WO2017177500A1 - Amoled像素驱动电路及像素驱动方法 - Google Patents

Amoled像素驱动电路及像素驱动方法 Download PDF

Info

Publication number
WO2017177500A1
WO2017177500A1 PCT/CN2016/082124 CN2016082124W WO2017177500A1 WO 2017177500 A1 WO2017177500 A1 WO 2017177500A1 CN 2016082124 W CN2016082124 W CN 2016082124W WO 2017177500 A1 WO2017177500 A1 WO 2017177500A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
control signal
scan control
node
Prior art date
Application number
PCT/CN2016/082124
Other languages
English (en)
French (fr)
Inventor
聂诚磊
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/106,836 priority Critical patent/US10032838B2/en
Publication of WO2017177500A1 publication Critical patent/WO2017177500A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an AMOLED pixel driving circuit and a pixel driving method.
  • OLED Organic Light Emitting Display
  • the OLED display device can be divided into two types: passive matrix OLED (PMOLED) and active matrix OLED (AMOLED), namely direct addressing and thin film transistor (Thin Film Transistor, according to the driving method).
  • PMOLED passive matrix OLED
  • AMOLED active matrix OLED
  • TFT thin film transistor
  • the AMOLED has pixels arranged in an array, belongs to an active display type, has high luminous efficiency, and is generally used as a high-definition large-sized display device.
  • the AMOLED is a current driving device.
  • the organic light emitting diode emits light, and the luminance of the light is determined by the current flowing through the organic light emitting diode itself.
  • Most existing integrated circuits (ICs) only transmit voltage signals, so the pixel driving circuit of AMOLED needs to complete the task of converting a voltage signal into a current signal.
  • ICs integrated circuits
  • the first thin film transistor is called a switching thin film transistor for controlling the entry of a data signal
  • the second thin film transistor is called a driving thin film transistor for controlling the current passing through the light emitting diode, thereby driving the threshold voltage Vth of the thin film transistor.
  • Vth threshold voltage
  • the threshold voltage drift occurs in the thin film transistor fabricated in the prior art, and the threshold voltage drift occurs when the organic light emitting diode is used for a long time, causing the current through the organic light emitting diode to be inconsistent with the desired current.
  • the brightness of the panel is therefore not up to standard.
  • the drift of the threshold voltage in the general 2T1C circuit cannot be improved by adjustment. Therefore, it is necessary to reduce the influence of the threshold voltage drift by adding a new thin film transistor or a new signal, that is, the AMOLED pixel driving circuit has a compensation function.
  • the single-gate thin film transistor functions as an AMOLED pixel driving circuit for driving the thin film transistor, and detects the threshold voltage of the driving thin film transistor, and then adjusts the size of the data signal of the required input according to the degree of drift of the threshold voltage, but the single-gate thin film transistor is subjected to the voltage After the stress, such as illumination, the threshold voltage generally drifts toward the positive direction, so the data signal also increases correspondingly to weaken the influence of the threshold voltage drift of the driving thin transistor, and the increase of the data signal further increases the driving thinness.
  • the voltage stress of the transistor accelerates the threshold voltage drift of the driving thin transistor and forms a vicious circle.
  • AMOLED pixel drive circuits with compensation functions that utilize dual gate thin film transistors as drive thin film transistors.
  • the characteristics of the dual-gate thin film transistor are that the voltage and the light stress have less influence on the threshold voltage, and the threshold voltage has a negative correlation with the top gate voltage.
  • FIG. 1 it is an existing AMOLED pixel driving circuit with a compensation function.
  • the AMOLED pixel driving circuit is a 4T 2 C structure, that is, a structure of four thin film transistors plus two capacitors, including: a first thin film transistor T10 a second thin film transistor T20, a third thin film transistor T30, a fourth thin film transistor T40, a first capacitor C10, a second capacitor C20, and an organic light emitting diode D10.
  • the first thin film transistor T10 as a driving thin film transistor is a double gate thin film transistor, the top gate thereof is electrically connected to the third node T′, the bottom gate is electrically connected to the first node B′, and the source is electrically connected to
  • the anode of the OLED D10 is electrically connected to the second node D'; the gate of the second thin film transistor T20 is connected to the first scan signal S10, and the source is electrically connected to the second node D'.
  • the gate of the third thin film transistor T30 is connected to the second scan signal S20, the source is connected to the power supply voltage VDD, and the drain is electrically connected to the second node D'; the fourth thin film transistor T40 The gate is connected to the third scan signal S30, the source is connected to the data signal Data, and the drain is electrically connected to the first node B'; one end of the first capacitor C10 is connected to the first node B', and the other end is grounded; One end of the second capacitor C20 is connected to the third node T', and the other end is grounded.
  • the anode of the organic light emitting diode D10 is electrically connected to the source of the first thin film transistor T10, and the cathode is grounded.
  • FIG. 2 is a timing diagram corresponding to the circuit shown in FIG. 1.
  • the operation process of the AMOLED pixel driving circuit is sequentially divided into three stages according to timing: a pre-charging stage 10, a threshold voltage programming stage 20, and a driving stage 30.
  • the pre-charging stage 10 the first scan control signal S10 provides a high potential
  • the second thin film transistor T20 is turned on
  • the second scan control signal S20 provides a high potential
  • the third thin film transistor T30 is turned on
  • the power supply voltage VDD is passed through the third thin film transistor.
  • the T30 and the second thin film transistor T20 charge the second capacitor C20 to VDD, at which time the voltage of the top gate of the first thin film transistor T10 is VDD, so that the threshold voltage of the first thin film transistor T10 is lowered, and the third scan control signal S30 is provided.
  • the low potential turns off the fourth thin film transistor T40, and the data signal Data cannot enter.
  • the first scan control signal S10 still provides a high potential
  • the second thin film transistor 20 remains turned on
  • the second scan control signal S20 provides a low potential
  • the third thin film transistor T30 is turned off, and the third scan signal S30 is provided.
  • the fourth thin film transistor T40 is turned on, the data signal Data provides a lower preset potential V pre into the bottom gate of the first thin film transistor T10, and the first thin film transistor T10 is turned on due to the low threshold voltage, and the second capacitor
  • the voltage stored in C20 is released by the first thin film transistor T10, the second thin film crystal T20, and the organic light emitting diode D10, and the threshold voltage of the first thin film transistor T10 is continuously increased until the first thin film transistor T10 is turned off.
  • V BG the bottom gate voltage of the first thin film transistor T10
  • V S represents the source voltage of the first thin film transistor T10
  • V pre represents the data signal voltage of this stage
  • V OLED Indicates the threshold voltage of the organic light emitting diode D10.
  • the first scan control signal S10 provides a low potential
  • the second thin film transistor T20 is turned off
  • the second scan control signal S20 and the third scan control signal S30 both provide a high voltage
  • the T40 is turned on, the data signal Data voltage is increased to enter the bottom gate of the first thin film transistor T10, the first thin film transistor T10 is turned on, and the organic light emitting diode D10 is illuminated.
  • is a constant coefficient related to the characteristics of the thin film transistor.
  • the current value I flowing through the organic light emitting diode D10 is independent of the threshold voltage of the first thin film transistor T10 and the threshold voltage of the organic light emitting diode D10, and is only related to the voltage difference between the data phase Data and the threshold voltage programming phase 20, respectively. .
  • the AMOLED pixel driving circuit can compensate the threshold voltage of the driving thin film transistor and the threshold voltage of the organic light emitting diode, it needs to be realized by adjusting the voltage level of the data signal of the input circuit, so that the data signal is more complicated and the pair is increased. The stress effect of the driving thin film transistor.
  • An object of the present invention is to provide an AMOLED pixel driving circuit capable of compensating for threshold voltage drift of a driving thin film transistor and a light emitting diode, and simplifying an input data signal, thereby stabilizing the luminance of the organic light emitting diode and improving display quality.
  • Another object of the present invention is to provide an AMOLED pixel driving method capable of compensating for threshold voltage drift of a driving thin film transistor and a light emitting diode, and simplifying input data signals. No., the brightness of the organic light emitting diode is stabilized, and the display quality is improved.
  • the present invention first provides an AMOLED pixel driving circuit, including: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a first capacitor, and a second capacitor. And an organic light emitting diode; the first thin film transistor as a driving thin film transistor, and the second thin film transistor as a switching thin film transistor;
  • the first thin film transistor is a double gate thin film transistor, the bottom gate is electrically connected to the first node, the top gate is electrically connected to the third node, the drain is electrically connected to the second node, and the source is electrically connected An anode of an organic light emitting diode;
  • the gate of the second thin film transistor is connected to the first scan control signal, the source is connected to the data signal, and the drain is electrically connected to the first node;
  • the gate of the third thin film transistor is connected to the second scan control signal, the source is connected to the preset voltage, and the drain is electrically connected to the first node;
  • the gate of the fourth thin film transistor is connected to the third scan control signal, the source is connected to the power supply voltage, and the drain is electrically connected to the second node;
  • the gate of the fifth thin film transistor is connected to the second scan control signal, the source is electrically connected to the third node, and the drain is electrically connected to the second node;
  • One end of the first capacitor is electrically connected to the first node, and the other end is grounded;
  • One end of the second capacitor is electrically connected to the third node, and the other end is grounded;
  • the anode of the organic light emitting diode is electrically connected to the source of the first thin film transistor, and the cathode is grounded.
  • the first scan control signal, the second scan control signal, and the third scan control signal are both provided by an external timing controller.
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, and the fifth thin film transistor are all low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon thin film transistors.
  • the preset voltage is a constant voltage.
  • the first scan control signal, the second scan control signal, and the third scan control signal are combined to sequentially correspond to a precharge phase, a threshold voltage programming phase, and a driving illumination phase;
  • the first scan control signal provides a low potential
  • the second scan control signal provides a high potential
  • the third scan control signal provides a high potential
  • the first scan control signal provides a low potential
  • the second scan control signal provides a high potential
  • the third scan control signal provides a low potential
  • the first scan control signal provides a high potential pulse signal
  • the second scan control signal provides a low potential
  • the third scan control signal provides a high potential
  • the invention also provides an AMOLED pixel driving method, comprising the following steps:
  • Step 1 Providing an AMOLED pixel driving circuit
  • the AMOLED pixel driving circuit includes: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a first capacitor, a second capacitor, and an organic light emitting diode; a thin film transistor as a driving thin film transistor, the second thin film transistor as a switching thin film transistor;
  • the first thin film transistor is a double gate thin film transistor, the bottom gate is electrically connected to the first node, the top gate is electrically connected to the third node, the drain is electrically connected to the second node, and the source is electrically connected An anode of an organic light emitting diode;
  • the gate of the second thin film transistor is connected to the first scan control signal, the source is connected to the data signal, and the drain is electrically connected to the first node;
  • the gate of the third thin film transistor is connected to the second scan control signal, the source is connected to the preset voltage, and the drain is electrically connected to the first node;
  • the gate of the fourth thin film transistor is connected to the third scan control signal, the source is connected to the power supply voltage, and the drain is electrically connected to the second node;
  • the gate of the fifth thin film transistor is connected to the second scan control signal, the source is electrically connected to the third node, and the drain is electrically connected to the second node;
  • One end of the first capacitor is electrically connected to the first node, and the other end is grounded;
  • One end of the second capacitor is electrically connected to the third node, and the other end is grounded;
  • the anode of the organic light emitting diode is electrically connected to the source of the first thin film transistor, and the cathode is grounded;
  • Step 2 entering the pre-charging stage
  • the first scan control signal provides a low potential
  • the second thin film transistor is turned off
  • the second scan control signal provides a high potential
  • the third thin film transistor and the fifth thin film transistor are turned on
  • the third scan control signal provides a high potential
  • the fourth thin film transistor is turned on, the bottom gate of the first node and the first thin film transistor is written with a preset voltage, the first capacitor is charged to a preset voltage, and the second node, the third node, and the top gate of the first thin film transistor Write the power supply voltage, and the second capacitor is charged to the power supply voltage;
  • Step 3 Enter a threshold voltage programming stage
  • the first scan control signal provides a low voltage
  • the second thin film transistor is turned off
  • the second scan control signal provides a high potential
  • the third thin film transistor and the fifth thin film transistor are turned on
  • the third scan control signal provides a low potential
  • the fourth thin film transistor is turned off, the first thin film transistor is turned on, the bottom gate of the first node and the first thin film transistor is maintained at a preset voltage, and the top gate voltage of the second node, the third node, and the first thin film transistor is decreased.
  • Step 4 entering the driving lighting stage
  • the first scan control signal provides a high potential pulse signal
  • the second thin film transistor is turned on
  • the second scan control signal provides a low potential
  • the third thin film transistor and the fifth thin film transistor are turned off
  • the third scan control signal is provided a high potential
  • the fourth thin film transistor is turned on
  • the first node and the bottom gate of the first thin film transistor write the voltage value of the data signal
  • the second node and the drain of the first thin film transistor are written to the power supply voltage
  • the first thin film transistor is turned on
  • the organic light emitting diode emits light and flows through
  • the first scan control signal, the second scan control signal, and the third scan control signal are both provided by an external timing controller.
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, and the fifth thin film transistor are all low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon thin film transistors.
  • the preset voltage is a constant voltage.
  • the present invention also provides an AMOLED pixel driving circuit, comprising: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a first capacitor, a second capacitor, and an organic light emitting diode
  • the first thin film transistor functions as a driving thin film transistor
  • the second thin film transistor functions as a switching thin film transistor
  • the first thin film transistor is a double gate thin film transistor, the bottom gate is electrically connected to the first node, the top gate is electrically connected to the third node, the drain is electrically connected to the second node, and the source is electrically connected An anode of an organic light emitting diode;
  • the gate of the second thin film transistor is connected to the first scan control signal, the source is connected to the data signal, and the drain is electrically connected to the first node;
  • the gate of the third thin film transistor is connected to the second scan control signal, the source is connected to the preset voltage, and the drain is electrically connected to the first node;
  • the gate of the fourth thin film transistor is connected to the third scan control signal, the source is connected to the power supply voltage, and the drain is electrically connected to the second node;
  • the gate of the fifth thin film transistor is connected to the second scan control signal, the source is electrically connected to the third node, and the drain is electrically connected to the second node;
  • One end of the first capacitor is electrically connected to the first node, and the other end is grounded;
  • One end of the second capacitor is electrically connected to the third node, and the other end is grounded;
  • the anode of the organic light emitting diode is electrically connected to the source of the first thin film transistor, and the cathode is grounded;
  • the first scan control signal, the second scan control signal, and the third scan control signal are all provided by an external timing controller
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, and the fifth thin film transistor are all low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon thin film transistors.
  • An AMOLED pixel driving circuit and driving method provided by the present invention utilizes a dual gate thin film transistor as a driving thin film transistor, and controls third and fourth through second and third scanning driving signals in a precharge phase And the fifth thin film transistor is turned on, so that the bottom gate of the first thin film transistor, that is, the driving thin film transistor, is written to the preset voltage, the top gate is written to the power supply voltage; and the fourth thin film transistor is controlled by the third scan driving signal during the threshold voltage programming stage.
  • the data signal drives the first thin film transistor to be turned on, the organic light emitting diode emits light, the current flowing through the organic light emitting diode and the threshold voltage of the first thin film transistor and the threshold of the organic light emitting diode
  • the voltage is irrelevant, which can compensate for the threshold voltage drift of the driving thin film transistor and the light emitting diode.
  • the input data signal can be simplified, the current through the organic light emitting diode is set to a constant value, the brightness of the organic light emitting diode is stabilized, and the display quality is improved.
  • FIG. 1 is a circuit diagram of a conventional AMOLED pixel driving circuit
  • FIG. 2 is a timing diagram of the AMOLED pixel driving circuit shown in FIG. 1;
  • FIG. 3 is a circuit diagram of an AMOLED pixel driving circuit of the present invention.
  • FIG. 4 is a timing diagram of the AMOLED pixel driving circuit shown in FIG. 3;
  • FIG. 5 is a schematic diagram of step 2 of the AMOLED pixel driving method of the present invention.
  • FIG. 6 is a schematic diagram of step 3 of the AMOLED pixel driving method of the present invention.
  • FIG. 7 is a schematic diagram of step 4 of the AMOLED pixel driving method of the present invention.
  • the present invention first provides an AMOLED pixel driving circuit.
  • the AMOLED pixel driving circuit is a 5T2C structure, and includes: a first thin film transistor T1, a second thin film transistor T2, and a third thin film transistor T3. a thin film transistor T4, a fifth thin film transistor T5, a first capacitor C1, a second capacitor C2, and an organic light emitting diode D1, wherein the first thin film transistor T1 functions as a driving thin film transistor, and the second thin film transistor T2 functions as a switching film Transistor.
  • the first thin film transistor T1 is a double-gate thin film transistor whose threshold voltage is less affected by voltage and illumination stress, and the threshold voltage Vth is not a fixed value, but is negative with the top gate voltage. Correlation, that is, the larger the top gate voltage it receives, the smaller the threshold voltage.
  • the specific connection manner of the AMOLED pixel driving circuit is:
  • the bottom gate BG of the first thin film transistor T1 is electrically connected to the first node B
  • the top gate TG is electrically connected to the third node T
  • the drain is electrically connected to the second node D
  • the source is electrically connected to the organic light emitting diode.
  • the anode of the second thin film transistor T2 is connected to the first scan control signal S1, the source is connected to the data signal Data, the drain is electrically connected to the first node B, and the gate of the third thin film transistor T3 is connected.
  • the second scan control signal S2 the source is connected to the preset voltage V pre
  • the drain is electrically connected to the first node B;
  • the gate of the fourth thin film transistor T4 is connected to the third scan control signal S3, and the source is connected to the power source.
  • the drain is electrically connected to the second node D; the gate of the fifth thin film transistor T5 is connected to the second scan control signal S2, the source is electrically connected to the third node T, and the drain is electrically connected to the second Node D; one end of the first capacitor C1 is electrically connected to the first node B, and the other end is grounded; one end of the second capacitor C2 is electrically connected to the third node T, and the other end is grounded; the anode of the organic light emitting diode D1 is electrically connected.
  • the cathode of the first thin film transistor T1 is grounded.
  • the first thin film transistor T1, the second thin film transistor T2, the third thin film transistor T3, the fourth thin film transistor T4, and the fifth thin film transistor T5 are all low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon films. Transistor.
  • the preset voltage V pre is a constant voltage.
  • the first scan control signal S1, the second scan control signal S2, and the third scan control signal S3 are all provided by an external timing controller. As shown in FIG. 4, the first scan control signal S1, the second scan control signal S2, and the third scan control signal S3 are combined to correspond to a precharge phase 1, a threshold voltage programming phase 2, and a Drives the illumination phase 3.
  • the first scan control signal S1 provides a low potential
  • the second scan control signal S2 provides a high potential
  • the third scan control signal S3 provides a high potential
  • the first scan control signal The number S1 provides a low potential
  • the second scan control signal S2 provides a high potential
  • the third scan control signal S3 provides a low potential
  • the first scan control signal S1 provides a high potential pulse signal
  • the second scan control signal S2 A low potential is provided and the third scan control signal S3 provides a high potential.
  • the second and third scan driving signals S2, S3 provide high potential conduction of the third, fourth, and fifth thin film transistors T3, T4, T5, the first thin film transistor T1
  • the bottom gate BG is written to the preset voltage V pre via the turned-on third thin film transistor T3 while the first capacitor C1 is charged to the preset voltage V pre
  • the fourth and fifth thin film transistors T4 are turned on by the top gate TG
  • T5 writes the power supply voltage VDD while the second capacitor C2 is charged to the power supply voltage VDD.
  • the threshold value The voltage Vth is very small; in the threshold voltage programming phase, the second driving signal S2 remains at a high potential, the third and fifth thin film transistors T3, T5 remain turned on, and the third scan driving signal S3 provides a low potential to turn off the fourth thin film transistor T4.
  • the first thin film transistor T1 is turned on, the bottom gate BG of the first thin film transistor T1 maintains a preset voltage V pre , and the voltage of the top gate TG of the first thin film transistor T1 decreases, according to the double gate characteristic of the first thin film transistor T1.
  • Vth V BG -V S
  • Vth V pre -V OLED
  • Vth the threshold voltage of the first thin film transistor T1
  • V S represents the source voltage of the first thin film transistor T1
  • V OLED represents the threshold voltage of the organic light emitting diode D1
  • the voltage of the top gate TG of the first thin film transistor T1 is no longer lowered, and the threshold voltage programming is completed;
  • a scan driving signal S1 controls the second thin film transistor T2 to be turned on
  • the third scan signal S3 controls the fourth thin film transistor T4 to be turned on
  • the data signal Data is transmitted to the bottom gate BG of the first thin film transistor T1 via the second thin film transistor T2,
  • the drain of a thin film transistor T1 is written to the power supply voltage VDD, and the voltage of the top gate TG of the first thin film transistor T1 is kept constant under the storage of the
  • V Data represents the voltage of the data signal Data
  • is a constant coefficient related to the characteristics of the thin film transistor.
  • the threshold voltage Vth of the organic light emitting diode D1 are independent of the compensation of the threshold value of the driving thin film transistor and the organic light emitting diode Voltage drift, at the same time, because the preset voltage V pre is a constant voltage, the current flowing through the organic light emitting diode D1 can be set to a constant value without changing the voltage of the data signal Data, so that the brightness of the organic light emitting diode is stabilized and the display quality is improved.
  • the input data signal is simplified, and the stress influence of the data signal on the driving thin film transistor is not increased.
  • the present invention further provides an AMOLED pixel driving method, including the following steps:
  • Step 1 provides an AMOLED pixel driving circuit using the 5T2C structure as shown in FIG. 3, and the AMOLED pixel driving circuit structure is not repeatedly described herein.
  • the first thin film transistor T1 is a double-gate thin film transistor whose threshold voltage is less affected by voltage and illumination stress, and the threshold voltage Vth is not a fixed value, but is negative with the top gate voltage. Correlation, that is, the larger the top gate voltage it receives, the smaller the threshold voltage.
  • the first thin film transistor T1, the second thin film transistor T2, the third thin film transistor T3, the fourth thin film transistor T4, and the fifth thin film transistor T5 are all low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or non- Crystalline silicon thin film transistor.
  • the preset voltage V pre is a constant voltage.
  • the first scan control signal S1, the second scan control signal S2, and the third scan control signal S3 are all provided by an external timing controller.
  • Step 2 Please refer to Figure 4 and Figure 5 simultaneously to enter pre-charge phase 1.
  • the first scan control signal S1 provides a low potential
  • the second thin film transistor T2 is turned off
  • the second scan control signal S2 provides a high potential
  • the third thin film transistor T3 and the fifth thin film transistor T5 are turned on
  • the third scan control signal S3 is provided.
  • the fourth thin film transistor T4 is turned on
  • the first node B and the bottom gate BG of the first thin film transistor T1 are written to the preset voltage V pre
  • the first capacitor C1 is charged to the preset voltage V pre
  • the second node D
  • the third node T and the top gate TG of the first thin film transistor T1 are written to the power supply voltage VDD
  • the second capacitor C2 is charged to the power supply voltage VDD.
  • the first thin film transistor T1 In the pre-charging stage, since the voltage of the top gate TG of the first thin film transistor T1 is the power supply voltage VDD, and the voltage of the bottom gate BG is the preset voltage Vpre , based on the characteristics of the double-gate thin film transistor, the first thin film transistor T1 In the case where the voltage of the top gate TG is a high voltage of the power supply voltage VDD, the threshold voltage Vth is extremely small.
  • Step 3 Please refer to Figure 4 and Figure 6 simultaneously to enter the threshold voltage programming phase 2.
  • the first scan control signal S1 provides a low voltage
  • the second thin film transistor T2 is turned off
  • the second scan control signal S2 provides a high potential
  • the third thin film transistor T3 and the fifth thin film transistor T5 are turned on
  • the third scan control signal S3 provides a low potential
  • the fourth thin film transistor T4 is turned off
  • the first thin film transistor T1 is turned on
  • the first node B and the bottom gate BG of the first thin film transistor T1 maintain a preset voltage V pre , the second node D, the third node T
  • the voltage of the top gate TG of the first thin film transistor T1 is decreased, and the threshold voltage of the first thin film transistor T1 is continuously increased.
  • Vth represents the threshold voltage of the first thin film transistor T1
  • V BG represents the voltage of the bottom gate BG of the first thin film transistor T1
  • V S represents the source voltage of the first thin film transistor T1
  • V OLED represents the organic light emission
  • Step 4 please refer to FIG. 4 and FIG. 7 at the same time, and enter the driving illumination stage 3.
  • the first scan control signal S1 provides a high potential pulse signal
  • the second thin film transistor T2 is turned on
  • the second scan control signal S2 provides a low potential
  • the third thin film transistor T3 and the fifth thin film transistor T5 are turned off
  • the first The third scan control signal S3 provides a high potential
  • the fourth thin film transistor T4 is turned on
  • the first node B and the bottom gate BG of the first thin film transistor T1 are written with the voltage value of the data signal Data via the turned-on second thin film transistor T2.
  • the drains of the two nodes D and the first thin film transistor T1 are written to the power supply voltage VDD, and the voltage of the third node T and the top gate TG of the first thin film transistor T1 is kept constant under the storage of the second capacitor C2, and the first film is maintained.
  • V Data represents the voltage of the data signal Data
  • is a constant coefficient related to the characteristics of the thin film transistor.
  • the threshold voltage Vth of the organic light emitting diode D1 are independent of the compensation of the threshold value of the driving thin film transistor and the organic light emitting diode Voltage drift, at the same time, because the preset voltage V pre is a constant voltage, the current flowing through the organic light emitting diode D1 can be set to a constant value without changing the voltage of the data signal Data, so that the brightness of the organic light emitting diode is stabilized and the display quality is improved.
  • the input data signal is simplified, and the stress influence of the data signal on the driving thin film transistor is not increased.
  • the AMOLED pixel driving circuit and the driving method of the present invention utilize a dual gate thin film transistor as a driving thin film transistor, and control the third, fourth, and fifth by the second and third scan driving signals in the precharge phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种AMOLED像素驱动电路及驱动方法,利用双栅极薄膜晶体管作为驱动薄膜晶体管,在预充电阶段使第一薄膜晶体管(T1)即驱动薄膜晶体管的底栅(BG)写入预设电压(Vpre),顶栅(TG)写入电源电压(VDD);在阈值电压编程阶段使第一薄膜晶体管(T1)的顶栅(TG)电压降低、而阈值电压升高,直至阈值电压提升至Vth=Vpre-VOLED;在驱动发光阶段,第一薄膜晶体管(T1)的顶栅(TG)电压保持不变,维持其阈值电压仍为Vth=Vpre-VOLED,数据信号(Data)驱动第一薄膜晶体管(T1)导通,使有机发光二极管(D1)发光,流过有机发光二极管(D1)的电流与第一薄膜晶体管(T1)的阈值电压和有机发光二极管(D1)的阈值电压都无关,既能够补偿阈值电压漂移,又能够简化数据信号。

Description

AMOLED像素驱动电路及像素驱动方法 技术领域
本发明涉及显示技术领域,尤其涉及一种AMOLED像素驱动电路及像素驱动方法。
背景技术
有机发光二极管(Organic Light Emitting Display,OLED)显示装置具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。OLED显示装置按照驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED,PMOLED)和有源矩阵型OLED(Active Matrix OLED,AMOLED)两大类,即直接寻址和薄膜晶体管(Thin Film Transistor,TFT)矩阵寻址两类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。
AMOLED是电流驱动器件,当有电流流经有机发光二极管时,有机发光二极管发光,且发光亮度由流经有机发光二极管自身的电流决定。大部分已有的集成电路(Integrated Circuit,IC)都只传输电压信号,故AMOLED的像素驱动电路需要完成将电压信号转变为电流信号的任务。在一般的AMOLED像素驱动电路中均存在两个薄膜晶体管与一个电容,简称为2T1C像素电路。第一个薄膜晶体管被称为开关薄膜晶体管,用于控制数据信号的进入,第二个薄膜晶体管被称为驱动薄膜晶体管,用于控制通过机发光二极管的电流,因此驱动薄膜晶体管的阈值电压Vth的重要性便十分明显,Vth的正向或负向漂移都有会使得在相同数据信号下有不同的电流通过发光二极管。
现有技术制作出的薄膜晶体管在使用过程中均会发生阈值电压漂移的现象,同时有机发光二极管在长时间使用后也会产生阈值电压漂移,导致通过有机发光二极管的电流与想要的电流不一致,面板亮度因此也达不到要求。
一般的2T1C电路中阈值电压的漂移无法通过调节得到改善,因此需要通过添加新的薄膜晶体管或新的信号的方式来减弱阈值电压漂移带来的影响,即使得AMOLED像素驱动电路具有补偿功能。目前,大部分使用传统 的单栅极薄膜晶体管作为驱动薄膜晶体管的AMOLED像素驱动电路,通过探测驱动薄膜晶体管阈值电压,然后根据阈值电压的漂移程度调整所需输入的数据信号的大小,但是单栅极薄膜晶体管在受到电压、光照等应力作用后,阈值电压通常向正向漂移而增大,因此数据信号也要相应增大,以减弱驱动薄晶体管阈值电压漂移的影响,而数据信号的增大又进一步增加了驱动薄晶体管的电压应力作用,加快了驱动薄晶体管的阈值电压漂移,形成恶性循环。
当然,目前也有一些具有补偿功能的AMOLED像素驱动电路利用双栅极薄膜晶体管作为驱动薄膜晶体管。双栅极薄膜晶体管的特点在于电压与光照应力对其阈值电压的影响较小,同时阈值电压与顶栅电压呈负相关趋势。如图1所示,为一种现有的具有补偿功能的AMOLED像素驱动电路,所述AMOLED像素驱动电路为4T2C结构,即四个薄膜晶体管加两个电容的结构,包括:第一薄膜晶体管T10、第二薄膜晶体管T20、第三薄膜晶体管T30、第四薄膜晶体管T40、第一电容C10、第二电容C20、及有机发光二极管D10。其中,作为驱动薄膜晶体管的第一薄膜晶体管T10为双栅极薄膜晶体管,其顶栅电性连接于第三节点T’,底栅电性连接于第一节点B’,源极电性连接于有机发光二极管D10的阳极,漏极电性连接于第二节点D’;第二薄膜晶体管T20的栅极接入第一扫描信号S10,源极电性连接于第二节点D’,漏极电性连接于第三节点T’;第三薄膜晶体管T30的栅极接入第二扫描信号S20,源极接入电源电压VDD,漏极电性连接于第二节点D’;第四薄膜晶体管T40的栅极接入第三扫描信号S30,源极接入数据信号Data,漏极电性连接于第一节点B’;第一电容C10的一端连接于第一节点B’,另一端接地;第二电容C20的一端连接于第三节点T’,另一端接地;有机发光二极管D10的阳极电性连接第一薄膜晶体管T10的源极,阴极接地。
图2为对应于图1所示电路的时序图,该AMOLED像素驱动电路的工作过程按照时序依次分为三个阶段:预充电阶段10、阈值电压编程阶段20、及驱动阶段30。在预充电阶段10,第一扫描控制信号S10提供高电位,第二薄膜晶体管T20导通,第二扫描控制信号S20提供高电位,第三薄膜晶体管T30导通,电源电压VDD通过第三薄膜晶体管T30和第二薄膜晶体管T20为第二电容C20充电至VDD,此时第一薄膜晶体管T10的顶栅的电压即为VDD,使得第一薄膜晶体管T10的阈值电压降低,第三扫描控制信号S30提供低电位,使第四薄膜晶体管T40截止,数据信号Data不能进入。在阈值电压编程阶段20,第一扫描控制信号S10仍提供高电位,第二薄膜 晶体管20保持导通,第二扫描控制信号S20提供低电位,第三薄膜晶体管T30截止,第三扫描信号S30提供高电位,第四薄膜晶体管T40导通,数据信号Data提供一较低的预设电位Vpre进入第一薄膜晶体管T10的底栅,第一薄膜晶体管T10由于阈值电压低而导通,第二电容C20储存的电压经第一薄膜晶体管T10、第二薄膜晶体T20、及有机发光二极管D10释放,第一薄膜晶体管T10的阈值电压不断上升直至第一薄膜晶体管T10截止,此时阈值电压Vth=VBG-VS=Vpre-VOLED,其中,VBG表示第一薄膜晶体管T10的底栅电压,VS表示第一薄膜晶体管T10的源极电压,Vpre表示此阶段的数据信号电压,VOLED表示有机发光二极管D10的阈值电压。在驱动阶段30,第一扫描控制信号S10提供低电位,第二薄膜晶体管T20截止,第二扫描控制信号S20与第三扫描控制信号S30均提供高电压,第三薄膜晶体管T30和第四薄膜晶体管T40均导通,数据信号Data电压提高进入第一薄膜晶体管T10的底栅,第一薄膜晶体管T10导通,有机发光二极管D10发光。
由于经阈值电压编程阶段20后,第一薄膜晶体管T10的阈值电压为Vth=Vpre-VOLED,根据流经薄膜晶体管的电流公式:
I=β(VBG-Vth-VS)2
=β(VData-Vpre+VOLED-VOLED)2
=β(VData-Vpre)2
其中,β为一与薄膜晶体管特性有关的常值系数。
流过有机发光二极管D10的电流值I与第一薄膜晶体管T10的阈值电压及有机发光二极管D10的阈值电压均无关,只与数据信号Data分别在驱动阶段30和阈值电压编程阶段20的电压差相关。
这种AMOLED像素驱动电路虽然能够对驱动薄膜晶体管的阈值电压和有机发光二极管的阈值电压进行补偿,但需要通过调整输入电路的数据信号的电压大小来实现,使得数据信号较复杂,并且会增加对驱动薄膜晶体管的应力影响。
发明内容
本发明的目的在于提供一种AMOLED像素驱动电路,既能够补偿驱动薄膜晶体管与发光二极管的阈值电压漂移,又能够简化输入的数据信号,使有机发光二极管的发光亮度稳定,提升显示品质。
本发明的另一目的在于提供一种AMOLED像素驱动方法,既能够补偿驱动薄膜晶体管与发光二极管的阈值电压漂移,又能够简化输入的数据信 号,使有机发光二极管的发光亮度稳定,提升显示品质。
为实现上述目的,本发明首先提供一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第一电容、第二电容、及有机发光二极管;所述第一薄膜晶体管作为驱动薄膜晶体管,所述第二薄膜晶体管作为开关薄膜晶体管;
所述第一薄膜晶体管为双栅极薄膜晶体管,其底栅电性连接于第一节点,顶栅电性连接于第三节点,漏极电性连接于第二节点,源极电性连接于有机发光二极管的阳极;
第二薄膜晶体管的栅极接入第一扫描控制信号,源极接入数据信号,漏极电性连接于第一节点;
第三薄膜晶体管的栅极接入第二扫描控制信号,源极接入预设电压,漏极电性连接于第一节点;
第四薄膜晶体管的栅极接入第三扫描控制信号,源极接入电源电压,漏极电性连接于第二节点;
第五薄膜晶体管的栅极接入第二扫描控制信号,源极电性连接于第三节点,漏极电性连接于第二节点;
第一电容的一端电性连接于第一节点,另一端接地;
第二电容的一端电性连接于第三节点,另一端接地;
有机发光二极管的阳极电性连接于第一薄膜晶体管的源极,阴极接地。
所述第一扫描控制信号、第二扫描控制信号、与第三扫描控制信号均通过外部时序控制器提供。
所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、及第五薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
所述预设电压为一恒定电压。
所述第一扫描控制信号、第二扫描控制信号、及第三扫描控制信号相组合,先后对应于一预充电阶段、一阈值电压编程阶段、及一驱动发光阶段;
在所述预充电阶段,所述第一扫描控制信号提供低电位,第二扫描控制信号提供高电位,第三扫描控制信号提供高电位;
在所述阈值电压编程阶段,所述第一扫描控制信号提供低电位,第二扫描控制信号提供高电位,第三扫描控制信号提供低电位;
在所述驱动发光阶段,所述第一扫描控制信号提供高电位脉冲信号, 第二扫描控制信号提供低电位,第三扫描控制信号提供高电位。
本发明还提供一种AMOLED像素驱动方法,包括以下步骤:
步骤1、提供一AMOLED像素驱动电路;
所述AMOLED像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第一电容、第二电容、及有机发光二极管;所述第一薄膜晶体管作为驱动薄膜晶体管,所述第二薄膜晶体管作为开关薄膜晶体管;
所述第一薄膜晶体管为双栅极薄膜晶体管,其底栅电性连接于第一节点,顶栅电性连接于第三节点,漏极电性连接于第二节点,源极电性连接于有机发光二极管的阳极;
第二薄膜晶体管的栅极接入第一扫描控制信号,源极接入数据信号,漏极电性连接于第一节点;
第三薄膜晶体管的栅极接入第二扫描控制信号,源极接入预设电压,漏极电性连接于第一节点;
第四薄膜晶体管的栅极接入第三扫描控制信号,源极接入电源电压,漏极电性连接于第二节点;
第五薄膜晶体管的栅极接入第二扫描控制信号,源极电性连接于第三节点,漏极电性连接于第二节点;
第一电容的一端电性连接于第一节点,另一端接地;
第二电容的一端电性连接于第三节点,另一端接地;
有机发光二极管的阳极电性连接于第一薄膜晶体管的源极,阴极接地;
步骤2、进入预充电阶段;
所述第一扫描控制信号提供低电位,第二薄膜晶体管截止,所述第二扫描控制信号提供高电位,第三薄膜晶体管和第五薄膜晶体管导通,所述第三扫描控制信号提供高电位,第四薄膜晶体管导通,第一节点及第一薄膜晶体管的底栅写入预设电压,第一电容充电至预设电压,第二节点、第三节点、及第一薄膜晶体管的顶栅写入电源电压,第二电容充电至电源电压;
步骤3、进入阈值电压编程阶段;
所述第一扫描控制信号提供低电压,第二薄膜晶体管截止,所述第二扫描控制信号提供高电位,第三薄膜晶体管和第五薄膜晶体管导通,所述第三扫描控制信号提供低电位,第四薄膜晶体管截止,所述第一薄膜晶体管导通,第一节点及第一薄膜晶体管的底栅保持预设电压,第二节点、第三节点及第一薄膜晶体管的顶栅电压下降,第一薄膜晶体管的阈值电压不 断增大,当第一薄膜晶体管的阈值电压达到Vth=Vpre-VOLED时,第一薄膜晶体管的阈值电压不再变化,完成阈值电压编程;
步骤4、进入驱动发光阶段;
所述第一扫描控制信号提供高电位脉冲信号,第二薄膜晶体管导通,所述第二扫描控制信号提供低电位,第三薄膜晶体管和第五薄膜晶体管截止,所述第三扫描控制信号提供高电位,第四薄膜晶体管导通,第一节点及第一薄膜晶体管的底栅写入数据信号的电压值,第二节点及第一薄膜晶体管的漏极写入电源电压,第三节点及第一薄膜晶体管的顶栅在第二电容的存储作用下电压保持不变,维持第一薄膜晶体管的阈值电压为Vth=Vpre-VOLED,第一薄膜晶体管导通,有机发光二极管发光,流过有机发光二极管的电流I=β(VData-Vpre)2,与第一薄膜晶体管的阈值电压和有机发光二极管的阈值电压均无关。
所述第一扫描控制信号、第二扫描控制信号、与第三扫描控制信号均通过外部时序控制器提供。
所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、及第五薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
所述预设电压为一恒定电压。
本发明还提供一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第一电容、第二电容、及有机发光二极管;所述第一薄膜晶体管作为驱动薄膜晶体管,所述第二薄膜晶体管作为开关薄膜晶体管;
所述第一薄膜晶体管为双栅极薄膜晶体管,其底栅电性连接于第一节点,顶栅电性连接于第三节点,漏极电性连接于第二节点,源极电性连接于有机发光二极管的阳极;
第二薄膜晶体管的栅极接入第一扫描控制信号,源极接入数据信号,漏极电性连接于第一节点;
第三薄膜晶体管的栅极接入第二扫描控制信号,源极接入预设电压,漏极电性连接于第一节点;
第四薄膜晶体管的栅极接入第三扫描控制信号,源极接入电源电压,漏极电性连接于第二节点;
第五薄膜晶体管的栅极接入第二扫描控制信号,源极电性连接于第三节点,漏极电性连接于第二节点;
第一电容的一端电性连接于第一节点,另一端接地;
第二电容的一端电性连接于第三节点,另一端接地;
有机发光二极管的阳极电性连接于第一薄膜晶体管的源极,阴极接地;
其中,所述第一扫描控制信号、第二扫描控制信号、与第三扫描控制信号均通过外部时序控制器提供;
其中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、及第五薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
本发明的有益效果:本发明提供的一种AMOLED像素驱动电路及驱动方法,利用双栅极薄膜晶体管作为驱动薄膜晶体管,在预充电阶段通过第二、第三扫描驱动信号控制第三、第四、及第五薄膜晶体管导通,使第一薄膜晶体管即驱动薄膜晶体管的底栅写入预设电压,顶栅写入电源电压;在阈值电压编程阶段通过第三扫描驱动信号控制第四薄膜晶体管截止,使第一薄膜晶体管的顶栅电压降低、而阈值电压升高,直至阈值电压提升至Vth=Vpre-VOLED;在驱动发光阶段,第一薄膜晶体管的顶栅电压保持不变,维持其阈值电压仍为Vth=Vpre-VOLED,数据信号驱动第一薄膜晶体管导通,使有机发光二极管发光,流过有机发光二极管的电流与第一薄膜晶体管的阈值电压和有机发光二极管的阈值电压都无关,既能够补偿驱动薄膜晶体管与发光二极管的阈值电压漂移,又能够简化输入的数据信号,保证通过有机发光二极管的电流为定值,保证有机发光二极管的发光亮度稳定,提升显示品质。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为一种现有的AMOLED像素驱动电路的电路图;
图2为图1所示AMOLED像素驱动电路的时序图;
图3为本发明的AMOLED像素驱动电路的电路图;
图4为图3所示AMOLED像素驱动电路的时序图;
图5为本发明的AMOLED像素驱动方法的步骤2的示意图;
图6为本发明的AMOLED像素驱动方法的步骤3的示意图;
图7为本发明的AMOLED像素驱动方法的步骤4的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请同时参阅图3与图4,本发明首先提供一种AMOLED像素驱动电路,该AMOLED像素驱动电路为5T2C结构,包括:第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体管T4、第五薄膜晶体管T5、第一电容C1、第二电容C2、及有机发光二极管D1,其中所述第一薄膜晶体管T1作为驱动薄膜晶体管,所述第二薄膜晶体管T2作为开关薄膜晶体管。
重点需要说明的是,第一薄膜晶体管T1为双栅极薄膜晶体管,其阈值电压受电压与光照的应力影响较小,同时其阈值电压Vth不是固定值,而是与其所受的顶栅电压负相关,即其受到的顶栅电压越大,阈值电压越小。
如图3所示,该AMOLED像素驱动电路的具体连接方式为:
第一薄膜晶体管T1的底栅BG电性连接于第一节点B,顶栅TG电性连接于第三节点T,漏极电性连接于第二节点D,源极电性连接于有机发光二极管D1的阳极;第二薄膜晶体管T2的栅极接入第一扫描控制信号S1,源极接入数据信号Data,漏极电性连接于第一节点B;第三薄膜晶体管T3的栅极接入第二扫描控制信号S2,源极接入预设电压Vpre,漏极电性连接于第一节点B;第四薄膜晶体管T4的栅极接入第三扫描控制信号S3,源极接入电源电压VDD,漏极电性连接于第二节点D;第五薄膜晶体管T5的栅极接入第二扫描控制信号S2,源极电性连接于第三节点T,漏极电性连接于第二节点D;第一电容C1的一端电性连接于第一节点B,另一端接地;第二电容C2的一端电性连接于第三节点T,另一端接地;有机发光二极管D1的阳极电性连接于第一薄膜晶体管T1的源极,阴极接地。
所述第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体管T4、及第五薄膜晶体管T5均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。所述预设电压Vpre为一恒定电压。
所述第一扫描控制信号S1、第二扫描控制信号S2、与第三扫描控制信号S3均通过外部时序控制器提供。如图4所示,所述第一扫描控制信号S1、第二扫描控制信号S2、及第三扫描控制信号S3相组合,先后对应于一预充电阶段1、一阈值电压编程阶段2、及一驱动发光阶段3。在预充电阶段1,第一扫描控制信号S1提供低电位,第二扫描控制信号S2提供高电位,第三扫描控制信号S3提供高电位;在阈值电压编程阶段2,第一扫描控制信 号S1提供低电位,第二扫描控制信号S2提供高电位,第三扫描控制信号S3提供低电位;在驱动发光阶段3,第一扫描控制信号S1提供高电位脉冲信号,第二扫描控制信号S2提供低电位,第三扫描控制信号S3提供高电位。
结合图5至图7,在预充电阶段,第二、第三扫描驱动信号S2、S3提供高电位导通第三、第四、及第五薄膜晶体管T3、T4、T5,第一薄膜晶体管T1的底栅BG经导通的第三薄膜晶体管T3写入预设电压Vpre,同时第一电容C1充电至预设电压Vpre,顶栅TG经导通的第四、第五薄膜晶体管T4、T5写入电源电压VDD,同时第二电容C2充电至电源电压VDD,由于第一薄膜晶体管T1的双栅极特性,在其顶栅TG的电压为电源电压VDD这一高电压的情况下,阈值电压Vth非常小;在阈值电压编程阶段,第二驱动信号S2保持高电位,第三及第五薄膜晶体管T3、T5保持导通,第三扫描驱动信号S3提供低电位使第四薄膜晶体管T4截止,所述第一薄膜晶体管T1导通,第一薄膜晶体管T1的底栅BG保持预设电压Vpre,第一薄膜晶体管T1的顶栅TG电压下降,根据第一薄膜晶体管T1的双栅极特性,阈值电压会不断增大,当阈值电压达到Vth=VBG-VS时,即Vth=Vpre-VOLED时,其中Vth表示第一薄膜晶体管T1的阈值电压,VBG表示第一薄膜晶体管T1的底栅BG的电压,VS表示第一薄膜晶体管T1的源极电压,VOLED表示有机发光二极管D1的阈值电压,第一薄膜晶体管T1顶栅TG的电压不再降低,完成阈值电压编程;在驱动发光阶段,第一扫描驱动信号S1控制第二薄膜晶体管T2导通,第三扫描信号S3控制第四薄膜晶体管T4导通,数据信号Data经第二薄膜晶体管T2传输至第一薄膜晶体管T1的底栅BG,第一薄膜晶体管T1的漏极写入电源电压VDD,第一薄膜晶体管T1的顶栅TG在第二电容C2的存储作用下电压保持不变,维持第一薄膜晶体管T1的阈值电压仍为Vth=Vpre-VOLED,第一薄膜晶体管T1导通,机发光二极管D1发光。
根据流过有机发光二极管的电流公式:
I=β(VBG-Vth-VS)2
=β(VData-Vpre+VOLED-VOLED)2
=β(VData-Vpre)2
其中,VData表示数据信号Data的电压,β为一与薄膜晶体管特性有关的常值系数。
可知流过第一薄膜晶体管T1及有机发光二极管D1的电流值与第一薄膜晶体管T1的阈值电压Vth和有机发光二极管D1的阈值电压Voled都无 关,补偿了驱动薄膜晶体管和有机发光二极管的阈值电压漂移,同时,由于预设电压Vpre为一恒定电压,无需改变数据信号Data的电压即可保证流过有机发光二极管D1的电流为定值,使有机发光二极管的发光亮度稳定,提升显示品质,相比现有技术简化了输入的数据信号,也不会增加数据信号对驱动薄膜晶体管的应力影响。
请同时参阅图3至图7,本发明还提供一种AMOLED像素驱动方法,包括以下步骤:
步骤1、提供一上述如图3所示的采用5T2C结构的AMOLED像素驱动电路,此处不再对该AMOLED像素驱动电路结构进行重复描述。
重点需要说明的是,第一薄膜晶体管T1为双栅极薄膜晶体管,其阈值电压受电压与光照的应力影响较小,同时其阈值电压Vth不是固定值,而是与其所受的顶栅电压负相关,即其受到的顶栅电压越大,阈值电压越小。
具体地,所述第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体管T4、及第五薄膜晶体管T5均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。所述预设电压Vpre为一恒定电压。所述第一扫描控制信号S1、第二扫描控制信号S2、与第三扫描控制信号S3均通过外部时序控制器提供。
步骤2、请同时参阅图4和图5,进入预充电阶段1。
所述第一扫描控制信号S1提供低电位,第二薄膜晶体管T2截止,第二扫描控制信号S2提供高电位,第三薄膜晶体管T3和第五薄膜晶体管T5导通,第三扫描控制信号S3提供高电位,第四薄膜晶体管T4导通,第一节点B及第一薄膜晶体管T1的底栅BG写入预设电压Vpre,第一电容C1充电至预设电压Vpre,第二节点D、第三节点T及第一薄膜晶体管T1的顶栅TG写入电源电压VDD,第二电容C2充电至电源电压VDD。在该预充电阶段,由于第一薄膜晶体管T1的顶栅TG的电压为电源电压VDD,底栅BG的电压为预设电压Vpre,基于双栅极薄膜晶体管的特性,在第一薄膜晶体管T1的顶栅TG的电压为电源电压VDD这一高电压的情况下,阈值电压Vth非常小。
步骤3、请同时参阅图4和图6,进入阈值电压编程阶段2。
所述第一扫描控制信号S1提供低电压,第二薄膜晶体管T2截止,所述第二扫描控制信号S2提供高电位,第三薄膜晶体管T3和第五薄膜晶体管T5导通,第三扫描控制信号S3提供低电位,第四薄膜晶体管T4截止,第一薄膜晶体管T1导通,第一节点B及第一薄膜晶体管T1的底栅BG保持预设电压Vpre,第二节点D、第三节点T及第一薄膜晶体管T1的顶栅TG 的电压下降,第一薄膜晶体管T1的阈值电压不断增大,当第一薄膜晶体管T1的阈值电压达到Vth=VBG-VS时,即Vth=Vpre-VOLED时,其中Vth表示第一薄膜晶体管T1的阈值电压,VBG表示第一薄膜晶体管T1的底栅BG的电压,VS表示第一薄膜晶体管T1的源极电压,VOLED表示有机发光二极管D1的阈值电压,第一薄膜晶体管T1的阈值电压不再变化,完成阈值电压编程。
步骤4、请同时参阅图4和图7,进入驱动发光阶段3。
所述第一扫描控制信号S1提供高电位脉冲信号,第二薄膜晶体管T2导通,所述第二扫描控制信号S2提供低电位,第三薄膜晶体管T3和第五薄膜晶体管T5截止,所述第三扫描控制信号S3提供高电位,第四薄膜晶体管T4导通,第一节点B及第一薄膜晶体管T1的底栅BG经导通的第二薄膜晶体管T2写入数据信号Data的电压值,第二节点D及第一薄膜晶体管T1的漏极写入电源电压VDD,第三节点T及第一薄膜晶体管T1的顶栅TG在第二电容C2的存储作用下电压保持不变,维持第一薄膜晶体管T1的阈值电压仍为Vth=Vpre-VOLED,第一薄膜晶体管T1导通,有机发光二极管D1发光。
根据流过有机发光二极管的电流公式为:
I=β(VBG-Vth-VS)2
=β(VData-Vpre+VOLED-VOLED)2
=β(VData-Vpre)2
其中,VData表示数据信号Data的电压,β为一与薄膜晶体管特性有关的常值系数。
可知流过第一薄膜晶体管T1及有机发光二极管D1的电流值与第一薄膜晶体管T1的阈值电压Vth和有机发光二极管D1的阈值电压Voled都无关,补偿了驱动薄膜晶体管和有机发光二极管的阈值电压漂移,同时,由于预设电压Vpre为一恒定电压,无需改变数据信号Data的电压即可保证流过有机发光二极管D1的电流为定值,使有机发光二极管的发光亮度稳定,提升显示品质,相比现有技术简化了输入的数据信号,也不会增加数据信号对驱动薄膜晶体管的应力影响。
综上所述,本发明的AMOLED像素驱动电路及驱动方法,利用双栅极薄膜晶体管作为驱动薄膜晶体管,在预充电阶段通过第二、第三扫描驱动信号控制第三、第四、及第五薄膜晶体管导通,使第一薄膜晶体管即驱动薄膜晶体管的底栅写入预设电压,顶栅写入电源电压;在阈值电压编程阶段通过第三扫描驱动信号控制第四薄膜晶体管截止,使第一薄膜晶体管的 顶栅电压降低、而阈值电压升高,直至阈值电压提升至Vth=Vpre-VOLED;在驱动发光阶段,第一薄膜晶体管的顶栅电压保持不变,维持其阈值电压仍为Vth=Vpre-VOLED,数据信号驱动第一薄膜晶体管导通,使有机发光二极管发光,流过有机发光二极管的电流与第一薄膜晶体管的阈值电压和有机发光二极管的阈值电压都无关,既能够补偿驱动薄膜晶体管与发光二极管的阈值电压漂移,又能够简化输入的数据信号,保证通过有机发光二极管的电流为定值,保证有机发光二极管的发光亮度稳定,提升显示品质。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (12)

  1. 一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第一电容、第二电容、及有机发光二极管;所述第一薄膜晶体管作为驱动薄膜晶体管,所述第二薄膜晶体管作为开关薄膜晶体管;
    所述第一薄膜晶体管为双栅极薄膜晶体管,其底栅电性连接于第一节点,顶栅电性连接于第三节点,漏极电性连接于第二节点,源极电性连接于有机发光二极管的阳极;
    第二薄膜晶体管的栅极接入第一扫描控制信号,源极接入数据信号,漏极电性连接于第一节点;
    第三薄膜晶体管的栅极接入第二扫描控制信号,源极接入预设电压,漏极电性连接于第一节点;
    第四薄膜晶体管的栅极接入第三扫描控制信号,源极接入电源电压,漏极电性连接于第二节点;
    第五薄膜晶体管的栅极接入第二扫描控制信号,源极电性连接于第三节点,漏极电性连接于第二节点;
    第一电容的一端电性连接于第一节点,另一端接地;
    第二电容的一端电性连接于第三节点,另一端接地;
    有机发光二极管的阳极电性连接于第一薄膜晶体管的源极,阴极接地。
  2. 如权利要求1所述的AMOLED像素驱动电路,其中,所述第一扫描控制信号、第二扫描控制信号、与第三扫描控制信号均通过外部时序控制器提供。
  3. 如权利要求1所述的AMOLED像素驱动电路,其中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、及第五薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
  4. 如权利要求1所述的AMOLED像素驱动电路,其中,所述预设电压为一恒定电压。
  5. 如权利要求1所述的AMOLED像素驱动电路,其中,所述第一扫描控制信号、第二扫描控制信号、及第三扫描控制信号相组合,先后对应于一预充电阶段、一阈值电压编程阶段、及一驱动发光阶段;
    在所述预充电阶段,所述第一扫描控制信号提供低电位,第二扫描控 制信号提供高电位,第三扫描控制信号提供高电位;
    在所述阈值电压编程阶段,所述第一扫描控制信号提供低电位,第二扫描控制信号提供高电位,第三扫描控制信号提供低电位;
    在所述驱动发光阶段,所述第一扫描控制信号提供高电位脉冲信号,第二扫描控制信号提供低电位,第三扫描控制信号提供高电位。
  6. 一种AMOLED像素驱动方法,包括以下步骤:
    步骤1、提供一AMOLED像素驱动电路;
    所述AMOLED像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第一电容、第二电容、及有机发光二极管;所述第一薄膜晶体管作为驱动薄膜晶体管,所述第二薄膜晶体管作为开关薄膜晶体管;
    所述第一薄膜晶体管为双栅极薄膜晶体管,其底栅电性连接于第一节点,顶栅电性连接于第三节点,漏极电性连接于第二节点,源极电性连接于有机发光二极管的阳极;
    第二薄膜晶体管的栅极接入第一扫描控制信号,源极接入数据信号,漏极电性连接于第一节点;
    第三薄膜晶体管的栅极接入第二扫描控制信号,源极接入预设电压,漏极电性连接于第一节点;
    第四薄膜晶体管的栅极接入第三扫描控制信号,源极接入电源电压,漏极电性连接于第二节点;
    第五薄膜晶体管的栅极接入第二扫描控制信号,源极电性连接于第三节点,漏极电性连接于第二节点;
    第一电容的一端电性连接于第一节点,另一端接地;
    第二电容的一端电性连接于第三节点,另一端接地;
    有机发光二极管的阳极电性连接于第一薄膜晶体管的源极,阴极接地;
    步骤2、进入预充电阶段;
    所述第一扫描控制信号提供低电位,第二薄膜晶体管截止,所述第二扫描控制信号提供高电位,第三薄膜晶体管和第五薄膜晶体管导通,所述第三扫描控制信号提供高电位,第四薄膜晶体管导通,第一节点及第一薄膜晶体管的底栅写入预设电压,第一电容充电至预设电压,第二节点、第三节点、及第一薄膜晶体管的顶栅写入电源电压,第二电容充电至电源电压;
    步骤3、进入阈值电压编程阶段;
    所述第一扫描控制信号提供低电压,第二薄膜晶体管截止,所述第二 扫描控制信号提供高电位,第三薄膜晶体管和第五薄膜晶体管导通,所述第三扫描控制信号提供低电位,第四薄膜晶体管截止,所述第一薄膜晶体管导通,第一节点及第一薄膜晶体管的底栅保持预设电压,第二节点、第三节点及第一薄膜晶体管的顶栅电压下降,第一薄膜晶体管的阈值电压不断增大,当第一薄膜晶体管的阈值电压达到Vth=Vpre-VOLED时,第一薄膜晶体管的阈值电压不再变化,完成阈值电压编程;
    步骤4、进入驱动发光阶段;
    所述第一扫描控制信号提供高电位脉冲信号,第二薄膜晶体管导通,所述第二扫描控制信号提供低电位,第三薄膜晶体管和第五薄膜晶体管截止,所述第三扫描控制信号提供高电位,第四薄膜晶体管导通,第一节点及第一薄膜晶体管的底栅写入数据信号的电压值,第二节点及第一薄膜晶体管的漏极写入电源电压,第三节点及第一薄膜晶体管的顶栅在第二电容的存储作用下电压保持不变,维持第一薄膜晶体管的阈值电压为Vth=Vpre-VOLED,第一薄膜晶体管导通,有机发光二极管发光,流过有机发光二极管的电流I=β(VData-Vpre)2,与第一薄膜晶体管的阈值电压和有机发光二极管的阈值电压均无关。
  7. 如权利要求6所述的AMOLED像素驱动方法,其中,所述第一扫描控制信号、第二扫描控制信号、与第三扫描控制信号均通过外部时序控制器提供。
  8. 如权利要求6所述的AMOLED像素驱动方法,其中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、及第五薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
  9. 如权利要求6所述的AMOLED像素驱动方法,其中,所述预设电压为一恒定电压。
  10. 一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第一电容、第二电容、及有机发光二极管;所述第一薄膜晶体管作为驱动薄膜晶体管,所述第二薄膜晶体管作为开关薄膜晶体管;
    所述第一薄膜晶体管为双栅极薄膜晶体管,其底栅电性连接于第一节点,顶栅电性连接于第三节点,漏极电性连接于第二节点,源极电性连接于有机发光二极管的阳极;
    第二薄膜晶体管的栅极接入第一扫描控制信号,源极接入数据信号,漏极电性连接于第一节点;
    第三薄膜晶体管的栅极接入第二扫描控制信号,源极接入预设电压,漏极电性连接于第一节点;
    第四薄膜晶体管的栅极接入第三扫描控制信号,源极接入电源电压,漏极电性连接于第二节点;
    第五薄膜晶体管的栅极接入第二扫描控制信号,源极电性连接于第三节点,漏极电性连接于第二节点;
    第一电容的一端电性连接于第一节点,另一端接地;
    第二电容的一端电性连接于第三节点,另一端接地;
    有机发光二极管的阳极电性连接于第一薄膜晶体管的源极,阴极接地;
    其中,所述第一扫描控制信号、第二扫描控制信号、与第三扫描控制信号均通过外部时序控制器提供;
    其中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、及第五薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
  11. 如权利要求10所述的AMOLED像素驱动电路,其中,所述预设电压为一恒定电压。
  12. 如权利要求10所述的AMOLED像素驱动电路,其中,所述第一扫描控制信号、第二扫描控制信号、及第三扫描控制信号相组合,先后对应于一预充电阶段、一阈值电压编程阶段、及一驱动发光阶段;
    在所述预充电阶段,所述第一扫描控制信号提供低电位,第二扫描控制信号提供高电位,第三扫描控制信号提供高电位;
    在所述阈值电压编程阶段,所述第一扫描控制信号提供低电位,第二扫描控制信号提供高电位,第三扫描控制信号提供低电位;
    在所述驱动发光阶段,所述第一扫描控制信号提供高电位脉冲信号,第二扫描控制信号提供低电位,第三扫描控制信号提供高电位。
PCT/CN2016/082124 2016-04-12 2016-05-13 Amoled像素驱动电路及像素驱动方法 WO2017177500A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/106,836 US10032838B2 (en) 2016-04-12 2016-05-13 AMOLED pixel driving circuit and pixel driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610225696.7 2016-04-12
CN201610225696.7A CN105741781B (zh) 2016-04-12 2016-04-12 Amoled像素驱动电路及像素驱动方法

Publications (1)

Publication Number Publication Date
WO2017177500A1 true WO2017177500A1 (zh) 2017-10-19

Family

ID=56254111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082124 WO2017177500A1 (zh) 2016-04-12 2016-05-13 Amoled像素驱动电路及像素驱动方法

Country Status (3)

Country Link
US (1) US10032838B2 (zh)
CN (1) CN105741781B (zh)
WO (1) WO2017177500A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063298A (zh) * 2019-12-19 2020-04-24 上海视欧光电科技有限公司 像素驱动电路和显示装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102561294B1 (ko) * 2016-07-01 2023-08-01 삼성디스플레이 주식회사 화소 및 스테이지 회로와 이를 가지는 유기전계발광 표시장치
KR102522534B1 (ko) * 2016-07-29 2023-04-18 엘지디스플레이 주식회사 유기발광 표시장치와 그 구동방법
CN106504707B (zh) * 2016-10-14 2018-06-01 深圳市华星光电技术有限公司 Oled像素混合补偿电路及混合补偿方法
CN106504700B (zh) * 2016-10-14 2018-03-06 深圳市华星光电技术有限公司 Amoled像素驱动电路及驱动方法
KR102570976B1 (ko) * 2016-11-25 2023-08-28 엘지디스플레이 주식회사 표시장치와 그 소자 특성 센싱 방법
TWI653618B (zh) * 2017-03-14 2019-03-11 鴻海精密工業股份有限公司 畫素驅動電路及具有畫素驅動電路的顯示裝置
US10262595B2 (en) 2017-06-28 2019-04-16 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Pixel circuit, control method thereof, and display panel
CN107134261B (zh) * 2017-06-28 2019-07-12 武汉华星光电半导体显示技术有限公司 像素电路及其控制方法、显示面板
CN107093403B (zh) * 2017-06-30 2019-03-15 深圳市华星光电技术有限公司 用于oled显示面板的像素驱动电路的补偿方法
US11127350B2 (en) 2017-08-02 2021-09-21 Boe Technology Group Co., Ltd. Pixel circuit, active matrix organic light emitting diode display panel, display apparatus, and method of compensating threshold voltage of driving transistor
CN107358915B (zh) * 2017-08-11 2020-01-07 上海天马有机发光显示技术有限公司 一种像素电路、其驱动方法、显示面板及显示装置
CN107358916B (zh) 2017-08-15 2020-01-14 上海天马有机发光显示技术有限公司 像素电路、其驱动方法、电致发光显示面板及显示装置
CN107316614B (zh) * 2017-08-22 2019-10-11 深圳市华星光电半导体显示技术有限公司 Amoled像素驱动电路
CN108777131B (zh) * 2018-06-22 2020-04-03 武汉华星光电半导体显示技术有限公司 Amoled像素驱动电路及驱动方法
CA3105117A1 (en) * 2018-07-02 2020-01-09 Puretech Lyt, Inc. Milk vesicles for use in delivering biological agents
TWI683434B (zh) 2018-09-21 2020-01-21 友達光電股份有限公司 畫素結構
CN112639940A (zh) * 2018-09-30 2021-04-09 深圳市柔宇科技股份有限公司 阵列基板栅极驱动电路、薄膜晶体管及显示装置
US11551611B2 (en) * 2018-12-18 2023-01-10 Samsung Display Co., Ltd. Pixel circuit and organic light emitting display device including i he same
KR102616771B1 (ko) * 2019-01-17 2023-12-22 삼성디스플레이 주식회사 화소 회로
CN110189707A (zh) * 2019-05-30 2019-08-30 京东方科技集团股份有限公司 一种像素驱动电路及其驱动方法、显示装置
CN110288947A (zh) * 2019-06-28 2019-09-27 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN110706654B (zh) 2019-09-12 2020-12-08 深圳市华星光电半导体显示技术有限公司 一种oled像素补偿电路及oled像素补偿方法
CN111081190B (zh) 2019-12-18 2021-08-24 深圳市华星光电半导体显示技术有限公司 Goa电路、显示面板及薄膜晶体管的阈值电压补偿方法
CN111210765B (zh) 2020-02-14 2022-02-11 华南理工大学 像素电路、像素电路的驱动方法和显示面板
CN111402788A (zh) * 2020-04-08 2020-07-10 深圳市华星光电半导体显示技术有限公司 一种像素电路和显示面板
CN111402799B (zh) * 2020-04-09 2021-07-06 武汉天马微电子有限公司 一种发光驱动电路及驱动方法、有机发光显示面板及装置
CN111429836A (zh) * 2020-04-09 2020-07-17 深圳市华星光电半导体显示技术有限公司 一种像素驱动电路和显示面板
KR20210132789A (ko) * 2020-04-27 2021-11-05 삼성디스플레이 주식회사 표시 장치
CN112365846B (zh) * 2020-11-12 2021-10-08 深圳市华星光电半导体显示技术有限公司 像素电路及显示装置
CN112767882B (zh) * 2021-03-08 2022-02-08 东南大学 一种有源矩阵有机发光二极管像素补偿电路及其驱动方法
CN113160754B (zh) * 2021-04-26 2022-07-12 东南大学 一种单电容结构的amoled像素补偿电路及其驱动方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091203A (en) * 1998-03-31 2000-07-18 Nec Corporation Image display device with element driving device for matrix drive of multiple active elements
CN1658263A (zh) * 2003-11-24 2005-08-24 三星Sdi株式会社 图像显示设备及其驱动方法
CN103531151A (zh) * 2013-11-04 2014-01-22 京东方科技集团股份有限公司 Oled像素电路及驱动方法、显示装置
CN103714784A (zh) * 2012-09-28 2014-04-09 乐金显示有限公司 包括tft补偿电路的液晶显示器设备
CN103871362A (zh) * 2012-12-17 2014-06-18 乐金显示有限公司 有机发光显示器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4271479B2 (ja) * 2003-04-09 2009-06-03 株式会社半導体エネルギー研究所 ソースフォロワ及び半導体装置
TWI330726B (en) * 2005-09-05 2010-09-21 Au Optronics Corp Display apparatus, thin-film-transistor discharge method and electrical driving method therefor
JP2011112722A (ja) * 2009-11-24 2011-06-09 Sony Corp 表示装置およびその駆動方法ならびに電子機器
KR101152575B1 (ko) * 2010-05-10 2012-06-01 삼성모바일디스플레이주식회사 평판 표시 장치의 화소 회로 및 그의 구동 방법
CN102890910B (zh) * 2012-10-15 2015-06-10 京东方科技集团股份有限公司 同异步双栅tft-oled像素驱动电路及其驱动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091203A (en) * 1998-03-31 2000-07-18 Nec Corporation Image display device with element driving device for matrix drive of multiple active elements
CN1658263A (zh) * 2003-11-24 2005-08-24 三星Sdi株式会社 图像显示设备及其驱动方法
CN103714784A (zh) * 2012-09-28 2014-04-09 乐金显示有限公司 包括tft补偿电路的液晶显示器设备
CN103871362A (zh) * 2012-12-17 2014-06-18 乐金显示有限公司 有机发光显示器
CN103531151A (zh) * 2013-11-04 2014-01-22 京东方科技集团股份有限公司 Oled像素电路及驱动方法、显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063298A (zh) * 2019-12-19 2020-04-24 上海视欧光电科技有限公司 像素驱动电路和显示装置
CN111063298B (zh) * 2019-12-19 2021-06-29 合肥视涯技术有限公司 像素驱动电路和显示装置
US11120743B2 (en) 2019-12-19 2021-09-14 Seeya Optronics Co., Ltd. Pixel driving circuit and display device

Also Published As

Publication number Publication date
US10032838B2 (en) 2018-07-24
CN105741781B (zh) 2018-10-26
CN105741781A (zh) 2016-07-06
US20180102397A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
WO2017177500A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2018068391A1 (zh) Amoled像素驱动电路及驱动方法
WO2018068392A1 (zh) Amoled像素驱动电路及驱动方法
WO2016145692A1 (zh) Amoled像素驱动电路及像素驱动方法
KR102176454B1 (ko) Amoled 픽셀 구동 회로 및 구동 방법
WO2018072298A1 (zh) Amoled像素驱动电路及驱动方法
WO2016145693A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016155053A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2019037300A1 (zh) Amoled像素驱动电路
WO2016119304A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2018045659A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2018045660A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2019184068A1 (zh) 一种像素驱动电路及显示装置
WO2016155087A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2019134459A1 (zh) 像素电路及其驱动方法、显示装置
WO2017156826A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2017020360A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2017117940A1 (zh) 像素驱动电路、像素驱动方法、显示面板和显示装置
WO2016123855A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2017177501A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016165529A1 (zh) 像素电路及其驱动方法、显示装置
WO2020143234A1 (zh) 像素驱动电路、像素驱动方法和显示装置
WO2018149008A1 (zh) Amoled像素驱动电路及amoled像素驱动方法
WO2016123854A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2017156828A1 (zh) Amoled像素驱动电路及像素驱动方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15106836

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898315

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898315

Country of ref document: EP

Kind code of ref document: A1