brushes 41, a pair of slip rings 42, a regulator 43, and the like as shown in FIG.
  • the pair of slip rings 42 are fitted and fixed to one axial end of the rotating shaft 31 (the right end in FIG. 1).
  • the pair of brushes 41 are slidably disposed with their radially inner ends pressed against the surface of the slip ring 42.
  • the pair of brushes 41 supplies power to the field winding 33 via the slip ring 42.
  • the regulator 43 is a device that adjusts the output voltage of the vehicle alternator 1 by controlling the field current If flowing in the field winding 33.
  • the rectifier 45 is electrically connected to the armature winding 25 and is a device that rectifies an alternating current output from the armature winding 25 into a direct current.
  • the rectifier 45 includes a plurality of diodes (rectifier elements) and the like.
  • the rotor 30 rotates in a predetermined direction together with the rotary shaft 31.
  • the first and second claw-shaped magnetic poles of the first and second pole cores 32a and 32b respectively.
  • the portions 323a and 323b are excited, and NS magnetic poles are alternately formed along the rotation circumferential direction of the rotor 30.
  • a rotating magnetic field is applied to the armature winding 25 of the stator 20, thereby generating an alternating electromotive force in the armature winding 25.
  • the alternating electromotive force generated in the armature winding 25 is rectified into a direct current through the rectifier 45 and then supplied to a battery (not shown).
  • the axial sectional area of the boss portion 321 per pair of NS magnetic poles is Ab (hereinafter referred to as “boss portion sectional area Ab”).
  • the magnetic flux density at a magnetic field strength of 5000 A / m of the material is Bsb
  • the residual magnetic flux density of the permanent magnet 34 is Br
  • the surface area of the magnetic flux inflow / outflow surface of the permanent magnet 34 is Am
  • the circumferential sectional area of the short-circuit portion 35a is As.
  • Ab ⁇ Bsb + As ⁇ Bss ⁇ 2 ⁇ Br ⁇ Am Ab ⁇ Bsb is a magnetic flux flowing through the boss portion 321
  • As ⁇ Bss is a magnetic flux flowing through the short-circuit portion 35 a
  • Br ⁇ Am is one of the permanent magnets 34.
  • the above relationship means that the sum of the magnetic flux flowing through the boss portion 321 and the magnetic flux flowing through the short-circuit portion 35 a is larger than the magnetic flux of the permanent magnet 34.
  • FIG. 8 shows the result of the present inventors examining the relationship between (short-circuit section sectional area As) / (boss section sectional area Ab) and the amount of interlinkage magnetic flux to the armature winding 25.
  • the amount of flux linkage to the armature winding 25 is such that the amount of magnetic flux does not decrease compared to when no cylindrical member is installed in the range of As / Ab of 0.03 to 0.22. , Found to be equivalent.
  • a magnet magnetic flux equivalent to the magnetic flux that decreases when a cylindrical member is installed can be obtained by this configuration.
  • the leakage flux which is supposed to occur in the prior art, is set to zero, the magnetic flux does not decrease, the strength is increased by the ring, the resonance with the claw stator excitation current is prevented, the wind noise is reduced, etc.
  • the following effects can be obtained.
  • the interlinkage magnetic flux to the armature winding 25 is the sum of the magnet magnetic flux ⁇ n and the field magnetic flux ⁇ m, the permanent magnet 34 is reduced and the cost is reduced. Available.
  • the short-circuit performance has been improved so that overcharging due to EMF (electromotive force) can be prevented even when connected to a low-voltage battery such as 48V or 12V, which is much lower than the 200V to 700V of hybrid vehicles. it can.
  • Astator is a smaller one of the cross sectional area Acb of the back thickness of the stator 20 at this time and the cross sectional area Aetheth per pole tooth of the stator 20. .
  • the rotor 30 is configured so that a relationship of 1 ⁇ (Ab ⁇ Bsb + As ⁇ Bss) / (2 ⁇ Br ⁇ Am) ⁇ 1.4 is established.
  • As / Ab is fixed at 1.4, which is the peak value of the interlinkage magnetic flux to the armature winding 25, and the short-circuit capability S: (Bs ⁇ Ab + Bs ⁇ As) and the magnet magnetic flux ⁇ n at no load: ( Br / Am) is taken on the horizontal axis, and the flux linkage to the armature winding 25 is taken on the vertical axis, the result shown in FIG. 9 is obtained.
  • the rotor 30 has Ab ⁇ Bsb + As ⁇ Bss ⁇ 2 ⁇ Br ⁇ Am and 0.03 ⁇ As / Ab ⁇ 0.22.
  • the relationship is established.
  • the magnetic force ⁇ m of the permanent magnet 34 can bring out a higher magnetic force increase than the conventional capacity reduction due to magnetic flux leakage in the short-circuited portion provided between the claw-shaped magnetic pole portions, and by improving the field characteristics and the maximum magnetic flux High output can be realized.
  • the cylindrical magnetic flux short-circuit member 35 is arranged on the outer peripheral side of the claw-shaped magnetic pole portion 323, the radial strength of the claw-shaped magnetic pole portion 323 due to centrifugal force is increased. It is possible to suppress the claw-shaped magnetic pole part 323 from spreading outward in the radial direction due to centrifugal force. Therefore, the air gap between the stator 20 and the rotor 30 can be set to the same level as that of the conventional magnetless Landell type rotor that occupies many circulations. Thereby, sufficient strength reliability can be secured while suppressing the expansion of the air gap.
  • the field current supplied to the field winding 33 can be reduced by reducing the air gap, the amount of heat generated by the field winding 33 can be reduced as compared with the conventional Landell rotor with magnet. . Thereby, thermal reliability can be established with the capability of the current air cooling mechanism.
  • the cylindrical magnetic flux short-circuit member 35 restrains the claw-shaped magnetic pole part 323, thereby suppressing the resonance of the claw-shaped magnetic pole part 323 and reducing noise. Furthermore, when the claw-shaped magnetic pole portion 323 is made thinner toward the claw tip, a further space for winding the field winding 33 is created. By additionally winding the field winding 33 in this space and suppressing the claw-shaped magnetic pole part 323 from the back (that is, the inner peripheral side), the vibration of the claw-shaped magnetic pole part 323 can be further reduced and the noise can be reduced.
  • the claw-shaped magnetic pole portion 323 arranged on the circumference (that is, along the circumferential direction) is covered with the cylindrical magnetic flux short-circuit member 35. According to this configuration, it is possible to improve the efficiency performance by reducing the noise that cuts the wind between the claw-shaped magnetic pole portions 323 and reducing the load torque.
  • the cylindrical magnetic flux short-circuit member 35 protrudes toward the stator 20 from the claw-shaped magnetic pole part 323 and faces the inner peripheral surface of the stator 20, so that the field winding 33 causes the stator from the axial direction.
  • the direction of the magnetic flux guided to the 20 side follows the plane with the axis as the normal. Therefore, in general, the magnetic flux in the axial direction of the stator 20 produced by laminating electrically insulated electromagnetic steel sheets can be reduced, and eddy current loss can be reduced.
  • the rotor 30 is configured so that a relationship of 1 ⁇ (Ab ⁇ Bsb + As ⁇ Bss) / (2 ⁇ Br ⁇ Am) ⁇ 1.4 is established.
  • the back electromotive force can be strictly reduced, and the cost can be reduced by reducing the number of permanent magnets 34.
  • the short-circuit portion 35a of the magnetic flux short-circuit member 35 is set using the circumferential cross-sectional area As of the short-circuit portion 35a because the circumferential cross-sectional area As is constant in the circumferential direction. Relational expressions can be easily derived. Moreover, since the short circuit part 35a has no stress concentration coefficient and stress concentration does not occur, sufficient strength of the magnetic flux short circuit member 35 can be ensured.
  • the short-circuit portion 35a is provided so that at least a part thereof protrudes outward in the axial direction of the opposed surfaces of the rotor 30 and the stator core 21 that face each other in the radial direction.
  • the first modification differs from the first embodiment in the structure of the magnetic flux short-circuit member 36.
  • the magnetic flux short-circuit member 36 of Modification 1 is formed in a hollow cylindrical shape having a constant thickness by a soft magnetic material, but is disposed between the claw-shaped magnetic pole portions 323 adjacent in the circumferential direction of the field core 32.
  • the window portions 36b extend obliquely in the axial direction along the circumferential side surface of the claw-shaped magnetic pole portion 323, and the window portions 36b whose inclination directions are reversed are alternately arranged in the circumferential direction. .
  • the magnetic flux short-circuit member 36 has a field core in a state where the portions other than the window portion 36b are in contact with the outer peripheral surfaces of the first claw-shaped magnetic pole portions 323a and the second claw-shaped magnetic pole portions 323b that are alternately arranged in the circumferential direction.
  • the outer periphery of 32 is fitted and fixed. Thereby, the short circuit part 36a which magnetically connects the 1st nail
  • the short-circuit portion 36a includes the root portion of the first claw-shaped magnetic pole portion 323a and the tip portion of the second claw-shaped magnetic pole portion 323b, or the tip portion of the first claw-shaped magnetic pole portion 323a and the second claw-shaped magnetic pole portion 323b.
  • the root is connected.
  • the short-circuit portion 36a has a constant axial sectional area in the circumferential direction.
  • the short circuit part 36a is provided so that one part may protrude outside the axial direction of the opposing surface which opposes the radial direction of the rotor 30 and the stator core 21. As shown in FIG. Therefore, also in the case of the modification 1, there exists an effect
  • the member of the short-circuit portion 36a may be made of a material having a relative permeability higher than that of the material of the field core 32 (particularly the boss portion 321) in order to reduce the counter electromotive force similarly to the short-circuit portion 35a.
  • the magnetic flux short-circuit member 37 of Modification 2 is configured by extracting only the two short-circuit portions 36 a and 36 a at both ends in the axial direction of the magnetic flux short-circuit member 36 of Modification 1. . That is, the magnetic flux short-circuit member 37 is composed of two ring-shaped members disposed at both axial ends of the field core 32. Each magnetic flux short-circuit member 37 has a root portion of the first claw-shaped magnetic pole portion 323a and a tip portion of the second claw-shaped magnetic pole portion 323b, or the first claw-shaped magnetic pole portion 323a, similarly to the short-circuit portion 36a of the first modification. The tip portion and the base portion of the second claw-shaped magnetic pole portion 323b are connected.
  • the claw-shaped magnetic pole portion 323 radially outwards due to centrifugal force. It is possible to achieve a significant reduction in weight while preventing deformation of the.
  • the root portion of the claw-shaped magnetic pole portion 323 having a small displacement due to the centrifugal force and the tip portion where the displacement due to the centrifugal force is maximized are pressed down, a pseudo-both-supported structure is obtained. Can be configured.
  • the tip end portion of the claw-shaped magnetic pole portion 323 is suppressed by the magnetic flux short-circuit member 37, deformation in the radially outward direction can be effectively suppressed.
  • the magnetic flux short-circuit member 37 of Modification 2 is attached to both ends in the axial direction of the field core 32, it is attached to the central portion in the axial direction of the field core 32 like the magnetic flux short-circuit member 36 of Modification 1. Easier to install than anything.
  • a border line-shaped groove 36c called a grooving is attached to the outer peripheral surface of the claw-shaped magnetic pole portion 323.
  • FIGS. 12 to 15, FIG. 19, and FIG. The rotating electrical machine according to the second embodiment is a vehicle AC generator similar to that of the first embodiment, but the configuration of the rotor 50 is mainly different from that of the first embodiment.
  • symbol is used and detailed description is abbreviate
  • the vehicle alternator 2 of Embodiment 2 includes a housing 10, a stator 20, a rotor 50, a slip ring 56, a rotation sensor 57, and the like.
  • the housing 10 includes a bottomed cylindrical front housing 11 having an open end, and a lid-like rear housing 12 fitted and fixed to an opening of the front housing 11.
  • the stator 20 is configured in the same manner as in the first embodiment, and is wound around the annular stator core 21 having a plurality of slots 22 and a plurality of teeth 23 shown in FIGS. 19 and 20, and the slots 22 of the stator core 21.
  • Armature windings 25 made of three-phase phase windings.
  • Reference numeral 26 in FIG. 12 is an output line for outputting electric power taken out from the armature winding 25.
  • the stator 20 is fixed to the axially central portion of the inner peripheral surface of the peripheral wall of the front housing 11.
  • the rotor 50 includes a rotating shaft 51, a pole core 52, a core member 53, a field winding 54, and a permanent magnet 55.
  • the rotating shaft 51 is rotatably supported by the housing 10 via a pair of oil-impregnated bearings 14 and 14.
  • the pole core 52 is fitted and fixed to the outer periphery of the rotating shaft 51.
  • the core member 53 includes first and second magnetic pole portions 531a and 531b, a q-axis core portion 532, and a short-circuit portion 533.
  • the field winding 54 is wound around the boss portion 521 of the pole core 52.
  • the permanent magnet 55 is disposed between the magnetic pole parts 531 a and 531 and the q-axis core part 532.
  • the rotor 50 is rotatably provided on the inner peripheral side of the stator 20 so as to face the radial direction, and is driven by an engine (not shown) mounted on the vehicle via a driving force transmission member such as a pulley or a gear (not shown). Driven by rotation.
  • the pole core 52 corresponds to a “core part”.
  • the pole core 52 includes a cylindrical boss portion 521 that flows a field magnetic flux in the axial direction on the radially inner side of the field winding 54, and circumferential ends from both axial ends of the boss portion 521.
  • Eight first disk portions 522a are provided on one axial end side (the upper side in FIGS. 13 and 14) of the boss portion 521, and the first projecting portion 523a projecting from the radially outer tip to the other axial end side is provided.
  • Eight second disk portions 522b are provided on the other axial end side of the boss portion 521, and have second projecting portions 523b projecting from the radially outer tip toward one axial end side.
  • the first disk portion 522a and the second disk portion 522b are provided at positions that are 180 degrees out of phase in electrical direction in the circumferential direction.
  • the core member 53 includes a plurality (16 in the second embodiment) of magnetic pole portions 531, a q-axis core portion 532, and a short-circuit portion 533.
  • the magnetic pole portion 531 is arranged on the outer peripheral side of the field winding 54, and magnetic poles having different polarities alternately in the circumferential direction are formed.
  • the q-axis core part 532 is located at a position shifted by 90 ° in electrical angle from the d-axis passing through the magnetic pole part 531.
  • the short-circuit portion 533 is provided on the outer peripheral side of the magnetic pole portion 531 and magnetically connects the adjacent magnetic pole portions 531 having different polarities.
  • first magnetic pole parts 531 eight first magnetic pole parts 531a magnetized to the S poles and eight second magnetic pole parts 531b magnetized to the N poles are alternately provided in the circumferential direction.
  • the first magnetic pole portion 531a has an end face on one end side in the axial direction in contact with the first projecting portion 523a of the first disk portion 522a
  • the second magnetic pole portion 531b has an end face on the other end side in the axial direction of the second disk portion 522b. It is in contact with the second protrusion 523b.
  • Magnet housing holes 534 for housing the permanent magnets 55 are provided at three locations on both the circumferential side and the inner circumferential side of each magnetic pole portion 531.
  • the magnet housing hole 534 has a cross-sectional shape larger than the cross-sectional shape of the permanent magnet 55, and magnetic gap portions (barriers) 535 are provided on both sides in the axial direction of the hard magnetization axis of the permanent magnet 55 housed in the magnet housing hole 534. Is provided.
  • the short-circuit portion 533 is integrally provided on the outer peripheral portion of the core member 53. Specifically, it is a portion located on the outer peripheral side of the q-axis core portion 532 and the two magnet housing holes 534 on both sides in the circumferential direction.
  • the member of the short-circuit portion 533 is preferably made of a material having a relative permeability higher than that of the pole core 52 in order to reduce the counter electromotive force.
  • the field winding 54 is wound around the outer peripheral surface of the boss portion 521 while being insulated from the pole core 52, and is surrounded by the pole core 52 and the core member 53.
  • the field winding 54 is supplied with a field current If from a field current control circuit (not shown) via a brush (not shown) or a slip ring 56 fixed to the rotary shaft 51, thereby generating a magnetomotive force on the boss 521. generate.
  • magnetic poles having different polarities are formed on the first magnetic pole portion 531a and the second magnetic pole portion 531b of the core member 53, respectively.
  • the first magnetic pole portion 531a is magnetized to the S pole
  • the second magnetic pole portion 531b is magnetized to the N pole.
  • one permanent magnet 55 is housed in each of the magnet housing holes provided at three positions on both the circumferential side and the inner circumferential side of each magnetic pole portion 531.
  • the permanent magnet 55a disposed between the magnetic pole portion 531 and the q-axis core portion 532 on both sides in the circumferential direction of each magnetic pole portion 531 has the easy axis of magnetization oriented in the circumferential direction, and the polarity thereof is excited by excitation. They are arranged so as to coincide with the polarities alternately appearing at 531.
  • each magnetic pole portion 531 the permanent magnets 55b arranged on the inner peripheral side of each magnetic pole portion 531 are arranged so that the easy axis of magnetization is directed in the radial direction and the polarity on the outer side in the radial direction matches the polarity of the magnetic pole portion 531 appearing by excitation. ing.
  • the d-axis magnetic circuit (shown by a solid line in FIG. 15) formed in the core member 53 by energization of the field winding 54 is roughly expressed by the first d-axis circuit 58a and the second d-axis.
  • the first d-axis circuit 58 a is a magnetic circuit that crosses the permanent magnet 55 a disposed between the magnetic pole part 531 and the q-axis core part 532 in the circumferential direction.
  • the second d-axis circuit 58b is a magnetic circuit that traverses the permanent magnet 55b disposed on the inner peripheral side of the magnetic pole portion 531 in the radial direction.
  • the q-axis magnetic circuit 59 (indicated by a broken line in FIG. 15) formed in the core member 53 by the current flowing through the armature winding 25 by the interlinkage magnetic flux of the d-axis magnetic circuit is transferred from the q-axis core portion 532 to the permanent magnet.
  • This magnetic circuit passes through the adjacent q-axis core portion 532 via the inner peripheral side of 55b.
  • the rotation sensor 57 detects the rotation phase of the rotor 50.
  • the rotation sensor 57 is connected to a control unit (not shown) that controls the vehicle alternator 2 through an output line 57a, and sends detected rotation phase information of the rotor 50 to the control unit.
  • the rotor 50 rotates in a predetermined direction together with the rotating shaft 51.
  • the first and second magnetic pole portions 531 a and 531 b are excited, and along the rotational circumferential direction of the rotor 50.
  • NS magnetic poles are alternately formed. Accordingly, a rotating magnetic field is applied to the armature winding 25 of the stator 20, thereby generating an alternating electromotive force in the armature winding 25.
  • the alternating electromotive force generated in the armature winding 25 is rectified into a direct current through a rectifier (not shown), then taken out from an output terminal and supplied to a battery (not shown).
  • the vehicular AC generator 2 As in the case of the first embodiment, the vehicular AC generator 2 according to the second embodiment configured as described above has an axial cross-sectional area per pair of NS magnetic poles of the boss portion 521 as Ab (hereinafter, “boss And the residual magnetic flux density of the permanent magnet 55 is Br, and the surface area of the magnetic flux inflow / outflow surface of the permanent magnet 55 is Bsb.
  • the cross-sectional area in the circumferential direction of the short-circuit portion 533 is As (hereinafter referred to as “short-circuit portion cross-section As”)
  • the magnetic flux density at the magnetic field strength of 5000 A / m of the material of the short-circuit portion 533 is Bss.
  • the relationship of Ab ⁇ Bsb + As ⁇ Bss ⁇ 2 ⁇ Br ⁇ Am and 0.03 ⁇ As / Ab ⁇ 0.22 is established.
  • the rotor 50 is configured so that a relationship of 1 ⁇ (Ab ⁇ Bsb + As ⁇ Bss) / (2 ⁇ Br ⁇ Am) ⁇ 1.4 is established.
  • the rotor 50 has Ab ⁇ Bsb + As ⁇ Bss ⁇ 2 ⁇ Br ⁇ Am and 0.03 ⁇ As / Ab ⁇ 0.22.
  • the relationship is established. This ensures sufficient strength and reliability while suppressing the expansion of the air gap, achieves high output by making the field characteristics and the maximum magnetic flux equal to or greater, and the amount of heat generated by the field winding 54.
  • the same operations and effects as those of the first embodiment can be obtained.
  • the rotor 50 is configured so that a relationship of 1 ⁇ (Ab ⁇ Bsb + As ⁇ Bss) / (2 ⁇ Br ⁇ Am) ⁇ 1.4 is established.
  • the rotor 50 according to the second embodiment has a structure in which the core member 53 in which the permanent magnets 55a and 55b are embedded is sandwiched from both sides in the axial direction by the disk portion 522 of the pole core 52. Thereby, in this structure with low d-axis inductance, the q-axis torque of the core member 53 can be used effectively.
  • the rotor 50 includes a core member 53 having a short-circuit portion 533 that is provided on the outer peripheral side of the magnetic pole portion 531 and magnetically connects the magnetic pole portions 531 having different polarities.
  • Embodiment 3 A rotating electrical machine according to Embodiment 3 will be described with reference to FIGS.
  • the rotating electrical machine according to the third embodiment is a vehicle AC generator similar to that of the first embodiment, but the configuration of the rotor 30 is mainly different from that of the first embodiment.
  • different points and important points will be described.
  • symbol is used and detailed description is abbreviate
  • the vehicle alternator 3 of Embodiment 3 includes a housing 10, a stator 20, a rotor 30, a field winding power feeding device, a rectifier 45, and the like.
  • the vehicle alternator 3 is different in that a magnetic flux short-circuit member 38 is provided.
  • the magnetic flux short-circuit member 38 corresponds to the short-circuit portions 35a and 36a of the first embodiment.
  • the magnetic flux short-circuit member 38 is a soft magnetic material (for example, a magnetic iron plate) that connects the claw-shaped magnetic pole portions 323 having different polarities alternately arranged in the circumferential direction so as to be magnetically short-circuited.
  • the magnetic flux short-circuit member 38 of this embodiment is provided radially inward of the permanent magnet 34 and radially outward of the field winding 33. Further, as shown in FIG. 18, the claw-shaped magnetic pole portions 323 (that is, the first claw-shaped magnetic pole portion 323a and the second claw-shaped magnetic pole portion 323b) adjacent to each other in the circumferential direction are provided in contact with each other. In other words, since the magnetic flux short-circuit member 38 is provided between the field winding 33 and the permanent magnet 34 and contacts the claw-shaped magnetic pole portion 323, the claw-shaped magnetic pole portions 323 having different polarities are magnetically short-circuited.
  • the magnetic flux short-circuit member 38 may be disposed in contact with the claw-shaped magnetic pole portion 323, may be provided by being bonded or bonded to the permanent magnet 34, or may be provided by being bonded to the field winding 33.
  • the joining may be fusion welding such as arc welding or laser beam welding, pressure welding such as resistance welding or forging welding, or brazing such as soldering or brazing.
  • a d-axis magnetic circuit Md that generates a counter electromotive force of the rotor 30 is formed as shown by a thick broken line in FIGS.
  • the d-axis magnetic circuit Md shown in FIG. 19 is formed by magnetic flux passing through the boss portion 321 of the field core 32 and the pair of first claw-shaped magnetic pole portions 323a and second claw-shaped magnetic pole portions 323b.
  • the boss part 321 corresponds to a “core part”.
  • FIG. 1 An example of the flow of the magnetic flux is shown by a thick broken line in FIG.
  • a current flows through the field winding 33, the first pole core 32a is magnetized to the N pole, and the second pole core 32b is magnetized to the S pole.
  • the second claw-shaped magnetic pole portion 323 b of the field core 32 enters the d-axis tooth 23 of the stator core 21.
  • the second disc portion 322b, the second boss portion 321b, the first boss portion 321a, the first disc portion 322a, and the first claw-shaped magnetic pole portion 323a are passed through.
  • the rotor 30 has a permanent magnet 34 and a magnetic flux short-circuit member 38. Therefore, a new magnetic circuit 39 indicated by a thick broken line in FIG. 21 is formed.
  • the field current If flows, the magnetic circuit 39 is not formed because the magnetic flux passing through the magnetic flux short-circuit member 38 is saturated.
  • the magnetic flux short-circuit member 38 becomes the shortest path for suppressing the magnet magnetic flux ⁇ n when the field current If does not flow, and plays a role of eliminating leakage magnetic flux when the field current If flows. From this, when the field current If flows, the magnetic flux ⁇ n from which the leakage magnetic flux has disappeared can supply almost all of the magnetic flux to the stator 20 side, so that the AC generator 3 for a vehicle is like a permanent magnet type motor. Works.
  • FIG. 22 shows changes in permeances Prt and Pst with respect to the field current If.
  • the permeance Prt indicated by the solid line and the permeance Pst indicated by the alternate long and short dash line are both based on the result of measuring the inductance of the rotor 30 alone.
  • permeance Prt2 indicated by a two-dot chain line is that of a prior art rotor that does not include the permanent magnet 34 and the magnetic flux short-circuit member 38.
  • the permeance Prt becomes the maximum value P2 when the field current If under no load is 0 [A], and decreases as the field current If increases.
  • the permeance Prt is equal to or less than the half value P1.
  • the half value P1 is a value obtained by halving the maximum value P2.
  • the permeance P can be read as the inductance L. That is, when the field current If is equal to or greater than If1 [A] flowing at the time of load, the inductance L is half or less than the value when the field current If is 0 [A].
  • the permeance Pst changes within a certain range regardless of the magnitude of the field current If. Therefore, Prt> Pst when there is no load, and Pst> Prt when there is a load. Strictly speaking, Pst> Prt is satisfied only in a range where the field current If is larger than the threshold current Ifth (that is, If> Ifth).
  • the magnetic flux ⁇ n can be retained in the rotor 30 by setting the permeance of the rotor 30 and the stator 20 to Prt> Pst. Since the magnetic flux short-circuit member 38 is provided between the claw-shaped magnetic pole portions 323 having different polarities in the circumferential direction, the magnetic flux ⁇ n can be sufficiently short-circuited and the back electromotive force can be strictly reduced.
  • the magnetic flux ⁇ n can be flowed to the stator 20 side by setting the permeance of the rotor 30 and the stator 20 to Pst> Prt.
  • the magnetic flux short-circuit member 38 provided between the claw-shaped magnetic pole portions 323 having different polarities in the circumferential direction is saturated with the field magnetic flux ⁇ m generated by the field current If flowing in the field winding 33. Can flow toward 20. In this way, the magnitude relationship between the permeances of the rotor 30 and the stator 20 can be controlled based on the magnitude of the field current If flowing through the field winding 33.
  • the rotor 30 has Ab ⁇ Bsb + As ⁇ Bss ⁇ 2 ⁇ Br ⁇ Am and 0.03 ⁇ As / Ab ⁇ 0.22.
  • the relationship is established.
  • the magnetic force ⁇ m of the permanent magnet 34 can bring out an increase in magnetic force equal to or greater than that of the conventional magnetic flux short-circuit member 38 provided between the claw-shaped magnetic pole portions due to the leakage of magnetic flux. High output can be achieved by improving the maximum magnetic flux.
  • the inductance at the time of loading is less than half that at the time of no load. According to this configuration, it is possible to effectively guide the magnetic flux ⁇ n to the stator 20 side when loaded, and to short-circuit the magnetic flux ⁇ n within the rotor 30 when there is no load. In addition, a high magnetic flux can be obtained while improving the effect of suppressing the back electromotive force, which is one of the reasons for using the Landell type, at no load.
  • the magnetic flux short-circuit member 38 corresponding to the short-circuit portion includes a space from the permanent magnet 34 to the field winding 33 and a space from the permanent magnet 34 to the distal end of the teeth of the stator core 21 in the radial direction. At least one of them. According to this configuration, the back electromotive force can be strictly reduced. A very low reluctance counter electromotive force suppression magnetic path that does not pass through the air gap between the rotor 30 and the stator 20 is provided, and the counter electromotive force can be reduced from about 50% to about 70%.
  • the member of the magnetic flux short-circuit member 38 corresponding to the short-circuit portion is made of a material having a relative permeability higher than that of the boss portion 321 corresponding to the core portion. According to this configuration, since the non-permeability of the short-circuit magnetic path having the effect of reducing the magnetic flux at no load is high, the counter electromotive force can be more effectively reduced.
  • the magnetic flux short-circuit member 38 is provided in the space from the permanent magnet 34 to the field winding 33.
  • a configuration may be adopted in which the permanent magnet 34 is provided in a space from the radial tip of the teeth 23 of the stator core 21 (the left end surface of the stator 20 in FIG. 23). It is good also as a structure which provides the magnetic flux short circuit member 38 in both from the permanent magnet 34 to the field winding 33 and from the permanent magnet 34 to the radial direction front-end
  • the one or more magnetic flux short-circuit members 38 are permanent between the claw-shaped magnetic pole portions 323 having different polarities in the circumferential direction and in the space Sp from the field winding 33 to the radial tip of the teeth 23 shown in FIG. It can be provided at a site excluding the magnet 34. In any case, the above-described effects can be obtained.
  • the permeance between the rotor 30 and the stator 20 is Prt> Pst by the magnetic flux short-circuit member 38, and when the field current If is the current at the load, the rotor 30 and the stator Twenty permeances were set to Pst> Prt.
  • This can be similarly realized in the short-circuit portions 35a and 36a of the first embodiment and the short-circuit portion 533 of the second embodiment. That is, the effect of the third embodiment can be obtained in the first and second embodiments.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • an example in which the rotating electrical machine according to the present invention is applied to an AC generator for a vehicle has been described.
  • an electric motor as a rotating electrical machine mounted on a vehicle, or a generator and an electric motor are selectively used.
  • the present invention can also be applied to a rotating electrical machine that can be used for the above.
  • a rotation provided with a stator (20) in which an armature winding (25) is wound around a stator core (21), and a rotor (30) disposed radially opposite to the inner peripheral side of the stator.
  • the rotor is Cylindrical boss portions (321, 321a, 321b) and a plurality of claw-shaped magnetic pole portions (323, 323a, 323b) which are arranged on the outer peripheral side of the boss portion and have magnetic poles having different polarities alternately in the circumferential direction.
  • a permanent magnet disposed between the claw-shaped magnetic pole portions adjacent to each other in the circumferential direction so that an easy magnetization axis is directed in the circumferential direction and the polarity thereof coincides with the polarity alternately appearing in the claw-shaped magnetic pole portions by excitation.
  • the axial sectional area per pair of NS magnetic poles of the boss part is Ab
  • the magnetic flux density at a magnetic field strength of 5000 A / m of the boss part is Bsb
  • the residual magnetic flux density of the permanent magnet is Br
  • the surface area of the magnetic flux inflow / outflow surface of the permanent magnet is Am
  • the circumferential cross-sectional area of the short-circuit portion is As
  • the magnetic force ⁇ m of the permanent magnet makes it possible to draw out an increase in magnetic force that is equal to or greater than the decrease in capacity due to magnetic flux leakage at the short-circuited portion provided between the conventional claw-shaped magnetic poles, and the field characteristics and maximum magnetic flux are set high. It is possible to achieve high output.
  • the magnetic flux short-circuit member is disposed between the claw-shaped magnetic pole portions having different polarities in the circumferential direction including the outer peripheral side and the inner peripheral side of the claw-shaped magnetic pole portion, and is disposed in a space excluding the permanent magnet.
  • the magnetic flux short-circuit member is arranged on the outer peripheral side of the claw-shaped magnetic pole portion, the radial strength of the claw-shaped magnetic pole portion due to centrifugal force is increased, so that the claw-shaped magnetic pole portion expands radially outward due to the centrifugal force. Can be suppressed. Therefore, the air gap between the stator and the rotor can be set to the same level as that of a conventional magnetless Landell rotor that occupies many circulations.
  • the rotor in the first aspect, is configured such that a relationship of 1 ⁇ (Ab ⁇ Bsb + As ⁇ Bss) / (2 ⁇ Br ⁇ Am) ⁇ 1.4 is established. ing. According to this configuration, the back electromotive force can be strictly reduced in the low voltage range, and the cost can be reduced by reducing the number of permanent magnets.
  • the short-circuit portion has a constant axial cross-sectional area in the circumferential direction.
  • the relational expression of the 1st aspect set using the circumferential direction cross-sectional area of a short circuit part can be derived easily.
  • the short-circuit portion has no stress concentration coefficient and stress concentration does not occur, it is possible to secure a strength against the centrifugal force of the magnetic flux short-circuit member itself and a strength sufficient to counter the spread of the claw-shaped magnetic pole portion.
  • At least a part of the short-circuit portion protrudes outward in the axial direction of the radially opposing surfaces of the rotor and the stator core. It is provided as follows. According to this configuration, since the short-circuit portion short-circuits the magnetic flux at a place other than the facing surface of the rotor and the stator core, the magnetic flux passing through the short-circuit portion is less likely to leak to the stator core, so that the counter electromotive force can be further reduced. .
  • a rotation provided with a stator (20) in which an armature winding (25) is wound around a stator core (21), and a rotor (30) disposed radially opposite to the inner peripheral side of the stator.
  • the rotor is A cylindrical boss part (521), and a pole core (52) having a disk part (522, 522a, 522b) projecting radially outward at a predetermined circumferential pitch from both axial ends of the boss part; A plurality of magnetic pole portions (531, 531a, 531b) in which magnetic poles having different polarities are formed alternately in the circumferential direction, and a q-axis core portion (532) located at a position shifted by 90 ° in electrical angle from the d axis passing through the magnetic pole portion.
  • the axial sectional area per pair of NS magnetic poles of the boss part is Ab
  • the magnetic flux density at a magnetic field strength of 5000 A / m of the boss part is Bsb
  • the residual magnetic flux density of the permanent magnet is Br
  • the circumferential cross-sectional area of the short-circuit portion is As
  • the magnetic flux density at the magnetic field strength of 5000 A / m of the short-circuit portion is Bss, Ab ⁇ Bsb + As ⁇
  • the magnetic force ⁇ m of the permanent magnet can bring out an increase in magnetic force that is equal to or better than the conventional capacity drop due to magnetic flux leakage at the short-circuited portion provided between the claw-shaped magnetic poles. High output can be realized.
  • This effect is not limited to the cylindrical member installed on the outer peripheral side, and can also be realized by a magnetic iron plate or the like disposed on the inner peripheral side of the magnetic pole portion.
  • the cylindrical magnetic flux short-circuit member is arranged on the outer peripheral side of the claw-shaped magnetic pole portion, the radial strength of the claw-shaped magnetic pole portion due to centrifugal force is increased. It is possible to suppress the portion from expanding radially outward due to centrifugal force. Therefore, the air gap between the stator and the rotor can be set to the same level as that of a conventional magnetless Landell rotor that occupies many circulations. Thereby, sufficient strength reliability can be secured while suppressing the expansion of the air gap.
  • the rotor is configured to include a pole core having a boss portion and a disk portion, and a core member having a plurality of magnetic pole portions, a q-axis core portion, and a short-circuit portion, the reluctance torque and the regenerative output can be increased. .
  • the rotor is configured so that a relationship of 1 ⁇ (Ab ⁇ Bsb + As ⁇ Bss) / (2 ⁇ Br ⁇ Am) ⁇ 1.4 is established. ing. According to this configuration, the back electromotive force can be strictly reduced in the low voltage range, and the cost can be reduced by reducing the number of permanent magnets.
  • the inductance at the time of loading is less than half of the inductance at the time of no load. It has become. According to this configuration, the magnetic flux can be effectively guided to the stator side when loaded, and the magnetic flux can be short-circuited in the rotor when unloaded. In addition, a high magnetic flux can be obtained while improving the effect of suppressing the back electromotive force, which is one of the reasons for using the Landell type, at no load.
  • the stator core has a plurality of teeth (23) extending in a radial direction, and the short-circuit portion extends from the permanent magnet to the field. At least one of the space to the magnetic winding and the space from the permanent magnet to the radial tip of the tooth is provided.
  • a short-circuit portion is provided between the claw-shaped magnetic pole portions having different polarities in the circumferential direction and between the field winding and the teeth in the radial direction and excluding the permanent magnet. According to this configuration, the back electromotive force can be strictly reduced.
  • a very low reluctance counter electromotive force suppression magnetic path that does not pass through the air gap between the rotor and the stator is provided, and the counter electromotive force can be reduced from about 50% to about 70%.
  • the rotor has a core portion (321, 52), and the members of the short-circuit portions (35a, 36a, 38) are: It is made of a material having a relative permeability higher than that of the material of the core portion. According to this configuration, since the non-permeability of the short-circuit magnetic path having the effect of reducing the magnetic flux at no load is high, the counter electromotive force can be more effectively reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)

Abstract

回転電機(1)のロータ(30)は、筒状のボス部(321,321a,321b)、及び、ボス部の外周側に配置されて周方向に交互に異なる極性の磁極が形成される複数の爪状磁極部(323,323a,323b)を有する界磁コア(32)と、ボス部の外周側に巻装されて通電により起磁力を発生する界磁巻線(33)と、周方向に隣接する爪状磁極部の間に、磁化容易軸が周方向に向けられてその極性が励磁によって爪状磁極部に交互に現れる極性と一致するように配置された永久磁石(34)と、周方向に異なる極性の爪状磁極部同士を磁気的に接続する短絡部(35a,36a)を有する磁束短絡部材(35,36,37,38)と、を備える。

Description

回転電機 関連出願の相互参照
 本出願は、2016年6月3日に出願された特許出願番号2016-112278号及び2017年4月28日に出願された特許出願番号2017-89433号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
 本開示は、例えば自動車やトラック等に搭載されて電動機や発電機として使用される回転電機に関する。
 従来の回転電機として、通電により起磁力を発生する界磁巻線と、該界磁巻線の起磁力により回転周方向に沿って交互にNS磁極が励磁される複数の爪状磁極片とを有するランデル型ロータを備えたものが知られている。そして、特許文献1及び特許文献2には、界磁巻線によって励磁される磁気回路の有効磁束を増加させるために、周方向に隣接する爪状磁極片間に永久磁石を介在させた車両用交流発電機が開示されている。
 特許文献1には、発電機出力特性の変曲点を生じる永久磁石磁束と、爪状磁極片の諸定数L,W及びθとの関係を求めることによって導かれた数式により、諸定数L,W及びθを決めれば、永久磁石の残留磁束密度Brを画一的に決定できることが記載されている。これにより、仕様が異なっても普遍的にバッテリ過充電の回避と高効率及び高出力化を同時に行うことができる磁極が設定できる。
 特許文献2には、爪状磁極片の外周側に配置される磁極筒部(磁束短絡部材)を有し、磁束短絡部材の外径側表面に、爪状磁極片の輪郭形状に対応した凸部と、隣り合う爪状磁極片の間の空隙に対応した凹部とを有することが記載されている。また、特許文献2には、上記凸部と上記凹部とをスロープ状に接続することも記載されている。
特開平4-255451号公報 特開2009-148057号公報
 上記特許文献2のように、回転子(ロータ)の爪状磁極片の外周側に磁束短絡部材を設ければ、渦電流を低減できて信頼性が向上するが、磁束短絡部材により隣接する爪状磁極片のN極とS極間の磁束が短絡して出力低下となる。また、特許文献2では示唆されていないが、磁石と爪状磁極片で構成したロータは、磁石の重みが増加した分、遠心力による爪状磁極片の径方向外方への変形量が増加する。そのため、遠心力で最も変形量が大きくなった場合でも、磁石を具備しないロータと同等の、固定子(ステータ)とロータ間のエアギャップを確保するには、ステータとロータ間のエアギャップを拡げる必要がある。しかし、エアギャップを拡げると、磁気抵抗の増加によりロータの界磁電流による磁束発生能力が低下する。
 なお、上記特許文献1には、磁石付きランデル型発電機が開示されているが、遠心力が永久磁石と爪状磁極片に及ぼす影響と対策については何ら記載されていない。
 上記の課題を解決するために、磁石を備えたランデル型のロータにおいて爪状磁極片が拡がらないように根元部の厚みを大きくして補強すると、磁気回路の最適寸法とならなくなり、結果として出力が低下するという別の課題がある。そのため、ステータとロータ間のエアギャップを拡げずに、特許文献2に開示されているように爪状磁極片の外周面を磁束短絡部材で強度補強を行うことが好ましい。しかし、特許文献2に記載のように、特許文献1の構成と比べ出力が劣る要因を含むため流通に至っていない。
 ロータは、回転軸に発生する外乱を許容した上で、上記のエアギャップによりステータと接触しないようにする必要がある。エアギャップは、外乱と遠心力によるロータ自体の変形を考慮して設計される。ボールベアリングで外乱の影響を抑えられた構成では、特に爪状磁極片の変形が考慮される。そのため、爪状磁極片間に磁石という重みを増やし、信頼性を維持するためには、磁石付きランデル型ロータにおいては、エアギャップを磁石無しランデル型ロータよりも大きくとる必要がある。そのため、界磁電流を大きくとる必要があり、銅損が上昇し、発熱が増加するという新たな課題が発生する。ロータのディスク部の断面積を多くとることにより変形量を抑える設計もあるが、界磁巻線の配置スペース減少による、直流抵抗値の増加による発熱の増加や、軸方向寸法の増加による搭載性の悪化が起こる。
 従来、界磁巻線の励磁によりロータのボス部で発生した磁束をディスク部から爪状磁極片へと案内するように設計する場合には、ロータの一部分の断面積を基準に磁束漏れを考慮し、ボス部から爪状磁極片に至るまで磁気特性を一定に、又は緩やかに落とすようにしていた。このような設計において、磁石の重量は、爪状磁極片の重量に対して0.3~0.7倍程度であり、磁石付きランデル型ロータの爪状磁極片の重量は、従来の1.3~1.7倍の範囲から大きく逸脱しない範囲であると容易に想定できる。そのため、現状の製品の一般的なエアギャップである0.25~0.35mmに対して0.37~0.52mm程度のエアギャップ範囲で設計しなければ、従来製品の磁気回路的に良い寸法を用いた磁石付きランデル型ロータを、従来製品と同様の強度的信頼性をもって作製できない。
 図25は、起磁力の単位であるアンペアターン(AT)を横軸にとり、エアギャップが0.3mmと0.4mmの場合の回転電機の界磁特性を縦軸にとった特性図である。図25から解るように、従来では、エアギャップを0.3mmから0.4mmに拡げると界磁能力を40%向上させる必要がある。また、界磁能力は、現存のブラシ能力に合わせて設計されているため、従来の磁石無しランデル型ロータと同等の磁束を連続定格可能な電流域で利用することはブラシの耐熱能力的に困難と考えられる。たとえブラシが耐えられたとしても、図26に示すように、界磁巻線への流入電流増大で銅損による発熱量が92%悪化し、冷却の見直しが必要になる。
 本開示は、エアギャップの拡大を抑制しつつ十分な強度的信頼性を確保するとともに、界磁特性及び最大磁束の向上により高出力を実現し、且つ界磁巻線の発熱量を低減して熱的信頼性を確保し得るようにした回転電機を提供することを解決すべき課題とする。
 本開示の第1の態様では、
 ステータコアに電機子巻線が巻装されてなるステータと、前記ステータの内周側に径方向に対向して配置されたロータと、を備えた回転電機において、
 前記ロータは、
 筒状のボス部、及び、前記ボス部の外周側に配置されて周方向に交互に異なる極性の磁極が形成される複数の爪状磁極部を有する界磁コアと、
 前記ボス部の外周側に巻装されて通電により起磁力を発生する界磁巻線と、
 周方向に隣接する前記爪状磁極部の間に、磁化容易軸が周方向に向けられてその極性が励磁によって前記爪状磁極部に交互に現れる極性と一致するように配置された永久磁石と、
 周方向に異なる極性の前記爪状磁極部同士を磁気的に接続する短絡部を有する磁束短絡部材と、を備え、
 前記ボス部の一対のNS磁極あたりの軸方向断面積をAbとし、前記ボス部の材料の磁界の強さ5000A/mにおける磁束密度をBsbとし、前記永久磁石の残留磁束密度をBrとし、前記永久磁石の磁束流入出面の表面積をAmとし、前記短絡部の周方向断面積をAsとし、前記短絡部の材料の磁界の強さ5000A/mにおける磁束密度をBssとしたときに、
 Ab・Bsb+As・Bss≧2・Br・Am、且つ0.03≦As/Ab≦0.22となる関係が成立するように構成されている。
 この構成によれば、界磁巻線への通電により界磁束が界磁コアに励磁されたときに、界磁巻線が巻装されているボス部を流れる磁束を飽和させて、永久磁石の磁力Ψmをステータへ流出させることができる。そのため、永久磁石の磁力Ψmにより、従来の爪状磁極部間に設けられた短絡部の磁束漏れによる能力低下と同等以上の磁力増加を引き出すことが可能となり、界磁特性及び最大磁束を高く設定することが可能となり、高出力を実現できる。
 また、磁束短絡部材は、爪状磁極部の外周側や内周側を含めて周方向に異なる極性の爪状磁極部の間にあって、永久磁石を除いたスペースに配置されている。磁束短絡部材が爪状磁極部の外周側に配置された場合には、遠心力による爪状磁極部の径方向強度が増加されているため、爪状磁極部が遠心力により径方向外側に拡がるのを抑制できる。そのため、ステータとロータ間のエアギャップを、従来の流通多数を占める磁石無しランデル型ロータと同一レベルにすることができる。これにより、エアギャップの拡大を抑制しつつ十分な強度的信頼性を確保できる。また、エアギャップの減少により、界磁巻線に通電する界磁電流を少なくできるため、従来の磁石付きランデル型ロータと比べ、界磁巻線の発熱量を低減できる。これにより、熱的信頼性を現状の空気冷却機構の能力で成立させることができる。
実施形態1に係る回転電機の軸方向断面図である。 実施形態1に係るロータの磁束短絡部材を外した状態の斜視図である。 実施形態1に係るロータの磁束短絡部材を装着した状態の斜視図である。 実施形態1に係るロータの軸方向から見た正面図である。 実施形態1に係る界磁コアの諸寸法を示す説明図である。 実施形態1に係るロータの磁束短絡部材の一部を周方向に展開した部分展開図である。 エアギャップを0.3mmと0.4mmに設定した場合や磁石の有無などを種々組み合わせた回転電機について、アンペアターンと飽和磁束との関係を示す特性図である。 実施形態1において電機子巻線への鎖交磁束量とAs/Abとの関係を示す特性図である。 実施形態1において電機子巻線への鎖交磁束量とS/Ψnとの関係を示す特性図である。 変形例1において磁束短絡部材の短絡部とステータとの位置関係を示す説明図である。 変形例2に係るロータの斜視図である。 実施形態2に係る回転電機の軸方向断面図である。 実施形態2に係るロータの一部を示す部分斜視図である。 実施形態2に係るロータのポールコアの一部を示す部分斜視図である。 実施形態2に係るロータのコア部材の一部を示す部分平面図である。 実施形態3に係る回転電機の軸方向断面図である。 実施形態3に係るロータのコア部材を示す一部断面の斜視図である。 実施形態3に係る磁束短絡部材を示す斜視図である。 d軸の磁気回路を示す部分平面図である。 d軸の磁気回路を示す一部断面の斜視図である。 実施形態3に係るd軸の磁気回路を示す部分平面図である。 界磁電流とパーミアンスとの関係を示すグラフ図である。 磁束短絡部材の配置例を示す模式図である。 実施形態3に係る磁束短絡部材の変形例を示す斜視図である。 エアギャップを0.3mmと0.4mmに設定したときのアンペアターンと飽和磁束密度との関係を示す特性図である。 エアギャップを0.3mmと0.4mmに設定したときのアンペアターン比と界磁巻線発熱量比との関係を示す特性図である。
 図7は、エアギャップを0.3mmと0.4mmに設定した場合や、磁石の有無などを種々組み合わせた構成の回転電機について、アンペアターンと飽和磁束との関係を示す特性図である。特許文献2のように、ロータの爪状磁極片の外周側に磁束短絡部材を設けた場合には、図7の細い破線から太い破線への変化となり、界磁特性が低下するというのが現状技術の考え方である。この考え方は、できる限り磁束短絡部材の爪状磁極片間の寸法を小さくするという考えの源になっている。即ち、磁束短絡部材に漏洩する磁束の分だけ電機子巻線への鎖交磁束が低下するという考えである。
 また、磁石磁力Ψmは、界磁ボス部が飽和するに従い、ボス部側の磁気抵抗が高くなっていくため、ステータ側に流れ出し易くなっていくので曲線を描く。ボス部が飽和した後は、界磁電流ATによる反磁界で減磁が起き、実行磁束密度Bdは小さくなる。図7では、ロータに無負荷時には、磁石の磁束がステータ側に案内されないで、バッテリを過充電させないため、Ab・Bs=2・Br・Amとして磁石量を設定している。なお、Ab:ボス部断面積、Bs:ボス部B50、Am:永久磁石の磁束流入出面の表面積、Br:磁石残留磁束密度である。ボス部断面積Abは、ボス部全体の断面積を、ロータの極対数で割った値である。本開示の回転電機の磁界は、磁石の厚み5~10mmに対して、温度により変化するが保磁力100kA/m程のネオジム磁石を想定しているため、Bsとして飽和磁束密度ではなく、B50の値を採用する。なお、このB50の磁束値は電磁軟鉄であればBsと1割程度の差しか一般的になく、おおよその場合、誤差少なく適応することができる。
 ここで、短絡部がボス部の飽和を、短絡部という磁性体をステータとのエアギャップの手前に追加することにより効果的に磁気抵抗が下がり促進させる。そのため、特許文献1の場合よりもステータが飽和していない時点でボス部が飽和するので、ステータの磁気抵抗がロータと相対的に低くなる。その結果、磁石磁力Ψmのピーク点は低い通電界磁=反磁界で迎えることになり、高くなるはずである。本発明者は、この点に着目して鋭意研究を重ね、ボス部の磁気抵抗の増加と短絡部の断面積との関係を粘り強く突き詰めた結果、本発明を完成した。
 以下、本発明に係る回転電機の実施形態について図面を参照して具体的に説明する。
 〔実施形態1〕
 実施形態1に係る回転電機について図1~図11,図19,図20を参照して説明する。実施形態1に係る回転電機は、車両に搭載されて発電機として使用される車両用交流発電機である。
 <車両用交流発電機の全体構成>
 実施形態1の車両用交流発電機1は、図1に示すように、ハウジング10、ステータ20、ロータ30、界磁巻線給電装置、整流器45等を含む。ハウジング10は、それぞれ一端が開口した有底円筒状のフロントハウジング11とリアハウジング12とからなる。フロントハウジング11とリアハウジング12は、開口部同士が接合された状態でボルト13により締結されている。
 ステータ20は、周方向に配列された図19,図20に示す複数のスロット22及び複数のティース23を有する円環状のステータコア21と、ステータコア21のスロット22に巻装された三相の相巻線よりなる電機子巻線25とを有する。複数のティース23はステータコア21から径方向に延びる部位である。複数のスロット22は、周方向に隣り合うティース23の間に形成される空間であって、電機子巻線25を収容する部位である。このステータ20は、フロントハウジング11とリアハウジング12の周壁内周面に、軸方向に挟持された状態で固定されている。
 ロータ30は、図2、図3及び図4に示すように、回転軸31(図1参照)と、ランデル型の界磁コア32と、複数の永久磁石34と、を有する。回転軸31は、ハウジング10に一対の軸受け14,14を介して回転自在に支持される。界磁コア32は、回転軸31の外周に嵌合固定された一対のポールコア32a,32bよりなる。界磁巻線33は、界磁コア32のボス部321(321a、321b)に巻装される。永久磁石34は、界磁巻線33と、界磁コア32の周方向に隣接する爪状磁極部323の間に配置される。このロータ30は、ステータ20の内周側に径方向に対向して回転可能に設けられている。このロータ30は、回転軸31の前端部に固定されたプーリ31Aを介して、車両に搭載された図示しないエンジンによって回転駆動される。ボス部321は本実施形態に係る「コア部」に相当する。
 界磁コア32は、図1及び図2に示すように、回転軸31の前側(図1の左側)に固定された第1ポールコア32aと、回転軸31の後側(図1の右側)に固定された第2ポールコア32bとにより構成されている。第1ポールコア32aは、円筒状の第1ボス部321aと、第1ディスク部322aと、第1爪状磁極部323aとからなる。第1ボス部321aは、界磁巻線33の径方向内側にて界磁束を軸方向に流す。第1ディスク部322aは、第1ボス部321aの軸方向前端部から周方向所定ピッチで径方向外側へ延在して界磁束を径方向に流す。第1爪状磁極部323aは、第1ディスク部322aの先端から界磁巻線33を囲むように軸方向に延在してステータコア21と磁束の授受をする。
 第2ポールコア32bは、第1ポールコア32aと同一形状を有し、第2ボス部321bと、第2ディスク部322bと、第2爪状磁極部323bとからなる。第1及び第2ポールコア32a,32bは、軟磁性体からなる。
 第1ポールコア32aと第2ポールコア32bは、第1爪状磁極部323aと第2爪状磁極部323bを互い違いに向かい合わせるようにして、第1ポールコア32aの軸方向後端面と第2ポールコア32bの軸方向前端面とが接触した状態に組み付けられている。これにより、第1ポールコア32aの第1爪状磁極部323aと第2ポールコア32bの第2爪状磁極部323bとが周方向で交互に配置される。第1及び第2ポールコア32a,32bは、それぞれ8個の爪状磁極部323をもち、実施形態1では、16極(N極:8、S極:8)のランデル型ロータコアを形成している。
 界磁巻線33は、第1及び第2ボス部321a,321bの外周面に界磁コア32と電気的に絶縁された状態で巻装されており、第1及び第2爪状磁極部323a,323bに囲まれている。この界磁巻線33は、図示しない界磁電流制御回路から界磁電流Ifが通電されることによってボス部321に起磁力を発生させる。これにより、第1及び第2ポールコア32a,32bの第1爪状磁極部323aと第2爪状磁極部323bにそれぞれ異なる極性の磁極が形成される。実施形態1の場合には、第1爪状磁極部323aがS極に磁化され、第2爪状磁極部323bがN極に磁化される。
 この場合、界磁巻線33により界磁コア32のボス部321に発生した磁束は、例えば第1ポールコア32aの第1ボス部321aから第1ディスク部322a、第1爪状磁極部323aに流れた後、第1爪状磁極部323aからステータコア21を経由して第2ポールコア32bの第2爪状磁極部323bに流れ、第2爪状磁極部323bから第2ディスク部322b、第2ボス部321bを経由して第1ボス部321aに戻る磁気回路を形成する。この磁気回路は、ロータ30の逆起電力を生む磁気回路である。
 そして、図2に示すように、周方向で交互に配置された第1爪状磁極部323aと第2爪状磁極部323bの間には、軸方向から傾斜した方向に延在する隙間が形成されており、各隙間には永久磁石34が1個ずつ配置されている。各永久磁石34は、直方体形状の外形を有し、磁化容易軸が周方向に向けられている。また、各永久磁石34は、周方向両側の端面(磁束流入出面)が第1及び第2爪状磁極部323a,323bの周方向側面にそれぞれ当接した状態で第1及び第2爪状磁極部323a,323bに保持されている。これにより、各永久磁石34は、その極性が界磁巻線33の励磁によって第1及び第2爪状磁極部323a,323bに交互に現れる極性と一致するように配置されている(図6参照)。
 磁束短絡部材35は、図3~図6に示すように、軟磁性体により軸方向断面積(肉厚)が周方向において一定の中空円筒状に形成されており(図4参照)、界磁コア32の外周側に各爪状磁極部323の外周面と接触した状態で嵌合して固定されている。即ち、この磁束短絡部材35は、周方向に交互に配置された異なる極性の爪状磁極部323同士を磁気的に接続する短絡部35aを有している。実施形態1の場合、磁束短絡部材35は、図5に示すように、ステータコア21の軸長L2よりも大きい軸長L1を有し、軸長L1の全長が短絡部35aとされている。これにより、短絡部35aは、軸方向両端部がロータ30とステータコア21との径方向に対向する対向面の軸方向外側にはみ出すように設けられている。また、短絡部35aの軸方向の断面積Asは、周方向において一定にされている。即ち、短絡部35aには、周方向において肉厚が変化するような凹凸部や孔が設けられていない。短絡部35aの部材は、逆起電力を低減させるため、界磁コア32(特にボス部321)の材料よりも高い比透磁率の材料で構成するとよい。
 界磁巻線給電装置は、界磁巻線33に給電するための装置であり、図1に示すように、一対のブラシ41、一対のスリップリング42及びレギュレータ43等を有する。一対のスリップリング42は、回転軸31の軸方向一端(図1の右側端)に嵌合して固定されている。一対のブラシ41は、その径方向内側の先端がスリップリング42の表面に押圧された状態で摺動可能に配置されている。一対のブラシ41は、スリップリング42を介して界磁巻線33に給電する。レギュレータ43は、界磁巻線33に流す界磁電流Ifを制御することによって車両用交流発電機1の出力電圧を調整する装置である。また、整流器45は、電機子巻線25に電気的に接続されており、電機子巻線25から出力される交流電流を直流電流に整流する装置である。この整流器45は、複数のダイオード(整流素子)等により構成されている。
 以上の構成を有する車両用交流発電機1は、ベルト等を介してプーリ31Aにエンジンからの回転力が伝えられると、ロータ30が回転軸31と共に所定方向に回転する。この状態で、ブラシ41からスリップリング42を介してロータ30の界磁巻線33に励磁電圧を印加することにより、第1及び第2ポールコア32a,32bのそれぞれの第1及び第2爪状磁極部323a,323bが励磁されて、ロータ30の回転周方向に沿って交互にNS磁極が形成される。これにより、ステータ20の電機子巻線25に回転磁界が付与されることで、電機子巻線25に交流の起電力を発生させる。電機子巻線25で発生した交流の起電力は、整流器45を通って直流電流に整流された後、図示しないバッテリに供給される。
 次に、実施形態1に係る車両用交流発電機1の特徴構成について説明する。上記のように構成された車両用交流発電機1において、ボス部321の一対のNS磁極あたりの軸方向断面積をAb(以下、「ボス部断面積Ab」という。)とし、ボス部321の材料の磁界の強さ5000A/mにおける磁束密度をBsbとし、永久磁石34の残留磁束密度をBrとし、永久磁石34の磁束流入出面の表面積をAmとし、短絡部35aの周方向断面積をAs(以下、「短絡部断面積As」という。)とし、短絡部35aの材料の磁界の強さ5000A/mにおける磁束密度をBssとしたときに、Ab・Bsb+As・Bss≧2・Br・Am、且つ0.03≦As/Ab≦0.22となる関係が成立するように構成されている。なお、ボス部断面積Abは、図5に示すように、円筒状のボス部321の総断面積をAとし、対をなすNS極の極対数をPとしたときに、Ab=A/Pで表される。
 Ab・Bsb+As・Bss≧2・Br・Amにおいて、Ab・Bsbは、ボス部321を流れる磁束であり、As・Bssは、短絡部35aを流れる磁束であり、Br・Amは、永久磁石34一つの磁束である。よって、上記の関係は、ボス部321を流れる磁束と短絡部35aを流れる磁束の和が、永久磁石34の磁束よりも大きいことを意味する。
 図8は、(短絡部断面積As)/(ボス部断面積Ab)と電機子巻線25への鎖交磁束量との関係を本発明者が調べた結果である。図8に示すように、電機子巻線25への鎖交磁束量は、As/Abが0.03~0.22の範囲で円筒部材を設置しないときと比べ、磁束量が低下することなく、同等であることが解った。なお、ステータ20側の断面積設計を現状製品一定として設計する場合は、本構成により円筒部材を設置した場合に低下する磁束と同等の磁石磁束が得られる。そのため、ステータ20から測定される磁束量の上昇による逆起電力定数やインダクタンスの特記すべき変化は起きない。一方、従来技術では起こるとされている漏洩磁束をゼロとし、磁束低下を起こさず、円環による強度増加、爪のステータ励磁電流との共振の防止、風切音の低下などの、良好な副次効果が得られる。ここで、電機子巻線25への鎖交磁束は、磁石磁束Ψnと界磁束Ψmの和となるため、永久磁石34を削減してコストダウンし、抵抗値が減った分だけ界磁束Ψmを利用できる。さらには、48Vや12Vといった、車両用としてはハイブリッド車の200V~700Vよりも遙かに低い低電圧域のバッテリに接続してもEMF(起電力)による過充電を防げるように短絡性能を向上できる。また、図8の条件として、このときのステータ20の背厚の1極あたりの断面積Acbとステータ20の極歯1極分あたりの断面積Ateethの内で小さい方の断面積をAstatorとする。このとき、従来の技術ではAb×0.5≦Astator≦Ab×1.0とすることが一般的であるが、本開示ではAstator≧1.0Abとすることが望ましい。
 また、実施形態1に係る車両用交流発電機1では、ロータ30は、1≦(Ab・Bsb+As・Bss)/(2・Br・Am)≦1.4となる関係が成立するように構成されている。ここで、As/Abを電機子巻線25への鎖交磁束のピーク値である1.4に固定し、短絡能力S:(Bs・Ab+Bs・As)と無負荷時の磁石磁束Ψn:(Br・Am)のS/Ψnを横軸にとり、電機子巻線25への鎖交磁束量を縦軸にとると、図9に示す結果が得られる。即ち、Ab・Bsb+As・Bss≧2・Br・Am、且つ0.03≦As/Ab≦0.22となる関係を満たし、S/Ψnが1~1.4の範囲でEMF制約が厳しい低電圧範囲でも、ロバスト性高くEMF条件を成立させて、電機子巻線25への鎖交磁束量を減らさずに利用できる。
 <作用及び効果>
 以上のように構成された実施形態1の車両用交流発電機1によれば、ロータ30は、Ab・Bsb+As・Bss≧2・Br・Am、且つ0.03≦As/Ab≦0.22となる関係が成立するように構成されている。これにより、界磁巻線33への通電により界磁束が界磁コア32に励磁されたときに、界磁巻線33が巻装されているボス部321を流れる磁束を飽和させて、永久磁石34の磁力Ψmをステータ20へ流出させることができる。そのため、永久磁石34の磁力Ψmにより、従来の爪状磁極部間に設けられた短絡部の磁束漏れによる能力低下よりも高い磁力増加を引き出すことが可能となり、界磁特性及び最大磁束の向上により高出力を実現できる。
 また、実施形態1では、円筒状の磁束短絡部材35が爪状磁極部323の外周側に配置されていることにより、遠心力による爪状磁極部323の径方向強度が増加されているため、爪状磁極部323が遠心力により径方向外側に拡がるのを抑制できる。そのため、ステータ20とロータ30間のエアギャップを、従来の流通多数を占める磁石無しランデル型ロータと同一レベルにすることができる。これにより、エアギャップの拡大を抑制しつつ十分な強度的信頼性を確保できる。
 また、実施形態1では、エアギャップの減少により、界磁巻線33に通電する界磁電流を少なくできるため、従来の磁石付きランデル型ロータと比べ、界磁巻線33の発熱量を低減できる。これにより、熱的信頼性を現状の空気冷却機構の能力で成立させることができる。
 また、実施形態1では、円筒状の磁束短絡部材35が爪状磁極部323を拘束することにより、爪状磁極部323の共振を抑え、騒音を低減できる。更に、爪状磁極部323を爪先端に近づく程細くする場合、界磁巻線33を巻く更なるスペースが生まれる。このスペースに界磁巻線33を追加巻装し、爪状磁極部323を裏(つまり内周側)から抑え込むことにより、更に爪状磁極部323の振動を低減し、低騒音化できる。
 また、実施形態1では、円筒状の磁束短絡部材35により円周上に(すなわち周方向に沿って)ならぶ爪状磁極部323を覆い隠した。この構成によれば、爪状磁極部323の間の風を切る騒音を低下させ、負荷トルクを減少させることで効率性能を向上させることが可能である。
 また、実施形態1では、円筒状の磁束短絡部材35が爪状磁極部323よりもステータ20側へ突出してステータ20の内周面と対向することにより、界磁巻線33により軸方向からステータ20側へ案内される磁束の向きが軸を法線とする平面に倣うようになる。よって、通例では電気的に絶縁された電磁鋼板を積層することで作られるステータ20の軸方向への磁束を少なくし、渦電流損を低減できる。
 また、実施形態1では、ロータ30は、1≦(Ab・Bsb+As・Bss)/(2・Br・Am)≦1.4となる関係が成立するように構成されている。これにより、低電圧範囲において、逆起電力を厳密に低減できるほか、永久磁石34の削減によりコストダウンを図ることができる。
 また、実施形態1では、磁束短絡部材35の短絡部35aは、周方向断面積Asが周方向において一定にされていることから、短絡部35aの周方向断面積Asを用いて設定する上記の関係式を容易に導き出せる。また、短絡部35aは、応力集中係数がなく応力集中が起きないため、磁束短絡部材35の十分な強度を確保できる。
 また、実施形態1では、短絡部35aは、ロータ30とステータコア21との径方向に対向する対向面の軸方向外側に少なくとも一部がはみ出すように設けられている。これにより、短絡部35aがロータ30とステータコア21との対向面以外の所で磁束を短絡するため、短絡部35aを通る磁束がステータコア21に漏れ難くなるので、逆起電力をより下げ易くすることができる。
 〔変形例1〕
 変形例1は、図10に示すように、磁束短絡部材36の構造が上記実施形態1のものと異なる。変形例1の磁束短絡部材36は、軟磁性体により肉厚が一定の中空円筒状に形成されているが、界磁コア32の周方向に隣接する爪状磁極部323の間に配置された永久磁石34と径方向に対向する部位に複数の窓部36bが形成されている点で上記実施形態1の磁束短絡部材35と異なる。窓部36bは、爪状磁極部323の周方向側面に沿って軸方向斜めに傾斜して延在しており、傾斜方向が逆になった窓部36bが周方向に交互に配置されている。
 この磁束短絡部材36は、窓部36b以外の部位が、周方向に交互に配列された第1爪状磁極部323a及び第2爪状磁極部323bの外周面に接触した状態で、界磁コア32の外周に嵌合して固定されている。これにより、磁束短絡部材36の軸方向両端部には、周方向に隣接する第1爪状磁極部323aと第2爪状磁極部323bとを磁気的に接続する短絡部36aが形成されている。即ち、短絡部36aは、第1爪状磁極部323aの根元部と第2爪状磁極部323bの先端部、又は、第1爪状磁極部323aの先端部と第2爪状磁極部323bの根元部を接続している。この短絡部36aは、実施形態1と同様に、軸方向断面積が周方向において一定にされている。また、短絡部36aは、ロータ30とステータコア21との径方向に対向する対向面の軸方向外側に一部がはみ出すように設けられている。よって、変形例1の場合にも、実施形態1と同様の作用及び効果を奏する。短絡部36aの部材は、短絡部35aと同様に逆起電力を低減させるため、界磁コア32(特にボス部321)の材料よりも高い比透磁率の材料で構成するとよい。
 〔変形例2〕
 変形例2の磁束短絡部材37は、図11に示すように、変形例1の磁束短絡部材36における軸方向両端部の2つの短絡部36a,36aの部分だけを抽出したもので構成されている。即ち、磁束短絡部材37は、界磁コア32の軸方向両端部に配置された2つのリング状部材よりなる。各磁束短絡部材37は、変形例1の短絡部36aと同様に、第1爪状磁極部323aの根元部と第2爪状磁極部323bの先端部、又は、第1爪状磁極部323aの先端部と第2爪状磁極部323bの根元部を接続している。
 よって、変形例2の磁束短絡部材37によれば、変形例1の磁束短絡部材36に比べ、軸方向中央部分が削除されているため、遠心力による爪状磁極部323の径方向外方への変形を防止しつつ、重量の大幅な軽減を実現できる。また、爪状磁極部323の遠心力による変位の小さい根元部と、遠心力による変位が最大となる先端部を押さえ付けているため、擬似的に両持ちの構造となるので、相乗的に堅牢な構成にすることができる。さらに、磁束短絡部材37で爪状磁極部323の先端部を抑えているため、径方向外方への変形を効果的に抑えることができる。また、変形例2の磁束短絡部材37は、界磁コア32の軸方向両端部に装着されるため、変形例1の磁束短絡部材36のように界磁コア32の軸方向中央部に装着されるものに比べ、簡単に取り付けられる。
 また、変形例2では、爪状磁極部323の外周面に対して、グルービングと呼ばれるボーダーライン状の周方向に延びる溝36cが付けられている。これにより、爪状磁極部323に発生する渦電流損を低減することができる。
 〔実施形態2〕
 実施形態2に係る回転電機について図12~図15,図19,図20を参照して説明する。実施形態2に係る回転電機は、実施形態1と同様の車両用交流発電機であるが、主にロータ50の構成が実施形態1のものと異なる。以下、異なる点及び重要な点について説明する。なお、実施形態1と共通する要素については同じ符号を使用し、詳しい説明を省略する。
 <車両用交流発電機の全体構成>
 実施形態2の車両用交流発電機2は、図12に示すように、ハウジング10、ステータ20、ロータ50、スリップリング56、回転センサ57等を含む。ハウジング10は、一端が開口した有底円筒状のフロントハウジング11と、フロントハウジング11の開口部に嵌合して固定された蓋状のリアハウジング12とからなる。
 ステータ20は、実施形態1と同様に構成されたものであり、図19,図20に示す複数のスロット22及び複数のティース23を有する円環状のステータコア21と、ステータコア21のスロット22に巻装された三相の相巻線よりなる電機子巻線25とを有する。図12の符号26は、電機子巻線25から取り出した電力を出力する出力線である。このステータ20は、フロントハウジング11の周壁内周面の軸方向中央部に固定されている。
 ロータ50は、図12に示すように、回転軸51と、ポールコア52と、コア部材53と、界磁巻線54と、永久磁石55と、を備えている。回転軸51は、ハウジング10に一対の含油軸受け14,14を介して回転自在に支持される。ポールコア52は、回転軸51の外周に嵌合して固定される。コア部材53は、第1及び第2磁極部531a,531b、q軸コア部532並びに短絡部533を有する。界磁巻線54は、ポールコア52のボス部521に巻装される。永久磁石55は、磁極部531a,531とq軸コア部532の間に配置される。このロータ50は、ステータ20の内周側に径方向に対向して回転可能に設けられており、図示しないプーリやギア等の駆動力伝達部材を介して、車両に搭載された図示しないエンジンによって回転駆動される。ポールコア52は「コア部」に相当する。
 ポールコア52は、図13及び図14に示すように、界磁巻線54の径方向内側にて界磁束を軸方向に流す円筒状のボス部521と、ボス部521の軸方向両端からそれぞれ周方向所定ピッチで径方向外側に突出する第1ディスク部522a及び第2ディスク部522bと、を有する。第1ディスク部522aは、ボス部521の軸方向一端側(図13及び図14の上側)に8個設けられ、径方向外側の先端から軸方向他端側へ突出する第1突出部523aを有する。第2ディスク部522bは、ボス部521の軸方向他端側に8個設けられ、径方向外側の先端から軸方向一端側へ突出する第2突出部523bを有する。第1ディスク部522aと第2ディスク部522bは、周方向において電気角で180°位相がずれた位置に設けられている。
 コア部材53は、図13及び図15に示すように、複数(実施形態2では16個)の磁極部531と、q軸コア部532と、短絡部533と、を有する。磁極部531は、界磁巻線54の外周側に配置されて周方向に交互に異なる極性の磁極が形成される。q軸コア部532は、磁極部531を通るd軸から電気角で90°ずれた所に位置する。短絡部533は、磁極部531の外周側に設けられて隣接する異なる極性の磁極部531同士を磁気的に接続する。
 磁極部531として、S極に磁化される第1磁極部531aと、N極に磁化される第2磁極部531bとが周方向に交互に8個ずつ設けられている。第1磁極部531aは、軸方向一端側の端面が第1ディスク部522aの第1突出部523aと当接し、第2磁極部531bは、軸方向他端側の端面が第2ディスク部522bの第2突出部523bと当接している。各磁極部531の周方向両側と内周側の3箇所には、永久磁石55を収容する磁石収容孔534が設けられている。磁石収容孔534は、永久磁石55の断面形状よりも大きい断面形状を有し、磁石収容孔534に収容された永久磁石55の磁化困難軸の軸方向両側に磁気的空隙部(バリア)535が設けられている。短絡部533は、コア部材53の外周部に一体に設けられている。具体的には、q軸コア部532とその周方向両側にある2つの磁石収容孔534の外周側に位置する部位である。短絡部533の部材は、逆起電力を低減させるため、ポールコア52の材料よりも高い比透磁率の材料で構成するとよい。
 界磁巻線54は、ボス部521の外周面にポールコア52と絶縁された状態で巻装されており、ポールコア52及びコア部材53に囲まれている。この界磁巻線54は、図示しない界磁電流制御回路から図示しないブラシや回転軸51に固定されたスリップリング56を介して界磁電流Ifが供給されることによってボス部521に起磁力を発生させる。これにより、コア部材53の第1磁極部531aと第2磁極部531bにそれぞれ異なる極性の磁極が形成される。実施形態2の場合には、第1磁極部531aがS極に磁化され、第2磁極部531bがN極に磁化される。
 永久磁石55は、図15に示すように、各磁極部531の周方向両側と内周側のそれぞれの3箇所に設けられた磁石収容孔に1個ずつ収容されている。この場合、各磁極部531の周方向両側で磁極部531とq軸コア部532の間に配置された永久磁石55aは、磁化容易軸が周方向に向けられて、その極性が励磁によって磁極部531に交互に現れる極性と一致するように配置されている。また、各磁極部531の内周側に配置された永久磁石55bは、磁化容易軸が径方向に向けられて径方向外側の極性が励磁によって現れる磁極部531の極性と一致するように配置されている。
 なお、実施形態2の場合、界磁巻線54への通電によってコア部材53に形成されるd軸磁気回路(図15に実線で示す)は、大きく見れば第1d軸回路58aと第2d軸回路58bの2種類が存在する。第1d軸回路58aは、磁極部531とq軸コア部532の間に配置された永久磁石55aを周方向に横切る磁気回路である。また、第2d軸回路58bは、磁極部531の内周側に配置された永久磁石55bを径方向に横切る磁気回路である。一方、d軸磁気回路の鎖交磁束により電機子巻線25に流れる電流によってコア部材53に形成されるq軸磁気回路59(図15に破線で示す)は、q軸コア部532から永久磁石55bの内周側を経由して、隣接するq軸コア部532を通り抜ける磁気回路である。
 回転センサ57は、ロータ50の回転位相を検知する。この回転センサ57は、車両用交流発電機2を制御する図示しない制御部と出力線57aで接続されており、検知したロータ50の回転位相情報を制御部に送る。
 以上の構成を有する車両用交流発電機2は、図示しないエンジンから駆動力伝達部材を介して回転軸51に回転力が伝えられると、回転軸51と共にロータ50が所定方向に回転する。この状態で、スリップリング56を介してロータ50の界磁巻線54に励磁電圧を印加することにより、第1及び第2磁極部531a,531bが励磁されて、ロータ50の回転周方向に沿って交互にNS磁極が形成される。これにより、ステータ20の電機子巻線25に回転磁界が付与されることで、電機子巻線25に交流の起電力を発生させる。電機子巻線25で発生した交流の起電力は、図示しない整流器を通って直流電流に整流された後、出力端子から取り出され図示しないバッテリに供給される。
 上記のように構成された実施形態2に係る車両用交流発電機2は、実施形態1の場合と同様に、ボス部521の一対のNS磁極あたりの軸方向断面積をAb(以下、「ボス部断面積Ab」という。)とし、ボス部521の材料の磁界の強さ5000A/mにおける磁束密度をBsbとし、永久磁石55の残留磁束密度をBrとし、永久磁石55の磁束流入出面の表面積をAmとし、短絡部533の周方向断面積をAs(以下、「短絡部断面積As」という。)とし、短絡部533の材料の磁界の強さ5000A/mにおける磁束密度をBssとしたときに、Ab・Bsb+As・Bss≧2・Br・Am、且つ0.03≦As/Ab≦0.22となる関係が成立するように構成されている。また、ロータ50は、1≦(Ab・Bsb+As・Bss)/(2・Br・Am)≦1.4となる関係が成立するように構成されている。
 <作用及び効果>
 以上のように構成された実施形態2の車両用交流発電機2によれば、ロータ50は、Ab・Bsb+As・Bss≧2・Br・Am、且つ0.03≦As/Ab≦0.22となる関係が成立するように構成されている。これにより、エアギャップの拡大を抑制しつつ十分な強度的信頼性を確保するとともに、界磁特性及び最大磁束を同等以上とすることにより高出力を実現し、且つ界磁巻線54の発熱量を低減して熱的信頼性を確保できる等、実施形態1と同様の作用及び効果を奏する。
 また、実施形態2では、ロータ50は、1≦(Ab・Bsb+As・Bss)/(2・Br・Am)≦1.4となる関係が成立するように構成されている。これにより、低電圧範囲において、逆起電力を厳密に低減させることができ、永久磁石55の削減によりコストダウンを図ることができる等、実施形態1と同様の作用及び効果を奏する。
 そして、実施形態2のロータ50は、永久磁石55a,55bが埋め込まれたコア部材53を、ポールコア52のディスク部522で軸方向両側から挟み込んだ構造を有する。これにより、d軸のインダクタンスが低い本構成において、コア部材53部分のq軸トルクを有効に使うことができる。
 また、ロータ50は、磁極部531の外周側に設けられて異なる極性の磁極部531同士を磁気的に接続する短絡部533を有するコア部材53を備えている。これにより、短絡部533の短絡磁路を逆起電力抑制構造として利用できるため、ボス部521やディスク部522の断面積を小さくすることで界磁巻線54のスペースを大きくできる。そのため、上記の熱的信頼性を確保する上でより一層効果的となる。
 〔実施形態3〕
 実施形態3に係る回転電機について図16~図22を参照して説明する。実施形態3に係る回転電機は、実施形態1と同様の車両用交流発電機であるが、主にロータ30の構成が実施形態1のものと異なる。以下、異なる点及び重要な点について説明する。なお、実施形態1と共通する要素については同じ符号を使用し、詳しい説明を省略する。
 <車両用交流発電機の全体構成>
 実施形態3の車両用交流発電機3は、図16に示すように、ハウジング10、ステータ20、ロータ30、界磁巻線給電装置、整流器45等を含む。実施形態1の図1に示す車両用交流発電機1に備える磁束短絡部材35に代えて、車両用交流発電機3では磁束短絡部材38を備える点が相違する。
 磁束短絡部材38は、実施形態1の短絡部35a,36aに相当する。この磁束短絡部材38は、周方向に交互に配置された異なる極性の爪状磁極部323同士を磁気的に短絡するように接続する軟磁性体(例えば磁性鉄板など)である。
 本形態の磁束短絡部材38は、図17に示すように、永久磁石34よりも径方向内側、かつ、界磁巻線33よりも径方向外側に設けられている。また、図18に示すように、周方向に隣り合う爪状磁極部323(すなわち第1爪状磁極部323aと第2爪状磁極部323b)の双方に接して設けられている。言い換えると、磁束短絡部材38は界磁巻線33と永久磁石34との間に設けられて爪状磁極部323に接するので、異なる極性の爪状磁極部323同士を磁気的に短絡する。磁束短絡部材38は、爪状磁極部323に接する配置でもよく、永久磁石34と接着したり接合したりして設けてもよく、界磁巻線33と接着して設けてもよい。接合は、アーク溶接やレーザビーム溶接などの融接でもよく、抵抗溶接や鍛接などの圧接でもよく、はんだ付けやろう付けなどのろう接でもよい。
 <磁束短絡部材38の作用>
 次に、界磁巻線33に流す界磁電流Ifに応じて、磁石磁束Ψnの流れを制御する技術について説明する。ここで、完成された回転電機は、ステータ20およびロータ30の各磁気抵抗を容易に測定できない。インダクタンスは、巻数(具体的にはターン数)の2乗で変動するため、大小関係を評価するのは難しい。そのため、本形態での評価には、後述する測定法で容易に測定でき、算出することが可能なパーミアンスを用いることにする。パーミアンスP[H]は、インダクタンスをL[H]とし、巻線の巻数をNとすると、一般式のP=L/Nの関係を有する。したがって、インダクタンスを測定できれば、容易にパーミアンスも求められる。また、巻数Nは定数であるので、パーミアンスPとインダクタンスLとは比例関係がある。
 界磁巻線33に界磁電流Ifが流れているとき、図19,図20に太破線で示すように、ロータ30の逆起電力を生むd軸磁気回路Mdが形成される。図19に示すd軸磁気回路Mdは、界磁コア32のボス部321と、一対の第1爪状磁極部323aおよび第2爪状磁極部323bとを通る磁束により形成される。ボス部321は「コア部」に相当する。
 上記磁束の流れは、さらに、図20に一例を太破線で示す。本例は、界磁巻線33に電流が流れて、第1ポールコア32aがN極に磁化され、第2ポールコア32bがS極に磁化される例である。まずステータコア21のd軸のティース23から界磁コア32の第2爪状磁極部323bに入る。その後、第2ディスク部322b,第2ボス部321b,第1ボス部321a,第1ディスク部322a,第1爪状磁極部323aを経由する。さらに、ステータコア21の1磁極分ずれた位置にあるティース23からステータコア21に戻った後、バックヨーク24を通って1磁極分ずれた位置にあるd軸のティース23に至る。図示を省略するが、第1ポールコア32aがS極に磁化され、第2ポールコア32bがN極に磁化される場合には、磁束は上述した順番と逆順に流れる。
 上述したd軸磁気回路Mdを考慮すると、ロータ30のパーミアンスPrt[H]は、界磁巻線33のインダクタンスを測定すれば求められる。界磁巻線33の巻数をNrとし、測定されたインダクタンスをLr[H]とすれば、Prt=Lr/Nrで求められる。
 また、ステータ20のパーミアンスPst[H]は、電機子巻線25のインダクタンスを測定すれば求められる。電機子巻線25の巻数をNsとし、測定されたインダクタンスをLs[H]とすれば、Pst=Ls/Nsで求められる。
 本形態では、図16,図17に示したように、ロータ30は永久磁石34および磁束短絡部材38を有する。そのため、図21に太破線で示す新たな磁気回路39が形成される。この磁気回路39は、界磁電流Ifが流れないとき(すなわちIf=0)に形成され、ボス部321,ディスク部322,磁束短絡部材38を流れてロータ30内で完結する。一方、界磁電流Ifが流れるときは、磁束短絡部材38を通る磁束が飽和してしまうため、磁気回路39は形成されない。すなわち磁束短絡部材38は、界磁電流Ifが流れないときに磁石磁束Ψnを抑制する最短絡路となり、界磁電流Ifが流れるときに漏洩磁束を無くす役割を担う。このことから、界磁電流Ifが流れるとき、漏洩磁束が無くなった磁石磁束Ψnは、その磁束のほぼ全てをステータ20側に供給できるので、車両用交流発電機3は永久磁石型モータのように作用する。
 図22には、界磁電流Ifに対するパーミアンスPrt,Pstの変化を示す。実線で示すパーミアンスPrtと、一点鎖線で示すパーミアンスPstは、いずれもロータ30を単体にてインダクタンスの測定を行った結果に基づくものである。比較例として、二点鎖線で示すパーミアンスPrt2は、永久磁石34および磁束短絡部材38を有しない従来技術のロータのものである。
 パーミアンスPrtは、無負荷時である界磁電流Ifが0[A]のときに最大値P2になり、界磁電流Ifが大きくなるにつれて低下してゆく。界磁電流IfがIf1[A]以上のとき、パーミアンスPrtは半分値P1以下となっている。半分値P1は最大値P2を半分にした値である。上述したようにパーミアンスPとインダクタンスLとは比例関係があるので、パーミアンスPをインダクタンスLに読み替えることもできる。すなわち、界磁電流Ifが負荷時に流れるIf1[A]以上のとき、インダクタンスLは界磁電流Ifが0[A]のときの値よりも半分値以下となる。
 これに対して、パーミアンスPstは界磁電流Ifの大きさに関わらず、一定幅の範囲で推移する。そのため、無負荷時はPrt>Pstになり、負荷時はPst>Prtになる。Pst>Prtが成り立つのは、厳密には界磁電流Ifが閾値電流Ifthよりも大きい範囲(すなわちIf>Ifth)に限られる。負荷時は、界磁巻線33に流す界磁電流Ifの定格電流が一般的なブラシの能力(例えばIf=4~20[A]の間)であって、閾値電流Ifthよりも大きな電流を流している状態である。ブラシに進歩が向上すれば、界磁電流Ifは一般的なブラシの能力である20[A]を超えた電流値(例えば30[A]や50[A]等)を流してもよい。
 上述したように、界磁電流Ifが0[A]のときにはロータ30とステータ20のパーミアンスをPrt>Pstにすることで、磁石磁束Ψnをロータ30内に留めることができる。磁束短絡部材38は、周方向に異なる極性の爪状磁極部323の間に設けられるので、磁石磁束Ψnを十分に短絡して、逆起電力を厳密に低減させることができる。
 一方、界磁電流Ifが負荷時の電流のときにはロータ30とステータ20のパーミアンスをPst>Prtにすることで、磁石磁束Ψnをステータ20側に流すことができる。周方向に異なる極性の爪状磁極部323の間に設けられた磁束短絡部材38は、界磁巻線33に流れた界磁電流Ifによって生じる界磁束Ψmで飽和するので、磁石磁束Ψnはステータ20に向けて流せる。こうして、界磁巻線33に流す界磁電流Ifの大きさに基づいて、ロータ30とステータ20のパーミアンスの大小関係を制御できる。
 <作用及び効果>
 以上のように構成された実施形態3の車両用交流発電機3によれば、ロータ30は、Ab・Bsb+As・Bss≧2・Br・Am、且つ0.03≦As/Ab≦0.22となる関係が成立するように構成されている。これにより、界磁巻線33への通電により界磁束が界磁コア32に励磁されたときに、界磁巻線33が巻装されているボス部321を流れる磁束を飽和させて、永久磁石34の磁力Ψmをステータ20へ流出させることができる。そのため、永久磁石34の磁力Ψmにより、従来の爪状磁極部間に設けられた磁束短絡部材38の磁束漏れによる能力低下と比べて同等以上の磁力増加を引き出すことが可能となり、界磁特性及び最大磁束の向上により高出力を実現できる。
 また、実施形態3では、ロータ30を単体にてインダクタンスの測定を行った際、負荷時のインダクタンスが、無負荷時のインダクタンスよりも半分以下となっている。この構成によれば、負荷時に磁石磁束Ψnを有効にステータ20側に案内し、無負荷時に磁石磁束Ψnをロータ30内で短絡させることができる。また、ランデル型を使う理由の一つである逆起電力を無負荷時に抑制するという効果を向上しつつ、高磁束が得られる。
 また、実施形態3では、短絡部に相当する磁束短絡部材38は、永久磁石34から界磁巻線33までのスペースと、永久磁石34からステータコア21のティースの径方向先端までのスペースとのうちで少なくとも一方に設けられている。この構成によれば、逆起電力を厳密に低減できる。ロータ30とステータ20間のエアギャップを通らない非常に低い磁気抵抗の逆起電力抑制磁路が設けられ、逆起電力を50%から70%程度まで低減できる。
 また、実施形態3では、短絡部に相当する磁束短絡部材38の部材は、コア部に相当するボス部321の材料よりも高い比透磁率の材料で構成されている。この構成によれば、無負荷時の磁束低減効果を持つ短絡磁路の非透磁率が高いため、より効果的に逆起電力を低減できる。
 実施形態3では、図16,図17に示すように、磁束短絡部材38は永久磁石34から界磁巻線33までのスペースに設ける構成とした。この構成に限らず、図23,図24に示すように、永久磁石34からステータコア21のティース23の径方向先端(図23ではステータ20の左側端面)までのスペースに設ける構成としてもよい。永久磁石34から界磁巻線33までと、永久磁石34からティース23の径方向先端までの双方に磁束短絡部材38を設ける構成としてもよい。要するに1以上の磁束短絡部材38は、周方向に異なる極性の爪状磁極部323の間、かつ、図23に示す界磁巻線33からティース23の径方向先端までのスペースSpのうちで永久磁石34を除いた部位に設けることができる。いずれの場所に設けた場合でも、上述した作用効果が得られる。
 実施形態3では、磁束短絡部材38によって、界磁電流Ifが0[A]のときにはロータ30とステータ20のパーミアンスをPrt>Pstにし、界磁電流Ifが負荷時の電流のときにはロータ30とステータ20のパーミアンスをPst>Prtにした。このことは、実施形態1の短絡部35a,36aや、実施形態2の短絡部533でも同様に実現できる。すなわち、実施形態3の作用効果は実施形態1,2でも得られる。
 〔他の実施形態〕
 本発明は、上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更することが可能である。例えば、上記の実施形態では、本発明に係る回転電機を車両用交流発電機に適用した例を説明したが、車両に搭載される回転電機としての電動機や、さらには発電機と電動機を選択的に使用し得る回転電機にも本発明を適用することができる。
 〔本開示の態様〕
本開示の第1の態様では、
 ステータコア(21)に電機子巻線(25)が巻装されてなるステータ(20)と、前記ステータの内周側に径方向に対向して配置されたロータ(30)と、を備えた回転電機において、
 前記ロータは、
 筒状のボス部(321,321a,321b)、及び、前記ボス部の外周側に配置されて周方向に交互に異なる極性の磁極が形成される複数の爪状磁極部(323,323a,323b)を有する界磁コア(32)と、
 前記ボス部の外周側に巻装されて通電により起磁力を発生する界磁巻線(33)と、
 周方向に隣接する前記爪状磁極部の間に、磁化容易軸が周方向に向けられてその極性が励磁によって前記爪状磁極部に交互に現れる極性と一致するように配置された永久磁石(34)と、
 周方向に異なる極性の前記爪状磁極部同士を磁気的に接続する短絡部(35a,36a)を有する磁束短絡部材(35,36,37,38)と、を備え、
 前記ボス部の一対のNS磁極あたりの軸方向断面積をAbとし、前記ボス部の材料の磁界の強さ5000A/mにおける磁束密度をBsbとし、前記永久磁石の残留磁束密度をBrとし、前記永久磁石の磁束流入出面の表面積をAmとし、前記短絡部の周方向断面積をAsとし、前記短絡部の材料の磁界の強さ5000A/mにおける磁束密度をBssとしたときに、
 Ab・Bsb+As・Bss≧2・Br・Am、且つ0.03≦As/Ab≦0.22となる関係が成立するように構成されている。
 この構成によれば、界磁巻線への通電により界磁束が界磁コアに励磁されたときに、界磁巻線が巻装されているボス部を流れる磁束を飽和させて、永久磁石の磁力Ψmをステータへ流出させることができる。そのため、永久磁石の磁力Ψmにより、従来の爪状磁極部間に設けられた短絡部の磁束漏れによる能力低下と同等以上の磁力増加を引き出すことが可能となり、界磁特性及び最大磁束を高く設定することが可能となり、高出力を実現できる。
 また、磁束短絡部材は、爪状磁極部の外周側や内周側を含めて周方向に異なる極性の爪状磁極部の間にあって、永久磁石を除いたスペースに配置されている。磁束短絡部材が爪状磁極部の外周側に配置された場合には、遠心力による爪状磁極部の径方向強度が増加されているため、爪状磁極部が遠心力により径方向外側に拡がるのを抑制できる。そのため、ステータとロータ間のエアギャップを、従来の流通多数を占める磁石無しランデル型ロータと同一レベルにすることができる。これにより、エアギャップの拡大を抑制しつつ十分な強度的信頼性を確保できる。また、エアギャップの減少により、界磁巻線に通電する界磁電流を少なくできるため、従来の磁石付きランデル型ロータと比べ、界磁巻線の発熱量を低減できる。これにより、熱的信頼性を現状の空気冷却機構の能力で成立させることができる。
 本発明の第2の態様では、第1の態様において、前記ロータは、1≦(Ab・Bsb+As・Bss)/(2・Br・Am)≦1.4となる関係が成立するように構成されている。この構成によれば、低電圧範囲において、逆起電力を厳密に低減できるほか、永久磁石の削減によりコストダウンを図ることができる。
 本発明の第3の態様では、第1の態様又は第2の態様において、前記短絡部は、軸方向断面積が周方向において一定にされている。この構成によれば、短絡部の周方向断面積を用いて設定する第1の態様の関係式を容易に導き出せる。また、短絡部は、応力集中係数がなく応力集中が起きないため、磁束短絡部材自身の遠心力に対する強度と、爪状磁極部の広がりに対抗するのに十分な強度を確保できる。
 本発明の第4の態様では、第1~第3の何れかの態様において、前記短絡部は、前記ロータと前記ステータコアとの径方向に対向する対向面の軸方向外側に少なくとも一部がはみ出すように設けられている。この構成によれば、短絡部がロータとステータコアとの対向面以外の所で磁束を短絡するため、短絡部を通る磁束がステータコアに漏れ難くなるので、逆起電力をより下げ易くすることができる。
 本発明の第5の態様では、
 ステータコア(21)に電機子巻線(25)が巻装されてなるステータ(20)と、前記ステータの内周側に径方向に対向して配置されたロータ(30)と、を備えた回転電機において、
 前記ロータは、
 筒状のボス部(521)、及び、前記ボス部の軸方向両端から周方向所定ピッチで径方向外側に突出するディスク部(522,522a,522b)を有するポールコア(52)と、
 周方向に交互に異なる極性の磁極が形成される複数の磁極部(531,531a,531b)、前記磁極部を通るd軸から電気角で90°ずれた所に位置するq軸コア部(532)、及び、周方向に異なる極性の前記磁極部同士を磁気的に接続する短絡部(533)を有するコア部材(53)と、
 前記ボス部の外周側に巻装されて通電により起磁力を発生する界磁巻線(54)と、
 前記磁極部と前記q軸コア部の間に配置されて前記磁極部に交互に現れる極性と一致するように配置された永久磁石(55)と、を備え、
 前記ボス部の一対のNS磁極あたりの軸方向断面積をAbとし、前記ボス部の材料の磁界の強さ5000A/mにおける磁束密度をBsbとし、前記永久磁石の残留磁束密度をBrとし、前記永久磁石の磁束流入出面の表面積をAmとし、前記短絡部の周方向断面積をAsとし、前記短絡部の材料の磁界の強さ5000A/mにおける磁束密度をBssとしたときに、
 Ab・Bsb+As・Bss≧2・Br・Am、且つ0.03≦As/Ab≦0.22となる関係が成立するように構成されている。
 この構成によれば、界磁巻線への通電により界磁束が界磁コアに励磁されたときに、界磁巻線が巻装されているボス部を流れる磁束を飽和させて、永久磁石の磁力Ψmをステータへ流出させることができる。そのため、永久磁石の磁力Ψmにより、従来の爪状磁極部間に設けられた短絡部の磁束漏れによる能力低下と同等以上の磁力増加を引き出すことが可能となり、界磁特性及び最大磁束の向上により高出力を実現できる。この効果は、外周側に設置された円筒状の部材に限られず、磁極部の内周側などに配置された磁性鉄板などによっても実現しうる。また、後述する実施形態では円筒状の磁束短絡部材が爪状磁極部の外周側に配置されていることにより、遠心力による爪状磁極部の径方向強度が増加されているため、爪状磁極部が遠心力により径方向外側に拡がるのを抑制できる。そのため、ステータとロータ間のエアギャップを、従来の流通多数を占める磁石無しランデル型ロータと同一レベルにすることができる。これにより、エアギャップの拡大を抑制しつつ十分な強度的信頼性を確保できる。
 また、エアギャップの減少により、界磁巻線に通電する界磁電流を少なくできるため、従来の磁石付きランデル型ロータと比べ、界磁巻線の発熱量を非常に効果的に、90%程度低減できる。これにより、熱的信頼性を現状の空気冷却機構の能力で成立させることができる。また、ロータは、ボス部及びディスク部を有するポールコアと、複数の磁極部、q軸コア部及び短絡部を有するコア部材とを備える構成であるため、リラクタンストルクや回生出力を上昇させることができる。
 本発明の第6の態様では、第5の態様において、前記ロータは、1≦(Ab・Bsb+As・Bss)/(2・Br・Am)≦1.4となる関係が成立するように構成されている。この構成によれば、低電圧範囲において、逆起電力を厳密に低減できるほか、永久磁石の削減によりコストダウンを図ることができる。
 本発明の第7の態様では、第1~第6の何れかの態様において、前記ロータを単体にてインダクタンスの測定を行った際、負荷時のインダクタンスが、無負荷時のインダクタンスよりも半分以下となっている。この構成によれば、負荷時に磁石磁束を有効にステータ側に案内し、無負荷時に磁石磁束をロータ内で短絡させることができる。また、ランデル型を使う理由の一つである逆起電力を無負荷時に抑制するという効果を向上しつつ、高磁束を得ることができる。
 本発明の第8の態様では、第1~第7の何れかの態様において、前記ステータコアは、径方向に延びる複数のティース(23)を有し、前記短絡部は、前記永久磁石から前記界磁巻線までのスペースと、前記永久磁石から前記ティースの径方向先端までのスペースとのうちで少なくとも一方に設けられている。言い換えると、周方向に異なる極性の爪状磁極部の間、かつ、径方向における界磁巻線とティースとの間であって、永久磁石を除いたスペースに短絡部が設けられている。この構成によれば、逆起電力を厳密に低減できる。また、ロータとステータ間のエアギャップを通らない非常に低い磁気抵抗の逆起電力抑制磁路が設けられ、逆起電力を50%から70%程度まで低減できる。
 本発明の第9の態様では、第1~第8の何れかの態様において、前記ロータは、コア部(321,52)を有し、前記短絡部(35a,36a,38)の部材は、前記コア部の材料よりも高い比透磁率の材料で構成されている。この構成によれば、無負荷時の磁束低減効果を持つ短絡磁路の非透磁率が高いため、より効果的に逆起電力を低減できる。
 なお、明細書、請求の範囲及び要約で記載された各部材や部位の後の括弧内の符号は、前述した実施形態に記載の具体的な部材や部位との対応関係を示すものであり、請求の範囲に記載された各請求項の構成に何ら影響を及ぼすものではない。

Claims (9)

  1.  ステータコア(21)に電機子巻線(25)が巻装されてなるステータ(20)と、前記ステータの内周側に径方向に対向して配置されたロータ(30)と、を備えた回転電機において、
     前記ロータは、
     筒状のボス部(321,321a,321b)、及び、前記ボス部の外周側に配置されて周方向に交互に異なる極性の磁極が形成される複数の爪状磁極部(323,323a,323b)を有する界磁コア(32)と、
     前記ボス部の外周側に巻装されて通電により起磁力を発生する界磁巻線(33)と、
     周方向に隣接する前記爪状磁極部の間に、磁化容易軸が周方向に向けられてその極性が励磁によって前記爪状磁極部に交互に現れる極性と一致するように配置された永久磁石(34)と、
     周方向に異なる極性の前記爪状磁極部同士を磁気的に接続する短絡部(35a,36a)を有する磁束短絡部材(35,36,37,38)と、を備え、
     前記ボス部の一対のNS磁極あたりの軸方向断面積をAbとし、前記ボス部の材料の磁界の強さ5000A/mにおける磁束密度をBsbとし、前記永久磁石の残留磁束密度をBrとし、前記永久磁石の磁束流入出面の表面積をAmとし、前記短絡部の周方向断面積をAsとし、前記短絡部の材料の磁界の強さ5000A/mにおける磁束密度をBssとしたときに、
     Ab・Bsb+As・Bss≧2・Br・Am、且つ0.03≦As/Ab≦0.22となる関係が成立するように構成されている回転電機。
  2.  請求項1において、
     前記ロータは、1≦(Ab・Bsb+As・Bss)/(2・Br・Am)≦1.4となる関係が成立するように構成されている回転電機。
  3.  請求項1又は2において、
     前記短絡部は、軸方向断面積が周方向において一定にされている回転電機。
  4.  請求項1~3の何れか一項において、
     前記短絡部は、前記ロータと前記ステータコアとの径方向に対向する対向面の軸方向外側に少なくとも一部がはみ出すように設けられている回転電機。
  5.  ステータコア(21)に電機子巻線(25)が巻装されてなるステータ(20)と、前記ステータの内周側に径方向に対向して配置されたロータ(30)と、を備えた回転電機において、
     前記ロータは、
     筒状のボス部(521)、及び、前記ボス部の軸方向両端から周方向所定ピッチで径方向外側に突出するディスク部(522,522a,522b)を有するポールコア(52)と、
     周方向に交互に異なる極性の磁極が形成される複数の磁極部(531,531a,531b)、前記磁極部を通るd軸から電気角で90°ずれた所に位置するq軸コア部(532)、及び、周方向に異なる極性の前記磁極部同士を磁気的に接続する短絡部(533)を有するコア部材(53)と、
     前記ボス部の外周側に巻装されて通電により起磁力を発生する界磁巻線(54)と、
     前記磁極部と前記q軸コア部の間に配置されて前記磁極部に交互に現れる極性と一致するように配置された永久磁石(55)と、を備え、
     前記ボス部の一対のNS磁極あたりの軸方向断面積をAbとし、前記ボス部の材料の磁界の強さ5000A/mにおける磁束密度をBsbとし、前記永久磁石の残留磁束密度をBrとし、前記永久磁石の磁束流入出面の表面積をAmとし、前記短絡部の周方向断面積をAsとし、前記短絡部の材料の磁界の強さ5000A/mにおける磁束密度をBssとしたときに、
     Ab・Bsb+As・Bss≧2・Br・Am、且つ0.03≦As/Ab≦0.22となる関係が成立するように構成されている回転電機。
  6.  請求項5において、
     前記ロータは、1≦(Ab・Bsb+As・Bss)/(2・Br・Am)≦1.4となる関係が成立するように構成されている回転電機。
  7.  請求項1~6の何れか一項において、
     前記ロータを単体にてインダクタンスの測定を行った際、負荷時のインダクタンスが、無負荷時のインダクタンスよりも半分以下となっている回転電機。
  8.  請求項1~7の何れか一項において、
     前記ステータコアは、径方向に延びる複数のティース(23)を有し、
     前記短絡部は、前記永久磁石から前記界磁巻線までのスペースと、前記永久磁石から前記ティースの径方向先端までのスペースとのうちで少なくとも一方に設けられている回転電機。
  9.  請求項1~8の何れか一項において、
     前記ロータは、コア部(321,52)を有し、
     前記短絡部(35a,36a,38)の部材は、前記コア部の材料よりも高い比透磁率の材料で構成されている回転電機。
PCT/JP2017/020445 2016-06-03 2017-06-01 回転電機 WO2017209246A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017002761.6T DE112017002761T5 (de) 2016-06-03 2017-06-01 Drehende elektrische maschine
CN201780034353.5A CN109219915B (zh) 2016-06-03 2017-06-01 旋转电机
US16/305,847 US10790734B2 (en) 2016-06-03 2017-06-01 Rotating electric machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-112278 2016-06-03
JP2016112278 2016-06-03
JP2017089433A JP6597705B2 (ja) 2016-06-03 2017-04-28 回転電機
JP2017-089433 2017-04-28

Publications (1)

Publication Number Publication Date
WO2017209246A1 true WO2017209246A1 (ja) 2017-12-07

Family

ID=60477657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020445 WO2017209246A1 (ja) 2016-06-03 2017-06-01 回転電機

Country Status (1)

Country Link
WO (1) WO2017209246A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113454894A (zh) * 2019-02-25 2021-09-28 株式会社电装 旋转电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247817A (ja) * 2001-02-20 2002-08-30 Mitsubishi Electric Corp 回転電機の回転子
JP2003018808A (ja) * 2001-06-27 2003-01-17 Hitachi Ltd 車両用交流発電機
JP2007068361A (ja) * 2005-09-01 2007-03-15 Denso Corp 回転子の磁石保護構造及び磁石保護方法
JP2009148057A (ja) * 2007-12-13 2009-07-02 Denso Corp 車両用交流発電機
JP2009207333A (ja) * 2008-02-29 2009-09-10 Denso Corp ランデル型ロータ型モータ
US20100289371A1 (en) * 2007-06-27 2010-11-18 Alexandre Pfleger Interpole assembly for rotating electrical machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247817A (ja) * 2001-02-20 2002-08-30 Mitsubishi Electric Corp 回転電機の回転子
JP2003018808A (ja) * 2001-06-27 2003-01-17 Hitachi Ltd 車両用交流発電機
JP2007068361A (ja) * 2005-09-01 2007-03-15 Denso Corp 回転子の磁石保護構造及び磁石保護方法
US20100289371A1 (en) * 2007-06-27 2010-11-18 Alexandre Pfleger Interpole assembly for rotating electrical machine
JP2009148057A (ja) * 2007-12-13 2009-07-02 Denso Corp 車両用交流発電機
JP2009207333A (ja) * 2008-02-29 2009-09-10 Denso Corp ランデル型ロータ型モータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113454894A (zh) * 2019-02-25 2021-09-28 株式会社电装 旋转电机
CN113454894B (zh) * 2019-02-25 2024-01-02 株式会社电装 旋转电机

Similar Documents

Publication Publication Date Title
JP6597705B2 (ja) 回転電機
JP6579395B2 (ja) 回転電機
US20090236924A1 (en) Brushless machine with tapered poles
JP3790774B2 (ja) 永久磁石回転電機および自動車
US7671508B2 (en) Automotive alternator having improved structure for effectively cooling field coil
US10910932B2 (en) Rotating electric machine
US10848041B2 (en) Rotating electric machine
WO2017209246A1 (ja) 回転電機
JP4211200B2 (ja) 磁石併用同期機
JP4066219B2 (ja) 静止界磁コイル式磁石併用同期機
JP5904188B2 (ja) マルチギャップ型回転電機
US20170353074A1 (en) Rotor for rotating electric machine
JP3790773B2 (ja) 永久磁石回転電機および自動車
US7053518B2 (en) Rotor for dynamo-electric machine
JP2002191157A (ja) 永久磁石併用同期回転機
JP3790765B2 (ja) 永久磁石回転電機および永久磁石回転電機を用いた電動車両
JP2006158147A (ja) 車両用交流発電機
JP6766574B2 (ja) 回転電機
JP6641600B2 (ja) 回転電機の回転子
JP3790766B2 (ja) 永久磁石回転電機および永久磁石回転電機を用いた電動車両
US10840787B2 (en) Rotating electric machine
US10840786B2 (en) Rotary electric machine having magnetic flux supplied from a field coil
JP6634960B2 (ja) 回転電機の回転子
JP3790769B2 (ja) 永久磁石回転電機および永久磁石回転電機を用いた電動車両
US20190372407A1 (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806796

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806796

Country of ref document: EP

Kind code of ref document: A1