WO2017195500A1 - 導電性素子、入力装置および電子機器 - Google Patents

導電性素子、入力装置および電子機器 Download PDF

Info

Publication number
WO2017195500A1
WO2017195500A1 PCT/JP2017/013958 JP2017013958W WO2017195500A1 WO 2017195500 A1 WO2017195500 A1 WO 2017195500A1 JP 2017013958 W JP2017013958 W JP 2017013958W WO 2017195500 A1 WO2017195500 A1 WO 2017195500A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
conductive element
fluorine
element according
contact angle
Prior art date
Application number
PCT/JP2017/013958
Other languages
English (en)
French (fr)
Inventor
郷古 健
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/097,512 priority Critical patent/US10474309B2/en
Priority to KR1020187031260A priority patent/KR20190004272A/ko
Priority to EP17795861.8A priority patent/EP3460638A4/en
Priority to CN201780027677.6A priority patent/CN109154870A/zh
Priority to JP2018516893A priority patent/JP6891881B2/ja
Publication of WO2017195500A1 publication Critical patent/WO2017195500A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present technology relates to a conductive element, an input device including the same, and an electronic device. Specifically, the present invention relates to a conductive element provided with a wiring.
  • Patent Document 1 proposes a technique in which a lead-out wire connecting a transparent electrode and an external circuit in a touch panel is formed by performing a drying process or a baking process after printing a conductive paste.
  • An object of the present technology is to provide a conductive element in which wiring is thinned, an input device including the same, and an electronic device.
  • the 1st art is provided with the substrate which has the surface containing fluorine, and the wiring provided in the surface, and the detection intensity of the fluorine in the surface is a conductive element whose intensity is 96,834 cps or more. It is.
  • the second technology is a conductive element including a substrate having a surface containing fluorine and a wiring provided on the surface, and the contact angle of water on the surface is 100 degrees or more.
  • the third technology is an input device provided with the conductive element of the first or second technology.
  • a fourth technology is an electronic device provided with the conductive element of the first or second technology.
  • FIG. 1 is a perspective view showing an example of the appearance of an electronic device according to an embodiment of the present technology.
  • FIG. 2A is a cross-sectional view showing an example of the configuration of a touch panel type display device.
  • FIG. 2B is an exploded perspective view showing an example of the configuration of the input device.
  • FIG. 3 is a plan view showing an example of the configuration of the first transparent conductive element.
  • FIG. 3B is a plan view showing an example of the configuration of the second transparent conductive element.
  • FIG. 4 is a graph showing the relationship between the amount of fluorine in the process gas and the line width.
  • FIG. 5 is a graph showing an enlarged F1s peak.
  • FIG. 6A is a graph showing the C1s peak in an enlarged manner.
  • FIG. 6B is a graph showing the O1s peak in an enlarged manner.
  • FIG. 7A is a graph showing the relationship between the amount of fluorine in the process gas and the contact angle.
  • FIG. 7B is a graph showing the relationship between the amount of fluorine in the process gas and the line width.
  • FIG. 8A is a graph showing the relationship between the amount of fluorine in the process gas and the wiring thickness.
  • FIG. 8B is a graph showing the relationship between the amount of fluorine in the process gas and the resistance value.
  • FIG. 9 is a graph showing the relationship between the amount of fluorine in the process gas and the adhesion.
  • FIG. 10A is a plan view showing a microscopic observation image of the wiring film of Example 2-1.
  • FIG. 10B is a perspective view showing a microscopic observation image of the wiring film of Example 2-1.
  • FIG. 10C is a cross-sectional view taken along line XC-XC of FIG. 10B.
  • FIG. 11A is a plan view showing a microscopic observation image of the wiring film of Example 2-3.
  • FIG. 11B is a perspective view showing a microscopic observation image of the wiring film of Example 2-3.
  • FIG. 11C is a cross-sectional view along the line XIC-XIC of FIG. 11B.
  • FIG. 12A is a plan view showing a microscopic observation image of the wiring film of Comparative Example 2-1.
  • FIG. 12B is a perspective view showing a microscopic observation image of the wiring film of Comparative Example 2-1.
  • FIG. 12C is a cross-sectional view along the line XIIC-XIIC of FIG. 12B.
  • FIG. 13A is a graph showing the measurement results of the adhesion of the wiring film of Example 2-3.
  • FIG. 13B is a graph showing the measurement results of the adhesion of the wiring film of Comparative Example 2-1.
  • an electronic device 10 As illustrated in FIG. 1, an electronic device 10 according to an embodiment of the present technology is a so-called smartphone, and includes a housing 11 and a touch panel display device 12 housed in the housing 11.
  • the touch panel display device 12 includes a display element 20 and an input device 30 provided on the display surface of the display element 20, as shown in FIG. 2A.
  • the display element 20 and the input device 30 are pasted together via the pasting layer 21 which consists of adhesives etc., for example.
  • Display element As the display element 20, for example, various display elements such as a liquid crystal display element and an organic ELC luminescence (hereinafter referred to as "EL") element can be used.
  • EL organic ELC luminescence
  • the input device 30 is a so-called projected capacitive touch panel. As shown to FIG. 2A and FIG. 2B, the input device 30 is equipped with the 1st transparent conductive element 30a and the 2nd transparent conductive element 30b provided on the 1st transparent conductive element 30a. The 1st transparent conductive element 30a and the 2nd transparent conductive element 30b are bonded together through the bonding layer which is not shown in figure.
  • a protective layer may be provided on the surface on the input surface side of the second transparent conductive element 30b, if necessary, on the surface of the first transparent conductive element 30a on the display element 20 side.
  • a shield layer may be provided if necessary.
  • two directions having a relationship of orthogonal intersection in the plane of the input surface of the input device 30 are defined as an X-axis direction (first direction) and a Y-axis direction (second direction).
  • a direction perpendicular to the input surface of the input device 30 is defined as a Z-axis direction (third direction).
  • the first transparent conductive element 30a includes a base 31a, a plurality of transparent electrodes 32a and a plurality of wirings 33a provided on one surface of the base 31a, and the like. And an insulating layer 34a provided on one surface of the base 31 so as to cover the transparent electrode 32a and the wiring 33a.
  • the second transparent conductive element 30b includes a base 31b, a plurality of transparent electrodes 32b provided on one surface of the base 31b, a plurality of wirings 33b, and the like.
  • an insulating layer b provided on one surface of the base 31b so as to cover the transparent electrode 32b and the wiring 33b.
  • the insulating layers 34a and 34b are not shown.
  • a flexible printed circuit (FPC) 35 is provided on the periphery of the first transparent conductive element 30a and the second transparent conductive element 30b bonded together.
  • the substrates 31a and 31b contain fluorine on at least one surface.
  • the detection intensity of fluorine on one surface of the base materials 31a and 31b is not less than 96834 cps, preferably not less than 96834 cps and not more than 200,000 cps, more preferably not less than 149381 cps and not more than 200,000 cps. Since the contact angle of water (specifically, the contact angle of the solvent contained in the conductive ink) can be sufficiently increased when the detection strength of fluorine is at least 96834 cps, the wirings 33a and 33b can be thinned. On the other hand, the fall of the contact power of wiring 33a and 33b to substrate 31a and 31b can be controlled as the detection intensity of fluorine is 200,000 cps or less.
  • the detected intensity of fluorine on one surface of the substrate 31a is measured as follows. First, depth direction analysis (depth profile measurement) of the first transparent conductive element 30a by X-ray photoelectron spectroscopy (XPS) is performed while ion milling from the insulating layer 34a side of the first transparent conductive element 30a. . Then, the position where the detection intensity of fluorine is maximum is regarded as the surface of the base 31a, and the detection intensity of fluorine at this position is taken as "the detection intensity of fluorine on one surface of the base 31a".
  • depth direction analysis depth profile measurement
  • XPS X-ray photoelectron spectroscopy
  • the detection intensity of fluorine on one surface of the substrate 31b is also measured in the same manner as the detection intensity of fluorine on one surface of the substrate 31a.
  • the contact angle of water on one surface of the substrates 31a and 31b is 100 degrees or more, preferably 100 degrees or more and 120 degrees or less, and more preferably 110 degrees or more and 120 degrees or less.
  • the contact angle is 100 degrees or more
  • the contact angle of water specifically, the contact angle of the solvent contained in the conductive ink
  • the fall of the contact power of wiring 33a and 33b to substrate 31a and 31b can be controlled as a contact angle is 120 degrees or less.
  • the fluorine is preferably deposited on one surface of the substrates 31a and 31b. This is because the contact angle of water (specifically, the contact angle of the solvent contained in the conductive ink) can be sufficiently increased, so that the degree of thinning of the wirings 33a and 33b can be further improved.
  • the fluorine deposited on one surface of the substrates 31a and 31b may constitute a thin film.
  • Arithmetic mean roughness Ra on one surface of the substrates 31a and 31b is, for example, 2 nm or less.
  • the substrates 31a and 31b are preferably films having flexibility. This is because the first and second transparent conductive elements 30a and 30b can be manufactured by roll to roll, so that the production efficiency can be improved. It is preferable that the surface of one of the substrates 31a and 31b is subjected to an easy adhesion treatment. This is because the adhesion of the wires 33a and 33b can be improved.
  • Examples of the material of the substrates 31a and 31b include polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polycarbonate (PC), polyimide (PI), triacetate (TAC), polyethylene naphthalate (PEN), Polymer of one or more of aramid, acrylic resin, polyester (TPEE), polyamide (PA), cycloolefin polymer (COP), cycloolefin copolymer (COC), epoxy resin, urea resin, urethane resin, melamine resin and the like Resin is mentioned. From the viewpoint of heat resistance, among these resins, at least one of polypropylene, polyimide, polyethylene naphthalate and aramid is preferable, and polyimide is most preferable.
  • the thickness of the substrates 31a and 31b is preferably 3 ⁇ m to 500 ⁇ m from the viewpoint of productivity, but is not particularly limited to this range.
  • the base 31a may have a single-layer structure, or may have a layer structure of two or more layers.
  • a base material 31 which has a layer structure of two or more layers a thing provided with a base material layer and a surface layer provided in at least one side of a base material layer is mentioned, for example.
  • materials of the base layer and the surface layer those exemplified above as the materials of the bases 31a and 31b can be used.
  • the transparent electrodes 32 a are X electrodes extended in the X-axis direction, and are arrayed at predetermined intervals in the Y-axis direction.
  • the transparent electrodes 32b are Y electrodes extended in the Y-axis direction, and are arrayed in the X-axis direction at predetermined intervals.
  • the transparent electrodes 32a connect a plurality of pad portions (unit electrode bodies) 36a provided at predetermined intervals in the X-axis direction and a plurality of pad portions 36a adjacent in the X-axis direction. And a unit 37a.
  • the pad portion 36a and the connecting portion 37a are integrally formed.
  • the transparent electrode 32b connects a plurality of pad portions (unit electrode bodies) 36b provided at predetermined intervals in the Y-axis direction and a plurality of connection portions connecting the pad portions 36b adjacent in the Y-axis direction.
  • a unit 37b The pad portion 36 b and the connecting portion 37 b are integrally formed.
  • connection portions 37a and 37b are orthogonally crossed so that the connection portions 37a and 37b overlap, and the pad portions 36a and 36b are spread in the XY plane.
  • the shape of the pad portions 36a and 36b may be, for example, a polygon such as a rhombus (diamond shape) or a rectangle, a star shape, a cross shape, a mesh shape, or the like, but is not limited to these shapes. .
  • FIG. 2B, FIG. 3A, and FIG. 3B the case where the shape of pad part 36a, 36b is a rhombus is illustrated.
  • the shape of the transparent electrodes 32a and 32b may be linear. In this case, the plurality of transparent electrodes 32a and 32b have stripe shapes orthogonally crossing each other in plan view in the Z-axis direction.
  • a material of the transparent electrodes 32a and 32b for example, one or more selected from the group consisting of a metal oxide material having electrical conductivity, a metal material, a carbon material, a conductive polymer, and the like can be used.
  • metal oxide materials include indium tin oxide (ITO), zinc oxide, indium oxide, antimony-doped tin oxide, fluorine-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, silicon-doped zinc oxide, zinc oxide And tin oxide type, indium oxide-tin oxide type, zinc oxide-indium oxide-magnesium oxide type, and the like.
  • particles such as a metal nanoparticle and a metal wire
  • materials constituting those particles include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, Examples thereof include metals such as bismuth, antimony and lead, and alloys thereof.
  • the carbon material include carbon black, carbon fiber, fullerene, graphene, carbon nanotube, carbon micro coil, nano horn and the like.
  • the conductive polymer for example, substituted or unsubstituted polyaniline, polypyrrole, polythiophene, and (co) polymer consisting of one or two or more selected from these can be used.
  • the wiring 33a is a lead wiring that electrically connects the transparent electrode 32a and the FPC 35, is drawn out from one end of the transparent electrode 32a, is drawn around the peripheral portion of the base 31a, and is connected to the FPC 35.
  • the wiring 33 b is a lead wiring that electrically connects the transparent electrode 32 b and the FPC 35, is drawn out from one end of the transparent electrode 32 b, is drawn around the peripheral portion of the base 31 b, and is connected to the FPC 35.
  • the wiring 33a contains a powder of metal particles.
  • the wiring 33a may further include at least one of a binder such as a thermoplastic resin and an additive, as required.
  • the metal particles are, for example, gold (Au), silver (Ag), copper (Cu), titanium (Ti), tungsten (W), molybdenum (Mo), indium (In), aluminum (Al) and nickel (Ni) Contains at least one of the Examples of the shape of the metal particles include, for example, spheres, ellipsoids, needles, plates, scales, wires, rods (rods), and irregular shapes, but are not particularly limited thereto. .
  • the width w of the wirings 33a and 33b is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and still more preferably 100 ⁇ m or less.
  • the wirings 33a and 33b can be sufficiently narrowed (densified), so that the frame 13 of the electronic device 10 can be sufficiently narrowed.
  • the width w of the wires 33a and 33b is 200 ⁇ m or less, the non-visibility of the wires 33a and 33b (that is, the transparency of the region in which the wires 33a and 33b are provided) can be improved.
  • the thickness t of the wirings 33a and 33b is preferably 1.9 ⁇ m or more, more preferably 1.9 ⁇ m to 10.0 ⁇ m, and still more preferably 3.5 ⁇ m to 9.0 ⁇ m.
  • the thickness t of the wirings 33a and 33b is 1.9 ⁇ m or more, the resistance of the wirings 33a and 33b can be reduced.
  • the thickness t of the interconnections 33a and 33b varies in the width direction
  • the thickness of the interconnections 33a and 33b means the thickness of the interconnections 33a and 33b which becomes maximum in the width direction.
  • the aspect ratio (thickness t / width w) of the wirings 33a and 33b is preferably 0.03 or more, more preferably 0.03 or more and 0.10 or less, and still more preferably 0.06 or more and 0.10 or less.
  • the aspect ratio is 0.03 or more, the wirings 33a and 33b can be narrowed while holding the wirings 33a and 33b at low resistance.
  • the resistance value of the wires 33a and 33b is preferably 1.0 ⁇ / mm or less.
  • the wirings 33 a and 33 b can be used for various electronic devices including the input device 30.
  • any of an inorganic material and an organic material may be used.
  • the inorganic materials for example, be SiO 2, SiNx, SiON, Al 2 O 3, Ta 2 O 5, Y 2 O 3, HfO 2, HfAlO, and ZrO 2, TiO 2 is used.
  • the organic material for example, polyacrylate such as polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polystyrene (PS), transparent polyimide, polyester, epoxy, polyvinyl phenol, polyvinyl alcohol or the like can be used.
  • the plasma water-repellent treatment refers to a treatment for imparting water repellency to one surface of the substrate 31 a by subjecting one surface of the substrate 31 a to plasma treatment.
  • a plasma processing apparatus for performing plasma water repellent treatment one capable of performing plasma treatment under atmospheric pressure is preferable.
  • the process gas one containing fluorine is used.
  • a pulse power supply can be used as the power supply.
  • the plasma water repellency treatment is adjusted so that the detection intensity of fluorine on one surface of the base material 31a is 96834 cps or more, preferably 96834 cps or more and 2000000 cps or less, more preferably 149381 cps or more and 200000 cps or less. Further, plasma water repellent treatment may be performed only on the region where the wiring 33a is to be formed.
  • the plasma water repellent treatment is adjusted such that the contact angle of water on one surface of the substrate 31a is 100 degrees or more, preferably 100 degrees or more and 120 degrees or less, more preferably 110 degrees or more and 120 degrees or less.
  • the transparent electrode 32a is formed on one surface of the base material 31a drawn out from the raw fabric.
  • a method of forming the pattern of the transparent electrode 32a for example, a photolithography method or a printing method can be used.
  • the transparent electrode 32a may be formed in advance on one surface of the substrate 31a before the plasma treatment. .
  • the conductive ink is printed on one surface of the base 31a while the base 31a is being transported.
  • the conductive ink contains the above-described powder of metal particles and a solvent.
  • the conductive ink may optionally contain at least one of a binder and an additive such as a thermoplastic resin.
  • a conductive paste may be used instead of the conductive ink.
  • those capable of dispersing metal powder powder can be used, for example, water, alcohol (eg methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, etc.) At least one selected from tert-butanol etc.), anone (eg cyclohexanone, cyclopentanone), amide (eg N, N-dimethylformamide: DMF), sulfide (eg dimethyl sulfoxide: DMSO) etc. is used .
  • alcohol eg methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, etc.
  • At least one selected from tert-butanol etc. anone (eg cyclohexanone, cyclopentanone), amide (eg N, N-dimethyl
  • a high boiling point solvent may be further added to the conductive ink to control the evaporation rate of the solvent from the conductive ink.
  • a high boiling point solvent for example, butyl cellosolve, diacetone alcohol, butyl triglycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether , Diethylene glycol monoethyl ether, diethylene glycol monomethyl ether diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol isopropyl ether, dipropylene glycol isopropyl ether, trip Propylene glycol isopropyl ether, methyl glycol.
  • a printing method for example, flexographic printing, screen printing, gravure printing, gravure offset printing, reverse offset printing, waterless flat plate printing, inkjet printing and the like can be used.
  • the base materials 31a and 31b are transported to a heating furnace and passed through the heating furnace to volatilize the solvent contained in the printed conductive ink, thereby drying and baking the conductive ink.
  • a heating furnace an infrared heating furnace, a heater heating furnace, a hot air circulation type heating furnace, etc. can be used, for example.
  • An electronic device 10 includes first and second transparent conductive elements 30a and 30b.
  • the first and second transparent conductive elements 30a and 30b respectively include substrates 31a and 31b having fluorine on one surface, and a plurality of wirings 33a and 33b provided on one surface of the substrates 31a and 31b. Equipped with The detection intensity of fluorine on one surface of the base materials 31a and 31b is 96,834 cps or more. For this reason, since the contact angle of water on one surface of the base materials 31a and 31b can be sufficiently increased, the wirings 33a and 33b can be thinned. Therefore, it is possible to narrow the frame 13 of the electronic device 10 and enlarge the display surface of the touch panel type display device 12.
  • the conductive ink is printed on one surface of the substrates 31a and 31b subjected to plasma water repellent treatment, the conductive ink is the substrates 31a and 31b. It is possible to suppress the spread of wetting on one of the surfaces. Therefore, the wirings 33a and 33b can be thinned. In addition, since the thicknesses of the wirings 33a and 33b can be secured, low resistance wirings 33a and 33b can be obtained.
  • the wiring and the conductive ink may contain carbon particles instead of or together with the metal particles.
  • a carbon particle 1 or more types in fullerene, a graphene, a carbon nanotube, etc. can be used, for example.
  • the substrate surface may be made water repellent by the
  • the conductive element to which the present technology can be applied include transparent conductive elements such as resistive film type touch panels, IC cards, display elements (for example, liquid crystal display elements, organic EL elements, inorganic EL elements, electronic paper, etc.)
  • a printed wiring board, a printed circuit board, etc. are mentioned.
  • the term "printed wiring board” means one having no wiring but only wiring.
  • printed circuit board means one provided with an electronic component along with a wiring to operate as an electronic circuit.
  • the type of the board is not particularly limited, and any of a flexible board, a rigid board, and a rigid flexible board may be used.
  • the above-mentioned embodiment explained the example which applied this art to frame wiring of an input device, this art is applicable also to wiring other than frame wiring.
  • the present technology is also applicable to the formation of a pattern of electrodes having a matrix or the like. In this case, since the electrode can be thinned (narrowed), the non-visibility of the electrode can be improved.
  • the input device includes a transparent conductive element in which transparent electrodes and wires are provided on both sides, instead of the first and second transparent conductive elements in which the transparent electrodes and wires are provided on one side. Good. In this case, the input device can be further thinned.
  • Examples 1-1, 1-2, Comparative Examples 1-1 to 1-3 (Plasma treatment) First, a raw film of PET film (A4300 manufactured by Toyobo Co., Ltd.) having a thickness of 250 ⁇ m subjected to double-sided easy adhesion treatment was attached to a roll-to-roll atmospheric pressure plasma processing apparatus. Next, plasma water repellent treatment was performed on one side of the PET film drawn from the raw fabric, and then it was wound up. As the process gas, a mixture of fluorine and nitrogen was used, and the mixture ratio was changed for each sample. A pulse power source was used as a power source.
  • the conductive ink printed PET film was transported to a heating oven at 120 ° C., and the printed conductive ink was dried and fired by transporting it in the oven for 30 minutes, and then wound up.
  • the target wiring film conductive element
  • the wiring width of the wiring film obtained as described above was measured using a laser microscope (LEXT OLS4000 manufactured by Olympus Corporation).
  • FIG. 4 shows the measurement results of the wiring widths of the wiring films of Examples 1-1 and 1-2 and Comparative Examples 1-1 to 1-3, and the approximate curve of the second-order polynomial obtained from the measurement results.
  • the wiring width can be made 200 ⁇ m or less by setting the detection intensity of fluorine on the surface of the PET film to 96834 [cps] or more. Further, the wiring width can be made 150 ⁇ m or less by setting the detection intensity of fluorine on the surface of the PET film to 149381 [cps] or more.
  • Example 2-1 Example 1 using a mixture of fluorine and nitrogen at a volume ratio of 5:95 as a process gas, and using the detection strength of fluorine and the contact angle of water on one side of a PET film as follows: A wiring film was obtained in the same manner as -1. Detection strength of fluorine: 159645 cps Water contact angle: 100 degrees
  • the detection intensity of fluorine was determined in the same manner as in Example 1-1.
  • the contact angle was determined using a contact angle meter (Biolin Scientific, Theta T200 Basic).
  • Embodiment 2-2 Example 1 using a mixture of fluorine and nitrogen at a volume ratio of 15: 85 as a process gas, and using the detection strength of fluorine and the contact angle of water on one side of a PET film as follows: A wiring film was obtained in the same manner as -1. Detection strength of fluorine: 174914 cps Water contact angle: 103 degrees
  • Example 2-3 Using a mixture of fluorine and nitrogen at a volume ratio of 25:75 as the process gas, the detection strength of fluorine, the contact angle of water, and the arithmetic average roughness Ra on one side of the PET film were as follows: A wiring film was obtained in the same manner as in Example 1-1 except for the above. Detection strength of fluorine: 184946 cps Water contact angle: 106 degrees Arithmetic mean roughness Ra: 1.74 nm
  • arithmetic mean roughness Ra was calculated
  • AFM Atomic Force Microscope
  • Comparative Example 2-1 A wiring film was obtained in the same manner as in Example 1-1 except that the wiring was printed with a conductive ink without subjecting one surface of the PET film to plasma water repellent treatment.
  • the detection strength of fluorine, the contact angle of water, and the arithmetic mean roughness Ra on one side of the PET film not subjected to plasma water repellency treatment were the following values. Detection strength of fluorine: 11444 cps Water contact angle: 75 degrees Arithmetic mean roughness Ra: 2.26 nm
  • the wiring width w and the wiring thickness t of the wiring film were measured using a laser microscope (LEXT OLS4000 manufactured by Olympus Corporation). Since the wiring thickness t fluctuates in the width direction of the wiring, the wiring thickness t that is the maximum in the width direction of the wiring is taken as the “wiring thickness t”. Next, the aspect ratio (t / w) was calculated using the measured wiring width w and wiring thickness t.
  • the wiring resistance of the wiring film was measured using a tester (M-03, manufactured by Custom Co., Ltd.).
  • Table 1 shows preparation conditions of the wiring films of Examples 2-1 to 2-3 and Comparative Example 2-1 and the results of measurement / calculation.
  • FIG. 5, FIG. 6A, and FIG. 6B are graphs which expand and represent F1s, C1s, and O1s peaks, respectively.
  • 7A, 7B, 8A, 8B, and 9 show the measurement results of the contact angle, the wire width, the wire thickness, the resistance value, and the adhesion, respectively.
  • 10A, 10B and 10C show microscopically observed images of the wiring film of Example 2-1.
  • 11A, 11B, and 11C show microscopic images of the wiring film of Example 2-3.
  • 12A, 12B, and 12C show microscopically observed images of the wiring film of Comparative Example 2-1.
  • FIG. 13A shows the measurement results of the adhesion of the wiring film of Example 2-3.
  • FIG. 13B shows the measurement results of the adhesion of the wiring film of Comparative Example 2-1.
  • the contact angle of water on one side of the PET film can be made 100 degrees or more (see FIG. 7A).
  • the wiring width can be 200 ⁇ m or less and the wiring thickness can be 1.9 ⁇ m or more.
  • the wiring film subjected to the plasma water repellent treatment has a resistance value similar to that of the wiring film not subjected to the plasma water repellent treatment (see FIG. 8B).
  • the wiring film subjected to the plasma water repellent treatment has the same adhesion as the wiring film not subjected to the plasma water repellent treatment (see FIG. 9). Therefore, by setting the contact angle of water on one side of the PET film to 100 degrees or more, the wiring width can be 200 ⁇ m or less and the wiring thickness can be 1.9 ⁇ m or more. Further, in the wiring film subjected to the plasma water repellent treatment, it is possible to achieve both the thinning (narrowing) of the wiring and the reduction of the resistance without causing a significant decrease in the adhesion.
  • the present technology may adopt the following configuration.
  • the substrate comprises one or more of polyethylene terephthalate, polyethylene, propylene, polycarbonate, polyimide, triacetyl cellulose and polyethylene naphthalate.
  • the substrate is a film.
  • the conductive element according to any one of (1) to (8), wherein the ratio of the thickness of the wiring to the width of the wiring is 0.06 or more.
  • An input device comprising the conductive element according to any one of (1) to (10).
  • the electronic device provided with the electroconductive element in any one of (1) to (10).
  • the substrate surface is subjected to plasma treatment so that the detection intensity of fluorine on the substrate surface is 96834 cps or more
  • a method of manufacturing a conductive element comprising printing a conductive ink on the surface of the substrate that has been subjected to plasma treatment.
  • the substrate surface is subjected to plasma treatment so that the contact angle of water on the substrate surface is 100 degrees or more.
  • a method of manufacturing a conductive element comprising printing a conductive ink on the surface of the substrate that has been subjected to plasma treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Non-Insulated Conductors (AREA)
  • Position Input By Displaying (AREA)
  • Laminated Bodies (AREA)

Abstract

導電性素子は、フッ素を含む表面を有する基材と、表面に設けられた配線とを備える。基材表面におけるフッ素の検出強度は、96834cps以上である。

Description

導電性素子、入力装置および電子機器
 本技術は、導電性素子、それを備える入力装置および電子機器に関する。詳しくは、配線を備える導電性素子に関する。
 近年では、スマートフォンやタブレット型コンピュータなどを狭額縁化するために、配線の細線化(挟幅化)の要求が高まっている。例えば特許文献1では、タッチパネルにおいて透明電極と外部回路とを接続する引き回し配線を、導電ペーストを印刷後に、乾燥処理または焼成処理して形成する技術が提案されている。
特開2014-26584号公報(段落[0037])
 本技術の目的は、配線が細線化された導電性素子、それを備える入力装置および電子機器を提供することにある。
 上述の課題を解決するために、第1の技術は、フッ素を含む表面を有する基材と、表面に設けられた配線とを備え、表面におけるフッ素の検出強度が、96834cps以上である導電性素子である。
 第2の技術は、フッ素を含む表面を有する基材と、表面に設けられた配線とを備え、表面における水の接触角が、100度以上である導電性素子である。
 第3の技術は、第1または第2の技術の導電性素子を備える入力装置である。
 第4の技術は、第1または第2の技術の導電性素子を備える電子機器である。
 以上説明したように、本技術によれば、配線が細線化された導電性素子を実現できる。
図1は、本技術の一実施形態に係る電子機器の外観の一例を示す斜視図である。 図2Aは、タッチパネル式の表示装置の構成の一例を示す断面図である。図2Bは、入力装置の構成の一例を示す分解斜視図である。 図3は、第1の透明導電性素子の構成の一例を示す平面図である。図3Bは、第2の透明導電性素子の構成の一例を示す平面図である。 図4は、プロセスガスのフッ素量と配線幅との関係を示すグラフである。 図5は、F1sピークを拡大して表すグラフである。 図6Aは、C1sピークを拡大して表すグラフである。図6Bは、O1sピークを拡大して表すグラフである。 図7Aは、プロセスガスのフッ素量と接触角との関係を示すグラフである。図7Bは、プロセスガスのフッ素量と配線幅との関係を示すグラフである。 図8Aは、プロセスガスのフッ素量と配線厚みとの関係を示すグラフである。図8Bは、プロセスガスのフッ素量と抵抗値との関係を示すグラフである。 図9は、プロセスガスのフッ素量と密着力との関係を示すグラフである。 図10Aは、実施例2-1の配線フィルムの顕微鏡観察像を示す平面図である。図10Bは、実施例2-1の配線フィルムの顕微鏡観察像を示す斜視図である。図10Cは、図10BのXC-XC線に沿った断面図である。 図11Aは、実施例2-3の配線フィルムの顕微鏡観察像を示す平面図である。図11Bは、実施例2-3の配線フィルムの顕微鏡観察像を示す斜視図である。図11Cは、図11BのXIC-XIC線に沿った断面図である。 図12Aは、比較例2-1の配線フィルムの顕微鏡観察像を示す平面図である。図12Bは、比較例2-1の配線フィルムの顕微鏡観察像を示す斜視図である。図12Cは、図12BのXIIC-XIIC線に沿った断面図である。 図13Aは、実施例2-3の配線フィルムの密着力の測定結果を示すグラフである。図13Bは、比較例2-1の配線フィルムの密着力の測定結果を示すグラフである。
 本技術の実施形態について以下の順序で説明する。
 1 電子機器の構成
 2 導電性素子の製造方法
 3 効果
 4 変形例
[1 電子機器の構成]
 図1に示すように、本技術の一実施形態に係る電子機器10は、いわゆるスマートフォンであり、筐体11と、この筐体11に収容されたタッチパネル式の表示装置12とを備える。タッチパネル式の表示装置12は、図2Aに示すように、表示素子20と、表示素子20の表示面に設けられた入力装置30を備える。表示素子20と入力装置30とは、例えば粘着剤などからなる貼合層21を介して貼り合わされている。
(表示素子)
 表示素子20としては、例えば、液晶表示素子、有機エルクトロルミネッセンス(以下「EL」という。)素子などの各種表示素子を用いることができる。
(入力装置)
 入力装置30は、いわゆる投影型静電容量方式タッチパネルである。図2A、図2Bに示すように、入力装置30は、第1の透明導電性素子30aと、第1の透明導電性素子30a上に設けられた第2の透明導電性素子30bとを備える。第1の透明導電性素子30aと第2の透明導電性素子30bとは、図示しない貼合層を介して貼り合わされている。また、第2の透明導電性素子30bの入力面側の表面には、必要に応じて保護層が設けられていてもよいし、第1の透明導電性素子30aの表示素子20側の表面には、必要に応じてシールド層が設けられていてもよい。ここでは、入力装置30の入力面の面内において直交交差の関係にある2方向をX軸方向(第1方向)およびY軸方向(第2方向)と定義する。また、入力装置30の入力面に対して垂直な方向をZ軸方向(第3方向)と定義する。
(第1、第2の透明導電性素子)
 第1の透明導電性素子30aは、図2A、図2Bに示すように、基材31aと、基材31aの一方の表面に設けられた複数の透明電極32aおよび複数の配線33aと、それらの透明電極32aおよび配線33aを覆うように基材31の一方の表面に設けられた絶縁層34aとを備える。第2の透明導電性素子30bは、図2A、図2Bに示すように、基材31bと、基材31bの一方の面に設けられた複数の透明電極32bおよび複数の配線33bと、それらの透明電極32bおよび配線33bを覆うように基材31bの一方の面に設けられた絶縁層34bとを備える。なお、図2Bでは、絶縁層34a、34bの図示を省略している。貼り合わされた第1の透明導電性素子30aおよび第2の透明導電性素子30bの周縁部には、フレキシブルプリント配線基板(Flexible Printed Circuit:FPC)35が設けられている。
(基材)
 基材31a、31bは、少なくとも一方の表面にフッ素を含んでいる。基材31a、31bの一方の表面におけるフッ素の検出強度が、96834cps以上、好ましくは96834cps以上200000cps以下、より好ましくは149381cps以上200000cps以下である。フッ素の検出強度が96834cps以上であると、水の接触角(具体的には導電インクに含まれる溶剤の接触角)を十分に大きくできるため、配線33a、33bを細線化できる。一方、フッ素の検出強度が200000cps以下であると、基材31a、31bに対する配線33a、33bの密着力の低下を抑制することができる。
 基材31aの一方の表面におけるフッ素の検出強度は次のようにして測定される。まず、第1の透明導電性素子30aの絶縁層34a側からイオンミリングしながら、XPS(X-ray Photoelectron Spectroscopy)による第1の透明導電性素子30aの深さ方向分析(デプスプロファイル測定)を行う。そして、フッ素の検出強度が最大となる位置を基材31aの表面とみなし、この位置のフッ素の検出強度を“基材31aの一方の表面におけるフッ素の検出強度”とする。
 基材31bの一方の表面におけるフッ素の検出強度も、上記基材31aの一方の表面におけるフッ素の検出強度と同様にして測定される。
 基材31a、31bの一方の表面における水の接触角は、100度以上、好ましくは100度以上120度以下、より好ましくは110度以上120度以下である。接触角が100度以上であると、水の接触角(具体的には導電インクに含まれる溶剤の接触角)を十分に大きくできるため、配線33a、33bを細線化できる。一方、接触角が120度以下であると、基材31a、31bに対する配線33a、33bの密着力の低下を抑制することができる。
 フッ素は、基材31a、31bの一方の表面に堆積していることが好ましい。水の接触角(具体的には導電インクに含まれる溶剤の接触角)をより十分に大きくできるため、配線33a、33bの細線化の度合いをより向上できるからである。基材31a、31bの一方の表面に堆積したフッ素が薄膜を構成していてもよい。基材31a、31bの一方の表面における算術平均粗さRaは、例えば2nm以下である。
 基材31a、31bは、可撓性を有するフィルムであることが好ましい。Roll to Rollにより第1、第2の透明導電性素子30a、30bを製造することができるため、生産効率を向上できるからである。基材31a、31bの一方の表面に易接着処理が施されていることが好ましい。配線33a、33bの密着性を向上できるからである。
 基材31a、31bの材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリイミド(PI)、トリアセテート(TAC)、ポリエチレンナフタレート(PEN)、アラミド、アクリル樹脂、ポリエステル(TPEE)、ポリアミド(PA)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂およびメラミン樹脂などのうちの1種以上の高分子樹脂が挙げられる。耐熱性の観点からすると、これらの樹脂のうちでも、ポリプロピレン、ポリイミド、ポリエチレンナフタレートおよびアラミドなどのうちの1種以上が好ましく、ポリイミドが最も好ましい。基材31a、31bの厚さは、生産性の観点から3μm~500μmであることが好ましいが、この範囲に特に限定されるものではない。
 基材31aは単層構造であってもよいし、2層以上の層構造を有していてもよい。2層以上の層構造を有する基材31としては、例えば、基材層と、基材層の少なくとも一方の面に設けられた表面層とを備えるものが挙げられる。この場合、基材層および表面層の材料としては、基材31a、31bの材料として上で例示したものを用いることができる。
(透明電極)
 透明電極32aは、X軸方向に延在されたX電極であり、Y軸方向に所定間隔離して配列されている。一方、透明電極32bは、Y軸方向に延在されたY電極であり、X軸方向に所定間隔離して配列されている。
 透明電極32aは、図3Aに示すように、X軸方向に所定間隔で設けられた複数のパッド部(単位電極体)36aと、X軸方向に隣り合うパッド部36a間を連結する複数の連結部37aとを備える。パッド部36aと連結部37aとは一体的に形成されている。透明電極32bは、図3Bに示すように、Y軸方向に所定間隔で設けられた複数のパッド部(単位電極体)36bと、Y軸方向に隣り合うパッド部36b間を連結する複数の連結部37bとを備える。パッド部36bと連結部37bとは一体的に形成されている。
 透明電極32a、32bは、これらをZ軸方向から平面視すると、連結部37a、37bが重なるようにして直交交差されると共に、パッド部36a、36bがXY面内に敷き詰められている。パッド部36a、36bの形状としては、例えば、菱形(ダイヤモンド形状)や矩形などの多角形、星形、十字形、網目状などを用いることができるが、これらの形状に限定されるものではない。図2B、図3A、図3Bでは、パッド部36a、36bの形状が菱形である場合が例示されている。なお、透明電極32a、32bの形状は、直線状であってもよい。この場合、複数の透明電極32a、32bは、これらをZ軸方向から平面視すると、直交交差するストライプ状を有している。
 透明電極32a、32bの材料としては、例えば、電気的導電性を有する金属酸化物材料、金属材料、炭素材料および導電性ポリマーなどからなる群より選ばれる1種以上を用いることができる。金属酸化物材料としては、例えば、インジウム錫酸化物(ITO)、酸化亜鉛、酸化インジウム、アンチモン添加酸化錫、フッ素添加酸化錫、アルミニウム添加酸化亜鉛、ガリウム添加酸化亜鉛、シリコン添加酸化亜鉛、酸化亜鉛-酸化錫系、酸化インジウム-酸化錫系、酸化亜鉛-酸化インジウム-酸化マグネシウム系などが挙げられる。金属材料としては、例えば、金属ナノ粒子、金属ワイヤーなどの粒子を用いることができる。それらの粒子を構成する材料としては、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンテル、チタン、ビスマス、アンチモン、鉛などの金属、またはこれらの合金などが挙げられる。炭素材料としては、例えば、カーボンブラック、炭素繊維、フラーレン、グラフェン、カーボンナノチューブ、カーボンマイクロコイルおよびナノホーンなどが挙げられる。導電性ポリマーとしては、例えば、置換または無置換のポリアニリン、ポリピロール、ポリチオフェン、およびこれらから選ばれる1種または2種からなる(共)重合体などを用いることができる。
(配線)
 配線33aは、透明電極32aとFPC35とを電気的に接続する引き回し配線であって、透明電極32aの一端から引き出され、基材31aの周縁部に引き回れてFPC35に接続されている。配線33bは、透明電極32bとFPC35とを電気的に接続する引き回し配線であって、透明電極32bの一端から引き出され、基材31bの周縁部に引き回れてFPC35に接続されている。
 配線33aは、金属粒子の粉末を含んでいる。配線33aは、必要に応じて熱可塑性樹脂などのバインダおよび添加剤のうちの少なくとも1種をさらに含んでいてもよい。
 金属粒子は、例えば、金(Au)、銀(Ag)、銅(Cu)、チタン(Ti)、タングステン(W)、モリブデン(Mo)、インジウム(In)、アルミニウム(Al)およびニッケル(Ni)のうち少なくとも1種を含んでいる。金属粒子の形状としては、例えば、球状、楕円体状、針状、板状、鱗片状、ワイヤー状、棒状(ロッド状)、不定形状などが挙げられるが、特にこれらに限定されるものではない。
 配線33a、33bの幅wは、好ましくは200μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下である。配線33a、33bの幅wが200μm以下であると、配線33a、33bを十分に挟幅化(高密度化)できるので、電子機器10の額縁13を十分に狭額縁化することが可能となる。また、配線33a、33bの幅wが200μm以下であると、配線33a、33bの非視認性(すなわち配線33a、33bが設けられた領域の透明性)も向上できる。
 配線33a、33bの厚みtは、好ましくは1.9μm以上、より好ましくは1.9μm以上10.0μm以下、さらにより好ましくは3.5μm以上9.0μm以下である。配線33a、33bの厚みtが1.9μm以上であると、配線33a、33bを低抵抗化できる。一方、配線33a、33bの厚みtを10.0μmを超えて厚くすることは困難であり、また配線33a、33bの厚みtを10.0μmを超えて厚くしなくても十分に低い抵抗値が得られる。ここで、配線33a、33bの厚みtがそれらの幅方向に変動している場合には、配線33a、33bの厚みとは、幅方向において最大となる配線33a、33bの厚みを意味する。
 配線33a、33bのアスペクト比(厚みt/幅w)は、好ましくは0.03以上、より好ましくは0.03以上0.10以下、さらにより好ましくは0.06以上0.10以下である。アスペクト比が0.03以上であると、配線33a、33bを低抵抗に保持しつつ、配線33a、33bを挟幅化することができる。一方、アスペクト比を0.10を超えて大きくすることは困難である。
 配線33a、33bの抵抗値は、1.0Ω/mm以下であることが好ましい。抵抗値が1.0Ω/mm以下であると、入力装置30をはじめとする種々の電子機器に配線33a、33bを用いることができるからである。
(絶縁層)
 絶縁層34a、34bの材料としては、無機材料および有機材料のいずれを用いてもよい。無機材料としては、例えば、SiO2、SiNx、SiON、Al23、Ta25、Y23、HfO2、HfAlO、ZrO2、TiO2などを用いることができる。有機材料としては、例えば、ポリメチルメタクリレート(PMMA)などのポリアクリレート、ポリビニルアルコール(PVA)、ポリスチレン(PS)、透明性ポリイミド、ポリエステル、エポキシ、ポリビニルフェノール、ポリビニルアルコールなどを用いることができる。
[2 透明導電性素子の製造方法]
 次に、第1の透明導電性素子30aの製造方法について説明する。なお、第2の透明導電性素子30bの製造方法は第1の透明導電性素子30aの製造方法と同様であるため、ここでは、第1の透明導電性素子30aの製造方法についてのみ説明する。
(プラズマ処理)
 まず、基材31aを搬送しながら基材31aの一方の面にプラズマ撥水処理を施す。ここで、プラズマ撥水処理とは、基材31aの一方の面にプラズマ処理を施すことにより、基材31aの一方の面に撥水性を付与する処理のことをいう。プラズマ撥水処理を施すためのプラズマ処理装置としては、生産性の観点からすると、大気圧下でプラズマ処理を施すことが可能なものが好ましい。プロセスガスとしては、フッ素を含むものが用いられる。電源としては、パルス電源を用いることができる。
 この際、プラズマ撥水処理は、基材31aの一方の表面におけるフッ素の検出強度が96834cps以上、好ましくは96834cps以上200000cps以下、より好ましくは149381cps以上200000cps以下となるように調整される。また、配線33aを形成する領域のみにプラズマ撥水処理を施すようにしてもよい。
 プラズマ撥水処理は、基材31aの一方の表面における水の接触角が100度以上、好ましくは100度以上120度以下、より好ましくは110度以上120度以下となるように調整される。
(透明電極の形成)
 次に、原反から繰り出された基材31aの一方の面に透明電極32aを形成する。透明電極32aのパターンの形成方法としては、例えばフォトリソグラフィ法または印刷法を用いることができる。ここでは、プラズマ処理後に基材31aの一方の面に透明電極32aを形成する場合について説明するが、プラズマ処理前に基材31aの一方の面に透明電極32aを予め形成しておいてもよい。
(印刷)
 次に、基材31aを搬送しながら、基材31aの一方の面に導電インクを印刷する。導電インクは、上述の金属粒子の粉末および溶剤を含んでいる。導電インクが、必要に応じて熱可塑性樹脂などのバインダおよび添加剤のうちの少なくとも1種を含んでいてもよい。なお、導電インクに代えて導電ペーストを用いてもよい。
 溶剤としては、金属粒子の粉末を分散可能なものを用いることができ、例えば、水、アルコール(例えばメタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノールなど)、アノン(例えばシクロヘキサノン、シクロペンタノン)、アミド(例えばN,N-ジメチルホルムアミド:DMF)、スルフィド(例えばジメチルスルホキシド:DMSO)などから選択される少なくとも1種類以上が使用される。
 導電インクに高沸点溶剤をさらに添加し、導電インクからの溶剤の蒸発速度をコントロールするようにしてもよい。高沸点溶剤としては、例えば、ブチルセロソルブ、ジアセトンアルコール、ブチルトリグリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールイソプロピルエーテル、ジプロピレングリコールイソプロピルエーテル、トリプロピレングリコールイソプロピルエーテル、メチルグリコールが挙げられる。これらの高沸点溶剤を単独で用いられてもよいし、また2種以上混合して用いてもよい。
 印刷法としては、例えば、フレキソ印刷、スクリーン印刷、グラビア印刷、グラビアオフセット印刷、反転オフセット印刷、水なし平板印刷、インクジェット印刷などを用いることができる。
(乾燥焼成)
 次に、基材31a、31bを加熱炉に搬送し加熱炉を通過させることにより、印刷された導電インクに含まれる溶剤を揮発させ、導電インクを乾燥焼成させる。加熱炉としては、例えば赤外線加熱炉、ヒータ加熱炉、熱風循環式加熱炉などを用いることができる。
 上記のプラズマ処理の工程から乾燥焼成の工程までは、Roll to Roll方式で行われることが好ましい。生産性を向上できるからである。
[3 効果]
 本技術の一実施形態に係る電子機器10は、第1、第2の透明導電性素子30a、30bを備える。第1、第2の透明導電性素子30a、30bはそれぞれ、一方の表面にフッ素を含む基材31a、31bと、基材31a、31bの一方の面に設けられた複数の配線33a、33bとを備える。基材31a、31bの一方の表面におけるフッ素の検出強度が、96834cps以上である。このため、基材31a、31bの一方の表面における水の接触角を十分に大きくできるため、配線33a、33bを細線化できる。したがって、電子機器10の額縁13を狭額縁化して、タッチパネル式の表示装置12の表示面を大きくすることが可能となる。
 本技術の一実施形態に係る透明導電性素子の製造方法では、プラズマ撥水処理が施された基材31a、31bの一方の表面に導電インクを印刷するので、導電インクが基材31a、31bの一方の表面で濡れ広がることを抑制できる。したがって、配線33a、33bを細線化することができる。また、配線33a、33bの厚みも確保できるので、低抵抗の配線33a、33bが得られる。
[4 変形例]
 配線および導電インクが、金属粒子に代えて、または金属粒子とともに、炭素粒子を含むようにしてもよい。炭素粒子としては、例えば、フラーレン、グラフェンおよびカーボンナノチューブなどのうちの1種以上を用いることができる。
 上述の一実施形態では、プラズマ処理により基材表面にフッ素を導入することにより、基材表面を撥水化する例について説明したが、プラズマ処理以外の方法で基材表面にフッ素を導入することにより、基材表面を撥水化してもよい。
 上述の一実施形態では、電容量方式タッチパネルの透明導電性素子に本技術を適用した例について説明したが、本技術はこの例に限定されるものではなく、配線を備える種々の導電性素子に適用可能である。本技術が適用可能な導電性素子の具体例としては、抵抗膜方式タッチパネルなどの透明導電性素子、ICカード、表示素子(例えば液晶表示素子、有機EL素子、無機EL素子、電子ペーパなど)、プリント配線基板、プリント回路基板などが挙げられる。ここで、“プリント配線基板”とは、電子部品が設けられておらず、配線のみを有するものを意味する。また、“プリント回路基板”とは、配線と共に電子部品が設けられて、電子回路として動作するようになったものを意味する。なお、プリント配線基板およびプリント回路基板において、基板の種類は、特に限定されず、フレキシブル基板、リジッド基板、リジッドフレキシブル基板のいずれであってもよい。
 上述の実施形態では入力装置の額縁配線に本技術を適用した例について説明したが、額縁配線以外の配線に対しても本技術は適用可能である。また、マトリックス状などを有する電極のパターンの形成にも本技術は適用可能である。この場合、電極を細線化(挟幅化)することができるので、電極の非視認性を向上できる。
 入力装置が、透明電極および配線が一方の面に設けられた第1、第2の透明導電性素子に代えて、透明電極および配線が両面に設けられた透明導電性素子を備えるようにしてもよい。この場合、入力装置を更に薄型化することができる。
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。
[実施例1-1、1-2、比較例1-1~1-3]
(プラズマ処理)
 まず、両面易接着処理が施された厚さ250μmのPETフィルム(東洋紡株式会社製、A4300)の原反を、Roll to Roll方式の大気圧プラズマ処理装置に取り付けた。次に、原反から繰り出されたPETフィルムの一方の面にプラズマ撥水処理を施した後、巻き取った。プロセスガスとしては、フッ素と窒素とを混合したものを用い、その混合比をサンプル毎に変化させた。電源としては、パルス電源を用いた。
 次に、XPS(株式会社島津製作所製、ESCA-3400)によりPETフィルムの一方の面の元素組成を分析し、フッ素の検出強度を求めた。以下に、XPSの測定条件を示す。
 X線源:マグネシウム
 X線高圧値:8kV
 エミッション電流値:20mA
 分析範囲:φ6mm
(印刷)
 次に、PETフィルムの一方の面にプラズマ撥水処理を施した原反をフレキソ印刷装置に取り付けた後、原反から繰り出されたPETフィルムの一方の面に導電インクで配線を印刷した。導電インクとしては、藤倉化成株式会社製のXA-3609(低粘度7700mpa・s)を用いた。フレキソ版(凸版)としては、線幅25μm(コムラテック製)のものを用いた。
(乾燥)
 次に、導電インクが印刷されたPETフィルムを120℃の加熱オーブンに搬送し、オーブン内を30分間かけて搬送することにより、印刷された導電インクを乾燥焼成させた後、巻き取った。以上により、目的とする配線フィルム(導電性素子)を得た。
(配線幅の測定)
 上述のようにして得られた配線フィルムの配線幅をレーザー顕微鏡(オリンパス株式会社製、LEXT OLS4000)を用いて測定した。
(結果)
 図4に、実施例1-1、1-2、比較例1-1~1-3の配線フィルムの配線幅の測定結果、およびそれらの測定結果から求めた2次多項式の近似曲線を示す。図4から以下のことがわかる。PETフィルム表面におけるフッ素の検出強度を96834[cps]以上にすることで、配線幅を200μm以下にできる。また、PETフィルム表面におけるフッ素の検出強度を149381[cps]以上にすることで配線幅を150μm以下にできる。
[実施例2-1]
 プロセスガスとしてフッ素と窒素とを5:95との体積比で混合したものを用い、PETフィルムの一方の面におけるフッ素の検出強度および水の接触角を以下のようにしたこと以外は実施例1-1と同様にして配線フィルムを得た。
 フッ素の検出強度:159645cps
 水の接触角:100度
 ここで、フッ素の検出強度は、実施例1-1と同様にして求められた。接触角は、接触角計(Biolin Scientific製、Theta T200 Basic)を用いて求められた。
[実施例2-2]
 プロセスガスとしてフッ素と窒素とを15:85との体積比で混合したものを用い、PETフィルムの一方の面におけるフッ素の検出強度および水の接触角を以下のようにしたこと以外は実施例1-1と同様にして配線フィルムを得た。
 フッ素の検出強度:174914cps
 水の接触角:103度
[実施例2-3]
 プロセスガスとしてフッ素と窒素とを25:75との体積比で混合したものを用い、PETフィルムの一方の面におけるフッ素の検出強度、水の接触角および算術平均粗さRaを以下のようにしたこと以外は実施例1-1と同様にして配線フィルムを得た。
 フッ素の検出強度:184946cps
 水の接触角:106度
 算術平均粗さRa:1.74nm
 ここで、算術平均粗さRaは、次のようにして求められた。まず、AFM(Atomic Force Microscope)(ブルカー製、Dimension Icon)を用いてPETフィルムの一方の面を観察して、断面プロファイルを取得した。次に、取得した断面プロファイルから、JISB0601に準拠して算術平均粗さRaを求めた。
[比較例2-1]
 プラズマ撥水処理をPETフィルムの一方の面に施さずに、導電インクで配線を印刷したこと以外は実施例1-1と同様にして配線フィルムを得た。なお、プラズマ撥水処理をしていないPETフィルムの一方の面におけるフッ素の検出強度、水の接触角および算術平均粗さRaは、以下の値であった。
 フッ素の検出強度:11444cps
 水の接触角:75度
 算術平均粗さRa:2.26nm
(配線幅、配線厚みの測定およびアスペクト比の算出)
 まず、配線フィルムの配線幅wおよび配線厚みtをレーザー顕微鏡(オリンパス株式会社製、LEXT OLS4000)を用いて測定した。なお、配線厚みtは配線の幅方向に変動していたため、配線の幅方向において最大となる配線厚みtを“配線厚みt”とした。次に、測定した配線幅wおよび配線厚みtを用いて、アスペクト比(t/w)を算出した。
(抵抗値の測定)
 配線フィルムの配線抵抗をテスター(株式会社カスタム製、M-03)を用いて測定した。
(密着力の測定)
 配線フィルムの密着力をスクラッチテスタを用いて測定した。
(結果)
 表1は、実施例2-1~2-3、比較例2-1の配線フィルムの作製条件および測定/算出の結果を示す。
Figure JPOXMLDOC01-appb-T000001
 図5、図6A、図6Bはそれぞれ、F1s、C1s、O1sピークを拡大して表すグラフである。図7A、図7B、図8A、図8B、図9にそれぞれ、接触角、配線幅、配線厚み、抵抗値、密着力の測定結果を示す。図10A、図10B、図10Cに、実施例2-1の配線フィルムの顕微鏡観察像を示す。図11A、図11B、図11Cに、実施例2-3の配線フィルムの顕微鏡観察像を示す。図12A、図12B、図12Cに、比較例2-1の配線フィルムの顕微鏡観察像を示す。図13Aに、実施例2-3の配線フィルムの密着力の測定結果を示す。図13Bに、比較例2-1の配線フィルムの密着力の測定結果を示す。
 上記測定結果から以下のことがわかる。
 プロセスガス中におけるフッ素の体積比を5vol%以上にすることで、PETフィルムの一方の面における水の接触角を100度以上にできる(図7A参照)。
 プロセスガス中におけるフッ素の体積比を5vol%以上にすることで、配線幅を200μm以下、配線厚さを1.9μm以上にできる。(図7B、図8A参照)
 プラズマ撥水化処理を施した配線フィルムは、プラズマ撥水化処理をしていない配線フィルムと同程度の抵抗値を有している(図8B参照)。
 プラズマ撥水化処理を施した配線フィルムは、プラズマ撥水化処理をしていない配線フィルムと同程度の密着力を有している(図9参照)。
 したがって、PETフィルムの一方の面における水の接触角を100度以上とすることで、配線幅を200μm以下、配線厚さを1.9μm以上にできる。また、プラズマ撥水化処理を施した配線フィルムは、密着力の大幅な低下を招くことなく、配線の細線化(挟幅化)と低抵抗化とを両立することができる。
 以上、本技術の実施形態について具体的に説明したが、本技術は、上述の実施形態に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。
 また、上述の実施形態の構成、方法、工程、形状、材料および数値などは、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、本技術は以下の構成を採用することもできる。
(1)
 フッ素を含む表面を有する基材と、
 前記表面に設けられた配線と
 を備え、
 前記表面におけるフッ素の検出強度が、96834cps以上である導電性素子。
(2)
 前記配線の幅が、200μm以下である(1)に記載の導電性素子。
(3)
 前記表面におけるフッ素の検出強度が、149381cps以上である(1)に導電性素子。
(4)
 前記配線の幅が、150μm以下である(3)に記載の導電性素子。
(5)
 前記表面における水の接触角が、100度以上である(1)から(4)のいずれかに記載の導電性素子。
(6)
 前記基材は、ポリエチレンテレフタレート、ポリエチレン、プロピレン、ポリカーボネート、ポリイミド、トリアセチルセルロースおよびポリエチレンナフタレートのうちの1種以上を含む(1)から(5)のいずれかに記載の導電性素子。
(7)
 前記基材が、フィルムである(1)から(6)のいずれかに記載の導電性素子。
(8)
 前記配線の幅に対する前記配線の厚みの比率が、0.06以上である(1)から(8)のいずれかに記載の導電性素子。
(9)
 フッ素が前記表面に堆積している(1)から(9)のいずれかに記載の導電性素子。
(10)
 フッ素を含む表面を有する基材と、
 前記表面に設けられた配線と
 を備え、
 前記表面における水の接触角が、100度以上である導電性素子。
(11)
 (1)から(10)のいずれかに記載の導電性素子を備える入力装置。
(12)
 (1)から(10)のいずれかに記載の導電性素子を備える電子機器。
(13)
 基材表面におけるフッ素の検出強度が96834cps以上となるように、前記基材表面にプラズマ処理を施し、
 プラズマ処理を施した前記基材表面に導電インクを印刷する
 ことを含む導電性素子の製造方法。
(13)
 基材表面における水の接触角が100度以上となるように、前記基材表面にプラズマ処理を施し、
 プラズマ処理を施した前記基材表面に導電インクを印刷する
 ことを含む導電性素子の製造方法。
10  電子機器
11  筐体
12  タッチパネル式の表示装置
20  表示素子
30  入力装置
30a 第1の透明導電性素子
30b 第2の透明導電性素子
31a、31b  基材
32a、32b  透明電極
33a、33b  配線
34a、34b  絶縁層

Claims (12)

  1.  フッ素を含む表面を有する基材と、
     前記表面に設けられた配線と
     を備え、
     前記表面におけるフッ素の検出強度が、96834cps以上である導電性素子。
  2.  前記配線の幅が、200μm以下である請求項1に記載の導電性素子。
  3.  前記表面におけるフッ素の検出強度が、149381cps以上である請求項1に導電性素子。
  4.  前記配線の幅が、150μm以下である請求項3に記載の導電性素子。
  5.  前記表面における水の接触角が、100度以上である請求項1に記載の導電性素子。
  6.  前記基材は、ポリエチレンテレフタレート、ポリエチレン、プロピレン、ポリカーボネート、ポリイミド、トリアセチルセルロースおよびポリエチレンナフタレートのうちの1種以上を含む請求項1に記載の導電性素子。
  7.  前記基材が、フィルムである請求項1に記載の導電性素子。
  8.  前記配線の幅に対する前記配線の厚みの比率が、0.06以上である請求項1に記載の導電性素子。
  9.  フッ素が前記表面に堆積している請求項1に記載の導電性素子。
  10.  フッ素を含む表面を有する基材と、
     前記表面に設けられた配線と
     を備え、
     前記表面における水の接触角が、100度以上である導電性素子。
  11.  請求項1に記載の導電性素子を備える入力装置。
  12.  請求項1に記載の導電性素子を備える電子機器。
PCT/JP2017/013958 2016-05-10 2017-04-03 導電性素子、入力装置および電子機器 WO2017195500A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/097,512 US10474309B2 (en) 2016-05-10 2017-04-03 Conductive element, input device, and electronic apparatus
KR1020187031260A KR20190004272A (ko) 2016-05-10 2017-04-03 도전성 소자, 입력 장치 및 전자 기기
EP17795861.8A EP3460638A4 (en) 2016-05-10 2017-04-03 CONDUCTIVE ELEMENT, INPUT DEVICE AND ELECTRONIC DEVICE
CN201780027677.6A CN109154870A (zh) 2016-05-10 2017-04-03 导电性元件、输入装置和电子设备
JP2018516893A JP6891881B2 (ja) 2016-05-10 2017-04-03 導電性素子、入力装置および電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-094539 2016-05-10
JP2016094539 2016-05-10

Publications (1)

Publication Number Publication Date
WO2017195500A1 true WO2017195500A1 (ja) 2017-11-16

Family

ID=60267740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013958 WO2017195500A1 (ja) 2016-05-10 2017-04-03 導電性素子、入力装置および電子機器

Country Status (7)

Country Link
US (1) US10474309B2 (ja)
EP (1) EP3460638A4 (ja)
JP (1) JP6891881B2 (ja)
KR (1) KR20190004272A (ja)
CN (1) CN109154870A (ja)
TW (1) TW201740524A (ja)
WO (1) WO2017195500A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924719B (zh) * 2021-01-29 2023-03-03 中山大学南昌研究院 一种改善电绝缘性能的加速度计及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048339A1 (fr) * 1998-03-17 1999-09-23 Seiko Epson Corporation Substrat de formation de motifs sur film mince et son traitement de surface
JP2004281184A (ja) * 2003-03-14 2004-10-07 Sharp Corp パターニングされた薄膜を有する基板、およびその製造方法ならびに有機el素子およびその製造方法
JP2005086188A (ja) * 2003-09-11 2005-03-31 Seiko Epson Corp 膜パターンの形成方法及び形成装置、並びに回路素子
WO2012053625A1 (ja) * 2010-10-22 2012-04-26 ソニー株式会社 パターン基体およびその製造方法ならびに情報入力装置および表示装置
JP2013045261A (ja) * 2011-08-23 2013-03-04 Dainippon Printing Co Ltd カラーフィルタ付タッチパネルセンサ、液晶表示装置、および座標検出装置
JP2014026584A (ja) 2012-07-30 2014-02-06 Shin Etsu Polymer Co Ltd 透明配線シートおよびその製造方法ならびにタッチパネル用入力部材

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910341A (en) * 1996-10-31 1999-06-08 International Business Machines Corporation Method of controlling the spread of an adhesive on a circuitized organic substrate
US8216762B2 (en) * 2005-02-02 2012-07-10 Kolon Industries, Inc. Method for manufacturing array board for display device
US8044441B2 (en) * 2005-06-20 2011-10-25 Nissan Chemical Industries, Ltd. Electrode patterning layer comprising polyamic acid or polyimide, and electronic device employing it
US8283577B2 (en) * 2007-06-08 2012-10-09 Dai Nippon Printing Co., Ltd. Printed matter and its manufacturing method, and electromagnetic shielding material and its manufacturing method
US9282647B2 (en) * 2012-02-28 2016-03-08 Eastman Kodak Company Method of making micro-channel structure for micro-wires
CN104412211B (zh) * 2012-07-06 2017-03-08 富士胶片株式会社 静电电容式触摸面板以及其制造方法、输入设备
CN105051135B (zh) * 2013-03-13 2018-04-17 富士胶片株式会社 粘着膜、触摸屏用层叠体
JP6315758B2 (ja) * 2013-10-11 2018-04-25 住友電工プリントサーキット株式会社 フッ素樹脂基材、プリント基板、表示パネル、表示装置、タッチパネル、照明装置、及びソーラパネル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048339A1 (fr) * 1998-03-17 1999-09-23 Seiko Epson Corporation Substrat de formation de motifs sur film mince et son traitement de surface
JP2004281184A (ja) * 2003-03-14 2004-10-07 Sharp Corp パターニングされた薄膜を有する基板、およびその製造方法ならびに有機el素子およびその製造方法
JP2005086188A (ja) * 2003-09-11 2005-03-31 Seiko Epson Corp 膜パターンの形成方法及び形成装置、並びに回路素子
WO2012053625A1 (ja) * 2010-10-22 2012-04-26 ソニー株式会社 パターン基体およびその製造方法ならびに情報入力装置および表示装置
JP2013045261A (ja) * 2011-08-23 2013-03-04 Dainippon Printing Co Ltd カラーフィルタ付タッチパネルセンサ、液晶表示装置、および座標検出装置
JP2014026584A (ja) 2012-07-30 2014-02-06 Shin Etsu Polymer Co Ltd 透明配線シートおよびその製造方法ならびにタッチパネル用入力部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460638A4 *

Also Published As

Publication number Publication date
KR20190004272A (ko) 2019-01-11
TW201740524A (zh) 2017-11-16
CN109154870A (zh) 2019-01-04
EP3460638A4 (en) 2019-05-08
JPWO2017195500A1 (ja) 2019-03-22
JP6891881B2 (ja) 2021-06-18
US20190129542A1 (en) 2019-05-02
EP3460638A1 (en) 2019-03-27
US10474309B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
KR101095097B1 (ko) 투명 전극 필름 및 이의 제조 방법
Nair et al. Direct writing of silver nanowire-based ink for flexible transparent capacitive touch pad
JP2009259063A (ja) タッチパネルおよびその製造方法
US20190114003A1 (en) Nanowire contact pads with enhanced adhesion to metal interconnects
JP6346584B2 (ja) タッチパネルおよびその製造方法
US20130161178A1 (en) Touch panel and method for manufacturing the same
US9374894B2 (en) Imprinted micro-wire rib structure
US20150021156A1 (en) Transparent conductive element and method for manufacturing the same, input device, electronic apparatus, and method for patterning thin film
US9426885B2 (en) Multi-layer micro-wire structure
JP2013152578A (ja) 透明導電性素子、入力装置、電子機器および透明導電性素子作製用原盤
WO2017195500A1 (ja) 導電性素子、入力装置および電子機器
US9296013B2 (en) Making multi-layer micro-wire structure
US8921704B2 (en) Patterned conductive polymer with dielectric patch
JP6712910B2 (ja) 透明導電性フィルム
US9161456B1 (en) Making imprinted micro-wire rib structure
JP2014232375A (ja) センサーシート及びその製造方法
CN107660279A (zh) 导电结构体及其制造方法
TWM429931U (en) Electromagnetic shielding structure of transparent capacitive touch panel
KR101303705B1 (ko) 초박형 멀티 터치스크린 패널
JP2015130050A (ja) 透明導電フィルム、その製造方法およびタッチパネル
JP6812980B2 (ja) 導電性素子およびその製造方法、入力装置ならびに電子機器
WO2014034468A1 (ja) 透明導電性素子およびその製造方法、入力装置、電子機器、ならびに導電部の形成方法
WO2019064595A1 (ja) タッチパネルセンサー及びタッチパネルセンサーの製造方法
JP6562567B2 (ja) アルミニウムパターン及びその製造方法
WO2017163313A1 (ja) 電子機器用パネル部材及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018516893

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187031260

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017795861

Country of ref document: EP

Effective date: 20181210