WO2017175684A1 - 電車用電力変換制御装置 - Google Patents

電車用電力変換制御装置 Download PDF

Info

Publication number
WO2017175684A1
WO2017175684A1 PCT/JP2017/013713 JP2017013713W WO2017175684A1 WO 2017175684 A1 WO2017175684 A1 WO 2017175684A1 JP 2017013713 W JP2017013713 W JP 2017013713W WO 2017175684 A1 WO2017175684 A1 WO 2017175684A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
current command
command value
output
reactive current
Prior art date
Application number
PCT/JP2017/013713
Other languages
English (en)
French (fr)
Inventor
久野村 健
賢司 佐▲藤▼
明大 小▲柳▼
Original Assignee
東海旅客鉄道株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海旅客鉄道株式会社 filed Critical 東海旅客鉄道株式会社
Priority to GB1816390.7A priority Critical patent/GB2563556B/en
Priority to US16/090,988 priority patent/US10516345B2/en
Publication of WO2017175684A1 publication Critical patent/WO2017175684A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/30Trolleys
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the present disclosure relates to a technique for controlling a power conversion device mounted on a train configured such that a traveling motor is driven by AC power collected from an overhead wire.
  • a train that is configured to collect AC power from an overhead line using a pantograph and travel is provided with a power conversion device that appropriately converts the AC power collected from the overhead line and supplies it to a motor for traveling. It is installed.
  • the power factor of AC power input from the pantograph is 1, that is, only active power is consumed in the train. Such a control method has become common.
  • the power converter is controlled so that the power factor becomes 1 as described above, the following problems may occur. That is, with the consumption of effective power due to traveling by train, the overhead line voltage decreases or fluctuates due to the influence of the power supply side impedance of the feeder circuit that supplies AC power to the overhead line, the impedance of the feeder circuit, and the like.
  • a train that is designed to consume a predetermined effective power regardless of the value of the AC voltage input from the overhead line, such as the current Shinkansen train, it is consumed by the train as the overhead line voltage decreases. Therefore, there is a possibility that the overhead wire voltage is further lowered due to the influence, and in some cases, a predetermined propulsive force cannot be obtained.
  • Patent Document 1 described below describes a technique for controlling a VVVF converter so that a fast phase reactive power is generated without a power factor of 1 during power running in a train.
  • Patent Document 2 listed below describes a power conversion device that suppresses voltage fluctuations in the AC system on the AC system side that supplies power to the vehicle. That is, in Patent Document 2, an active power consumption and a reactive power consumption are autonomously determined based on an AC system voltage, and a power converter that simultaneously consumes the determined active power and reactive power is used as an AC system. A technique for suppressing voltage fluctuation of an AC system by connecting is described.
  • JP 2000-156902 A Japanese Patent No. 4568111
  • Patent Document 1 As in the technique described in Patent Document 1, it is possible in principle to maintain the overhead line voltage at an appropriate level by consuming the phase reactive power in the electric power converter for trains.
  • the technique described in Patent Document 1 is a technique in which the phase reactive power necessary for maintaining the overhead line voltage is simply added to the active power consumed by the train and consumed by the train power converter.
  • the effective power required by the train is limited by the addition of the phase reactive current, and as a result, the desired propulsive force may not be obtained.
  • the phase reactive power consumption of the train power converters of each train competes, which may lead to unstable overhead voltage. is there.
  • the active current command value is determined by the phase advance reactive current command value. That is, the effective current supply amount is determined depending on the phase advance reactive current command value. Therefore, the effective current necessary for securing the driving force of the train cannot be determined freely. In other words, the effective current of the train itself cannot be freely determined in exchange for maintaining the overhead line voltage, which may affect the performance that should originally be exhibited as a train. Therefore, the technique of Patent Document 2 cannot be applied to a power converter for trains.
  • One aspect of the present disclosure is desirably capable of stably maintaining the overhead line voltage at an appropriate level while securing the effective power necessary for the train.
  • a power conversion control device for a train in one aspect of the present disclosure is mounted on a train configured to receive AC power from an overhead line to which AC power is supplied, and performs power conversion on the AC power input from the overhead line.
  • the power converter to be controlled is controlled.
  • the power conversion device Based on the active current command value and reactive current command value input from the train power conversion control device, the power conversion device generates an active current corresponding to the active current command value and a phase reactive current corresponding to the reactive current command value. Configured to consume.
  • the train power conversion control device includes an active current command value generation unit, an overhead wire voltage detection unit, an initial value calculation unit, an adjustment value calculation unit, an upper limit value setting unit, and an output limiting unit.
  • the active current command value generation unit is configured to generate an active current command value according to the active power to be supplied from the power converter to the load.
  • the overhead line voltage detection unit is configured to detect an overhead line voltage input from the overhead line.
  • the initial value calculation unit causes the overhead wire voltage detection value to follow the voltage command value based on the difference between the voltage command value that is the target value of the overhead wire voltage and the overhead wire voltage detection value that is the overhead wire voltage detected by the overhead wire voltage detection unit. Therefore, the reactive current command initial value, which is the initial value of the reactive current command value, is calculated.
  • the adjustment value calculation unit calculates a reactive current command adjustment value that is a ratio of the reactive current command initial value calculated by the initial value calculation unit according to the active current command value generated by the active current command value generation unit. Is configured to do.
  • the upper limit value setting unit is based on the active current command value generated by the active current command value generating unit, so that the upper limit value of the reactive current command value is reduced as the active current command value is increased. Is configured to set.
  • the output limiting unit When the reactive current command adjustment value calculated by the adjustment value calculation unit is less than or equal to the upper limit value set by the upper limit value setting unit, the output limiting unit outputs the reactive current command adjustment value as the reactive current command value and When the current command adjustment value exceeds the upper limit value, the upper limit value is output as a reactive current command value.
  • the active current command value is generated according to the active power to be supplied to the load, whereas the reactive current command value depends on the active current command value. It is determined. Specifically, the reactive current command initial value calculated based on the difference between the voltage command value and the overhead wire voltage detection value is not output as 100% as the reactive current command value as it is, but by the adjustment value calculation unit The ratio is adjusted to a value corresponding to the command value. That is, the reactive current command initial value is adjusted to an amount of 0 to 100% according to the active current command value, and is output as a reactive current command adjustment value.
  • the reactive current command initial value is adjusted so that the ratio increases as the effective current command value increases, and conversely, the ratio decreases as the active current command value decreases. That is, the reactive current command adjustment value is adjusted to an amount commensurate with the active power required by the train.
  • an upper limit is set for the reactive current command adjustment value, and if the reactive current command adjustment value is less than or equal to the upper limit value, the reactive current command adjustment value is output as it is, but the reactive current command adjustment value exceeds the upper limit value.
  • the upper limit value is output as the reactive current command value. That is, priority is given to the fact that necessary active power can be supplied to the load, and the reactive current command value that is finally output is limited to the upper limit at the maximum.
  • the train power conversion control device having the above configuration, it is possible to stably maintain the overhead line voltage at an appropriate level while ensuring the effective power necessary for the train.
  • the train here is not only a single vehicle but also a concept including a single train in which a plurality of vehicles are connected.
  • the power conversion by the power conversion device may be, for example, conversion from AC power to AC power, or may be conversion from AC power to DC power.
  • SYMBOLS 10 Main circuit system for trains, 11 ... Pantograph, 12 ... Main transformer, 13 ... Converter, 14 ... Inverter, 15 ... Motor, 16 ... Converter voltage detection part, 21, 50, 60, 70 ... Power conversion control apparatus, DESCRIPTION OF SYMBOLS 22 ... PWM circuit, 26 ... Overhead voltage detection part, 27 ... Position detection part, 31 ... Effective current command value generation part, 32 ... Voltage command value setting part, 33 ... Adder, 34 ... AC voltage control circuit, 35 ... Output Power factor coefficient setting unit 36 ... multiplier 37 ... upper limit value setting unit 38 ... limiter circuit 51 ... switching circuit 52 ... switching control unit 61 ... output multiplier 62 ... low voltage detection circuit 100 ... overhead wire
  • FIG. 1 A train main circuit system 10 shown in FIG. 1 is mounted on a train configured to collect AC power from an overhead line 100.
  • the overhead line 100 is connected to a feeder circuit (not shown), and AC power is supplied from the feeder circuit.
  • the train main circuit system 10 includes a pantograph 11, a main transformer 12, a converter 13, an inverter 14, a motor 15, a power conversion control device 21, a PWM circuit 22, an overhead line.
  • a voltage detection unit 26 and a position detection unit 27 are provided.
  • a train on which the train main circuit system 10 is mounted may include one vehicle or a plurality of vehicles connected to each other.
  • all the components included in the train main circuit system 10 shown in FIG. 1 are not necessarily mounted on the same vehicle.
  • the power conversion control device 21 may be mounted on a vehicle different from the vehicle on which the pantograph 11 is mounted.
  • the pantograph 11 is a well-known current collector for collecting AC power from the overhead wire 100.
  • the voltage collected from the overhead line 100 is, for example, AC 25 kV.
  • the main transformer 12 steps down the AC power collected by the pantograph 11 and supplies it to the converter 13.
  • the main transformer 12 includes a primary winding 12 a to which AC power from the pantograph 11 is input, a secondary winding 12 b for stepping down the AC power from the pantograph 11 and outputting it to the converter 13, And a tertiary winding 12c for stepping down AC power and supplying it to an auxiliary circuit system (not shown).
  • the voltage value of AC power (hereinafter also referred to as secondary output power) output from the secondary winding 12b of the main transformer 12 is, for example, AC 1000V, and is output from the tertiary winding 12c of the main transformer 12.
  • the voltage value of AC power (hereinafter also referred to as tertiary output power) is, for example, AC 400V.
  • these voltage values are merely examples.
  • the converter 13 converts the secondary output power output from the main transformer 12 into DC power and outputs it.
  • the converter 13 of this embodiment is a so-called PWM converter.
  • the converter 13 of this embodiment converts, for example, AC 1000V of the secondary output power of the main transformer 12 into DC 2000V and outputs it. These voltage values are only examples.
  • the inverter 14 converts the DC power output from the converter 13 into three-phase AC power and outputs it to the motor 15.
  • the inverter 14 of this embodiment is a so-called VVVF inverter.
  • the motor 15 is a three-phase induction motor, and is driven to rotate when supplied with three-phase AC power. When the motor 15 is rotationally driven, the rotational driving force is transmitted to a wheel (not shown), whereby the train travels.
  • the overhead wire voltage detection unit 26 is provided to detect the value of the overhead wire voltage that is a voltage input from the overhead wire 100 by the pantograph 11.
  • the overhead line voltage detection unit 26 is a value corresponding to the voltage value of the tertiary output power output from the tertiary winding 12c of the main transformer 12, that is, an overhead line voltage detection value Vtr indicating the magnitude of the overhead line voltage (hereinafter referred to as a detection value Vtr). Is abbreviated as “)” to the power conversion control device 21.
  • the power conversion control apparatus 21 of this embodiment handles each value used for the various calculations mentioned later as a value of a pu unit system. Therefore, the overhead wire voltage detection unit 26 is configured to output a standardized value based on the detection value Vtr corresponding to the rated value of the overhead wire voltage, that is, a value in the pu unit system, as the overhead wire voltage detection value Vtr. ing.
  • the detection value Vtr itself output from the overhead wire voltage detection unit 26 may be converted into a value in the pu unit system in the power conversion control device 21 instead of a value in the pu unit system.
  • the position detection unit 27 detects the position where the train is running and outputs a position detection signal Sp indicating the detected position to the power conversion control device 21. Note that the position detection signal Sp is not used in the power conversion control device 21 of the first embodiment, but is used in second and fourth embodiments described later.
  • Converter voltage detection unit 16 that detects an output voltage from the converter 13 is provided.
  • Converter voltage detection unit 16 outputs converter output voltage detection value Vcon (hereinafter, abbreviated as detection value Vcon) indicating the value of the output voltage from converter 13 to power conversion control device 21.
  • the converter voltage detection unit 16 is configured to output a standardized value with respect to the rated value of the output voltage of the converter, that is, a value in the pu unit system, as the detection value Vcon.
  • the detection value Vcon itself output from the converter voltage detection unit 16 may be converted to a pu unit system value in the power conversion control device 21 instead of a pu unit system value.
  • the power conversion control device 21 should be input to the converter 13 using the detection value Vtr detected by the overhead wire voltage detection unit 26 and the detection value Vcon detected by the converter voltage detection unit 16 (that is, consumed by the converter 13). Should be effective current command value Pref (hereinafter abbreviated as command value Pref), and reactive current command value Qref (hereinafter abbreviated as command value Qref) indicating a fast reactive current to be consumed by converter 13. Is output to the PWM circuit 22.
  • command value Pref effective current command value
  • Qref reactive current command value
  • the PWM circuit 22 Based on the command value Pref and the command value Qref input from the power conversion control device 21, the PWM circuit 22 receives an active current corresponding to the command value Pref and a phase reactive current corresponding to the command value Qref to the converter 13.
  • the converter 13 is controlled so that the effective current and the fast reactive current are consumed by the converter 13.
  • the effective current and the advanced reactive current are consumed by the converter 13 by individually controlling the on timing and the off timing of the plurality of switching elements included in the converter 13.
  • the command value Pref is a parameter that determines the active current input to the converter 13, in other words, a parameter that determines the active power consumed by the converter 13, and the command value Qref is a parameter that is input to the converter 13. This parameter determines the phase reactive current, in other words, the parameter that determines the phase reactive current consumed by the converter 13.
  • the power conversion control device 21 includes an active current command value generation unit 31, a voltage command value setting unit 32, an adder 33, an AC voltage control circuit 34, and an output power factor coefficient setting unit 35.
  • the functions realized by the power conversion control device 21 shown in FIG. 2 may be realized by, for example, a computer executing a predetermined control program, or some or all of the functions may be a logic circuit or an analog circuit. It may be realized by using hardware that combines the above.
  • the active current command value generation unit 31 generates a command value Pref [pu] corresponding to the active power required by the train, that is, the effective power to be supplied from the converter 13 to the load.
  • the command value Pref [pu] handled here is a standardized value based on a rated input current value that is a rated value of the input current determined in the converter 13.
  • the load of the converter 13 means the entire load in which the power output from the converter 13 is consumed. Therefore, the load of the converter 13 includes at least the inverter 14 and the motor 15.
  • the unit symbol [pu] is omitted from the command value Pref [pu]. Further, a voltage command value Vref (to be referred to as a command value Vref hereinafter), a voltage difference ⁇ V to be described later, a reactive current command initial value Qr1 (to be referred to as initial value Qr1 hereinafter), and a reactive current command adjustment to be described later.
  • the value Qr2 hereinafter abbreviated as the adjustment value Qr2
  • the upper limit value Qup described later, and the command value Qref described above are all handled in the pu unit system, but the unit symbol [pu] is also omitted for these.
  • the active current command value generation unit 31 generates a command value Pref for causing the converter 13 to input an active current necessary for supplying the active power so that the required active power can be supplied to the load.
  • the active power required by the train varies depending on the operating condition of the load.
  • the operating state of the load can be indirectly known from the value of the output voltage from the converter 13.
  • the output voltage of the converter 13 decreases.
  • the output voltage of the converter 13 increases.
  • the active current command value generation unit 31 is a predetermined voltage constant for maintaining the output voltage of the converter 13 at a constant rated value based on the detection value Vcon input from the converter voltage detection unit 16.
  • the command value Pref is generated. Specifically, the command value Pref is generated so that the command value Pref increases as the detection value Vcon decreases.
  • the active current command value generation unit 31 may be configured to generate the command value Pref according to the state of the notch, for example. Specifically, the active current command value generation unit 31 may be configured to generate the command value Pref so that the command value Pref increases as the notch increases.
  • the voltage command value setting unit 32 is set with a command value Vref [pu] as a target value for the detected value Vtr.
  • a specific value to be set as the command value Vref may be determined as appropriate.
  • the detection value Vtr when the overhead line voltage is 28 kV may be set as the command value Vref so that the overhead line voltage from the overhead line 100 is maintained at 28 kV.
  • the adder 33 calculates the above-described voltage difference ⁇ V that is the difference between the command value Vref set by the voltage command value setting unit 32 and the detected value Vtr.
  • the AC voltage control circuit 34 includes, for example, a proportional integration circuit, a first-order lag circuit, or the like, and the reactive current command value is set so that the voltage difference ⁇ V becomes zero, that is, the detected value Vtr follows the command value Vref. Is calculated.
  • the reactive current command value calculated here is not a value finally output to the PWM circuit 22, but a value calculated in consideration of setting the voltage difference ⁇ V to zero. Therefore, the reactive current command value calculated here is referred to as the above-mentioned initial value Qr1 in distinction from the command value Qref finally calculated.
  • the multiplier 36 includes the command value Pref generated by the active current command value generation unit 31, the initial value Qr1 calculated by the AC voltage control circuit 34, and the output power factor set by the output power factor coefficient setting unit 35. Multiply by a coefficient ⁇ (hereinafter abbreviated as coefficient ⁇ ). By this multiplication, the above-described adjustment value Qr2 in which the initial value Qr1 is adjusted by the command value Pref and the coefficient ⁇ is calculated.
  • the multiplication of the initial value Qr1 and the command value Pref is a multiplication for adjusting the initial value Qr1 calculated by the AC voltage control circuit 34 to a value of a proportion corresponding to the command value Pref. is there. For example, if the command value Pref is 0.8 [pu], the initial value Qr1 is adjusted to 80% by multiplication with the command value Pref.
  • the multiplication of the initial value Qr1 and the coefficient ⁇ is performed by using the initial value Qr1 calculated by the AC voltage control circuit 34 as the output power factor set value cos ⁇ (hereinafter abbreviated as set value cos ⁇ ). )
  • set value cos ⁇ the output power factor set value cos ⁇
  • is a power factor angle, which is set in advance according to the active power to be consumed by the converter 13, and can be appropriately changed.
  • the initial value Qr1 is adjusted to a smaller value as the set value cos ⁇ is closer to 1. Conversely, as the set value cos ⁇ is closer to 0, the initial value Qr1 is adjusted to a larger value.
  • tan ⁇ as the coefficient ⁇ is merely an example, and other values that can appropriately adjust the initial value Qr1 according to the set value cos ⁇ may be used as the coefficient ⁇ . That is, the coefficient ⁇ may be appropriately set between 0 and 1 according to the set value cos ⁇ .
  • the main purpose of adjusting the initial value Qr1 by the command value Pref by multiplication by the multiplier 36 is that the amount of the fast reactive current consumed by the converter 13 is commensurate with the amount of active power that the vehicle really needs. It is to adjust to an appropriate amount.
  • the necessary active power is large, the corresponding progressive phase reactive current is adjusted to a large value, and if the necessary active power is small, the corresponding progressive phase reactive current is also adjusted to a small value.
  • the fast reactive current is appropriately adjusted for each train. As a result, it is possible to stabilize the overhead wire voltage by suppressing the competition of the fast reactive current consumption between the plurality of trains.
  • the main purpose of adjusting the initial value Qr1 by the coefficient ⁇ by multiplication by the multiplier 36 is to give priority to the active power consumption in the converter 13 to the last. More specifically, the current consumption of the converter 13 is not increased unnecessarily even if the overhead voltage decreases and the effective current input to the converter 13 decreases. Adjustment using the coefficient ⁇ is performed so that a power factor equal to or greater than the set value cos ⁇ can be ensured regardless of the value of the effective current.
  • the limiter circuit 38 limits the maximum value to the adjustment value Qr2 calculated by the multiplier 36, and outputs it as a final command value Qref. Specifically, when the adjustment value Qr2 is equal to or less than the upper limit value Qup, the adjustment value Qr2 is output as the command value Qref. On the other hand, when the adjustment value Qr2 exceeds the upper limit value Qup, the upper limit value Qup is output as the command value Qref.
  • the upper limit value Qup for the command value Qref is set so that the combined value (that is, the vector combined value) of the command value Pref and the command value Qref falls within the rated input current value. Therefore, the phase advance reactive current is limited to the remaining power range excluding the command value Pref in the rated input current of the converter 13.
  • the limiter circuit 38 By operating the limiter circuit 38 based on the upper limit value Qup, the entire current input to the converter 13 can be suppressed below the rated input current value. And within the range below the rated input current value, the active current is preferentially consumed, and the surplus power portion is filled with the phase advance reactive current.
  • the initial value Qr1 calculated by the AC voltage control circuit 34 is output after being adjusted or restricted as appropriate. Specifically, the initial value Qr1 calculated by the AC voltage control circuit 34 is adjusted by the multiplier 36 to a value corresponding to the command value Pref and to a value corresponding to the power factor angle ⁇ . Specifically, the initial value Qr1 is adjusted to a smaller value as the command value Pref is smaller. Further, the initial value Qr1 is adjusted to a smaller value as the power factor angle ⁇ is smaller (that is, the set value cos ⁇ is closer to 1).
  • the initial value Qr1 is input from the overhead line 100 while suppressing the competition of fast reactive current consumption with other trains existing in the same feeder circuit.
  • the overhead wire voltage can be stably maintained at a value equal to or higher than the standard value (rated value). Therefore, it is possible to suppress the drop in overhead voltage caused by running the train, and as a result, it is possible to extend the feeding distance and install a reactive power compensation device or a fixed power factor output power conversion device etc. in the feeding substation. This can be omitted, and the total cost of equipment for running the train can be reduced.
  • the adjustment value Qr2 adjusted by the multiplier 36 based on the command value Pref and the set value cos ⁇ is further output as the command value Qref via the limiter circuit 38, so that the command value Qref that is finally output becomes the maximum.
  • it is limited to the upper limit value Qup.
  • the upper limit value Qup is calculated by the above-described equation (1). Therefore, control giving priority to active power consumption is realized within the range of the rated input current value of converter 13. Thereby, the overhead voltage is stably maintained at an appropriate level while maintaining the rated capacity of the converter 13 equivalent to that of a conventional converter that only consumes active power (ie, controlled to a power factor of 1). , And securing the effective power necessary for the train.
  • a predetermined propulsive force can be obtained without increasing the rated capacity of the converter 13 by giving priority to the consumption of active power.
  • each train autonomously determines the share of the consumption of phase advance reactive power,
  • the overhead wire voltage can be controlled stably.
  • the power consumption of each train is measured and transmitted to one control station.
  • a method may be considered in which the control station determines the sharing of the phase reactive power consumption of each train and commands the train from the control station.
  • this technology requires cost and voltage control stability because it requires a transmission means between the control station and each train and there is a high possibility that voltage control will become unstable due to transmission delay. It is considered difficult to realize.
  • control method described in the first embodiment is very effective for causing the converter 13 to consume phase reactive power and stably controlling the overhead line voltage without impairing the propulsive force required for the train. It can be said that it is effective.
  • it is possible to prioritize the active power consumption while stabilizing the overhead voltage, thereby reducing the current consumption of the train. As a result, it is possible to reduce the weight and size of the main transformer 12, reduce the power loss of the entire feeding system, and save energy on the train.
  • the converter 13 corresponds to an example of a power conversion device according to the present disclosure
  • the power conversion control device 21 corresponds to an example of a train power conversion control device according to the present disclosure
  • the AC voltage control circuit 34 corresponds to an example of an initial value calculation unit in the present disclosure
  • the multiplier 36 corresponds to an example of an adjustment value calculation unit in the present disclosure
  • the limiter circuit 38 corresponds to an example of an output limiting unit in the present disclosure.
  • the power conversion control device 50 according to the second embodiment illustrated in FIG. 3 further includes a switching circuit 51 and a switching control unit 52 with respect to the power conversion control device 21 according to the first embodiment illustrated in FIG.
  • the switching circuit 51 is a circuit for switching whether to output the value output from the limiter circuit 38 as it is or to output 0 as the command value Qref.
  • the value output from the limiter circuit 38 is hereinafter also referred to as a limiter output value Qr3.
  • the switching circuit 51 switches the command value Qref to be output to the limiter output value Qr3 or 0 from the limiter circuit 38 in accordance with the switching command from the switching control unit 52.
  • the switching control unit 52 controls the switching circuit 51 based on the position detection signal Sp input from the position detection unit 27.
  • the switching control unit 52 is configured to control the switching circuit 51 by determining whether or not the command value Qref should be 0 according to the traveling position of the host vehicle.
  • the switching control unit 52 Based on the input position detection signal Sp, the switching control unit 52 presents the vehicle at a position where the command value Qref should be zero (that is, the fast reactive current should not be consumed). The switching circuit 51 is made to output 0 as the command value Qref. On the other hand, based on the input position detection signal Sp, if the host vehicle is not currently present at a position where the command value Qref should be 0 (that is, the fast reactive current should not be consumed), the switching circuit 51 The limiter output value Qr3 is output as the command value Qref.
  • the following can be said as the background of adopting the technology for setting the command value Qref to 0 according to the position of the vehicle. That is, the fluctuation or reduction of the overhead line voltage does not always occur during traveling, and may be a sufficiently appropriate overhead line voltage depending on the traveling position and other situations. In such a case, the train may be operated with a power factor of 1 without consuming the phase advance reactive current.
  • the traveling wire voltage is likely to decrease during traveling, and conversely which position is the overhead voltage being stable.
  • the power supply capability itself on the power supply side of the feeder circuit is weak, the overhead line voltage is likely to decrease over the entire travel section that receives power supply from the feeder circuit, and therefore it is preferable to consume the phase advance reactive current. Conceivable.
  • the longer the distance from the power supply of the feeder circuit the greater the loss, and the overhead voltage input to the train may decrease. In this case, it is preferable to consume the phase advance reactive current. it is conceivable that.
  • a reactive power compensator is installed at a feeder substation and the vehicle is in a feeder section where sufficient overhead voltage is secured, fast reactive power is consumed on the train side. Therefore, it is preferable to set the command value Qref to 0.
  • the limiter output value Qr3 is output as the command value Qref, and the overhead line voltage is unlikely to decrease.
  • 0 is output as the command value Qref.
  • the position detection signal Sp may be simply a signal including information indicating the own vehicle position, but a signal including information indicating whether or not the own vehicle position is a position where 0 should be output as the command value Qref. It may be. If the position detection signal Sp itself includes information indicating which of the limiter output values Qr3 and 0 should be output as the command value Qref, the switching control unit 52 is omitted and the position detection signal Sp is The switching circuit 51 may be input so that the switching circuit 51 outputs the limiter output value Qr or 0 based on the position detection signal Sp.
  • the command value Qref is switched to the limiter output value Qr3 or 0 depending on whether or not the converter 13 needs to consume the phase advance reactive power. Can be controlled.
  • the switching circuit 51 and the switching control unit 52 correspond to an example of an output switching unit (particularly the first output switching unit) in the present disclosure
  • the position detection signal Sp corresponds to an example of switching information in the present disclosure.
  • the power conversion control device 60 of the third embodiment shown in FIG. 4 further includes an output multiplier 61 and a low voltage detection circuit 62 in addition to the power conversion control device 21 of the first embodiment shown in FIG.
  • the output multiplier 61 and the low voltage detection circuit 62 are provided for forcibly setting the command value Qref to 0 when the overhead line voltage is in an abnormal low voltage state.
  • the vehicle in which the vehicle is present, for example, when a ground fault or short-circuit failure occurs and the feeder circuit is out of power, the vehicle is actively engaged in such a situation. Therefore, it is not necessary to control such that the phase reactive current is consumed, but such control should be stopped. Therefore, in the present embodiment, the overhead line voltage is monitored, and when a low voltage that does not occur in the normal state is detected, the command value Qref is forcibly set to 0 so that the power supply circuit power failure is detected. The consumption of unnecessary phase advance reactive current is suppressed.
  • the low voltage detection circuit 62 outputs a signal of 1 or 0 to the output multiplier 61 according to the detection value Vtr.
  • the low voltage detection circuit 62 is provided to detect when the value of the overhead wire voltage is out of the normal range and becomes a low value.
  • a threshold is set for the detection value Vtr, and the low voltage detection circuit 62 outputs 1 if the detection value Vtr is equal to or greater than the threshold, and outputs 0 if the detection value Vtr is less than the threshold.
  • the threshold value may be determined as appropriate according to the rated value of the overhead wire voltage, the normal range, the range to be determined as abnormal, and the like. In the present embodiment, as an example, the threshold is set to 0.6 [pu]. That is, the low voltage detection circuit 62 is configured to output 0 when the overhead line voltage is less than 16.8 kV, which is 0.6 times the rated value (for example, 28 kV).
  • the output multiplier 61 multiplies the limiter output value Qr3 output from the limiter circuit 38 by 1 or 0 output from the low voltage detection circuit 62, and outputs the multiplication result as a command value Qref.
  • the limiter output value Qr3 is output as the command value Qref.
  • the command value Qref is forcibly set. Is set to 0.
  • the following effects can be obtained in addition to the effects of the first embodiment. That is, when the overhead line voltage is abnormally low, the command value Qref is forcibly set to 0, so that it is possible to suppress unnecessary consumption of the phase advance reactive current at the time of power feeding circuit power failure.
  • the low voltage detection circuit 62 corresponds to an example of an overhead line voltage determination unit in the present disclosure.
  • the output multiplier 61 corresponds to an example of an output switching unit (particularly a second output switching unit) in the present disclosure.
  • the output multiplier 61 is provided at the subsequent stage of the limiter circuit 38.
  • a switching circuit 51 is provided after the output multiplier 61.
  • the positions before and after the output multiplier 61 and the switching circuit 51 may be interchanged. According to the power conversion control device 70 of the fourth embodiment configured as described above, both the operational effects of the second embodiment and the operational effects of the third embodiment can be obtained.
  • the control target of the present disclosure is not limited to the converter 13 of the above-described embodiment.
  • the present disclosure can be applied to a power conversion control device that controls various power conversion devices configured to perform power conversion on AC power input from an overhead line to which AC power is supplied.
  • the content of power conversion in the power conversion device to be controlled is not particularly limited, and is not limited to converting AC power to DC power as in the converter 13 described above, and the input AC power is another form of AC power. (For example, AC power having a different frequency or voltage) may be converted.
  • the power converter is configured to be PWM driven.
  • the present disclosure can be applied as a power conversion control device for controlling any power conversion device that can be operated according to the command value Pref and the command value Qref as a control target.
  • the switching circuit 51 may be configured to be capable of switching operation based on other information different from the vehicle position.
  • the driver himself / herself may be able to operate the switching circuit 51 directly or indirectly based on the judgment of the train driver.
  • a switch for operating the switching circuit 51 is provided in the vicinity of the driver's seat, and the switching circuit 51 can be operated according to the operation content of the switch by the driver operating the switch. You may do it.
  • the switching circuit 51 may be configured to switch the command value Qref to 0 based on the overhead line voltage when the overhead line voltage is sufficiently maintained. For example, the switching circuit 51 may be configured to output 0 as the command value Qref when the overhead line voltage is equal to or higher than the rated value or higher than the rated value by a predetermined amount.
  • the upper limit Qup is calculated by the above formula (1), but the upper limit Qup may be calculated by other methods. That is, as long as an effective current corresponding to the command value Pref can be ensured, the maximum value of the advanced phase reactive current may be determined as appropriate. For example, the fast reactive current may be appropriately suppressed by multiplying the formula (1) by a predetermined coefficient less than 1.
  • Each of the above embodiments is configured to perform various control operations using a standardized value (that is, a value in the pu unit system) with respect to the reference value. It is not essential to perform a control operation on
  • each of the above embodiments may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component.
  • at least a part of the configuration of each of the above embodiments may be replaced with a known configuration having a similar function.
  • at least a part of the configuration of each of the above embodiments may be added to or replaced with the configuration of the other embodiments.
  • all the aspects included in the technical idea specified only by the wording described in the claim are embodiment of this indication.
  • a system including the power conversion control device as a constituent element, a program for causing a computer to function as the power conversion control device, a medium storing the program, and the power conversion control device
  • the present disclosure can also be realized in various forms such as a control method used in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本開示の1つの局面における電車用電力変換制御装置は、有効電流指令値生成部と、架線電圧検出部と、初期値算出部と、調整値算出部と、上限値設定部と、出力制限部とを備える。出力制限部は、調整値算出部により算出された無効電流指令調整値が上限値設定部により設定された上限値以下である場合は、無効電流指令調整値を無効電流指令値として出力し、無効電流指令調整値が上限値を超えている場合は上限値を無効電流指令値として出力する。

Description

電車用電力変換制御装置 関連出願の相互参照
 本国際出願は、2016年4月4日に日本国特許庁に出願された日本国特許出願第2016-075252号に基づく優先権を主張するものであり、日本国特許出願第2016-075252号の全内容を参照により本国際出願に援用する。
 本開示は、架線から集電された交流電力によって走行用のモータが駆動されるように構成された電車に搭載される電力変換装置を制御するための技術に関する。
 架線からパンタグラフによって交流電力を集電して走行するように構成された電車には、一般に、架線から集電した交流電力を適宜電力変換して走行用のモータへ供給するための電力変換装置が搭載されている。この種の電力変換装置を制御する方法として、装置の軽量化やコンパクト化の観点から、パンタグラフから入力される交流電力の力率が1となるように、即ち電車内において有効電力のみ消費されるように制御する方法が一般的となっている。
 しかし、上記のように力率が1となるように電力変換装置を制御すると、次のような問題が生じる可能性がある。即ち、電車走行による有効電力の消費に伴い、架線に交流電力を供給するき電回路の電源側のインピーダンスやき電回路のインピーダンスなどの影響によって架線電圧が低下したり変動したりする。特に、例えば現行の新幹線電車のように、架線から入力される交流電圧の値にかかわらず所定の有効電力を消費するよう設計されている電車においては、架線電圧の降下に伴って電車に消費される電流が増加するため、その影響によって架線電圧がより低下し、場合によっては所定の推進力を得られなくなる可能性もある。
 電車における力率1制御に起因して生じる上記問題に対する対策として、き電用の変電所に無効電力補償装置や固定力率出力電力変換装置などを設置することで架線電圧を標準電圧以上に維持する方法がある。しかしこの方法は、各装置の設置に多大な費用や広大な設置スペースの確保が必要となる。
 これに対し、下記特許文献1には、電車内において力行時には力率1とはせず進相無効電力が発生するようにVVVF変換装置を制御する技術が記載されている。
 また、下記特許文献2には、車両へ電力を供給する交流系統側においてその交流系統の電圧変動を抑制する電力変換装置が記載されている。即ち、特許文献2には、有効電力消費量と無効電力消費量とを交流系統電圧に基づいて自律的に決定し、その決定した有効電力、無効電力を同時に消費させる電力変換装置を交流系統に接続することで、交流系統の電圧変動を抑制する技術が記載されている。
特開2000-156902号公報 特許第4568111号公報
 特許文献1に記載の技術のように、電車用電力変換装置に進相無効電力を消費させることによって架線電圧を適切なレベルに維持することは、原理的には可能である。しかし、特許文献1に記載の技術は、架線電圧の維持に必要な進相無効電力を、電車が消費する有効電力に単純に加算して電車用電力変換装置に消費させるという技術である。
 そのため、電車用電力変換装置の定格電流の制約から、進相無効電流の加算によって、電車が必要とする有効電力が制限されてしまい、結果として所望の推進力が得られなくなる可能性がある。また、同一のき電回路内に複数の電車が在線している場合、それぞれの電車の電車用電力変換装置の進相無効電力消費が競合し、これにより架線電圧の不安定現象を招くおそれがある。
 一方、特許文献2に記載の技術を電車内の電力変換装置に採用すること自体は一応可能であり、それによって架線電圧の変動を抑制することは可能である。しかし、特許文献2に記載の技術は、有効電流指令値が、進相無効電流指令値によって決定される。つまり、有効電流の供給量が進相無効電流指令値に依存して決定される構成である。そのため、電車の推進力の確保に必要な有効電流が自由に決められない。つまり、架線電圧の維持と引き換えに電車自身の有効電流が自由に決められなくなって、電車として本来発揮すべき性能に影響が生じる可能性がある。そのため、特許文献2の技術を電車用の電力変換装置に適用することはできない。
 本開示の1つの局面は、電車に必要な有効電力を確保しつつ、架線電圧を適切なレベルに安定的に維持できることが望ましい。
 本開示の1つの局面における電車用電力変換制御装置は、交流電力が供給される架線から交流電力が入力されるように構成された電車に搭載され、架線から入力された交流電力に対する電力変換を行う電力変換装置を制御する。電力変換装置は、当該電車用電力変換制御装置から入力される有効電流指令値及び無効電流指令値に基づき、有効電流指令値に応じた有効電流及び無効電流指令値に応じた進相無効電流を消費するように構成されている。
 当該電車用電力変換制御装置は、有効電流指令値生成部と、架線電圧検出部と、初期値算出部と、調整値算出部と、上限値設定部と、出力制限部と、を備える。
 有効電流指令値生成部は、電力変換装置から負荷へ供給すべき有効電力に応じて有効電流指令値を生成するように構成されている。
 架線電圧検出部は、架線から入力される架線電圧を検出するように構成されている。
 初期値算出部は、架線電圧の目標値である電圧指令値と架線電圧検出部により検出された架線電圧である架線電圧検出値との差に基づき、架線電圧検出値を電圧指令値に追従させるための無効電流指令値の初期値である無効電流指令初期値を算出するように構成されている。
 調整値算出部は、初期値算出部により算出された無効電流指令初期値のうち有効電流指令値生成部により生成された有効電流指令値に応じた割合の値である無効電流指令調整値を算出するように構成されている。
 上限値設定部は、有効電流指令値生成部により生成された有効電流指令値に基づき、その有効電流指令値が大きいほど無効電流指令値の上限値が小さくなるように無効電流指令値の上限値を設定するように構成されている。
 出力制限部は、調整値算出部により算出された無効電流指令調整値が上限値設定部により設定された上限値以下である場合は、無効電流指令調整値を無効電流指令値として出力し、無効電流指令調整値が上限値を超えている場合は上限値を無効電流指令値として出力するように構成されている。
 このように構成された電車用電力変換制御装置では、有効電流指令値は負荷へ供給すべき有効電力に応じて生成されるのに対し、無効電流指令値は、有効電流指令値に依存して決定される。具体的に、電圧指令値と架線電圧検出値との差に基づいて算出された無効電流指令初期値が100%そのまま無効電流指令値として出力されるのではなく、調整値算出部によって、有効電流指令値に応じた割合の値に調整される。つまり、無効電流指令初期値が、有効電流指令値に応じて0~100%の量に調整されて、無効電流指令調整値として出力される。なお、有効電流指令値が大きいほど上記割合も大きくなるよう、逆に言えば有効電流指令値が小さいほど上記割合も小さくなるように、無効電流指令初期値が調整される。つまり、当該電車が必要としている有効電力に見合った量の無効電流指令調整値に調整される。
 さらに、無効電流指令調整値に対して上限値を設定し、無効電流指令調整値が上限値以下であればそのまま無効電流指令値として出力するが、無効電流指令調整値が上限値を超えている場合は、無効電流指令値として上限値を出力する。つまり、あくまでも必要な有効電力を負荷へ供給できるようにすることが優先され、最終的に出力される無効電流指令値は、最大でも上限値に制限される。
 したがって、上記構成の電車用電力変換制御装置によれば、電車に必要な有効電力を確保しつつ、架線電圧を適切なレベルに安定的に維持させるようにすることができる。
 なお、ここでいう電車とは、1つの車両のみに限らず、複数の車両が連結された1つの編成も含む概念である。また、電力変換装置による電力変換は、例えば交流電力から交流電力への変換であってもよいし、交流電力から直流電力への変換であってもよい。
実施形態の電車用主回路システムの概略構成を示す説明図である。 第1実施形態の電力変換制御装置の概略構成を示すブロック図である。 第2実施形態の電力変換制御装置の概略構成を示すブロック図である。 第3実施形態の電力変換制御装置の概略構成を示すブロック図である。 第4実施形態の電力変換制御装置の概略構成を示すブロック図である。
 10…電車用主回路システム、11…パンタグラフ、12…主変圧器、13…コンバータ、14…インバータ、15…モータ、16…コンバータ電圧検出部、21,50,60,70…電力変換制御装置、22…PWM回路、26…架線電圧検出部、27…位置検知部、31…有効電流指令値生成部、32…電圧指令値設定部、33…加算器、34…交流電圧制御回路、35…出力力率係数設定部、36…乗算器、37…上限値設定部、38…リミッタ回路、51…切替回路、52…切替制御部、61…出力乗算器、62…低電圧検出回路、100…架線
 以下、本開示の例示的な実施形態について図面を参照しながら説明する。
 [第1実施形態]
 (1)電車用主回路システムの概要
 図1に示す電車用主回路システム10は、架線100から交流電力を集電するように構成された電車に搭載される。架線100は、不図示のき電回路に接続され、そのき電回路から交流電力が供給されている。
 電車用主回路システム10は、図1に示すように、パンタグラフ11と、主変圧器12と、コンバータ13と、インバータ14と、モータ15と、電力変換制御装置21と、PWM回路22と、架線電圧検出部26と、位置検知部27と、を備える。
 なお、電車用主回路システム10が搭載される電車は、1つの車両を備えてもよいし、連結された複数の車両を備えてもよい。連結された複数の車両を備えている場合、図1に示す電車用主回路システム10に含まれる全ての構成要素が必ずしも同じ1つの車両に搭載されている必要はない。例えば、パンタグラフ11が搭載されている車両とは別の車両に電力変換制御装置21が搭載されていてもよい。
 パンタグラフ11は、架線100から交流電力を集電するための周知の集電装置である。架線100から集電される電圧は、本実施形態では例えば交流25kVである。
 主変圧器12は、パンタグラフ11にて集電した交流電力を降圧してコンバータ13へ供給する。主変圧器12は、パンタグラフ11からの交流電力が入力される一次巻線12aと、パンタグラフ11からの交流電力を降圧してコンバータ13へ出力するための二次巻線12bと、パンタグラフ11からの交流電力を降圧して不図示の補助回路システムへ供給するための三次巻線12cとを有する。主変圧器12の二次巻線12bから出力される交流電力(以下、二次出力電力ともいう)の電圧値は、例えば交流1000Vであり、主変圧器12の三次巻線12cから出力される交流電力(以下、三次出力電力ともいう)の電圧値は、例えば交流400Vである。もちろん、これら各電圧値はあくまでも一例である。
 コンバータ13は、主変圧器12から出力される二次出力電力を直流電力に変換して出力する。本実施形態のコンバータ13は、いわゆるPWMコンバータである。本実施形態のコンバータ13は、例えば、主変圧器12の二次出力電力の交流1000Vを、直流2000Vに変換して出力する。これら各電圧値も、あくまでも一例である。
 インバータ14は、コンバータ13から出力される直流電力を三相交流電力に変換して、モータ15へ出力する。本実施形態のインバータ14は、いわゆるVVVFインバータである。モータ15は、本実施形態では三相誘導電動機であり、三相交流電力が供給されることにより回転駆動する。モータ15が回転駆動されると、その回転駆動力が不図示の車輪に伝達され、これにより電車が走行する。
 架線電圧検出部26は、パンタグラフ11によって架線100から入力される電圧である架線電圧の値を検出するために設けられている。架線電圧検出部26は、主変圧器12の三次巻線12cから出力される三次出力電力の電圧値に応じた値、即ち架線電圧の大きさを示す架線電圧検出値Vtr(以下、検出値Vtrと略称する)を、電力変換制御装置21へ出力する。
 なお、本実施形態の電力変換制御装置21は、後述する各種演算に用いる各値をpu単位系の値として扱っている。そのため、架線電圧検出部26は、架線電圧検出値Vtrとして、架線電圧の定格値に対応した検出値Vtrを基準とした規格化された値、即ちpu単位系の値を出力するように構成されている。なお、架線電圧検出部26から出力される検出値Vtr自体はpu単位系の値ではなく、電力変換制御装置21内でpu単位系の値に変換されてもよい。
 位置検知部27は、電車が走行している位置を検知してその検知した位置を示す位置検知信号Spを電力変換制御装置21へ出力する。なお、位置検知信号Spは、本第1実施形態の電力変換制御装置21では用いられず、後述する第2実施形態及び第4実施形態で用いられる。
 コンバータ13とインバータ14の間には、コンバータ13からの出力電圧を検出するコンバータ電圧検出部16が設けられている。コンバータ電圧検出部16は、コンバータ13からの出力電圧の値を示すコンバータ出力電圧検出値Vcon(以下、検出値Vconと略称する)を電力変換制御装置21へ出力する。
 なお、コンバータ電圧検出部16は、検出値Vconとして、コンバータの出力電圧の定格値に対する規格化された値、即ちpu単位系の値を出力するように構成されている。或いは、コンバータ電圧検出部16から出力される検出値Vcon自体はpu単位系の値ではなく、電力変換制御装置21内でpu単位系の値に変換されてもよい。
 電力変換制御装置21は、架線電圧検出部26により検出された検出値Vtr、及びコンバータ電圧検出部16により検出された検出値Vconを用いて、コンバータ13に入力させるべき(即ちコンバータ13で消費させるべき)有効電流を示す有効電流指令値Pref(以下、指令値Prefと略称する)、及びコンバータ13に消費させるべき進相無効電流を示す無効電流指令値Qref(以下、指令値Qrefと略称する)を算出して、PWM回路22へ出力する。
 PWM回路22は、電力変換制御装置21から入力される指令値Pref及び指令値Qrefに基づき、その指令値Prefに応じた有効電流及び指令値Qrefに応じた進相無効電流がコンバータ13に入力されるように(即ちそれら有効電流及び進相無効電流がコンバータ13で消費されるように)、コンバータ13を制御する。
 具体的には、コンバータ13が有する複数のスイッチング素子のオンタイミング及びオフタイミングを個別に制御することにより、コンバータ13に、上記有効電流及び進相無効電流を消費させる。なお、指令値Prefは、コンバータ13に入力される有効電流を決定付けるパラメータ、換言すればコンバータ13により消費される有効電力を決定付けるパラメータであり、指令値Qrefは、コンバータ13に入力される進相無効電流を決定付けるパラメータ、換言すればコンバータ13により消費される進相無効電流を決定付けるパラメータである。
 (2)電力変換制御装置の構成
 次に、本実施形態の電力変換制御装置21の構成について、図2を用いて説明する。図2に示すように、電力変換制御装置21は、有効電流指令値生成部31と、電圧指令値設定部32と、加算器33と、交流電圧制御回路34と、出力力率係数設定部35と、乗算器36と、上限値設定部37と、リミッタ回路38とを備える。
 なお、図2に示す電力変換制御装置21によって実現される機能は、例えばコンピュータが所定の制御プログラムを実行することによって実現されてもよいし、機能の一部又は全部が、論理回路やアナログ回路等を組み合わせたハードウェアを用いて実現されてもよい。
 有効電流指令値生成部31は、電車が必要とする有効電力、即ちコンバータ13から負荷へ供給すべき有効電力に応じた、指令値Pref[pu]を生成する。ここで扱う指令値Pref[pu]は、コンバータ13において定められている入力電流の定格値である定格入力電流値を基準とした、規格化された値である。
 なお、コンバータ13の負荷とは、コンバータ13から出力される電力が消費される負荷全体を意味する。よって、コンバータ13の負荷には、少なくとも、インバータ14及びモータ15が含まれる。
 なお、以下の説明では、指令値Pref[pu]について、単位記号[pu]の表記を省略する。また、後述する電圧指令値Vref(以下、指令値Vrefと略称する)、後述する電圧差分ΔV、後述する無効電流指令初期値Qr1(以下、初期値Qr1と略称する)、後述する無効電流指令調整値Qr2(以下、調整値Qr2と略称する)、後述する上限値Qup、上述の指令値Qrefも、いずれもpu単位系で扱われるが、これらについても単位記号[pu]の表記を省略する。
 有効電流指令値生成部31は、必要とする有効電力を負荷へ供給できるよう、その有効電力供給のために必要な有効電流をコンバータ13に入力させるための指令値Prefを生成する。
 電車が必要とする有効電力は、負荷の動作状態によって変動する。負荷の動作状態は、コンバータ13からの出力電圧の値によって間接的に知ることができる。負荷へ供給すべき有効電力が増加すると、コンバータ13の出力電圧が低下する。逆に、供給すべき有効電力が低下すると、コンバータ13の出力電圧が増加する。
 そのため、本実施形態では、有効電流指令値生成部31は、コンバータ電圧検出部16から入力される検出値Vconに基づき、コンバータ13の出力電圧を一定の定格値に維持させるための所定の電圧一定制御を行うことにより、指令値Prefを生成する。具体的に、検出値Vconが小さくなるほど指令値Prefが大きくなるように指令値Prefを生成する。
 なお、電車においては、運転士が操作するノッチが上がれば上がるほど、モータ15へ供給すべき電力が増大する。つまり、電車が必要とする有効電力は、等価的にはノッチに依存するとも言える。そのため、有効電流指令値生成部31は、例えば、ノッチの状態に応じて指令値Prefを生成するように構成されていてもよい。具体的に、有効電流指令値生成部31は、ノッチが上がれば上がるほど指令値Prefが大きくなるように指令値Prefを生成するように構成されてもよい。
 電圧指令値設定部32は、検出値Vtrに対する目標値としての指令値Vref[pu]が設定される。指令値Vrefとして具体的にどのような値を設定するかについては適宜決めてもよい。例えば、架線100からの架線電圧が28kVに維持されるよう、架線電圧が28kVのときの検出値Vtrを指令値Vrefとして設定してもよい。
 加算器33は、電圧指令値設定部32で設定された指令値Vrefと検出値Vtrとの差である上述の電圧差分ΔVを算出する。
 交流電圧制御回路34は、例えば、比例積分回路あるいは一次遅れ回路等などを備えており、電圧差分ΔVがゼロとなるよう、すなわち検出値Vtrが指令値Vrefに追従するように、無効電流指令値を算出する。ここで算出される無効電流指令値は、最終的にPWM回路22に出力される値ではなく、あくまでも、電圧差分ΔVをゼロにすることを考慮して算出された値である。そのため、ここで算出される無効電流指令値は、最終的に算出される指令値Qrefと区別して、上述の初期値Qr1と称される。
 乗算器36は、有効電流指令値生成部31で生成された指令値Prefと、交流電圧制御回路34で算出された初期値Qr1と、出力力率係数設定部35で設定されている出力力率係数ρ(以下、係数ρと略称する)とを乗算する。この乗算により、初期値Qr1が指令値Pref及び係数ρによって調整された上述の調整値Qr2が算出される。
 乗算器36による乗算のうち、初期値Qr1と指令値Prefとの乗算は、交流電圧制御回路34で算出された初期値Qr1を、指令値Prefに応じた割合の値に調整するための乗算である。例えば指令値Prefが0.8[pu]であれば、初期値Qr1は、指令値Prefとの乗算によって80%の値に調整されることになる。
 一方、乗算器36による乗算のうち、初期値Qr1と係数ρとの乗算は、交流電圧制御回路34で算出された初期値Qr1を、出力力率設定値cosφ(以下、設定値cosφと略称する)に応じて調整するための乗算である。つまり、設定値cosφ以上の力率の電力がコンバータ13に入力されてコンバータ13で消費されるように初期値Qr1を調整するための乗算である。なお、φは力率角であり、コンバータ13で消費させるべき有効電力に応じて予め設定されており、また適宜設定変更することも可能である。
 係数ρは、力率角φを用いて、ρ=tanφ、即ち力率角φの正接で表される。つまり、力率角φが小さくなって設定値cosφが1に近付くほど、係数ρは小さくなり、逆に、力率角φが大きくなって設定値cosφが0に近付くほど、係数ρは大きくなる。
 そのため、乗算器36において初期値Qr1と係数ρとが乗算されることにより、設定値cosφが1に近いほど、初期値Qr1はより小さい値に調整されることになる。逆に、設定値cosφが0に近いほど、初期値Qr1はより大きな値に調整されることになる。
 なお、係数ρとしてtanφを用いているのはあくまでも一例であり、設定値cosφに応じて初期値Qr1を適切に調整可能な他の値を係数ρとして用いてもよい。つまり、係数ρは、設定値cosφに応じ、0~1の間で適宜設定するようにしてもよい。
 乗算器36による乗算によって初期値Qr1を指令値Prefで調整する主目的は、コンバータ13で消費される進相無効電流の量を、自車が真に必要としている有効電力の大きさに見合った適切な量に調整することにある。この調整により、必要な有効電力が大きければその分進相無効電流も大きい値に調整され、必要な有効電力が小さければその分進相無効電流も小さい値に調整される。これにより、例えば同じき電区間に自車を含む複数の電車が在線していて各車が本実施形態の電力変換制御装置21を備えている場合、電車毎に進相無効電流が適切に調整され、その結果、複数の電車間の進相無効電流消費の競合を抑制して架線電圧を安定化させることができる。
 一方、乗算器36による乗算によって初期値Qr1を係数ρで調整する主目的は、コンバータ13においてあくまでも有効電力の消費を優先させることにある。より具体的には、仮に架線電圧が下がってコンバータ13に入力される有効電流が低下しても、コンバータ13の消費電流を不要に大きくしないようにすることにある。有効電流の値にかかわらず設定値cosφ以上の力率を確保できるように、係数ρを用いた調整を行うようにしている。
 リミッタ回路38は、乗算器36で算出された調整値Qr2を、その最大値に制限をかけて、最終的な指令値Qrefとして出力する。具体的に、調整値Qr2が上限値Qup以下である場合は、調整値Qr2を指令値Qrefとして出力する。一方、調整値Qr2が上限値Qupを超えている場合は、上限値Qupを指令値Qrefとして出力する。
 上限値Qupは、上限値設定部37により設定される。上限値設定部37は、指令値Prefに基づき、指令値Prefが大きいほど小さい値となるように上限値Qupを設定する。より具体的に、上限値設定部37は、下記式(1)により上限値Qupを算出し設定する。
Qup=√(1-Pref) ・・・(1)
 つまり、有効電流指令値生成部31で生成された指令値Prefをそのままコンバータ13で消費させることを優先させ、有効電力の消費量は犠牲にしないようにする。一方、コンバータ13に入力される電流全体は定格入力電流値以下に収まるようにする。つまり、指令値Prefと指令値Qrefとの合成値(即ちベクトル合成値)が定格入力電流値以下に収まるように、指令値Qrefに対する上限値Qupが設定される。そのため、進相無効電流については、コンバータ13の定格入力電流のうち指令値Prefを除く余力範囲内に制限される。
 上限値Qupに基づいてリミッタ回路38が動作することで、コンバータ13に入力される電流全体を定格入力電流値以下に抑えることができる。そして、その定格入力電流値以下の範囲内で、有効電流については優先して消費され、余力部分に進相無効電流が充てられる。
 (3)第1実施形態の効果
 以上説明した第1実施形態によれば、以下の効果が得られる。
 即ち、第1実施形態の電力変換制御装置21では、有効電流指令値生成部31で生成された指令値Prefが特に制限を受けることなく出力される。
 一方、指令値Qrefについては、交流電圧制御回路34で算出された初期値Qr1が適宜調整或いは制限を経て出力される。具体的に、交流電圧制御回路34で算出された初期値Qr1が、乗算器36によって、指令値Prefに見合った値に調整され、且つ力率角φに見合った値に調整される。具体的に、指令値Prefが小さいほど初期値Qr1も小さい値に調整される。また、力率角φが小さいほど(つまり設定値cosφが1に近いほど)初期値Qr1は小さい値に調整される。
 初期値Qr1が指令値Prefに見合った値に調整されることにより、同一のき電回路内に在線している他の電車と進相無効電流消費の競合を抑えつつ、架線100から入力される架線電圧をその標準値(定格値)以上の値に安定的に維持させることができる。そのため、電車走行に伴う架線電圧の降下を抑えることができ、その結果、き電距離の延伸が可能となり、き電用変電所における無効電力補償装置あるいは固定力率出力電力変換装置等の設置を省略することも可能となって、電車を走行させるための設備のトータルコストを低減することができる。
 また、初期値Qr1が設定値cosφに見合った値に調整されることにより、指令値Prefの大きさにかかわらず、コンバータ13で消費される電力において有効電力が主体となるように制御することが可能となる。
 また、乗算器36において指令値Pref及び設定値cosφによって調整された調整値Qr2が、さらにリミッタ回路38を経て指令値Qrefとして出力されることで、最終的に出力される指令値Qrefが、最大でも上限値Qupに制限される。
 しかもその上限値Qupは、前述の式(1)により算出される。そのため、コンバータ13の定格入力電流値の範囲内で、有効電力の消費を優先した制御が実現される。これにより、コンバータ13の定格容量を、従来の有効電力の消費のみを行う(即ち力率1に制御される)コンバータと同等に維持しつつ、架線電圧を適切なレベルに安定的に維持させること、及び電車に必要な有効電力を確保すること、の双方が可能となる。
 ここで、第1実施形態の効果について補足説明する。第1実施形態の電力変換制御装置21の主な特徴の一つとして、有効電力の消費を優先する制御とすることで、コンバータ13の定格容量を大きくせずに所定の推進力を得られること、がある。また、主な特徴の一つとして、同一のき電回路に複数の電車が在線している場合であっても、進相無効電力の消費量の分担をそれぞれの電車が自律的に決定し、架線電圧を安定して制御できること、がある。
 有効電力の消費を優先させる制御に対する代替技術としては、例えば、コンバータ13の定格容量を大きくすることで、あらかじめ進相無効電力消費分の容量を確保しておく技術が考えられる。しかし、そのような技術を採用すると、コンバータ13の重量が重くなり、またその搭載スペースの確保も困難になるため、実現困難である。仮に実現したとしても、重量増に伴って電車の消費電力の増加を招くことが考えられる。
 また、同一き電回路内の複数の電車における進相無効電力消費の分担の決定方法に対する代替技術としては、例えば、各々の電車の消費電力を計測し、それらを1箇所の制御所に伝送し、その制御所で各々の電車の進相無効電力消費量の分担を決定して、制御所から各々の電車に対して指令する方法が考えられる。しかしその技術は、制御所と各々の電車の間の伝送手段が必要となることや、伝送遅れにより電圧の制御が不安定になる可能性が高いことなどから、コスト、電圧制御安定性の面で実現困難と考えられる。
 このようなことから、コンバータ13に進相無効電力を消費させ、電車に必要な推進力を損なうことなく架線電圧を安定的に制御するためには、第1実施形態で説明した制御方法が非常に有効であるといえる。第1実施形態で説明した制御方法を採用することで、架線電圧を安定化させつつ有効電力消費を優先させることができ、これにより電車の消費電流を軽減できる。その結果、主変圧器12の軽量・コンパクト化、き電システム全体の電力損失の低減、電車の省エネルギー化を図ることも可能となる。
 なお、コンバータ13は、本開示における電力変換装置の一例に相当し、電力変換制御装置21は、本開示における電車用電力変換制御装置の一例に相当する。交流電圧制御回路34は、本開示における初期値算出部の一例に相当する。乗算器36は、本開示における調整値算出部の一例に相当する。リミッタ回路38は、本開示における出力制限部の一例に相当する。
 [第2実施形態]
 第2実施形態は、基本的な構成は第1実施形態と同様であるため、第1実施形態と共通する構成については説明を省略し、相違点を中心に説明する。なお、第1実施形態と同じ符号は、同一の構成を示し、先行する説明を参照する。
 図3に示す第2実施形態の電力変換制御装置50は、図2に示した第1実施形態の電力変換制御装置21に対し、さらに切替回路51及び切替制御部52を備えている。
 切替回路51は、指令値Qrefとして、リミッタ回路38から出力される値をそのまま出力させるか、それとも0を出力させるかを切り替えるための回路である。なお、リミッタ回路38から出力される値を、以下、リミッタ出力値Qr3とも称する。
 切替回路51は、切替制御部52からの切替指令に従って、出力させるべき指令値Qrefを、リミッタ回路38からのリミッタ出力値Qr3又は0に切り替える。
 切替制御部52は、一例として、位置検知部27から入力される位置検知信号Spに基づいて、切替回路51を制御する。切替制御部52は、自車の走行位置に応じて、指令値Qrefを0にすべきか否かを決定して切替回路51を制御するように構成されている。
 切替制御部52は、入力される位置検知信号Spに基づき、自車が現在、指令値Qrefを0にすべき(つまり進相無効電流を消費すべきでない)位置に存在している場合には、切替回路51に対して指令値Qrefとして0を出力させる。一方、入力される位置検知信号Spに基づき、自車が現在、指令値Qrefを0にすべき(つまり進相無効電流を消費すべきでない)位置に存在していない場合には、切替回路51に対して指令値Qrefとしてリミッタ出力値Qr3を出力させる。
 自車の位置に応じて指令値Qrefを0にする技術を採用した背景として、次のことが言える。即ち、架線電圧の変動や低下は走行中常に発生するとは限らず、走行位置やその他の状況等によっては十分に適切な架線電圧となっている場合もある。そのような場合は電車においても進相無効電流は消費せずに力率1で運転してもよい。
 また、走行中どのあたりの位置が架線電圧が下がりやすいか、逆にどのあたりの位置は架線電圧が安定しているか、といった情報は、ある程度は予めわかる。例えば、き電回路の電源側の電力供給能力自体が弱い場合は、そのき電回路から電力供給を受ける走行区間全体にわたって架線電圧が低下しやすく、よって進相無効電流を消費させる方が好ましいと考えられる。また、き電回路の電源からの距離が長くなればなるほど、損失が大きくなって、電車に入力される架線電圧が低下する可能性があり、その場合も進相無効電流を消費させる方が好ましいと考えられる。また例えば、き電用変電所に無効電力補償装置が設置されていて十分な架線電圧が確保されているき電区間に自車が存在している場合は、電車側で進相無効電力を消費させる必要性は低く、指令値Qrefを0にする方がむしろ好ましい。
 そこで、本第2実施形態では、自車位置に応じ、架線電圧が低下しやすい位置に存在している場合には指令値Qrefとしてリミッタ出力値Qr3を出力させ、架線電圧が低下するおそれの低い位置に存在していて進相無効電流を消費させる必要性が低い場合には指令値Qrefとして0を出力するようにしている。
 なお、位置検知信号Spは、単に自車位置を示す情報を含む信号であってもよいが、自車位置が指令値Qrefとして0を出力すべき位置であるか否かを示す情報を含む信号であってもよい。そして、位置検知信号Sp自体に、指令値Qrefとしてリミッタ出力値Qr3及び0のどちらを出力すべきかを示す情報が含まれている場合には、切替制御部52を省いて、位置検知信号Spを切替回路51へ入力させ、切替回路51が位置検知信号Spに基づいてリミッタ出力値Qr又は0を出力するように構成してもよい。
 このように構成された第2実施形態の電力変換制御装置50によれば、第1実施形態の効果に加え、次の効果が得られる。即ち、コンバータ13にて進相無効電力を消費させる必要があるか否かに応じて、指令値Qrefがリミッタ出力値Qr3又は0に切り替わるため、進相無効電流の消費量を状況に応じて適切に制御することができる。特に、本第2実施形態では、自車の位置に応じて、進相無効電流を消費させるべき位置に存在している場合には進相無効電流を消費させ、進相無効電流を消費させる必要がないか若しくはその必要性が低い位置に存在している場合には進相無効電流を0にすることができる。そのため、自車位置に応じた適切な進相無効電力の制御が可能となる。
 なお、切替回路51及び切替制御部52は、本開示における出力切替部(特に第1の出力切替部)の一例に相当し、位置検知信号Spは、本開示における切替情報の一例に相当する。
 [第3実施形態]
 第3実施形態は、基本的な構成は第1実施形態と同様であるため、第1実施形態と共通する構成については説明を省略し、相違点を中心に説明する。なお、第1実施形態と同じ符号は、同一の構成を示し、先行する説明を参照する。
 図4に示す第3実施形態の電力変換制御装置60は、図2に示した第1実施形態の電力変換制御装置21に対し、さらに出力乗算器61及び低電圧検出回路62を備えている。これら出力乗算器61及び低電圧検出回路62は、架線電圧が異常な低電圧状態になった場合には指令値Qrefを強制的に0にするために設けられている。
 即ち、自車が在線しているき電回路において、例えば地絡故障あるいは短絡故障が発生して当該き電回路が停電している状況が発生した場合、そのような状況においては自車において積極的に進相無効電流を消費させるような制御をする必要はなく、むしろそのような制御は停止させるべきである。そこで、本実施形態では、架線電圧を監視し、正常時には発生することがないような低電圧を検出した場合には、指令値Qrefを強制的に0とすることで、き電回路停電時の不要な進相無効電流の消費を抑制するようにしている。
 低電圧検出回路62は、検出値Vtrに応じて1又は0の信号を出力乗算器61へ出力する。低電圧検出回路62は、架線電圧の値が正常な範囲を外れて低い値となっている場合にそのことを検出するために設けられている。具体的に、検出値Vtrに対して閾値が設定されており、低電圧検出回路62は、検出値Vtrが閾値以上の場合は1を出力し、検出値Vtrが閾値未満の場合は0を出力する。閾値をどのような値にするかについては、架線電圧の定格値や正常範囲、異常と判断すべき範囲などに応じて適宜決めてもよい。本実施形態では、一例として、閾値が0.6[pu]に設定されている。つまり、低電圧検出回路62は、架線電圧が定格値(例えば28kV)の0.6倍の16.8kV未満となっている場合には0を出力するように構成されている。
 出力乗算器61は、リミッタ回路38から出力されるリミッタ出力値Qr3と、低電圧検出回路62から出力される1又は0とを乗算し、その乗算結果を指令値Qrefとして出力する。低電圧検出回路62から1が入力されている場合、即ち検出値Vtrが0.6[pu]以上であって架線電圧が正常範囲にある場合は、リミッタ出力値Qr3が指令値Qrefとして出力される。一方、低電圧検出回路62から0が入力されている場合、即ち検出値Vtrが0.6[pu]未満であって架線電圧が異常な低電圧状態にある場合は、指令値Qrefが強制的に0に設定される。
 このように構成された第3実施形態の電力変換制御装置60によれば、第1実施形態の効果に加え、次の効果が得られる。即ち、架線電圧が異常に低い状態の場合には指令値Qrefが強制的に0に設定されるため、き電回路停電時の不要な進相無効電流の消費を抑制することができる。
 なお、低電圧検出回路62は、本開示における架線電圧判断部の一例に相当する。出力乗算器61は、本開示における出力切替部(特に第2の出力切替部)の一例に相当する。
 [第4実施形態]
 図5に示す本第4実施形態の電力変換制御装置70では、図3に示した第2実施形態の電力変換制御装置50の構成と図4に示した第3実施形態の電力変換制御装置60の構成とが組み合わされている。即ち、図3に示した第2実施形態の電力変換制御装置50に対し、更に、図4に示した第3実施形態の電力変換制御装置60における出力乗算器61及び低電圧検出回路62が設けられている。
 図5に示すように、出力乗算器61は、リミッタ回路38の後段に設けられている。そして、出力乗算器61の後段に、切替回路51が設けられている。なお、出力乗算器61と切替回路51の前後の位置を入れ替えてもよい。このように構成された第4実施形態の電力変換制御装置70によれば、第2実施形態の作用効果及び第3実施形態の作用効果の双方が得られる。
 [他の実施形態]
 以上、本開示を実施するための形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
 (1)本開示の制御対象は、上述した実施形態のコンバータ13に限定されない。交流電力が供給される架線から入力される交流電力に対する電力変換を行うように構成された各種の電力変換装置を制御対象とする電力変換制御装置に対して本開示を適用可能である。
 制御対象の電力変換装置における電力変換の内容についても特に限定されず、上述したコンバータ13のように交流電力を直流電力に変換することに限らず、入力された交流電力を別の形態の交流電力(例えば周波数或いは電圧が異なる交流電力)に変換してもよい。
 また、電力変換装置がPWM駆動されるように構成されていることもあくまでも一例である。指令値Pref及び指令値Qrefに従って動作させることが可能なあらゆる電力変換装置を制御対象として、その電力変換装置を制御するための電力変換制御装置として本開示を適用可能である。
 (2)第2実施形態において、切替回路51は、自車位置とは異なる他の情報等に基づいて切り替え動作可能に構成されてもよい。例えば、電車の運転士の判断によって、運転士自身が切替回路51を直接又は間接的に動作させることが可能であってもよい。より具体的に、運転席近傍に、切替回路51を動作させるためのスイッチを設け、運転士がそのスイッチを操作することで、そのスイッチの操作内容に応じて切替回路51を動作させることができるようにしてもよい。
 また、切替回路51は、架線電圧に基づき、架線電圧が十分に維持されている場合には指令値Qrefを0に切り替えるように構成されてもよい。例えば、切替回路51は、架線電圧が、定格値以上、或いは定格値よりも所定量高い値以上となっている場合に、指令値Qrefとして0を出力するように構成されてもよい。
 (3)上限値設定部37について、上記各実施形態では、上限値Qupを上記式(1)で算出することを説明したが、上限値Qupは他の方法で算出するようにしてもよい。つまり、指令値Prefに応じた有効電流を確保できる限り、進相無効電流を具体的に最大でどの程度に制限するかについては、適宜決めてもよい。例えば、上記式(1)に対してさらに1未満の所定の係数を掛けることで、進相無効電流を適宜抑制するようにしてもよい。
 (4)上記各実施形態は、基準値に対する規格化された値(即ちpu単位系の値)を使用して各種制御演算を行うように構成されていたが、このようにpu単位系の値に対して制御演算を行うことは必須ではない。
 (5)その他、上記各実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合させたりしてもよい。また、上記各実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。また、上記各実施形態の構成の一部を省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の実施形態の構成に対して付加又は置換してもよい。なお、請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
 (6)上述した電力変換制御装置の他、当該電力変換制御装置を構成要素とするシステム、当該電力変換制御装置としてコンピュータを機能させるためのプログラム、このプログラムを記録した媒体、当該電力変換制御装置において用いられている制御方法など、種々の形態で本開示を実現することもできる。

Claims (10)

  1.  交流電力が供給される架線から前記交流電力が入力されるように構成された電車に搭載され、前記架線から入力された前記交流電力に対する電力変換を行う電力変換装置を制御する電車用電力変換制御装置であって、
     前記電力変換装置は、当該電車用電力変換制御装置から入力される有効電流指令値及び無効電流指令値に基づき、前記有効電流指令値に応じた有効電流及び前記無効電流指令値に応じた進相無効電流を消費するように構成されており、
     当該電車用電力変換制御装置は、
     前記電力変換装置から負荷へ供給すべき有効電力に応じて前記有効電流指令値を生成するように構成された有効電流指令値生成部と、
     前記架線から入力される電圧である架線電圧を検出するように構成された架線電圧検出部と、
     前記架線電圧の目標値である電圧指令値と前記架線電圧検出部により検出された前記架線電圧である架線電圧検出値との差に基づき、前記架線電圧検出値を前記電圧指令値に追従させるための前記無効電流指令値の初期値である無効電流指令初期値を算出するように構成された初期値算出部と、
     前記初期値算出部により算出された前記無効電流指令初期値のうち前記有効電流指令値生成部により生成された前記有効電流指令値に応じた割合の値である無効電流指令調整値を算出するように構成された調整値算出部と、
     前記有効電流指令値生成部により生成された前記有効電流指令値に基づき、その有効電流指令値が大きいほど前記無効電流指令値の上限値が小さくなるように前記無効電流指令値の前記上限値を設定するように構成された上限値設定部と、
     前記調整値算出部により算出された前記無効電流指令調整値が前記上限値設定部により設定された前記上限値以下である場合は、前記無効電流指令調整値を前記無効電流指令値として出力し、前記無効電流指令調整値が前記上限値を超えている場合は前記上限値を前記無効電流指令値として出力するように構成された出力制限部と、
     を備える、電車用電力変換制御装置。
  2.  請求項1に記載の電車用電力変換制御装置であって、
     前記上限値設定部は、前記有効電流指令値生成部により生成された前記有効電流指令値と前記無効電流指令値との合成値が、前記電力変換装置の入力電流の定格値である定格入力電流値以下となるように、前記無効電流指令値に対する前記上限値を設定するように構成されている、電車用電力変換制御装置。
  3.  請求項1又は請求項2に記載の電車用電力変換制御装置であって、
     前記調整値算出部は、前記初期値算出部により算出された前記無効電流指令初期値のうち前記有効電流指令値生成部により生成された前記有効電流指令値に応じた割合の値に対し、さらに、前記電力変換装置で消費させるべき電力の力率に対して予め設定された出力力率設定値に基づき、その出力力率設定値以上の力率の電力が前記電力変換装置に入力されるように、前記出力力率設定値が大きいほど前記無効電流指令調整値が小さくなるように前記無効電流指令調整値を算出するよう構成されている、電車用電力変換制御装置。
  4.  請求項3に記載の電車用電力変換制御装置であって、
     前記有効電流指令値生成部は、前記有効電流指令値を、前記電力変換装置の入力電流の定格値である定格入力電流値に対する規格化された値として生成するように構成されており、
     前記初期値算出部は、前記無効電流指令初期値を、前記定格入力電流値に対する規格化された値として生成するように構成されており、
     前記調整値算出部は、前記初期値算出部により算出された前記無効電流指令初期値と、前記有効電流指令値生成部により生成された前記有効電流指令値と、前記出力力率設定値によって定まる出力力率係数と、を乗算することにより、前記無効電流指令調整値を算出するように構成されている、
     電車用電力変換制御装置。
  5.  請求項4に記載の電車用電力変換制御装置であって、
     前記出力力率係数は、前記力率に対応した力率角の正接である、電車用電力変換制御装置。
  6.  請求項1~請求項5の何れか1項に記載の電車用電力変換制御装置であって、
     当該電車用電力変換制御装置から出力する前記無効電流指令値を、前記出力制限部からの前記無効電流指令値及び0の何れか一方に切り替えるように構成された出力切替部を備える、電車用電力変換制御装置。
  7.  請求項6に記載の電車用電力変換制御装置であって、
     前記出力切替部は、当該電車用電力変換制御装置から出力される前記無効電流指令値として前記出力制限部からの前記無効電流指令値及び0の何れを出力すべきかを直接又は間接的に示す切替情報が入力され、その入力される切替情報に基づいて前記切り替えを行うように構成されている、電車用電力変換制御装置。
  8.  請求項7に記載の電車用電力変換制御装置であって、
     前記出力切替部は、前記切替情報として、前記電車が走行している位置を示す情報、若しくはその位置が前記無効電流指令値として0を出力すべき位置であるか否かを示す情報が入力されるように構成されている、電車用電力変換制御装置。
  9.  請求項6~請求項8の何れか1項に記載の電車用電力変換制御装置であって、
     前記架線電圧検出部により検出された前記架線電圧検出値が所定の閾値以下か否か判断するように構成された架線電圧判断部を備え、
     前記出力切替部は、前記切替情報として、前記架線電圧判断部による前記判断の結果を示す情報が入力され、その入力された情報に基づき、前記架線電圧判断部により前記架線電圧検出値が前記閾値以下と判断されている場合は前記無効電流指令値として0を出力するように構成されている、
     電車用電力変換制御装置。
  10.  請求項6~請求項8の何れか1項に記載の電車用電力変換制御装置であって、
     前記架線電圧検出部により検出された前記架線電圧検出値が所定の閾値以下か否か判断するように構成された架線電圧判断部を備え、
     さらに、
     前記出力切替部を第1の出力切替部として、前記第1の出力切替部とは別に設けられ、前記架線電圧判断部により前記架線電圧検出値が前記閾値以下と判断されている場合は前記出力制限部からの前記無効電流指令値の値にかかわらず、前記無効電流指令値として0を出力するように構成された、第2の出力切替部を備える、
     電車用電力変換制御装置。
PCT/JP2017/013713 2016-04-04 2017-03-31 電車用電力変換制御装置 WO2017175684A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1816390.7A GB2563556B (en) 2016-04-04 2017-03-31 Power conversion controller for electric train
US16/090,988 US10516345B2 (en) 2016-04-04 2017-03-31 Power conversion controller for electric train

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016075252A JP6725298B2 (ja) 2016-04-04 2016-04-04 電車用電力変換制御装置
JP2016-075252 2016-04-04

Publications (1)

Publication Number Publication Date
WO2017175684A1 true WO2017175684A1 (ja) 2017-10-12

Family

ID=60001212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013713 WO2017175684A1 (ja) 2016-04-04 2017-03-31 電車用電力変換制御装置

Country Status (5)

Country Link
US (1) US10516345B2 (ja)
JP (1) JP6725298B2 (ja)
GB (1) GB2563556B (ja)
TW (1) TWI770019B (ja)
WO (1) WO2017175684A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102055771B1 (ko) * 2016-03-04 2019-12-13 가부시끼가이샤 도시바 전압 무효 전력 제어 장치 및 기록 매체
JP6936159B2 (ja) * 2017-01-31 2021-09-15 東海旅客鉄道株式会社 架線電圧推定装置及び鉄道車両
JP7231370B2 (ja) * 2018-10-02 2023-03-01 株式会社Subaru 車両の電力制御装置および電力制御方法
JP2020124034A (ja) * 2019-01-30 2020-08-13 東海旅客鉄道株式会社 電力変換制御装置
JP2021184675A (ja) * 2020-05-22 2021-12-02 東海旅客鉄道株式会社 電力変換制御装置
KR102399580B1 (ko) * 2021-11-19 2022-05-20 인텍전기전자 주식회사 스코트 변압기의 2차측 전력을 이용한 고속철도용 전력 보상 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303780A (ja) * 1993-04-12 1994-10-28 Toshiba Corp 電力用交直変換システムの制御装置
JP2005304156A (ja) * 2004-04-09 2005-10-27 Toshiba Corp 電力変換装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790396A (en) * 1995-12-19 1998-08-04 Kabushiki Kaisha Toshiba Neutral point clamped (NPC) inverter control system
JP2000156902A (ja) 1998-11-19 2000-06-06 Nissin Electric Co Ltd 電鉄車両の制御方法及び装置
KR100430930B1 (ko) * 2000-02-25 2004-05-12 가부시끼가이샤 도시바 Pwm 제어형 전력 변환 장치
JP4284879B2 (ja) * 2001-03-19 2009-06-24 三菱電機株式会社 電力変換装置
JP4560993B2 (ja) * 2001-05-23 2010-10-13 三菱電機株式会社 電力変換装置の制御装置及び電力変換装置
JP4066914B2 (ja) * 2003-08-25 2008-03-26 富士電機システムズ株式会社 モータ駆動制御装置
JP4568111B2 (ja) 2004-12-28 2010-10-27 株式会社東芝 電力変換制御装置
WO2007001007A1 (ja) * 2005-06-27 2007-01-04 The University Of Tokushima 電力変換制御装置、電力変換制御方法、および電力変換制御用プログラム
US7511385B2 (en) * 2005-11-11 2009-03-31 Converteam Ltd Power converters
WO2008001572A1 (fr) * 2006-06-28 2008-01-03 Kabushiki Kaisha Yaskawa Denki Dispositif de commande d'onduleur et son procédé de fonctionnement
JP4734213B2 (ja) * 2006-10-17 2011-07-27 東海旅客鉄道株式会社 電力変換装置あるいは無効電力補償装置による交流電圧制御方法
US8587160B2 (en) * 2009-09-04 2013-11-19 Rockwell Automation Technologies, Inc. Grid fault ride-through for current source converter-based wind energy conversion systems
EP2621071A4 (en) * 2010-09-22 2017-05-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
US8817490B2 (en) * 2011-06-13 2014-08-26 Tdk Corporation DC-DC converter
JP5427845B2 (ja) * 2011-07-08 2014-02-26 山洋電気株式会社 電力給電システム
JP5500141B2 (ja) * 2011-09-01 2014-05-21 株式会社安川電機 電力変換装置
JP5822732B2 (ja) * 2012-01-11 2015-11-24 東芝三菱電機産業システム株式会社 3レベル電力変換装置
JP5664588B2 (ja) * 2012-04-20 2015-02-04 株式会社安川電機 電源回生装置および電力変換装置
JP5664589B2 (ja) * 2012-04-20 2015-02-04 株式会社安川電機 電源回生コンバータおよび電力変換装置
CN104104221B (zh) * 2013-04-11 2017-05-17 通用电气公司 具有有功无功功率解耦补偿机制的能量转换***和方法
JP5850117B2 (ja) * 2013-09-30 2016-02-03 ダイキン工業株式会社 電力変換装置
JP6159659B2 (ja) * 2013-12-20 2017-07-05 東海旅客鉄道株式会社 電力変換器の制御装置及び電気車
JP5954313B2 (ja) * 2013-12-26 2016-07-20 株式会社安川電機 モータ制御システム、制御装置及び制御方法
JP6295782B2 (ja) * 2014-03-31 2018-03-20 株式会社安川電機 電力変換装置、発電システム、制御装置および電力変換方法
JP6137273B2 (ja) * 2015-11-02 2017-05-31 株式会社安川電機 電力変換装置、発電システム、制御装置および電力変換方法
JP6923296B2 (ja) * 2016-07-05 2021-08-18 株式会社日立製作所 風力発電設備とその運転方法およびウィンドファーム
JP6711255B2 (ja) * 2016-12-08 2020-06-17 株式会社デンソー モータ制御装置、および、これを用いた電動パワーステアリング装置
US10491038B2 (en) * 2017-06-15 2019-11-26 General Electric Company Electrical power subsystems and methods for controlling same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303780A (ja) * 1993-04-12 1994-10-28 Toshiba Corp 電力用交直変換システムの制御装置
JP2005304156A (ja) * 2004-04-09 2005-10-27 Toshiba Corp 電力変換装置

Also Published As

Publication number Publication date
GB2563556B (en) 2021-12-08
GB2563556A (en) 2018-12-19
TW201741163A (zh) 2017-12-01
JP6725298B2 (ja) 2020-07-15
JP2017188990A (ja) 2017-10-12
GB2563556A8 (en) 2019-02-20
TWI770019B (zh) 2022-07-11
US10516345B2 (en) 2019-12-24
US20190135117A1 (en) 2019-05-09
GB201816390D0 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
WO2017175684A1 (ja) 電車用電力変換制御装置
JP4664699B2 (ja) 電力変換器の並列運転制御装置
JP5124954B2 (ja) 交流電動機システム,交流電動機システムの制御方法およびそれにかかわる電力変換装置
JP5956991B2 (ja) 複合発電システム向け電力変換装置
KR20070006814A (ko) 교류전동기의 감속방법 및 인버터장치
US8053931B2 (en) Power control of transport system
AU2009356390B9 (en) Propulsion control device
MX2011009999A (es) Dispositivo de control de vehiculo electrico de ca.
US11400817B2 (en) Power conversion controller
EP2434636B1 (en) Generation system for rail cars
JP2010239686A (ja) 補助電源装置
JP5509442B2 (ja) 電力変換装置及び電気鉄道システム
JP4987441B2 (ja) 電力変換装置
JP5523639B2 (ja) 電気車制御装置
WO2020100372A1 (ja) 電力変換装置、電力変換装置の制御方法
US11381192B2 (en) Power conversion controller
JP2000037082A (ja) インバータドライブ装置によるプラント電源カ率制御方式
JP2019062660A (ja) 電圧調整装置
KR20080057111A (ko) 전철변전소의 회생인버터 제어방법
JP2002223592A (ja) 順変換共通型インバータ
JP2005065348A (ja) 電力変換器とその制御方法
KR20060072945A (ko) 가선의 급전전압을 유지하는 철도시스템 및 그 방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201816390

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170331

WWE Wipo information: entry into national phase

Ref document number: 1816390.7

Country of ref document: GB

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779063

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779063

Country of ref document: EP

Kind code of ref document: A1