WO2017197933A2 - 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料 - Google Patents

一种高性能玻璃纤维组合物及其玻璃纤维和复合材料 Download PDF

Info

Publication number
WO2017197933A2
WO2017197933A2 PCT/CN2017/073447 CN2017073447W WO2017197933A2 WO 2017197933 A2 WO2017197933 A2 WO 2017197933A2 CN 2017073447 W CN2017073447 W CN 2017073447W WO 2017197933 A2 WO2017197933 A2 WO 2017197933A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight percentage
glass fiber
content
glass
fiber composition
Prior art date
Application number
PCT/CN2017/073447
Other languages
English (en)
French (fr)
Other versions
WO2017197933A3 (zh
Inventor
章林
邢文忠
曹国荣
顾桂江
Original Assignee
巨石集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP17794207.5A priority Critical patent/EP3287423B1/en
Priority to RU2017143175A priority patent/RU2017143175A/ru
Application filed by 巨石集团有限公司 filed Critical 巨石集团有限公司
Priority to BR112017027999-1A priority patent/BR112017027999B1/pt
Priority to KR1020177035230A priority patent/KR102001011B1/ko
Priority to ES17794207T priority patent/ES2769179T3/es
Priority to MX2017013622A priority patent/MX2017013622A/es
Priority to DK17794207.5T priority patent/DK3287423T3/da
Priority to SI201730161T priority patent/SI3287423T1/sl
Priority to AU2017267862A priority patent/AU2017267862A1/en
Priority to JP2017562666A priority patent/JP2018521944A/ja
Priority to MA41662A priority patent/MA41662B1/fr
Priority to CA2984193A priority patent/CA2984193C/en
Priority to PL17794207T priority patent/PL3287423T3/pl
Priority to SA517390350A priority patent/SA517390350B1/ar
Priority to US15/821,710 priority patent/US10207949B2/en
Publication of WO2017197933A2 publication Critical patent/WO2017197933A2/zh
Priority to ZA2017/08662A priority patent/ZA201708662B/en
Publication of WO2017197933A3 publication Critical patent/WO2017197933A3/zh
Priority to AU2019226221A priority patent/AU2019226221B2/en
Priority to HRP20200074TT priority patent/HRP20200074T1/hr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/006Glass-ceramics fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments

Definitions

  • the present invention relates to a high performance glass fiber composition, and more particularly to a high performance glass fiber composition capable of reinforcing a substrate as an advanced composite material, and glass fibers and composite materials thereof.
  • Glass fiber is an inorganic fiber material, and it can be used to reinforce a resin to obtain a composite material with excellent properties.
  • high-performance glass fiber was originally used in the defense, military and other fields of defense, military and other fields.
  • high-performance glass fiber is widely used in civil industry such as wind blades, high-pressure vessels, marine pipelines, and automobile manufacturing. Therefore, the pursuit of more excellent strength and modulus performance, lower production risks and costs, and the realization of large-scale pool kiln production, thereby greatly improving the cost performance of high-performance glass fiber has become an urgent task.
  • S glass is the earliest high-performance glass. Its composition is mainly composed of MgO-Al 2 O 3 -SiO 2 system. ASTM International defines S glass as a group of glass mainly composed of oxides of magnesium, aluminum and silicon. Such as the United States developed S-2 glass. The weight percentage of SiO 2 and Al 2 O 3 in S-2 glass is 90%, MgO is about 10%, the melting temperature of glass is above 1600 °C, the molding temperature of glass is as high as 1571 °C, and the liquidus temperature is as high.
  • HS glass its main components also include SiO 2 , Al 2 O 3 , MgO, while introducing high content of Li 2 O, B 2 O 3 and Fe 2 O 3 , its molding temperature range is 1310- At 1330 ° C, the liquidus temperature range is 1360-1390 ° C, both of which are much lower than S glass, but the molding temperature is lower than the liquidus temperature, and the ⁇ T value is negative, which is extremely unfavorable for glass fiber.
  • the drawing temperature must be increased, and a special type of leaking nozzle is used to prevent the glass from devitrifying during the drawing process, which causes difficulty in temperature control and is difficult to realize large-scale pool kiln production.
  • the total weight percentage of the two generally exceeds 2.5% or even 3%, and the mechanical properties and corrosion resistance of the glass are adversely affected.
  • the data show that the elastic modulus of HS glass is generally 86-89GPa, and the tensile strength of the dipped yarn is generally 3000-3300MPa.
  • the specific performance is that the liquidus temperature of the glass is too high, the crystallization rate is too fast.
  • the molding temperature is high, the clarification is difficult, and the glass fiber forming range ⁇ T value is small or even negative.
  • most companies often reduce the production difficulty by sacrificing part of the glass performance. This causes the strength and modulus performance of the above glass fiber to be unable to increase with the production scale, and there is a problem of insufficient strength and modulus performance. Break through the strength and modulus bottleneck of S glass fiber.
  • the present invention is directed to solving the problems described above. It is an object of the present invention to provide a high performance glass fiber composition which not only significantly increases the strength and modulus of the glass fiber, but also significantly reduces the crystallization rate and liquidus temperature of the glass, thereby overcoming the conventional high performance.
  • the technical problem of excessive crystallization rate of glass and high liquidus temperature greatly increases the range of glass fiber molding.
  • the composition can also lower the high temperature viscosity, molding temperature and bubble rate of glass, which is beneficial to reduce production energy consumption. It is especially suitable for the production of high performance glass fiber in large scale kiln.
  • a high performance glass fiber composition comprising the following components, the content of each component being expressed in weight percent as follows:
  • the glass fiber composition contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the glass fiber composition contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the content of MgO is further limited to be 10.3 to 14% by weight.
  • the content of MgO is further limited to be greater than 11% by weight and 13.5% or less.
  • the content of MgO is further limited to be 11.2-13.5% by weight.
  • CeO 2 , SrO, La 2 O 3 , ZnO, B 2 O 3 and ZrO 2 in a weight percentage content of less than 2% may also be contained.
  • SrO may be contained in a weight percentage ranging from 0 to 17.7%.
  • CeO 2 in a weight percentage ranging from 0 to 0.55% may also be contained.
  • the content of the weight percentage of Al 2 O 3 +MgO+Li 2 O is further limited to be greater than or equal to 28.1%.
  • the content of the weight percentage of Al 2 O 3 +MgO+Li 2 O is further limited to be greater than or equal to 29.1%.
  • the weight percentage ratio of MgO/CaO is further limited to be greater than or equal to 1.6.
  • the content of Li 2 O is further limited to be 0.05 to 0.7% by weight.
  • the content of Li 2 O+Na 2 O+K 2 O is further limited, and is 0.25-0.98% by weight.
  • the glass fiber composition contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the glass fiber composition contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the range of /Y 2 O 3 is 6.5 or more, and the content by weight of Al 2 O 3 +MgO+Li 2 O is in the range of 28.1% or more.
  • the glass fiber composition contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the range of /Y 2 O 3 is 6.5 or more, and the content of the content of Al 2 O 3 +MgO+Li 2 O is in the range of 29.1% or more.
  • the content of Y 2 O 3 is further limited to be 2.3 to 3.9% by weight.
  • La 2 O 3 in a weight percentage ranging from 0 to 0.05% may also be contained.
  • the glass fiber composition is composed of the following components, and the content of each component is expressed by weight percentage as follows:
  • a glass fiber made of the above glass fiber composition.
  • a composite material comprising the glass fibers described above.
  • the main innovation is to significantly reduce the CaO content, control the alkali metal oxide content, and strictly control Al 2 O 3 /SiO 2 by introducing high levels of Y 2 O 3 and MgO.
  • the content range of Li 2 O, CaO and Al 2 O 3 +MgO+Li 2 O is effective by utilizing the special complementing and accumulating action of cerium in the glass structure, and the synergistic effect between cerium ions and magnesium ions and lithium ions.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the functions and contents of the components in the glass fiber composition are as follows:
  • SiO 2 is the main oxide forming the glass skeleton and functions to stabilize the components. In order to ensure that the glass has sufficient mechanical properties, the silicon oxide content should not be too low; in order to prevent the viscosity of the glass and the liquidus temperature from being too high, it is difficult to carry out large-scale production, and the silicon oxide content should not be too high.
  • the weight percentage of SiO 2 is limited to be in the range of 57.1 to 16.9%.
  • the weight percentage content of SiO 2 may be limited to 57.4 to 66.%.
  • the weight percentage content of SiO 2 may be limited to 58-60.4%. More preferably, the weight percentage content of SiO 2 may be limited to 58% or more and less than 60%.
  • Al 2 O 3 is also an oxide forming a glass skeleton. When combined with SiO 2 , it can play a substantial role in the mechanical properties of the glass and plays an important role in preventing phase separation and crystallization of the glass. If the content is too low, sufficient mechanical properties, especially modulus, cannot be obtained; if the content is too high, the risk of phase separation and crystallization of the glass is greatly increased.
  • the content of Al 2 O 3 is limited to a weight percentage ranging from 17.1 to 21%.
  • the weight percentage content of Al 2 O 3 may be limited to 17.5-20.5%. More preferably, the weight percentage content of Al 2 O 3 may be limited to 17.7-120.1%.
  • the total content of SiO 2 + Al 2 O 3 can be limited to 75.5 to 82%, which is not only a guarantee for obtaining sufficiently high mechanical properties, but also facilitates large-scale kiln production at a lower temperature.
  • the total content of SiO 2 +Al 2 O 3 may be defined to be 76-81%.
  • Y 2 O 3 is an important rare earth oxide.
  • the inventors have found that the introduction of a higher content of Y 2 O 3 in the glass system of the present invention has a remarkable effect of increasing the strength and modulus of the glass and suppressing the crystallization of the glass.
  • Y 3+ is located as a network external ion between the network gaps. It has high coordination number, high field strength, high charge and strong accumulation ability. It can improve the stability of the glass structure, increase the strength and modulus of the glass, and at the same time be effective. Preventing the movement of other ions to achieve the purpose of reducing the tendency of the glass to devitrify.
  • the inventors have found that the above-mentioned technical effects are not remarkable when the amount of introduction of Y 2 O 3 is low.
  • the ionic radius (0.09 nm) of Y 3+ is large, it is significantly larger than the ionic radii of Al 3+ (0.0535 nm), Mg 2+ (0.072 nm) and Li + (0.076 nm). Therefore, when Y 2 O 3 When the amount of introduction exceeds a certain limit, too much large ion Y 3+ can not obtain enough vacancies for filling, which not only has a certain negative impact on the tight packing of the structure, but also significantly increases the density and structural stress of the glass. Therefore, in the glass fiber composition of the present invention, the content of Y 2 O 3 is limited in a range of from 1.1 to 4.3% by weight.
  • the content by weight of Y 2 O 3 may be limited to 2-4.2%.
  • the content by weight of Y 2 O 3 may be limited to 2-4%.
  • the content by weight of Y 2 O 3 may be limited to 2.3 to 3.9%.
  • the range of /Y 2 O 3 is 6.5 or more, thereby effectively controlling the element ratio of various ionic radii which are favorable for mechanical properties, and achieving the effect of improving the close packing degree of the glass structure.
  • the content of the content of Al 2 O 3 +MgO+Li 2 O may be greater than or equal to 28.1%.
  • the weight percentage of Al 2 O 3 +MgO+Li 2 O may be defined to be in the range of 28.6% or more.
  • the weight percentage of Al 2 O 3 +MgO+Li 2 O may be defined to be in the range of 29.1% or more.
  • the weight percentage of Al 2 O 3 +MgO+Li 2 O may be defined to be in the range of 29.6% or more.
  • MgO and CaO mainly function to control glass crystallization, adjust glass viscosity and material properties, and high content of MgO can play a positive role in the mechanical properties of the glass.
  • the inventors obtained unexpected effects by increasing the MgO content, controlling the MgO/CaO ratio, and the ratio of (Y 2 O 3 +MgO)/SiO 2 .
  • the data show that the traditional high performance glass with MgO-CaO-Al 2 O 3 -SiO 2 system as the main body has high calcium oxide content (generally more than 10%, even 12%), under the condition that the calcium oxide content is abundant.
  • the crystal phase contained in the conventional high-performance glass is mainly composed of diopside (CaMgSi 2 O 6 ) and anorthite (CaAl 2 Si 2 O 8 ), and the competition between the two in the process of crystallization is not Intense, so the control effect on the crystallization rate is not ideal.
  • the CaO content is greatly reduced and the MgO content is increased to form a devitrification environment in which the calcium oxide content is insufficient, so that the crystal phase contained in the glass after crystallization is mainly cordierite (Mg 2 Al 4 Si 5 O 8 ).
  • the weight percentage of MgO is limited to range from 10.1 to 14.5%.
  • the weight percentage content of MgO may be limited to 10.3 to 14%.
  • the weight percentage of MgO can be limited to a range of from 10.5 to 14%.
  • the weight percentage content of MgO may be limited to be greater than 11% and less than or equal to 13.5%.
  • the weight percentage content of MgO may be limited to 11.2-13.5%.
  • the content of CaO is limited to a content of less than 6.5% by weight.
  • the weight percentage content of CaO may be limited to 6.3% or less.
  • the weight percentage of CaO can be limited to a range of from 2 to 6%. Preferably, the weight percentage of CaO can be limited to 2.3 to 5.8%.
  • the weight percentage ratio of MgO/CaO may be defined to be greater than or equal to 1.75.
  • the weight percentage ratio of MgO/CaO may be defined to be greater than or equal to 1.9.
  • Li 2 O can significantly lower the viscosity of the glass and improve the glass melting performance.
  • a small amount of Li 2 O can provide considerable free oxygen, which is beneficial to the formation of tetrahedral coordination of more aluminum ions, enhances the network structure of the glass system, and further improves the mechanical properties of the glass.
  • the introduction amount is not suitable.
  • the content of Li 2 O+Na 2 O+K 2 O is limited to 1% by weight or less, and the content of Li 2 O is limited to 0.75% by weight or less.
  • the weight percentage content of Li 2 O may be limited to 0.7% or less.
  • the weight percentage content of Li 2 O may be limited to 0.05-0.7%.
  • the content by weight of Li 2 O may be limited to 0.1 to 0.65%.
  • the content by weight of Li 2 O+Na 2 O+K 2 O may be limited to 0.98% or less.
  • the weight percentage content of Li 2 O+Na 2 O+K 2 O may be limited to 0.25-0.98%.
  • the content by weight of Li 2 O+Na 2 O+K 2 O may be limited to 0.3-0.95%.
  • the content of Na 2 O+K 2 O should not be much higher when the amount of Y 2 O 3 introduced is high, otherwise it will affect The stacking effect of the glass structure.
  • the weight percentage of Na 2 O+K 2 O can be defined to be less than 0.7%.
  • the weight percentage of Na 2 O+K 2 O can be defined to be less than 0.55%.
  • TiO 2 not only reduces the viscosity of the glass at high temperatures, but also has a certain fluxing effect. However, since titanium ions and iron ions have a certain coloring effect, the appearance of the glass fiber products is affected, so the content is not suitable. Accordingly, in the glass fiber composition of the present invention, the content of TiO 2 is limited to a content of less than 1.8% by weight. Preferably, the weight percent content of TiO 2 can be defined to be less than 1.4%. More preferably, the weight percentage of TiO 2 may be defined to be in the range of 0.8% or less.
  • Fe 2 O 3 is advantageous for the melting of glass and also for improving the crystallization properties of glass.
  • the content is not suitable. Therefore, in the glass fiber composition of the present invention, the content of Fe 2 O 3 is limited to a content ranging from 0.05 to 1.2% by weight.
  • the content of Fe 2 O 3 may be limited to a content ranging from 0.05 to 1% by weight.
  • the glass fiber composition of the present invention may further contain a small amount of other components in a total amount by weight of 2% or less. Further, the glass fiber composition of the present invention may contain one or more of CeO 2 , SrO, La 2 O 3 , ZnO, B 2 O 3 and ZrO 2 in a weight percentage content of less than 2%. Further, the glass fiber composition of the present invention may contain one or more of La 2 O 3 , ZnO, B 2 O 3 and ZrO 2 in a weight percentage content of less than 1%. Further, the glass fiber composition of the present invention may contain SrO in a weight percentage ranging from 0 to 17.7%.
  • the glass fiber composition of the present invention may contain SrO in a weight percentage ranging from 0.1 to 1.3%. Further, the glass fiber composition of the present invention may contain one or both of CeO 2 and SrO in a weight percentage content of 1.3% or less. Further, the glass fiber composition of the present invention may contain CeO 2 in a weight percentage ranging from 0 to 0.55%. Further, the glass fiber composition of the present invention may contain CeO 2 in a weight percentage ranging from 0 to 0.25%. Further, the glass fiber composition of the present invention may further comprise F 2 in a weight percentage ranging from 0 to 0.5%, and in general, F 2 is carried in the form of impurities from the glass raw material.
  • the glass fiber composition of the present invention may not contain B 2 O 3 , and this component is generally carried in the form of glass raw material impurities. Further, the glass fiber composition of the present invention may further comprise La 2 O 3 in a weight percentage ranging from 0 to 0.05%.
  • the total content of components such as SiO 2 , Al 2 O 3 , MgO, Y 2 O 3 , CaO, Li 2 O, Na 2 O, K 2 O, TiO 2 , Fe 2 O 3 is 99% or more. Further, the total content of components such as SiO 2 , Al 2 O 3 , MgO, Y 2 O 3 , CaO, Li 2 O, Na 2 O, K 2 O, TiO 2 , Fe 2 O 3 or the like is 99.5% or more.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the range of /SiO 2 is from 0.285 to 0.357.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as under:
  • the range of /Y 2 O 3 is 6.5 or more, and the content by weight of Al 2 O 3 +MgO+Li 2 O is in the range of 28.1% or more.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the range of /Y 2 O 3 is 6.5 or more, and the content by weight of Al 2 O 3 +MgO+Li 2 O is in the range of 28.1% or more.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the range of /Y 2 O 3 is 7.0 or more, and the content by weight of Al 2 O 3 +MgO+Li 2 O is in the range of 28.1% or more.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the ratio of the weight percentage C2 (Al 2 O 3 +MgO+Li 2 O)/Y 2 O 3 is 6.5 or more, and the content of the weight percentage of Al 2 O 3 +MgO+Li 2 O is 28.1% or more. .
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the range of /Y 2 O 3 is 6.5 or more, and the content of the content of Al 2 O 3 +MgO+Li 2 O is in the range of 29.1% or more.
  • the high performance glass fiber composition according to the present invention contains the following components, and the content of each component is expressed by weight percentage as follows:
  • the range of /Y 2 O 3 is 7.0 or more, and the content by weight of Al 2 O 3 +MgO+Li 2 O is in the range of 29.1% or more.
  • the high performance glass fiber composition according to the present invention is composed of the following components, and the content of each component is expressed by weight percentage as follows:
  • the high performance glass fiber composition according to the present invention is composed of the following components, and the content of each component is expressed by weight percentage as follows:
  • the glass composition can significantly increase the strength and modulus of the glass fiber, and can effectively inhibit the crystallization rate of the glass, obtain an ideal glass fiber forming range ⁇ T value, and also improve the clarification effect of the high-performance glass, and is particularly suitable for use. Yuchi kiln produces high performance glass fiber.
  • the specific content values of SiO 2 , Al 2 O 3 , Y 2 O 3 , CaO, MgO, Li 2 O, Na 2 O, K 2 O, Fe 2 O 3 , TiO 2 , etc. in the glass fiber composition of the present invention are selected.
  • comparisons were made with the performance parameters of S glass, conventional R glass, and modified R glass. In comparison, seven performance parameters are selected:
  • the molding temperature corresponds to the temperature at which the glass melt has a viscosity of 10 3 poise.
  • the liquidus temperature corresponds to the temperature at which the crystal nucleus begins to form when the glass melt is cooled, that is, the upper limit temperature of the glass crystallization.
  • crystallization area ratio wherein the general method for determining the crystallization area ratio is: the glass block is appropriately cut according to the size of the ceramic boat, and the cut glass strip sample is placed in a porcelain boat and placed in a gradient furnace for crystallization. After 6 hours of heat preservation, the porcelain boat with the glass sample was taken out from the gradient furnace, and the air was cooled to normal temperature; then, in the temperature range of 1060-1130 ° C, the light was passed through. The microscope observes the amount and size of crystallization of each glass sample from a microscopic angle, and calculates the crystallization area ratio. The larger the crystallization area ratio, the larger the crystallization tendency of the glass and the faster the crystallization rate.
  • the number of bubbles wherein the approximate method of determining the number of bubbles is: using a special mold to press each sample batch into a sample of the same shape, placing it on a sample platform of a high temperature microscope, and then heating up to a set space temperature. At 1500 ° C, the glass samples were cooled to room temperature with the furnace without being kept warm; then, the number of bubbles of each glass sample was observed from a microscopic angle by an optical microscope. Among them, the number of bubbles is based on the imaging range of the microscope.
  • each component can be obtained from a suitable raw material, and various raw materials are mixed in proportion to achieve the final expected weight percentage of each component, and the mixed batch material is melted and clarified, and then the glass liquid
  • the glass fiber is formed by the leaking nozzle on the drain plate being pulled out, and the glass fiber is drawn around the rotating head of the wire drawing machine to form a raw silk cake or a yarn group.
  • these glass fibers can be further processed in a conventional manner to meet the expected requirements.
  • the content of the glass fiber composition is expressed by weight percentage. It should be noted that the total content of the components of the examples is slightly less than 100%, and it can be understood that the residual amount is a trace impurity or a small component which cannot be analyzed.
  • the glass fiber composition of the present invention has the following advantages over S glass: (i) having a much higher modulus of elasticity; and (b) having a much lower liquidus temperature. And the crystallization area ratio, which indicates that the glass has a lower crystallization upper limit temperature and a smaller crystallization rate, which is advantageous for reducing the crystallization risk of the glass and improving the drawing efficiency of the fiber; (3) having a smaller number of bubbles, which indicates The clarification effect of the glass is better.
  • the glass fiber composition of the present invention has the following advantages: (i) having a much higher modulus of elasticity and strength; and (b) having a much lower crystallization area ratio, which It shows that the crystallization rate of the glass of the invention is small, which is beneficial to reduce the crystallization risk of the glass and improve the drawing efficiency of the fiber; (3) having a smaller number of bubbles, which indicates that the clarification effect of the glass is better.
  • Both S glass and conventional R glass cannot achieve large-scale pool kiln production.
  • the improved R glass can reduce the liquidus temperature and molding temperature by sacrificing part of the performance, so as to reduce the production difficulty and realize the pool kiln production.
  • the composition of the present invention not only has a sufficiently low liquidus temperature and molding temperature, but also has a low crystallization rate, can be used for kiln kiln production, and at the same time, achieves a substantial increase in glass modulus and strength, breaking The technical bottleneck of the modulus and strength level of S glass fiber cannot be increased simultaneously with the production scale.
  • the glass fiber composition of the present invention has made a breakthrough in elastic modulus, strength, crystallization rate and glass clarification compared with the current mainstream high performance glass, and the elastic modulus of the glass under the same conditions.
  • the strength and the intensity are greatly increased, the crystallization rate is greatly reduced, and the number of bubbles is small.
  • the overall technical solution is easy to realize large-scale pool kiln production.
  • Glass fibers having the above-described excellent properties can be produced from the glass fiber composition according to the present invention.
  • the glass fiber composition according to the present invention can be combined with one or more organic and/or inorganic materials to produce a composite material having excellent properties, for example, a glass fiber reinforced substrate.
  • the composition of the invention not only has a sufficiently low liquidus temperature and molding temperature, but also has a low crystallization rate, can be used for kiln kiln production, and at the same time achieves a substantial increase in glass modulus and strength, breaking the mold of S glass fiber.
  • the glass fiber composition of the invention has achieved breakthrough in elastic modulus, strength, crystallization rate and glass clarification. Progress, glass bomb under the same conditions The modulus and strength are greatly improved, the crystallization rate is greatly reduced, and the number of bubbles is small.
  • the overall technical solution is easy to realize large-scale pool kiln production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供一种高性能玻璃纤维组合物及其玻璃纤维和复合材料。其中,玻璃纤维组合物各组分的含量以重量百分比表示如下:SiO2为57.1-61.9%,Al2O3为17.1-21%,MgO为10.1-14.5%,Y2O3为1.1-4.3%,CaO小于6.5%,Li2O+Na2O+K2O为小于等于1%,Li2O为小于等于0.75%,TiO2为小于1.8%,Fe2O3为0.05-1.2%,并且上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285。该玻璃纤维组合物能显著提高玻璃纤维的强度和模量,并能有效降低玻璃的析晶速率,获得理想的玻纤成型范围△T值,还有利于改善高性能玻璃的澄清效果,特别适合用于池窑化生产高性能玻璃纤维。

Description

一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
本申请要求在2017年1月26日提交中国专利局、申请号为201710057315.3、发明名称为“一种高性能玻璃纤维组合物及其玻璃纤维和复合材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种高性能玻璃纤维组合物,尤其涉及一种能作为先进复合材料增强基材的高性能玻璃纤维组合物及其玻璃纤维和复合材料。
背景技术
玻璃纤维属于无机纤维材料,用它增强树脂可制得性能优良的复合材料。高性能玻璃纤维作为先进复合材料的增强基材,最初主要应用于航空、航天、兵器等国防军工领域。随着科技的进步及经济的发展,高性能玻璃纤维在风力叶片、高压容器、海洋管道、汽车制造等民用工业领域得到广泛应用。因此,追求更优异的强度和模量性能、更低的生产风险和成本,实现大规模池窑生产,从而大幅提升高性能玻璃纤维的性价比成为迫切的任务。
S玻璃是最早的高性能玻璃,其成分以MgO-Al2O3-SiO2***为主体,ASTM国际组织将S玻璃定义为一族主要由镁、铝、硅的氧化物组成的玻璃,典型方案如美国开发的S-2玻璃。S-2玻璃中SiO2和Al2O3的重量百分比合量达90%,MgO约为10%,玻璃的熔制温度在1600℃以上,玻璃的成型温度高达1571℃,液相线温度高达1470℃,而且玻璃析晶速率很快,这些因素使得S-2玻璃不仅无法实现大规模池窑生产,甚至难于进行一步法的玻纤生产,从而导致S-2玻璃纤维的生产难度过大、生产效率低且成本高。资料显示,S-2玻璃的弹性模量一般在89-90GPa,其浸胶纱的拉伸强度一般大于3400MPa。
法国开发过一种以MgO-CaO-Al2O3-SiO2***为主体的R玻璃,但是传统R玻璃的硅铝总量依然较高,这造成玻璃成型困难、析晶风险大,其玻璃成型温度达到1410℃,液相线温度达到1350℃;同时,缺乏改善玻璃析晶的有效方案,钙镁比例设计不合理,引入过高的氧化钙和过低的氧化镁,导致玻璃性能损失明显、玻璃析晶速率快。这些因素使得传统R玻璃纤维在高效拉制上的困难,同样难于实现大规模池窑生产。为此,各公司通过调整玻璃成分改良R玻璃,研发了多种改良型R玻璃纤维,典型的如Hiper-tex、H-glass等。资料显示,传统R玻璃及改良型R玻璃的弹性模量一般在87-90GPa,其浸胶纱的拉伸强度一般在 2300-2900MPa。
我国开发过一种HS玻璃,其主要成分也包括SiO2、Al2O3、MgO,同时引入高含量的Li2O、B2O3和Fe2O3,它的成型温度范围在1310-1330℃,液相线温度范围在1360-1390℃,两者的温度均比S玻璃低得多,但其成型温度比液相线温度低,△T值为负,这极不利于玻璃纤维的高效拉制,必须提高拉丝温度,采用特殊形式的漏嘴,以防止拉丝过程中发生玻璃失透现象,这造成温度控制上的困难,也难于实现大规模池窑生产。同时,由于引入高含量的Li2O和B2O3,两者的重量百分比总量一般超过2.5%甚至3%,玻璃机械性能和耐腐蚀性能受到一定的负面影响。资料显示,HS玻璃的弹性模量一般在86-89GPa,其浸胶纱的拉伸强度一般在3000-3300MPa。
综上所述,我们发现,目前的各类高性能玻璃纤维在实际生产中均存在大规模池窑生产难度大的普遍问题,具体表现为玻璃的液相线温度过高、析晶速率过快,成型温度高、澄清难度大,玻纤成型范围△T值小甚至为负。为此,大部分公司往往以牺牲部分玻璃性能的方式来降低生产难度,这造成上述玻璃纤维的强度和模量性能无法与生产规模同步提升,存在强度和模量性能不足的问题,一直无法突破S玻璃纤维的强度和模量瓶颈。
发明内容
本发明旨在解决上面描述的问题。本发明的目的是提供一种高性能玻璃纤维组合物,该组合物不仅能显著提高玻璃纤维的强度和模量,还能明显降低玻璃的析晶速率和液相线温度,从而克服传统高性能玻璃析晶速率过快、液相线温度过高的技术难题,大幅提升玻纤成型范围;同时,该组合物还可以降低玻璃的高温粘度、成型温度和气泡率,有利于降低生产能耗,特别适合用于规模化池窑生产高性能玻璃纤维。
根据本发明的一个方面,提供一种高性能玻璃纤维组合物,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000001
Figure PCTCN2017073447-appb-000002
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285。
其中,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000003
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285。
其中,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000004
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285。
其中,进一步限定重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5。
其中,进一步限定重量百分比的比值C1=Al2O3/SiO2的范围为0.289-0.357。
其中,进一步限定重量百分比的比值C3=(Y2O3+MgO)/SiO2的范围为大于等于0.2。
其中,进一步限定MgO的含量,以重量百分比表示为10.3-14%。
其中,进一步限定MgO的含量,以重量百分比表示为大于11%且小于等于13.5%。
其中,进一步限定MgO的含量,以重量百分比表示为11.2-13.5%。
其中,还可以包含重量百分比含量范围小于2%的CeO2、SrO、La2O3、ZnO、B2O3和ZrO2中的一种或多种。
其中,还可以包含重量百分比含量范围为0-1.7%的SrO。
其中,还可以包含重量百分比含量范围为0-0.55%的CeO2
其中,进一步限定Al2O3+MgO+Li2O的重量百分比含量范围为大于等于28.1%。
其中,进一步限定Al2O3+MgO+Li2O的重量百分比含量范围为大于等于29.1%。
其中,进一步限定MgO/CaO的重量百分比比值范围为大于等于1.6。
其中,进一步限定Li2O的含量,以重量百分比表示为0.05-0.7%。
其中,进一步限定Li2O+Na2O+K2O的含量,以重量百分比表示为0.25-0.98%。
其中,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000005
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5。
其中,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000006
Figure PCTCN2017073447-appb-000007
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5,Al2O3+MgO+Li2O的重量百分比含量范围为大于等于28.1%。
其中,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000008
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5,Al2O3+MgO+Li2O的重量百分比含量范围为大于等于29.1%。
其中,进一步限定Y2O3的含量,以重量百分比表示为2.3-3.9%。
其中,还可以包含重量百分比含量范围为0-0.05%的La2O3
其中,所述玻璃纤维组合物由下述组分组成,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000009
Figure PCTCN2017073447-appb-000010
并且,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5。
根据本发明的另一个方面,提供一种玻璃纤维,所述玻璃纤维由上述的玻璃纤维组合物制成。
根据本发明的第三方面,提供一种复合材料,所述复合材料包括上述的玻璃纤维。
根据本发明的高性能玻璃纤维组合物,主要创新点是通过引入高含量的Y2O3和MgO,显著降低CaO含量,控制碱金属氧化物含量,并严格控制Al2O3/SiO2、(Al2O3+MgO+Li2O)/Y2O3和(Y2O3+MgO)/SiO2的比值,同时合理配置Al2O3、SiO2、Y2O3、MgO、Li2O、CaO和Al2O3+MgO+Li2O的含量范围,利用钇在玻璃结构中特殊的补位作用、积聚作用,钇离子与镁离子、锂离子之间的协同效应,有效控制铝硅比、稀土含量等手段获得合理的空位数量,使得稀土离子的填充更有序,玻璃堆积结构更紧密,析晶过程中离子重组排列难度更大,从而显著提高了玻璃的强度和模量,有效降低了玻璃的析晶速率,获得了理想的玻纤成型范围△T值,还有利于改善高性能玻璃的澄清效果,特别适合用于池窑化生产高性能玻璃纤维。
具体来说,根据本发明的高性能玻璃纤维组合物含有下述组分,且各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000011
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为 大于等于0.285。
该玻璃纤维组合物中各组分的作用及含量说明如下:
SiO2是形成玻璃骨架的主要氧化物,并且起稳定各组分的作用。为了保证玻璃拥有足够的机械性能,氧化硅含量不能太低;为了防止玻璃的粘度和液相线温度过高,导致难于进行规模化生产,氧化硅含量也不宜过高。在本发明的玻璃纤维组合物中,限定SiO2的重量百分比含量范围为57.1-61.9%。优选地,SiO2的重量百分比含量范围可以限定为57.4-61.4%。优选地,SiO2的重量百分比含量范围可以限定为58-60.4%。更优选地,SiO2的重量百分比含量范围可以限定为大于等于58%且小于60%。
Al2O3也是形成玻璃骨架的氧化物,与SiO2结合时可对玻璃的机械性能起到实质性的作用,并且在阻止玻璃分相、析晶方面起着重要作用。若其含量太低会无法获得足够高的机械性能,尤其是模量;若其含量太高容易大幅增加玻璃分相、析晶的风险。在本发明的玻璃纤维组合物中,限定Al2O3的重量百分比含量范围为17.1-21%。优选地,Al2O3的重量百分比含量范围可以限定为17.5-20.5%。更优选地,Al2O3的重量百分比含量范围可以限定为17.7-20.1%。另外,SiO2+Al2O3的合计含量可以限定为75.5-82%,这不仅是获得足够高机械性能的保证,还有利于在较低的温度下实现规模化池窑生产。优选地,可以限定SiO2+Al2O3的合计含量为76-81%。
同时,限定C1=Al2O3/SiO2的重量百分比含量范围为大于等于0.285,玻璃可以获得更优异的机械性能、抗析晶能力及玻纤成型范围△T值。本发明中,在保证铝离子有效填充的基础上,为了给离子半径较大的稀土离子提供足够多的空位数量,减少玻璃结构应力的产生风险,并进一步提高结构紧密堆积的效果。优选地,可以限定C1=Al2O3/SiO2的重量百分比含量范围为0.285-0.357。优选地,可以进一步限定C1=Al2O3/SiO2的重量百分比含量范围为0.289-0.357。优选地,可以进一步限定C1=Al2O3/SiO2的重量百分比含量范围为0.291-0.353。优选地,可以进一步限定C1=Al2O3/SiO2的重量百分比含量范围为0.294-0.346。
Y2O3是一种重要的稀土氧化物,发明人发现,本发明的玻璃体系中引入较高含量的Y2O3对提高玻璃的强度和模量、抑制玻璃析晶的效果显著。Y3+处于网络空隙间作为网络外离子,它的配位数高、场强高、电荷高,积聚能力强,能提高玻璃结构的稳定性,提高玻璃的强度和模量,同时还能有效阻止其他离子的移动排列,达到降低玻璃析晶倾向的目的。发明人实验发现,当Y2O3引入量较低时,上述技术效果不明显。同时,由于Y3+的离子半径(0.09nm)较大,明显大于Al3+(0.0535nm)、Mg2+(0.072nm)和Li+(0.076nm)的离子半径,因此,当Y2O3引入量超过一定限度时,过多的大离子Y3+无法获得足够的空位进行填充,不仅会对结构紧密堆积产生一定的负面影响,还会显著提高玻璃的密度和结构应力。因此,在本发明的玻璃 纤维组合物中,限定Y2O3的重量百分比含量范围为1.1-4.3%。优选地,Y2O3的重量百分比含量范围可以限定为2-4.2%。优选地,Y2O3的重量百分比含量范围可以限定为2-4%。优选地,Y2O3的重量百分比含量范围可以限定为2.3-3.9%。
同时,为了获得更好的结构堆积效果,进一步提高玻璃的强度和模量,并获得较理想的玻璃密度,本发明中可以限定重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5,从而有效控制对机械性能有利的各种不同离子半径的元素配比,达到提高玻璃结构紧密堆积度的效果。优选地,可以限定重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于7.0。优选地,可以进一步限定重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为7.2-15。
进一步地,还可以限定Al2O3+MgO+Li2O的重量百分比含量范围为大于等于28.1%。优选地,可以限定Al2O3+MgO+Li2O的重量百分比含量范围为大于等于28.6%。优选地,可以限定Al2O3+MgO+Li2O的重量百分比含量范围为大于等于29.1%。优选地,可以限定Al2O3+MgO+Li2O的重量百分比含量范围为大于等于29.6%。
本发明中,MgO和CaO主要起控制玻璃析晶、调节玻璃粘度和料性的作用,其中高含量的MgO能对玻璃的机械性能起到积极的作用。在控制玻璃析晶及提高机械性能方面,发明人通过提高MgO含量、控制MgO/CaO比例和(Y2O3+MgO)/SiO2比例等手段获得了意想不到的效果。资料显示,以MgO-CaO-Al2O3-SiO2***为主体的传统高性能玻璃,其中氧化钙含量较高(一般超过10%,甚至12%),在氧化钙含量较充裕的条件下,使得传统高性能玻璃析晶后所包含的晶相主要包括透辉石(CaMgSi2O6)和钙长石(CaAl2Si2O8),两者在析晶产生过程中的竞争并不激烈,因此在析晶速率方面的控制效果并不理想。基于上述原因,本发明中大幅降低CaO含量并提高MgO含量,形成氧化钙含量缺乏的析晶环境,使得玻璃析晶后所包含的晶相主要为堇青石(Mg2Al4Si5O8)或者堇青石与顽辉石(MgSiO3)、钙长石的混合结晶,从而有效抑制玻璃的析晶速率。同时,考虑到Y3+离子和Mg2+离子之间存在的离子半径差异和场强差异,合理控制两者与氧化硅的比例,不仅能够获得更优异的结构堆积效果,还能进一步在析晶过程中阻碍Mg2+离子的移动排列,从而强化抑制玻璃析晶速率的效果。
因此,在本发明的玻璃纤维组合物中,限定MgO的重量百分比含量范围为10.1-14.5%。优选地,MgO的重量百分比含量范围可以限定为10.3-14%。优选地,MgO的重量百分比含量范围可以限定为10.5-14%。优选地,MgO的重量百分比含量范围可以限定为大于11%且小于等于13.5%。优选地,MgO的重量百分比含量范围可以限定为11.2-13.5%。在本发明的玻璃纤维组合物中,限定CaO的重量百分比含量范围为小于6.5%。优选地,CaO的重量百分比含量范围可以限定为小于等于6.3%。优选地,CaO的重量百分比含量范围可以限定为2-6%。 优选地,CaO的重量百分比含量范围可以限定为2.3-5.8%。在本发明的玻璃纤维组合物中,可以限定重量百分比的比值C3=(Y2O3+MgO)/SiO2的范围为大于等于0.2。优选地,可以限定重量百分比的比值C3=(Y2O3+MgO)/SiO2的范围为大于等于0.21。优选地,可以限定重量百分比的比值C3=(Y2O3+MgO)/SiO2的范围为大于等于0.23。在本发明的玻璃纤维组合物中,还可以限定MgO/CaO的重量百分比比值范围为大于等于1.6。优选地,可以限定MgO/CaO的重量百分比比值范围为大于等于1.75。优选地,可以限定MgO/CaO的重量百分比比值范围为大于等于1.9。
K2O和Na2O均能降低玻璃粘度,是良好的助熔剂。与Na2O和K2O相比,Li2O能更显著地降低玻璃粘度,改善玻璃熔制性能。同时,少量Li2O能提供可观的游离氧,有利于更多的铝离子形成四面体配位,增强玻璃体系的网络结构,可进一步提高玻璃的机械性能。但是,由于碱金属离子过多会影响玻璃结构的稳定性,对玻璃耐腐蚀性能造成显著的负面影响,故引入量不宜多。因此,在本发明的玻璃纤维组合物中,限定Li2O+Na2O+K2O的重量百分比含量范围为小于等于1%,限定Li2O的重量百分比含量范围为小于等于0.75%。优选地,Li2O的重量百分比含量范围可以限定为小于等于0.7%。优选地,Li2O的重量百分比含量范围可以限定为0.05-0.7%。优选地,Li2O的重量百分比含量范围可以限定为0.1-0.65%。优选地,Li2O+Na2O+K2O的重量百分比含量范围可以限定为小于等于0.98%。优选地,Li2O+Na2O+K2O的重量百分比含量范围可以限定为0.25-0.98%。优选地,Li2O+Na2O+K2O的重量百分比含量范围可以限定为0.3-0.95%。此外,由于K+(0.138nm)和Na+(0.102nm)的离子半径较大,在Y2O3引入量较高的情况下,Na2O+K2O的含量不宜多,否则会影响玻璃结构的堆积效果。为此,进一步地,可以限定Na2O+K2O的重量百分比含量范围为小于0.7%。优选地,可以限定Na2O+K2O的重量百分比含量范围为小于0.55%。
TiO2不仅可以降低高温时的玻璃粘度,还具有一定的助熔作用。但由于钛离子与铁离子结合具有一定的着色作用,会影响玻纤制品的外观,故含量不宜多。因此,本发明的玻璃纤维组合物中,限定TiO2的重量百分比含量范围为小于1.8%。优选地,可以限定TiO2的重量百分比含量范围为小于1.4%。更优选地,可以限定TiO2的重量百分比含量范围为小于等于0.8%。
Fe2O3有利于玻璃的熔制,也能改善玻璃的析晶性能。但由于铁离子和亚铁离子具有着色作用,故含量不宜多。因此,在本发明的玻璃纤维组合物中,限定Fe2O3的重量百分比含量范围为0.05-1.2%。优选地,可以限定Fe2O3的重量百分比含量范围为0.05-1%。
此外,本发明的玻璃纤维组合物中还可以含有少量其他组分,重量百分比的合计含量小于等于2%。进一步地,本发明的玻璃纤维组合物中可以包含重量百分比含量范围小于2%的 CeO2、SrO、La2O3、ZnO、B2O3和ZrO2中的一种或多种。进一步地,本发明的玻璃纤维组合物中可以包含重量百分比含量范围小于1%的La2O3、ZnO、B2O3和ZrO2中的一种或多种。进一步地,本发明的玻璃纤维组合物中可以包含重量百分比含量范围为0-1.7%的SrO。进一步地,本发明的玻璃纤维组合物中可以包含重量百分比含量范围为0.1-1.3%的SrO。进一步地,本发明的玻璃纤维组合物中可以包含重量百分比含量范围小于等于1.3%的CeO2和SrO中的一种或两种。进一步地,本发明的玻璃纤维组合物中可以包含重量百分比含量范围为0-0.55%的CeO2。进一步地,本发明的玻璃纤维组合物中可以包含重量百分比含量范围为0-0.25%的CeO2。进一步地,本发明的玻璃纤维组合物中还可以包含重量百分比含量范围为0-0.5%的F2,一般情况下F2由玻璃原料以杂质形式带入。进一步地,本发明的玻璃纤维组合物可以不含有B2O3,该组分一般以玻璃原料杂质的形式带入。进一步地,本发明的玻璃纤维组合物中还可以包含重量百分比含量范围为0-0.05%的La2O3
进一步地,SiO2、Al2O3、MgO、Y2O3、CaO、Li2O、Na2O、K2O、TiO2、Fe2O3等组分的合计含量大于等于99%。进一步地,SiO2、Al2O3、MgO、Y2O3、CaO、Li2O、Na2O、K2O、TiO2、Fe2O3等组分的合计含量大于等于99.5%。
本发明的玻璃纤维组合物中,选择各组分含量的上述范围的有益效果将通过实施例给出具体实验数据进行说明。
下面是根据本发明的玻璃纤维组合物中所包括的各组分的优选取值范围示例。
优选示例一
根据本发明的高性能玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000012
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为 大于等于0.285。
优选示例二
根据本发明的高性能玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000013
并且,上述组分的合计含量大于等于98%,还包含重量百分比含量范围为0-1.7%的SrO,重量百分比的比值C1=Al2O3/SiO2的范围为0.285-0.357。
优选示例三
根据本发明的高性能玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000014
并且,上述组分的合计含量大于等于98%,还包含重量百分比含量范围为0-1.7%的SrO和重量百分比含量范围为0-0.55%的CeO2,重量百分比的比值C1=Al2O3/SiO2的范围为0.285-0.357。
优选示例四
根据本发明的高性能玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000015
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285。
优选示例五
根据本发明的高性能玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000016
并且,上述组分的合计含量大于等于98%,还包含重量百分比含量范围为0-0.55%的CeO2,重量百分比的比值C1=Al2O3/SiO2的范围为0.289-0.357。
优选示例六
根据本发明的高性能玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如 下:
Figure PCTCN2017073447-appb-000017
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5,Al2O3+MgO+Li2O的重量百分比含量范围为大于等于28.1%。
优选示例七
根据本发明的高性能玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000018
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5。
优选示例八
根据本发明的高性能玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000019
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为0.285-0.357,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于7.0。
优选示例九
根据本发明的高性能玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000020
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5,Al2O3+MgO+Li2O的重量百分比含量范围为大于等于28.1%。
优选示例十
根据本发明的高性能玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000021
Figure PCTCN2017073447-appb-000022
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为0.291-0.353,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于7.0,Al2O3+MgO+Li2O的重量百分比含量范围为大于等于28.1%。
优选示例十一
根据本发明的高性能玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000023
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285。重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5,Al2O3+MgO+Li2O的重量百分比含量范围为大于等于28.1%。
优选示例十二
根据本发明的高性能玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000024
Figure PCTCN2017073447-appb-000025
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5,Al2O3+MgO+Li2O的重量百分比含量范围为大于等于29.1%。
优选示例十三
根据本发明的高性能玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000026
并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于7.0,Al2O3+MgO+Li2O的重量百分比含量范围为大于等于29.1%。
优选示例十四
根据本发明的高性能玻璃纤维组合物由下述组分组成,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000027
Figure PCTCN2017073447-appb-000028
并且,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5。
优选示例十五
根据本发明的高性能玻璃纤维组合物由下述组分组成,各组分的含量以重量百分比表示如下:
Figure PCTCN2017073447-appb-000029
并且,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于7.0,Al2O3+MgO+Li2O的重量百分比含量范围为大于等于28.1%。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明的基本思想是,玻璃纤维组合物的各组分含量以重量百分比表示为:SiO2为57.1-61.9%,Al2O3为17.1-21%,MgO为10.1-14.5%,Y2O3为1.1-4.3%,CaO小于6.5%,Li2O+Na2O+K2O为小于等于1%,Li2O为小于等于0.75%,TiO2为小于1.8%,Fe2O3为0.05-1.2%,并且上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285。该玻璃组合物能显著提高玻璃纤维的强度和模量,并能有效抑制玻璃的析晶速率,获得理想的玻纤成型范围△T值,还有利于改善高性能玻璃的澄清效果,特别适合用于池窑化生产高性能玻璃纤维。
选取本发明的玻璃纤维组合物中SiO2、Al2O3、Y2O3、CaO、MgO、Li2O、Na2O、K2O、Fe2O3、TiO2等的具体含量值作为实施例,与S玻璃、传统R玻璃和改良R玻璃的性能参数进行对比。在对比时,选用七个性能参数:
(1)成型温度,对应于玻璃熔体在粘度为103泊时的温度。
(2)液相线温度,对应于玻璃熔体冷却时晶核开始形成的温度,即玻璃析晶的上限温度。
(3)△T值,成型温度与液相线温度之差,表示拉丝成型的温度范围。
(4)弹性模量,表征玻璃抵抗弹性变形的能力,按ASTM E1876标准测试玻璃块的弹性模量。
(5)拉伸强度,表征玻璃纤维所能承受的最大拉伸力,按ASTM D2343标准测试浸胶纱的拉伸强度。
(6)析晶面积率,其中测定析晶面积率的大致方法为:将玻璃块按瓷舟槽尺寸进行适当切割,切割后的玻璃条样品放入瓷舟,置于梯度炉中进行晶化,保温6小时后,将装有玻璃样品的瓷舟从梯度炉拿出,空气冷却至常温;然后,在1060-1130℃温度范围区域内,通过光 学显微镜从微观角度观测各个玻璃样品表面的析晶数量及大小,并计算析晶面积率。析晶面积率越大,表明玻璃的析晶倾向越大、析晶速率越快。
(7)气泡数量,其中测定气泡数量的大致方法为:利用专用的模具将每个实施例配合料压制成一样形状的样品,放置于高温显微镜的样品平台,然后按程序升温至设定空间温度1500℃,不保温,玻璃样品随炉冷却至常温;然后,通过光学显微镜从微观角度观测各个玻璃样品的气泡数量。其中,气泡数量按显微镜成像范围为准。
上述七个参数及其测定方法是本领域技术人员所熟知的,因此采用上述参数能够有力地说明本发明的玻璃纤维组合物的性能。
实验的具体过程为:各组分可从适当的原料中获取,按比例将各种原料进行混合,使各组分达到最终的预期重量百分比,混合后的配合料进行熔化并澄清,然后玻璃液通过漏板上的漏嘴被拉出从而形成玻璃纤维,玻璃纤维被牵引绕到拉丝机旋转机头上形成原丝饼或纱团。当然,这些玻璃纤维可用常规方法进行深加工以符合预期要求。
下面进一步通过列表的方式,给出本发明玻璃纤维组合物的实施例与S玻璃、传统R玻璃和改良R玻璃的性能参数的对比。其中,玻璃纤维组合物的含量以重量百分比表示。需要说明的是,实施例组分总含量略微小于100%,可以理解为残余量是微量杂质或不能分析出的少量组分。
表1A
Figure PCTCN2017073447-appb-000030
表1B
Figure PCTCN2017073447-appb-000031
表1C
Figure PCTCN2017073447-appb-000032
表1D
Figure PCTCN2017073447-appb-000033
由上述表中的具体数值可知,与S玻璃相比,本发明的玻璃纤维组合物拥有以下优势:(一)具有高得多的弹性模量;(二)具有低得多的液相线温度和析晶面积率,这表明本发明玻璃的析晶上限温度低、析晶速率小,有利于降低玻璃的析晶风险、提高纤维的拉丝效率;(三)具有较少的气泡数量,这表明玻璃的澄清效果更优。
与传统R玻璃和改良R玻璃相比,本发明的玻璃纤维组合物拥有以下优势:(一)具有高得多的弹性模量和强度;(二)具有低得多的析晶面积率,这表明本发明玻璃的析晶速率小,有利于降低玻璃的析晶风险、提高纤维的拉丝效率;(三)具有较少的气泡数量,这表明玻璃的澄清效果更优。
S玻璃和传统R玻璃均无法实现大规模池窑化生产,改良R玻璃通过牺牲部分性能的方式来降低液相线温度和成型温度,以降低生产难度实现池窑化生产。与之不同的是,本发明组合物不仅拥有足够低的液相线温度和成型温度,析晶速率很低,可以进行池窑化生产,同时还实现了玻璃模量和强度的大幅提升,打破了S玻璃纤维的模量和强度水平无法与生产规模同步提升的技术瓶颈。
由此可知,与目前主流的高性能玻璃相比,本发明的玻璃纤维组合物在弹性模量、强度、析晶速率和玻璃澄清方面取得了突破性的进展,同等条件下玻璃的弹性模量和强度大幅提升、析晶速率大幅下降、气泡数量较少,整体技术方案易于实现大规模池窑化生产。
由根据本发明的玻璃纤维组合物可制成具有上述优良性能的玻璃纤维。
根据本发明的玻璃纤维组合物与一种或多种有机和/或无机材料结合可制备得到性能优良的复合材料,例如,玻纤增强基材。
最后应说明的是:在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包含一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明组合物不仅拥有足够低的液相线温度和成型温度,析晶速率很低,可以进行池窑化生产,同时还实现了玻璃模量和强度的大幅提升,打破了S玻璃纤维的模量和强度水平无法与生产规模同步提升的技术瓶颈,与目前主流的高性能玻璃相比,本发明的玻璃纤维组合物在弹性模量、强度、析晶速率和玻璃澄清方面取得了突破性的进展,同等条件下玻璃的弹 性模量和强度大幅提升、析晶速率大幅下降、气泡数量较少,整体技术方案易于实现大规模池窑化生产。

Claims (25)

  1. 一种高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2017073447-appb-100001
    并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285。
  2. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2017073447-appb-100002
    并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285。
  3. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2017073447-appb-100003
    Figure PCTCN2017073447-appb-100004
    并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285。
  4. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5。
  5. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,重量百分比的比值C1=Al2O3/SiO2的范围为0.289-0.357。
  6. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,重量百分比的比值C3=(Y2O3+MgO)/SiO2的范围为大于等于0.2。
  7. 根据权利要求1-2任意一项所述的高性能玻璃纤维组合物,其特征在于,MgO的重量百分比含量范围为10.3-14%。
  8. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,MgO的重量百分比含量范围为大于11%且小于等于13.5%。
  9. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,MgO的重量百分比含量范围为11.2-13.5%。
  10. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,还包含重量百分比含量范围小于2%的CeO2、SrO、La2O3、ZnO、B2O3和ZrO2中的一种或多种。
  11. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,还包含重量百分比含量范围为0-1.7%的SrO。
  12. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,还包含重量百分比含量范围为0-0.55%的CeO2
  13. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,Al2O3+MgO+Li2O的重量百分比含量范围为大于等于28.1%。
  14. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于, Al2O3+MgO+Li2O的重量百分比含量范围为大于等于29.1%。
  15. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,MgO/CaO的重量百分比比值范围为大于等于1.6。
  16. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,Li2O的重量百分比含量范围为0.05-0.7%。
  17. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,Li2O+Na2O+K2O的重量百分比含量范围为0.25-0.98%。
  18. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2017073447-appb-100005
    并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5。
  19. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2017073447-appb-100006
    并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5,Al2O3+MgO+Li2O的重量百分比含量范围为大于等于28.1%。
  20. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2017073447-appb-100007
    并且,上述组分的合计含量大于等于98%,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5,Al2O3+MgO+Li2O的重量百分比含量范围为大于等于29.1%。
  21. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,Y2O3的重量百分比含量范围为2.3-3.9%。
  22. 根据权利要求1-3任意一项所述的高性能玻璃纤维组合物,其特征在于,还包含重量百分比含量范围为0-0.05%的La2O3
  23. 根据权利要求1所述的高性能玻璃纤维组合物,其特征在于,所述玻璃纤维组合物由下述组分组成,各组分的含量以重量百分比表示如下:
    Figure PCTCN2017073447-appb-100008
    Figure PCTCN2017073447-appb-100009
    并且,重量百分比的比值C1=Al2O3/SiO2的范围为大于等于0.285,重量百分比的比值C2=(Al2O3+MgO+Li2O)/Y2O3的范围为大于等于6.5。
  24. 一种玻璃纤维,其特征在于,所述玻璃纤维由如权利要求1-23中任一项所述的玻璃纤维组合物制成。
  25. 一种复合材料,其特征在于,所述复合材料包括如权利要求24中所述的玻璃纤维。
PCT/CN2017/073447 2017-01-26 2017-02-14 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料 WO2017197933A2 (zh)

Priority Applications (18)

Application Number Priority Date Filing Date Title
MA41662A MA41662B1 (fr) 2017-01-26 2017-02-14 Composition de fibre de verre haute performance, ainsi que fibre de verre et matériau composite associés
JP2017562666A JP2018521944A (ja) 2017-01-26 2017-02-14 高性能ガラス繊維組成物及びそのガラス繊維と複合材
CA2984193A CA2984193C (en) 2017-01-26 2017-02-14 High-performance glass fiber composition, glass fiber and composite material therefrom
RU2017143175A RU2017143175A (ru) 2017-01-26 2017-02-14 Стекловолоконная композиция с высокими эксплуатационными характеристиками, стекловолокно и композиционный материал на его основе
ES17794207T ES2769179T3 (es) 2017-01-26 2017-02-14 Composición de fibra de vidrio de alto rendimiento, y fibra de vidrio y material compuesto de la misma
MX2017013622A MX2017013622A (es) 2017-01-26 2017-02-14 Composicion de fibra de vidrio de alto rendimiento, fibra de vidrio y material compuesto de la misma.
DK17794207.5T DK3287423T3 (da) 2017-01-26 2017-02-14 Glasfibersammensætning med høj ydeevne og glasfiber og kompositmateriale deraf
SI201730161T SI3287423T1 (sl) 2017-01-26 2017-02-14 Visokozmogljivi sestavek steklenih vlaken in stekleno vlakno ter kompozitni material iz njega
AU2017267862A AU2017267862A1 (en) 2017-01-26 2017-02-14 High performance glass fibre composition, and glass fibre and composite material thereof
EP17794207.5A EP3287423B1 (en) 2017-01-26 2017-02-14 High performance glass fibre composition, and glass fibre and composite material thereof
KR1020177035230A KR102001011B1 (ko) 2017-01-26 2017-02-14 고성능 유리섬유 조성물 및 그 유리섬유와 복합재료
BR112017027999-1A BR112017027999B1 (pt) 2017-01-26 2017-02-14 Composição de fibra de vidro de alto desempenho, fibra de vidro e material compósito da mesma
PL17794207T PL3287423T3 (pl) 2017-01-26 2017-02-14 Kompozycja wysokosprawnego włókna szklanego, wytworzone z niej włókno szklane i materiały kompozytowe
SA517390350A SA517390350B1 (ar) 2017-01-26 2017-11-16 تركيبة ألياف زجاجية عالية الأداء، وليف زجاجي، ومادة مركَّبة منه
US15/821,710 US10207949B2 (en) 2017-01-26 2017-11-22 Glass fiber, composition for producing the same, and composite material comprising the same
ZA2017/08662A ZA201708662B (en) 2017-01-26 2017-12-19 High-performance glass fiber composition, glass fiber and composite material therefrom
AU2019226221A AU2019226221B2 (en) 2017-01-26 2019-09-06 High-performance glass fiber composition, glass fiber and composite material therefrom
HRP20200074TT HRP20200074T1 (hr) 2017-01-26 2020-01-17 Pripravak od fiberglasa visokih svojstava, fiberglas i njegov kompozitni materijal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710057315.3A CN108358460A (zh) 2017-01-26 2017-01-26 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN201710057315.3 2017-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/821,710 Continuation-In-Part US10207949B2 (en) 2017-01-26 2017-11-22 Glass fiber, composition for producing the same, and composite material comprising the same

Publications (2)

Publication Number Publication Date
WO2017197933A2 true WO2017197933A2 (zh) 2017-11-23
WO2017197933A3 WO2017197933A3 (zh) 2018-01-11

Family

ID=60326217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073447 WO2017197933A2 (zh) 2017-01-26 2017-02-14 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料

Country Status (22)

Country Link
US (1) US10207949B2 (zh)
EP (1) EP3287423B1 (zh)
JP (1) JP2018521944A (zh)
KR (1) KR102001011B1 (zh)
CN (2) CN108358460A (zh)
AU (2) AU2017267862A1 (zh)
BR (1) BR112017027999B1 (zh)
CA (1) CA2984193C (zh)
CL (1) CL2018002753A1 (zh)
DK (1) DK3287423T3 (zh)
ES (1) ES2769179T3 (zh)
HR (1) HRP20200074T1 (zh)
HU (1) HUE047506T2 (zh)
MA (1) MA41662B1 (zh)
MX (1) MX2017013622A (zh)
PL (1) PL3287423T3 (zh)
PT (1) PT3287423T (zh)
RU (2) RU2017143175A (zh)
SA (1) SA517390350B1 (zh)
SI (1) SI3287423T1 (zh)
WO (1) WO2017197933A2 (zh)
ZA (1) ZA201708662B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10207949B2 (en) * 2017-01-26 2019-02-19 Jushi Group Co., Ltd. Glass fiber, composition for producing the same, and composite material comprising the same
CN116390896A (zh) * 2022-05-31 2023-07-04 日本板硝子株式会社 玻璃纤维及玻璃纤维用组合物

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000054756A (ko) * 2000-06-22 2000-09-05 김종완 투자 성향 분석 프로그램
KR100420486B1 (ko) * 2000-07-08 2004-03-02 주식회사 라스이십일 사용자 성향분석 기능을 갖는 네트워크 기반의 개인화서비스 제공 시스템
KR20020033894A (ko) * 2000-10-30 2002-05-08 김원국 사용자 선호도 분석을 이용한 정보제공 서비스 방법
KR100461990B1 (ko) * 2001-07-03 2004-12-14 주식회사 소프트그램 개인정보 보호가 가능한 맞춤형 정보 서비스 방법
CN105731813B (zh) * 2016-02-29 2018-07-31 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN105753329B (zh) * 2016-03-15 2018-07-31 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN109422464B (zh) 2017-08-30 2020-05-19 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料
CN115504675B (zh) 2017-12-19 2024-04-30 欧文斯科宁知识产权资产有限公司 高性能玻璃纤维组合物
CN109678350B (zh) 2018-06-22 2022-03-04 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2020112396A2 (en) 2018-11-26 2020-06-04 Ocv Intellectual Capital, Llc High performance fiberglass composition with improved specific modulus
DK3887329T3 (da) 2018-11-26 2024-04-29 Owens Corning Intellectual Capital Llc Højydelsesglasfibersammensætning med forbedret elasticitetskoefficient
CN111233338B (zh) * 2019-12-19 2022-04-29 重庆国际复合材料股份有限公司 一种高折射率、高性能玻璃纤维
CN111559871A (zh) * 2020-06-08 2020-08-21 重庆国际复合材料股份有限公司 低成本高性能玻璃纤维组合物及其玻璃纤维和复合材料
EP4169884A1 (en) * 2020-06-18 2023-04-26 Nippon Electric Glass Co., Ltd. Composition for glass fiber
CN111807707B (zh) * 2020-07-10 2021-11-09 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN114538784A (zh) * 2020-07-10 2022-05-27 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN112679099B (zh) * 2021-03-12 2021-05-28 山东墨匠新材料科技有限公司 一种高强度高模量玻璃纤维组合物
CN113929299B (zh) * 2021-10-21 2023-08-25 泰山玻璃纤维有限公司 高模玻璃组合物、高模玻璃纤维和复合材料
TW202330430A (zh) * 2021-12-02 2023-08-01 日商日本板硝子股份有限公司 玻璃纖維
JP7235915B1 (ja) 2022-05-31 2023-03-08 日本板硝子株式会社 ガラス繊維およびガラス繊維用組成物
JP2024072725A (ja) * 2022-11-16 2024-05-28 日本板硝子株式会社 ガラス繊維およびガラス繊維用組成物
CN116282934B (zh) * 2023-02-24 2023-08-15 泰山玻璃纤维有限公司 高镁高比模量玻璃纤维组合物及玻璃纤维

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2129102C1 (ru) 1997-04-18 1999-04-20 Акционерное общество открытого типа "НПО Стеклопластик" Стекло для производства стекловолокна
JP2000313634A (ja) * 1999-02-25 2000-11-14 Nippon Sheet Glass Co Ltd ガラス組成物およびその製造方法、ならびにそれを用いた情報記録媒体用基板、情報記録媒体および情報記録装置
US7799713B2 (en) 2005-11-04 2010-09-21 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
RU2335466C1 (ru) * 2006-12-12 2008-10-10 Юлия Алексеевна Щепочкина Стекло
CN102849958B (zh) * 2012-10-12 2015-04-29 重庆国际复合材料有限公司 一种玻璃纤维
US9278883B2 (en) * 2013-07-15 2016-03-08 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
MX2017002820A (es) * 2014-09-09 2017-05-12 Ppg Ind Ohio Inc Composiciones de vidrio, composiciones de vidrio fiberizable y fibras de vidrio hechas de las mismos.
CA2942671C (en) * 2015-01-20 2018-09-18 Jushi Group Co., Ltd. A glass fiber composition, glass fiber and composite material therefrom
CN105693099A (zh) * 2015-11-06 2016-06-22 泰山玻璃纤维有限公司 一种耐化学腐蚀的玻璃纤维
CN105731814B (zh) * 2016-02-29 2019-01-01 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN105731813B (zh) * 2016-02-29 2018-07-31 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN105753329B (zh) * 2016-03-15 2018-07-31 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN105693100B (zh) * 2016-03-15 2018-06-26 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN105819698B (zh) * 2016-03-15 2018-09-14 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN106007369B (zh) * 2016-05-11 2018-04-06 山东玻纤集团股份有限公司 一种增强型玻璃纤维组合物
CN106082639B (zh) * 2016-06-07 2018-09-14 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN108358460A (zh) * 2017-01-26 2018-08-03 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10207949B2 (en) * 2017-01-26 2019-02-19 Jushi Group Co., Ltd. Glass fiber, composition for producing the same, and composite material comprising the same
CN116390896A (zh) * 2022-05-31 2023-07-04 日本板硝子株式会社 玻璃纤维及玻璃纤维用组合物

Also Published As

Publication number Publication date
ZA201708662B (en) 2018-12-19
WO2017197933A3 (zh) 2018-01-11
EP3287423A4 (en) 2018-08-22
KR102001011B1 (ko) 2019-10-21
SA517390350B1 (ar) 2021-06-13
KR20180096495A (ko) 2018-08-29
MA41662B1 (fr) 2019-10-31
MX2017013622A (es) 2018-03-08
AU2017267862A1 (en) 2018-08-09
ES2769179T3 (es) 2020-06-24
RU2017143175A3 (zh) 2019-06-11
JP2018521944A (ja) 2018-08-09
AU2019226221A1 (en) 2019-09-26
AU2019226221B2 (en) 2020-03-19
US10207949B2 (en) 2019-02-19
RU2017143175A (ru) 2019-06-11
RU2747140C2 (ru) 2021-04-28
CN113800773A (zh) 2021-12-17
CN108358460A (zh) 2018-08-03
HUE047506T2 (hu) 2020-04-28
EP3287423B1 (en) 2019-12-25
PT3287423T (pt) 2020-01-28
CA2984193C (en) 2019-05-28
SI3287423T1 (sl) 2020-03-31
DK3287423T3 (da) 2020-02-03
HRP20200074T1 (hr) 2020-04-03
CA2984193A1 (en) 2018-02-22
PL3287423T3 (pl) 2020-05-18
BR112017027999B1 (pt) 2022-10-11
CN113800773B (zh) 2023-03-14
US20180208497A1 (en) 2018-07-26
BR112017027999A2 (pt) 2018-08-28
MA41662A1 (fr) 2018-09-28
RU2019129079A (ru) 2021-03-16
RU2019129079A3 (zh) 2021-03-16
CL2018002753A1 (es) 2019-01-18
EP3287423A2 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
WO2017197933A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
AU2016405716B2 (en) High modulus glass fibre composition, and glass fibre and composite material thereof
WO2016165530A2 (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
JP6793734B2 (ja) ガラス繊維組成物及びそのガラス繊維と複合材料
CN105731814A (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN105693100A (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN105731813A (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
CN105819698B (zh) 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
CN111747654B (zh) 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
WO2017063247A1 (zh) 一种无硼玻璃纤维组合物及其玻璃纤维和复合材料
WO2015131684A2 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2019100782A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
TWI765723B (zh) 高模量玻璃纖維組合物及其玻璃纖維和複合材料
KR102656005B1 (ko) 고 모듈러스 유리섬유 조성물 및 그 유리섬유와 복합재료
JP7263507B2 (ja) 高弾性率ガラス繊維組成物、そのガラス繊維及び複合材料
CA3010105A1 (en) Glass fiber composition and glass fiber and composite material thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/013622

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2984193

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2017794207

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017562666

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177035230

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020177035230

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017143175

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 41662

Country of ref document: MA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017027999

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017267862

Country of ref document: AU

Date of ref document: 20170214

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017027999

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171222

NENP Non-entry into the national phase

Ref country code: DE