WO2017187606A1 - 電力変換装置およびそれを備えた空気調和機 - Google Patents

電力変換装置およびそれを備えた空気調和機 Download PDF

Info

Publication number
WO2017187606A1
WO2017187606A1 PCT/JP2016/063378 JP2016063378W WO2017187606A1 WO 2017187606 A1 WO2017187606 A1 WO 2017187606A1 JP 2016063378 W JP2016063378 W JP 2016063378W WO 2017187606 A1 WO2017187606 A1 WO 2017187606A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
relay member
bus bar
wiring
conversion device
Prior art date
Application number
PCT/JP2016/063378
Other languages
English (en)
French (fr)
Inventor
憲嗣 岩崎
有澤 浩一
篠本 洋介
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680084806.0A priority Critical patent/CN109155594B/zh
Priority to US16/082,323 priority patent/US10978960B2/en
Priority to JP2018514060A priority patent/JP6843843B2/ja
Priority to PCT/JP2016/063378 priority patent/WO2017187606A1/ja
Publication of WO2017187606A1 publication Critical patent/WO2017187606A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the present invention relates to a power converter and an air conditioner including the same, and more particularly to a power converter for canceling harmonics and an air conditioner including such a power converter.
  • three-phase alternating current is generally used as a power source (commercial power source).
  • the three-phase alternating current is converted into direct current, and the electric motor of the air conditioner is driven by inverter control of the direct current.
  • the electric motor is driven by the inverter control, a harmonic current is generated.
  • the generated harmonic current rides on the alternating current and the current waveform is distorted.
  • the proportion of harmonics contained in the commercial power supply is legally regulated and is required to be suppressed within a predetermined proportion.
  • a power conversion device as a device for canceling the generated harmonics.
  • a power conversion device is called an active filter.
  • the power converter is connected in parallel to the three-phase AC wiring.
  • a current having a phase opposite to the phase of the harmonic current included in the alternating current is generated.
  • the power converter is composed of a power semiconductor element, a reactor, a ripple filter, a smoothing capacitor, a control circuit element, and the like. These elements are mounted on predetermined modules, for example, in such a manner that the power semiconductor element is mounted on one module and the reactor and the ripple filter are mounted on another module.
  • the one module and the other module are electrically connected by a metal wiring member such as a bus bar, for example.
  • a 200V three-phase alternating current (specification SL) and a 400V three-phase alternating current (specification SH) as commercial power sources for electric motors.
  • SL and the specification SH the bus bar length, width, thickness, and the like are strictly determined. For this reason, it is necessary to manufacture a power converter according to the power supply specification, and a wiring member such as a bus bar of one specification has not been used as a wiring member such as a bus bar of the other specification.
  • the present invention has been made to solve the above-described problems, and one object is to provide a power conversion device having versatility with respect to power supply specifications having different voltages. It is providing the air conditioner provided with such a power converter device.
  • One power converter concerning the present invention is a power converter provided with the 1st wiring member which has the 1st end and the 2nd end which electrically connects the 1st module and the 2nd module.
  • the first relay member and the second relay member are provided.
  • the first relay member is connected to the first module, and connects the first end of the first wiring member and the first module.
  • the second relay member is connected to the second module, and connects the second end of the first wiring member and the second module.
  • the number of the first wiring members that connect the first relay member and the second relay member is the first number.
  • the number of first wiring members connecting the first relay member and the second relay member is A second number less than one.
  • One air conditioner according to the present invention is an air conditioner including the above-described power conversion device.
  • versatility can be given to power supply specifications having different voltages by changing the connection mode of the first wiring member to the first relay member and the second relay member.
  • a power conversion device having versatility can be applied to power supply specifications having different voltages.
  • FIG. 1 It is a block diagram of the power converter device connected in parallel between a power supply and a load based on Embodiment 1.
  • FIG. 1 It is a figure which shows the electric current which flows into the load to which the power converter device which concerns on Embodiment 1 was connected.
  • Embodiment 1 it is a top view which shows a power converter device typically.
  • Embodiment 1 it is the elements on larger scale for demonstrating the outline
  • Embodiment 1 it is the elements on larger scale which show the structure of a bus bar.
  • Embodiment 1 it is a partial exploded perspective view which shows the connection structure of the bus bar in the case of 200V type
  • Embodiment 1 it is an enlarged plan view which shows the connection structure of the bus bar in the case of the power supply specification of 200V type
  • Embodiment 1 it is a partial exploded perspective view which shows the connection structure of the bus bar in the case of 400V type
  • Embodiment 1 it is a top view which shows the comparison with the connection structure from which a bus bar differs in the case of 400V type
  • it is a circuit diagram which shows (DELTA) connection of the ripple filter in a power converter device.
  • it is a circuit diagram which shows the Y connection of a ripple filter.
  • it is the elements on larger scale which show an example of the pattern of the printed wiring formed in the board
  • Embodiment 1 it is the elements on larger scale which show an example of the substantive structure of Y connection formed by connecting a wiring member to the wiring terminal of the printed wiring formed in the board
  • FIG. 6 is a partially enlarged plan view for explaining an outline of a bus bar connection structure in the power conversion device according to the second embodiment.
  • Embodiment 2 it is the elements on larger scale which show the structure of a relay member.
  • Embodiment 2 it is the elements on larger scale which show the structure of a bus bar.
  • Embodiment 2 it is an enlarged plan view which shows the connection structure of the bus bar in the case of the power supply specification of 200V type
  • Embodiment 2 it is an enlarged plan view which shows the connection structure of the bus bar in the case of the power supply specification of 400V type
  • FIG. 6 is an enlarged perspective view showing a structure of a relay member in a power conversion device according to a third embodiment.
  • it is an expansion perspective view which shows the structure of the bus bar in a power converter device.
  • Embodiment 3 it is a partial exploded perspective view which shows the connection structure of the bus bar in the case of 200V type
  • Embodiment 3 it is an enlarged plan view which shows the connection structure of the bus bar in the case of the power supply specification of 200V type
  • Embodiment 3 it is a partial exploded perspective view which shows the connection structure of the bus bar in the case of 400V type
  • Embodiment 3 it is an enlarged plan view which shows the connection structure of the bus bar in the case of 400V type
  • Embodiment 4 it is an expansion perspective view which shows the structure of the bus bar in a power converter device.
  • Embodiment 4 it is a partial exploded perspective view which shows the connection structure of the bus bar in the case of 200V type
  • Embodiment 4 it is an enlarged plan view which shows the connection structure of the bus bar in the case of 200V type
  • Embodiment 4 it is an enlarged plan view which shows the connection structure of the bus bar in the case of 400V type
  • the power converter device which concerns on Embodiment 5 it is the elements on larger scale which show the structure of a relay member. In Embodiment 5, it is the elements on larger scale which show the structure of a bus bar.
  • Embodiment 5 it is the elements on larger scale which show the connection structure of the bus bar in the case of 200V type
  • FIG. 11 is a first enlarged plan view showing a lead wire connection structure in the case of a 200 V system power supply specification in a power conversion device according to a sixth embodiment. In Embodiment 6, it is the 1st enlarged plan view which shows the connection structure of the lead wire in the case of 400V type power supply specification.
  • FIG. 7 is a partial perspective view showing a building air conditioner to which the power conversion device according to Embodiments 1 to 6 is applied.
  • FIG. 1 shows a block diagram. As shown in FIG. 1, a load device 53 is electrically connected to an AC power source 51. The power converter 1 for canceling harmonics is electrically connected to the load device 53 in parallel as an active filter.
  • the load device 53 includes a load 57, a rectifier 54 that rectifies three-phase AC power sent from the AC power supply 51 and converts it into DC, a DC reactor 55 connected to the output side of the rectifier 54, and an output from the rectifier 54.
  • the power conversion device 1 includes a capacitor 29 that stores power from a power source, a switching element 13 that switches power stored in the capacitor 29, and a current that is connected to the switching element 13 and has a phase opposite to that of the harmonics.
  • the main reactor 21 and the ripple filter 16 are provided.
  • the waveform of the load current including the harmonics generated in the load device 53 is shown in FIG.
  • the waveform of the active filter current that suppresses the harmonic current included in the load current, generated in the power conversion device 1, is shown in FIG.
  • the waveform of the active filter current is opposite in phase to the harmonic current included in the load current.
  • the power conversion device 1 includes a control module 5, a power module 11, a ripple filter module 15, a resistance module 23, and a terminal block 30.
  • the control module 5 includes elements constituting the control unit 6 including the microcomputer 7.
  • a switching element 13 such as an IGBT is mounted on the power module 11.
  • a wide band gap semiconductor element such as SiC having a high breakdown voltage and capable of operating at a high temperature is preferable.
  • the terminal block 30 is electrically connected to wiring (see FIG. 1) branched from the AC power source 51.
  • the ripple filter module 15 includes a main reactor 21 and a ripple filter 16.
  • a ripple filter reactor 17 and a ripple filter capacitor 19 are mounted as the ripple filter 16.
  • a relay 27 and a capacitor 29 are mounted on the resistance module 23.
  • each module in FIG. 3 and the block diagram shown in FIG. 1 corresponding portions (areas) are shown with the same line type.
  • an alternate long and short dash line surrounding the control module 5 corresponds to a portion surrounded by the alternate long and short dash line shown in FIG.
  • one module and another module are electrically connected by a wiring member (bus bar, lead wire, etc.) and a relay member.
  • a wiring member bus bar, lead wire, etc.
  • a relay member for the wiring member, specifications such as a shape and a dimension are determined for each portion to which the wiring member is applied, according to the interval between elements (components) mounted on the module, the arrangement of the elements, and the heat radiation specifications.
  • first module 3 a first module 3 a
  • second module 3 b another module 3
  • One end side and the other end side of the bus bar 31 are respectively fixed to the relay member 33.
  • the relay member 33 is a member that is fixed to the circuit terminal 41 of each module 3 and relays the bus bar 31 and the module 3.
  • the module 3 representatively shows each module such as the control module 5 for convenience of explanation.
  • the circuit terminal 41 has a function of positioning the relay member 33 to which the bus bar 31 is attached and holding the relay member 33.
  • the circuit terminals 41 are formed separately from the board of the module 3, but may be formed integrally with the board of the module 3.
  • the circuit terminal 41 is arrange
  • the circuit terminal 41 is formed with a connection portion 42 that is a hole used for attaching the relay member 33.
  • the relay member 33 is a rectangular plate-like conductive member. As shown in FIG. 5, the connecting member 34a and the detecting portion 36a are formed on one side of the relay member 33 with a bisector HL1 that bisects the width WL1, and the connecting portion on the other side. 34b and the detection part 36b are formed.
  • the connecting portions 34 a and 34 b are holes used for attaching the bus bar 31 to the relay member 33.
  • the detection units 36 a and 36 b are provided in an area covered by the bus bar 31 when the bus bar 31 is attached to the relay member 33.
  • detection units 36a and 36b are provided in the vicinity of each of the connection unit 34a and the connection unit 34b.
  • the bus bar 31 is a rectangular plate-like conductive member. As shown in FIG. 6, the bus bar 31 has a width WL2 and extends in a band shape. A connecting portion 32 is formed on one side across a bisector HL2 that bisects the width WL2.
  • the side part closer to the connection part 32 is defined as a side part 131a.
  • the connection part 32 is a hole used for attaching the bus bar 31 to the relay member 33.
  • One bus bar 31 is set to a size corresponding to the current in the case of 400 V system as a power supply specification.
  • a power supply specification when the 200V system is used, if the same power as in the 400V system is used, the current is twice that of the 400V system, so the bus bar 31 has two bus bars per system. 31 (first bus bar 31a, second bus bar 31b) are arranged in parallel (see FIG. 7).
  • connection structure assuming a 200V power supply specification will be described as a connection structure for busbars and the like.
  • the relay member 33 is fixed to the circuit terminal 41 by a screw 39 inserted through the connection portion 34 c of the relay member 33 and the connection portion 42 of the circuit terminal 41.
  • One end side of the first bus bar 31 a is fixed to the relay member 33 by a screw 39 inserted through the connection portion 32 of the first bus bar 31 a and the connection portion 34 a of the relay member 33.
  • the first bus bar 31a is arranged such that the side portion 131a of the first bus bar 31a is arranged on the side where the connection portion 34b (bisector HL1) is located with respect to the connection portion 34a of the relay member 33. It is fixed to the relay member 33.
  • the one end side of the second bus bar 31b is fixed to the relay member 33 by a screw 39 inserted through the connection part 32 of the second bus bar 31b and the connection part 34b of the relay member 33.
  • the second bus bar 31b is arranged such that the side portion 131a of the second bus bar 31b is arranged on the side where the connection portion 34a (bisector HL1) is located with respect to the connection portion 34b of the relay member 33. It is fixed to the relay member 33.
  • the other end sides of the first bus bar 31a and the second bus bar 31b are also fixed to a relay member (not shown) in the same manner as the one end side.
  • the number of wires varies depending on the number of phases.
  • one module connected to a three-phase induction motor is provided with a U-phase wiring, a V-phase wiring, and a W-phase wiring. Therefore, three relay members that electrically connect one module to another module are provided for each of the one module and the other module. Each relay member of the one module and each corresponding relay member of the other module are electrically connected by a bus bar.
  • a connection structure in which two bus bars 31 of a first bus bar 31a and a second bus bar 31b are arranged in parallel per phase ( 7) is arranged for three phases.
  • the distance between the two bus bars 31 connected to the first bus bar 31a is set to the distance D.
  • This interval D is set to an interval equal to or greater than the insulation distance with respect to the maximum voltage applied by the power source.
  • the interval DD between the one-phase relay member 33 and the other-phase relay member 33 closest to the one-phase relay member 33 is set to be an interval DD longer than the interval D.
  • the intervals D and DD will be described.
  • the interval between wiring members adjacent to each other depends on the amount of current flowing in the module and the applied voltage. For example, when the distance between the bus bars, the distance between the relay members, or the distance between the bus bars and the relay member is narrow with respect to the input voltage, the insulation distance may not be ensured. In that case, there is a possibility that the circuit is destroyed due to an electrical short circuit.
  • the minimum insulation distance required when the maximum voltage is input from AC power supply is set so that the above distance is secured.
  • connection structure assuming a 400 V power supply specification will be described as a connection structure for busbars and the like.
  • one end side of the bus bar 31 is fixed to the relay member 33 by a screw 39 inserted through the connection portion 32 of the bus bar 31 and the connection portion 34 a of the relay member 33.
  • the side part 131b of the bus bar 31 is arranged on the side where the connection part 34b (bisector HL1) is located with respect to the connection part 34a of the relay member 33, and the side part 131a of the bus bar 31 is connected to the connection part 34a.
  • the bus bar 31 is fixed to the relay member 33 so as to be arranged on the side opposite to the side on which 34b (bisector HL1) is located.
  • the bus bar 31 having the connection structure assuming the 200 V system power supply specification is rotated 180 degrees about the longitudinal direction as an axis, and the bus bar 31 is inverted, and the bus bar 31 is connected to the relay member. 33 is fixed.
  • the other end side of the bus bar 31 is also fixed to a relay member (not shown) in the same manner as the one end side.
  • a connection structure in which one bus bar 31 is arranged per phase is arranged for three phases. .
  • the interval between the bus bars 31 that are closest to each other is set to the interval D1.
  • This interval D1 is an interval equal to or greater than the insulation distance with respect to the maximum voltage applied by the power supply.
  • the interval D2 between the relay member 33 and the relay member 33 that are closest to each other is set to the interval DD.
  • the interval DD is an interval equal to or greater than the insulation distance with respect to the maximum voltage applied by the power supply.
  • the distance D2 does not change between the case of the 400V system power supply specification and the case of the 200V system power supply specification.
  • the bus bar 31 is connected to the relay member 33 in a state where the bus bar 31 is inverted with respect to the mounting method of the bus bar 31 in the case of the 200 V system power supply specification (see FIG. 8). Fixed.
  • the side portion 131a closer to the connection portion 32 of the bus bar 31 is positioned on the side where the connection portion 34b is disposed with respect to the connection portion 34a of the relay member 33.
  • the bus bar 31 is fixed to the relay member 33.
  • the side 131a closer to the connection part 32 of the bus bar 31 is disposed on the side where the connection part 34b is disposed with respect to the connection part 34a of the relay member 33.
  • the bus bar 31 is fixed to the relay member 33 so that the bus bar 31 is located on the opposite side.
  • FIG. 11 shows a connection structure in which the bus bar 31 is fixed to the relay member 33 in the same mounting manner as the 200V power supply specification as a method of fixing the bus bar in the case of the 400V power supply specification.
  • the distance D3 between the bus bars 31 that are closest to each other is the same as the distance D1 shown in FIG.
  • the distance D4 between the bus bar 31 and the relay member 33 that is located next to the bus bar 31 and is closest to the bus bar 31 is the distance DD between the relay member 33 and the relay member 33 that are closest to each other. Narrower than. For this reason, the case where the insulation distance cannot be ensured between the bus bar 31 and the relay member 33 is assumed.
  • the bus bar 31 is fixed to the relay member 33 in a state where the bus bar 31 of the attachment mode in the case of the 200 V system power supply specification is inverted, so that the distance DD The narrower part disappears. Thereby, an insulation distance can be ensured reliably.
  • connection member 34a is formed on one side and the connection portion 34b is formed on the other side of the relay member 33 across the bisector HL1 that bisects the width.
  • the bus bar 31 has a connecting portion 32 on one side with a bisector HL2 that bisects the width.
  • the relay member is provided with two or more connecting portions for connecting the bus bar so that a plurality of bus bars can be attached in accordance with the power supply specification
  • the bus bar 31 and the relay member 33 are connected to the power supply specification having different voltages. It can be applied as a common bus bar and relay member. As a result, only by changing the number of bus bars 31 fixed to the relay member 33, for example, it can be applied to both the case of the 200V system power supply specification and the case of the 400V system power supply specification. The versatility can be improved.
  • the control module 5, the ripple filter module 15, and the resistance module 23 other than the power module 11, for example, have different voltage specifications. It can be applied to the power conversion apparatus.
  • the switching element 13 according to a power supply voltage is mounted. For this reason, the power module 11 corresponding to a power supply voltage is applied.
  • the bus bar 31 having a width by applying the bus bar 31 having a width, the heat of the circuit can be easily radiated. Further, since the bus bar 31 is fixed to the relay member 33, it is difficult for the air flow in the power conversion device to vary, thereby suppressing variations in circuit characteristics due to heat, and consequently variations in quality as the power conversion device. be able to. Moreover, the electrical noise which has the same phase can be reduced because the several bus bar 31 is arrange
  • the power conversion device 1 generates a current having a phase opposite to that of the harmonics generated in the load device 53 and causes a distortion-free sine wave alternating current to flow. While the power conversion device performs such an operation, a current ripple may occur in the power conversion device 1 due to the switching operation. Then, next, an example of the function which suppresses the current ripple which arises in the power converter device 1 is demonstrated.
  • the voltage of the terminal of the power converter is controlled by turning on and off the switching element 13 mounted on the power module 11 based on a signal from the control unit. As a result, the voltage generated in the main reactor 21 is adjusted and a desired current is output (see FIGS. 1 and 2B).
  • a current ripple may be generated, and this current ripple rides on the output current.
  • a ripple filter 16 is provided (see FIG. 1).
  • the ripple filter 16 includes ripple filter reactors 17a, 17b, and 17c connected in series and ripple filter capacitors 19a, 19b, and 19c connected in parallel (see FIGS. 12 and 13). ).
  • General ripple filter capacitors are electrically connected by ⁇ connection or Y connection.
  • ⁇ connection When the voltage is relatively low, a ⁇ connection is used to prioritize securing the capacitance.
  • Y connection is used in order to give priority to ensuring the withstand voltage.
  • FIG. 12 shows ⁇ connections of the ripple filter capacitors 19a, 19b, and 19c in the ripple filter 16 of the power converter.
  • FIG. 13 shows the Y connection of the ripple filter capacitors 19a, 19b, and 19c.
  • a part of the printed wiring 43 for connection and wiring terminals 43a, 43b, 43c, 43d, 43e, 43f, and 43g are provided on the substrate of the ripple filter module 15 of the power converter. Is pre-formed. Some of the printed wirings 43 are connected in common to both the ⁇ connection and the Y connection.
  • predetermined wiring terminals are electrically connected by wiring members 45a, 45b, and 45c, whereby a ⁇ connection or a Y connection is formed.
  • the wiring members 45a, 45b, 45c are common wiring members for both the ⁇ connection and the Y connection.
  • the wiring members 45a, 45b, and 45c are wiring members different from the bus bar 31 as wiring members between the capacitors.
  • the wiring terminal 43a and the wiring terminal 43b are electrically connected by the wiring member 45a.
  • the wiring terminal 43d and the wiring terminal 43e are electrically connected by the wiring member 45b.
  • the wiring terminal 43f and the wiring terminal 43g are electrically connected by the wiring member 45c.
  • the wiring terminal 43a and the wiring terminal 43c are electrically connected by the wiring member 45a.
  • the wiring terminal 43d and the wiring terminal 43f are electrically connected by the wiring member 45b.
  • the ripple filter module 15 is previously formed with a part of the printed wiring 43 for connection and wiring terminals 43a to 43g.
  • predetermined wiring terminals 43a to 43g are electrically connected to each other by wiring members 45a to 45c according to the power supply specifications, whereby a ⁇ connection or a Y connection is formed. .
  • the ripple filter module 15 can be used as a ripple filter module for a power supply specification having a different voltage compared to a case where a ripple filter module in which ⁇ connection (Y connection) is formed as printed wiring in advance is applied. It can be applied as a filter module, and the versatility of the ripple filter module 15 can be improved.
  • Embodiment 2 the 2nd example of the power converter device which applied the bus bar as a wiring member is demonstrated.
  • one module 3 first module 3 a
  • another module 3 second module 3 b
  • the connecting member 34 is formed on the relay member 33.
  • the center of the connecting portion 34 is formed so as to be positioned on a bisector HL1 that bisects the width.
  • the connection part 34 is a hole used for attaching the bus bar 31 to the relay member 33.
  • the bus bar 31 includes an extended portion 231a extending in a strip shape in one direction and two bent portions 231b bent with respect to the extended portion 231a.
  • the bent portions 231b are provided on one end side and the other end side in the longitudinal direction of the extending portion 231a.
  • Each of the two bent portions 231b is bent to the same side at substantially the same angle with respect to the bisector HL1 that bisects the width of the extending portion 231a.
  • a connection portion 32 is formed in each of the two bent portions 231b.
  • the connection part 32 is a hole used for attaching the bus bar 31 to the relay member 33. Since the configuration other than this is the same as the configuration shown in FIGS. 4, 5, and 6, the same members are denoted by the same reference numerals, and the description thereof will not be repeated unless necessary.
  • connection structure assuming a 200V power supply specification will be described as a connection structure for busbars and the like.
  • two bus bars 31 (the first bus bar 31a and the second bus bar 31b) are fixed to one relay member 33.
  • the one end side of the first bus bar 31a and the one end side of the second bus bar 31b are the connection part 32 of the first bus bar 31a, the connection part 32 of the second bus bar 31b, and the connection part 34 of the relay member 33. It is fixed to the relay member 33 by a screw 39 inserted through and.
  • the connection structure in which two first bus bars 31a and second bus bars 31b are arranged in parallel as shown in FIG. Separated for three phases.
  • connection structure assuming a 400 V power supply specification will be described as a connection structure for busbars and the like.
  • one bus bar 31 is fixed to one relay member 33.
  • one end side of the bus bar 31 is fixed to the relay member 33 by a screw 39 inserted through the connection portion 32 of the bus bar 31 and the connection portion 34 of the relay member 33.
  • the connection structure shown in FIG. 22 in which one bus bar 31 is connected per phase is arranged for three phases at intervals from each other in a manner that ensures an insulation distance.
  • connection member 34 is formed on the relay member 33 so that the center is located on the bisector HL1 that bisects the width.
  • the bus bar 31 is provided with a bent portion 231b (see FIG. 19) which is bent with respect to the extending portion 231a, and a connecting portion 32 is formed on the bent portion 231b.
  • the bus bar 31 and the relay member 33 can be applied as a common bus bar and relay member for power supply specifications having different voltages.
  • the number of bus bars 31 fixed to the relay member 33 for example, it can be applied to both the case of the 200V system power supply specification and the case of the 400V system power supply specification.
  • the versatility can be improved.
  • first bus bar 31a and the second bus bar 31b are fixed by screws 39 inserted through the common connection portion 34 in the relay member 33, thereby minimizing the number of connection portions 34 formed in the relay member 33. Can be suppressed. Thereby, manufacturing cost can be held down. Further, the size of the relay member 33 can be further reduced by the amount of the connecting portions 34 being minimized, and the material cost can be suppressed.
  • the control module 5 the ripple filter module other than the power module 11, as described in the first embodiment. 15 and the resistance module 23 can be applied to a power conversion device of power supply specifications with different voltages.
  • Embodiment 3 the 3rd example of the power converter device which applied the bus bar as a wiring member is demonstrated.
  • the power conversion device according to the third example there is no circuit terminal, and the relay member is directly connected to the module.
  • the relay member 33 is provided with convex connection portions 35a, 35b, and 35c.
  • the module 3 (see FIG. 26) is attached to the connection portion 35c.
  • a bus bar 31 (see FIG. 24) is attached to the connecting portions 35a and 35b.
  • the bus bar 31 has a width WL2 and extends in a band shape.
  • An opening-like connecting portion 32 is formed on a bisector HL2 that bisects the width WL2. Since the configuration other than this is the same as the configuration shown in FIGS. 4, 5, and 6, the same members are denoted by the same reference numerals, and the description thereof will not be repeated unless necessary.
  • connection structure assuming a 200V power supply specification will be described as a connection structure for busbars and the like.
  • one end side of the first bus bar 31a is in a mode in which the connection portion 35a (convex shape) of the relay member 33 is inserted into the connection portion 32 that is a hole formed in the first bus bar 31a. It is fixed to the relay member 33.
  • One end side of the second bus bar 31b is fixed to the relay member 33 in such a manner that the connection portion 35a (convex shape) of the relay member 33 is inserted into the connection portion 32 which is a hole formed in the second bus bar 31b. Yes.
  • the other end sides of the first bus bar 31a and the second bus bar 31b are also fixed to a relay member (not shown) in the same manner as the one end side.
  • connection structure in which two bus bars 31 of a first bus bar 31a and a second bus bar 31b are arranged in parallel per phase is arranged for three phases.
  • the first bus bar 31a attached to the second bus bar 31b attached to the first relay member 33a or the like and the other first relay member 33a or the like located next to the first relay member 33a. Is set to a distance equal to or greater than the insulation distance when a maximum voltage (for example, 400 V) is applied.
  • connection structure assuming a 400 V power supply specification will be described as a connection structure for busbars and the like.
  • one end side of the bus bar 31 is fixed to the relay member 33 in such a manner that the connection portion 35 a (convex shape) of the relay member 33 is inserted into the connection portion 32 of the bus bar 31.
  • connection structure in which one bus bar 31 is arranged per phase is arranged for three phases.
  • the distance D between the first relay member 33a and the bus bar 31 attached to the other first relay member 33a or the like located next to the first relay member 33a is the maximum voltage (for example, 400V). Is set to a distance that is equal to or greater than the insulation distance when.
  • the bus bar 31 and the relay member 33 can be applied as a common bus bar and relay member for power supply specifications having different voltages.
  • the number of bus bars 31 fixed to the relay member 33 for example, it can be applied to both the case of a 200V system power supply specification and the case of a 400V system power supply specification. Can be improved.
  • connection portion 32 is formed on a bisector HL2 that bisects the width WL2.
  • Embodiment 4 the 4th example of the power converter device to which a bus bar is applied as a wiring member is explained.
  • the power conversion device according to the fourth example includes a connection structure in which bus bars are arranged in an overlapping manner.
  • the relay member 33 is provided with convex connection portions 35 and 35c.
  • the module 3 (see FIG. 32) is attached to the connection portion 35c.
  • a bus bar 31 (see FIG. 30) is attached to the connecting portion 35.
  • a bus bar 31 having a width WL2 and extending in a strip shape has a connection portion 32 formed on a bisector HL2 that bisects the width WL2.
  • the connection part 32 of the first bus bar 31a and the connection part 32 of the second bus bar 31b communicate with each other. Since the configuration other than this is the same as the configuration shown in FIGS. 4, 5, and 6, the same members are denoted by the same reference numerals, and the description thereof will not be repeated unless necessary.
  • connection structure assuming a 200V power supply specification will be described as a connection structure for busbars and the like.
  • one end side of the first bus bar 31a and one end side of the second bus bar 31b are connected to the connection part 32 of the first bus bar 31a and the connection part 32 of the second bus bar 31b. It is fixed to the relay member 33 in such a manner that 35a (convex shape) is inserted. The other end side of the first bus bar 31a and the other end side of the second bus bar 31b are also fixed to a relay member (not shown) in the same manner as the one end side.
  • connection structure in which two bus bars 31 of a first bus bar 31a and a second bus bar 31b are overlapped per phase (see FIG. 31) is arranged for three phases.
  • the distance D between the first relay member 33a and the other first relay member 33a located next to the first relay member 33a is an insulation distance when a maximum voltage (for example, 400 V) is applied.
  • a maximum voltage for example, 400 V
  • connection structure assuming a 400 V power supply specification will be described as a connection structure for busbars and the like.
  • one end side of one bus bar 31 is fixed to the relay member 33 in such a manner that the connection portion 35a (convex shape) of the relay member 33 is inserted into the connection portion 32 of the bus bar 31 (FIG. 31).
  • connection structure in which one bus bar 31 is arranged per phase is arranged for three phases.
  • the distance D between the first relay member 33a and the other first relay member 33a located next to the first relay member 33a is an insulation distance when a maximum voltage (for example, 400 V) is applied.
  • a maximum voltage for example, 400 V
  • the bus bar 31 and the relay member 33 can be applied as a common bus bar and relay member for power supply specifications having different voltages.
  • the bus bar 31 and the relay member 33 can be applied as a common bus bar and relay member for power supply specifications having different voltages.
  • the above-described power conversion device 1 has a connection structure in which the first bus bar 31a and the second bus bar 31b are arranged one above the other. Accordingly, the distance D (see FIGS. 32 and 33) between one relay member 33 and another relay member 33 may be set to a distance equal to or greater than the insulation distance. For example, the first relay member shown in FIG. Compared with the case where the distance D between 33a and the bus bar 31 is set to a distance equal to or greater than the insulation distance, the region where the series of bus bars 31 are arranged can be narrowed. As a result, it is possible to contribute to downsizing of the power conversion device 1.
  • connection portions for connecting the bus bars are provided in one relay member
  • Embodiment 2 the case where one connection part connected with a bus bar was provided in one relay member was mentioned as an example.
  • the number of connecting portions provided in one relay member is not limited to one or two, and the number may be increased, for example, three or four, depending on the power supply specification.
  • the number of connecting parts of one relay member and the number of connecting parts of one other relay member such as providing one connecting part on one relay member and providing two connecting parts on another relay member, etc. May not match.
  • Embodiment 5 an example of a power conversion device including a detection unit that detects the number of bus bars connected to the relay member will be described.
  • the bus bar the bus bar described in the first embodiment is taken as an example.
  • the relay member 33 is provided with two detectors 36a and 36b.
  • the bus bar 31 is formed with one connection portion 32.
  • the detection unit 36a and the detection unit 36b are arranged in an area covered by the bus bar 31.
  • an optical sensor as the detection units 36a and 36b, it is possible to optically detect that the bus bar 31 is attached.
  • a contact sensor it is possible to detect that the bus bar 31 is in physical contact.
  • the length in the width direction substantially orthogonal to the direction in which the relay member 33 extends and the length in the width direction substantially orthogonal to the direction in which the bus bar 31 extends are both referred to as width direction length.
  • the direction in which the relay member 33 extends is, for example, a direction from the first module 3a toward the second module 3b as shown in FIG.
  • the length in the width direction between the center of the connecting portion 34a formed on the relay member 33 and the one detecting portion 36a is defined as a length LD.
  • the length in the width direction between the center of the connection part 34a and the other detection part 36b is defined as a length LC.
  • the length in the width direction between the center of the connection portion 32 formed on the bus bar 31 and the side portion 131a is defined as a length LB.
  • the length in the width direction between the center of the connecting portion 32 and the side portion 131b is defined as a length LA.
  • the two bus bars 31 are connected to one relay member 33 (see FIG. 36).
  • the length LA is required to be longer than the length LD ( Length LA> Length LD).
  • Length LA> Length LD the length LA is required to be longer than the length LD.
  • one bus bar 31 is attached to one relay member 33 in a state where the bus bar 31 of the attachment mode in the case of the 200V system power supply specification is inverted. Fixed.
  • the length LB is longer than the length LD (LB> LD).
  • the length LA is required to be shorter than the length LC (length LC> length LA).
  • the length LB is long, the length LA is longer than the length LB, and the length LC is required to be longer than the length LA (LC> LA> LB> LD).
  • the detection circuit 9 determines how many bus bars 31 are connected to the relay member 33. Here, it is determined whether the bus bar 31 is not connected to the relay member 33, when one bus bar 31 is connected, or when two bus bars 31 are connected. .
  • the detection pattern A shown in FIG. 38 is determined as “1” when the bus bar 31 is connected, and as “0” when the bus bar 31 is not connected.
  • a detection pattern is shown.
  • the detection pattern B indicates a detection pattern in which “0” is determined when the bus bar 31 is connected and “1” is determined when the bus bar 31 is not connected.
  • optimum parameters are stored in advance for each power supply specification having a different voltage.
  • an optimum parameter corresponding to the power supply specification is set as a power conversion device from among the parameters based on the detection pattern.
  • parameters corresponding to the voltage and current of the 400V system are set as the power conversion device used for the 400V system power supply.
  • parameters corresponding to the voltage and current of the 200V system are set as the power conversion device used for the 200V system power supply.
  • bus bar connection failure When no bus bar 31 is connected to the relay member 33, it is determined that the bus bar 31 is not connected (bus bar connection failure).
  • the bus bar 31 described in the first embodiment is taken as an example of the bus bar 31, but the bus bar 31 and the relay member described in the second embodiment are used.
  • the detection units 36a and 36b can also be applied to the power conversion device to which 33 is applied.
  • Embodiment 6 a power conversion device to which a lead wire is applied as the wiring member will be described.
  • the same relay member to which the bus bar is fixed is applied as the relay member.
  • the lead wire is fixed to the relay member according to the power supply specification.
  • connection structure assuming a 200V power supply specification will be described as a connection structure for lead wires and the like.
  • an opening-shaped connecting portion 38 is formed on one end side and the other end side of the lead wire 37.
  • One end side of the first lead wire 37 a is fixed to the relay member 33 by a screw 39 inserted through the connection portion 38 of the first lead wire 37 a and the connection portion 34 a of the relay member 33.
  • One end side of the second lead wire 37 b is fixed to the relay member 33 by a screw 39 inserted through the connection portion 38 of the second lead wire 37 b and the connection portion 34 b of the relay member 33.
  • the other end sides of the first lead wire 37a and the second lead wire 37b are also fixed to the relay member 33 in the same manner as the one end side.
  • this connection structure is arranged for three phases similarly to the connection structure shown in FIG.
  • symbol is attached
  • connection structure assuming a 400 V power supply specification will be described as a connection structure for lead wires and the like.
  • one end side of the lead wire 37 is fixed to the relay member 33 by a screw 39 inserted through the connection portion 38 of the lead wire 37 and the connection portion 34 a of the relay member 33.
  • the other end side of the lead wire 37 is also fixed to the relay member 33 in the same manner as the one end side.
  • connection structure In a power converter using a 400V system three-phase alternating current power supply, this connection structure is arranged for three phases as in the connection structure shown in FIG. Since the configuration other than this is the same as the connection structure shown in FIG. 10, the same reference numerals are given to the same members, and the description thereof will not be repeated unless necessary.
  • the relay member 33 has two connection portions 34a and 34b.
  • the lead wire 37 is formed with a connecting portion 38.
  • the lead wire 37 and the relay member 33 can be applied as a common lead wire and relay member for power supply specifications having different voltages.
  • the lead wire 37 and the bus bar 31 may be used in combination as necessary.
  • connection structure assuming a 200V power supply specification will be described as a connection structure for lead wires and the like.
  • the one end side of the first lead wire 37a and the one end side of the second lead wire 37b are connected to the connecting portions 38 of the first lead wire 37a and the second lead wire 37b and the relay member 33, respectively.
  • the relay member 33 is fixed by a screw 39 inserted through the portion 34.
  • the other end sides of the first lead wire 37a and the second lead wire 37b are also fixed to the relay member 33 in the same manner as the one end side.
  • this connection structure is arranged for three phases similarly to the connection structure shown in FIG.
  • symbol is attached
  • connection structure assuming a 400 V power supply specification will be described as a connection structure for lead wires and the like.
  • one end side of the lead wire 37 is fixed to the relay member 33 by a screw 39 inserted through the connection portion 38 of the lead wire 37 and the connection portion 34 of the relay member 33.
  • the other end side of the lead wire 37 is also fixed to the relay member 33 in the same manner as the one end side.
  • connection structure In a power converter using a 400V system three-phase alternating current power supply, this connection structure is arranged for three phases as in the connection structure shown in FIG. Since the configuration other than this is the same as the connection structure shown in FIG. 10, the same reference numerals are given to the same members, and the description thereof will not be repeated unless necessary.
  • one connecting portion 34 is formed on the relay member 33.
  • the lead wire 37 is formed with a connecting portion 38.
  • the lead wire 37 and the relay member 33 can be applied as a common lead wire and relay member for different power supply specifications.
  • the lead wire 37 and the bus bar 31 may be used in combination as necessary.
  • Embodiment 7 Here, an example of an air conditioner to which the power conversion device described in each embodiment is applied will be described.
  • the air conditioner 61 used in a building includes a multi-air conditioner in which a plurality of indoor units 67 are connected to a single outdoor unit 65.
  • the outdoor unit 65 is installed in, for example, an outdoor unit 64 provided on the roof of a building 63.
  • the power converter 1 is installed in the outdoor unit 64.
  • the power conversion device 1 generates a current having an opposite phase to the current ripple generated with the operation of the air conditioner 61 and outputs the current to the AC power source. As a result, the current ripple is canceled, and an undistorted current flows through the AC power supply.
  • a bus bar or the like may be applied for electrical connection.
  • the capacity of the capacitor 29 is required to be a capacity corresponding to the voltage of the power supply.
  • the bus 29 is electrically connected to the board on which the capacitor 29 and the resistor element 25 are mounted by using a bus bar 31 or the like, thereby allowing versatility and small size of the board on which the resistor element is mounted. Can be achieved.
  • control module 5 shown in FIG. 3 is provided with two terminals (not shown) for receiving power.
  • two terminals not shown
  • a transformer (not shown) is mounted on the area of the substrate provided between the terminal and the input unit to which the control power is input.
  • the power conversion device 1 when used as a power conversion device of a 200 V system power supply specification, it is not necessary to mount a transformer on the substrate. For this reason, a jumper wire may be arranged in a region where the transformer is mounted to electrically connect the terminal and the input unit. By applying such a jumper wire, the versatility of the substrate can be improved as compared with the case where a substrate on which a transformer is mounted and a substrate on which a transformer is not mounted are prepared in advance. In addition, a wiring member different from a bus bar etc. is applied to a jumper wire.
  • the power conversion device used as an active filter has been described as an example.
  • the power conversion device 1 can also be used as an inverter device.
  • the ripple filter module is not necessary.
  • the screw has been exemplified as the insertion member
  • the insertion member is not limited to the screw as long as the bus bar or the like can be fixed to the relay member, and may be a rivet, for example.
  • the 200V system and the 400V system have been described as examples of power supply specifications with different voltages, the present invention is not limited to these voltage systems, and can be applied to power supply specifications with other voltages.
  • the present invention can be used as a versatile power conversion device connected between a power source and a load having different voltages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

 電力変換装置では、各モジュール(3)間は、ブスバー(31)および中継部材(33)によって電気的に接続される。中継部材(33)には、幅を二等分する二等分線(HL1)を挟んで、一方の側に接続部(34a)が形成され、他方の側に接続部(34b)が形成されている。ブスバー(31)では、幅を二等分する二等分線(HL2)を挟んで、一方の側に接続部(32)が形成されている。一つの中継部材(33)に対して、200V系の電源仕様では、2本のブスバー(31)の一端側が固定され、400系の電源仕様では、1本のブスバー(31)の一端側が固定される。

Description

電力変換装置およびそれを備えた空気調和機
 本発明は、電力変換装置およびそれを備えた空気調和機に関し、特に、高調波を打ち消すための電力変換装置と、そのような電力変換装置を備えた空気調和機とに関するものである。
 ビル用の空気調和機では、一般的に、電源(商用電源)として三相交流が使用されている。三相交流は直流に変換されて、その直流をインバータ制御することによって、空気調和機の電動機を駆動させている。インバータ制御による電動機の駆動に伴って、高調波の電流が生じる。このため、電動機に電気的に接続されている三相交流では、発生した高調波の電流が交流の電流に乗って、電流の波形が歪むことになる。商用電源に含まれる高調波の割合は法的に規制されており、所定の割合以内に抑えることが求められる。
 発生した高調波を打ち消す装置として電力変換装置があり、特に、このような電力変換装置は、アクティブフィルタと称されている。電力変換装置は、三相交流の配線に対して並列に接続されている。電力変換装置では、交流の電流に含まれている高調波の電流の位相とは逆位相の電流を発生させる。その逆位相の電流を三相交流に出力することによって、高調波が打ち消されることになる。このような電力変換装置を開示した特許文献の例として、たとえば、特許文献1、特許文献2および特許文献3がある。
特開2010-104135号公報 特開2009-5512号公報 特開2014-90659号公報
 電力変換装置は、パワー半導体素子、リアクタ、リップルフィルター、平滑コンデンサおよび制御回路素子等によって構成される。これらの素子は、たとえば、パワー半導体素子が一のモジュールに搭載され、リアクタおよびリップルフィルタが他のモジュールに搭載される態様で、それぞれ所定のモジュールに搭載されている。その一のモジュールと他のモジュールとは、たとえば、ブスバー等の金属の配線部材によって電気的に接続されている。
 電動機の商用電源には、たとえば、200V系の三相交流(仕様SL)と400V系の三相交流(仕様SH)とがある。仕様SLと仕様SHとに応じて、ブスバーの長さ、幅、厚さ等のサイズが厳密に決められている。このため、電源仕様に応じて、電力変換装置を製造する必要があり、一方の仕様のブスバー等の配線部材を、他方の仕様のブスバー等の配線部材として使用することはなかった。
 本発明は上記問題点を解決するためになされたものであり、一つの目的は、電圧の異なる電源仕様に対して汎用性を有する電力変換装置を提供することであり、他の目的は、そのような電力変換装置を備えた空気調和機を提供することである。
 本発明に係る一の電力変換装置は、第1モジュールと第2モジュールとを電気的に接続する、第1端部および第2端部を有する第1配線部材を備えた電力変換装置であって、第1中継部材と第2中継部材とを備えている。第1中継部材は、第1モジュールに接続され、第1配線部材の第1端部と第1モジュールとを接続する。第2中継部材は、第2モジュールに接続され、第1配線部材の第2端部と第2モジュールとを接続する。第1モジュールおよび第2モジュールが、第1電圧のもとで使用される場合には、第1中継部材と第2中継部材とを繋ぐ第1配線部材の数は、第1数である。第1モジュールおよび第2モジュールが、第1電圧よりも高い第2電圧のもとで使用される場合には、第1中継部材と第2中継部材とを繋ぐ第1配線部材の数は、第1数よりも少ない第2数である。
 本発明に係る一の空気調和機は、上述した電力変換装置を備えた空気調和機である。
 本発明に係る一の電力変換装置では、第1配線部材の第1中継部材および第2中継部材への接続態様を変えることによって、電圧の異なる電源仕様に対して汎用性をもたせることができる。
 本発明に係る一の空気調和機では、電圧の異なる電源仕様に対して汎用性を有する電力変換装置を適用することができる。
実施の形態1に係る、電源と負荷との間に並列に接続される電力変換装置のブロック図である。 実施の形態1に係る電力変換装置が接続された負荷に流れる電流を示す図である。 実施の形態1において、電力変換装置を模式的に示す平面図である。 実施の形態1において、電力変換装置におけるブスバーの接続構造の概要を説明するための部分拡大平面図である。 実施の形態1において、中継部材の構造を示す部分拡大平面図である。 実施の形態1において、ブスバーの構造を示す部分拡大平面図である。 実施の形態1において、200V系の電源仕様の場合のブスバーの接続構造を示す部分分解斜視図である。 実施の形態1において、200V系の電源仕様の場合のブスバーの接続構造を示す拡大平面図である。 実施の形態1において、400V系の電源仕様の場合のブスバーの接続構造を示す部分分解斜視図である。 実施の形態1において、400V系の電源仕様の場合のブスバーの接続構造を示す拡大平面図である。 実施の形態1において、400V系の電源仕様の場合のブスバーの異なる接続構造との比較を示す平面図である。 実施の形態1において、電力変換装置におけるリップルフィルタのΔ結線を示す回路図である。 実施の形態1において、リップルフィルタのY結線を示す回路図である。 実施の形態1において、リップルフィルタモジュールにおける基板に形成されたプリント配線のパターンの一例を示す部分拡大平面図である。 実施の形態1において、リップルフィルタモジュールの基板に形成されたプリント配線の配線端子に、配線部材を接続することによって形成されたΔ結線の実体的な構造の一例を示す部分拡大平面図である。 実施の形態1において、リップルフィルタモジュールの基板に形成されたプリント配線の配線端子に、配線部材を接続することによって形成されたY結線の実体的な構造の一例を示す部分拡大平面図である。 実施の形態2に係る電力変換装置におけるブスバーの接続構造の概要を説明するための部分拡大平面図である。 実施の形態2において、中継部材の構造を示す部分拡大平面図である。 実施の形態2において、ブスバーの構造を示す部分拡大平面図である。 実施の形態2において、200V系の電源仕様の場合のブスバーの接続構造を示す部分分解斜視図である。 実施の形態2において、200V系の電源仕様の場合のブスバーの接続構造を示す拡大平面図である。 実施の形態2において、400V系の電源仕様の場合のブスバーの接続構造を示す拡大平面図である。 実施の形態3に係る電力変換装置における中継部材の構造を示す拡大斜視図である。 実施の形態3において、電力変換装置におけるブスバーの構造を示す拡大斜視図である。 実施の形態3において、200V系の電源仕様の場合のブスバーの接続構造を示す部分分解斜視図である。 実施の形態3において、200V系の電源仕様の場合のブスバーの接続構造を示す拡大平面図である。 実施の形態3において、400V系の電源仕様の場合のブスバーの接続構造を示す部分分解斜視図である。 実施の形態3において、400V系の電源仕様の場合のブスバーの接続構造を示す拡大平面図である。 実施の形態4に係る電力変換装置における中継部材の構造を示す拡大斜視図である。 実施の形態4において、電力変換装置におけるブズバーの構造を示す拡大斜視図である。 実施の形態4において、200V系の電源仕様の場合のブスバーの接続構造を示す部分分解斜視図である。 実施の形態4において、200V系の電源仕様の場合のブスバーの接続構造を示す拡大平面図である。 実施の形態4において、400V系の電源仕様の場合のブスバーの接続構造を示す拡大平面図である。 実施の形態5に係る電力変換装置において、中継部材の構造を示す部分拡大平面図である。 実施の形態5において、ブスバーの構造を示す部分拡大平面図である。 実施の形態5において、200V系の電源仕様の場合のブスバーの接続構造を示す部分拡大平面図である。 実施の形態5において、400V系の電源仕様の場合のブスバーの接続構造を示す部分拡大平面図である。 実施の形態5において、検知部によって検知されるブスバーの検知パターンを示す図である。 実施の形態6に係る電力変換装置における、200V系の電源仕様の場合のリード線の接続構造を示す第1の拡大平面図である。 実施の形態6において、400V系の電源仕様の場合のリード線の接続構造を示す第1の拡大平面図である。 実施の形態6において、200V系の電源仕様の場合のリード線の接続構造を示す第2の拡大平面図である。 実施の形態6において、400V系の電源仕様の場合のリード線の接続構造を示す第2の拡大平面図である。 実施の形態1~6に係る電力変換装置を適用したビル用の空気調和機を示す部分斜視図である。
 実施の形態1
 はじめに、実施の形態1に係る電力変換装置の概要について説明する。図1にブロック図を示す。図1に示すように、交流電源51に負荷装置53が電気的に接続されている。その負荷装置53に対して、高調波を打ち消すための電力変換装置1が、アクティブフィルタとして電気的に並列に接続されている。
 負荷装置53は、負荷57と、交流電源51から送られた三相交流電力を整流して直流に変換する整流器54と、整流器54の出力側に接続された直流リアクタ55と、整流器54から出力される出力電力を平滑化する平滑コンデンサ56と、平滑化された直流電力を負荷57の駆動用の交流電力に変換するインバータ58とを備えている。
 電力変換装置1は、電源の電力を蓄積するコンデンサ29と、コンデンサ29に蓄積されている電力のスイッチングを行うスイッチング素子13と、スイッチング素子13と接続されて高調波の位相とは逆位相の電流を発生する主リアクトル21およびリップルフィルタ16とを備えている。
 ここで、負荷装置53において発生した高調波を含んだ負荷電流の波形を、図2(A)に示す。電力変換装置1において発生した、負荷電流に含まれている高調波電流を抑制するアクティブフィルタ電流の波形を、図2(B)に示す。図2(A)および図2(B)に示すように、アクティブフィルタ電流の波形は、負荷電流に含まれている高調波電流の位相とは逆位相になっている。高調波を含む負荷電流に、アクティブフィルタ電流を合せることで、図2(C)に示すように、交流電源51には、歪のない正弦波電流が流れることになる。
 次に、その電力変換装置1の具体的な構造の一例について説明する。図3に示すように、電力変換装置1は、制御モジュール5、パワーモジュール11、リップルフィルタモジュール15、抵抗モジュール23および端子台30を備えている。制御モジュール5には、マイクロコンピュータ7を含む、制御部6を構成する素子が搭載されている。パワーモジュール11には、たとえば、IGBT等のスイッチング素子13が搭載されている。そのスイッチング素子としては、高い耐圧を有し高温動作が可能なSiC等のワイドバンドギャップ半導体素子が好ましい。端子台30には、交流電源51から分岐した配線(図1参照)が電気的に接続されている。
 リップルフィルタモジュール15には、主リアクトル21およびリップルフィルタ16が搭載されている。リップルフィルタ16として、リップルフィルタリアクタ17、リップルフィルタコンデンサ19が搭載されている。抵抗モジュール23には、抵抗素子25の他、リレー27とコンデンサ29が搭載されている。
 なお、図3における各モジュールと、図1に示されるブロック図とにおいて、対応する箇所(領域)同士を同じ線種をもって示す。たとえば、制御モジュール5を取り囲む一点鎖線は、図1に示される一点鎖線によって囲まれる箇所に対応する。
 たとえば、パワーモジュール11とリップルフィルタモジュール15との間のように、一つのモジュールと他のモジュールとの間は、配線部材(ブスバー、リード線等)および中継部材によって、電気的に接続されている。配線部材は、モジュールに搭載されている素子(部品)の間隔、その素子の配置、放熱仕様に応じて、配線部材が適用される箇所ごとに、形状および寸法等の仕様が決められる。
 本電力変換装置では、電圧の異なる電源仕様に対して、共通の配線部材等が適用される。接続する配線部材の数を電源仕様に応じて変更することで、所望の電流容量と絶縁距離が確保される。以下、各実施の形態において、その配線部材および中継部材の接続構造について、具体的に説明する。
 ここでは、配線部材としてブスバーを適用した電力変換装置の第1例について説明する。図4に示すように、一のモジュール3(第1モジュール3a)と他のモジュール3(第2モジュール3b)とは、ブスバー31および中継部材33によって、電気的に接続される。ブスバー31の一端側と他端側とは、それぞれ中継部材33に固定されている。中継部材33は、それぞれのモジュール3の回路端子41に固定され、ブスバー31とモジュール3を中継する部材である。なお、モジュール3は、制御モジュール5等の各モジュールを、説明の便宜上代表的に示すものである。
 回路端子41は、ブスバー31が取り付けられる中継部材33の位置合わせと中継部材33を保持する機能を有する。ここでは、回路端子41は、モジュール3の基板とは別体として形成されているが、モジュール3の基板と一体的に形成されていてもよい。また、回路端子41は、モジュール3の基板から突出するように配置されているが、基板から突出させないように、基板そのものに形成されていてもよい。なお、回路端子41には、中継部材33を取り付けるために用いる穴である接続部42が形成されている。
 中継部材33は矩形板状の導電性部材である。図5に示すように、中継部材33には、幅WL1を二等分する二等分線HL1を挟んで、一方の側に接続部34aおよび検知部36aが形成され、他方の側に接続部34bおよび検知部36bが形成されている。接続部34a、34bは、中継部材33にブスバー31を取り付けるために用いられる穴である。また、検知部36a、36bは、中継部材33に、ブスバー31が取り付けられた場合、ブスバー31によって覆われる領域内に設けられている。ここでは、後述するように、接続部34aおよび接続部34bのそれぞれの近傍に、検知部36a、36bが設けられている。
 ブスバー31は、矩形板状の導電性部材である。図6に示すように、ブスバー31は、幅WL2を有して帯状に延在する。その幅WL2を二等分する二等分線HL2を挟んで、一方の側に接続部32が形成されている。ここで、帯状に延在するブスバー31の長手方向の側部131aおよび側部131bのうち、接続部32に近い方の側部を、側部131aとする。接続部32は、中継部材33にブスバー31を取り付けるために用いられる穴である。
 1本のブスバー31は、電源仕様として、400V系の場合の電流に対応するサイズに設定されている。電源仕様として、200V系を使用する場合には、400V系の場合と同一電力とすると、電流は、400V系の場合の電流の2倍になるため、ブスバー31として、系統につき、2本のブスバー31(第1ブスバー31a、第2ブスバー31b)が並列配置されることになる(図7参照)。
 次に、ブスバー等の接続構造として、200V系の電源仕様を想定した接続構造について説明する。
 図7に示すように、中継部材33は、中継部材33の接続部34cと回路端子41の接続部42とに挿通されるねじ39によって、回路端子41に固定されている。第1ブスバー31aの一端側は、第1ブスバー31aの接続部32と中継部材33の接続部34aとに挿通されるねじ39によって、中継部材33に固定されている。このとき、第1ブスバー31aの側部131aが、中継部材33の接続部34aに対して、接続部34b(二等分線HL1)が位置する側に配置されるように、第1ブスバー31aが中継部材33に固定される。
 第2ブスバー31bの一端側は、第2ブスバー31bの接続部32と中継部材33の接続部34bとに挿通されるねじ39によって、中継部材33に固定されている。このとき、第2ブスバー31bの側部131aが、中継部材33の接続部34bに対して、接続部34a(二等分線HL1)が位置する側に配置されるように、第2ブスバー31bが中継部材33に固定される。第1ブスバー31aおよび第2ブスバー31bのそれぞれの他端側も、一端側と同様にして、中継部材(図示せず)に固定されている。
 一のモジュールと他のモジュールとを電気的に接続する場合には、相の数によって配線の数が異なる。たとえば、三相誘導電動機に接続された一のモジュールには、U相用の配線、V相用の配線およびW相用の配線が設けられている。そのため、一のモジュールと他のモジュールとを電気的に接続する中継部材は、一のモジュールと他のモジュールとのそれぞれに対して3つずつ設けられる。その一のモジュールの中継部材のそれぞれと、他のモジュールの対応する中継部材のそれぞれとが、ブスバーによって電気的に接続される。
 図8に示すように、電源仕様として、200V系の三相交流の場合には、一相あたり、第1ブスバー31aと第2ブスバー31bとの2本のブスバー31が並列配置された接続構造(図7参照)が、三相分配置されている。三相のうち、一の相の中継部材33に接続されている2本のブスバー31のうちの第2ブスバー31bと、その一の相の中継部材33に最も近い他の相の中継部材33に接続されている2本のブスバー31のうちの第1ブスバー31aとの間隔は、間隔Dに設定されている。この間隔Dは、電源によって印加される最大電圧に対する絶縁距離以上の間隔とされる。また、一の相の中継部材33と、その一の相の中継部材33に最も近い他の相の中継部材33との間隔は、間隔Dよりも長い間隔DDに設定されている。
 ここで、間隔D、DDについて説明する。一般的に、互いに隣り合う配線部材同士等の間隔は、モジュールに流れる電流量と印加される電圧とに依存する。たとえば、ブスバー同士の間隔、中継部材同士の間隔またはブスバーと中継部材との間隔等が、入力電圧に対して狭い場合には、絶縁距離を確保することができないことがある。その場合には、電気的に短絡して回路が破壊されるおそれがある。
 このため、印加する電圧を高くする必要がある場合には、絶縁距離が確保されるようにその間隔を拡げる必要がある。本実施の形態に係る電力変換装置1では、交流電源から入力され得る電圧の最大値(最大電圧)を考慮して、交流電源から最大電圧が入力された場合に必要とされる最小の絶縁距離以上の距離が確保されるように、その間隔が設定されている。
 次に、ブスバー等の接続構造として、400V系の電源仕様を想定した接続構造について説明する。図9に示すように、ブスバー31の一端側は、ブスバー31の接続部32と中継部材33の接続部34aとに挿通されるねじ39によって、中継部材33に固定されている。
 このとき、中継部材33の接続部34aに対して、ブスバー31の側部131bは、接続部34b(二等分線HL1)が位置する側に配置され、ブスバー31の側部131aは、接続部34b(二等分線HL1)が位置する側とは反対側に配置されるように、ブスバー31が中継部材33に固定される。
 すなわち、400V系の電源仕様では、200V系の電源仕様を想定した接続構造のブスバー31を、長手方向を軸として180°回転させる態様で、ブスバー31を反転させた状態で、ブスバー31が中継部材33に固定される。ブスバー31の他端側も、一端側と同様にして、中継部材(図示せず)に固定されている。
 図10に示すように、電源仕様として、400V系の三相交流の場合には、一相あたり1本のブスバー31が配置された接続構造(図9参照)が、三相分配置されている。互いに最も接近しているブスバー31とブスバー31との間隔は、間隔D1に設定されている。この間隔D1は、電源によって印加される最大電圧に対する絶縁距離以上の間隔になる。また、互いに最も接近している中継部材33と中継部材33との間隔D2は、間隔DDに設定される。間隔DDは、電源によって印加される最大電圧に対する絶縁距離以上の間隔とされる。さらに、この間隔D2は、400V系の電源仕様の場合と200V系の電源仕様の場合とで変わらない。
 ここで、400V系の電源仕様の場合のブスバー31の固定の仕方(図10参照)の特徴について説明する。400V系の電源仕様の場合、ブスバー31は、200V系の電源仕様の場合のブスバー31の取り付け方(図8参照)に対して、ブスバー31を反転させた状態で、ブスバー31が中継部材33に固定される。
 具体的には、200V系の電源仕様では、ブスバー31の接続部32に近い方の側部131aが、中継部材33の接続部34aに対して接続部34bが配置されている側に位置するように、ブスバー31が中継部材33に固定される。
 その200V系の電源仕様に対して400V系の電源仕様では、ブスバー31の接続部32に近い方の側部131aが、中継部材33の接続部34aに対して接続部34bが配置されている側とは反対側に位置するように、ブスバー31が中継部材33に固定される。
 次に、上述したブスバー31の固定の仕方によるメリットについて説明する。図11に、400V系の電源仕様の場合のブスバーの固定の仕方として、200V系の電源仕様と同様の取り付け態様でブスバー31を中継部材33に固定した接続構造を示す。
 図11に示すように、互いに最も接近しているブスバー31とブスバー31との間隔D3は、図10に示される間隔D1と同じである。ところが、ブスバー31と、そのブスバー31の隣に位置し、そのブスバー31に最も接近している中継部材33との間隔D4は、互いに最も接近している中継部材33と中継部材33との間隔DDよりも狭くなる。このため、そのブスバー31と中継部材33との間で、絶縁距離が確保できない場合が想定される。
 そこで、図10に示すように、400V系の電源仕様では、200V系の電源仕様の場合の取り付け態様のブスバー31を反転させた状態で、ブスバー31を中継部材33に固定することで、間隔DDよりも狭い箇所がなくなる。これにより、絶縁距離を確実に確保することができる。
 上述した電力変換装置1では、中継部材33には、幅を二等分する二等分線HL1を挟んで、一方の側に接続部34aが形成され、他方の側に接続部34bが形成されている。また、ブスバー31には、幅を二等分する二等分線HL2を挟んで、一方の側に接続部32が形成されている。
 以上のように、電源仕様に合せてブスバーが複数取り付けられるよう、中継部材にはブスバーを接続する接続部を2つ以上設けたので、ブスバー31および中継部材33を、電圧の異なる電源仕様に対して共通のブスバーおよび中継部材として適用することができる。その結果、中継部材33に固定するブスバー31の本数を変更するだけで、たとえば、200V系の電源仕様の場合と400V系の電源仕様の場合との双方に適用することができ、電力変換装置としての汎用性を向上させることができる。
 また、上述したブスバー31および中継部材33によってモジュール3間を電気的に接続することで、パワーモジュール11以外の、たとえば、制御モジュール5、リップルフィルタモジュール15および抵抗モジュール23を、電圧の異なる電源仕様の電力変換装置に適用することができる。なお、電力変換装置1のパワーモジュール11では、電源電圧に応じたスイッチング素子13が搭載される。このため、電源電圧に対応したパワーモジュール11が適用されることになる。
 さらに、幅を有するブスバー31を適用することで、回路の熱を放熱しやすくすることができる。また、そのブスバー31が中継部材33に固定されることで、電力変換装置内の空気の流れにばらつきが生じにくくなり、熱による回路特性のばらつき、ひいては、電力変換装置としての品質のばらつきを抑えることができる。また、複数のブスバー31が互いに平行に配置されることで、同じ位相を有する電気的な雑音を低減することができる。他の実施の形態についても、同様である。
 ところで、電力変換装置1は、負荷装置53において発生する高調波とは逆位相の電流を発生させて歪のない正弦波の交流を流すことを述べた。電力変換装置がそのような動作を行っている間には、スイッチング動作に伴って、電力変換装置1内に電流リップルが生じることがある。そこで、次に、電力変換装置1内で生じる電流リップルを抑制する機能の一例について説明する。
 電力変換装置では、制御部からの信号に基づき、パワーモジュール11に搭載されたスイッチング素子13をオンオフさせることによって、電力変換装置の端子の電圧が制御される。これにより、主リアクトル21に発生する電圧が調整されて、所望の電流が出力されることになる(図1および図2(B)参照)。
 ところが、スイッチング素子13がスイッチング動作を行う際に、電流リップルが生じることがあり、この電流リップルが出力される電流に乗ってしまう。この電流リップルを除去するために、リップルフィルタ16が設けられている(図1参照)。
 リップルフィルタ16は、電力変換装置において、直列に接続されたリップルフィルタリアクタ17a、17b、17cと、並列に接続されたリップルフィルタコンデンサ19a、19b、19cとによって構成される(図12および図13参照)。
 一般的なリップルフィルタコンデンサは、Δ結線またはY結線によって電気的に接続されている。電圧が、比較的低い場合には、静電容量を確保することを優先させるために、Δ結線が使用される。一方、電圧が、比較的高い場合には、耐圧を確保することを優先させるためにY結線が使用される。
 図12に、電力変換装置のリップルフィルタ16におけるリップルフィルタコンデンサ19a、19b、19cのΔ結線を示す。図13に、リップルフィルタコンデンサ19a、19b、19cのY結線を示す。
 また、図14に示すように、電力変換装置のリップルフィルタモジュール15の基板には、結線のための一部のプリント配線43と、配線端子43a、43b、43c、43d、43e、43f、43gとがあらかじめ形成されている。一部のプリント配線43は、Δ結線とY結線との双方に共通な結線とされる。
 そのプリント配線43の配線端子43a~43gのうち、所定の配線端子間を配線部材45a、45b、45cによって電気的に接続することによって、Δ結線またはY結線が形成される。配線部材45a、45b、45cは、Δ結線とY結線との双方に共通な配線部材とされる。また、配線部材45a、45b、45cは、容量間の配線部材として、ブスバー31とは別の配線部材が適用される。
 図15に示すように、Δ結線では、配線端子43aと配線端子43bとが配線部材45aによって電気的に接続される。配線端子43dと配線端子43eとが、配線部材45bによって電気的に接続される。配線端子43fと配線端子43gとが、配線部材45cによって電気的に接続される。
 図16に示すように、Y結線では、配線端子43aと配線端子43cとが、配線部材45aによって電気的に接続される。配線端子43dと配線端子43fとが、配線部材45bによって電気的に接続される。
 上述した電力変換装置では、リップルフィルタモジュール15には、結線のための一部のプリント配線43と、配線端子43a~43gとがあらかじめ形成されている。その配線端子43a~43gのうち、電源仕様に応じて、所定の配線端子43a~43g同士を配線部材45a~45cによって電気的に接続することで、Δ結線またはY結線が形成されることになる。
 これにより、リップルフィルタモジュールとして、Δ結線(Y結線)があらかじめプリント配線として形成されたリップルフィルタモジュールを適用する場合と比べて、電圧の異なる電源仕様に対して、リップルフィルタモジュール15を共通のリップルフィルタモジュールとして適用することができ、リップルフィルタモジュール15の汎用性を向上させることができる。
 実施の形態2
 ここでは、配線部材として、ブスバーを適用した電力変換装置の第2例について説明する。図17に示すように、一のモジュール3(第1モジュール3a)と他のモジュール3(第2モジュール3b)とは、ブスバー31および中継部材33によって、電気的に接続される。図18に示すように、中継部材33には、一つの接続部34が形成されている。ここでは、一例として、接続部34の中心が、幅を二等分する二等分線HL1上に位置するように形成されている。接続部34は、中継部材33にブスバー31を取り付けるために用いられる穴である。
 図19に示すように、ブスバー31は、一方向に帯状に延在する延在部231aと、延在部231aに対して屈曲する2つの屈曲部231bとを備える。屈曲部231bは、延在部231aの長手方向の一端側と他端側とにそれぞれ設けられている。2つの屈曲部231bのそれぞれは、延在部231aの幅を二等分する二等分線HL1に対して、ほぼ同じ角度をもって同じ側に屈曲している。2つの屈曲部231bのそれぞれに、接続部32が形成されている。接続部32は、中継部材33にブスバー31を取り付けるために用いられる穴である。なお、これ以外の構成については、図4、図5および図6に示す構成と同様なので、同一部材には同一符号を付し、必要である場合を除き、その説明を繰り返さないこととする。
 次に、ブスバー等の接続構造として、200V系の電源仕様を想定した接続構造について説明する。この場合には、一つの中継部材33に対して、2本のブスバー31(第1ブスバー31a、第2ブスバー31b)が固定される。図20に示すように、第1ブスバー31aの一端側と第2ブスバー31bの一端側とは、第1ブスバー31aの接続部32と第2ブスバー31bの接続部32と中継部材33の接続部34とに挿通されるねじ39によって、中継部材33に固定されている。200V系の三相交流では、図21に示される、一相あたり2本の第1ブスバー31aと第2ブスバー31bとが並列配置された接続構造が、絶縁距離が確保される態様で互いに間隔を隔てて三相分配置される。
 次に、ブスバー等の接続構造として、400V系の電源仕様を想定した接続構造について説明する。この場合には、一つの中継部材33に対して、1本のブスバー31が固定される。図22に示すように、ブスバー31の一端側は、ブスバー31の接続部32と中継部材33の接続部34とに挿通されるねじ39によって、中継部材33に固定されている。400V系の三相交流では、図22に示される、一相あたり1本のブスバー31が接続された接続構造が、絶縁距離が確保される態様で互いに間隔を隔てて三相分配置される。
 上述した電力変換装置1では、中継部材33には、幅を二等分する二等分線HL1上に中心が位置するように、一つの接続部34が形成されている。また、ブスバー31は延在部231aに対して屈曲する屈曲部231b(図19参照)が設けられ、その屈曲部231bに接続部32が形成されている。
 これにより、ブスバー31および中継部材33を、電圧の異なる電源仕様に対して共通のブスバーおよび中継部材として適用することができる。その結果、中継部材33に固定するブスバー31の本数を変更するだけで、たとえば、200V系の電源仕様の場合と400V系の電源仕様の場合との双方に適用することができ、電力変換装置としての汎用性を向上させることができる。
 また、第1ブスバー31aと第2ブスバー31bとは、中継部材33における共通の接続部34に挿通されるねじ39によって固定されることで、中継部材33に形成する接続部34の数を最小限に抑えることができる。これにより、製造コストを抑えることができる。さらに、接続部34の数が最小限である分、中継部材33のサイズをより小さくすることができ、材料コストも抑えることができる。
 また、上述したブスバー31および中継部材33によってモジュール3間を電気的に接続することで、実施の形態1において説明したのと同様に、パワーモジュール11以外の、たとえば、制御モジュール5、リップルフィルタモジュール15および抵抗モジュール23を、電圧の異なる電源仕様の電力変換装置に適用することができる。
 実施の形態3
 ここでは、配線部材としてブスバーを適用した電力変換装置の第3例について説明する。第3例に係る電力変換装置では、回路端子がなく、中継部材がモジュールに直接接続されている。
 図23に示すように、中継部材33には凸状の接続部35a、35b、35cが設けられている。接続部35cにモジュール3(図26参照)が取り付けられる。接続部35a、35bにブスバー31(図24参照)が取り付けられる。図24に示すように、ブスバー31は、幅WL2を有して帯状に延在する。その幅WL2を二等分する二等分線HL2上に、開口状の接続部32が形成されている。なお、これ以外の構成については、図4、図5および図6に示す構成と同様なので、同一部材には同一符号を付し、必要である場合を除き、その説明を繰り返さないこととする。
 次に、ブスバー等の接続構造として、200V系の電源仕様を想定した接続構造について説明する。
 図25に示すように、第1ブスバー31aの一端側は、第1ブスバー31aに形成された穴である接続部32に、中継部材33の接続部35a(凸状)が挿通される態様で、中継部材33に固定されている。第2ブスバー31bの一端側は、第2ブスバー31bに形成された穴である接続部32に、中継部材33の接続部35a(凸状)が挿通される態様で、中継部材33に固定されている。第1ブスバー31aおよび第2ブスバー31bのそれぞれの他端側も、一端側と同様にして、中継部材(図示せず)に固定されている。
 図26に示すように、電源仕様として、200V系の三相交流の場合には、一相あたり、第1ブスバー31aと第2ブスバー31bとの2本のブスバー31が並列配置された接続構造(図25参照)が、三相分配置されている。
 ここで、たとえば、第1中継部材33a等に取り付けられている第2ブスバー31bと、その第1中継部材33aの隣に位置する他の第1中継部材33a等に取り付けられている第1ブスバー31aとの間隔Dは、最大電圧(たとえば400V)が印加された場合における絶縁距離以上の距離に設定されている。
 次に、ブスバー等の接続構造として、400V系の電源仕様を想定した接続構造について説明する。図27に示すように、ブスバー31の一端側は、ブスバー31の接続部32に、中継部材33の接続部35a(凸状)が挿通される態様で、中継部材33に固定されている。
 図28に示すように、電源仕様として、400V系の三相交流の場合には、一相あたり1本のブスバー31が配置された接続構造(図27参照)が、三相分配置されている。
 ここで、たとえば、第1中継部材33aと、その第1中継部材33aの隣に位置する他の第1中継部材33a等に取り付けられているブスバー31との間隔Dは、最大電圧(たとえば400V)が印加された場合における絶縁距離以上の距離に設定されている。
 上述した電力変換装置1では、実施の形態1において説明したのと同様に、ブスバー31および中継部材33を、電圧の異なる電源仕様に対して共通のブスバーおよび中継部材として適用することができる。中継部材33に固定するブスバー31の本数を変更するだけで、たとえば、200V系の電源仕様の場合と400V系の電源仕様の場合との双方に適用することができ、電力変換装置としての汎用性を向上させることができる。
 さらに、上述した電力変換装置1のブスバー31では、幅WL2を二等分する二等分線HL2上に接続部32が形成されている。これにより、ブスバー31として、一般的な汎用品のブスバーを使用することができ、実施の形態1等の場合と比べて、製造コストをさらに抑えることができる。
 実施の形態4
 ここでは、配線部材として、ブスバーを適用した電力変換装置の第4例について説明する。第4例に係る電力変換装置は、ブスバーを重ねて配置する接続構造を含む。
 図29に示すように、中継部材33には凸状の接続部35、35cが設けられている。接続部35cにモジュール3(図32参照)が取り付けられる。接続部35にブスバー31(図30参照)が取り付けられる。
 図30に示すように、幅WL2を有して帯状に延在するブスバー31には、幅WL2を二等分する二等分線HL2上に接続部32が形成されている。第1ブスバー31aと第2ブスバー31bとを重ね合わせた状態で、第1ブスバー31aの接続部32と、第2ブスバー31bの接続部32とが連通する。なお、これ以外の構成については、図4、図5および図6に示す構成と同様なので、同一部材には同一符号を付し、必要である場合を除き、その説明を繰り返さないこととする。
 次に、ブスバー等の接続構造として、200V系の電源仕様を想定した接続構造について説明する。
 図31に示すように、第1ブスバー31aの一端側および第2ブスバー31bの一端側は、第1ブスバー31aの接続部32と第2ブスバー31bの接続部32とに、中継部材33の接続部35a(凸状)が挿通される態様で、中継部材33に固定されている。第1ブスバー31aの他端側および第2ブスバー31bの他端側も、一端側と同様にして、中継部材(図示せず)に固定されている。
 図32に示すように、電源仕様として、200V系の三相交流の場合には、一相あたり、第1ブスバー31aと第2ブスバー31bとの2本のブスバー31を重ね合わせた接続構造(図31参照)が、三相分配置されている。
 ここで、たとえば、第1中継部材33aと、その第1中継部材33aの隣に位置する他の第1中継部材33aとの間隔Dは、最大電圧(たとえば400V)が印加された場合における絶縁距離以上の距離に設定されている。
 次に、ブスバー等の接続構造として、400V系の電源仕様を想定した接続構造について説明する。この場合には、1本のブスバー31の一端側が、ブスバー31の接続部32に、中継部材33の接続部35a(凸状)が挿通される態様で、中継部材33に固定されている(図31参照)。
 図33に示すように、電源仕様として、400V系の三相交流の場合には、一相あたり1本のブスバー31が配置された接続構造が、三相分配置されている。
 ここで、たとえば、第1中継部材33aと、その第1中継部材33aの隣に位置する他の第1中継部材33aとの間隔Dは、最大電圧(たとえば400V)が印加された場合における絶縁距離以上の距離に設定されている。
 上述した電力変換装置1では、実施の形態1において説明したのと同様に、ブスバー31および中継部材33を、電圧の異なる電源仕様に対して共通のブスバーおよび中継部材として適用することができる。これにより、中継部材33に固定するブスバー31の本数を変更するだけで、たとえば、200V系の電源仕様の場合と400V系の電源仕様の場合との双方に適用することができ、電力変換装置としての汎用性を向上させることができる。
 さらに、上述した電力変換装置1は、第1ブスバー31aと第2ブスバー31bとを上下に重ねて配置する接続構造を有する。これにより、一つの中継部材33と他の中継部材33との間隔D(図32および図33参照)を、絶縁距離以上の距離に設定すればよく、たとえば、図28に示される第1中継部材33aとブスバー31との間隔Dを、絶縁距離以上の距離に設定する場合と比べて、一連のブスバー31が配置される領域を狭めることができる。その結果、電力変換装置1の小型化に寄与することができる。
 なお、実施の形態1、3では、一つの中継部材に、ブスバーを接続する接続部を2つ設けた場合を例に挙げた。また、実施の形態2、4では、一つの中継部材に、ブスバーと接続する接続部を1つ設けた場合を例に挙げた。一つの中継部材に設ける接続部の数としては、1つまたは2つに限られず、電源仕様によって、たとえば、3つまたは4つ等のように、その数を増やしてもよい。また、一つの中継部材に接続部を1つ設け、他の一つの中継部材に接続部を2つ設けるなど、一つの中継部材の接続部の数と他の一つの中継部材の接続部の数は一致していなくてもよい。
 実施の形態5
 ここでは、中継部材に接続されるブスバーの本数を検知する検知部を備えた電力変換装置の一例について説明する。そのブスバーとして、実施の形態1において説明したブスバーを例に挙げる。
 まず、寸法関係について説明する。図34に示すように、中継部材33に、2つの検知部36aおよび検知部36bが設けられている。また、図35に示すように、ブスバー31には、一つの接続部32が形成されている。検知部36aおよび検知部36bは、たとえば、中継部材33にブスバー31が取り付けられた場合に、ブスバー31によって覆われる領域内に配置されている。検知部36a、36bとして、たとえば、光学センサを用いることで、ブスバー31が取り付けられたことを光学的に検知することができる。また、たとえば、接触センサを用いることで、ブスバー31が物理的に接触したことを検知することができる。ここで、中継部材33が延在する方向とほぼ直交する幅方向の長さと、ブスバー31が延在する方向とほぼ直交する幅方向の長さとを、いずれも幅方向長さと称することとする。中継部材33が延在する方向とは、図4に示すように、たとえば、第1モジュール3aから第2モジュール3bに向かう方向である。
 中継部材33に形成される接続部34aの中心と一方の検知部36aとの幅方向長さを長さLDとする。接続部34aの中心と他方の検知部36bとの幅方向長さを長さLCとする。ブスバー31に形成される接続部32の中心と側部131aとの幅方向長さを長さLBとする。接続部32の中心と側部131bとの幅方向長さを長さLAとする。
 前述したように、電源仕様として、200V系の電源が使用される場合には、一つの中継部材33に2本のブスバー31が接続されることになる(図36参照)。このとき、図36に示すように、検知部36aによって、一方のブスバー31が中継部材33に固定されたことが検知されるには、長さLAが長さLDよりも長いことが求められる(長さLA>長さLD)。検知部36bによって、他方のブスバー31が中継部材33に固定されたことが検知される場合についても、同様である。
 一方、電源仕様として、400V系の電源が使用される場合には、200V系の電源仕様の場合の取り付け態様のブスバー31を反転させた状態で、1本のブスバー31が一つの中継部材33に固定される。このとき、図37に示すように、検知部36aによって、ブスバー31が中継部材33に固定されたことが検知されるには、長さLBが長さLDよりも長いこと(LB>LD)、そして、長さLAが長さLCよりも短いこと(長さLC>長さLA)が求められる。
 上述した長さの関係を総合すると、検知部36a、36bによって、1本のブスバー31が固定されているか、2本のブスバー31が固定されているかを検知するには、長さLDよりも長さLBが長く、その長さLBよりも長さLAが長く、その長さLAよりも長さLCが長いことが求められる(LC>LA>LB>LD)。
 検知部36a、36bによって検知された情報(信号)は、制御部6のマイクロコンピュータ7(図1および図2参照)へ送られる。次に、その検知パターンの例について説明する。
 図38に示すように、検知部36aおよび検知部36bから検知回路9へ信号が送られる。このとき、検知回路9では、中継部材33に何本のブスバー31が接続されているかが判定される。ここでは、中継部材33にブスバー31が全く接続されていない場合、1本のブスバー31が接続されている場合、2本のブスバー31が接続されている場合のいずれの場合であるか判定される。
 その検知パターンとして、図38に示される検知パターンAは、ブスバー31が接続されている場合には「1」と判定し、ブスバー31が接続されていない場合には「0」と判定する場合の検知パターンを示す。一方、検知パターンBは、ブスバー31が接続されている場合には「0」と判定し、ブスバー31が接続されていない場合には「1」と判定する場合の検知パターンを示す。
 マイクロコンピュータ7では、電圧の異なる電源仕様のそれぞれに対して、あらかじめ最適なパラメータが記憶されている。マイクロコンピュータ7では、検知パターンに基づいて、そのパラメータの中から、電力変換装置として、電源仕様に応じた最適なパラメータが設定される。
 1本のブスバーが接続されていると判定された場合には、たとえば、400V系の電源に使用される電力変換装置として、400V系の電圧と電流に応じたパラメータが設定される。一方、2本のブスバーが接続されている判定された場合には、たとえば、200V系の電源に使用される電力変換装置として、200V系の電圧と電流に応じたパラメータが設定される。負荷装置に同一の負荷を与えた場合、200V系の電源仕様と400V系の電源仕様とでは、電力変換装置の出力が変化するため、電力変換装置の動作を容易に確認することができる。
 なお、中継部材33にブスバー31が1本も接続されていない場合には、未接続(ブスバー接続不良)と判断される。また、上述した検知部36a、36bを備えた電力変換装置1では、ブスバー31として、実施の形態1において説明したブスバー31を例に挙げたが、実施の形態2において説明したブスバー31および中継部材33を適用した電力変換装置についても、同様に、検知部36a、36b(図20参照)を適用することができる。
 実施の形態6
 ここでは、配線部材として、リード線を適用した電力変換装置について説明する。この電力変換装置では、中継部材として、ブスバーが固定される中継部材と同じものが適用される。ブスバーに替えて、リード線が、電源仕様に応じて中継部材に固定されることになる。
 (第1例)
 第1例では、中継部材として、2つの接続部が形成された中継部材(図5参照)を適用した電力変換装置について説明する。
 まず、リード線等の接続構造として、200V系の電源仕様を想定した接続構造について説明する。図39に示すように、リード線37の一端側と他端側には、開口状の接続部38が形成されている。第1リード線37aの一端側は、第1リード線37aの接続部38と中継部材33の接続部34aとに挿通されるねじ39によって、中継部材33に固定されている。第2リード線37bの一端側は、第2リード線37bの接続部38と中継部材33の接続部34bとに挿通されるねじ39によって、中継部材33に固定されている。第1リード線37aおよび第2リード線37bのそれぞれの他端側も、一端側と同様にして、中継部材33に固定されている。
 200V系の三相交流の電源を使用する電力変換装置では、この接続構造が、図8に示す接続構造と同様に、三相分配置されている。なお、これ以外の構成については、その図8に示す接続構造と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 次に、リード線等の接続構造として、400V系の電源仕様を想定した接続構造について説明する。図40に示すように、リード線37の一端側は、リード線37の接続部38と中継部材33の接続部34aとに挿通されるねじ39によって、中継部材33に固定されている。そのリード線37の他端側も、一端側と同様にして、中継部材33に固定されている。
 400V系の三相交流の電源を使用する電力変換装置では、この接続構造が、図10に示す接続構造と同様に、三相分配置されている。なお、これ以外の構成については、その図10に示す接続構造と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 上述した電力変換装置1では、中継部材33には、2つの接続部34a、34bが形成されている。また、リード線37には、接続部38が形成されている。これにより、リード線37および中継部材33を、電圧の異なる電源仕様に対して共通のリード線および中継部材として適用することができる。その結果、中継部材33に固定するリード線37の本数を変更するだけで、たとえば、200V系の電源仕様の場合と400V系の電源仕様の場合との双方に適用することができ、電力変換装置としての汎用性を向上させることができる。なお、電力変換装置1では、必要に応じて、リード線37とブスバー31とを併用してもよい。
 (第2例)
 第2例では、中継部材として、1つの接続部が形成された中継部材(図18参照)を適用した電力変換装置について説明する。
 まず、リード線等の接続構造として、200V系の電源仕様を想定した接続構造について説明する。図41に示すように、第1リード線37aの一端側と第2リード線37bの一端側とは、第1リード線37aおよび第2リード線37bのそれぞれの接続部38と中継部材33の接続部34とに挿通されるねじ39によって、中継部材33に固定されている。第1リード線37aおよび第2リード線37bのそれぞれの他端側も、一端側と同様にして、中継部材33に固定されている。
 200V系の三相交流の電源を使用する電力変換装置では、この接続構造が、図8に示す接続構造と同様に、三相分配置されている。なお、これ以外の構成については、その図8に示す接続構造と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 次に、リード線等の接続構造として、400V系の電源仕様を想定した接続構造について説明する。図42に示すように、リード線37の一端側は、リード線37の接続部38と中継部材33の接続部34とに挿通されるねじ39によって、中継部材33に固定されている。そのリード線37の他端側も、一端側と同様にして、中継部材33に固定されている。
 400V系の三相交流の電源を使用する電力変換装置では、この接続構造が、図10に示す接続構造と同様に、三相分配置されている。なお、これ以外の構成については、その図10に示す接続構造と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 上述した電力変換装置1では、中継部材33には、1つの接続部34が形成されている。また、リード線37には、接続部38が形成されている。これにより、リード線37および中継部材33を、異なる電源仕様に対して共通のリード線および中継部材として適用することができる。その結果、中継部材33に固定するリード線37の本数を変更するだけで、たとえば、200V系の電源仕様の場合と400V系の電源仕様の場合との双方に適用することができ、電力変換装置としての汎用性を向上させることができる。なお、電力変換装置では、必要に応じて、リード線37とブスバー31とを併用してもよい。
 実施の形態7
 ここでは、各実施の形態において説明した電力変換装置を適用した空気調和機の一例について説明する。
 図43に示すように、たとえば、ビルに使用される空気調和機61には、1台の室外機65に対して複数の室内機67が接続されたマルチエアコンディショナーがある。この種の空気調和機61では、室外機65は、たとえば、ビル63の屋上に設けられた室外ユニット64内に設置される。電力変換装置1は、その室外ユニット64内に設置される。
 電力変換装置1では、空気調和機61の動作に伴って発生する電流リップルと逆位相の電流を発生させて、交流電源に出力する。これにより、電流リップルが打ち消されて、交流電源には、歪のない電流が流れることになる。
 なお、上述した各実施の形態に係る電力変換装置1では、モジュール間の電気的な接続以外に、たとえば、図3に示される抵抗モジュール23において、抵抗素子25を搭載した基板とコンデンサ29とを電気的に接続するのに、ブスバー等を適用してもよい。コンデンサ29の容量は、電源の電圧に対応した容量であることが求められる。コンデンサ29を抵抗素子25を搭載した基板に搭載させずに、ブスバー31等によってコンデンサ29と抵抗素子25を搭載した基板と電気的に接続することで、抵抗素子を搭載した基板の汎用性と小型化を図ることができる。
 また、図3に示される制御モジュール5の基板には、電源が入力する2本の端子(図示せず)が設けられている。400V系の電源仕様の電力変換装置として使用する場合において、制御モジュール5の電源の電圧として200V系の電圧を使用する場合に、400V系の電圧を200V系の電圧に下げる必要がある。このため、端子と、制御電源が入力する入力部との間に設けられている基板の領域には、トランス(図示せず)が搭載されることになる。
 一方、電力変換装置1を200V系の電源仕様の電力変換装置として使用する場合には、基板にトランスを搭載させる必要はなくなる。このため、トランスが搭載される領域にジャンパー線を配して、端子と入力部とを電気的に接続するようにしてもよい。このようなジャンパー線を適用することで、あらかじめ、トランスが搭載された基板と、トランスが搭載されていない基板とを用意しておく場合と比べて、基板の汎用性を向上させることができる。なお、ジャンパー線は、ブスバー等とは別の配線部材が適用される。
 また、各実施の形態に係る電力変換装置1としては、アクティブフィルターとして使用される電力変換装置を例に挙げて説明したが、アクティブフィルター以外に、たとえば、インバータ装置としても使用することができる。電力変換装置をインバータ装置として使用する場合には、リップルフィルタモジュールは不要になる。
 さらに、挿通部材として、ねじを例に挙げたが、ブスバー等を中継部材に固定することができれば、ねじに限られず、たとえば、リベットのようなものでもよい。また、電圧の異なる電源仕様として、200V系と400V系とを例に挙げて説明したが、これらの電圧系に限られるものではなく、他の電圧の異なる電源仕様にも適用することができる。
 各実施の形態において説明した電力変換装置を構成する各部分については、必要に応じて種々組み合わせることが可能である。
 今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
 本発明は、電圧の異なる電源と負荷との間に接続される、汎用性を有する電力変換装置として、利用することが可能である。
 1 電力変換装置、3 モジュール、3a 第1モジュール、3b 第2モジュール、5 制御モジュール、6 制御部、7 マイクロコンピュータ、9 検出回路、11 パワーモジュール、13 スイッチング素子、15 リップルフィルターモジュール、16 リップルフィルタ、17、17a、17b、17c リップルフィルタリアクタ、19、19a、19b、19c リップルフィルタコンデンサ、21、21a、21b、21c 主リアクトル、23 抵抗モジュール、25 抵抗素子、27 リレー、29 コンデンサ、30 端子台、31ブスバー、31a 第1ブスバー、31b 第2ブスバー、131a、131b 側部、231a 延在部、231b 屈曲部、32 接続部、33 中継部材、33a 第1中継部材、33b 第2中継部材、34a、34b、34c、34、35a、35b、35c、35 接続部、36a、36b 検知部、37 リード線、38a、38b 接続部、39 ねじ、41 回路端子、42 取付穴、43 配線、45a、45b、45c 配線部材、51 交流電源、53 負荷装置、54 整流器、55 直流リアクタ、56 平滑コンデンサ、57 負荷、58 インバータ、61 ビル用空気調和機、63 ビル、65 室外機、67 室内機、LA、LB、LC、LD 長さ、HL1、HL2 二等分線、D、DD、D1、D2 距離、WL1、WL2 幅。

Claims (13)

  1.  第1モジュールと第2モジュールとを電気的に接続する、第1端部および第2端部を有する第1配線部材を備えた電力変換装置であって、
     前記第1モジュールに接続され、前記第1配線部材の前記第1端部と前記第1モジュールとを接続する第1中継部材と、
     前記第2モジュールに接続され、前記第1配線部材の前記第2端部と前記第2モジュールとを接続する第2中継部材と
    を備え、
     前記第1モジュールおよび前記第2モジュールが、第1電圧のもとで使用される場合には、前記第1中継部材と前記第2中継部材とを繋ぐ前記第1配線部材の数は、第1数であり、
     前記第1モジュールおよび前記第2モジュールが、前記第1電圧よりも高い第2電圧のもとで使用される場合には、前記第1中継部材と前記第2中継部材とを繋ぐ前記第1配線部材の数は、前記第1数よりも少ない第2数である、電力変換装置。
  2.  前記第1中継部材および前記第2中継部材の少なくともいずれかには、前記第1配線部材が接続されているか否かを検知する検知部が配置された、請求項1記載の電力変換装置。
  3.  前記検知部によって、接続されている前記第1配線部材の前記数が前記第1数であると判断される場合には、前記第1電圧のもとで運転され、
     前記検知部によって、接続されている前記第1配線部材の前記数が前記第2数であると判断される場合には、前記第2電圧のもとで運転される、請求項2記載の電力変換装置。
  4.  第3端部および第4端部を有する第2配線部材と、
     前記第1モジュールに接続され、前記第2配線部材の前記第3端部と前記第1モジュールとを接続する第3中継部材と、
     前記第2モジュールに接続され、前記第2配線部材の前記第4端部と前記第2モジュールとを接続する第4中継部材と
    を備え、
     前記第1中継部材と前記第3中継部材との第1絶縁距離および前記第2中継部材と前記第4中継部材との第2絶縁距離は、前記第2電圧に対する絶縁距離以上である、請求項1記載の電力変換装置。
  5.  第3端部および第4端部を有する第2配線部材と、
     前記第1モジュールに接続され、前記第2配線部材の前記第3端部と前記第1モジュールとを接続する第3中継部材と、
     前記第2モジュールに接続され、前記第2配線部材の前記第4端部と前記第2モジュールとを接続する第4中継部材と
    を備え、
     前記第1配線部材と前記第2配線部材との距離は、前記第2電圧に対する絶縁距離以上に設定された、請求項1記載の電力変換装置。
  6.  高調波を除去する複数の容量素子を含むリップルフィルタが搭載された第3モジュールを備え、
     前記第3モジュールでは、前記複数の容量素子のそれぞれに電気的に接続された配線群が形成され、
     前記配線群のうち、対応する配線間を電気的に接続する複数の容量間接続部を備え、
     前記複数の容量間接続部では、Δ結線およびY結線のいずれかをもって接続されている、請求項1記載の電力変換装置。
  7.  ワイドバンドギャップ半導体素子を含む電力変換素子が搭載された、請求項1記載の電力変換装置。
  8.  請求項1記載の電力変換装置を備えた、空気調和機。
  9.  第1モジュールと第2モジュールとを電気的に接続する、第1端部および第2端部を有する配線部材を備えた電力変換装置であって、
     前記第1モジュールに接続され、前記配線部材の前記第1端部と前記第1モジュールとを中継する第1中継部材と、
     前記第2モジュールに接続され、前記配線部材の前記第2端部と前記第2モジュールとを中継する第2中継部材と
    を備え、
     前記第1中継部材には、前記配線部材を接続する接続部が、少なくとも2つ以上設けられた、電力変換装置。
  10.  前記第1中継部材および前記第2中継部材の少なくともいずれかには、前記配線部材が接続されているか否かを検知する検知部が配置された、請求項9記載の電力変換装置。
  11.  高調波を除去する複数の容量素子を含むリップルフィルタが搭載された第3モジュールを備え、
     前記第3モジュールでは、前記複数の容量素子のそれぞれに電気的に接続された配線群が形成され、
     前記配線群のうち、対応する配線間を電気的に接続する複数の容量間接続部を備え、
     前記複数の容量間接続部では、Δ結線およびY結線のいずれかをもって接続されている、請求項9記載の電力変換装置。
  12.  ワイドバンドギャップ半導体素子を含む電力変換素子が搭載された、請求項9記載の電力変換装置。
  13.  請求項9記載の電力変換装置を備えた、空気調和機。
PCT/JP2016/063378 2016-04-28 2016-04-28 電力変換装置およびそれを備えた空気調和機 WO2017187606A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680084806.0A CN109155594B (zh) 2016-04-28 2016-04-28 电力变换装置以及具备该电力变换装置的空气调节机
US16/082,323 US10978960B2 (en) 2016-04-28 2016-04-28 Power converter and air conditioner equipped with the same
JP2018514060A JP6843843B2 (ja) 2016-04-28 2016-04-28 電力変換装置およびそれを備えた空気調和機
PCT/JP2016/063378 WO2017187606A1 (ja) 2016-04-28 2016-04-28 電力変換装置およびそれを備えた空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063378 WO2017187606A1 (ja) 2016-04-28 2016-04-28 電力変換装置およびそれを備えた空気調和機

Publications (1)

Publication Number Publication Date
WO2017187606A1 true WO2017187606A1 (ja) 2017-11-02

Family

ID=60161449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063378 WO2017187606A1 (ja) 2016-04-28 2016-04-28 電力変換装置およびそれを備えた空気調和機

Country Status (4)

Country Link
US (1) US10978960B2 (ja)
JP (1) JP6843843B2 (ja)
CN (1) CN109155594B (ja)
WO (1) WO2017187606A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019134607A (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 電装品ユニット及び空気調和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354773B2 (ja) * 2016-02-24 2018-07-11 株式会社デンソー インバータ制御装置
JP6813074B1 (ja) * 2019-10-30 2021-01-13 株式会社明電舎 電力変換システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005512A (ja) * 2007-06-22 2009-01-08 Hitachi Ltd 電力変換装置
JP2010104135A (ja) * 2008-10-23 2010-05-06 Hitachi Ltd 電力変換装置及び車載用電機システム
JP2014090659A (ja) * 2012-10-02 2014-05-15 Denso Corp 電力変換装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5770412B2 (ja) * 2008-01-31 2015-08-26 ダイキン工業株式会社 電力変換装置
JP2012182963A (ja) 2011-03-03 2012-09-20 Nitto Kogyo Co Ltd 配電盤のバーホルダ
CN103840376B (zh) 2012-11-21 2016-04-20 常州江南环境工程有限公司 水处理中电气控制柜的接线分配器
CN202978000U (zh) * 2012-11-21 2013-06-05 常州江南环境工程有限公司 水处理中电气控制柜的接线分配器
CN205051287U (zh) * 2015-09-14 2016-02-24 江苏神飞电气科技有限公司 一种可调节母线槽

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005512A (ja) * 2007-06-22 2009-01-08 Hitachi Ltd 電力変換装置
JP2010104135A (ja) * 2008-10-23 2010-05-06 Hitachi Ltd 電力変換装置及び車載用電機システム
JP2014090659A (ja) * 2012-10-02 2014-05-15 Denso Corp 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019134607A (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 電装品ユニット及び空気調和装置

Also Published As

Publication number Publication date
JP6843843B2 (ja) 2021-03-17
US10978960B2 (en) 2021-04-13
JPWO2017187606A1 (ja) 2019-01-17
US20190089266A1 (en) 2019-03-21
CN109155594B (zh) 2021-06-18
CN109155594A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
JP5289348B2 (ja) 車載用電力変換装置
JP5344182B2 (ja) 電力変換装置
US9776514B2 (en) DC-DC converter
EP2897138B1 (en) Electronic circuit apparatus
WO2017187606A1 (ja) 電力変換装置およびそれを備えた空気調和機
JP5377573B2 (ja) 電力変換装置
WO2012165099A1 (ja) 電力変換装置
JP5377574B2 (ja) 電力変換装置
JP7117274B2 (ja) 電力変換装置
JP4857997B2 (ja) 電気回路構造
CN108475923B (zh) 电路基板、有源滤波器装置以及空气调节机
JP5906313B2 (ja) 電力変換装置
CN113632364B (zh) 电力变换单元
JP6949232B2 (ja) 電力変換装置
JP5385939B2 (ja) 電動機駆動システム
WO2019116714A1 (ja) 電力変換器ユニット、および電力変換装置
US10951127B2 (en) Power conversion apparatus
KR20200020895A (ko) 인버터 장치
JP2014056775A (ja) 端子台ユニット
JP6518186B2 (ja) 電力変換器用筐体および筐体付の電力変換器
JP7230852B2 (ja) 電力変換装置、および電力変換装置の製造方法
JP6989049B2 (ja) 電力変換装置
WO2022038669A1 (ja) モータ駆動装置
JP2024010331A (ja) 電流センサ、電流センサを備える電力変換装置、及び、電流センサの回路基板の締結方法
JP2019161085A (ja) 電力変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018514060

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900476

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900476

Country of ref document: EP

Kind code of ref document: A1