WO2017193430A1 - 一种高强度抗污染抗菌中空纤维纳滤膜的制备方法及产品 - Google Patents

一种高强度抗污染抗菌中空纤维纳滤膜的制备方法及产品 Download PDF

Info

Publication number
WO2017193430A1
WO2017193430A1 PCT/CN2016/084236 CN2016084236W WO2017193430A1 WO 2017193430 A1 WO2017193430 A1 WO 2017193430A1 CN 2016084236 W CN2016084236 W CN 2016084236W WO 2017193430 A1 WO2017193430 A1 WO 2017193430A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofiltration membrane
hollow fiber
strength anti
membrane
saa
Prior art date
Application number
PCT/CN2016/084236
Other languages
English (en)
French (fr)
Inventor
崔振宇
谢高艺
秦舒浩
杨敬葵
张凯舟
罗大军
邵会菊
靳进波
Original Assignee
贵州省材料产业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州省材料产业技术研究院 filed Critical 贵州省材料产业技术研究院
Priority to US16/300,534 priority Critical patent/US10773216B2/en
Publication of WO2017193430A1 publication Critical patent/WO2017193430A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00933Chemical modification by addition of a layer chemically bonded to the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/28Polymers of vinyl aromatic compounds
    • B01D71/281Polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/78Graft polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21823Alcohols or hydroxydes, e.g. ethanol, glycerol or phenol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration

Definitions

  • the invention relates to a preparation method and a product of a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane, and specifically belongs to the technical field of membrane separation.
  • Nanofiltration also known as low-pressure reverse osmosis, is characterized by its high rejection of small molecules with divalent, multivalent ions and molecular weight cut-offs in the range of 200-1000 g ⁇ mol -1 , while the rejection of monovalent ions is relatively Lower.
  • membrane separation technology With the development of membrane separation technology, its application has been extended to industrial fields such as drinking water purification, wastewater treatment, grading and concentration of pharmaceutical products, and solvent recovery.
  • the film-forming materials such as PVDF (polyvinylidene fluoride), PSF (polysulfone) or polyethersulfone (PES) are linear polymers, and the spacing between the molecular chains is large, so that the desalination effect is poor.
  • the bulk structure can be formed by cross-linking, the hydrophilicity of the material has a great influence on the flux and anti-pollution property of the membrane.
  • the functional groups of the hydrophilic cross-linking monomer cross-link the functional group is consumed, thereby reducing the The hydrophilicity of the membrane, the flux of the membrane, and the anti-contamination properties.
  • the object of the present invention is to provide a method and a product for preparing a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane, which can prepare a nanometer with good mechanical properties, strong anti-pollution performance and excellent antibacterial properties. Filter membrane.
  • the invention discloses a preparation method of a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane, comprising the following steps:
  • step S2 neutralization reaction: the nanofiltration membrane obtained in step S1 is immersed in an alkali solution for neutralization reaction, and then washed to neutral;
  • the film obtained in the step S2 is placed in the inorganic antibacterial agent solution for complexation, and finally a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane is obtained.
  • the step S1 is chemically cross-linked, and the specific step is: taking the ultrafiltration base membrane in an acidic glucose aqueous solution (can be immersed and covered) at a temperature of 30 The chemical crosslinking reaction was carried out at °C to 60 °C for 5 to 30 minutes, and then washed with deionized water to obtain a nanofiltration membrane.
  • Reactive base in the ultrafiltration base film The group is esterified with a hydroxyl group in glucose to effect crosslinking.
  • the acidic glucose aqueous solution has a mass percentage concentration of hydrochloric acid of 0.5% to 5%, and a mass percentage of glucose of 10% to 50%.
  • the step S1 is chemically cross-linked, and the specific steps are as follows: taking the ultrafiltration base membrane in an aqueous solution of phytic acid (can be immersed and covered) at a temperature of 30 After chemical crosslinking reaction was carried out at °C to 60 °C for 5 to 40 minutes, it was washed with deionized water to obtain a nanofiltration membrane.
  • the reactive group in the ultrafiltration base film is esterified with the phosphate group in the phytic acid to effect crosslinking.
  • the mass concentration of phytic acid in the aqueous solution of phytic acid is 10% to 40%.
  • the reaction is neutralized in step S2, and the specific steps are as follows: the nanofiltration membrane obtained in step S1 is placed in an alkali solution (can be immersed and covered) at 20 ° C The mixture was immersed at -40 ° C for neutralization for 30 to 60 s, and then taken out and washed with distilled water until neutral. The residual phytic acid on the nanofiltration membrane or the unreacted acrylic acid in the poly(styrene-g-acrylic acid) (SAA) is neutralized with a base to form a corresponding salt. Unreacted phytic acid can be completely neutralized and no damage is caused to the PVDF structure.
  • an alkali solution can be immersed and covered
  • the mixture was immersed at -40 ° C for neutralization for 30 to 60 s, and then taken out and washed with distilled water until neutral.
  • the residual phytic acid on the nanofiltration membrane or the unreacted acrylic acid in the poly(styrene-g-acrylic acid) (SAA) is neutralized with
  • the alkali solution is an aqueous solution of sodium hydroxide or potassium hydroxide, and the concentration of sodium hydroxide in the aqueous solution of sodium hydroxide is 0.1-0.5%;
  • the mass percentage of potassium hydroxide in the potassium hydroxide aqueous solution is 0.1% to 0.5%.
  • the step S3 is loaded with the inorganic antibacterial agent, and the specific step is: placing the membrane obtained in the step S2 in the inorganic antibacterial agent solution (can be immersed and covered), at 20 The complexation was carried out for 10 to 60 min at °C to 40 °C, and then the membrane was taken out and washed with distilled water until neutral, and vacuum dried at room temperature to finally obtain a high-strength anti-contamination antibacterial hollow fiber nanofiltration membrane.
  • the inorganic antibacterial agent solution is an aqueous solution of silver nitrate, wherein the mass percentage of silver nitrate is 0.05% to 0.5%.
  • Acrylate in phytate or poly(styrene-g-sodium acrylate) (SAA sodium salt) has a strong ability to complex with metal ions, and can form a coordination bond, which ensures that metal ions are not easily detached. Therefore, it can be complexed with silver ions to form a silver-loaded antibacterial nanofiltration membrane.
  • hydroxyl groups in glucose can also complex with silver ions.
  • the ultrafiltration base membrane is a PVDF/SAA/SAA sodium salt ultrafiltration base membrane or a PVDF/EVOH ultrafiltration base membrane.
  • the reactive group of the ultrafiltration base film may be: a hydroxyl group in acrylic acid or a polyethylene-vinyl alcohol copolymer (EVOH) in poly(styrene-g-acrylic acid) (SAA).
  • the PVDF/SAA/SAA sodium salt ultrafiltration base membrane is prepared by the method in ZL201610174329.9, and specifically includes the following steps: taking PVDF, SAA, SAA sodium salt Thinner And the antioxidant, PVDF, SAA, SAA sodium salt, diluent and antioxidant mass ratio: 20 ⁇ 30.. 2 ⁇ 9.. 1 ⁇ 3.. 57.9 ⁇ 74.9..
  • the obtained mixture granules are spun through an extruder at 120 ° C to 170 ° C, cooled by air, and then cooled and formed in room temperature water, followed by soaking in room temperature ethanol. Washing 2 times for 1 h each time, the PVDF/SAA/SAA sodium salt ultrafiltration base film is obtained, wherein the diluent is tributyrin, and the antioxidant is ⁇ -(3,5-di-uncle Octadecyl ester of butyl-4-hydroxyphenyl)propanoate.
  • the ultrafiltration membrane has a BSA rejection of not less than 90%.
  • the PVDF/EVOH ultrafiltration base membrane is prepared by the method of ZL201610174081.6, and specifically comprises the following steps: taking PVDF, EVOH, diluent and antioxidant, The mass ratio of PVDF, EVOH, diluent and antioxidant is: 20-30..2 ⁇ 9..61 ⁇ 78..0.1 ⁇ 1, after being thoroughly mixed in the mixer, extruding through the extruder and in the air The granules are cooled and granulated; the granules of the obtained mixture are spun at 140 ° C to 170 ° C in an extruder, cooled by air, and then cooled and formed in room temperature water, and then washed twice with water at room temperature for 1 h each time to obtain PVDF/ EVOH ultrafiltration base film, wherein the diluent is ethylene carbonate and diethylene glycol, the mass ratio of ethylene carbonate and diethylene glycol is 1..1
  • the air cooling is performed by air cooling of 0.5-20 cm, that is, the polymer solution is ejected from the spinning hole and then enters cooling.
  • the air path (also known as air gap) in the pool is 0.5-20 cm, which causes a small amount of diluent to volatilize to form a dense layer of a certain density.
  • the weight average molecular weight of PVDF is 530,000 to 700,000; the proportion of AA repeating units in SAA is 20% to 30%, and the proportion of AA acid repeating units in SAA sodium salt is 20% to 30%; ethylene in EVOH The proportion of the number of repeating units is 27% to 38%, and the melting index of EVOH is 1.7 to 4.0 g/10 min.
  • the invention discloses a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane prepared by the preparation method of the high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane.
  • the nanofiltration membrane prepared by the preparation method of the invention is a hollow fiber nanofiltration membrane.
  • the hollow fiber membrane has the following three advantages: (1) the packing density is 3 to 10 times that of the wound membrane. Therefore, at the same packing density, the filtration area of the hollow fiber membrane is significantly higher than that of the wound membrane, and the corresponding theoretical water production is significantly higher than that of the wound membrane, which is more suitable for large-scale nanofiltration desalination; (2) membrane is not Supporting materials, as long as the inner diameter and wall thickness of the hollow fiber membrane are controlled, can withstand pressures up to 5.0 MPa without breaking, much higher than the maximum operating pressure of the nanofiltration membrane of 1.0 MPa; (3) preparation process of hollow fiber membranes The membrane is simple and backwashable.
  • the ultrafiltration base film is further processed on the basis of the ultrafiltration base film to finally obtain the hollow fiber nanofiltration membrane of the present invention.
  • the ultrafiltration base film of the present invention may be selected from a PVDF/SAA/SAA sodium salt ultrafiltration base film or a PVDF/EVOH ultrafiltration base film.
  • the ultrafiltration base film of the invention can be passed through the NIPS method or the literature ("PVDF/EVOH blend membrane preparation and its anti-pollution Preparation of Characteristics (Cai Qiaoyun, Wang Lei, Miao Rui et al., Membrane Science and Technology, 35(1) 2015, 28-34)).
  • the ultrafiltration base film of the present invention can be preferably prepared by the method of ZL201610174081.6 and ZL201610174329.9, and is a method for preparing a membrane of ultrafiltration pore size by using TIPS and blending modification technology.
  • the nanofiltration membrane is prepared by a conventional method, and the base film raw materials such as PVDF, PSF or polyethersulfone (PES) are linear polymers, and the spacing between the molecular chains is large, so that the desalination effect is poor.
  • the base film raw materials such as PVDF, PSF or polyethersulfone (PES) are linear polymers, and the spacing between the molecular chains is large, so that the desalination effect is poor.
  • cross-linking can form a bulk structure, thereby increasing the compactness of the desalting layer, studies have found that only a cross-linking on the basis of ultrafiltration pores can form a dense desalting layer.
  • the preparation method of the ultrafiltration base film preferably used in the invention adopts the thermal induced phase separation technology (TIPS), which is a deformation of the melt spinning technology, and has successfully realized the commercial production of the PVDF hollow fiber microfiltration membrane, which is in accordance with the conventional technology.
  • TIPS thermal induced phase separation technology
  • the obvious advantage is that the membrane can be stored in the dry state and has less influence on the membrane structure.
  • the raw material of the ultrafiltration base film of the present invention is a PVDF film because the PVDF film has better toughness than the PSF film.
  • an external pressure operation mode is required. Different from the roll film, since the outer diameter of the hollow fiber membrane is small, the interface polymerization and the "coating-crosslinking" on the outer surface of the hollow fiber membrane require two steps to realize the cross-linking process, and it is difficult to obtain a thin and The uniform desalting layer is not suitable for use in external pressure operation, so interfacial polymerization and "coating-crosslinking" are not suitable as a process for preparing an external pressure type hollow fiber nanofiltration membrane.
  • the cross-linking reaction uses phytic acid or glucose as a reaction compound, and phytic acid or glucose is a polyfunctional compound containing a reactive functional group, and a one-step reaction with the SAA or EVOH reactive functional group in the ultrafiltration base film can form a body type. Joint structure. Since the cross-linking only occurs on the surface of the membrane, the desalting layer is thin and dense, effectively reducing the filtration resistance and increasing the membrane flux, and is suitable for the external pressure operation mode, and is convenient for backwashing of the membrane.
  • the hydrophilicity of the material has a great influence on the flux and anti-contamination properties of the membrane, but after the cross-linking of the hydrophilic functional group of the crosslinking monomer, the functional group is consumed to reduce the hydrophilicity of the membrane.
  • the phytic acid or glucose used in the present invention crosslinks with the SAA or EVOH reactive functional groups in the ultrafiltration base membrane to form a bulk structure. Due to the steric hindrance effect, the phosphate groups in the phytic acid and the hydroxyl groups in the glucose do not All of the reactions occur, and the remaining phosphate groups or hydroxyl groups after the crosslinking reaction can further improve the hydrophilicity of the membrane and the anti-pollution ability and mechanical properties of the membrane.
  • the carboxyl group in the unreacted SAA or the phosphate group in the phytic acid can be converted into the corresponding salt, which not only maintains better hydrophilic properties, increases membrane flux, but also provides more
  • the acid radical participates in the subsequent complexation reaction.
  • the sodium salt of SAA will dissociate in water, the sodium ions will enter the water, and the acrylic acid will remain on the polymer.
  • the acrylic acid has a strong ability to complex the sub-group metal ions, such as silver ions, which is beneficial to the subsequent network. The reaction proceeds.
  • the hollow fiber nanofiltration membrane of the invention simultaneously introduces two kinds of functional groups in the membrane material, one type is silver ion and has broad-spectrum antibacterial effect; the other type is carboxylate and phytate, which is good antibacterial to most bacteria. Functional group of efficacy. Therefore, the antibacterial function of the membrane is further improved, and the membrane fouling caused by the organism is effectively alleviated.
  • the ultrafiltration base film prepared by the TIPS technique is subjected to one-step cross-linking to form a desalting layer, and then the inorganic antibacterial agent is loaded by complexation treatment, thereby preparing a hollow fiber nanofiltration membrane.
  • the prepared membrane can overcome the existing roll nanofiltration Disadvantages of the membrane, the membrane can be preserved in a dry state, self-supporting, and further improve the hydrophilicity, anti-pollution performance and mechanical properties of the membrane, and has excellent antibacterial function.
  • Example 5 Example 6 Mechanical properties (MPa) 13 14 Chemical cleaning flux recovery rate (%) 96 97 Antibacterial rate against Escherichia coli (72 hours, %) 99.6 99.7 Salting rate of sodium sulfate aqueous solution (2000mg/L, %) 95.6 97.1
  • Example 10 Example 11 Mechanical properties (MPa) 15 12 Chemical cleaning flux recovery rate (%) 97 96 Antibacterial rate against Escherichia coli (72 hours, %) 99.6 99.8 Salting rate of sodium sulfate aqueous solution (2000mg/L, %) 97.3 96.8
  • the invention has the advantages that the preparation method of the high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane provided by the invention has the following advantages: (1) the crosslinking process is simple, and the reaction condition is mild. Phytic acid or glucose is a polyfunctional compound containing a reactive functional group. A one-step reaction with SAA or EVOH reactive functional groups can form a bulk crosslinked structure. Since cross-linking only occurs on the surface of the membrane, the desalting layer is thin and dense, and effective. Reduce filtration resistance.
  • the phosphate groups in the phytic acid and the hydroxyl groups in the glucose do not all react, and the remaining phosphate groups or hydroxyl groups further improve the hydrophilicity of the membrane, the anti-pollution ability of the membrane, and the mechanical properties.
  • the carboxyl group in the unreacted SAA or the phosphate group in the phytic acid can be converted into the corresponding salt, which not only provides more acid groups to participate in the subsequent complexation reaction, but also maintains better Hydrophilic properties.
  • the carboxylate or phytic acid itself has an antibacterial function, and further, the carboxylate or phytate is complexed with the silver ion, thereby introducing silver ions having broad-spectrum antibacterial properties, so that the prepared nanofiltration membrane has excellent properties. Antibacterial function.
  • the preparation method is simple, the steps are few, easy to operate, and the reaction conditions are mild and easy to control; (5) The prepared nanofiltration membrane has high membrane flux, good hydrophilic property, good mechanical property, strong anti-pollution ability and excellent Antibacterial properties.
  • the PVDF/SAA/SAA sodium salt ultrafiltration base membrane is prepared by the method of ZL201610174329.9, and specifically includes the following steps: taking PVDF, SAA, SAA sodium salt, diluent and antioxidant, PVDF, SAA, SAA sodium salt, The mass ratio of diluent to antioxidant is: 20-30..2 ⁇ 9..1 ⁇ 3..57.9 ⁇ 74.9..0.1 ⁇ 1, after being thoroughly mixed in the mixer, it is extruded through extruder and cooled in air.
  • the obtained mixture particles are spun at 120 ° C to 170 ° C through an extruder, cooled by air, and then cooled and formed in room temperature water, followed by soaking with room temperature ethanol for 2 times, each time 1 h, to obtain PVDF/SAA /SAA sodium salt ultrafiltration base film, wherein the diluent is tributyrin, and the antioxidant is ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propanoic acid ester.
  • the air temperature is cooled by air of 0.5 to 20 cm, that is, the air path (also called air gap) entering the cooling pool after the polymer solution is ejected from the spinning hole is 0.5-20 cm.
  • the weight average molecular weight of PVDF is 530,000 to 700,000; the proportion of AA repeating units in SAA is 20% to 30%, and the proportion of AA acid repeating units in SAA sodium salt is 20% to 30%.
  • the PVDF/EVOH ultrafiltration base film is prepared by the method of ZL201610174081.6, and specifically includes the following steps: taking PVDF, EVOH, diluent and antioxidant, PVDF, EVOH, diluent and antioxidant mass ratio: 20 ⁇ 30..2 ⁇ 9..61 ⁇ 78..0.1 ⁇ 1, after thoroughly mixing in a mixer, extruding through an extruder, and cooling and granulating in air; the obtained mixture granules are passed through an extruder at 140 ° C.
  • PVDF / EVOH ultrafiltration base film wherein the diluent is ethylene carbonate And the mass ratio of diethylene glycol, ethylene carbonate and diethylene glycol is 1..1; the antioxidant is ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propanoic acid ester.
  • the air temperature is cooled by air of 0.5 to 20 cm, that is, the air path (also called air gap) entering the cooling pool after the polymer solution is ejected from the spinning hole is 0.5-20 cm.
  • the weight average molecular weight of PVDF is 530,000 to 700,000; the proportion of vinyl repeating units in EVOH is 27% to 38%, and the melting index of EVOH is 1.7 to 4.0 g/10 min.
  • the invention discloses a preparation method of a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane, comprising the following steps:
  • step S2 neutralization reaction: the nanofiltration membrane obtained in step S1 is placed in an alkali solution, and immersed in a neutralization reaction at 20 ° C for 60 s, and then taken out and washed with distilled water until neutral; wherein the alkali solution is an aqueous sodium hydroxide solution , the sodium hydroxide aqueous solution in a mass percent concentration of 0.1%;
  • step S3 loading inorganic antibacterial agent: the film obtained in step S2 is placed in an inorganic antibacterial agent solution, and complexation is carried out at 20 ° C for 60 min, then the film is taken out and washed with distilled water until neutral, and vacuum dried at room temperature to finally obtain high strength.
  • the inorganic antibacterial agent solution is an aqueous solution of silver nitrate, and the mass percentage of silver nitrate is 0.05%.
  • the invention discloses a preparation method of a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane, comprising the following steps:
  • step S2 neutralization reaction: the nanofiltration membrane obtained in step S1 is placed in an alkali solution, and immersed in a neutralization reaction at 40 ° C for 30 s, and then taken out and washed with distilled water until neutral; wherein the alkali solution is an aqueous sodium hydroxide solution , the sodium hydroxide aqueous solution has a mass percentage of sodium hydroxide of 0.5%;
  • step S3 loading inorganic antibacterial agent: the film obtained in step S2 is placed in an inorganic antibacterial agent solution, and complexed at 40 ° C for 10 min, then the film is taken out and washed with distilled water until neutral, vacuum drying at room temperature, finally obtaining high strength Anti-pollution antibacterial hollow fiber nanofiltration membrane.
  • the inorganic antibacterial agent solution is an aqueous solution of silver nitrate, and the mass percentage of silver nitrate is 0.5%.
  • the invention discloses a preparation method of a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane, comprising the following steps:
  • step S2 neutralization reaction: the nanofiltration membrane obtained in step S1 is placed in an alkali solution, and immersed in a neutralization reaction at 30 ° C for 45 s, and then taken out and washed with distilled water until neutral; wherein the alkali solution is an aqueous solution of potassium hydroxide , the potassium hydroxide aqueous solution has a mass concentration of potassium hydroxide of 0.4%;
  • step S3 loading inorganic antibacterial agent: the film obtained in step S2 is placed in an inorganic antibacterial agent solution, and complexed at 30 ° C for 35 min, then the film is taken out and washed with distilled water until neutral, vacuum drying at room temperature, finally obtaining high strength Anti-pollution antibacterial hollow fiber nanofiltration membrane.
  • the inorganic antibacterial agent solution is an aqueous solution of silver nitrate, and the mass percentage of silver nitrate is 0.1%.
  • the invention discloses a preparation method of a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane, comprising the following steps:
  • step S2 neutralization reaction: the nanofiltration membrane obtained in step S1 is placed in an alkali solution, and immersed in a neutralization reaction at 35 ° C for 50 s, and then taken out and washed with distilled water until neutral; wherein the alkali solution is an aqueous sodium hydroxide solution , the sodium hydroxide aqueous solution has a mass percentage of sodium hydroxide of 0.3%;
  • step S3 loading inorganic antibacterial agent: the film obtained in step S2 is placed in an inorganic antibacterial agent solution, and complexed at 25 ° C for 50 min, then the film is taken out and washed with distilled water until neutral, vacuum drying at room temperature, finally obtaining high strength Anti-pollution antibacterial hollow fiber nanofiltration membrane.
  • the inorganic antibacterial agent solution is an aqueous solution of silver nitrate, and the mass percentage of silver nitrate is 0.4%.
  • the invention discloses a preparation method of a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane, comprising the following steps:
  • the PVDF/SAA/SAA sodium salt ultrafiltration base membrane is placed in an acidic glucose aqueous solution, and the chemical cross-linking reaction is carried out at a temperature of 35 ° C for 15 min, and then washed with deionized water to obtain a nanofiltration.
  • a membrane wherein, in the acidic aqueous glucose solution, the mass concentration of hydrochloric acid is 2.5%, and the mass concentration of glucose is 20%;
  • step S2 neutralization reaction: the nanofiltration membrane obtained in step S1 is placed in an alkali solution, and immersed in a neutralization reaction at 25 ° C for 40 s, and then taken out and washed with distilled water until neutral; wherein the alkali solution is an aqueous solution of potassium hydroxide , the potassium hydroxide aqueous solution in the mass concentration of potassium hydroxide is 0.2%;
  • step S3 loading inorganic antibacterial agent: the film obtained in step S2 is placed in an inorganic antibacterial agent solution, and complexed at 35 ° C for 25 min, then the film is taken out and washed with distilled water until neutral, vacuum drying at room temperature, finally obtaining high strength Anti-pollution antibacterial hollow fiber nanofiltration membrane.
  • the inorganic antibacterial agent solution is an aqueous solution of silver nitrate, and the mass percentage of silver nitrate is 0.3%.
  • the preparation of PVDF/SAA/SAA sodium salt ultrafiltration base film is prepared by the following steps: taking 15 parts of polymer material, poly(styrene-g-acrylic acid) and poly(styrene-g) - a total of 1.5 parts of sodium acrylate), a solvent of 83.5 parts; the polymer material is polyvinylidene fluoride (weight average molecular weight of 337,000); and the solvent is N,N-dimethylacetamide.
  • the components are taken in the above parts by mass, and the polymer material, poly(styrene-g-acrylic acid), poly(styrene-g-sodium acrylate), solvent are placed in a mixer and thoroughly mixed at a temperature of 60 ° C.
  • the invention discloses a preparation method of a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane, comprising the following steps:
  • step S2 neutralization reaction: the nanofiltration membrane obtained in step S1 is placed in an alkali solution, and immersed in a neutralization reaction at 20 ° C for 60 s, and then taken out and washed with distilled water until neutral; wherein the alkali solution is an aqueous sodium hydroxide solution , the sodium hydroxide aqueous solution has a mass percentage of sodium hydroxide of 0.5%;
  • step S3 loading inorganic antibacterial agent: the film obtained in step S2 is placed in an inorganic antibacterial agent solution, and complexation is carried out at 20 ° C for 60 min, then the film is taken out and washed with distilled water until neutral, and vacuum dried at room temperature to finally obtain high strength.
  • the inorganic antibacterial agent solution is an aqueous solution of silver nitrate, and the mass percentage of silver nitrate is 0.2%.
  • the invention discloses a preparation method of a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane, comprising the following steps:
  • step S2 neutralization reaction: the nanofiltration membrane obtained in step S1 is placed in an alkali solution, and immersed in a neutralization reaction at 40 ° C for 30 s, and then taken out and washed with distilled water until neutral; wherein the alkali solution is an aqueous solution of potassium hydroxide , the potassium hydroxide aqueous solution in the mass concentration of potassium hydroxide is 0.45%;
  • step S3 loading inorganic antibacterial agent: the film obtained in step S2 is placed in an inorganic antibacterial agent solution, and complexed at 40 ° C for 10 min, then the film is taken out and washed with distilled water until neutral, vacuum drying at room temperature, finally obtaining high strength Anti-pollution antibacterial hollow fiber nanofiltration membrane.
  • the inorganic antibacterial agent solution is an aqueous solution of silver nitrate, and the mass percentage of silver nitrate is 0.25%.
  • the invention discloses a preparation method of a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane, comprising the following steps:
  • step S2 neutralization reaction: the nanofiltration membrane obtained in step S1 is placed in an alkali solution, and immersed in a neutralization reaction at 35 ° C for 40 s, and then taken out and washed with distilled water until neutral; wherein the alkali solution is an aqueous sodium hydroxide solution , the sodium hydroxide aqueous solution in a mass percent concentration of 0.1%;
  • step S3 loading inorganic antibacterial agent: the film obtained in step S2 is placed in an inorganic antibacterial agent solution, and complexed at 35 ° C for 15 min, then the film is taken out and washed with distilled water until neutral, vacuum drying at room temperature, finally obtaining high strength Anti-pollution antibacterial hollow fiber nanofiltration membrane.
  • the inorganic antibacterial agent solution is an aqueous solution of silver nitrate, and the mass percentage concentration of silver nitrate is 0.35%.
  • the invention discloses a preparation method of a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane, comprising the following steps:
  • step S2 neutralization reaction: the nanofiltration membrane obtained in step S1 is placed in an alkali solution, and immersed in a neutralization reaction at 25 ° C for 50 s, and then taken out and washed with distilled water until neutral; wherein the alkali solution is an aqueous sodium hydroxide solution , the sodium hydroxide aqueous solution has a mass percentage of sodium hydroxide of 0.25%;
  • step S3 loading inorganic antibacterial agent: the film obtained in step S2 is placed in an inorganic antibacterial agent solution, and complexation is carried out at 30 ° C for 30 min, then the film is taken out and washed with distilled water until neutral, and vacuum dried at room temperature to finally obtain high strength.
  • Anti-pollution antibacterial hollow fiber nanofiltration membrane The inorganic antibacterial agent solution is an aqueous solution of silver nitrate, and the mass percentage of silver nitrate is 0.45%.
  • the invention discloses a preparation method of a high-strength anti-pollution antibacterial hollow fiber nanofiltration membrane, comprising the following steps:
  • step S2 neutralization reaction: the nanofiltration membrane obtained in step S1 is placed in an alkali solution, and immersed in a neutralization reaction at 30 ° C for 45 s, and then taken out and washed with distilled water until neutral; wherein the alkali solution is an aqueous solution of potassium hydroxide , the concentration of potassium hydroxide in the potassium hydroxide aqueous solution is 0.35%;
  • step S3 loading inorganic antibacterial agent: the film obtained in step S2 is placed in an inorganic antibacterial agent solution, and complexed at 25 ° C for 45 min, then the film is taken out and washed with distilled water until neutral, and vacuum dried at room temperature to finally obtain high strength.
  • Anti-pollution antibacterial hollow fiber nanofiltration membrane The inorganic antibacterial agent solution is an aqueous solution of silver nitrate, and the mass percentage of silver nitrate is 0.3%.
  • PVDF/EVOH ultrafiltration base membrane is through the preparation of PVDF/EVOH blend membrane and its anti-pollution characteristics (Cai Qiaoyun, Wang Lei, Miao Rui et al., Membrane Science and Technology, 35(1) 2015, 28-34
  • the method prepared by the method comprises the following steps: taking PVDF, EVOH, LiCl, PEG20000, DMAc (dimethylacetamide) according to a mass ratio of 15 to 19:1 to 5:1 to 3:1 to 3:74 80, after stirring in a mixer at 60 ° C for 24 h, static defoaming for 2 h, after cooling by air, cooling forming in a coagulation bath at 0-25 ° C, followed by soaking with room temperature water for 2 times, each time 1 h, then PVDF / EVOH Ultrafiltration base film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种高强度抗污染抗菌中空纤维纳滤膜的制备方法以及由该方法制备的膜,制备方法包括以下步骤:S1、化学交联反应:取超滤基膜置于酸性葡萄糖水溶液或植酸水溶液中进行化学交联反应得到纳滤膜;S2、中和反应:将步骤S1中所得纳滤膜置于碱溶液中浸泡进行中和反应后,洗涤至中性;S3、载入无机抗菌剂:将步骤S2所得膜置于无机抗菌剂溶液中进行络合,最终得到高强度抗污染抗菌中空纤维纳滤膜。

Description

一种高强度抗污染抗菌中空纤维纳滤膜的制备方法及产品 技术领域
本发明涉及一种高强度抗污染抗菌中空纤维纳滤膜的制备方法及产品,具体属于膜分离技术领域。
背景技术
纳滤又称低压反渗透,其特点在于其对于二价、多价离子以及截留分子量在200~1000g·mol-1区间的小分子具有较高的截留率,而对一价离子截留率则相对较低。随着膜分离技术的发展,其应用已经扩展到饮用水净化、废水处理、制药产品的分级与浓缩、溶剂回收等工业领域。
目前常采用的制膜原料如PVDF(聚偏氟乙烯)、PSF(聚砜)或聚醚砜(PES)均为线形聚合物,分子链之间的间距较大从而使脱盐效果较差。虽然可以通过交联形成体型结构,然而材料的亲水性对膜的通量和抗污染性能有很大的影响,亲水交联单体的官能团发生交联后,消耗了官能团,从而降低了膜的亲水性、膜的通量以及抗污染性能。此外,水中的微生物和细菌在纳滤膜的使用过程中会在其上沉积繁殖,形成生物膜而对纳滤膜造成污染,使膜通量急剧降低。因此,为了解决上述问题,研究一种能够制备出力学性能优良,膜通量高,抗污染性能强,具有抗菌性能的中空纤维纳滤膜的制备方法,显得尤为必要。
发明内容
为解决现有技术的不足,本发明的目的在于提供一种高强度抗污染抗菌中空纤维纳滤膜的制备方法及产品,能够制备得到力学性能好、抗污染性能强以及具有优良抗菌性能的纳滤膜。
为了实现上述目标,本发明采用如下的技术方案:
一种高强度抗污染抗菌中空纤维纳滤膜的制备方法,包括以下步骤:
S1、化学交联反应:取超滤基膜置于酸性葡萄糖水溶液或植酸水溶液中进行化学交联反应得到纳滤膜;
S2、中和反应:将步骤S1中所得纳滤膜置于碱溶液中浸泡进行中和反应后,洗涤至中性;
S3、载入无机抗菌剂:将步骤S2所得膜置于无机抗菌剂溶液中进行络合,最终得到高强度抗污染抗菌中空纤维纳滤膜。
前述高强度抗污染抗菌中空纤维纳滤膜的制备方法中,步骤S1化学交联反应,具体步骤为:取超滤基膜置于酸性葡萄糖水溶液中(能够浸没覆盖即可),在温度为30℃~60℃条件下进行化学交联反应5~30min后,用去离子水清洗后得到纳滤膜。使得超滤基膜中的活性基 团与葡萄糖中的羟基发生酯化反应实现交联。
进一步地,前述高强度抗污染抗菌中空纤维纳滤膜的制备方法中,酸性葡萄糖水溶液中,盐酸的质量百分浓度为0.5%~5%,葡萄糖的质量百分浓度为10%~50%。
前述高强度抗污染抗菌中空纤维纳滤膜的制备方法中,步骤S1化学交联反应,具体步骤为:取超滤基膜置于植酸水溶液中(能够浸没覆盖即可),在温度为30℃~60℃条件下进行化学交联反应5~40min后,用去离子水清洗后得到纳滤膜。使得超滤基膜中的活性基团与植酸中的磷酸基发生酯化反应实现交联。
进一步地,前述高强度抗污染抗菌中空纤维纳滤膜的制备方法中,植酸水溶液中植酸的质量百分浓度为10%~40%。
前述高强度抗污染抗菌中空纤维纳滤膜的制备方法中,步骤S2中和反应,具体步骤为:将步骤S1中所得纳滤膜置于碱溶液中(能够浸没覆盖即可),在20℃~40℃条件下浸泡进行中和反应30~60s,随后取出用蒸馏水洗涤至中性。使得纳滤膜上残余的植酸或聚(苯乙烯-g-丙烯酸)(SAA)中未反应的丙烯酸与碱发生中和反应生成相应的盐。可将未反应的植酸全部中和掉,而且对PVDF结构不产生破坏。
进一步地,前述高强度抗污染抗菌中空纤维纳滤膜的制备方法中,碱溶液为氢氧化钠水溶液或氢氧化钾水溶液,氢氧化钠水溶液中氢氧化钠质量百分浓度为0.1~0.5%;氢氧化钾水溶液中氢氧化钾的质量百分浓度为0.1%~0.5%。
前述高强度抗污染抗菌中空纤维纳滤膜的制备方法中,步骤S3载入无机抗菌剂,具体步骤为:将步骤S2所得膜置于无机抗菌剂溶液中(能够浸没覆盖即可),在20℃~40℃条件下进行络合10~60min,随后取出膜并用蒸馏水洗涤至中性,室温下真空干燥,最终得到高强度抗污染抗菌中空纤维纳滤膜。
进一步地,前述高强度抗污染抗菌中空纤维纳滤膜的制备方法中,无机抗菌剂溶液为硝酸银水溶液,其中,硝酸银的质量百分浓度为0.05%~0.5%。植酸根或聚(苯乙烯-g-丙烯酸钠)(SAA钠盐)中的丙烯酸根,与金属离子络合的能力强,可形成配位键,保障了金属离子不易脱落。因此,可与银离子络合从而形成载银的抗菌纳滤膜。此外,葡萄糖中的羟基也可与银离子进行络合。
前述高强度抗污染抗菌中空纤维纳滤膜的制备方法中,超滤基膜为PVDF/SAA/SAA钠盐超滤基膜或PVDF/EVOH超滤基膜。超滤基膜的活性基团可以为:聚(苯乙烯-g-丙烯酸)(SAA)中丙烯酸或者聚乙烯-乙烯醇共聚物(EVOH)中羟基。
前述高强度抗污染抗菌中空纤维纳滤膜的制备方法中,PVDF/SAA/SAA钠盐超滤基膜是通过ZL201610174329.9中方法制备的,具体包括以下步骤:取PVDF、SAA、SAA钠盐、稀释剂 和抗氧剂,PVDF、SAA、SAA钠盐、稀释剂和抗氧剂质量比为:20~30︰2~9︰1~3︰57.9~74.9︰0.1~1,在混合器中充分混合后,经挤出机挤出,并在空气中冷却造粒;将所得混合物颗粒经挤出机在120℃~170℃下纺丝,经空气降温后,在室温水中冷却成型,随后用室温乙醇浸泡洗涤2次,每次1h,即得PVDF/SAA/SAA钠盐超滤基膜,其中,所述稀释剂为三丁酸甘油酯,所述抗氧剂为β-(3,5-二叔丁基-4-羟基苯基)丙酸十八酯。超滤基膜对BSA截留率不低于90%。
前述高强度抗污染抗菌中空纤维纳滤膜的制备方法中,PVDF/EVOH超滤基膜是通过ZL201610174081.6中方法制备的,具体包括以下步骤:取PVDF、EVOH、稀释剂和抗氧剂,PVDF、EVOH、稀释剂和抗氧剂的质量比为:20~30︰2~9︰61~78︰0.1~1,在混合器中充分混合后,经挤出机挤出,并在空气中冷却造粒;将所得混合物颗粒经挤出机在140℃~170℃下纺丝,经空气降温后,在室温水中冷却成型,随后用室温水浸泡洗涤2次,每次1h,即得PVDF/EVOH超滤基膜,其中,所述稀释剂为碳酸乙烯酯和二乙二醇,碳酸乙烯酯和二乙二醇的质量比为1︰1;所述抗氧剂为β-(3,5-二叔丁基-4-羟基苯基)丙酸十八酯。超滤基膜对BSA截留率不低于90%。
以上制备PVDF/SAA/SAA钠盐超滤基膜或PVDF/EVOH超滤基膜的过程中,空气降温为经过0.5~20cm的空气降温,即聚合物溶液从喷丝孔喷出后在进入冷却池中的空气路程(又称气隙)为0.5~20cm,使得少量稀释剂挥发而形成一定致密度的致密层。PVDF的重均分子量为53万~70万;SAA中AA重复单元数所占的比例20%~30%,SAA钠盐中AA酸根重复单元数所占的比例20%~30%;EVOH中乙烯基重复单元数所占比例为27%~38%,EVOH的熔融指数为1.7~4.0g/10min。
一种通过前述高强度抗污染抗菌中空纤维纳滤膜的制备方法制备得到的高强度抗污染抗菌中空纤维纳滤膜。
本发明制备方法制得的纳滤膜是一种中空纤维纳滤膜,与传统卷式膜相比,中空纤维膜有如下3个优点,(1)装填密度是卷式膜的3~10倍,因此,在相同装填密度情况下,中空纤维膜的过滤面积明显高于卷式膜,相应的理论产水量明显高于卷式膜,更适合用于大规模纳滤脱盐;(2)膜不需支撑材料,只要控制好中空纤维膜的内径和壁厚,可以承受高达5.0MPa的压力而不破裂,远高于纳滤膜最大操作压力1.0MPa;(3)中空纤维膜的制备工艺比卷式膜简单且可反洗。
本发明的制备过程是在超滤基膜的基础上,对超滤基膜进行进一步的处理,最终得到本发明的中空纤维纳滤膜。本发明的超滤基膜可选用PVDF/SAA/SAA钠盐超滤基膜或PVDF/EVOH超滤基膜。本发明的超滤基膜可以通过NIPS法或文献(《PVDF/EVOH共混膜制备及其抗污染 特性的分析》(蔡巧云,王磊,苗瑞等,膜科学与技术,35(1)2015,28-34))中方法进行制备。优选地,本发明中超滤基膜可优先通过ZL201610174081.6以及ZL201610174329.9中方法制备,是一种采用TIPS和共混改性技术制备超滤孔径的膜的方法。传统的方法制备纳滤膜,其基膜原料如PVDF、PSF或聚醚砜(PES)均为线形聚合物,分子链之间的间距较大使脱盐效果较差。虽然交联可形成体型结构,从而提高了脱盐层的致密性,但是研究发现,只有在超滤孔径的基础上进行交联才能形成致密的脱盐层。本发明优选采用的超滤基膜的制备方法是采用热致相分离技术(TIPS),是熔融纺丝技术的变形,已经成功实现了PVDF中空纤维微滤膜的商品化生产,与传统技术相比,TIPS的明显优势是膜可在干态下保存、影响膜结构因素少。本发明的超滤基膜的原料采用PVDF膜,是由于与PSF膜相比,PVDF膜韧性更佳。
为了方便膜的反洗,需采取外压操作模式。与卷式膜不同,由于中空纤维膜外径很小,而在中空纤维膜外表面进行界面聚合以及“涂覆-交联”这两类需两步才能实现交联的工艺,难以获得薄且均匀的脱盐层,不适合用于外压操作中,因此界面聚合以及“涂覆-交联”均不适合作为制备外压式中空纤维纳滤膜的工艺。本发明中交联反应采用植酸或葡萄糖作为反应化合物,植酸或葡萄糖都是含反应官能团的多官能度化合物,与超滤基膜中SAA或EVOH活性官能团之间发生一步反应可形成体型交联结构。由于该交联只发生在膜表面,因此脱盐层薄且致密,有效降低过滤阻力,提高膜通量,适用于外压操作模式,便于膜反洗。
材料的亲水性对膜的通量和抗污染性能有很大的影响,但交联单体的亲水官能团发生交联后,消耗了官能团从而降低了膜的亲水性。本发明中采用的植酸或葡萄糖与超滤基膜中SAA或EVOH活性官能团之间发生交联反应而形成体型结构,由于空间位阻效应,植酸中的磷酸基以及葡萄糖中的羟基不会全都发生反应,交联反应后剩余的磷酸基或羟基可进一步提高膜的亲水性和膜的抗污染能力以及力学性能。此外,通过中和反应,可将未反应的SAA中的羧基或者植酸中的磷酸基转换成相应的盐,不仅可保持更好的亲水性能,提升膜通量,而且可提供更多的酸根参与后续的络合反应。此外SAA钠盐在水中会发生解离,钠离子进入水中,丙烯酸根则仍留在聚合物上,丙烯酸根具有很强的络合副族金属离子的能力,比如银离子,从而有利于后续络合反应的进行。
在纳滤膜的使用过程中,水中的微生物和细菌会在其上沉积繁殖,形成生物膜从而对纳滤膜造成污染,使膜通量急剧降低。本发明的中空纤维纳滤膜,在膜材料中同时引入两类官能团,一类是银离子,具有广谱抗菌效果;另一类是羧酸根和植酸根,是对大多数的细菌有良好抗菌功效的官能团。因此,进一步提高了膜的抗菌功能,有效减缓生物引起的膜污染。
综上所述,本发明中通过采用TIPS技术制备的超滤基膜,经一步交联形成脱盐层,再经络合处理负载上无机抗菌剂,从而制备出中空纤维纳滤膜。所制得的膜可克服现有卷式纳滤 膜的缺点,膜可干态保存,自支撑式,并且进一步提高了膜的亲水性、抗污染性能以及力学性能,同时具有优良抗菌功能。
对本发明制备得到的纳滤膜,进行性能评价,如下:采用GB15797-1995评价膜的抗菌效果,72小时对大肠杆菌的抗菌率不低于99.6%;对2000mg/L浓度的硫酸钠水溶液脱盐率不低于95%;化学清洗后膜通量恢复率不低于95%(清洗液为pH=3的柠檬酸水溶液和pH=10.5的“氢氧化钠/EDTA”水溶液);单根膜丝力学性能不低于12MPa。测试结果如表1和表2所示。
表1 PVDF/SAA/SAA钠盐基纳滤膜性能参数
  实施例5 实施例6
力学性能(MPa) 13 14
化学清洗通量恢复率(%) 96 97
对大肠杆菌的抗菌率(72小时,%) 99.6 99.7
硫酸钠水溶液脱盐率(2000mg/L,%) 95.6 97.1
表2 PVDF/EVOH基纳滤膜性能参数
  实施例10 实施例11
力学性能(MPa) 15 12
化学清洗通量恢复率(%) 97 96
对大肠杆菌的抗菌率(72小时,%) 99.6 99.8
硫酸钠水溶液脱盐率(2000mg/L,%) 97.3 96.8
本发明的有益之处在于:本发明提供的一种高强度抗污染抗菌中空纤维纳滤膜的制备方法,具有以下优点:(1)交联工艺简单,反应条件温和。植酸或葡萄糖都是含反应官能团的多官能度化合物,与SAA或EVOH活性官能团之间发生一步反应可形成体型交联结构,由于交联只发生在膜表面,因此脱盐层薄且致密,有效降低过滤阻力。由于空间位阻效应,植酸中的磷酸基以及葡萄糖中的羟基不会全都发生反应,剩余的磷酸基或羟基进一步提高了膜的亲水性、膜的抗污染能力以及力学性能。(2)通过中和反应,可将未反应的SAA中的羧基或者植酸中的磷酸基转换成相应的盐,不仅可提供更多的酸根参与后续的络合反应,而且可保持更好的亲水性能。(3)羧酸根或植酸本身就具有抗菌功能,此外羧酸根或植酸根还与银离子之间络合,从而引入了具有广谱抗菌性能的银离子,因此制备的纳滤膜具有优异的抗菌功能。(4)制备方法简单,步骤少,易操作,反应条件温和易控制;(5)制备所得纳滤膜,具有膜通量高、亲水性能好、力学性能好、抗污染能力强以及优异的抗菌性能。
具体实施方式
以下结合具体实施例对本发明作进一步的介绍。
实施例1 PVDF/SAA/SAA钠盐超滤基膜的制备
PVDF/SAA/SAA钠盐超滤基膜是通过ZL201610174329.9中方法制备的,具体包括以下步骤:取PVDF、SAA、SAA钠盐、稀释剂和抗氧剂,PVDF、SAA、SAA钠盐、稀释剂和抗氧剂质量比为:20~30︰2~9︰1~3︰57.9~74.9︰0.1~1,在混合器中充分混合后,经挤出机挤出,并在空气中冷却造粒;将所得混合物颗粒经挤出机在120℃~170℃下纺丝,经空气降温后,在室温水中冷却成型,随后用室温乙醇浸泡洗涤2次,每次1h,即得PVDF/SAA/SAA钠盐超滤基膜,其中,所述稀释剂为三丁酸甘油酯,所述抗氧剂为β-(3,5-二叔丁基-4-羟基苯基)丙酸十八酯。空气降温为经过0.5~20cm的空气降温,即聚合物溶液从喷丝孔喷出后在进入冷却池中的空气路程(又称气隙)为0.5~20cm。PVDF的重均分子量为53万~70万;SAA中AA重复单元数所占的比例20%~30%,SAA钠盐中AA酸根重复单元数所占的比例20%~30%。
实施例2 PVDF/EVOH超滤基膜的制备
PVDF/EVOH超滤基膜是通过ZL201610174081.6中方法制备的,具体包括以下步骤:取PVDF、EVOH、稀释剂和抗氧剂,PVDF、EVOH、稀释剂和抗氧剂的质量比为:20~30︰2~9︰61~78︰0.1~1,在混合器中充分混合后,经挤出机挤出,并在空气中冷却造粒;将所得混合物颗粒经挤出机在140℃~170℃下纺丝,经空气降温后,在室温水中冷却成型,随后用室温水浸泡洗涤2次,每次1h,即得PVDF/EVOH超滤基膜,其中,所述稀释剂为碳酸乙烯酯和二乙二醇,碳酸乙烯酯和二乙二醇的质量比为1︰1;所述抗氧剂为β-(3,5-二叔丁基-4-羟基苯基)丙酸十八酯。空气降温为经过0.5~20cm的空气降温,即聚合物溶液从喷丝孔喷出后在进入冷却池中的空气路程(又称气隙)为0.5~20cm。PVDF的重均分子量为53万~70万;EVOH中乙烯基重复单元数所占比例为27%~38%,EVOH的熔融指数为1.7~4.0g/10min。
实施例3
一种高强度抗污染抗菌中空纤维纳滤膜的制备方法,包括以下步骤:
S1、化学交联反应:取实施例1中制备的PVDF/SAA/SAA钠盐超滤基膜置于酸性葡萄糖水溶液中,在温度为30℃条件下进行化学交联反应30min后,用去离子水清洗后得到纳滤膜;其中,酸性葡萄糖水溶液中,盐酸的质量百分浓度为0.5%,葡萄糖的质量百分浓度为10%;
S2、中和反应:将步骤S1中所得纳滤膜置于碱溶液中,在20℃条件下浸泡进行中和反应60s,随后取出用蒸馏水洗涤至中性;其中,碱溶液为氢氧化钠水溶液,氢氧化钠水溶液中氢氧化钠质量百分浓度为0.1%;
S3、载入无机抗菌剂:将步骤S2所得膜置于无机抗菌剂溶液中,在20℃条件下进行络合60min,随后取出膜并用蒸馏水洗涤至中性,室温下真空干燥,最终得到高强度抗污染抗菌中空纤维 纳滤膜。其中,无机抗菌剂溶液为硝酸银水溶液,硝酸银的质量百分浓度为0.05%。
实施例4
一种高强度抗污染抗菌中空纤维纳滤膜的制备方法,包括以下步骤:
S1、化学交联反应:取实施例1中制备的PVDF/SAA/SAA钠盐超滤基膜置于酸性葡萄糖水溶液中,在温度为60℃条件下进行化学交联反应5min后,用去离子水清洗后得到纳滤膜;其中,酸性葡萄糖水溶液中,盐酸的质量百分浓度为5%,葡萄糖的质量百分浓度为50%;
S2、中和反应:将步骤S1中所得纳滤膜置于碱溶液中,在40℃条件下浸泡进行中和反应30s,随后取出用蒸馏水洗涤至中性;其中,碱溶液为氢氧化钠水溶液,氢氧化钠水溶液中氢氧化钠质量百分浓度为0.5%;
S3、载入无机抗菌剂:将步骤S2所得膜置于无机抗菌剂溶液中,在40℃条件下进行络合10min,随后取出膜并用蒸馏水洗涤至中性,室温下真空干燥,最终得到高强度抗污染抗菌中空纤维纳滤膜。其中,无机抗菌剂溶液为硝酸银水溶液,硝酸银的质量百分浓度为0.5%。
实施例5
一种高强度抗污染抗菌中空纤维纳滤膜的制备方法,包括以下步骤:
S1、化学交联反应:取实施例1中制备的PVDF/SAA/SAA钠盐超滤基膜置于酸性葡萄糖水溶液中,在温度为50℃条件下进行化学交联反应20min后,用去离子水清洗后得到纳滤膜;其中,酸性葡萄糖水溶液中,盐酸的质量百分浓度为3%,葡萄糖的质量百分浓度为30%;
S2、中和反应:将步骤S1中所得纳滤膜置于碱溶液中,在30℃条件下浸泡进行中和反应45s,随后取出用蒸馏水洗涤至中性;其中,碱溶液为氢氧化钾水溶液,氢氧化钾水溶液中氢氧化钾质量百分浓度为0.4%;
S3、载入无机抗菌剂:将步骤S2所得膜置于无机抗菌剂溶液中,在30℃条件下进行络合35min,随后取出膜并用蒸馏水洗涤至中性,室温下真空干燥,最终得到高强度抗污染抗菌中空纤维纳滤膜。其中,无机抗菌剂溶液为硝酸银水溶液,硝酸银的质量百分浓度为0.1%。
实施例6
一种高强度抗污染抗菌中空纤维纳滤膜的制备方法,包括以下步骤:
S1、化学交联反应:取实施例1中制备的PVDF/SAA/SAA钠盐超滤基膜置于酸性葡萄糖水溶液中,在温度为40℃条件下进行化学交联反应10min后,用去离子水清洗后得到纳滤膜;其中,酸性葡萄糖水溶液中,盐酸的质量百分浓度为1%,葡萄糖的质量百分浓度为40%;
S2、中和反应:将步骤S1中所得纳滤膜置于碱溶液中,在35℃条件下浸泡进行中和反应50s,随后取出用蒸馏水洗涤至中性;其中,碱溶液为氢氧化钠水溶液,氢氧化钠水溶液中氢氧化钠质量百分浓度为0.3%;
S3、载入无机抗菌剂:将步骤S2所得膜置于无机抗菌剂溶液中,在25℃条件下进行络合50min,随后取出膜并用蒸馏水洗涤至中性,室温下真空干燥,最终得到高强度抗污染抗菌中空纤维纳滤膜。其中,无机抗菌剂溶液为硝酸银水溶液,硝酸银的质量百分浓度为0.4%。
实施例7
一种高强度抗污染抗菌中空纤维纳滤膜的制备方法,包括以下步骤:
S1、化学交联反应:取PVDF/SAA/SAA钠盐超滤基膜置于酸性葡萄糖水溶液中,在温度为35℃条件下进行化学交联反应15min后,用去离子水清洗后得到纳滤膜;其中,酸性葡萄糖水溶液中,盐酸的质量百分浓度为2.5%,葡萄糖的质量百分浓度为20%;
S2、中和反应:将步骤S1中所得纳滤膜置于碱溶液中,在25℃条件下浸泡进行中和反应40s,随后取出用蒸馏水洗涤至中性;其中,碱溶液为氢氧化钾水溶液,氢氧化钾水溶液中氢氧化钾质量百分浓度为0.2%;
S3、载入无机抗菌剂:将步骤S2所得膜置于无机抗菌剂溶液中,在35℃条件下进行络合25min,随后取出膜并用蒸馏水洗涤至中性,室温下真空干燥,最终得到高强度抗污染抗菌中空纤维纳滤膜。其中,无机抗菌剂溶液为硝酸银水溶液,硝酸银的质量百分浓度为0.3%。
其中,PVDF/SAA/SAA钠盐超滤基膜的制备是通过以下步骤制备:按质量份数计算,取聚合物材料15份,聚(苯乙烯-g-丙烯酸)和聚(苯乙烯-g-丙烯酸钠)共1.5份,溶剂83.5份;所述的聚合物材料为聚偏氟乙烯(重均分子量33.7万);所述的溶剂为N,N-二甲基乙酰胺。按上述质量份数取各组分,将聚合物材料、聚(苯乙烯-g-丙烯酸)、聚(苯乙烯-g-丙烯酸钠)、溶剂置于混合器中,在60℃温度下充分混合形成溶液,静止脱泡,随后在60℃下经0.2MPa压力挤出,经过2.0cm的空气降温后,在室温水中冷却成型;然后用室温去离子水浸泡洗涤5h,再用室温去离子水二次浸泡洗涤5h后,空气中晾干后即可。
实施例8
一种高强度抗污染抗菌中空纤维纳滤膜的制备方法,包括以下步骤:
S1、化学交联反应:取实施例2中制备的PVDF/EVOH超滤基膜置于植酸水溶液中,在温度为30℃条件下进行化学交联反应40min后,用去离子水清洗后得到纳滤膜;其中,植酸水溶液中植酸的质量百分浓度为10%;
S2、中和反应:将步骤S1中所得纳滤膜置于碱溶液中,在20℃条件下浸泡进行中和反应60s,随后取出用蒸馏水洗涤至中性;其中,碱溶液为氢氧化钠水溶液,氢氧化钠水溶液中氢氧化钠质量百分浓度为0.5%;
S3、载入无机抗菌剂:将步骤S2所得膜置于无机抗菌剂溶液中,在20℃条件下进行络合60min,随后取出膜并用蒸馏水洗涤至中性,室温下真空干燥,最终得到高强度抗污染抗菌中空纤维 纳滤膜。其中,无机抗菌剂溶液为硝酸银水溶液,硝酸银的质量百分浓度为0.2%。
实施例9
一种高强度抗污染抗菌中空纤维纳滤膜的制备方法,包括以下步骤:
S1、化学交联反应:取实施例2中制备的PVDF/EVOH超滤基膜置于植酸水溶液中,在温度为60℃条件下进行化学交联反应5min后,用去离子水清洗后得到纳滤膜;其中,植酸水溶液中植酸的质量百分浓度为40%;
S2、中和反应:将步骤S1中所得纳滤膜置于碱溶液中,在40℃条件下浸泡进行中和反应30s,随后取出用蒸馏水洗涤至中性;其中,碱溶液为氢氧化钾水溶液,氢氧化钾水溶液中氢氧化钾质量百分浓度为0.45%;
S3、载入无机抗菌剂:将步骤S2所得膜置于无机抗菌剂溶液中,在40℃条件下进行络合10min,随后取出膜并用蒸馏水洗涤至中性,室温下真空干燥,最终得到高强度抗污染抗菌中空纤维纳滤膜。其中,无机抗菌剂溶液为硝酸银水溶液,硝酸银的质量百分浓度为0.25%。
实施例10
一种高强度抗污染抗菌中空纤维纳滤膜的制备方法,包括以下步骤:
S1、化学交联反应:取实施例2中制备的PVDF/EVOH超滤基膜置于植酸水溶液中,在温度为50℃条件下进行化学交联反应10min后,用去离子水清洗后得到纳滤膜;其中,植酸水溶液中植酸的质量百分浓度为25%;
S2、中和反应:将步骤S1中所得纳滤膜置于碱溶液中,在35℃条件下浸泡进行中和反应40s,随后取出用蒸馏水洗涤至中性;其中,碱溶液为氢氧化钠水溶液,氢氧化钠水溶液中氢氧化钠质量百分浓度为0.1%;
S3、载入无机抗菌剂:将步骤S2所得膜置于无机抗菌剂溶液中,在35℃条件下进行络合15min,随后取出膜并用蒸馏水洗涤至中性,室温下真空干燥,最终得到高强度抗污染抗菌中空纤维纳滤膜。其中,无机抗菌剂溶液为硝酸银水溶液,硝酸银的质量百分浓度为0.35%。
实施例11
一种高强度抗污染抗菌中空纤维纳滤膜的制备方法,包括以下步骤:
S1、化学交联反应:取实施例2中制备的PVDF/EVOH超滤基膜置于植酸水溶液中,在温度为40℃条件下进行化学交联反应20min后,用去离子水清洗后得到纳滤膜;其中,植酸水溶液中植酸的质量百分浓度为30%;
S2、中和反应:将步骤S1中所得纳滤膜置于碱溶液中,在25℃条件下浸泡进行中和反应50s,随后取出用蒸馏水洗涤至中性;其中,碱溶液为氢氧化钠水溶液,氢氧化钠水溶液中氢氧化钠质量百分浓度为0.25%;
S3、载入无机抗菌剂:将步骤S2所得膜置于无机抗菌剂溶液中,在30℃条件下进行络合30min,随后取出膜并用蒸馏水洗涤至中性,室温下真空干燥,最终得到高强度抗污染抗菌中空纤维纳滤膜。其中,无机抗菌剂溶液为硝酸银水溶液,硝酸银的质量百分浓度为0.45%。
实施例12
一种高强度抗污染抗菌中空纤维纳滤膜的制备方法,包括以下步骤:
S1、化学交联反应:取PVDF/EVOH超滤基膜置于植酸水溶液中,在温度为35℃条件下进行化学交联反应30min后,用去离子水清洗后得到纳滤膜;其中,植酸水溶液中植酸的质量百分浓度为20%;
S2、中和反应:将步骤S1中所得纳滤膜置于碱溶液中,在30℃条件下浸泡进行中和反应45s,随后取出用蒸馏水洗涤至中性;其中,碱溶液为氢氧化钾水溶液,氢氧化钾水溶液中氢氧化钾质量百分浓度为0.35%;
S3、载入无机抗菌剂:将步骤S2所得膜置于无机抗菌剂溶液中,在25℃条件下进行络合45min,随后取出膜并用蒸馏水洗涤至中性,室温下真空干燥,最终得到高强度抗污染抗菌中空纤维纳滤膜。其中,无机抗菌剂溶液为硝酸银水溶液,硝酸银的质量百分浓度为0.3%。
其中,PVDF/EVOH超滤基膜是通过《PVDF/EVOH共混膜制备及其抗污染特性的分析》(蔡巧云,王磊,苗瑞等,膜科学与技术,35(1)2015,28-34)中方法制备的,具体包括以下步骤:取PVDF、EVOH、LiCl、PEG20000、DMAc(二甲基乙酰胺)按质量比为15~19:1~5:1~3:1~3:74~80,在混合器中60℃搅拌24h后,静止脱泡2h,经空气降温后,在0~25℃凝固浴冷却成型,随后用室温水浸泡洗涤2次,每次1h,即得PVDF/EVOH超滤基膜。

Claims (13)

  1. 一种高强度抗污染抗菌中空纤维纳滤膜的制备方法,其特征在于:包括以下步骤:
    S1、化学交联反应:取超滤基膜置于酸性葡萄糖水溶液或植酸水溶液中进行化学交联反应得到纳滤膜;
    S2、中和反应:将步骤S1中所得纳滤膜置于碱溶液中浸泡进行中和反应后,洗涤至中性;
    S3、载入无机抗菌剂:将步骤S2所得膜置于无机抗菌剂溶液中进行络合,最终得到高强度抗污染抗菌中空纤维纳滤膜。
  2. 根据权利要求1所述的高强度抗污染抗菌中空纤维纳滤膜的制备方法,其特征在于:所述步骤S1化学交联反应,具体步骤为:取超滤基膜置于酸性葡萄糖水溶液中,在温度为30℃~60℃条件下进行化学交联反应5~30min后,用去离子水清洗后得到纳滤膜。
  3. 根据权利要求2所述的高强度抗污染抗菌中空纤维纳滤膜的制备方法,其特征在于:所述酸性葡萄糖水溶液中,盐酸的质量百分浓度为0.5%~5%,葡萄糖的质量百分浓度为10%~50%。
  4. 根据权利要求1所述的高强度抗污染抗菌中空纤维纳滤膜的制备方法,其特征在于:所述步骤S1化学交联反应,具体步骤为:取超滤基膜置于植酸水溶液中,在温度为30℃~60℃条件下进行化学交联反应5~40min后,用去离子水清洗后得到纳滤膜。
  5. 根据权利要求4所述的高强度抗污染抗菌中空纤维纳滤膜的制备方法,其特征在于:所述植酸水溶液中植酸的质量百分浓度为10%~40%。
  6. 根据权利要求1所述的高强度抗污染抗菌中空纤维纳滤膜的制备方法,其特征在于:所述步骤S2中和反应,具体步骤为:将步骤S1中所得纳滤膜置于碱溶液中,在20℃~40℃条件下浸泡进行中和反应30~60s,随后取出用蒸馏水洗涤至中性。
  7. 根据权利要求6所述的高强度抗污染抗菌中空纤维纳滤膜的制备方法,其特征在于:所述碱溶液为氢氧化钠水溶液或氢氧化钾水溶液,氢氧化钠水溶液中氢氧化钠质量百分浓度为0.1~0.5%;氢氧化钾水溶液中氢氧化钾的质量百分浓度为0.1%~0.5%。
  8. 根据权利要求1所述的高强度抗污染抗菌中空纤维纳滤膜的制备方法,其特征在于:所述步骤S3载入无机抗菌剂,具体步骤为:将步骤S2所得膜置于无机抗菌剂溶液中,在20℃~40℃条件下进行络合10~60min,随后取出膜并用蒸馏水洗涤至中性,室温下真空干燥,最终得到高强度抗污染抗菌中空纤维纳滤膜。
  9. 根据权利要求8所述的高强度抗污染抗菌中空纤维纳滤膜的制备方法,其特征在于:所述无机抗菌剂溶液为硝酸银水溶液,其中,硝酸银的质量百分浓度为0.05%~0.5%。
  10. 根据权利要求1所述的高强度抗污染抗菌中空纤维纳滤膜的制备方法,其特征在于:所述超滤基膜为PVDF/SAA/SAA钠盐超滤基膜或PVDF/EVOH超滤基膜。
  11. 根据权利要求10所述的高强度抗污染抗菌中空纤维纳滤膜的制备方法,其特征在于:所 述PVDF/SAA/SAA钠盐超滤基膜是通过以下步骤制备:取PVDF、SAA、SAA钠盐、稀释剂和抗氧剂,PVDF、SAA、SAA钠盐、稀释剂和抗氧剂质量比为:20~30︰2~9︰1~3︰57.9~74.9︰0.1~1,在混合器中充分混合后,经挤出机挤出,并在空气中冷却造粒;将所得混合物颗粒经挤出机在120℃~170℃下纺丝,经空气降温后,在室温水中冷却成型,随后用室温乙醇浸泡洗涤2次,每次1h,即得PVDF/SAA/SAA钠盐超滤基膜,其中,所述稀释剂为三丁酸甘油酯,所述抗氧剂为β-(3,5-二叔丁基-4-羟基苯基)丙酸十八酯。
  12. 根据权利要求10所述的高强度抗污染抗菌中空纤维纳滤膜的制备方法,其特征在于:所述PVDF/EVOH超滤基膜是通过以下步骤制备:取PVDF、EVOH、稀释剂和抗氧剂,PVDF、EVOH、稀释剂和抗氧剂的质量比为:20~30︰2~9︰61~78︰0.1~1,在混合器中充分混合后,经挤出机挤出,并在空气中冷却造粒;将所得混合物颗粒经挤出机在140℃~170℃下纺丝,经空气降温后,在室温水中冷却成型,随后用室温水浸泡洗涤2次,每次1h,即得PVDF/EVOH超滤基膜,其中,所述稀释剂为碳酸乙烯酯和二乙二醇,碳酸乙烯酯和二乙二醇的质量比为1︰1;所述抗氧剂为β-(3,5-二叔丁基-4-羟基苯基)丙酸十八酯。
  13. 如权利要求1~12任一项所述的高强度抗污染抗菌中空纤维纳滤膜的制备方法制备得到的高强度抗污染抗菌中空纤维纳滤膜。
PCT/CN2016/084236 2016-05-11 2016-06-01 一种高强度抗污染抗菌中空纤维纳滤膜的制备方法及产品 WO2017193430A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/300,534 US10773216B2 (en) 2016-05-11 2016-06-01 Method for preparing high-strength anti-pollution antibacterial hollow fiber membrane and product prepared therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610305975.4 2016-05-11
CN201610305975.4A CN105727752B (zh) 2016-05-11 2016-05-11 一种高强度抗污染抗菌中空纤维纳滤膜的制备方法及产品

Publications (1)

Publication Number Publication Date
WO2017193430A1 true WO2017193430A1 (zh) 2017-11-16

Family

ID=56288939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084236 WO2017193430A1 (zh) 2016-05-11 2016-06-01 一种高强度抗污染抗菌中空纤维纳滤膜的制备方法及产品

Country Status (3)

Country Link
US (1) US10773216B2 (zh)
CN (1) CN105727752B (zh)
WO (1) WO2017193430A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10773216B2 (en) 2016-05-11 2020-09-15 Guizhou Material Industrial Technology Institute Method for preparing high-strength anti-pollution antibacterial hollow fiber membrane and product prepared therefrom
CN112934003A (zh) * 2021-01-27 2021-06-11 天津大学 一种超亲水氧化石墨烯复合膜及制备和应用
CN115155336A (zh) * 2022-07-15 2022-10-11 南昌航空大学 光还原沉积纳米银抗菌聚偏氟乙烯超滤膜及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108671772B (zh) * 2018-05-22 2020-11-24 厦门理工学院 植酸-金属离子络合物复合纳滤膜及其制备方法
CN109012183B (zh) * 2018-07-09 2021-02-09 天津大学 一种植酸组装的超薄抗污染复合纳滤膜的制备方法
CN110960991B (zh) * 2018-09-30 2022-12-09 中国石油化工股份有限公司 一种复合纳滤膜及制备方法与应用
CN111013413B (zh) * 2019-12-26 2022-03-04 贵州省材料产业技术研究院 一种通过一步交联制备疏松纳滤复合膜的方法
CN113680215B (zh) * 2021-08-05 2024-04-09 江苏大学 一种稀土钇离子水相印迹膜及其对相邻重稀土的分离应用
CN113600027A (zh) * 2021-08-06 2021-11-05 清华大学 中空纤维超滤膜及其制备方法和应用
CN114381103A (zh) * 2022-02-14 2022-04-22 淮阴工学院 一种环保抗菌型外语翻译机材料及其制备方法
WO2023195479A1 (ja) * 2022-04-08 2023-10-12 国立大学法人神戸大学 濾過膜及び該膜の製造方法
CN115155341B (zh) * 2022-07-15 2024-02-02 南昌航空大学 一种抗菌复合纳滤膜及其制备方法
CN115155340B (zh) * 2022-07-15 2024-02-02 南昌航空大学 一种含抗菌夹层的聚酰胺复合纳滤膜及其制备方法
CN116036883B (zh) * 2022-12-28 2023-06-30 山东招金膜天股份有限公司 含氟聚合物纳米纤维基复合纳滤膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510195A (en) * 1991-03-01 1996-04-23 Nikko Kogyo Kabushiki Kaisha Resin membrane having metallic layer and method of producing the same
US6652751B1 (en) * 1999-04-27 2003-11-25 National Research Council Of Canada Intrinsically bacteriostatic membranes and systems for water purification
WO2011046514A2 (en) * 2009-10-14 2011-04-21 National University Of Singapore Hollow fiber membrane
CN104548969A (zh) * 2013-10-11 2015-04-29 中国石油化工股份有限公司 一种自组装固载金属离子制备抗污染聚砜类多孔膜的方法
CN104548959A (zh) * 2013-10-11 2015-04-29 中国石油化工股份有限公司 一种聚丙烯中空纤维膜组件抗污染改性的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2816851B1 (fr) * 2000-11-20 2003-09-26 Aquasource Perfectionnements apportes au procedes de reparation par obturation des fibres creuses des membranes, notamment d'ultra-, nano- et hyper-filtration
CN1872400A (zh) * 2005-05-30 2006-12-06 天津膜天膜工程技术有限公司 中空纤维纳滤复合膜的制备方法
CN101125934B (zh) * 2007-09-30 2010-05-19 四川大学 含银离子的壳聚糖/尼龙复合抗菌膜的制备方法
JP2011110474A (ja) * 2009-11-25 2011-06-09 Fujifilm Corp 濾過用フィルタ及びその製造方法
CN101844041B (zh) * 2010-06-07 2012-09-12 苏州信望膜技术有限公司 一种中空纤维纳滤膜及其制备方法
GB201216964D0 (en) * 2012-09-24 2012-11-07 Univ Leuven Kath Improved method for synthesis of polyamide composite membranes
CN103861468B (zh) * 2014-04-09 2017-02-01 天津工业大学 一种染料脱盐及其废水处理的复合纳滤膜及其制备方法
CN105498548A (zh) * 2015-11-26 2016-04-20 中国科学院生态环境研究中心 一种含银纳米粒子的抗菌性纳滤膜的制备方法
CN105778363B (zh) 2016-03-24 2018-06-12 贵州省材料产业技术研究院 高力学性能的持久亲水性聚合物膜及其制备方法
CN105688692B (zh) 2016-03-24 2018-06-12 贵州省材料产业技术研究院 聚合物荷负电膜及其制备方法
CN105727752B (zh) 2016-05-11 2018-08-14 贵州省材料产业技术研究院 一种高强度抗污染抗菌中空纤维纳滤膜的制备方法及产品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510195A (en) * 1991-03-01 1996-04-23 Nikko Kogyo Kabushiki Kaisha Resin membrane having metallic layer and method of producing the same
US6652751B1 (en) * 1999-04-27 2003-11-25 National Research Council Of Canada Intrinsically bacteriostatic membranes and systems for water purification
WO2011046514A2 (en) * 2009-10-14 2011-04-21 National University Of Singapore Hollow fiber membrane
CN104548969A (zh) * 2013-10-11 2015-04-29 中国石油化工股份有限公司 一种自组装固载金属离子制备抗污染聚砜类多孔膜的方法
CN104548959A (zh) * 2013-10-11 2015-04-29 中国石油化工股份有限公司 一种聚丙烯中空纤维膜组件抗污染改性的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10773216B2 (en) 2016-05-11 2020-09-15 Guizhou Material Industrial Technology Institute Method for preparing high-strength anti-pollution antibacterial hollow fiber membrane and product prepared therefrom
CN112934003A (zh) * 2021-01-27 2021-06-11 天津大学 一种超亲水氧化石墨烯复合膜及制备和应用
CN115155336A (zh) * 2022-07-15 2022-10-11 南昌航空大学 光还原沉积纳米银抗菌聚偏氟乙烯超滤膜及其制备方法
CN115155336B (zh) * 2022-07-15 2023-06-23 南昌航空大学 光还原沉积纳米银抗菌聚偏氟乙烯超滤膜及其制备方法

Also Published As

Publication number Publication date
CN105727752A (zh) 2016-07-06
US20190282968A1 (en) 2019-09-19
US10773216B2 (en) 2020-09-15
CN105727752B (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
WO2017193430A1 (zh) 一种高强度抗污染抗菌中空纤维纳滤膜的制备方法及产品
KR101539608B1 (ko) 폴리비닐리덴플루오라이드 중공사 분리막과 그 제조방법
KR101630208B1 (ko) 친수성 분리막의 제조방법 및 상기 방법으로 제조된 친수성 분리막
KR20160136572A (ko) 이중 가교구조의 알긴산나트륨/폴리비닐알코올 복합체 나노여과막 및 그 제조방법
CN112957915B (zh) 一种大通量低压反渗透膜制备方法及装置
EP1827664A1 (en) Membrane post treatment
CA2996769A1 (en) Membrane-forming dope for non-solvent induced phase separation methods, and a method for producing a porous hollow fiber membrane using the same
CN112426884A (zh) 一种抗菌复合反渗透膜及其制备方法
CN110917912A (zh) 内压式复合中空纤维纳滤膜丝及其制备方法
CN107138052B (zh) 含溴代烷的抗菌醋酸纤维素反渗透膜的制备方法
CN110743392A (zh) 一种可用于血液透析且具有抗凝特性的pvdf中空纤维膜材料及其制备方法
EP3180112B1 (de) Verfahren zur herstellung von antifouling-beschichtungen von dünnschichtkompositmembranen für die umkehrosmose und die nanofiltration, derartige dünnschichtkompositmembranen und deren verwendung
CN107670512B (zh) 一种聚偏氟乙烯中空纤维膜及其制备方法
KR102056872B1 (ko) 양전하성 폴리불화비닐덴계 다공성 분리막 및 그 제조방법
CN112774468A (zh) 一种石墨烯聚砜超滤膜及其制备方法
CN104548965A (zh) 一种抗微生物污染的薄层复合膜的制备方法
CN109364766B (zh) 一种具有杀菌吸附碘性能的ZIF-8/PVDF-g-PAMPS膜的制备方法
KR101184212B1 (ko) 수처리용 중공사 막의 제조방법 및 그에 의한 수처리용 중공사 막
KR20100078570A (ko) 투수도 및 내약품성이 우수한 다공성 pvdf 막 및 그 제조방법
CN111013411B (zh) 一种用于净水的纳滤膜及其制备方法和应用
CN112452161B (zh) 一种亲水性膜及其制备方法
JP2016077923A (ja) 水処理用多孔質濾過膜の製造方法
KR20150079205A (ko) 양전하성 오염물질에 대한 내오염성이 우수한 분리막 및 이의 제조방법
KR101134347B1 (ko) 내화학성이 우수한 중공사막, 그 제조방법 및 그의 용도
CN115869787B (zh) 一种高性能、抗生物污染纳滤膜及其制备与应用

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901385

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901385

Country of ref document: EP

Kind code of ref document: A1