WO2017171033A1 - Laminate, intermediate of same, method for producing same, and curable resin composition used for same - Google Patents

Laminate, intermediate of same, method for producing same, and curable resin composition used for same Download PDF

Info

Publication number
WO2017171033A1
WO2017171033A1 PCT/JP2017/013680 JP2017013680W WO2017171033A1 WO 2017171033 A1 WO2017171033 A1 WO 2017171033A1 JP 2017013680 W JP2017013680 W JP 2017013680W WO 2017171033 A1 WO2017171033 A1 WO 2017171033A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
acrylic
epoxy group
hard coat
Prior art date
Application number
PCT/JP2017/013680
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 恵
齋藤 憲
関 博
正敏 湯浅
徳真 西岡
大詞 桂
光祥 河邉
Original Assignee
新日鉄住金化学株式会社
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社, マツダ株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2018509672A priority Critical patent/JP6971968B2/en
Publication of WO2017171033A1 publication Critical patent/WO2017171033A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Definitions

  • the present invention relates to a transparent laminate excellent in abrasion resistance, weather resistance and the like, a production method thereof, and an ultraviolet curable coating composition used therefor.
  • This transparent laminated body is suitable for a vehicle window, a building member, etc., for example.
  • polycarbonate resins and the like are widely used because they are excellent in heat resistance, impact resistance, and transparency.
  • a polycarbonate resin or the like is inferior to glass in scratch resistance, weather resistance, or the like, a hard coat material that protects the surface has been proposed.
  • a resin substrate with a hard coat for automobile windows that requires visibility is required to have abrasion resistance equivalent to glass and weather resistance against outdoor exposure.
  • a resin glazing material satisfying these performances for example, a plasma-induced chemical vapor deposition method (CVD method) using a thermosetting film of an acrylic resin or a silicone resin or an organic silicon compound as a raw material on the surface of a polycarbonate substrate
  • CVD method plasma-induced chemical vapor deposition method
  • a thermosetting film of an acrylic resin or a silicone resin or an organic silicon compound as a raw material on the surface of a polycarbonate substrate
  • a structure in which a silicon oxide film is deposited has been proposed.
  • the latter silicon oxide film laminate has improved weather resistance and abrasion resistance, it requires a dry process step such as a vacuum chamber for depositing the silicon oxide film, so it has a high process cost and is widely used. It can be said that the load on is large.
  • thermosetting silicone resin etc.
  • the former method of applying and curing thermosetting silicone resin, etc. can be formed by a wet process, so the process cost is low, but it requires high temperature and a long time for curing, resulting in poor productivity and wear resistance. The nature is not satisfactory.
  • a coating agent comprising a composition obtained by hydrolyzing organosilane as a coating agent that protects the surface of an organic resin substrate that can be formed by a wet process and can be produced in a short time by UV curing.
  • the coating agent which mixed this with colloidal silica is known.
  • Patent Document 1 proposes a coating agent comprising an organoalkoxysilane hydrolyzate or a partial condensate thereof, and colloidal silica, wherein an alkoxy group is converted to silanol with an excess of water.
  • the coating film obtained by this coating agent has high hardness and is excellent for protecting the substrate, but the obtained siloxane cured film has poor toughness, and in the thick film, during heat curing or being used outdoors, There is a problem that cracks are easily generated when a sudden temperature change occurs.
  • Patent Document 2 discloses a method for producing a silicate oligomer having an organic functional group. More specifically, the present invention relates to a method for producing a silicate oligomer having a functional group and having a molecular weight of 500 to 100,000 in terms of polystyrene size, wherein a tetraalkyl having 1 to 4 carbon atoms of an alkyl group is added to a hydrolysis product of a functional alkyl silicate.
  • a method for producing a silicate oligomer in which polycondensation or hydrolysis is carried out by adding a silicate or an oligomer obtained by partial hydrolysis thereof is disclosed.
  • Patent Document 3 discloses an active energy ray containing a siloxane compound (A) obtained by hydrolyzing and condensing an alkyl silicate and an alkoxysilane having an epoxy group, and an active energy ray-sensitive cationic polymerization initiator (B).
  • a curable coating agent is disclosed.
  • a resin laminate with a hard coat that satisfies the high wear resistance and weather resistance necessary for resin glazing using these siloxane resin compositions has not yet been reported.
  • the present invention has been made in order to solve the above-described problems, and is capable of being wet-processed and transparent using an ultraviolet curable resin composition that can be cured in a short time compared to heat curing. It is an object of the present invention to provide a laminate having excellent wear resistance and weather resistance, and a coating composition used therefor.
  • the present invention is a transparent laminate having a primer layer and a hard coat layer
  • the hard coat layer is a cured product of a curable resin composition having an epoxy group or an acrylic group in a molecule obtained by hydrolyzing a mixture containing the component (A) and the component (B). Having a film thickness of 5 ⁇ m;
  • the component (A) is an alkoxysilane having an epoxy group or an acrylic group represented by the general formula (i) or a partial hydrolyzate thereof, R 1 a R 2 b Si (OR 3 ) 4-ab ...
  • R 1 is an organic group having 1 to 10 carbon atoms including an epoxy group or an acrylic group
  • R 2 is an organic group having 1 to 10 carbon atoms and includes an epoxy group or an acrylic group
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • a represents a number of 1 or 2
  • b represents a number of 0 to 1
  • a + b satisfies 0 ⁇ a + b ⁇ 3.
  • the component (B) is a chain, branched or cyclic alkyl silicate represented by the general formula (ii) or a partial hydrolyzate thereof, Si n O (n ⁇ 1) (OR 4 ) (2n + 2) (ii)
  • n represents a number of 1 to 20
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the primer layer is a cured resin having a tensile modulus of 1000 MPa to 4000 MPa obtained by curing an acrylic composition containing a polyfunctional acrylic monomer having a molecular weight of 500 or less, has a coating thickness of 5 ⁇ m to 50 ⁇ m, and at least one of the resin substrates
  • a primer layer and a hard coat layer are provided so that the hard coat layer becomes a surface layer, and the Taber abrasion test (wear wheel CS-10F, load 500 g) is performed 500 times, the haze change value ⁇ H before and after the test is measured.
  • the present invention is an intermediate of the above laminate, in which the hard coat layer is in a state before curing, and the hard coat layer in the state before curing is a mixture of the component (A) and the component (B).
  • a curable resin composition obtained by decomposition and having an epoxy group in the molecule, and a laminate intermediate having a film thickness of 0.5 ⁇ m to 5 ⁇ m.
  • the primer layer is applied and dried on at least one surface of the resin substrate, and then cured by irradiating active energy rays, and further, the hard coat layer is applied and dried, and then cured by irradiating active energy rays.
  • the hard coat layer is a cured product of a curable resin composition having an epoxy group or an acrylic group in a molecule obtained by hydrolyzing a mixture containing the component (A) and the component (B).
  • the component (A) is an alkoxysilane having an epoxy group or an acrylic group represented by the general formula (i) or a partial hydrolyzate thereof
  • the component (B) is a chain, branched or cyclic alkyl silicate represented by the general formula (ii) or a partial hydrolyzate thereof
  • the primer layer is a cured resin having a tensile elastic modulus of 1000 MPa to 4000 MPa obtained by curing an acrylic composition containing a polyfunctional acrylic monomer having a molecular weight of 500 or less, has a coating thickness of 5 ⁇ m to 50 ⁇ m, and a hard coat of a laminate
  • the laminate has a haze change value ⁇ H of less than 9 before and after the test.
  • the preferable aspect in the manufacturing method of the said laminated body is shown next.
  • the amount is 30 to 70 mol%, and contains a photopolymerization initiator and a solvent, 2) containing a UV absorber or UV stabilizer in the primer layer, hard coat layer, or both layers;
  • a compound having an epoxy group is contained in an acrylic composition containing a polyfunctional acrylic monomer having a molecular weight of 500 or less.
  • the laminate of the present invention has high transparency and is excellent in lightness, wear resistance, and weather resistance, and thus is useful for transparent materials or glass substitute applications such as transportation equipment for automobiles and window materials for buildings.
  • the laminate of the present invention is a transparent laminate having a primer layer and a hard coat layer.
  • the hard coat layer is obtained by hydrolyzing a mixture containing the component (A) and the component (B), and is a cured product obtained by curing a curable resin composition having an epoxy group or an acrylic group in the molecule. .
  • a curable resin composition having an epoxy group or an acrylic group in the molecule.
  • photocuring with irradiation of active energy rays is preferable.
  • the acrylic group as used herein means a group represented by CH 2 ⁇ CHR—CO—, and is also referred to as a (meth) acryl group.
  • R is a hydrogen atom or a methyl group.
  • the component (A) is an alkoxysilane having an epoxy group or an acrylic group represented by the general formula (i) or a partial hydrolyzate thereof.
  • R 1 is an organic group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, including an epoxy group or an acrylic group.
  • R 2 is an organic group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms.
  • R 1 and R 2 are different organic groups, and R 2 may or may not contain an epoxy group or an acrylic group, but when it contains an epoxy group or an acrylic group, the epoxy group or acrylic of R 1 It is preferably different from the group.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.
  • the organic group in R 2 and R 3 is preferably an alkyl group, and the organic group in R 1 is preferably an alkyl group or a group having a cyclic olefin structure.
  • the calculation of the carbon number does not include the carbon number of the epoxy group or the acrylic group. When the carbon number of the epoxy group is included, 2 is added to the carbon number. When the carbon number of the acrylic group is included, 3 or 4 is added to the carbon number.
  • A represents a number of 1 or 2
  • b represents a number of 0 to 1
  • a + b satisfies 0 ⁇ a + b ⁇ 3.
  • 4-ab is preferably a number 2 or 3.
  • alkoxysilane having at least one epoxy group or acrylic group represented by the general formula (i) examples include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, ⁇ Silane compounds having an epoxy group such as-(3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 2- (meta ) Acryloxyethyltrimethoxysilane, 2- (meth) acryloxyethyltriethoxysilane, (meth) acryloxymethyltrimethoxysilane, (meth) acryloxymethyltriethoxysilane, 3- (meth) acryloxypropylmethyldi Ethoxysilane, 3- ( Silane compound having data) such as acryloxy propyl triethoxy silane
  • the mixture containing the component (A) and the component (B) can contain other silane compounds.
  • silane compounds for example, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane Octyltriethoxysilane, decyltrimethoxysilane, phenyltriethoxysilane, phenyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, p-styryltriethoxysilane, p-styryltrimethoxysilane, 3-aminopropyltri Methoxysilane, 3-aminopropyltriethoxysilane, 3-chloropropyl
  • organosilanes can be used alone or in combination of two or more.
  • the amount of these other silane compounds used is 50% (mol%) or less, preferably 30% or less of the alkoxysilane having at least one epoxy group or acrylic group represented by the general formula (i). Good.
  • the component (B) is a chain, branched or cyclic alkyl silicate represented by the general formula (ii).
  • n represents an integer of 1 to 20, preferably 1 to 10
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.
  • the alkyl silicate does not have an epoxy group or an acrylic group.
  • alkyl silicates such as methyl silicate, ethyl silicate, isopropyl silicate, n-propyl silicate, isobutyl silicate, n-butyl silicate, n-pentyl silicate, acetyl silicate, and the like.
  • the partial hydrolyzate is mentioned. More preferably, methyl silicate, ethyl silicate, or a partial hydrolyzate thereof is preferable in that hydrolysis / condensation reaction is fast.
  • the blending ratio of the component (A) and the component (B) is preferably such that the Si content derived from the component (A) is 30 to 70 mol% with respect to a total of 100 mol of Si content in both. More preferably, it is 40 to 60 mol%.
  • the component (A) is small, the crosslink density of the resin is increased and the toughness is lowered, and cracks are likely to occur in a heating environment or during an environmental test.
  • a crosslinking density is low and desired abrasion resistance cannot be obtained.
  • the mixture containing the component (A) and the component (B) is hydrolyzed to obtain a curable resin composition having an epoxy group or an acrylic group in the molecule.
  • the mixture containing the components (A) and (B) is preferably co-hydrolyzed with acidic water having a pH of 1 to 7, preferably pH 2 to 5.
  • acidic water having a pH of 1 to 7, preferably pH 2 to 5.
  • Organic acids or inorganic acids can be used.
  • a solid acid catalyst such as a cation exchange resin having a carboxylic acid group or a sulfonic acid group on the surface may be used as a catalyst.
  • the amount of the acid or acid catalyst used is preferably 0.0001 to 20% by weight based on the product.
  • the presence of water is necessary in the hydrolysis reaction.
  • the amount of water may be at least an amount sufficient to hydrolyze the hydrolyzable group in the silicon compound in the mixture, and is 0.5 to 2 of the theoretical amount (mol) of the number of hydrolyzable groups. The amount is preferably equivalent to 0 times mole.
  • the hydrolysable group is added to calculation.
  • the acidic catalyst is added as an aqueous solution, the water is added to the calculation. When there is little water, sufficient hydrolysis does not advance, and when there is much water, applicability
  • a dehydration condensation reaction of silanol groups generated simultaneously with the hydrolysis occurs, resulting in a siloxane resin composition.
  • the temperature at which this condensation is performed is normal temperature or under heating at 120 ° C. or less, and more preferably 30 ° C. or more and 100 ° C. or less. If the temperature is low, the hydrolysis and condensation reaction takes a long time, resulting in low productivity. If the temperature is higher than the range, it may be insolubilized.
  • the hard coat layer is preferably formed by applying the siloxane resin composition on a primer layer or the like and then photocuring it.
  • a photopolymerizable initiator it is desirable to mix a photopolymerizable initiator and irradiate with ultraviolet rays.
  • This curing occurs by polymerization or curing reaction of epoxy groups or acrylic groups.
  • silanol group remains at the end of the hydrolysis and condensation reaction, it can be used in the curing reaction as it is.
  • an acid generator is preferable.
  • Specific examples include diazonium salts, iodonium salts, sulfonium salts, phosphonium salts, selenium salts, oxonium salts, and ammonium salt compounds.
  • the primer layer is a cured resin having a tensile modulus of 1000 MPa to 4000 MPa obtained by curing an acrylic composition containing a polyfunctional acrylic monomer having a molecular weight of 500 or less.
  • a polyfunctional (meth) acrylate is mentioned as a polyfunctional acrylic monomer.
  • polyfunctional (meth) acrylate having a molecular weight of 500 or less for example, polyfunctional acrylates having 2 or 3 (meth) acryl groups in the molecule are preferable, and aliphatic acrylates, alicyclic acrylates, epoxy acrylates, and the like. Can be mentioned.
  • the acrylic composition containing a polyfunctional acrylic monomer preferably contains a compound having an epoxy group, and is preferably an epoxy group-containing polyfunctional acrylic monomer such as epoxy acrylate. Silicon-containing acrylate is not desirable.
  • polyfunctional (meth) acrylate examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 nonanediol di (meth) acrylate, tetraethylene Glycol dimethacrylate, dicyclopentanyl dimethylol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, polyethylene glycol type epoxy acrylate, trimethylolpropane type epoxy acrylate, isocyanate and hydroxyl group Examples thereof include urethane acrylate obtained by reacting an acrylate having the same. These (meth) acrylates may be used alone or in combination of two or more.
  • the tensile elastic modulus of the cured resin obtained by curing the acrylic composition containing the polyfunctional acrylic monomer is 1000 to 4000 MPa, preferably 2500 to 3800 MPa. If it is lower than this range, the desired wear resistance cannot be obtained, and if it is higher, the difference in dimensional change behavior from polycarbonate often used as a transparent substrate is large, so that the weather resistance and adhesion Sex is reduced.
  • a photopolymerization initiator as a polymerization initiator, and this addition amount is 0.1 to 10 parts by weight with respect to 100 parts by weight of the total resin composition.
  • a range is preferable. If it is less than this range, the crosslinking is insufficient, the elastic modulus is lowered, and the desired surface height cannot be obtained. On the other hand, if the content exceeds this range, no further improvement in the reaction rate can be expected.
  • acetophenone such as acetophenone, benzoyl, benzophenone, thioxanthone, and acylphosphine oxide
  • examples include morpholinopropan-1-one, benzoin methyl ether, benzyldimethyl ketal, benzophenone, thioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, camphorquinone, benzyl, anthraquinone, Michler's ketone, etc.
  • an auxiliary agent or a sensitizer that exhibits an effect in combination with a photo
  • the acrylic composition is preferably dissolved in a solvent, applied as a solution to a substrate or the like to form a layer, and then cured.
  • the solvent include organic solvents for the purpose of adjusting the solid content concentration, improving the dispersion stability, improving the coating property, and improving the adhesion to the substrate.
  • examples include alcohols, ketones, ethers, esters, cellosolves, and aromatic compounds.
  • Specific examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, t-butyl alcohol, benzyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, 2- (methoxy Methoxy) ethanol, 2-butoxyethanol, furfuryl alcohol, tetrahydrofurfuryl alcohol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, di Propylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene group Cole monomethyl ether, diacetone alcohol, acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, methyl isobutyl ketone, 2-
  • an ultraviolet absorber or an ultraviolet stabilizer for the purpose of improving the weather resistance, if necessary.
  • ultraviolet absorbers examples include inorganic oxide fine particles such as titanium oxide, cerium oxide, zirconium oxide and zinc oxide, metal chelate compounds such as titanium, zinc and zirconium, and (partial) hydrolysates and condensates thereof.
  • Inorganic or organic materials can be used.
  • organic examples compound derivatives whose main skeleton is hydroxybenzophenone, benzotriazole, cyanoacrylate, or triazine are preferable.
  • an ultraviolet absorber having one or more reactive functional groups in the molecule or a polymer having an ultraviolet absorbing group in the side chain may be used.
  • UV stabilizer those having one or more cyclic hindered amine structures in the molecule are preferable. Furthermore, for the purpose of suppressing bleed out, an ultraviolet stabilizer having one or more reactive functional groups in the molecule or a polymer having an ultraviolet stable group in the side chain may be used.
  • additives can be added to the hard coat layer and the primer layer, or the resin composition before forming them, as long as the effects of the present invention are not impaired.
  • Various additives include organic / inorganic fillers, plasticizers, flame retardants, heat stabilizers, antioxidants, UV screening agents, lubricants, antistatic agents, mold release agents, foaming agents, nucleating agents, coloring agents, crosslinking agents, Examples thereof include a dispersion aid and a resin component.
  • the manufacturing method of the laminated body of this invention it is desirable to have the following process. 1) Primer layer forming process in which the primer coating film is cured by irradiating active energy rays on the primer coating film formed by applying an acrylic composition as a primer to the substrate. 2) A hard coat layer is formed on the primer layer. A step of forming an uncured hard coat layer formed by applying a curable resin composition, and 3) a step of curing the uncured hard coat layer by irradiation with active energy rays to form a hard coat layer. That is.
  • the laminate intermediate of the present invention has the uncured hard coat layer obtained in the above step 2), and is the one before performing the above step 3).
  • the substrate is preferably a transparent substrate such as polycarbonate from the viewpoint of transparency.
  • Examples of the method for forming the hard coat layer and the primer layer include a fluent method, a roller coat method, a bar coat method, a spray coat method, an air knife coat method, a spin coat method, a flow coat method, a curtain coat method, and a dipping method. It is done.
  • the coating film thickness is adjusted by the solid content concentration in consideration of the formed film thickness after drying / irradiation with active energy rays.
  • the drying temperature is set so that the substrate used does not deform, and the drying time is preferably 1 hour or less from the viewpoint of productivity.
  • the hard coat layer has a thickness of 0.5 to 5 ⁇ m, preferably 1 to 4 ⁇ m, and the primer layer has a thickness of 5 to 50 ⁇ m, preferably 10 ⁇ 40 ⁇ m.
  • the wavelength of the active energy ray used for the curing treatment is not particularly limited, but for example, near ultraviolet rays having a wavelength of 200 to 400 nm are preferably used.
  • a lamp used as an ultraviolet ray generation source a low-pressure mercury lamp (output: 0.4 to 4 W / cm), a high-pressure mercury lamp (40 to 160 W / cm), an ultra-high pressure mercury lamp (173 to 435 W / cm), a metal halide lamp (80 to 160 W / cm), pulse xenon lamp (80 to 120 W / cm), electrodeless discharge lamp (80 to 120 W / cm), and the like.
  • Each of these ultraviolet lamps is characterized by its spectral distribution, and is therefore selected according to the type of photopolymerization initiator used.
  • the primer layer forming step it is preferable to irradiate under the conditions that the illuminance of the active energy ray is 100 to 500 mW / cm 2 and the integrated light quantity is 100 to 1000 mJ / cm 2 .
  • the irradiation amount is low, a sufficient cured film cannot be obtained, and there is a possibility that whitening or uneven thickness may occur due to the solvent in the next hard coat film forming step.
  • adhesiveness with a hard-coat layer falls.
  • the hard coat layer forming step it is preferable to irradiate the active energy ray under the conditions that the illuminance is 100 mW / cm 2 or more and the integrated light quantity is 1000 mJ / cm 2 or more.
  • the irradiation amount is low, the crosslinking formation is insufficient and desired performance such as wear resistance and weather resistance cannot be obtained.
  • the laminate of the present invention has a primer layer and a hard coat layer on a resin substrate, and the surface of the hard coat layer is subjected to a Taber abrasion test (wear wheel CS-10F, load 500 g). And change value (DELTA) H represented by the difference of the haze after performing the test of 500 rotations, and the initial stage haze before a test is less than 9, Preferably it is less than 5.
  • Synthesis example 1 In a reaction vessel equipped with a stirrer, a dropping funnel and a thermometer, 5.0 g of methyl silicate (manufactured by Colcoat, trade name: methyl silicate 53A) and 3-glycidoxypropyltrimethoxysilane (manufactured by Toray Dow Corning, (Product name: Z-6040) 10.0 g was added and stirred, and 4.2 g of 0.05% aqueous hydrochloric acid solution was added to the dropping funnel and added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 20.4 g of propylene glycol monomethyl ether to obtain a target siloxane condensate (siloxane resin A1).
  • methyl silicate manufactured by Colcoat, trade name: methyl silicate 53A
  • 3-glycidoxypropyltrimethoxysilane manufactured by Toray Dow Corning, (Product name:
  • Synthesis example 2 In an eggplant flask, 19.0 g of methyl silicate 53A and 2.0 g of alkoxysilane Z-6040 were added and stirred, and 7.6 g of 0.05% hydrochloric acid aqueous solution was added to the dropping funnel and added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 22.8 g of propylene glycol monomethyl ether to obtain a target siloxane condensate (siloxane resin A2).
  • Synthesis example 3 In an eggplant flask, 0.26 g of methyl silicate 53A and 10.0 g of alkoxysilane Z-6040 were added and stirred, and 2.4 g of 0.05% aqueous hydrochloric acid solution was added to the dropping funnel and added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 15.5 g of propylene glycol monomethyl ether to obtain the target siloxane condensate (siloxane resin A3).
  • Synthesis example 4 In an eggplant flask, 10.0 g of methyl silicate 53A was added and stirred, and 3.7 g of 0.05% aqueous hydrochloric acid solution was added to the dropping funnel and added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 10.4 g of propylene glycol monomethyl ether to obtain a siloxane condensate (siloxane resin A4).
  • Synthesis example 5 In an eggplant flask, 10.0 g of alkoxysilane Z-6040 was added and stirred, and 2.3 g of 0.05% aqueous hydrochloric acid solution was added to the dropping funnel and added at room temperature with stirring. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 15.2 g of propylene glycol monomethyl ether to obtain a siloxane condensate (siloxane resin A5).
  • Synthesis Example 6 In an eggplant flask, 2.4 g of methyl silicate 53A and 10.0 g of 3-methacryloxypropyltrimethoxysilane (manufactured by Toray Dow Corning: XIAMETER OFS-6030 SILANE; hereinafter referred to as MPTS) are stirred and stirred. A 0.05% aqueous hydrochloric acid solution (3.0 g) was added, and the mixture was added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 18.0 g of propylene glycol monomethyl ether to obtain a target siloxane condensate (siloxane resin A6).
  • MPTS 3-methacryloxypropyltrimethoxysilane
  • Synthesis example 7 In an eggplant flask, 18.2 g of methyl silicate 53A and 2.0 g of alkoxysilane MPTS were added and stirred, and 7.2 g of 0.05% aqueous hydrochloric acid solution was added to the dropping funnel and added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 22.0 g of propylene glycol monomethyl ether to obtain the target siloxane condensate (siloxane resin A7).
  • Synthesis example 8 In an eggplant flask, 0.25 g of methyl silicate 53A and 10.0 g of alkoxysilane MPTS were added and stirred, and 2.3 g of 0.05% hydrochloric acid aqueous solution was added to the dropping funnel and added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 15.9 g of propylene glycol monomethyl ether to obtain the target siloxane condensate (siloxane resin A8).
  • Synthesis Example 9 In an eggplant flask, 10.0 g of alkoxysilane MPTS was added and stirred, and 2.3 g of 0.05% aqueous hydrochloric acid solution was added to the dropping funnel and added at room temperature with stirring. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 15.2 g of propylene glycol monomethyl ether to obtain a siloxane condensate (siloxane resin A9).
  • compositions P-1 to P-5 for the primer layer were obtained by blending at the ratios shown in Table 3.
  • the number of each component is the blending amount (part by weight).
  • the primer elastic modulus is obtained by applying the primer composition excluding the solvent onto a glass plate, casting (casting) to a thickness of 0.2 mm using a roll coater, and 400 mW / cm using a high-pressure mercury lamp.
  • a test piece for elastic modulus measurement was created by irradiating light with an integrated exposure of 8000 mJ / cm 2 at an illuminance of 2 in an environment having an oxygen concentration of less than 1%.
  • the values of tensile elastic modulus (test piece: 8 mm ⁇ 80 mm ⁇ 0.2 mm, test speed 0.5 mm / min, distance between chucks 50 mm) are shown.
  • Example 1 The primer composition P-1 was applied to a polycarbonate resin plate (thickness 3 mm, length 15 cm, width 15 cm) by flow coating, dried at 80 ° C. for 6 minutes, and then cooled at room temperature for 5 minutes. Thereafter, under an environment having an oxygen concentration of less than 1%, an integrated exposure dose (365 nm equivalent) of 400 mJ / cm 2 was irradiated with an illuminance of 140 mW / cm 2 using a high-pressure mercury lamp. Next, composition H-1 for hard coating was applied by a flow coating method, dried at 80 ° C. for 6 minutes, and then cooled at room temperature for 5 minutes.
  • Examples 2 to 4 and Comparative Examples 1 to 7 A laminate was obtained in the same manner as in Example 1 except that the composition for the primer layer and the composition for the hard coat layer were those shown in Table 4.
  • Table 4 shows the physical property evaluation results of the laminates obtained in Examples 1 to 4 and Comparative Examples 1 to 7.
  • Comparative Examples 8 to 13 A laminate was obtained in the same manner as in Example 1 except that the composition for the primer layer and the composition for the hard coat layer were those shown in Table 5.
  • Table 5 shows the physical property evaluation results of the laminates obtained in Examples 5 to 8 and Comparative Examples 8 to 13.
  • the laminate of the present invention has high transparency and is excellent in lightness, wear resistance and weather resistance, it can be widely used for glass substitutes such as automobiles and other window materials for buildings, especially for automobile windows. It is useful as a resin glazing material (hard coat material) used for resin substrates with hard coat (resin glazing).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

Provided is a laminate which is obtained using an ultraviolet curable resin composition and has excellent transparency, wear resistance and weather resistance, and which is suitable as an alternative for glass. A transparent laminate which has a primer layer and a hard coat layer, and which is configured such that: the hard coat layer is a cured product of a resin composition, which is obtained by hydrolyzing a mixture containing a component (A) and a component (B) and has an epoxy group or an acryl group in each molecule, and has a thickness of 0.5-5 μm; the component (A) is an alkoxysilane having an epoxy group or an acryl group; the component (B) is an alkyl silicate; the primer layer is a cured resin which is obtained by curing a composition containing a polyfunctional acrylic monomer and has a tensile modulus of elasticity of 1,000-4,000 MPa, and has a film thickness of 5-50 μm; and that the laminate has a haze value change of less than 9 before and after a Taber abrasion test.

Description

積層体、その中間体、およびその製造方法、それに用いる硬化性樹脂組成物LAMINATE, INTERMEDIATE, ITS MANUFACTURING METHOD, AND CURABLE RESIN COMPOSITION USED FOR THE SAME
 本発明は、耐摩耗性、耐候性等に優れた透明積層体および製造方法、それに用いる紫外線硬化コーティング組成物に関する。この透明積層体は、例えば、車両窓、建築部材等に適する。 The present invention relates to a transparent laminate excellent in abrasion resistance, weather resistance and the like, a production method thereof, and an ultraviolet curable coating composition used therefor. This transparent laminated body is suitable for a vehicle window, a building member, etc., for example.
 近年、ガラス代替として、透明樹脂材料を使用することが増えている。特にポリカーボネート樹脂等は、耐熱性、耐衝撃性、透明性に優れることから、広く用いられている。しかし、ポリカーボネート樹脂等は、ガラスに比べて、耐擦傷性および耐候性等に劣ることから、その表面を保護するハードコート材が提案されている。 Recently, the use of transparent resin materials as an alternative to glass is increasing. In particular, polycarbonate resins and the like are widely used because they are excellent in heat resistance, impact resistance, and transparency. However, since a polycarbonate resin or the like is inferior to glass in scratch resistance, weather resistance, or the like, a hard coat material that protects the surface has been proposed.
 特に、視認性が求められる自動車窓向けハードコート付樹脂基板(樹脂グレージング)は、ガラス同等の耐摩耗性と屋外暴露に対する耐候性が求められる。これらの性能を満足する樹脂グレージング材として、例えば、ポリカーボネート基材の表面にアクリル樹脂やシリコーン樹脂の熱硬化膜、あるいは有機ケイ素化合物を原料としたプラズマ誘起の化学気相成長法(CVD法)によりケイ素酸化膜を堆積した構成などが提案されている。しかし、後者のケイ素酸化膜の積層体は、耐候性および耐摩耗性が向上するものの、ケイ素酸化膜を堆積する真空チャンバー等のドライプロセス工程を必要とするためプロセスコストが高く、汎用的な普及への負荷が大きいと言える。また、前者の熱硬化シリコーン樹脂等を塗布・硬化する方法は、ウェットプロセスで成膜可能なため、プロセスコストは低いが、硬化に高温かつ長時間を要するため生産性に乏しく、また、耐摩耗性も十分満足できるものではない。 In particular, a resin substrate with a hard coat for automobile windows (resin glazing) that requires visibility is required to have abrasion resistance equivalent to glass and weather resistance against outdoor exposure. As a resin glazing material satisfying these performances, for example, a plasma-induced chemical vapor deposition method (CVD method) using a thermosetting film of an acrylic resin or a silicone resin or an organic silicon compound as a raw material on the surface of a polycarbonate substrate A structure in which a silicon oxide film is deposited has been proposed. However, although the latter silicon oxide film laminate has improved weather resistance and abrasion resistance, it requires a dry process step such as a vacuum chamber for depositing the silicon oxide film, so it has a high process cost and is widely used. It can be said that the load on is large. In addition, the former method of applying and curing thermosetting silicone resin, etc., can be formed by a wet process, so the process cost is low, but it requires high temperature and a long time for curing, resulting in poor productivity and wear resistance. The nature is not satisfactory.
 一方、ウェットプロセスで成膜可能であり、紫外線硬化により短時間での生産を可能にする有機樹脂基板の表面を保護するコーティング剤として、オルガノシランを加水分解して得られる組成物からなるコーティング剤、あるいはこれにコロイダルシリカを混合したコーティング剤が知られている。例えば、特許文献1には、オルガノアルコキシシランの加水分解物又はその部分縮合物、及びコロイダルシリカからなり、過剰の水でアルコキシ基をシラノールに変換してなるコーティング剤が提案されている。しかし、このコーティング剤により得られる塗膜は、硬度が高く、基材保護用として優れているが、得られるシロキサン硬化膜は靭性に乏しく、厚膜においては、加熱硬化中あるいは屋外で使用中、急激な温度変化が起こったとき等に容易にクラックが発生するという課題がある。 On the other hand, a coating agent comprising a composition obtained by hydrolyzing organosilane as a coating agent that protects the surface of an organic resin substrate that can be formed by a wet process and can be produced in a short time by UV curing. Or the coating agent which mixed this with colloidal silica is known. For example, Patent Document 1 proposes a coating agent comprising an organoalkoxysilane hydrolyzate or a partial condensate thereof, and colloidal silica, wherein an alkoxy group is converted to silanol with an excess of water. However, the coating film obtained by this coating agent has high hardness and is excellent for protecting the substrate, but the obtained siloxane cured film has poor toughness, and in the thick film, during heat curing or being used outdoors, There is a problem that cracks are easily generated when a sudden temperature change occurs.
 特許文献2は、有機官能基を持つシリケートオリゴマーの製造方法が開示されている。詳しくは、官能基を有し、ポリスチレンサイズ換算分子量が500~100000であるシリケートオリゴマーの製造方法であって、官能性アルキルシリケートの加水分解生成物にアルキル基の炭素数が1~4のテトラアルキルシリケート又はそれを部分加水分解して得られるオリゴマーを添加して重縮合または加水分解を行なうシリケートオリゴマーの製造方法が開示されている。 Patent Document 2 discloses a method for producing a silicate oligomer having an organic functional group. More specifically, the present invention relates to a method for producing a silicate oligomer having a functional group and having a molecular weight of 500 to 100,000 in terms of polystyrene size, wherein a tetraalkyl having 1 to 4 carbon atoms of an alkyl group is added to a hydrolysis product of a functional alkyl silicate. A method for producing a silicate oligomer in which polycondensation or hydrolysis is carried out by adding a silicate or an oligomer obtained by partial hydrolysis thereof is disclosed.
 特許文献3は、アルキルシリケート類とエポキシ基を有するアルコキシシラン類とを加水分解・縮合して得られるシロキサン化合物(A)及び活性エネルギー線感応性カチオン重合開始剤(B)を含有する活性エネルギー線硬化性コーティ剤を開示している。
 しかし、これらのシロキサン樹脂組成物を用いて、樹脂グレージングに必要な高い耐摩耗性と耐候性を満足するハードコート付樹脂積層体は未だに報告されていない。
Patent Document 3 discloses an active energy ray containing a siloxane compound (A) obtained by hydrolyzing and condensing an alkyl silicate and an alkoxysilane having an epoxy group, and an active energy ray-sensitive cationic polymerization initiator (B). A curable coating agent is disclosed.
However, a resin laminate with a hard coat that satisfies the high wear resistance and weather resistance necessary for resin glazing using these siloxane resin compositions has not yet been reported.
特開昭63-168470号公報JP-A 63-168470 特許第3339702号公報Japanese Patent No. 3339702 特開2005-298754号公報JP 2005-298754 A
 本発明は、上述した課題を解決するためになされたものであり、ウェットプロセスが可能であり、熱硬化と比較して短時間での硬化が可能な紫外線硬化性樹脂組成物を用いて、透明性と優れた耐摩耗性および耐候性を備えた積層体、ならびにそれに用いられるコーティング組成物を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and is capable of being wet-processed and transparent using an ultraviolet curable resin composition that can be cured in a short time compared to heat curing. It is an object of the present invention to provide a laminate having excellent wear resistance and weather resistance, and a coating composition used therefor.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、以下の積層体によって、上記課題を達成することを見出し本発明に至った。 As a result of intensive studies to achieve the above object, the present inventors have found that the above problems can be achieved by the following laminate, and have reached the present invention.
 すなわち、本発明は、プライマー層とハードコート層を有する透明な積層体であって、
ハードコート層が、(A)成分と(B)成分を含む混合物を加水分解して得られた分子中にエポキシ基又はアクリル基を有する硬化性樹脂組成物の硬化物であり、0.5μm~5μmの被膜厚みを有すること、
(A)成分が、一般式(i)で表されるエポキシ基又はアクリル基を有するアルコキシシラン又はその部分加水分解物であり、
   R Si(OR4-a―b・・・(i)
 ここで、Rはエポキシ基又はアクリル基を含む炭素数1~10の有機基であり、Rは炭素数1~10の有機基であって、エポキシ基又はアクリル基を含む場合は、Rのエポキシ基又はアクリル基とは異なり、Rは水素原子または炭素数1~5のアルキル基を示す。aは1又は2の数、bは0~1の数を示し、a+bは0<a+b≦3を満足する。
(B)成分が、一般式(ii)で表される鎖状、分岐状または環状のアルキルシリケート又はその部分加水分解物であること、
   Si(n-1)(OR(2n+2)・・・(ii)
 ここで、nは1~20の数を示し、Rは水素原子または炭素数1~5のアルキル基を示す。
プライマー層が、分子量500以下の多官能アクリルモノマーを含むアクリル組成物を硬化してなる引張弾性率1000MPa~4000MPaの硬化樹脂であり、5μm~50μmの被膜厚みを有すること、及び
樹脂基板の少なくとも一方の面にハードコート層が表面層となるようにプライマー層とハードコート層を設けて、テーバー摩耗試験(摩耗輪CS-10F、荷重500g)を500回転行ったとき、試験前後のヘイズ変化値ΔHが9未満であることを特徴とする積層体である。
That is, the present invention is a transparent laminate having a primer layer and a hard coat layer,
The hard coat layer is a cured product of a curable resin composition having an epoxy group or an acrylic group in a molecule obtained by hydrolyzing a mixture containing the component (A) and the component (B). Having a film thickness of 5 μm;
The component (A) is an alkoxysilane having an epoxy group or an acrylic group represented by the general formula (i) or a partial hydrolyzate thereof,
R 1 a R 2 b Si (OR 3 ) 4-ab ... (i)
Here, R 1 is an organic group having 1 to 10 carbon atoms including an epoxy group or an acrylic group, and R 2 is an organic group having 1 to 10 carbon atoms and includes an epoxy group or an acrylic group. Unlike the epoxy group or acrylic group of 1 , R 3 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. a represents a number of 1 or 2, b represents a number of 0 to 1, and a + b satisfies 0 <a + b ≦ 3.
The component (B) is a chain, branched or cyclic alkyl silicate represented by the general formula (ii) or a partial hydrolyzate thereof,
Si n O (n−1) (OR 4 ) (2n + 2) (ii)
Here, n represents a number of 1 to 20, and R 4 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
The primer layer is a cured resin having a tensile modulus of 1000 MPa to 4000 MPa obtained by curing an acrylic composition containing a polyfunctional acrylic monomer having a molecular weight of 500 or less, has a coating thickness of 5 μm to 50 μm, and at least one of the resin substrates When a primer layer and a hard coat layer are provided so that the hard coat layer becomes a surface layer, and the Taber abrasion test (wear wheel CS-10F, load 500 g) is performed 500 times, the haze change value ΔH before and after the test is measured. Is a laminate characterized by being less than 9.
 また、本発明は上記積層体の中間体であって、ハードコート層が硬化前の状態であり、この硬化前の状態のハードコート層が(A)成分と(B)成分を含む混合物を加水分解して得られ、分子中にエポキシ基を有する硬化性樹脂組成物であり、0.5μm~5μmの被膜厚みを有する積層体中間体である。 Further, the present invention is an intermediate of the above laminate, in which the hard coat layer is in a state before curing, and the hard coat layer in the state before curing is a mixture of the component (A) and the component (B). A curable resin composition obtained by decomposition and having an epoxy group in the molecule, and a laminate intermediate having a film thickness of 0.5 μm to 5 μm.
 また、本発明は、樹脂基板の少なくとも一方の面にプライマー層を塗布乾燥後、活性エネルギー線を照射して硬化させた後、さらにハードコート層を塗布乾燥後、活性エネルギー線を照射して硬化する積層体の製造方法であって、
ハードコート層が、(A)成分と(B)成分を含む混合物を加水分解して得られた分子中にエポキシ基又はアクリル基を有する硬化性樹脂組成物の硬化物であり、0.5μm~5μmの被膜厚みを有すること、
(A)成分が、上記一般式(i)で表されるエポキシ基又はアクリル基を有するアルコキシシラン又はその部分加水分解物であり、
(B)成分が、上記一般式(ii)で表され鎖状、分岐状または環状のアルキルシリケート又はその部分加水分解物であること、
プライマー層が、分子量500以下の多官能アクリルモノマーを含むアクリル組成物を硬化してなる引張弾性率1000MPa~4000MPaの硬化樹脂であり、5μm~50μmの被膜厚みを有すること、及び
積層体のハードコート層面について、上記テーバー摩耗試験を行ったとき、試験前後のヘイズ変化値ΔHが9未満であることを特徴とする積層体の製造方法である。
In the present invention, the primer layer is applied and dried on at least one surface of the resin substrate, and then cured by irradiating active energy rays, and further, the hard coat layer is applied and dried, and then cured by irradiating active energy rays. A method of manufacturing a laminate,
The hard coat layer is a cured product of a curable resin composition having an epoxy group or an acrylic group in a molecule obtained by hydrolyzing a mixture containing the component (A) and the component (B). Having a film thickness of 5 μm;
The component (A) is an alkoxysilane having an epoxy group or an acrylic group represented by the general formula (i) or a partial hydrolyzate thereof,
The component (B) is a chain, branched or cyclic alkyl silicate represented by the general formula (ii) or a partial hydrolyzate thereof,
The primer layer is a cured resin having a tensile elastic modulus of 1000 MPa to 4000 MPa obtained by curing an acrylic composition containing a polyfunctional acrylic monomer having a molecular weight of 500 or less, has a coating thickness of 5 μm to 50 μm, and a hard coat of a laminate When the above-mentioned Taber abrasion test is performed on the layer surface, the laminate has a haze change value ΔH of less than 9 before and after the test.
 上記積層体の製造方法における好ましい態様を次に示す。
1)エポキシ基又はアクリル基を有する硬化性樹脂組成物が、(A)成分と(B)成分の合計に含まれるSi分100モル%に対して、(A)成分に由来するSi分の含有量が30~70モル%であり、光重合開始剤および溶剤を含むこと、
2)プライマー層、ハードコート層、又は両層に紫外線吸収又は紫外線安定剤を含有すること、
3)分子量500以下の多官能アクリルモノマーを含むアクリル組成物中に、エポキシ基を有する化合物を含有すること。
The preferable aspect in the manufacturing method of the said laminated body is shown next.
1) The content of Si derived from the component (A) with respect to 100 mol% of the Si content of the curable resin composition having an epoxy group or an acrylic group contained in the total of the component (A) and the component (B) The amount is 30 to 70 mol%, and contains a photopolymerization initiator and a solvent,
2) containing a UV absorber or UV stabilizer in the primer layer, hard coat layer, or both layers;
3) A compound having an epoxy group is contained in an acrylic composition containing a polyfunctional acrylic monomer having a molecular weight of 500 or less.
 本発明の積層体は、透明性が高く、軽量性、耐摩耗性や耐候性に優れるので自動車等の輸送機器や建造物等の窓材など、透明材料用途ないしガラス代替用途に有用である。 The laminate of the present invention has high transparency and is excellent in lightness, wear resistance, and weather resistance, and thus is useful for transparent materials or glass substitute applications such as transportation equipment for automobiles and window materials for buildings.
 本発明の積層体は、プライマー層とハードコート層を有する透明な積層体である。 The laminate of the present invention is a transparent laminate having a primer layer and a hard coat layer.
 ハードコート層は、(A)成分と(B)成分を含む混合物を加水分解して得られ、分子中にエポキシ基又はアクリル基を有する硬化性樹脂組成物を硬化させて得られる硬化物である。(A)(B)成分を含む混合物を加水分解して得られる硬化性樹脂組成物を硬化させるには、活性エネルギー線を照射する光硬化が好ましい。
 本明細書でいうアクリル基は、CH2=CHR-CO-で表される基を意味し、(メタ)アクリル基ともいう。ここで、Rは水素原子又はメチル基である。
The hard coat layer is obtained by hydrolyzing a mixture containing the component (A) and the component (B), and is a cured product obtained by curing a curable resin composition having an epoxy group or an acrylic group in the molecule. . In order to cure the curable resin composition obtained by hydrolyzing the mixture containing the components (A) and (B), photocuring with irradiation of active energy rays is preferable.
The acrylic group as used herein means a group represented by CH 2 ═CHR—CO—, and is also referred to as a (meth) acryl group. Here, R is a hydrogen atom or a methyl group.
 上記(A)成分は、上記一般式(i)で表されるエポキシ基又はアクリル基を有するアルコキシシラン又はその部分加水分解物である。一般式(i)において、Rはエポキシ基又はアクリル基を含む炭素数1~10、好ましくは炭素数1~4の有機基である。Rは炭素数1~10、好ましくは炭素数1~4の有機基である。ここで、RとRとは異なる有機基であり、Rはエポキシ基又はアクリル基を含んでも含まなくてもよいが、エポキシ基又はアクリル基含む場合は、Rのエポキシ基又はアクリル基とは異なることが好ましい。
 Rは水素原子または炭素数1~5、好ましくは炭素数1~2のアルキル基を示す。R、Rにおける有機基としてはアルキル基が好ましく、Rにおける有機基としてはアルキル基や環状オレフィン構造を有する基が好ましい。上記炭素数の計算には、エポキシ基又はアクリル基が有する炭素数は含まない。エポキシ基が有する炭素数を含む場合は、上記炭素数に2が加えられ、アクリル基が有する炭素数を含む場合は、上記炭素数に3又は4が加えられる。
The component (A) is an alkoxysilane having an epoxy group or an acrylic group represented by the general formula (i) or a partial hydrolyzate thereof. In the general formula (i), R 1 is an organic group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, including an epoxy group or an acrylic group. R 2 is an organic group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms. Here, R 1 and R 2 are different organic groups, and R 2 may or may not contain an epoxy group or an acrylic group, but when it contains an epoxy group or an acrylic group, the epoxy group or acrylic of R 1 It is preferably different from the group.
R 3 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms. The organic group in R 2 and R 3 is preferably an alkyl group, and the organic group in R 1 is preferably an alkyl group or a group having a cyclic olefin structure. The calculation of the carbon number does not include the carbon number of the epoxy group or the acrylic group. When the carbon number of the epoxy group is included, 2 is added to the carbon number. When the carbon number of the acrylic group is included, 3 or 4 is added to the carbon number.
 aは1又は2の数、bは0~1の数を示し、a+bは0<a+b≦3を満足する。4-a-bは2又は3の数であることが好ましい。 A represents a number of 1 or 2, b represents a number of 0 to 1, and a + b satisfies 0 <a + b ≦ 3. 4-ab is preferably a number 2 or 3.
 一般式(i)で表されるエポキシ基又はアクリル基を少なくとも1つ有するアルコキシシランとしては、例えば、3-グリシドキシプロピルメチルジメトキシシシラン、3-グリシドキシプロピルメチルジエトキシシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン等のエポキシ基を有するシラン化合物、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、2-(メタ)アクリロキシエチルトリメトキシシラン、2-(メタ)アクリロキシエチルトリエトキシシラン、(メタ)アクリロキシメチルトリメトキシシラン、(メタ)アクリロキシメチルトリエトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシランなどの(メタ)アクリルを有するシラン化合物が挙げられる。 Examples of the alkoxysilane having at least one epoxy group or acrylic group represented by the general formula (i) include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, β Silane compounds having an epoxy group such as-(3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 2- (meta ) Acryloxyethyltrimethoxysilane, 2- (meth) acryloxyethyltriethoxysilane, (meth) acryloxymethyltrimethoxysilane, (meth) acryloxymethyltriethoxysilane, 3- (meth) acryloxypropylmethyldi Ethoxysilane, 3- ( Silane compound having data) such as acryloxy propyl triethoxy silane (meth) acrylate and the like.
 (A)成分と(B)成分を含む混合物中には、その他のシラン化合物を含むことができる。
 その他のシラン化合物として、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、p-スチリルトリエトキシシラン、p-スチリルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシランなどが挙げられる。これらのオルガノシランは単独で又は2種以上を併用して使用できる。これらのその他のシラン化合物の使用量は、一般式(i)で表されるエポキシ基又はアクリル基を少なくとも1つ有するアルコキシシランの50%(モル%)以下、好ましくは30%以下とすることがよい。
The mixture containing the component (A) and the component (B) can contain other silane compounds.
As other silane compounds, for example, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane Octyltriethoxysilane, decyltrimethoxysilane, phenyltriethoxysilane, phenyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, p-styryltriethoxysilane, p-styryltrimethoxysilane, 3-aminopropyltri Methoxysilane, 3-aminopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-mercaptopropyltrimethyl Kishishiran, 3-mercaptopropyl triethoxysilane, 3-isocyanate propyl trimethoxysilane, 3-isocyanate propyl triethoxysilane and the like. These organosilanes can be used alone or in combination of two or more. The amount of these other silane compounds used is 50% (mol%) or less, preferably 30% or less of the alkoxysilane having at least one epoxy group or acrylic group represented by the general formula (i). Good.
 (B)成分は、上記一般式(ii)で表される鎖状、分岐状または環状のアルキルシリケートである。一般式(ii)において、nは1~20、好ましくは1~10の整数を示し、Rは水素原子または炭素数1~5、好ましくは炭素数1~2のアルキル基を示す。上記アルキルシリケートはエポキシ基又はアクリル基を有しない。 The component (B) is a chain, branched or cyclic alkyl silicate represented by the general formula (ii). In the general formula (ii), n represents an integer of 1 to 20, preferably 1 to 10, and R 4 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms. The alkyl silicate does not have an epoxy group or an acrylic group.
 一般式(ii)で表されるアルキルシリケートとしては、例えば、メチルシリケート、エチルシリケート、イソプロピルシリケート、n-プロピルシリケート、イソブチルシリケート、n-ブチルシリケート、n-ペンチルシリケート、アセチルシリケート等のアルキルシリケートまたはその部分加水分解物が挙げられる。より好ましくは、加水分解・縮合の反応が速い点で、メチルシリケートあるいはエチルシリケートまたはその部分加水分解物が好ましい。 Examples of the alkyl silicate represented by the general formula (ii) include alkyl silicates such as methyl silicate, ethyl silicate, isopropyl silicate, n-propyl silicate, isobutyl silicate, n-butyl silicate, n-pentyl silicate, acetyl silicate, and the like. The partial hydrolyzate is mentioned. More preferably, methyl silicate, ethyl silicate, or a partial hydrolyzate thereof is preferable in that hydrolysis / condensation reaction is fast.
 上記(A)成分と(B)成分の配合割合は、両者に含まれるSi分の合計100モルに対して、(A)成分に由来するSi分が30~70モル%となることが好ましく、40~60モル%がより好ましい。(A)成分が少ない場合は、樹脂の架橋密度が高くなり靱性が低下し、加熱環境下、または環境試験中にクラックが発生しやすくなる。(A)成分が多い場合は、架橋密度が低く、所望の耐摩耗性が得られなくなる。 The blending ratio of the component (A) and the component (B) is preferably such that the Si content derived from the component (A) is 30 to 70 mol% with respect to a total of 100 mol of Si content in both. More preferably, it is 40 to 60 mol%. When the component (A) is small, the crosslink density of the resin is increased and the toughness is lowered, and cracks are likely to occur in a heating environment or during an environmental test. When there are many (A) components, a crosslinking density is low and desired abrasion resistance cannot be obtained.
 上記(A)成分と(B)成分を含む混合物を加水分解して、分子中にエポキシ基又はアクリル基を有する硬化性樹脂組成物とする。この加水分解方法は、上記(A)及び(B)成分を含む混合物を、pH1~7、好ましくはpH2~5の酸性水で共加水分解させることがよい。このpH調整には、フッ化水素、塩酸、硝酸、ギ酸、酢酸、プロピオン酸、シュウ酸、クエン酸、マレイン酸、安息香酸、マロン酸、グルタール酸、グリコール酸、メタンスルホン酸、トルエンスルホン酸などの有機酸又は無機酸を用いることができる。また、表面にカルボン酸基やスルホン酸基を有する陽イオン交換樹脂等の固体酸触媒を触媒に用いてもよい。上記酸又は酸触媒の使用量は、生成物に対して0.0001~20重量%であることが好ましい。 The mixture containing the component (A) and the component (B) is hydrolyzed to obtain a curable resin composition having an epoxy group or an acrylic group in the molecule. In this hydrolysis method, the mixture containing the components (A) and (B) is preferably co-hydrolyzed with acidic water having a pH of 1 to 7, preferably pH 2 to 5. For this pH adjustment, hydrogen fluoride, hydrochloric acid, nitric acid, formic acid, acetic acid, propionic acid, oxalic acid, citric acid, maleic acid, benzoic acid, malonic acid, glutaric acid, glycolic acid, methanesulfonic acid, toluenesulfonic acid, etc. Organic acids or inorganic acids can be used. Further, a solid acid catalyst such as a cation exchange resin having a carboxylic acid group or a sulfonic acid group on the surface may be used as a catalyst. The amount of the acid or acid catalyst used is preferably 0.0001 to 20% by weight based on the product.
 前記加水分解反応においては水の存在が必要である。水の量は、前記混合物中のケイ素化合物における加水分解性基を加水分解するのに十分な量以上であればよく、加水分解性基の数の理論量(モル)の0.5~2.0倍モルに相当する量であることが好ましい。なお、上記その他のシラン化合物を混合物中に含む場合は、その加水分解性基を計算に加える。また、酸性触媒が水溶液として加えられる場合は、その水を計算に加える。水が少ない場合は、十分な加水分解が進行せず、多い場合には、残存する水により塗工性や乾燥効率が低下する。 The presence of water is necessary in the hydrolysis reaction. The amount of water may be at least an amount sufficient to hydrolyze the hydrolyzable group in the silicon compound in the mixture, and is 0.5 to 2 of the theoretical amount (mol) of the number of hydrolyzable groups. The amount is preferably equivalent to 0 times mole. In addition, when the said other silane compound is included in a mixture, the hydrolysable group is added to calculation. In addition, when the acidic catalyst is added as an aqueous solution, the water is added to the calculation. When there is little water, sufficient hydrolysis does not advance, and when there is much water, applicability | paintability and drying efficiency fall with remaining water.
 加水分解と同時に生成したシラノール基の脱水縮合反応が生じて、シロキサン樹脂組成物となる。この縮合を行う温度は、常温または120℃以下の加熱下であり、より好ましくは30℃以上100℃以下である。温度が低い場合には、加水分解および縮合反応の時間が長く、生産性が低くなり、温度が範囲を超えて高い場合には、不溶化する恐れがある。 A dehydration condensation reaction of silanol groups generated simultaneously with the hydrolysis occurs, resulting in a siloxane resin composition. The temperature at which this condensation is performed is normal temperature or under heating at 120 ° C. or less, and more preferably 30 ° C. or more and 100 ° C. or less. If the temperature is low, the hydrolysis and condensation reaction takes a long time, resulting in low productivity. If the temperature is higher than the range, it may be insolubilized.
 ハードコート層の形成は、上記シロキサン樹脂組成物をプライマー層等の上に塗布してから、これを光硬化させることが望ましい。この場合、光重合性開始剤を配合し、紫外線照射することが望ましい。この硬化は、エポキシ基又はアクリル基が重合又は硬化反応して起こる。但し、前記加水分解及び縮合反応終了時点において、一定量のシラノール基が残存しているのでこれをこのまま硬化反応に使用することができる。 The hard coat layer is preferably formed by applying the siloxane resin composition on a primer layer or the like and then photocuring it. In this case, it is desirable to mix a photopolymerizable initiator and irradiate with ultraviolet rays. This curing occurs by polymerization or curing reaction of epoxy groups or acrylic groups. However, since a certain amount of silanol group remains at the end of the hydrolysis and condensation reaction, it can be used in the curing reaction as it is.
 上記光重合開始剤としては、酸発生剤が好ましい。具体的には、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、ホスホニウム塩、セレニウム塩、オキソニウム塩、アンモニウム塩化合物が挙げられる。酸発生剤としては、サンエイドSIシリーズ(三新化学社製;スルホニウム塩)、CPIシリーズ(サンアプロ社製;スルホニウム塩)、アデカアークルズSPシリーズ(ADEKA社製;スルホニウム塩)、WPAGシリーズ(和光純薬社製;スルホン、スルホニウム塩)等が例示できる。また、光重合開始剤と組み合わせて効果を発揮する助剤や増感剤を併用することもできる。 As the photopolymerization initiator, an acid generator is preferable. Specific examples include diazonium salts, iodonium salts, sulfonium salts, phosphonium salts, selenium salts, oxonium salts, and ammonium salt compounds. As acid generators, there are Sun-Aid SI series (manufactured by Sanshin Chemical Co., Ltd .; sulfonium salt), CPI series (manufactured by San Apro; sulfonium salt), Adeka Arcles SP series (manufactured by ADEKA; sulfonium salt), WPAG series (Wako Pure) Examples thereof include those manufactured by Yakuhin; sulfone, sulfonium salts). In addition, an auxiliary agent or a sensitizer that exhibits an effect in combination with a photopolymerization initiator can be used in combination.
 プライマー層は、分子量500以下の多官能アクリルモノマーを含むアクリル組成物を硬化してなる引張弾性率1000MPa~4000MPaの硬化樹脂である。多官能アクリルモノマーとしては、多官能(メタ)アクリレートが挙げられる。 The primer layer is a cured resin having a tensile modulus of 1000 MPa to 4000 MPa obtained by curing an acrylic composition containing a polyfunctional acrylic monomer having a molecular weight of 500 or less. A polyfunctional (meth) acrylate is mentioned as a polyfunctional acrylic monomer.
 上記分子量500以下の多官能(メタ)アクリレートとしては、例えば分子内に2個または3個の(メタ)アクリル基を有する多官能アクリレートが好ましく、脂肪族アクリレート、脂環式アクリレート、エポキシアクリレート等が挙げられる。官能基が多い場合には、体積収縮が大きいため付着性の低下、靱性が低下するため、耐候性の低下の恐れがある。また、多官能アクリルモノマーを含むアクリル組成物中には、エポキシ基を有する化合物を含むことが望ましく、それはエポキシアクリレート等のエポキシ基含有多官能アクリルモノマーであることが望ましい。なお、シリコン含有アクリレートは望ましくない。 As the polyfunctional (meth) acrylate having a molecular weight of 500 or less, for example, polyfunctional acrylates having 2 or 3 (meth) acryl groups in the molecule are preferable, and aliphatic acrylates, alicyclic acrylates, epoxy acrylates, and the like. Can be mentioned. When there are many functional groups, since volume shrinkage is large, adhesiveness fall and toughness fall, and there exists a possibility that a weather resistance may fall. The acrylic composition containing a polyfunctional acrylic monomer preferably contains a compound having an epoxy group, and is preferably an epoxy group-containing polyfunctional acrylic monomer such as epoxy acrylate. Silicon-containing acrylate is not desirable.
 上記多官能(メタ)アクリレートの具体例としては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9ノナンジオールジ(メタ)アクリレート、テトラエチレングリコールジメタクリレート、ジシクロペンタニルジメチロールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ポリエチレングリコール型エポキシアクリレート、トリメチロールプロパン型エポキシアクリレート、イソシアネートと水酸基を有するアクリレートを反応させたウレタンアクリレート等が挙げられる。これらの(メタ)アクリレートは単独でも、二種類以上を混合して使用してもよい。 Specific examples of the polyfunctional (meth) acrylate include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 nonanediol di (meth) acrylate, tetraethylene Glycol dimethacrylate, dicyclopentanyl dimethylol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, polyethylene glycol type epoxy acrylate, trimethylolpropane type epoxy acrylate, isocyanate and hydroxyl group Examples thereof include urethane acrylate obtained by reacting an acrylate having the same. These (meth) acrylates may be used alone or in combination of two or more.
 多官能アクリルモノマーを含むアクリル組成物を硬化して得られる硬化樹脂の引張弾性率は、1000~4000MPaであり、好ましくは2500~3800MPaである。この範囲よりも低い場合には、所望の耐摩耗性が得られず、高い場合には、透明基材として使用されることが多いポリカーボネートとの寸法変化挙動の差が大きいため、耐候性および付着性が低下する。 The tensile elastic modulus of the cured resin obtained by curing the acrylic composition containing the polyfunctional acrylic monomer is 1000 to 4000 MPa, preferably 2500 to 3800 MPa. If it is lower than this range, the desired wear resistance cannot be obtained, and if it is higher, the difference in dimensional change behavior from polycarbonate often used as a transparent substrate is large, so that the weather resistance and adhesion Sex is reduced.
 上記アクリル組成物を硬化する際には、重合開始剤としての光重合開始剤を添加することが好ましく、この添加量は樹脂組成物の合計100重量部に対して0.1~10重量部の範囲であることが好ましい。この範囲に満たないと架橋が不十分になって弾性率が低下し、所望する表面高度が得られない。反対にこの範囲を超えて含有しても更なる反応率の向上は望めない。 When the acrylic composition is cured, it is preferable to add a photopolymerization initiator as a polymerization initiator, and this addition amount is 0.1 to 10 parts by weight with respect to 100 parts by weight of the total resin composition. A range is preferable. If it is less than this range, the crosslinking is insufficient, the elastic modulus is lowered, and the desired surface height cannot be obtained. On the other hand, if the content exceeds this range, no further improvement in the reaction rate can be expected.
 上記光重合開始剤としては、アセトフェノン系、ベンゾイル系、ベンゾフェノン系、チオキサンソン系、アシルホスフィンオキサイド系等の化合物を好適に使用することができる。具体的には、トリクロロアセトフェノン、ジエトキシアセトフェノン、1-フェニル-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、ベンゾインメチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、チオキサンソン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、メチルフェニルグリオキシレート、カンファーキノン、ベンジル、アンスラキノン、ミヒラーケトン等を例示することができる。また、光重合開始剤と組み合わせて効果を発揮する助剤や増感剤を併用することもできる。 As the photopolymerization initiator, compounds such as acetophenone, benzoyl, benzophenone, thioxanthone, and acylphosphine oxide can be preferably used. Specifically, trichloroacetophenone, diethoxyacetophenone, 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2 -Examples include morpholinopropan-1-one, benzoin methyl ether, benzyldimethyl ketal, benzophenone, thioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, camphorquinone, benzyl, anthraquinone, Michler's ketone, etc. can do. In addition, an auxiliary agent or a sensitizer that exhibits an effect in combination with a photopolymerization initiator can be used in combination.
 上記アクリル組成物は、溶剤に溶解して、溶液として基材等に塗布して層を形成してから、硬化させることが望ましい。
 溶剤としては、固形分濃度調整、分散安定性向上、塗布性向上、基材への密着性向上等を目的として、有機溶媒が挙げられる。例えば、アルコール類、ケトン類、エーテル類、エステル類、セロソルブ類及び芳香族化合物類が挙げられる。具体例としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、t-ブチルアルコール、ベンジルアルコール、2-メトキシエタノール、2-エトキシエタノール、2-(メトキシメトキシ)エタノール、2-ブトキシエタノール、フルフリルアルコール、テトラヒドロフルフリルアルコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、ジアセトンアルコール、アセトン、メチルエチルケトン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、メチルイソブチルケトン、2-ヘプタノン、4-ヘプタノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、アセトフェノン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、アニソール、フェネトール、テトラヒドロフラン、テトラヒドロピラン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、グリセリンエーテル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸ペンチル、酢酸イソペンチル、3-メトキシブチルアセテート、2-エチルブチルアセテート、2-エチルヘキシルアセテート、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、γ-ブチロラクトン、2-メトキシエチルアセテート、2-エトキシエチルアセテート、2-ブトキシエチルアセテート、2-フェノキシエチルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ベンゼン、トルエン、キシレンが挙げられる。これらの有機溶媒は単独で又は2種以上を併用して使用できる。
The acrylic composition is preferably dissolved in a solvent, applied as a solution to a substrate or the like to form a layer, and then cured.
Examples of the solvent include organic solvents for the purpose of adjusting the solid content concentration, improving the dispersion stability, improving the coating property, and improving the adhesion to the substrate. Examples include alcohols, ketones, ethers, esters, cellosolves, and aromatic compounds. Specific examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, t-butyl alcohol, benzyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, 2- (methoxy Methoxy) ethanol, 2-butoxyethanol, furfuryl alcohol, tetrahydrofurfuryl alcohol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, di Propylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene group Cole monomethyl ether, diacetone alcohol, acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, methyl isobutyl ketone, 2-heptanone, 4-heptanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, acetophenone, diethyl ether, di Propyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, anisole, phenetole, tetrahydrofuran, tetrahydropyran, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether , Diethylene glycol dibutyl ether, glycerin ether, methyl acetate, ethyl acetate, acetate Pill, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, pentyl acetate, isopentyl acetate, 3-methoxybutyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, methyl propionate, ethyl propionate, butyl propionate Γ-butyrolactone, 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate, 2-phenoxyethyl acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, benzene, toluene and xylene. These organic solvents can be used alone or in combination of two or more.
 ハードコート層及びプライマー層、又はこれらを形成する前の樹脂組成物には、必要により、耐候性を向上させる目的で紫外線吸収剤や紫外線安定剤を配合することが好ましい。 In the hard coat layer and the primer layer, or the resin composition before forming these, it is preferable to add an ultraviolet absorber or an ultraviolet stabilizer for the purpose of improving the weather resistance, if necessary.
 紫外線吸収剤としては、酸化チタン、酸化セリウム、酸化ジルコニウム、酸化亜鉛など無機系の酸化物微粒子やチタン、亜鉛、ジルコニウムなどの金属キレート化合物、及びこれらの(部分)加水分解物、縮合物等の無機系や有機系のものを用いることができる。有機系の例として、主骨格がヒドロキシベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系、トリアジン系である化合物誘導体が好ましい。 Examples of ultraviolet absorbers include inorganic oxide fine particles such as titanium oxide, cerium oxide, zirconium oxide and zinc oxide, metal chelate compounds such as titanium, zinc and zirconium, and (partial) hydrolysates and condensates thereof. Inorganic or organic materials can be used. As organic examples, compound derivatives whose main skeleton is hydroxybenzophenone, benzotriazole, cyanoacrylate, or triazine are preferable.
 更に、ブリードアウトを抑制する目的で、分子内に一つ以上の反応性官能基を有する紫外線吸収剤、または側鎖に紫外線吸収性基を有する重合体を用いてもよい。具体的には、2-(2-ヒドロキシ-5-t-ブチルフェニル)-2H-ベンゾトリアゾール(TINUVIN PS)、2-[5-クロロ-(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(t-ブチル)フェノール(TINUVIN384-2)、2-(2H-ベンゾトリアゾール-2-イル)6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール(TINUVIN928)、2-[4-[(2-ヒドロキシ-3-(2'-エチル)へキシル)オキシ]-2-ヒドロキシフェニル]4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン(TINUVIN405)、2-ヒドロキシ-4-(2-アクリロキシエトキシ)ベンゾフェノンの(共)重合体、2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールの(共)重合体などが挙げられる。これらの紫外線吸収剤は2種以上を併用してもよい。 Furthermore, for the purpose of suppressing bleed-out, an ultraviolet absorber having one or more reactive functional groups in the molecule or a polymer having an ultraviolet absorbing group in the side chain may be used. Specifically, 2- (2-hydroxy-5-t-butylphenyl) -2H-benzotriazole (TINUVIN PS), 2- [5-chloro- (2H) -benzotriazol-2-yl] -4- Methyl-6- (t-butyl) phenol (TINUVIN384-2), 2- (2H-benzotriazol-2-yl) 6- (1-methyl-1-phenylethyl) -4- (1,1,3 3-tetramethylbutyl) phenol (TINUVIN928), 2- [4-[(2-hydroxy-3- (2′-ethyl) hexyl) oxy] -2-hydroxyphenyl] 4,6-bis (2,4 -Dimethylphenyl) -1,3,5-triazine (TINUVIN405), 2-hydroxy-4- (2-acryloxyethoxy) benzophenone (co) polymer, 2- (2'-hydroxy-5'-methacryloxy) And a (co) polymer of ethylphenyl) -2H-benzotriazole. Two or more of these ultraviolet absorbers may be used in combination.
 紫外線安定剤としては、分子内に1個以上の環状ヒンダードアミン構造を有するものが好ましい。更に、ブリードアウトを抑制する目的で、分子内に一つ以上の反応性官能基を有する紫外線安定剤、または側鎖に紫外線安定性基を有する重合体を用いてもよい。具体的には、ビス(2,2,6,6―テトラメチル-1-(オクチロキシ)-4-ピペリジル)エステル(TINUVIN123)、3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、N-メチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、セバシン酸ビス(2,2,6,6- テトラメチル-4-ピペリジル)、セバシン酸ビス(1,2,2,6,6-ペンタメチル-4- ピペリジル)(TINUVIN292)、テトラキス(2,2, 6,6-テトラメチル-4-ピペリジル)、1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)等が挙げられ、これらの紫外線安定剤は2 種以上併用してもよい。 As the UV stabilizer, those having one or more cyclic hindered amine structures in the molecule are preferable. Furthermore, for the purpose of suppressing bleed out, an ultraviolet stabilizer having one or more reactive functional groups in the molecule or a polymer having an ultraviolet stable group in the side chain may be used. Specifically, bis (2,2,6,6-tetramethyl-1- (octyloxy) -4-piperidyl) ester (TINUVIN123), 3-dodecyl-1- (2,2,6,6-tetramethyl) -4-piperidinyl) pyrrolidine-2,5-dione, N-methyl-3-dodecyl-1- (2,2,6,6-tetramethyl-4-piperidinyl) pyrrolidine-2,5-dione, N-acetyl -3-Dodecyl-1- (2,2,6,6-tetramethyl-4-piperidinyl) pyrrolidine-2,5-dione, bis (2,2,6,6- tetramethyl-4-piperidyl) sebacate Bis (1,2,2,6,6-pentamethyl-4- piperidyl) sebacate (TINUVIN292), tetrakis (2,2, 6,6-tetramethyl-4-piperidyl), 1,2,3,4 -Butanetetracarboxyle And tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) and the like, these UV stabilizers may be used in combination of two or more.
 更に、ハードコート層及びプライマー層、又はこれらを形成する前の樹脂組成物には、必要により、本発明の効果を阻害しない範囲で、その他の各種添加剤を添加することができる。各種添加剤として、有機/無機フィラー、可塑剤、難燃剤、熱安定剤、酸化防止剤、紫外線遮蔽剤、滑剤、帯電防止剤、離型剤、発泡剤、核剤、着色剤、架橋剤、分散助剤、樹脂成分等を例示することができる。 Furthermore, if necessary, various other additives can be added to the hard coat layer and the primer layer, or the resin composition before forming them, as long as the effects of the present invention are not impaired. Various additives include organic / inorganic fillers, plasticizers, flame retardants, heat stabilizers, antioxidants, UV screening agents, lubricants, antistatic agents, mold release agents, foaming agents, nucleating agents, coloring agents, crosslinking agents, Examples thereof include a dispersion aid and a resin component.
 次に、本発明の積層体の製造方法について詳述する。 Next, the manufacturing method of the laminate of the present invention will be described in detail.
 本発明の積層体の製造方法においては、次の工程を有することが望ましい。
 1)基材にプライマーとなるアクリル組成物を塗布してなるプライマー塗布膜に、活性エネルギー線照射することによりプライマー塗布膜を硬化させるプライマー層形成工程、2)プライマー層上にハードコート層となる硬化性樹脂組成物を塗布してなる未硬化ハードコート層を形成する工程、及び3)この未硬化ハードコート層に、活性エネルギー線照射することにより硬化させて、ハードコート層とする工程を有することである。
 本発明の積層体中間体は、上記工程2)で得られる未硬化ハードコート層を有するものであり、上記工程3)を行う前のものである。
In the manufacturing method of the laminated body of this invention, it is desirable to have the following process.
1) Primer layer forming process in which the primer coating film is cured by irradiating active energy rays on the primer coating film formed by applying an acrylic composition as a primer to the substrate. 2) A hard coat layer is formed on the primer layer. A step of forming an uncured hard coat layer formed by applying a curable resin composition, and 3) a step of curing the uncured hard coat layer by irradiation with active energy rays to form a hard coat layer. That is.
The laminate intermediate of the present invention has the uncured hard coat layer obtained in the above step 2), and is the one before performing the above step 3).
 基材としては、透明性の観点からポリカーボネート等の透明基板が好ましい。  The substrate is preferably a transparent substrate such as polycarbonate from the viewpoint of transparency. *
 ハードコート層およびプライマー層を形成する方法として、例えば、流涎法、ローラーコート法、バーコート法、噴霧コート法、エアーナイフコート法、スピンコート法、フローコート法、カーテンコート法およびディッピング法が挙げられる。なお、塗工膜厚は、乾燥・活性エネルギー線の照射による硬化後の形成膜厚を考慮して、固形分濃度により調整する。 Examples of the method for forming the hard coat layer and the primer layer include a fluent method, a roller coat method, a bar coat method, a spray coat method, an air knife coat method, a spin coat method, a flow coat method, a curtain coat method, and a dipping method. It is done. In addition, the coating film thickness is adjusted by the solid content concentration in consideration of the formed film thickness after drying / irradiation with active energy rays.
 塗布後は、溶剤を乾燥等により除去することが好ましい。乾燥温度は、用いる基材が変形しない条件とし、乾燥時間は、生産性の観点から1時間以下が好ましい。 After application, it is preferable to remove the solvent by drying or the like. The drying temperature is set so that the substrate used does not deform, and the drying time is preferably 1 hour or less from the viewpoint of productivity.
 耐摩耗性および耐候試験環境下でのクラック発生の観点から、ハードコート層の厚みは、0.5~5μm、好ましくは1~4μmであり、プライマー層の厚みは、5~50μm、好ましくは10~40μmである。 From the viewpoint of the occurrence of cracks in the wear resistance and weathering test environment, the hard coat layer has a thickness of 0.5 to 5 μm, preferably 1 to 4 μm, and the primer layer has a thickness of 5 to 50 μm, preferably 10 ~ 40 μm.
 硬化処理に使用される活性エネルギー線の波長は、特に制限されるものではないが、例えば波長200~400nmの近紫外線が好適に用いられる。紫外線発生源として用いられるランプとしては、低圧水銀ランプ(出力:0.4~4W/cm)、高圧水銀ランプ(40~160W/cm)、超高圧水銀ランプ(173~435W/cm)、メタルハライドランプ(80~160W/cm)、パルスキセノンランプ(80~120W/cm)、無電極放電ランプ(80~120W/cm)等を例示することができる。これらの紫外線ランプは、各々その分光分布に特徴があるため、使用する光重合開始剤の種類に応じて選定される。 The wavelength of the active energy ray used for the curing treatment is not particularly limited, but for example, near ultraviolet rays having a wavelength of 200 to 400 nm are preferably used. As a lamp used as an ultraviolet ray generation source, a low-pressure mercury lamp (output: 0.4 to 4 W / cm), a high-pressure mercury lamp (40 to 160 W / cm), an ultra-high pressure mercury lamp (173 to 435 W / cm), a metal halide lamp (80 to 160 W / cm), pulse xenon lamp (80 to 120 W / cm), electrodeless discharge lamp (80 to 120 W / cm), and the like. Each of these ultraviolet lamps is characterized by its spectral distribution, and is therefore selected according to the type of photopolymerization initiator used.
 プライマー層形成工程では、活性エネルギー線の照度が100~500mW/cmで、積算光量が100~1000mJ/cmの条件で照射することが好ましい。照射量が低い場合には、十分な硬化膜が得られず、次のハードコート成膜工程での溶剤により白化や厚みむらが生じる恐れがある。また、照射量が多い場合には、ハードコート層との付着性が低下する。 In the primer layer forming step, it is preferable to irradiate under the conditions that the illuminance of the active energy ray is 100 to 500 mW / cm 2 and the integrated light quantity is 100 to 1000 mJ / cm 2 . When the irradiation amount is low, a sufficient cured film cannot be obtained, and there is a possibility that whitening or uneven thickness may occur due to the solvent in the next hard coat film forming step. Moreover, when there is much irradiation amount, adhesiveness with a hard-coat layer falls.
 ハードコート層形成工程では、活性エネルギー線は照度が100mW/cm以上で、積算光量が1000mJ/cm以上の条件で照射することが好ましい。照射量が低い場合は、架橋形成が不十分であり、所望の耐摩耗性および耐候性等の性能が得られない。 In the hard coat layer forming step, it is preferable to irradiate the active energy ray under the conditions that the illuminance is 100 mW / cm 2 or more and the integrated light quantity is 1000 mJ / cm 2 or more. When the irradiation amount is low, the crosslinking formation is insufficient and desired performance such as wear resistance and weather resistance cannot be obtained.
 本発明の積層体は、樹脂基板上にプライマー層とハードコート層を有するが、そのハードコート層面について、テーバー摩耗試験(摩耗輪CS-10F、荷重500g)を行う。そして、500回転の試験を行った後のヘイズと、試験前の初期ヘイズとの差で表される変化値ΔHが9未満、好ましくは5未満である。 The laminate of the present invention has a primer layer and a hard coat layer on a resin substrate, and the surface of the hard coat layer is subjected to a Taber abrasion test (wear wheel CS-10F, load 500 g). And change value (DELTA) H represented by the difference of the haze after performing the test of 500 rotations, and the initial stage haze before a test is less than 9, Preferably it is less than 5.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
合成例1
 撹拌機、滴下ロート、温度計を備えた反応容器に、メチルシリケート(コルコート社製、商品名:メチルシリケート53A)5.0gと3-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング社製、商品名:Z-6040)10.0gを入れ撹拌し、滴下ロートに0.05%塩酸水溶液4.2gを投入し、室温で撹拌しながら加えた。滴下終了後、60℃に昇温して1時間撹拌した後、冷却し、プロピレングリコールモノメチルエーテル20.4gを加え、目的物であるシロキサン縮合物(シロキサン樹脂A1)を得た。
Synthesis example 1
In a reaction vessel equipped with a stirrer, a dropping funnel and a thermometer, 5.0 g of methyl silicate (manufactured by Colcoat, trade name: methyl silicate 53A) and 3-glycidoxypropyltrimethoxysilane (manufactured by Toray Dow Corning, (Product name: Z-6040) 10.0 g was added and stirred, and 4.2 g of 0.05% aqueous hydrochloric acid solution was added to the dropping funnel and added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 20.4 g of propylene glycol monomethyl ether to obtain a target siloxane condensate (siloxane resin A1).
合成例2
 ナスフラスコに、メチルシリケート53A 19.0gとアルコキシシランZ-6040 2.0gを入れて撹拌し、滴下ロートに0.05%塩酸水溶液7.6gを投入し、室温で撹拌しながら加えた。滴下終了後、60℃に昇温して1時間撹拌した後、冷却し、プロピレングリコールモノメチルエーテル22.8gを加え、目的物であるシロキサン縮合物(シロキサン樹脂A2)を得た。
Synthesis example 2
In an eggplant flask, 19.0 g of methyl silicate 53A and 2.0 g of alkoxysilane Z-6040 were added and stirred, and 7.6 g of 0.05% hydrochloric acid aqueous solution was added to the dropping funnel and added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 22.8 g of propylene glycol monomethyl ether to obtain a target siloxane condensate (siloxane resin A2).
合成例3
 ナスフラスコに、メチルシリケート53A 0.26gとアルコキシシランZ-6040 10.0gを入れて撹拌し、滴下ロートに0.05%塩酸水溶液2.4gを投入し、室温で撹拌しながら加えた。滴下終了後、60℃に昇温して1時間撹拌した後、冷却し、プロピレングリコールモノメチルエーテル15.5gを加え、目的物であるシロキサン縮合物(シロキサン樹脂A3)を得た。
Synthesis example 3
In an eggplant flask, 0.26 g of methyl silicate 53A and 10.0 g of alkoxysilane Z-6040 were added and stirred, and 2.4 g of 0.05% aqueous hydrochloric acid solution was added to the dropping funnel and added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 15.5 g of propylene glycol monomethyl ether to obtain the target siloxane condensate (siloxane resin A3).
合成例4
 ナスフラスコに、メチルシリケート53A 10.0gを入れて撹拌し、滴下ロートに0.05%塩酸水溶液3.7gを投入し、室温で撹拌しながら加えた。滴下終了後、60℃に昇温して1時間撹拌した後、冷却し、プロピレングリコールモノメチルエーテル10.4gを加え、シロキサン縮合物(シロキサン樹脂A4)を得た。
Synthesis example 4
In an eggplant flask, 10.0 g of methyl silicate 53A was added and stirred, and 3.7 g of 0.05% aqueous hydrochloric acid solution was added to the dropping funnel and added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 10.4 g of propylene glycol monomethyl ether to obtain a siloxane condensate (siloxane resin A4).
合成例5
 ナスフラスコに、アルコキシシランZ-6040 10.0gを入れて撹拌し、滴下ロートに0.05%塩酸水溶液2.3gを投入し、室温で撹拌しながら加えた。滴下終了後、60℃に昇温して1時間撹拌した後、冷却し、プロピレングリコールモノメチルエーテル15.2gを加え、シロキサン縮合物(シロキサン樹脂A5)を得た。
Synthesis example 5
In an eggplant flask, 10.0 g of alkoxysilane Z-6040 was added and stirred, and 2.3 g of 0.05% aqueous hydrochloric acid solution was added to the dropping funnel and added at room temperature with stirring. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 15.2 g of propylene glycol monomethyl ether to obtain a siloxane condensate (siloxane resin A5).
合成例6
 ナスフラスコに、メチルシリケート53A 2.4gと3-メタクリロキシプロピルトリメトキシシラン(東レ・ダウコーニング社製:XIAMETER OFS-6030 SILANE;以下、MPTSという。)10.0gを入れ撹拌し、滴下ロートに0.05%塩酸水溶液3.0gを投入し、室温で撹拌しながら加えた。滴下終了後、60℃に昇温して1時間撹拌した後、冷却しプロピレングリコールモノメチルエーテル18.0gを加え、目的物であるシロキサン縮合物(シロキサン樹脂A6)を得た。
Synthesis Example 6
In an eggplant flask, 2.4 g of methyl silicate 53A and 10.0 g of 3-methacryloxypropyltrimethoxysilane (manufactured by Toray Dow Corning: XIAMETER OFS-6030 SILANE; hereinafter referred to as MPTS) are stirred and stirred. A 0.05% aqueous hydrochloric acid solution (3.0 g) was added, and the mixture was added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 18.0 g of propylene glycol monomethyl ether to obtain a target siloxane condensate (siloxane resin A6).
合成例7
 ナスフラスコに、メチルシリケート53A 18.2gとアルコキシシランMPTS 2.0gを入れ、撹拌し、滴下ロートに0.05%塩酸水溶液7.2gを投入し、室温で撹拌しながら加えた。滴下終了後、60℃に昇温して1時間撹拌した後、冷却しプロピレングリコールモノメチルエーテル22.0gを加え、目的物であるシロキサン縮合物(シロキサン樹脂A7)を得た。
Synthesis example 7
In an eggplant flask, 18.2 g of methyl silicate 53A and 2.0 g of alkoxysilane MPTS were added and stirred, and 7.2 g of 0.05% aqueous hydrochloric acid solution was added to the dropping funnel and added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 22.0 g of propylene glycol monomethyl ether to obtain the target siloxane condensate (siloxane resin A7).
合成例8
 ナスフラスコに、メチルシリケート53A 0.25gとアルコキシシランMPTS 10.0gを入れ撹拌し、滴下ロートに0.05%塩酸水溶液2.3gを投入し、室温で撹拌しながら加えた。滴下終了後、60℃に昇温して1時間撹拌した後、冷却しプロピレングリコールモノメチルエーテル15.9gを加え、目的物であるシロキサン縮合物(シロキサン樹脂A8)を得た。
Synthesis example 8
In an eggplant flask, 0.25 g of methyl silicate 53A and 10.0 g of alkoxysilane MPTS were added and stirred, and 2.3 g of 0.05% hydrochloric acid aqueous solution was added to the dropping funnel and added with stirring at room temperature. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 15.9 g of propylene glycol monomethyl ether to obtain the target siloxane condensate (siloxane resin A8).
合成例9
 ナスフラスコに、アルコキシシランMPTS 10.0gを入れ撹拌し、滴下ロートに0.05%塩酸水溶液2.3gを投入し、室温で撹拌しながら加えた。滴下終了後、60℃に昇温して1時間撹拌した後、冷却しプロピレングリコールモノメチルエーテル15.2gを加え、シロキサン縮合物(シロキサン樹脂A9)を得た。
Synthesis Example 9
In an eggplant flask, 10.0 g of alkoxysilane MPTS was added and stirred, and 2.3 g of 0.05% aqueous hydrochloric acid solution was added to the dropping funnel and added at room temperature with stirring. After completion of the dropwise addition, the temperature was raised to 60 ° C. and stirred for 1 hour, followed by cooling and addition of 15.2 g of propylene glycol monomethyl ether to obtain a siloxane condensate (siloxane resin A9).
ハードコート溶液(H1~H7)の調製例
 シロキサン樹脂、光重合開始剤及び溶剤を表1に示す割合(重量部)で配合し、ハードコート層用の組成物H1~H7を得た。光重合開始剤は、芳香族スルフォニウム塩(三新化学社製:サンエイド100L)であり、溶剤はプロピレングリコールモノメチルエーテルである。
Preparation Example of Hard Coat Solution (H1 to H7) Siloxane resin, photopolymerization initiator and solvent were blended in the proportions (parts by weight) shown in Table 1 to obtain compositions H1 to H7 for the hard coat layer. The photopolymerization initiator is an aromatic sulfonium salt (manufactured by Sanshin Chemical Co., Ltd .: Sun Aid 100L), and the solvent is propylene glycol monomethyl ether.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
ハードコート溶液(H8~H13)の調製例
 シロキサン樹脂、光重合開始剤及び溶剤を表2に示す割合(重量部)で配合し、ハードコート組成物H8~H13を得た。ここで、光重合開始剤はビス(2,4,6-トリメチルベンゾイル)―フェニルフォスフィンオキサイド(BASFジャパン社製;Irgaqure819)であり、溶剤はプロピレングリコールモノメチルエーテルである。
Preparation Example of Hard Coat Solution (H8 to H13) Siloxane resin, photopolymerization initiator and solvent were blended in the proportions (parts by weight) shown in Table 2 to obtain hard coat compositions H8 to H13. Here, the photopolymerization initiator is bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF Japan; Irgaque 819), and the solvent is propylene glycol monomethyl ether.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
プライマー組成物の調製例
 表3に記載の割合で配合し、プライマー層用の組成物P-1~P-5を得た。各成分の数字は配合量(重量部)である。
Preparation Example of Primer Composition The compositions P-1 to P-5 for the primer layer were obtained by blending at the ratios shown in Table 3. The number of each component is the blending amount (part by weight).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 記号の説明
P-A:ジメチロール-トリシクロデカンジアクリレート(共栄社化学社製;ライトアクリレートDCP-A)分子量304
P-B:トリメチロールプロパントリアクリレート(共栄社化学社製;ライトアクリレートTMP-A)分子量296
P-C:ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー(共栄社化学社製;UA-306H)分子量700
P-D:ジペンタエリスリトールヘキサアクリレート(共栄社化学社製;ライトアクリレートDPE-6A)分子量578
P-E:無黄変タイプオリゴウレタンアクリレート(共栄社化学株社製;UF-8001G)分子量約4500
PI(重合開始剤):ビス(2,4,6-トリメチルベンゾイル)―フェニルフォスフィンオキサイド(BASFジャパン社製;Irgaqure819)
UVA(紫外線吸収剤):ベンゾトリアゾール系紫外線吸収剤(BASFジャパン社製;TINUVIN384-2)
LS(光安定剤):ヒンダードアミン系光安定剤(BASFジャパン社製;TINUVIN5100)
Explanation of symbols PA: dimethylol-tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .; light acrylate DCP-A) molecular weight 304
PB: Trimethylolpropane triacrylate (manufactured by Kyoeisha Chemical Co .; Light acrylate TMP-A) Molecular weight 296
PC: pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer (manufactured by Kyoeisha Chemical Co., Ltd .; UA-306H) molecular weight 700
PD: Dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co .; Light acrylate DPE-6A) Molecular weight 578
PE: Non-yellowing type oligo urethane acrylate (manufactured by Kyoeisha Chemical Co., Ltd .; UF-8001G) Molecular weight about 4500
PI (polymerization initiator): bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF Japan; Irgaque 819)
UVA (ultraviolet absorber): benzotriazole ultraviolet absorber (manufactured by BASF Japan; TINUVIN 384-2)
LS (light stabilizer): hindered amine light stabilizer (manufactured by BASF Japan; TINUVIN 5100)
 プライマーの弾性率は溶剤を除いたプライマー組成物をガラス板上に塗布し、ロールコーターを用いて厚さ0.2mmになるようにキャスト(流延)し、高圧水銀ランプを用いて400mW/cmの照度で積算露光量8000mJ/cmの光を酸素濃度1%未満の環境で照射し、弾性率測定用試験片を作成した。引張弾性率(試験片:8mm×80mm×0.2mm、試験速度0.5mm/min、チャック間距離50mm)の値を示す。 The primer elastic modulus is obtained by applying the primer composition excluding the solvent onto a glass plate, casting (casting) to a thickness of 0.2 mm using a roll coater, and 400 mW / cm using a high-pressure mercury lamp. A test piece for elastic modulus measurement was created by irradiating light with an integrated exposure of 8000 mJ / cm 2 at an illuminance of 2 in an environment having an oxygen concentration of less than 1%. The values of tensile elastic modulus (test piece: 8 mm × 80 mm × 0.2 mm, test speed 0.5 mm / min, distance between chucks 50 mm) are shown.
 積層体の評価
[初期ヘイズ]
 積層体の試験片を、濁度計(NDH2000)を用いて測定し、ヘイズ1以下を〇とし、1を超えたときを×とした。
 なお、
Evaluation of laminate [initial haze]
The test piece of the laminate was measured using a turbidimeter (NDH2000), and the haze of 1 or less was marked as ◯, and the value exceeding 1 was marked as x.
In addition,
[耐摩耗性]
 積層体の試験片を、テーバー摩耗試験機(摩耗輪CS-10F装着)を用いて、荷重500g下で500回転試験を行い、濁度計(NDH2000)を用いて測定し、試験前後のヘイズ値差をΔHとした。判定基準は下記に示す。
〇:0以上5未満
△:5以上9未満
×:9以上
[Abrasion resistance]
The specimen of the laminate was subjected to a 500-rotation test under a load of 500 g using a Taber abrasion tester (wearing wheel CS-10F mounted) and measured using a turbidimeter (NDH2000). The difference was ΔH. Judgment criteria are shown below.
○: 0 or more and less than 5 Δ: 5 or more and less than 9 ×: 9 or more
[付着性]
 積層体の試験片を、カミソリ刃を用いて、塗膜に2mm間隔で縦、横11本ずつ切れ目を入れて100個の碁盤目を作成し、粘着テープを付着させた後、60度の角度で勢いよく剥がした時の剥離の有無を目視で観察し、剥離マス目数/100マスで評価した。
〇:0/100
×:1/100~100/100
[Adhesiveness]
Using a razor blade, the test piece of the laminate was cut into 11 vertical and horizontal cuts at 2 mm intervals on the coating film to make 100 grids, and an adhesive tape was attached, and then an angle of 60 degrees When peeled off vigorously, the presence or absence of peeling was visually observed, and the number of peeled squares / 100 squares was evaluated.
○: 0/100
×: 1/100 to 100/100
[耐熱性]
 積層体の試験片を、熱風循環オーブンを用いて加熱保持し、冷却後の外観(クラック有無)を目視で評価した。
〇:130℃1時間でクラック無し
△:120℃1時間でクラック無し
×:110℃1時間でクラック無し
[Heat-resistant]
The test piece of the laminate was heated and held using a hot-air circulating oven, and the appearance after cooling (presence of cracks) was visually evaluated.
◯: No crack at 130 ° C. for 1 hour Δ: No crack at 120 ° C. for 1 hour ×: No crack at 110 ° C. for 1 hour
[耐候性試験]
 積層体の試験片を、メタハラ促進耐候性試験機(ダイプラウィンテス社;KF-1、放射照度800W/cm、L/D/H=4時間/4時間/4時間)を用いて以下の条件で試験し、目視で評価した。
〇:30サイクル後クラック無し
△:20サイクル後クラック無し
×:10サイクル後クラック無し
[Weather resistance test]
The test piece of the laminate was subjected to the following using a metaharara accelerated weathering tester (Daipura Wintes; KF-1, irradiance 800 W / cm 2 , L / D / H = 4 hours / 4 hours / 4 hours) The test was performed under the conditions and the visual evaluation was performed.
○: No crack after 30 cycles Δ: No crack after 20 cycles ×: No crack after 10 cycles
[総合判定]
 上記評価結果から下記に示す方法で判定した。
〇:すべての評価項目が「〇」。
△:「△」が一つ以上あり、「×」がないもの。
×:「×」が一つ以上あるもの。
[Comprehensive judgment]
Judgment was made from the above evaluation results by the following method.
○: All evaluation items are “◯”.
Δ: One or more “Δ” and no “x”.
×: One or more “×”.
実施例1
 プライマー用の組成物P-1をポリカーボネート樹脂板(厚さ3mm、長さ15cm、幅15cm)にフローコート法により塗布し、80℃で6分乾燥させた後、室温下5分冷却した。その後、酸素濃度1%未満の環境下、高圧水銀ランプを用いて、140mW/cmの照度で積算露光量(365nm換算)400mJ/cm照射した。次いで、ハードコート用の組成物H-1をフローコート法により塗布し、80℃で6分乾燥させた後、室温下5分冷却した。その後、酸素濃度1%未満の環境下、高圧水銀ランプを用いて、400mW/cmの照度で積算露光量(365nm換算)4000mJ/cm照射し、目的の積層体を得た。
Example 1
The primer composition P-1 was applied to a polycarbonate resin plate (thickness 3 mm, length 15 cm, width 15 cm) by flow coating, dried at 80 ° C. for 6 minutes, and then cooled at room temperature for 5 minutes. Thereafter, under an environment having an oxygen concentration of less than 1%, an integrated exposure dose (365 nm equivalent) of 400 mJ / cm 2 was irradiated with an illuminance of 140 mW / cm 2 using a high-pressure mercury lamp. Next, composition H-1 for hard coating was applied by a flow coating method, dried at 80 ° C. for 6 minutes, and then cooled at room temperature for 5 minutes. Thereafter, under an environment having an oxygen concentration of less than 1%, using a high-pressure mercury lamp, irradiation with an integrated exposure (365 nm equivalent) of 4000 mJ / cm 2 was performed at an illuminance of 400 mW / cm 2 to obtain a target laminate.
実施例2~4、比較例1~7
 プライマー層用の組成物及びハードコート層用の組成物を、表4に示すものとした他は、実施例1と同様にして積層体を得た。
Examples 2 to 4 and Comparative Examples 1 to 7
A laminate was obtained in the same manner as in Example 1 except that the composition for the primer layer and the composition for the hard coat layer were those shown in Table 4.
 実施例1~4、比較例1~7で得た積層体の物性評価結果を表4に示す。 Table 4 shows the physical property evaluation results of the laminates obtained in Examples 1 to 4 and Comparative Examples 1 to 7.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例5~8、比較例8~13
 プライマー層用の組成物及びハードコート層用の組成物を、表5に示すものとした他は、実施例1と同様にして積層体を得た。
Examples 5 to 8, Comparative Examples 8 to 13
A laminate was obtained in the same manner as in Example 1 except that the composition for the primer layer and the composition for the hard coat layer were those shown in Table 5.
 実施例5~8、比較例8~13で得た積層体の物性評価結果を表5に示す。 Table 5 shows the physical property evaluation results of the laminates obtained in Examples 5 to 8 and Comparative Examples 8 to 13.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の積層体は、透明性が高く、軽量性、耐摩耗性および耐候性に優れるので、自動車等の輸送機器や建造物等の窓材などガラス代替用途に広く利用でき、特に自動車窓向けハードコート付樹脂基板(樹脂グレージング)用途に使用される樹脂グレージング材(ハードコート材)として有用である。
 
Since the laminate of the present invention has high transparency and is excellent in lightness, wear resistance and weather resistance, it can be widely used for glass substitutes such as automobiles and other window materials for buildings, especially for automobile windows. It is useful as a resin glazing material (hard coat material) used for resin substrates with hard coat (resin glazing).

Claims (6)

  1.  プライマー層とハードコート層を有する透明な積層体であって、
    ハードコート層が、(A)成分と(B)成分を含む混合物を加水分解して得られた分子中にエポキシ基又はアクリル基を有する硬化性樹脂組成物の硬化物であり、0.5μm~5μmの被膜厚みを有すること、
    (A)成分が、一般式(i)で表されるエポキシ基又はアクリル基を有するアルコキシシラン又はその部分加水分解物であり、
       R Si(OR4-a―b・・・(i)
     ここで、Rはエポキシ基又はアクリル基を含む炭素数1~10の有機基であり、Rは炭素数1~10の有機基であって、エポキシ基又はアクリル基を含む場合は、Rのエポキシ基又はアクリル基とは異なり、Rは水素原子または炭素数1~5のアルキル基を示す。aは1又は2の数、bは0~1の数を示し、a+bは0<a+b≦3を満足する。
    (B)成分が、一般式(ii)で表される鎖状、分岐状または環状のアルキルシリケート又はその部分加水分解物であること、
       Si(n-1)(OR(2n+2)・・・(ii)
     ここで、nは1~20の数を示し、Rは水素原子または炭素数1~5のアルキル基を示す。
    プライマー層が、分子量500以下の多官能アクリルモノマーを含むアクリル組成物を硬化してなる引張弾性率1000MPa~4000MPaの硬化樹脂であり、5μm~50μmの被膜厚みを有すること、及び
    樹脂基板の少なくとも一方の面にハードコート層が表面層となるようにプライマー層とハードコート層を設けて、テーバー摩耗試験(摩耗輪CS-10F、荷重500g)を500回転行ったとき、試験前後のヘイズ変化値ΔHが9未満であることを特徴とする積層体。
    A transparent laminate having a primer layer and a hard coat layer,
    The hard coat layer is a cured product of a curable resin composition having an epoxy group or an acrylic group in a molecule obtained by hydrolyzing a mixture containing the component (A) and the component (B). Having a film thickness of 5 μm;
    The component (A) is an alkoxysilane having an epoxy group or an acrylic group represented by the general formula (i) or a partial hydrolyzate thereof,
    R 1 a R 2 b Si (OR 3 ) 4-ab ... (i)
    Here, R 1 is an organic group having 1 to 10 carbon atoms including an epoxy group or an acrylic group, and R 2 is an organic group having 1 to 10 carbon atoms and includes an epoxy group or an acrylic group. Unlike the epoxy group or acrylic group of 1 , R 3 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. a represents a number of 1 or 2, b represents a number of 0 to 1, and a + b satisfies 0 <a + b ≦ 3.
    The component (B) is a chain, branched or cyclic alkyl silicate represented by the general formula (ii) or a partial hydrolyzate thereof,
    Si n O (n−1) (OR 4 ) (2n + 2) (ii)
    Here, n represents a number of 1 to 20, and R 4 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
    The primer layer is a cured resin having a tensile modulus of 1000 MPa to 4000 MPa obtained by curing an acrylic composition containing a polyfunctional acrylic monomer having a molecular weight of 500 or less, has a coating thickness of 5 μm to 50 μm, and at least one of the resin substrates When a primer layer and a hard coat layer are provided so that the hard coat layer becomes a surface layer, and the Taber abrasion test (wear wheel CS-10F, load 500 g) is performed 500 times, the haze change value ΔH before and after the test is measured. Is a laminated body characterized by being less than 9.
  2.  請求項1に記載の積層体の中間体であって、
    プライマー層とハードコート層を有し、
    ハードコート層が硬化前の状態であり、この硬化前の状態のハードコート層が(A)成分と(B)成分を含む混合物を加水分解して得られ、分子中にエポキシ基又はアクリル基を有する硬化性樹脂組成物であり、0.5μm~5μmの被膜厚みを有すること、
    (A)成分が、一般式(i)で表されるエポキシ基又はアクリル基を有するアルコキシシラン又はその部分加水分解物であり、
       R Si(OR4-a―b・・・(i)
     ここで、Rはエポキシ基又はアクリル基を含む炭素数1~10の有機基であり、Rは炭素数1~10の有機基であって、エポキシ基又はアクリル基を含む場合は、Rのエポキシ基又はアクリル基とは異なり、Rは水素原子または炭素数1~5のアルキル基を示す。aは1又は2の数、bは0~1の数を示し、a+bは0<a+b≦3を満足する。
    (B)成分が、一般式(ii)で表される鎖状、分岐状または環状のアルキルシリケート又はその部分加水分解物であること、及び
       Si(n-1)(OR(2n+2)・・・(ii)
     ここで、nは1~20の数を示し、Rは水素原子または炭素数1~5のアルキル基を示す。
    プライマー層が、分子量500以下の多官能アクリルモノマーを含むアクリル組成物を硬化してなる引張弾性率1000MPa~4000MPaの硬化樹脂であり、5μm~50μmの被膜厚みを有することを特徴とする積層体中間体。
    An intermediate of the laminate according to claim 1,
    Having a primer layer and a hard coat layer,
    The hard coat layer is in a state before being cured, and the hard coat layer in a state before being cured is obtained by hydrolyzing a mixture containing the component (A) and the component (B). A curable resin composition having a coating thickness of 0.5 μm to 5 μm,
    The component (A) is an alkoxysilane having an epoxy group or an acrylic group represented by the general formula (i) or a partial hydrolyzate thereof,
    R 1 a R 2 b Si (OR 3 ) 4-ab ... (i)
    Here, R 1 is an organic group having 1 to 10 carbon atoms including an epoxy group or an acrylic group, and R 2 is an organic group having 1 to 10 carbon atoms and includes an epoxy group or an acrylic group. Unlike the epoxy group or acrylic group of 1 , R 3 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. a represents a number of 1 or 2, b represents a number of 0 to 1, and a + b satisfies 0 <a + b ≦ 3.
    The component (B) is a chain, branched or cyclic alkyl silicate represented by the general formula (ii) or a partial hydrolyzate thereof, and Si n O (n-1) (OR 4 ) (2n + 2 ) ... (ii)
    Here, n represents a number of 1 to 20, and R 4 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
    The intermediate layered product, wherein the primer layer is a cured resin having a tensile elastic modulus of 1000 MPa to 4000 MPa obtained by curing an acrylic composition containing a polyfunctional acrylic monomer having a molecular weight of 500 or less, and has a coating thickness of 5 μm to 50 μm body.
  3.  樹脂基板の少なくとも一方の面にプライマー層を塗布乾燥後、活性エネルギー線を照射して硬化させた後、さらにハードコート層を塗布乾燥後、活性エネルギー線を照射して硬化する積層体の製造方法であって、
    ハードコート層が、(A)成分と(B)成分を含む混合物を加水分解して得られた分子中にエポキシ基又はアクリル基を有する硬化性樹脂組成物の硬化物であり、0.5μm~5μmの被膜厚みを有すること、
    (A)成分が、一般式(i)で表されるエポキシ基又はアクリル基を有するアルコキシシラン又はその部分加水分解物であり、
       R Si(OR4-a―b・・・(i)
     ここで、Rはエポキシ基又はアクリル基を含む炭素数1~10の有機基であり、Rは炭素数1~10の有機基であって、エポキシ基又はアクリル基を含む場合は、Rのエポキシ基又はアクリル基とは異なり、Rは水素原子または炭素数1~5のアルキル基を示す。aは1又は2の数、bは0~1の数を示し、a+bは0<a+b≦3を満足する。
    (B)成分が、一般式(ii)で表される鎖状、分岐状または環状のアルキルシリケート又はその部分加水分解物であること、
       Si(n-1)(OR(2n+2)・・・(ii)
     ここで、nは1~20の数を示し、Rは水素原子または炭素数1~5のアルキル基を示す。
    プライマー層が、分子量500以下の多官能アクリルモノマーを含むアクリル組成物を硬化してなる引張弾性率1000MPa~4000MPaの硬化樹脂であり、5μm~50μmの被膜厚みを有すること、及び
    積層体のハードコート層面について、テーバー摩耗試験(摩耗輪CS-10F、荷重500g)を500回転行ったとき、試験前後のヘイズ変化値ΔHが9未満であることを特徴とする積層体の製造方法。
    A method for producing a laminate in which a primer layer is applied to and dried on at least one surface of a resin substrate, and then cured by irradiating active energy rays, and then further coated and dried with a hard coat layer, and then cured by irradiating active energy rays. Because
    The hard coat layer is a cured product of a curable resin composition having an epoxy group or an acrylic group in a molecule obtained by hydrolyzing a mixture containing the component (A) and the component (B). Having a film thickness of 5 μm;
    The component (A) is an alkoxysilane having an epoxy group or an acrylic group represented by the general formula (i) or a partial hydrolyzate thereof,
    R 1 a R 2 b Si (OR 3 ) 4-ab ... (i)
    Here, R 1 is an organic group having 1 to 10 carbon atoms including an epoxy group or an acrylic group, and R 2 is an organic group having 1 to 10 carbon atoms and includes an epoxy group or an acrylic group. Unlike the epoxy group or acrylic group of 1 , R 3 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. a represents a number of 1 or 2, b represents a number of 0 to 1, and a + b satisfies 0 <a + b ≦ 3.
    The component (B) is a chain, branched or cyclic alkyl silicate represented by the general formula (ii) or a partial hydrolyzate thereof,
    Si n O (n−1) (OR 4 ) (2n + 2) (ii)
    Here, n represents a number of 1 to 20, and R 4 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
    The primer layer is a cured resin having a tensile elastic modulus of 1000 MPa to 4000 MPa obtained by curing an acrylic composition containing a polyfunctional acrylic monomer having a molecular weight of 500 or less, has a coating thickness of 5 μm to 50 μm, and a hard coat of the laminate A method for producing a laminate, wherein a haze change value ΔH before and after the test is less than 9 when a Taber abrasion test (wear wheel CS-10F, load 500 g) is performed 500 times on the layer surface.
  4.  分子中にエポキシ基又はアクリル基を有する硬化性樹脂組成物が、(A)成分と(B)成分の合計に含まれるSi分100モル%に対して、(A)成分に由来するSi分の含有量が30~70モル%であり、光重合開始剤および溶剤を含む請求項3に記載の積層体の製造方法。 The curable resin composition having an epoxy group or an acrylic group in the molecule has a Si content derived from the component (A) with respect to 100 mol% of the Si content contained in the total of the component (A) and the component (B). The method for producing a laminate according to claim 3, wherein the content is 30 to 70 mol%, and contains a photopolymerization initiator and a solvent.
  5.  プライマー層、ハードコート層、又は両層に、紫外線吸収剤又は紫外線安定剤を含有する請求項3又は4に記載の積層体の製造方法。 The manufacturing method of the laminated body of Claim 3 or 4 which contains a ultraviolet absorber or a ultraviolet stabilizer in a primer layer, a hard-coat layer, or both layers.
  6.  分子量500以下の多官能アクリルモノマーを含むアクリル組成物中に、エポキシ基を有する化合物を含有する請求項3~5のいずれかに記載の積層体の製造方法。
     
    The method for producing a laminate according to any one of claims 3 to 5, wherein the acrylic composition containing a polyfunctional acrylic monomer having a molecular weight of 500 or less contains a compound having an epoxy group.
PCT/JP2017/013680 2016-03-31 2017-03-31 Laminate, intermediate of same, method for producing same, and curable resin composition used for same WO2017171033A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018509672A JP6971968B2 (en) 2016-03-31 2017-03-31 Laminates, intermediates thereof, methods for producing them, and curable resin compositions used therein.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016073535 2016-03-31
JP2016-073535 2016-03-31
JP2016-073479 2016-03-31
JP2016073479 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017171033A1 true WO2017171033A1 (en) 2017-10-05

Family

ID=59964795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013680 WO2017171033A1 (en) 2016-03-31 2017-03-31 Laminate, intermediate of same, method for producing same, and curable resin composition used for same

Country Status (2)

Country Link
JP (1) JP6971968B2 (en)
WO (1) WO2017171033A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177772A (en) * 2016-03-31 2017-10-05 新日鉄住金化学株式会社 Transparent laminate and method for producing the same
WO2021112116A1 (en) * 2019-12-05 2021-06-10 株式会社小糸製作所 Resin molded article, resin molded article for vehicle windows, and method for producing resin molded article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036554A1 (en) * 2000-03-17 2001-11-01 Jin Dan L. Organic-incorganic hybrid polymer and method of making same
WO2004000551A1 (en) * 2002-06-21 2003-12-31 Teijin Chemicals, Ltd. Acrylic resin composition, organosiloxane resin composition and laminates made by using them
JP2006188035A (en) * 2004-12-07 2006-07-20 Mitsubishi Rayon Co Ltd Laminate
JP2007016191A (en) * 2005-07-11 2007-01-25 Mitsubishi Rayon Co Ltd Coating composition, method for forming protective film, and laminated material
JP2008508370A (en) * 2004-07-29 2008-03-21 エボニック デグサ ゲーエムベーハー Aqueous silane nanocomposites
JP2008120870A (en) * 2006-11-09 2008-05-29 Mitsubishi Rayon Co Ltd Active energy ray-curable composition and laminated product
JP2012092264A (en) * 2010-10-28 2012-05-17 Fujikura Kasei Co Ltd One liquid type active energy ray-curable coating material composition and composite coating film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036554A1 (en) * 2000-03-17 2001-11-01 Jin Dan L. Organic-incorganic hybrid polymer and method of making same
WO2004000551A1 (en) * 2002-06-21 2003-12-31 Teijin Chemicals, Ltd. Acrylic resin composition, organosiloxane resin composition and laminates made by using them
JP2008508370A (en) * 2004-07-29 2008-03-21 エボニック デグサ ゲーエムベーハー Aqueous silane nanocomposites
JP2006188035A (en) * 2004-12-07 2006-07-20 Mitsubishi Rayon Co Ltd Laminate
JP2007016191A (en) * 2005-07-11 2007-01-25 Mitsubishi Rayon Co Ltd Coating composition, method for forming protective film, and laminated material
JP2008120870A (en) * 2006-11-09 2008-05-29 Mitsubishi Rayon Co Ltd Active energy ray-curable composition and laminated product
JP2012092264A (en) * 2010-10-28 2012-05-17 Fujikura Kasei Co Ltd One liquid type active energy ray-curable coating material composition and composite coating film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177772A (en) * 2016-03-31 2017-10-05 新日鉄住金化学株式会社 Transparent laminate and method for producing the same
WO2021112116A1 (en) * 2019-12-05 2021-06-10 株式会社小糸製作所 Resin molded article, resin molded article for vehicle windows, and method for producing resin molded article

Also Published As

Publication number Publication date
JPWO2017171033A1 (en) 2019-02-14
JP6971968B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
EP2239308B1 (en) UV-shielding coating composition and coated article
EP2226352B1 (en) UV-shielding silicone coating composition and coated article
JP5316300B2 (en) Abrasion resistant silicone coating composition, coated article and method for producing the same
KR101702471B1 (en) Organic resin laminate, methods of making and using the same, and articles comprising the same
JP6256858B2 (en) Laminated body having hard coat layer and method for producing the same
WO2010061744A1 (en) Siloxane resin composition and protective film for touch panel using same
JP2005314616A (en) Silicone coating composition and article to be coated
US8642672B2 (en) Coating composition
JP2005200546A (en) Silicone resin composition and article covered with the same
US20190015868A1 (en) Method for manufacturing laminate
JP2007016191A (en) Coating composition, method for forming protective film, and laminated material
JP6971968B2 (en) Laminates, intermediates thereof, methods for producing them, and curable resin compositions used therein.
JP6269853B2 (en) Organic resin laminate
JP4861648B2 (en) Laminated body
JP4164693B2 (en) Coating composition and coated article
EP2508579B1 (en) Weather-Resistant Hard Coating Composition and Coated Article
JP2010253767A (en) Hard coat molded article and method of manufacturing the same, and active energy ray curable coating composition
JP6679388B2 (en) Transparent laminate and method for producing the same
JP7276183B2 (en) Active energy ray-curable composition, coating agent, and coated article
JP6838962B2 (en) Coating composition and its cured product
JP2012116173A (en) Laminate having protective coating
JP2004148785A (en) Resin molded article
JP2001089710A (en) Protective coating agent and article having protective film of the coating agent
JP2012223910A (en) Laminate and method for manufacturing the same
JP4731093B2 (en) Polycarbonate hard coat molding

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509672

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775564

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775564

Country of ref document: EP

Kind code of ref document: A1