WO2017191829A1 - 超純水製造装置の立ち上げ方法 - Google Patents

超純水製造装置の立ち上げ方法 Download PDF

Info

Publication number
WO2017191829A1
WO2017191829A1 PCT/JP2017/017139 JP2017017139W WO2017191829A1 WO 2017191829 A1 WO2017191829 A1 WO 2017191829A1 JP 2017017139 W JP2017017139 W JP 2017017139W WO 2017191829 A1 WO2017191829 A1 WO 2017191829A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrapure water
production apparatus
water production
pure water
flow path
Prior art date
Application number
PCT/JP2017/017139
Other languages
English (en)
French (fr)
Inventor
晋一郎 雨宮
直弥 坂井
規彦 鈴木
俊和 阿部
Original Assignee
野村マイクロ・サイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野村マイクロ・サイエンス株式会社 filed Critical 野村マイクロ・サイエンス株式会社
Priority to CN201780027457.3A priority Critical patent/CN109153047A/zh
Priority to KR1020187031072A priority patent/KR20190005843A/ko
Publication of WO2017191829A1 publication Critical patent/WO2017191829A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/02Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration

Definitions

  • the present invention relates to a method for starting up an ultrapure water production apparatus.
  • Such ultrapure water is generally an ultrapure water production system composed of a pretreatment device, a primary pure water system, and a secondary pure water system (subsystem), such as industrial water, city water, and well water. It is manufactured by processing raw water. The manufactured ultrapure water is supplied to a use point as a place of use.
  • the pretreatment device is a device for obtaining pretreatment water by turbidizing raw water using a coagulating sedimentation device, a sand filtration device or the like.
  • a coagulating sedimentation device a sand filtration device or the like.
  • an activated carbon device a reverse osmosis membrane device, a two-bed / three-column ion exchange resin device, a vacuum deaeration device, an ultraviolet oxidation device, a mixed bed ion exchange resin device, a precision filter, etc. are appropriately selected and used.
  • the primary pure water is obtained by removing impurities in the pretreatment water.
  • the secondary pure water system temporarily stores primary pure water (primary) on the downstream side of the pure water tank, for example, a heat exchanger, an ultraviolet oxidizer, a non-regenerative mixed bed type ion exchange It comprises a resin device (Polisher), a degassing membrane device, an ultrafiltration device and the like.
  • Cleaning methods during the startup operation of the ultrapure water production system include flushing and blowing with ultrapure water, circulation of ultrapure water, warm water cleaning, hydrogen peroxide cleaning, and alkaline cleaning (basic aqueous solution cleaning). It was broken.
  • ultrapure water functional water in which functional gases such as ozone and hydrogen are dissolved, and a cleaning method using a surfactant have been proposed.
  • Patent Document 1 discloses a method of removing fine particles by changing the surface potential of fine particles adhering to the contact surface with ultra pure water in the ultra pure water production apparatus.
  • Patent Document 2 includes a step of performing circulation cleaning with a basic cleaning solution, a step of performing extrusion and rinsing of the basic cleaning solution with pure water, a step of performing circulation and / or immersion cleaning with a hydrogen peroxide cleaning solution, and A method of cleaning an ultrapure water production and supply apparatus that sequentially performs a process of pushing and rinsing a hydrogen peroxide cleaning solution with pure water is disclosed.
  • the number of fine particles of 0.05 ⁇ m or more is approximately 1 pcs. / ML (1000 pcs./L) or less, but 1 pcs. / ML or less, the hunting phenomenon that the number of fine particles rises intermittently for a predetermined time has occurred, and it has been found that the number of fine particles in ultrapure water produced after start-up operation has not been stably reduced. It was. That is, when the number of fine particles was continuously measured after the start-up operation by the conventional cleaning method or the like, it was found that the hunting phenomenon in which the number of fine particles temporarily rises appears about once every several hours to several days. In this case, in order to eliminate the hunting phenomenon, pure water is passed through the ultrapure water production system, but it is understood that the disappearance of the hunting phenomenon takes about one month to several months. It was.
  • the quality of ultrapure water is 1 pcs. / ML or less has been required.
  • the hunting phenomenon after the start-up operation of the ultrapure water production system using the conventional cleaning method is completely eliminated until several months to half a year at the earliest. It has become clear that it takes about a long time. Therefore, a startup method that can further shorten the startup period has become necessary.
  • the present invention has been made to solve the above-described problems, and it is possible to suppress the hunting phenomenon of the number of fine particles after the start of production of ultra pure water and to stably obtain ultra pure water having a very low concentration of fine particles. It aims at providing the starting method of a pure water manufacturing apparatus.
  • the method for starting up the ultrapure water production apparatus of the present invention is to supply the ultrapure water to the place of use in the ultrapure water production apparatus that processes primary pure water to produce ultrapure water and supplies it to the place of use.
  • a method for starting up an ultrapure water production apparatus for cleaning the inside of the ultrapure water production apparatus system wherein pure water containing hydrogen peroxide or gas is added to a flow path of the ultrapure water production apparatus. It is characterized in that the particles are retained or flowed, and at least a part of the flow path is vibrated from the outside to remove fine particles adhering to the inner surface of the flow path.
  • the vibration is preferably 600 gal or more.
  • the gas is preferably at least one selected from nitrogen, carbon dioxide and hydrogen.
  • the water pressure of the pure water flowing through the flow path is not less than the water pressure when producing the ultrapure water in the ultrapure water production apparatus and not more than twice the water pressure when producing the ultrapure water. Is preferred.
  • the temperature of the pure water containing hydrogen peroxide or gas flowing through the flow path is preferably 10 ° C. to 45 ° C.
  • the ultrapure water production apparatus includes a fine particle removal unit and applies the vibration to the flow path of the fine particle removal unit.
  • the vibration is applied to at least one selected from a joint, a valve, a curved pipe part, and a branch part constituting the flow path of the ultrapure water production apparatus. .
  • oxygen or the gas generated from the hydrogen peroxide is dissolved in the pure water with supersaturation.
  • bubbles are contained in the pure water containing hydrogen peroxide or gas.
  • the pure water containing hydrogen peroxide or gas is passed through the flow path by passing pure water through the ultrapure water production apparatus. It is preferable to discharge out of the system.
  • the hunting phenomenon of the number of fine particles after the start of production of ultrapure water can be suppressed, and ultrapure water having an extremely low fine particle concentration can be stably obtained.
  • FIG. 2 is a block diagram schematically showing an ultrapure water production system including the ultrapure water production apparatus 1 shown in FIG. 1 as a secondary pure water system.
  • it is a graph which shows the relationship between elapsed time and the number of microparticles
  • it is a graph which shows the relationship between elapsed time and the number of microparticles
  • an ultrapure water production apparatus 1 that is an object to be started up and washed according to the present invention has a unit for water treatment downstream of a primary pure water tank (TK) 10 that temporarily stores primary pure water.
  • the equipment includes a heat exchanger (HEX) 11 for water temperature control, an ultraviolet oxidation device (TOC-UV) 12 for decomposing organic matter, a membrane degassing device (MDG) 13, and a non-regenerative mixed bed ion exchange resin device.
  • HEX heat exchanger
  • TOC-UV ultraviolet oxidation device
  • MDG membrane degassing device
  • Polyisher 14 comprising an ultrafiltration device 15 as a fine particle removing means for removing fine particles.
  • the ultrapure water production apparatus 1 is connected to a use point (POU) 16 as a place where ultrapure water is used, and supplies the produced ultrapure water to the use point 16. Further, the ultrapure water production apparatus 1 includes a circulation pipe 19 that circulates ultrapure water that is not used at the use point 16 to the single pure water tank 10.
  • the ultrapure water production apparatus 1 is connected to the water treatment unit pipes 17 and the treated water pipes 17 for connecting the water treatment unit units, and the treated water pipes 17.
  • a particulate meter 25 for measuring the number of fine particles in the water is connected to the treated water pipe 17 after the ultrafiltration device 15. Further, a drain pipe 18 for discharging water to the outside of the system is connected to the circulation pipe 19 via a three-way valve V2.
  • the flow path in the ultrapure water production apparatus 1 is composed of pipes and tubes, in this embodiment, including those in which tanks, pumps, joints, valves, and other equipment are appropriately arranged in the middle of the flow path. This is referred to as a flow path.
  • a material constituting the flow path of such water to be treated any material can be used as long as the components are not easily eluted into ultrapure water.
  • PVC polyvinyl chloride
  • PPS polyphenylene sulfide
  • PVDF polyfluoride Vinylidene
  • FRP fiber reinforced plastic
  • stainless steel or the like
  • the method for starting up the ultrapure water production apparatus is as follows in order to remove fine particles adhering to the inner surface of the flow path of the ultrapure water production apparatus 1. In addition, it is performed through a washing step, a de-drug step, and a flushing step.
  • the three-way valve V2 is switched from the drain pipe 18 side to the primary pure water tank 10 side, the valve V1 is opened, and the pump P1 is operated. Thereby, the primary pure water (pure water) stored in the primary pure water tank 10 is caused to flow into the ultrapure water production apparatus 1 and further circulated through the circulation pipe 19.
  • ultrapure water in a state where primary pure water in which hydrogen peroxide or gas is dissolved (hereinafter also referred to as “gas dissolved water”) is retained or circulated in the flow path of the ultrapure water production apparatus 1. Vibration is applied from the outside to at least a part of the flow path of the water production apparatus 1 (cleaning step).
  • vibration energy is given to the fine particles adhering to the inner surface of the flow path, thereby separating the fine particles from the inner surface of the flow path, It can be dispersed and removed. Moreover, peeling of the fine particles from the inner surface of the flow path can be promoted by the gas in the gas-dissolved water becoming bubbles.
  • the gas in the primary pure water has the effect of improving the effect of removing fine particles by vibration. That is, as a result of various studies by the present inventors, if the gas in the primary pure water is in a supersaturated state or near supersaturated state, it is thought that the effect of removing fine particles is improved by adding vibration in that state. I understood that. Hydrogen peroxide decomposes in water to become oxygen, which is thought to create a similar situation.
  • the gas dissolved in the primary pure water includes nitrogen, hydrogen and carbon dioxide. Of these, nitrogen is preferable.
  • the method for dissolving hydrogen peroxide or gas in primary pure water is not particularly limited.
  • a method for dissolving the gas there is a method in which the membrane degassing device 13 is used as a gas dissolving device, and the gas is dissolved using the degassing membrane as a dissolving film.
  • the upper part of the primary pure water tank 10 is usually hermetically sealed and purged with nitrogen, nitrogen is dissolved in the primary pure water in the primary pure water tank 10. If primary pure water is supplied from the primary pure water tank 10 with the membrane deaerator 13 stopped, nitrogen-dissolved water can be supplied.
  • hydrogen peroxide or primary pure water supplied to the ultrapure water production apparatus 1 or primary pure water circulating in the ultrapure water production apparatus 1 system is added to hydrogen peroxide or
  • a method of dissolving gas may be used.
  • a method of injecting pure water in which hydrogen peroxide or gas is dissolved into the treated water pipe 17 immediately before the unit device or the group of unit devices to be cleaned by a chemical pump or the like may be adopted. it can.
  • primary pure water in which hydrogen peroxide or gas is dissolved in advance may be supplied to the ultrapure water production apparatus 1 and circulated in the system.
  • the concentration of hydrogen peroxide or gas is not particularly limited as long as it is an amount capable of generating bubbles, but 1 to 3 times the gas dissolved in hydrogen peroxide or gas at that temperature. If it becomes.
  • the concentration of hydrogen peroxide or gas is preferably 24 mg / L to 60 mg / L in the case of nitrogen with respect to the primary pure water to be passed. In the case of hydrogen, it is preferably 1.2 mg / L to 3 mg / L. In the case of hydrogen peroxide, it is preferably added at a concentration of 1% by mass to 5% by mass. As a result, the oxygen generated by the decomposition of hydrogen peroxide is in a dissolved state of 8 mg / L to 25 mg / L.
  • the bubble is a bubble of several microns to several hundred microns, and can be generated by applying vibration to primary pure water in which the oxygen or gas is dissolved with supersaturation.
  • the pressure at the time of supply of the gas dissolved water by the pump P1 is not particularly limited, but it is twice as high as the pressure of primary pure water to the ultrapure water production apparatus 1 at the time of ultrapure water production is 30 to 40% smaller than the pressure.
  • the pressure is preferably about the following pressure.
  • the pressure at the time of supplying the gas-dissolved water is 2 when the pressure on the permeate side of the ultrafiltration device 15 in the circulation pipe 19 is not less than 30 to 40% smaller than the pressure at the same location during the production of ultrapure water.
  • the pressure is preferably about twice or less. If the supply pressure of the gas dissolved water is too small, the concentration of the dissolved water is not sufficient, and the effect of promoting separation of the fine particles from the flow path may be reduced.
  • the supply pressure of the gas dissolved water by the pump P1 during the start-up operation is, for example, 0.2 MPa to 0.5 MPa.
  • the temperature of the gas-dissolved water circulated in the ultrapure water production apparatus 1 it is preferable to increase the temperature of the gas-dissolved water circulated in the ultrapure water production apparatus 1.
  • the water temperature can be raised by stopping this. Further, the water temperature may be raised by supplying a heat source to the heat exchanger.
  • the temperature of the dissolved gas flowing through the flow path is preferably 10 ° C to 45 ° C, more preferably 10 ° C to 40 ° C, and further preferably 25 ° C to 40 ° C.
  • valve V1 in order to make the gas in the gas dissolved water supersaturated or close to supersaturated, it was installed in the valve V1, the three-way valve V2 or the ultrapure water circulation system when giving the vibration or immediately before giving the vibration. It is preferable to reduce the pressure in the circulatory system by adjusting the opening of other valves or adjusting the output of the pump.
  • the flow time of the gas-dissolved water depends on the length and inner diameter of the flow path constituting the ultrapure water production apparatus 1, but may be, for example, 5 minutes to 60 minutes. Further, the flow rate of the gas-dissolved water is not particularly limited, and may be, for example, preferably 0.001 m / s to 3.0 m / s, more preferably 0.5 m / s to 2.0 m / s.
  • the discharge pressure of the pump P1 is, for example, equal to or lower than the discharge pressure of the pump P1 when supplying the gas dissolved water, preferably 25 to 75% of the discharge pressure of the pump P1 when supplying the gas dissolved water.
  • the gas dissolved water may be circulated in the ultrapure water production apparatus 1 system. This is because if the supply pressure of the dissolved gas at the time of applying vibration is too high, bubbles are not sufficiently generated, and the effect of promoting the separation of the fine particles from the flow path may be reduced.
  • you may make gas dissolved water retain in the flow path of the ultrapure water manufacturing apparatus 1, and what is necessary is just to stop the pump P1 in this case.
  • the vibration applied to the flow path is preferably 600 gal (Gal) or more, and more preferably 700 Gal or more. Moreover, it is preferable that the vibration given to a flow path is 100,000 Gal or less. This is because the greater the vibration applied to the flow path, the greater the effect of separating the fine particles from the inner surface of the flow path, but if the vibration is too large, the piping may be deteriorated or broken.
  • the time for applying the vibration is approximately 1 to 5 minutes, depending on the place and the magnitude of the vibration.
  • the method of applying vibration is not particularly limited, and examples thereof include a method of hitting a flow path with a bare hand or a tool such as a wooden hammer or a hammer, a method of applying ultrasonic vibration, and the like.
  • the vibration applied to the flow path when struck with a bare hand is 800 Gal or more, 1400 Gal or more for a wooden mallet, and 5000 Gal or more for an ultrasonic wave.
  • the vibration given to the flow path can be measured by, for example, a vibration analyzer.
  • a connecting portion such as a valve or a joint, a bent pipe portion or a branch portion is preferable. Fine particles are likely to stay and adhere to the connection portion and the inner surface of the flow path of the bent tube portion or the branch portion. According to the start-up method of the present embodiment, excellent peeling and removal effects can be obtained even for such fine particles.
  • the place where vibration is applied is preferably a particulate removing means provided in the ultrapure water production apparatus 1, for example, a flow path of the ultrafiltration apparatus 15.
  • a microfilter (MF) or a nanofilter (NF) may be provided as the particulate removing means.
  • these microfilter (MF) or nanofilter ( NF) may be vibrated.
  • the fine particles flowing from the upstream side of the ultrapure water production apparatus 1 may stay and adhere to the inner surface of the flow path of the ultrafiltration device 15 and the fine particle removing means such as the microfilter and nanofilter. It is.
  • connection parts such as valves and joints constituting the flow path of the ultrafiltration device 15, and in the bent pipe part or the branch part. Since the retained fine particles are likely to cause a hunting phenomenon at the start of the production of ultrapure water, it is preferable to apply the vibration to such a connection portion or a curved pipe portion.
  • the vibration when vibration is applied to the flow path in the apparatus constituting the particulate removing means and the flow path within 1 m before and after (upstream side and downstream side) of the flow path in the apparatus, the vibration is applied. This is more effective for shortening the startup period of the ultrapure water production apparatus 1.
  • a bypass pipe (not shown) that bypasses the non-regenerative mixed bed ion exchange resin apparatus 14 is provided to provide a non-regenerative mixed bed ion exchange resin apparatus. 14 is preferably bypassed and gas dissolved water is allowed to flow.
  • the vibration is stopped, and then the de-medicating process for discharging the gas dissolved water in the ultrapure water production apparatus 1 is performed.
  • primary pure water containing neither hydrogen peroxide nor gas is supplied into the ultrapure water production apparatus 1, and the three-way valve V2 inserted in the circulation pipe 19 is connected to the drain pipe 18 from the primary pure water tank 10 side. Switching to the side, the gas-dissolved water is discharged out of the system via the drain pipe 18, and the de-pharmaceutical process is performed.
  • the de-pharmaceutical process is performed for about 30 to 300 minutes, depending on the size of the ultrapure water production apparatus 1 and the flow rate of ultrapure water.
  • a flushing process is subsequently performed.
  • the flow path is switched from the bypass pipe to the non-regenerative mixed bed ion exchange resin device 14.
  • the three-way valve V2 inserted in the circulation pipe 19 is switched from the drain pipe 18 side to the primary pure water tank 10 side to circulate ultrapure water. It is preferable that a part of the ultrapure water circulated in the system in the flushing process is discharged out of the ultrapure water production apparatus 1 system, for example, as concentrated water of the ultrafiltration device 15.
  • the fine particle meter 25 it is preferable to continuously measure the fine particles in the ultrapure water with the fine particle meter 25.
  • the fine particle meter one that can measure the number of fine particles online is preferable, and for example, UDI-20 manufactured by Particle Measuring Systems can be used.
  • the number of fine particles is 0 pcs.
  • a phenomenon in which the number of fine particles temporarily increases intermittently occurs. This is presumed to be because there is an insufficiently cleaned portion in the flow path, and fine particles are discharged from this portion.
  • the quality of ultrapure water deteriorates, it may be necessary to continue flushing until the hunting phenomenon is reduced without starting production of ultrapure water.
  • FIG. 2 is a block diagram schematically showing an ultrapure water production system 2 including the ultrapure water production apparatus 1 shown in FIG. 1 as a secondary pure water system.
  • the ultrapure water production system 2 includes a pretreatment device 20 and a primary pure water system 30.
  • a primary pure water tank 10 is connected to the subsequent stage of the primary pure water system 30, and an ultrapure water production apparatus (secondary pure water system) 1 is connected through the primary pure water tank 10.
  • Production of ultrapure water by the ultrapure water production system 2 is performed as follows.
  • raw water such as city water, well water, and industrial water is sequentially processed by the pretreatment device 20 and the primary pure water system 30 to produce primary pure water.
  • the pretreatment device 20 is a device that clarifies raw water to produce pretreatment water, and includes, for example, a coagulating sedimentation device and a sand filtration device.
  • the primary pure water system 30 is for producing primary pure water by treating pretreated water, and includes an activated carbon device, a reverse osmosis membrane device, a cation exchange resin device, an anion exchange resin device, and a two-bed three-column ion.
  • An exchange resin device, a vacuum deaeration device, an ultraviolet oxidation device, a mixed bed ion exchange resin device, a precision filter, and the like are appropriately selected.
  • the primary pure water has a specific resistance value of 17 M ⁇ ⁇ cm or more, a TOC concentration of 3 ⁇ g C / L or less, and the number of fine particles of 0.02 ⁇ m or more is 1 pcs. / ML or less.
  • the primary pure water is temporarily stored in the primary pure water tank 10 and then supplied to the secondary pure water system 1 (the ultrapure water production apparatus 1 shown in FIG. 1), where ultrapure water is produced. Is done.
  • the produced ultrapure water is supplied to the use point 16.
  • the fine particles adhering to the inner surface of the flow path of the secondary pure water system 1 are removed by the startup method of the above embodiment, even after the production of ultra pure water is started.
  • the specific resistance value is 18.2 M ⁇ ⁇ cm or more
  • the TOC concentration is 1 ⁇ g C / L or less
  • the number of fine particles is 1 pcs.
  • Ultrapure water in which water quality of / mL or less is stably maintained can be supplied to the use point 16.
  • a circulation piping system provided in a general ultrapure water production system, that is, a cleaning of a flow path of an ultrapure water production apparatus having a circulation piping for supplying ultrapure water to a POU (use place).
  • the present invention is not limited to this.
  • a primary pure water production apparatus provided on the upstream side of the primary pure water tank 10 or a tertiary pure water provided on the downstream side of the ultrapure water production apparatus described above as necessary. The same can be applied to the start-up of the water production apparatus.
  • Example 1 A start-up operation was performed as follows using a secondary pure water system similar to the ultrapure water production apparatus shown in FIG.
  • a bypass pipe that bypasses the non-regenerative mixed bed ion exchange resin apparatus was provided to bypass the non-regenerative mixed bed ion exchange resin apparatus. Open the valve installed downstream of the primary pure water tank and operate the pump on the downstream side of the primary pure water tank to flow the primary pure water stored in the primary pure water tank into the secondary pure water system. It was. At this time, a circulation pipe for connecting the primary pure water tank from the use point was provided to circulate the primary pure water to the primary pure water tank. The discharge pressure of the pump was 0.3 MPa.
  • a branch pipe is provided at the inlet side of the heat exchanger, and a chemical injection pump is connected to this, and the ultrapure water (hydrogen peroxide solution) in which hydrogen peroxide is dissolved by this chemical injection pump is used as the primary.
  • the ultrapure water hydrogen peroxide solution
  • the discharge pressure of the pump when supplying hydrogen peroxide was 0.3 MPa. Thereafter, the supply of hydrogen peroxide was stopped. Primary pure water circulation operation continued.
  • the supply water side, permeate side piping, valves, and branches of the flow path provided in the ultrafiltration device of the secondary pure water system were struck with a mallet to give vibration.
  • the vibration was applied for 5 minutes, and the vibration by the wooden mallet was 1400 Gal as measured by a digital vibrometer OH-580A (manufactured by Testo Inc.).
  • the discharge pressure of the pump was not changed and was set to 0.3 MPa.
  • the three-way valve of the circulation pipe is switched from the primary pure water tank side to the drain pipe side, and ultrapure water containing hydrogen peroxide is drained out of the system.
  • the primary pure water was supplied into the secondary pure water system, and the secondary pure water system was rinsed to carry out the de-drug process.
  • the bypass pipe is switched to water flow to a non-regenerative mixed bed ion exchange resin apparatus, the three-way valve is switched from the drain pipe side to the primary pure water tank side, and the flushing process is performed for 60 hours. Started production of pure water.
  • the pump discharge pressure during the production of ultrapure water was 0.3 MPa.
  • the number of fine particles of 0.02 ⁇ m or more in the ultrapure water after the start of the flushing process was measured, and the number of occurrences of the hunting phenomenon on the second day, the fourth day, and the seventh day was measured.
  • the results are shown in Table 1 together with the startup operation conditions.
  • the number of fine particles of 0.02 ⁇ m or more increased compared to the previous and subsequent periods, and the number of times was counted as a hunting phenomenon.
  • the number of fine particles during the hunting phenomenon is, for example, 10 pcs. / L or more.
  • Example 2 In this example, the start-up operation was performed in the same manner as in Example 1 except that the method of applying vibration to the flow path was changed from the method of hitting with a mallet to the method of hitting with a bare hand. The vibration was applied for 5 minutes, and the vibration when struck with a bare hand was 800 Gal as measured by the above-mentioned digital vibrometer.
  • Example 3 In this example, the method of applying vibration to the flow path was changed to a method of applying ultrasonic waves with an ultrasonic generator ET-30S-7 (manufactured by Shimada Rika Kogyo Co., Ltd.), and started up in the same manner as in Example 1. Drove. The vibration was applied for 5 minutes, and the ultrasonic vibration was 5000 Gal as measured by the digital vibration meter.
  • ET-30S-7 manufactured by Shimada Rika Kogyo Co., Ltd.
  • Examples 4 to 11, Comparative Examples 1 to 8 The startup operation was performed in the same manner as in Example 1 except that the startup operation conditions were changed as shown in Table 1.
  • the heat exchanger was operated as necessary to heat the primary pure water to the temperature shown in Table 1.
  • the startup operation was performed while operating the deaeration membrane device.
  • the primary which dissolved nitrogen Pure water was passed through the channel.
  • Example 1 After the start-up operation, production of ultrapure water was started in the same manner as in Example 1, and 0.02 ⁇ m or more in the produced ultrapure water on the second, fourth and seventh days after the start of the flushing process.
  • Table 1 together with Example 1 shows the results of measuring the number of fine particles and measuring the number of occurrences of the hunting phenomenon.
  • the hunting phenomenon is suppressed and the number of fine particles is 1 pcs. It can be seen that ultrapure water stably maintained at / mL or less was obtained. On the other hand, in Comparative Examples 1 to 8, it can be seen that the hunting phenomenon is not suppressed.
  • SYMBOLS 1 Ultrapure water production apparatus (secondary pure water system), 2 ... Ultrapure water production system, 10 ... Primary pure water tank (TK), 11 ... Heat exchanger (HEX), 12 ... Ultraviolet oxidizer (TOC- UV), 13 ... Membrane type deaerator (MDG), 14 ... Non-regenerative mixed-bed ion exchange resin device (Polisher), 15 ... Ultrafiltration device (UF), 16 ... Use point (POU), 17 ... Treated water piping, 18 ... blow piping, 19 ... circulation piping, 20 ... pretreatment device, 30 ... primary pure water system, 25 ... particulate meter, P1 ... pump, V1 ... valve, V2 ... three-way valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

超純水製造開始後の微粒子数のハンチング現象を抑制し、微粒子濃度の極めて低い超純水を安定して得ることのできる超純水製造装置(1)の立ち上げ方法を提供する。一次純水を処理して超純水を製造し、使用場所へ供給する超純水製造装置(1)において、前記超純水を前記使用場所へ供給するに先立ち、前記超純水製造装置(1)系内を洗浄する超純水製造装置(1)の立ち上げ方法であって、前記超純水製造装置(1)の流路に、過酸化水素又は気体を含有する純水を滞留ないし通流させて、前記流路の少なくとも一部に、外部から振動を与え、前記流路の内表面に付着した微粒子を除去する。

Description

超純水製造装置の立ち上げ方法
 本発明は、超純水製造装置の立ち上げ方法に関する。
 従来から、半導体デバイス、液晶ディスプレイ、シリコンウエハ、プリント基板等の電子部品製造工程においては、イオン性物質、微粒子、有機物、溶存ガス及び生菌等の不純物含有量が極めて少ない超純水が使用されている。近年、半導体デバイスの集積度の向上にともなって、超純水の純度に対する要求は益々厳しくなってきている。例えば、最先端の半導体製造用超純水の仕様は、抵抗率18.2MΩ・cm以上、0.05μm以上の微粒子数は1個/mL以下、全有機炭素(TOC)濃度は1μgC/L以下と要求水質はより厳しくなる傾向にある。
 このような超純水は、一般的には前処理装置、一次純水システム、二次純水システム(サブシステム)で構成される超純水製造システムで、工業用水、市水、井水等の原水を処理して製造される。製造された超純水は、使用場所としてのユースポイントに供給される。
 前処理装置は、凝集沈澱装置や砂ろ過装置等を用いて原水を除濁して前処理水を得るものである。一次純水システムは、活性炭装置、逆浸透膜装置、2床3塔式イオン交換樹脂装置、真空脱気装置、紫外線酸化装置、混床式イオン交換樹脂装置、精密フィルター等を適宜選択して用い、前処理水中の不純物を除去し、一次純水を得るものである。二次純水システム(サブシステム)は、一次純水を一時的に貯留する(一次)純水タンクの下流側に、例えば、熱交換器、紫外線酸化装置、非再生型の混床式イオン交換樹脂装置(Polisher)、脱気膜装置、限外ろ過装置等を備えて構成される。
 超純水製造装置の新規設置後の立ち上げ時あるいは定期検査等による休止後の再立ち上げ時には、系内に混入あるいは発生する、上記のような不純物を除去してユースポイントにおける超純水が所望の水質に至るまで超純水製造装置を洗浄する立ち上げ運転を行う。そのため、超純水製造装置の起動時から所望の水質の超純水をユースポイントで使用できるまでには立ち上げ期間が必要であるが、近年、工場の稼働効率の向上を目的として、装置の立ち上げ期間の短縮が強く求められている。
 超純水製造装置の立ち上げ運転時の洗浄方法としては、超純水によるフラッシング・ブロー、超純水の循環、温水洗浄、過酸化水素水洗浄、アルカリ洗浄(塩基性水溶液洗浄)などが行われていた。また、オゾンや水素等の機能性ガスを溶解させた超純水(機能水)や界面活性剤を使った洗浄方法なども提案されていた。
 例えば、特許文献1には、超純水製造装置内の超純水との接触面に付着した微粒子の表面電位を変化させることにより、微粒子を除去する方法が開示されている。また、特許文献2には、塩基性洗浄液による循環洗浄を行う工程、純水による塩基性洗浄液の押し出しとリンスとを行う工程、過酸化水素洗浄液による循環及び/又は浸漬洗浄を行う工程、及び、純水による過酸化水素洗浄液の押し出しとリンスとを行う工程を順に行う超純水製造供給装置の洗浄方法が開示されている。
特開2002-052322号公報 特開2006-297180号公報
 しかしながら、上記した従来の洗浄方法では、0.05μm以上の微粒子数をおおよそ1pcs./mL(1000pcs./L)以下程度まで低減できるものの、1pcs./mL以下で、所定の時間微粒子数が断続的に上昇するハンチング現象が生じており、立ち上げ運転後に製造される超純水中の微粒子数が安定的に低下されていないことが見出された。すなわち、上記従来の洗浄方法等による立ち上げ運転後に、微粒子数の測定を続けたところ、微粒子数が一時的に急上昇するハンチング現象が数時間から数日に1回程度あらわれ続けることが分かった。この場合、ハンチング現象を消失させるために超純水製造装置系内に純水を通流させることが行われるが、ハンチング現象の消失には、約1か月から数か月程度かかることが分かった。
 また、近年、超純水の水質として、0.02μm以上の微粒子数1pcs./mL以下が要求されてきている。上記した水質を得るためには、従来の洗浄方法による超純水製造装置の立ち上げ運転後のハンチング現象が完全になくなるまで、早くても数か月~半年程度、場合によっては半年~1年程度の長期間かかることが明らかになってきた。そのため、より立ち上げ期間を短縮できる立ち上げの方法が必要となってきた。
 本発明は上記した課題を解決するためになされたのものであって、超純水製造開始後の微粒子数のハンチング現象を抑制し、微粒子濃度の極めて低い超純水を安定して得ることのできる超純水製造装置の立ち上げ方法を提供することを目的とする。
 本発明の超純水製造装置の立ち上げ方法は、一次純水を処理して超純水を製造し、使用場所へ供給する超純水製造装置において、前記超純水を前記使用場所へ供給するに先立ち、前記超純水製造装置系内を洗浄する超純水製造装置の立ち上げ方法であって、前記超純水製造装置の流路に、過酸化水素又は気体を含有する純水を滞留ないし通流させて、前記流路の少なくとも一部に、外部から振動を与え、前記流路の内表面に付着した微粒子を除去することを特徴とする。
 本発明の超純水製造装置の立ち上げ方法において、前記振動は600ガル以上であることが好ましい。
 本発明の超純水製造装置の立ち上げ方法において、前記気体は、窒素、二酸化炭素及び水素から選ばれる1種以上であることが好ましい。また、前記流路に通流される純水の水圧は、前記超純水製造装置において超純水を製造する際の水圧以上、かつ超純水を製造する際の水圧の2倍以下であることが好ましい。
 本発明の超純水製造装置の立ち上げ方法において、前記流路に通流される前記過酸化水素又は気体を含有する純水の温度は10℃~45℃であることが好ましい。
 本発明の超純水製造装置の立ち上げ方法において、前記超純水製造装置は、微粒子除去手段を備え、前記微粒子除去手段の流路に前記振動を与えることが好ましい。
 本発明の超純水製造装置の立ち上げ方法において、前記超純水製造装置の流路を構成する継手、バルブ、曲管部及び分岐部から選ばれる1種以上に前記振動を与えることが好ましい。
 本発明の超純水製造装置の立ち上げ方法において、前記過酸化水素から発生する酸素又は前記気体が前記純水中に過飽和で溶解されることが好ましい。
 本発明の超純水製造装置の立ち上げ方法において、前記過酸化水素又気体を含有する純水中に、気泡が含有されることが好ましい。
 本発明の超純水製造装置の立ち上げ方法において、前記微粒子を除去した後、前記流路に純水を通水して前記過酸化水素又は気体を含有する純水を前記超純水製造装置系外に排出させることが好ましい。
 本発明の超純水製造装置の立ち上げ方法によれば、超純水製造開始後の微粒子数のハンチング現象を抑制し、微粒子濃度の極めて低い超純水を安定して得ることができる。 
本発明の立ち上げ洗浄対象である超純水製造装置の一例を概略的に表わすブロック図である。 図1に示す超純水製造装置1を二次純水システムとして備える超純水製造システムを概略的に表わすブロック図である。 実施例で、洗浄が十分に行われた場合の経過時間と微粒子数の関係を示すグラフである。 比較例で、洗浄が十分に行われない場合の経過時間と微粒子数の関係を示すグラフである。
 以下、図面を参照して、本発明の実施形態を詳細に説明する。
(第1の実施形態)
 図1に示すように、本発明の立ち上げ洗浄対象である超純水製造装置1は、一次純水を一時的に貯留する一次純水タンク(TK)10の下流側に、水処理の単位装置として、水温調節のための熱交換器(HEX)11、有機物を分解する紫外線酸化装置(TOC-UV)12、膜式脱気装置(MDG)13、非再生型混床式イオン交換樹脂装置(Polisher)14、微粒子を除去する微粒子除去手段としての、限外ろ過装置15を備えて構成される。超純水製造装置1は、超純水の使用場所としてのユースポイント(POU)16に接続されて、製造された超純水をユースポイント16に供給する。また、超純水製造装置1は、ユースポイント16で使用されない超純水を一純水タンク10に循環させる循環配管19を備えている。
 また、超純水製造装置1は、上記水処理の各単位装置を接続し、被処理水を通流させる処理水配管17と、処理水配管17に介挿され、一次純水タンク10内の一次純水を下流側に送液するポンプP1と、処理水配管17のポンプP1の下流側に介挿され、超純水製造装置1への一次純水の供給及び停止を切り替えるためのバルブV1を備えている。処理水配管17の、限外ろ過装置15の後段には、水中の微粒子数を測定する微粒子計25が接続されている。また、循環配管19には、系外に水を排出するドレン配管18が、三方バルブV2を介して、接続されている。
 超純水製造装置1内の流路は、配管やチューブから構成されるが、本実施形態では、流路の途中に適宜タンク、ポンプ、継手、バルブ及びその他の設備が配置されたものも含めて流路と称する。このような被処理水の流路を構成する材料としては、超純水中への成分の溶出の少ない材料であればよく、例えば、ポリ塩化ビニル(PVC)、ポリフェニレンサルファイド(PPS)、ポリフッ化ビニリデン(PVDF)、繊維強化プラスチック(FRP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ステンレス鋼等を用いることができる。
 本実施形態の超純水製造装置の立ち上げ方法は、超純水製造装置1の上記流路の内表面に付着した微粒子を除去する目的で、上記超純水の製造に先立ち、次のように、洗浄工程、脱薬工程、フラッシング工程を経て行われる。
 まず、三方バルブV2を、ドレン配管18側から一次純水タンク10側に切り替え、バルブV1を開いて、ポンプP1を稼働させる。これにより、一次純水タンク10内に貯留された一次純水(純水)を超純水製造装置1内へ通流させ、さらに、循環配管19を介して循環させる。
 そして、超純水製造装置1に通流させる一次純水に、過酸化水素又は気体を溶解させる。また、超純水製造装置1の流路内に、上記過酸化水素又は気体を溶解させた一次純水(以下「気体溶解水」ともいう。)を滞留ないし流通させている状態で、超純水製造装置1の流路の少なくとも一部に外部から振動を与える(洗浄工程)。
 超純水製造装置1の流路に上記振動を印加することで、流路の内表面に付着した微粒子に振動エネルギーが与えられ、これにより微粒子を流路の内表面から剥離させ、気体溶解水中に分散させて除去することができる。また、上記気体溶解水中の気体が気泡となることで、流路の内表面からの微粒子の剥離を促進させることができる。
 また、一次純水中の気体は、振動による微粒子の除去効果を向上させる効果がある。すなわち、本発明者らの種々の検討の結果、一次純水中の気体が過飽和、もしくは過飽和に近い状態であると、その状態で振動が加わることにより、微粒子の除去効果を向上させると考えられることが分かった。なお、過酸化水素は、水中で分解して酸素となり、同様の状況を作り出しているものと考えられる。
 上記一次純水に溶解させる気体としては、窒素、水素、二酸化炭素が挙げられる。なかでも、窒素であることが好ましい。
 一次純水に過酸化水素又は気体を溶解させる方法としては特に限定されない。例えば、気体を溶解させる方法としては、膜式脱気装置13を、気体溶解装置として使用し、脱気膜を溶解膜として気体を溶解させる方法がある。また、一次純水タンク10の上部は、気密に封止され、窒素パージされているのが通常であるので、一次純水タンク10内の一次純水には窒素が溶解されている。膜式脱気装置13を停止した状態で、一次純水タンク10から一次純水を供給すれば、窒素溶解水を供給することができる。
 また、酸化水素又は気体を一次純水に溶解させる方法としては、超純水製造装置1に供給する一次純水又は超純水製造装置1系内を循環する一次純水に、過酸化水素又は気体を溶解させる方法でもよい。この場合、例えば洗浄対象とする単位装置あるいは単位装置群の直前の処理水配管17に、薬注ポンプ等によって、過酸化水素又は気体の溶解された純水を注入する方法等を採用することができる。また、あらかじめ過酸化水素又は気体を溶解させた一次純水を超純水製造装置1に供給し、系内を循環させてもよい。
 過酸化水素又は気体の濃度は、気泡を発生させることのできる量であれば特に限定されないが、過酸化水素又は気体の当該温度での溶解度に対して、1~3倍の気体が溶解した状態となればよい。過酸化水素又は気体の濃度は、通流させる一次純水に対して、窒素の場合、24mg/L~60mg/Lであることが好ましい。水素の場合、1.2mg/L~3mg/Lであることが好ましい。過酸化水素の場合は、1質量%~5質量%の濃度で添加することが好ましい。これにより、過酸化水素の分解によって生じた酸素が、8mg/L~25mg/L溶解した状態になる。なお、気泡とは、数ミクロンから数百ミクロンの気泡であり、上記酸素又は気体が過飽和で溶解した一次純水に、振動を加えることによって生じさせることができる。
 ポンプP1による気体溶解水の供給時の圧力は、特に限定されないが、超純水製造時における超純水製造装置1への一次純水の供給圧の、3~4割小さい圧力以上で2倍以下の圧力程度であることが好ましい。また、気体溶解水の供給時の圧力は、循環配管19内の、限外ろ過装置15の透過側の圧力が、超純水製造時における同箇所の圧力の3~4割小さい圧力以上で2倍以下の圧力程度であることが好ましい。気体溶解水の供給圧が小さすぎると、溶解水の濃度が十分でなくなり、流路からの微粒子の剥離促進効果が低下することがある。また、大きすぎると、振動を与える際に、気泡量が多すぎるため、巨大気泡が発生し、微粒子の剥離促進効果が低下することがある。具体的には、立ち上げ運転時のポンプP1による気体溶解水の供給圧は例えば、0.2MPa~0.5MPaである。
 また、気体溶解水中の気体を過飽和、又は過飽和に近い状態とするために、超純水製造装置1内に循環される気体溶解水の水温を上昇させることが好ましい。熱交換器によって、循環系内の水を冷却している場合には、これを停止することで、水温を上昇させることができる。また、熱交換器に熱源を供給して水温を上昇させてもよい。
 流路内を通流される気体溶解水の温度は、10℃~45℃であることが好ましく、10℃~40℃であることがより好ましく、25℃~40℃であることがさらに好ましい。これにより、気体の溶解度が低下されることで、上記気体からの気泡の発生を促進して、流路からの微粒子の剥離促進効果を向上させることができる。
 また、気体溶解水中の気体を過飽和、又は過飽和に近い状態とするために、上記振動を与える際、又は振動を与える直前に、バルブV1、三方バルブV2又は超純水循環系内に設置されたその他のバルブの開度を調整することや、ポンプの出力を調整することなどによって、循環系内の圧力を下げることが好ましい。
 気体溶解水の通流時間は、超純水製造装置1を構成する流路の長さや内径にもよるが、例えば、5分~60分であればよい。また、気体溶解水の流速についても特に限定されず、例えば、好ましくは0.001m/s~3.0m/s、より好ましくは、0.5m/s~2.0m/sであればよい。
 このようにして、上記過酸化水素又は気体が所定の濃度で過飽和の状態に達したら過酸化水素又は窒素の供給を停止する。そして、上記気体溶解水を超純水製造装置1系内に循環させている状態で、超純水製造装置1の流路の少なくとも一部に外部から振動を与える。
 振動を与える際には、ポンプP1の吐出圧を、例えば、気体溶解水の供給時のポンプP1の吐出圧以下、好ましくは、気体溶解水の供給時のポンプP1の吐出圧の25~75%で運転して、気体溶解水を超純水製造装置1系内に循環させてもよい。これは、振動を与える際の気体溶解水の供給圧が高すぎると、気泡の発生が十分でなくなり、流路からの微粒子の剥離促進効果が低下することがあるからである。また、振動を与える際には、気体溶解水は、超純水製造装置1の流路内に滞留させてもよく、この場合は、ポンプP1を停止すればよい。
 流路に与える振動としては、600ガル(Gal)以上であることが好ましく、700Gal以上であることがより好ましい。また、流路に与える振動は、100000Gal以下であることが好ましい。流路に与えられる振動は大きい方が、微粒子を流路の内表面から剥離させる効果は大きいが、振動が大きすぎると配管の劣化や破損が生じるおそれがあるためである。
 振動を与える時間は、振動を与える場所や振動の大きさにもよるが、おおよそ、1分~5分程度である。
 振動を与える方法としては、特に限定されず、素手又は木槌やハンマー等の工具で流路を叩く方法、超音波振動を与える方法等が挙げられる。ここで、例えば、素手で叩いた場合に流路に与える振動は800Gal以上、木槌では、1400Gal以上、超音波では5000Gal以上程度である。流路に与えられる振動は、例えば、振動分析計によって測定することができる。
 振動を与える場所としては特に限定されないが、例えば、ポンプP1の入り口側から、ユースポイント16までの処理水配管17、循環配管16及び各単位装置において被処理水が通流される流路の、上記バルブや継ぎ手などの接続部分や、曲管部又は分岐部であることが好ましい。このような接続部分や、曲管部又は分岐部の流路内表面には、微粒子が滞留して付着し易い。本実施形態の立ち上げ方法によれば、このような微粒子に対しても優れた剥離、除去効果を得ることができる。
 また、振動を与える場所としては、超純水製造装置1に備えられる微粒子除去手段、例えば限外ろ過装置15の流路であることが好ましい。微粒子除去手段としては、限外ろ過装置15以外にも、マイクロフィルター(MF)や、ナノフィルター(NF)が備えられることがあるが、この場合、これらのマイクロフィルター(MF)や、ナノフィルター(NF)の流路に振動を与えてもよい。限外ろ過装置15や、上記マイクロフィルター、ナノフィルターなどの微粒子除去手段の流路の内表面には、超純水製造装置1の上流側から流れてきた微粒子が滞留し付着することがあるためである。さらに、限外ろ過装置15の流路を構成するバルブや継ぎ手などの接続部分や、曲管部又は分岐部には、特に微粒子が滞留し易い。この、滞留した微粒子により超純水製造開始時にハンチング現象を起こしやすいため、このような接続部分や曲管部に上記振動を与えることが好ましい。
 振動を与える場所として、具体的に、微粒子除去手段を構成する装置内の流路と、当該装置内の流路の前後(上流側及び下流側)のそれぞれ1m以内の流路に振動を加えると、超純水製造装置1の立ち上げ期間の短縮に対して、より効果的である。
 なお、上記超純水製造装置1の立ち上げ運転時には、非再生型混床式イオン交換樹脂装置14をバイパスするバイパス管(図示せず)を設けて、非再生型混床式イオン交換樹脂装置14をバイパスして、気体溶解水を通流させることが好ましい。
 このようにして、洗浄工程を行った後、振動を停止し、その後、超純水製造装置1内の気体溶解水を排出する脱薬工程を行う。例えば、超純水製造装置1内に過酸化水素も気体も含まない一次純水を供給し、かつ、循環配管19に介挿された三方バルブV2を一次純水タンク10側から、ドレン配管18側に切り替えて、ドレン配管18を介して気体溶解水を系外に排出して脱薬工程が行われる。
 脱薬工程は、超純水製造装置1の大きさや、超純水の流量にもよるが、30~300分程度行う。脱薬工程によって、気体溶解水を系内から十分排出させた後、続いて、フラッシング工程を行う。フラッシング工程では、上記非再生型混床式イオン交換樹脂装置14をバイバスさせた場合には、上記バイパス管から、非再生型混床式イオン交換樹脂装置14に流路が切り替えられる。循環配管19に介挿された三方バルブV2をドレン配管18側から一次純水タンク10側に切り替えて、超純水を循環させる。フラッシング工程において系内を循環される超純水の一部は、例えば、限外ろ過装置15の濃縮水として、超純水製造装置1系外に排出されることが好ましい。
 フラッシング工程時に、微粒子計25によって、超純水中の微粒子を継続的に測定することが好ましい。超純水製造装置1内が十分に洗浄されている場合には、微粒子の測定値は、次第に減少し、最終的に微粒子数は0pcs./Lとなる。この場合には、続いて、超純水の製造を開始することができる。微粒子計としては、オンラインで微粒子数を測定できるものが好ましく、例えば、Particle Measuring Systems製の、UDI-20等を使用することができる。
 一方、洗浄工程における微粒子洗浄が十分に行われなかった場合には、微粒子数は0pcs./Lに達しないばかりか、一時的に微粒子数が急増する現象(ハンチング現象)が断続的に生じる。これは、流路内に洗浄不十分な箇所が存在し、この部分から微粒子が排出されるためと推測される。この場合には、超純水水質が劣化するので、超純水の製造を開始せず、ハンチング現象が減少するまで、フラッシングを継続する必要が生じることがある。
 このようにして、超純水製造装置1の立ち上げ運転を行った後に、超純水の製造が開始される。
 図2は、図1に示す超純水製造装置1を二次純水システムとして備える超純水製造システム2を概略的に表わすブロック図である。超純水製造システム2は、前処理装置20と、一次純水システム30を備えている。一次純水システム30の後段には、一次純水タンク10が接続され、この一次純水タンク10を介して超純水製造装置(二次純水システム)1が接続されている。
 超純水製造システム2による超純水の製造は次のように行われる。例えば、市水、井水、工業用水等の原水が、前処理装置20及び一次純水システム30で順に処理されて一次純水が製造される。
 前処理装置20は、原水を除濁して前処理水を製造するものであり、例えば、凝集沈澱装置や砂ろ過装置等を備えている。一次純水システム30は、前処理水を処理して一次純水を製造するものであり、活性炭装置、逆浸透膜装置、陽イオン交換樹脂装置、陰イオン交換樹脂装置、2床3塔式イオン交換樹脂装置、真空脱気装置、紫外線酸化装置、混床式イオン交換樹脂装置、精密フィルター等を適宜選択して構成される。一次純水は例えば、比抵抗値が17MΩ・cm以上、TOC濃度が3μgC/L以下であり、0.02μm以上の微粒子数が1pcs./mL以下である。
 次いで、この一次純水は、一次純水タンク10に一旦貯留された後、二次純水システム1(図1に示す超純水製造装置1)に供給され、ここで、超純水が製造される。製造された超純水はユースポイント16に供給される。
 このとき、上記実施形態の立ち上げ方法によって、二次純水システム1(超純水製造装置1)の流路の内表面に付着した微粒子が除去されているため、超純水製造開始後にも、比抵抗値が18.2MΩ・cm以上、TOC濃度が1μgC/L以下であり、微粒子数が1pcs./mL以下の水質が安定的に維持された超純水をユースポイント16に供給することができる。
 なお、上記では、一般的な超純水製造システムに備えられる循環配管系、すなわち、POU(使用場所)へ超純水を供給する、循環配管を有した超純水製造装置の流路の洗浄方法について説明したが、これに限定されない。例えば、通常、超純水製造システムにおいて、一次純水タンク10の上流側に備えられる一次純水製造装置や、上記で説明した超純水製造装置の下流側に必要に応じて備えられる三次純水製造装置の立ち上げに対しても、同様に適用することができる。
 次に、本発明の実施例について説明する。本発明は以下の実施例に限定されない。
(実施例1)
 図1に示す超純水製造装置と同様の二次純水システムを用い、立ち上げ運転を次のように行った。
 実施例及び比較例で用いた装置の仕様は次のとおりである。
 熱交換器(HEX)
  プレート式熱交換器、チタン製、(株)日阪製作所社製
 紫外線酸化装置(TOC-UV)
  商品名:SUV-ST、日本フォトサイエンス(株)社製
 非再生型混床式イオン交換樹脂装置(Polisher)
  ポリテトラフルオロエチレンでライニングした内径φ400mmの容器に、カチオン樹脂とアニオン樹脂を混合して210L充填、野村マイクロ・サイエンス(株)社製
 脱気膜装置(MDG)
  商品名:G284、ポリポア製
 限外ろ過装置(UF)
  商品名:OLT-6036HA、旭化成ケミカルズ(株)社製
 オンライン微粒子計
  商品名:UDI-20、Particle Measuring Systems製
 先ず、非再生型混床式イオン交換樹脂装置をバイパスするバイパス配管を設けて、非再生型混床式イオン交換樹脂装置をバイパスさせた。一次純水タンクの後段に設置されたバルブを開いて、一次純水タンク下流側のポンプを稼働させ、一次純水タンク内に貯留された一次純水を二次純水システム内へ通流させた。この際、ユースポイントから一次純水タンクを接続する循環配管を設け、一次純水を一次純水タンクに循環させた。ポンプの吐出圧は、0.3MPaとした。
 また、熱交換器の入り口側の配管に分岐配管を設け、これに薬注ポンプを接続して、この薬注ポンプによって過酸化水素を溶解させた超純水(過酸化水素水)を、一次純水タンクから供給される一次純水に供給した。過酸化水素濃度は、超純水製造装置1内に通流させる一次純水に対して1質量%となるように供給した。過酸化水素水を供給する際の、上記ポンプの吐出圧は、0.3MPaとした。その後、過酸化水素の供給を停止した。一次純水の循環運転は継続した。
 また、同時に、二次純水システムの、限外ろ過装置に備えられた流路の供給水側、透過水側の配管、バルブ、及び分岐部分を木槌で叩いて振動を与えた。振動を与えた時間は、5分、木槌による振動は、デジタル振動計OH-580A(株式会社テストー製)による測定で、1400Galであった。振動を与える際に、ポンプの吐出圧は変更せず、0.3MPaとした。
 次いで、振動を停止した後、循環配管の三方バルブを一次純水タンク側からドレン配管側に切替えて、過酸化水素を含む超純水を系外に排水し、同時に、一次純水タンクから二次純水システム系内に一次純水の供給を行い、二次純水システムをリンスして脱薬工程を行った。その後、上記バイパス管から、非再生型混床式イオン交換樹脂装置への通水に切り替え、三方バルブをドレン配管側から一次純水タンク側に切り替えて、フラッシング工程を60時間行った後、超純水の製造を開始した。超純水の製造時の、ポンプの吐出圧は0.3MPaとした。
 フラッシング工程の開始後の超純水中の0.02μm以上の微粒子数を測定し、2日目、4日目及び7日目のハンチング現象の生じた回数を計測した。結果を、立ち上げ運転条件とあわせて表1に示す。なお、0.02μm以上の微粒子数が、前後の期間に比べて、増加したものをハンチング現象としてその回数を計測した。ハンチング現象時の微粒子数は、例えば10pcs./L以上である。
(実施例2)
 本例では、流路に振動を与える方法を、木槌で叩く方法から、素手で叩く方法に変更した他は実施例1と同様の方法で立ち上げ運転を行った。振動を与えた時間は、5分、素手で叩いた際の振動は、上記のデジタル振動計による測定で、800Galであった。
(実施例3)
 本例では、流路に振動を与える方法を、ウルトラソニックジェネレーターET-30S-7(島田理化工業社製)によって超音波を印加する方法に変更した他は実施例1と同様の方法で立ち上げ運転を行った。振動を与えた時間は、5分、超音波による振動は、上記のデジタル振動計による測定で、5000Galであった。
(実施例4~11、比較例1~8)
 立ち上げ運転条件を表1のように変更した他は、実施例1と同様に立ち上げ運転を行った。これらの例では、必要に応じて、熱交換器を作動させて、一次純水を表1に示す温度に加温した。また、過酸化水素及び気体のいずれも使用しない例では、脱気膜装置を運転しながら立ち上げ運転を行った。
 また、窒素を用いた例では、一次純水タンクの上部に封入されている窒素を利用して窒素を溶解させるとともに、膜式脱気装置の運転を停止することによって、窒素を溶解させた一次純水を流路内に通流させた。
 立ち上げ運転後、実施例1と同様に超純水の製造を開始し、フラッシング工程の開始後2日目、4日目及び7日目の、製造された超純水中の0.02μm以上の微粒子数を測定し、ハンチング現象の生じた回数を計測した結果を、実施例1とあわせて表1に示す。
 また、実施例1及び比較例1における、洗浄工程からフラッシング工程までの、経過時間と微粒子数の関係をそれぞれ図3、4のグラフに示す。
Figure JPOXMLDOC01-appb-T000001
 表1及び図3に示されるように、本発明の実施例の超純水製造装置の立ち上げ方法では、ハンチング現象を抑制し、微粒子数が1pcs./mL以下で安定的に維持された超純水を得られたことが分かる。これに対して、比較例1~8では、ハンチング現象が抑制されないことが分かる。
 1…超純水製造装置(二次純水システム)、2…超純水製造システム、10…一次純水タンク(TK)、11…熱交換器(HEX)、12…紫外線酸化装置(TOC-UV)、13…膜式脱気装置(MDG)、14…非再生型混床式イオン交換樹脂装置(Polisher)、15…限外ろ過装置(UF)、16…ユースポイント(POU)、17…処理水配管、18…ブロー配管、19…循環配管、20…前処理装置、30…一次純水システム、25…微粒子計、P1…ポンプ、V1…バルブ、V2…三方バルブ。

Claims (10)

  1.  一次純水を処理して超純水を製造し、使用場所へ供給する超純水製造装置において、前記超純水を前記使用場所へ供給するに先立ち、前記超純水製造装置系内を洗浄する超純水製造装置の立ち上げ方法であって、
     前記超純水製造装置の流路に、過酸化水素又は気体を含有する純水を滞留ないし通流させて、
     前記流路の少なくとも一部に、外部から振動を与え、
     前記流路の内表面に付着した微粒子を除去することを特徴とする超純水製造装置の立ち上げ方法。
  2.  前記振動は600ガル以上である請求項1記載の超純水製造装置の立ち上げ方法。
  3.  前記気体は、窒素、二酸化炭素及び水素から選ばれる1種以上であることを特徴とする請求項1又は2記載の超純水製造装置の立ち上げ方法。
  4.  前記流路に通流される前記過酸化水素又は気体を含有する純水の水圧は、前記超純水製造装置において超純水を製造する際の水圧以上、かつ超純水を製造する際の水圧の2倍以下であることを特徴とする請求項1乃至3のいずれか1項記載の超純水製造装置の立ち上げ方法。
  5.  前記流路に通流される前記過酸化水素又は気体を含有する純水の温度は10℃~45℃であることを特徴とする請求項1乃至4のいずれか1項記載の超純水製造装置の立ち上げ方法。
  6.  前記超純水製造装置は、微粒子除去手段を備え、
     前記微粒子除去手段の流路に前記振動を与えることを特徴とする請求項1乃至5のいずれか1項記載の超純水製造装置の立ち上げ方法。
  7.  前記超純水製造装置の流路を構成する継手、バルブ、曲管部及び分岐部から選ばれる1種以上に前記振動を与えることを特徴とする請求項1乃至6のいずれか1項記載の超純水製造装置の立ち上げ方法。
  8.  前記過酸化水素から発生する酸素又は前記気体が前記純水中に過飽和で溶解される請求項1乃至7のいずれか1項記載の超純水製造装置の立ち上げ方法。
  9.  前記過酸化水素又は気体を含有する純水中に、気泡が含有されることを特徴とする請求項1乃至8のいずれか1項記載の超純水製造装置の立ち上げ方法。
  10.  前記微粒子を除去した後、前記流路に純水を通水して前記過酸化水素又は気体を含有する純水を前記超純水製造装置系外に排出させることを特徴とする請求項1乃至9のいずれか1項記載の超純水製造装置の立ち上げ方法。
PCT/JP2017/017139 2016-05-06 2017-05-01 超純水製造装置の立ち上げ方法 WO2017191829A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780027457.3A CN109153047A (zh) 2016-05-06 2017-05-01 超纯水制造装置的启动方法
KR1020187031072A KR20190005843A (ko) 2016-05-06 2017-05-01 초순수 제조 장치의 기동 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-093121 2016-05-06
JP2016093121A JP2017200683A (ja) 2016-05-06 2016-05-06 超純水製造装置の立ち上げ方法

Publications (1)

Publication Number Publication Date
WO2017191829A1 true WO2017191829A1 (ja) 2017-11-09

Family

ID=60203670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017139 WO2017191829A1 (ja) 2016-05-06 2017-05-01 超純水製造装置の立ち上げ方法

Country Status (4)

Country Link
JP (1) JP2017200683A (ja)
KR (1) KR20190005843A (ja)
CN (1) CN109153047A (ja)
WO (1) WO2017191829A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111108069A (zh) * 2018-02-07 2020-05-05 栗田工业株式会社 超纯水制造***的微粒管理方法
JP2021020172A (ja) * 2019-07-29 2021-02-18 オルガノ株式会社 超純水又はガス溶解水供給システムの製造方法並びに洗浄方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112796143B (zh) * 2021-02-03 2022-10-04 远通纸业(山东)有限公司 一种使用双氧水对细小纤维进行调色的***及方法
JP7033691B1 (ja) 2021-10-29 2022-03-10 野村マイクロ・サイエンス株式会社 温超純水製造システムの立ち上げ方法、立ち上げプログラム、及び温超純水製造システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151459A (ja) * 2000-11-10 2002-05-24 Kurita Water Ind Ltd 洗浄方法
JP2014000548A (ja) * 2012-06-20 2014-01-09 Nomura Micro Sci Co Ltd 超純水製造システムの立ち上げ時の洗浄方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244483A (ja) * 1986-04-16 1987-10-24 川崎重工業株式会社 配管の洗浄方法
JPH03288583A (ja) * 1990-04-03 1991-12-18 Nomura Micro Sci Kk 純水製造システムにおける配管類の洗浄方法
JP2002052322A (ja) 2000-08-10 2002-02-19 Kurita Water Ind Ltd 洗浄方法
JP4480061B2 (ja) * 2002-10-03 2010-06-16 オルガノ株式会社 超純水製造装置及び該装置における超純水製造供給システムの洗浄方法
JP4449080B2 (ja) 2005-04-15 2010-04-14 オルガノ株式会社 超純水製造供給装置の洗浄方法
KR101407831B1 (ko) * 2007-03-30 2014-06-17 쿠리타 고교 가부시키가이샤 초순수 제조 시스템의 세정 살균 방법
JP4893426B2 (ja) * 2007-04-02 2012-03-07 パナソニック株式会社 超音波洗浄装置および同装置を用いた食器洗い機
JP2011088979A (ja) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd 洗浄液、洗浄方法、洗浄液製造装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151459A (ja) * 2000-11-10 2002-05-24 Kurita Water Ind Ltd 洗浄方法
JP2014000548A (ja) * 2012-06-20 2014-01-09 Nomura Micro Sci Co Ltd 超純水製造システムの立ち上げ時の洗浄方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111108069A (zh) * 2018-02-07 2020-05-05 栗田工业株式会社 超纯水制造***的微粒管理方法
JP2021020172A (ja) * 2019-07-29 2021-02-18 オルガノ株式会社 超純水又はガス溶解水供給システムの製造方法並びに洗浄方法
JP7387320B2 (ja) 2019-07-29 2023-11-28 オルガノ株式会社 超純水又はガス溶解水供給システムの製造方法並びに洗浄方法

Also Published As

Publication number Publication date
KR20190005843A (ko) 2019-01-16
JP2017200683A (ja) 2017-11-09
CN109153047A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
TWI491566B (zh) Wash sterilization method of ultra pure water manufacturing system
WO2017191829A1 (ja) 超純水製造装置の立ち上げ方法
KR101514863B1 (ko) 전자 재료용 세정수, 전자 재료의 세정 방법 및 가스 용해수의 공급 시스템
WO2018163706A1 (ja) 中空糸膜装置の洗浄方法、限外ろ過膜装置、超純水製造装置及び中空糸膜装置の洗浄装置
JP4867180B2 (ja) 浸漬型膜分離装置及びその薬品洗浄方法
JP2014000548A (ja) 超純水製造システムの立ち上げ時の洗浄方法
JP2016185520A (ja) 逆浸透膜装置の薬品洗浄方法及び薬品洗浄装置
JP2017113729A (ja) 膜洗浄剤、膜洗浄液及び膜の洗浄方法
JP2002151459A (ja) 洗浄方法
JP5320665B2 (ja) 超純水製造装置および方法
JP2011161418A (ja) 超純水製造システムの洗浄方法
TWI721213B (zh) 基板洗淨裝置及基板洗淨方法
US10865130B2 (en) Apparatus and method for producing alkaline water for cleaning electronic device
TWI699245B (zh) 超純水製造系統的洗淨方法
JP4747659B2 (ja) 超純水製造供給装置の洗浄方法
JP3620577B2 (ja) 超純水製造システムの洗浄方法
JP2003145148A (ja) 超純水供給装置及び超純水供給方法
JP7387320B2 (ja) 超純水又はガス溶解水供給システムの製造方法並びに洗浄方法
JP2007260211A (ja) 超純水製造システムの殺菌洗浄方法
JP2004026987A (ja) 超純水製造システムの洗浄方法
JP2022187148A (ja) 水処理装置の立上げ方法および洗浄方法
TW202313485A (zh) 超純水製造用離子交換裝置、超純水製造系統及超純水製造方法
JP2011045856A (ja) Uf膜モジュールの洗浄方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187031072

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792761

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792761

Country of ref document: EP

Kind code of ref document: A1