WO2017168891A1 - Method for producing al-mg-si alloy plate - Google Patents

Method for producing al-mg-si alloy plate Download PDF

Info

Publication number
WO2017168891A1
WO2017168891A1 PCT/JP2016/088716 JP2016088716W WO2017168891A1 WO 2017168891 A1 WO2017168891 A1 WO 2017168891A1 JP 2016088716 W JP2016088716 W JP 2016088716W WO 2017168891 A1 WO2017168891 A1 WO 2017168891A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy plate
mass
hot rolling
less
producing
Prior art date
Application number
PCT/JP2016/088716
Other languages
French (fr)
Japanese (ja)
Inventor
西森 秀樹
眞二 籠重
和章 谷口
智明 山ノ井
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016067355A external-priority patent/JP2017179452A/en
Priority claimed from JP2016067356A external-priority patent/JP6774199B2/en
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201680080645.8A priority Critical patent/CN108699663A/en
Publication of WO2017168891A1 publication Critical patent/WO2017168891A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a method for producing an Al—Mg—Si based alloy plate, and more particularly to a method for producing an Al—Mg—Si based alloy plate excellent in thermal conductivity, conductivity and strength.
  • Flat panel TVs thin monitors for personal computers, notebook computers, tablet computers, car navigation systems, portable navigation systems, chassis of products such as mobile terminals such as smartphones and mobile phones, metal base printed boards, and heating elements such as internal covers
  • excellent thermal conductivity and strength for promptly radiating heat are required.
  • Pure aluminum alloys such as JIS 1100, 1050, and 1070 have excellent thermal conductivity but low strength.
  • An Al—Mg alloy (5000-based alloy) such as JIS 5052 used as a high strength material is significantly inferior in thermal conductivity and conductivity to a pure aluminum-based alloy.
  • an Al—Mg—Si alloy (6000 alloy) has good thermal conductivity and electrical conductivity, and can be improved in strength by age hardening.
  • a method for obtaining an aluminum alloy plate excellent in conductivity and conductivity has been studied.
  • Patent Document 1 contains Si: 0.2 to 1.5% by mass, Mg: 0.2 to 1.5% by mass, Fe: 0.3% by mass or less, and Mn: 0. Containing one or two of 02 to 0.15% by mass and Cr: 0.02 to 0.15%, and the balance of Al and Ti in inevitable impurities is regulated to 0.2% or less, or
  • An aluminum alloy plate having a composition containing one or two of Cu: 0.01 to 1% by mass or rare earth element: 0.01 to 0.2% by mass was prepared by continuous casting and rolling, and then cold-worked. Rolling, followed by solution treatment at 500 to 570 ° C., followed by further cold rolling at a cold rolling rate of 5 to 40%, followed by aging treatment after heating to 150 to 190 ° C.
  • Aluminum with excellent thermal conductivity, strength and bending workability Method for producing a gold plate have been described.
  • Patent Document 2 contains 0.1 to 0.34% by mass of Mg, 0.2 to 0.8% by mass of Si, and 0.22 to 1.0% by mass of Cu, with the balance being Al and inevitable impurities.
  • An Al—Mg—Si based alloy having a Si / Mg content ratio of 1.3 or more is made into an ingot having a thickness of 250 mm or more by semi-continuous casting, and is heated through preheating at a temperature of 400 to 540 ° C.
  • Disclosed is a method for producing an Al—Mg—Si alloy rolled sheet, characterized by performing cold rolling at a rolling reduction of 50 to 85% and annealing at a temperature of 140 to 280 ° C. ing.
  • Patent Document 3 contains Si: 0.2 to 0.8 wt%, Mg: 0.3 to 0.9 wt%, Fe: 0.35 wt% or less, Cu: 0.20 mass% or less, and the balance Al And a method of producing an alloy in which an Al—Mg—Si alloy ingot made of inevitable impurities is homogenized, hot-rolled and hot-finished, and then cold-rolled, and any pass of said hot-rolling
  • an Al—Mg—Si based alloy is characterized in that the material temperature before the pass is 350 to 450 ° C., the rising plate thickness is 10 mm or less, and the reduction ratio of the cold rolling is 30% or more.
  • a method for manufacturing a plate is disclosed.
  • the thermal conductivity and the electrical conductivity have a good correlation, and the aluminum alloy plate having an excellent thermal conductivity has an excellent electrical conductivity, not to mention the heat radiating member material. It can be used as a conductive member material.
  • Patent Document 1 Although an aluminum alloy plate having a relatively high strength is obtained, a solution treatment comprising high-temperature heat treatment at 500 ° C. or higher and subsequent rapid cooling is performed on the aluminum alloy plate in the middle of cold rolling, A complicated process of performing an aging treatment after further cold rolling is required, which increases the manufacturing cost.
  • Patent Document 3 as in Patent Document 2, no solution treatment is required in the process after hot rolling, and a higher tensile strength than that in Patent Document 2 is obtained.
  • 300 N / mm is used.
  • the tensile strength exceeding 2 (MPa) can be obtained only in the examples where the cold rolling reduction rate is 98% and the product sheet thickness is 0.1 mm, and there is a limit to the improvement in strength.
  • an object of the present invention is an Al—Mg—Si system that has high conductivity and can further improve strength without applying a solution treatment in a process after hot rolling. It is providing the manufacturing method of an alloy plate.
  • a method of manufacturing an alloy plate in which hot rolling and cold rolling are sequentially performed on an Al—Mg—Si alloy ingot, and the surface temperature of the Al—Mg—Si alloy plate immediately after the end of hot rolling A method for producing an Al—Mg—Si based alloy sheet having a temperature of 230 ° C. or lower.
  • the chemical composition of the Al—Mg—Si alloy ingot is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 2.
  • a method for producing an alloy plate wherein the surface temperature of the Al—Mg—Si alloy plate immediately after the end of hot rolling is 230 ° C. or less.
  • the surface temperature of the Al—Mg—Si based alloy sheet immediately after the end of hot rolling is 230 ° C. or less, an effective quenching effect by hot rolling can be obtained, An Al—Mg—Si alloy plate having a high tensile strength can be produced.
  • the chemical composition of the Al—Mg—Si alloy ingot is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: Since it contains 0.5% by mass or less and Cu: 0.5% by mass or less, and consists of the balance Al and unavoidable impurities, an Al—Mg—Si based alloy sheet having high tensile strength can be manufactured.
  • the strength of the Al—Mg—Si based alloy sheet can be improved by cold rolling.
  • the strength of the Al—Mg—Si based alloy sheet can be further increased by age hardening, and at the same time, the conductivity is improved. I can do it.
  • the surface temperature of the Al—Mg—Si based alloy plate immediately before the pass among the plurality of passes of hot rolling is 470 to 350 ° C., and the Al—Mg—Si due to the pass is used. Since the pass in which the average cooling rate by cooling of the alloy plate or the forced cooling after the pass is 50 ° C./min or more is performed at least once, the quenching effect by hot rolling can be enhanced.
  • Si 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass%
  • at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less is contained in the Al—Mg—Si alloy ingot consisting of the remainder Al and inevitable impurities.
  • the surface temperature of the Al—Mg—Si alloy sheet immediately after the end of hot rolling is 230 ° C. or less, so that effective quenching effect by hot rolling And an Al—Mg—Si based alloy sheet having a high tensile strength can be produced.
  • Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are respectively regulated to 0.05% by mass or less, they have high tensile strength.
  • An Al—Mg—Si based alloy plate can be manufactured.
  • the strength of the Al—Mg—Si based alloy sheet can be improved by cold rolling.
  • the strength of the Al—Mg—Si based alloy plate can be further increased by age hardening, and at the same time the conductivity is improved. I can do it.
  • the final annealing temperature is 200 ° C. or less, an Al—Mg—Si based alloy sheet exhibiting high values of tensile strength and electrical conductivity can be produced.
  • the surface temperature of the Al—Mg—Si based alloy plate immediately before the pass among the plurality of passes of hot rolling is 470 to 350 ° C., and the Al—Mg—Si due to the pass is used. Since the pass in which the average cooling rate by cooling of the alloy plate or the forced cooling after the pass is 50 ° C./min or more is performed at least once, the quenching effect by hot rolling can be enhanced.
  • the inventor of the present application provides a method for producing an Al—Mg—Si based alloy sheet, which is sequentially subjected to hot rolling and cold rolling, while keeping the surface temperature of the alloy sheet after hot rolling below a predetermined temperature, It has been found that an Al—Mg—Si alloy sheet having high strength while having high conductivity and good workability can be obtained by performing heat treatment after the end of rolling and before the end of cold rolling. Invented.
  • Mg and Si are elements necessary for the development of strength, and the respective contents thereof are Si: 0.2% by mass or more and 0.8% by mass or less, and Mg: 0.3% by mass or more and 1% by mass or less. preferable. If the Si content is less than 0.2% by mass or the Mg content is less than 0.3% by mass, the strength is lowered. On the other hand, if the Si content exceeds 0.8% by mass and the Mg content exceeds 1% by mass, the rolling load in hot rolling increases and the productivity decreases, and the formability of the resulting aluminum alloy sheet also increases. Deteriorate.
  • the Si content is more preferably 0.2% by mass or more and 0.6% by mass or less, and particularly preferably 0.32% by mass or more and 0.60% by mass or less.
  • the Mg content is more preferably 0.4% by mass or more and 1.0% by mass or less, more preferably 0.45% by mass or more and 0.9% by mass or less, and particularly preferably 0.45% by mass or more and 0.55% by mass or less. Is preferred.
  • Fe and Cu are components necessary for molding, but if they are contained in a large amount, the corrosion resistance decreases.
  • the Fe content and the Cu content are preferably regulated to 0.5% by mass or less, respectively.
  • the Fe content is more preferably regulated to 0.35% by mass or less, and particularly preferably from 0.1% by mass to 0.25% by mass.
  • the Cu content is more preferably 0.2% by mass or less, and particularly preferably 0.1% by mass or less.
  • various impurity elements are unavoidably contained in the alloy element, but Mn and Cr decrease conductivity and conductivity, and Zn increases in content and decreases in corrosion resistance of the alloy material.
  • the content of each of Mn, Cr, and Zn as impurities is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
  • Ti and B have the effect of refining crystal grains and preventing solidification cracking when casting the alloy into a slab.
  • the effect is obtained by adding at least one of Ti or B, and both may be added. However, if it is contained in a large amount, a large amount of crystallized crystals are generated, and the workability, thermal conductivity, and conductivity of the product are lowered.
  • the Ti content is preferably 0.1% by mass or less, and more preferably 0.005% by mass or more and 0.05% by mass or less.
  • the B content is preferably 0.1% by mass or less, and particularly preferably 0.06% by mass.
  • impurity elements other than the above include Ni, V, Ga, Pb, Sn, Bi, Zr, Ag, rare earth, etc., but are not limited to these, and among these other impurity elements, rare earth Other than the above, the content of each element is preferably 0.05% by mass or less.
  • the rare earth may contain one or more kinds of elements, and may be derived from a casting raw material contained in the state of misch metal, but the total content of rare earth elements The amount is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
  • the dissolved components are adjusted by a conventional method to obtain an Al—Mg—Si alloy ingot.
  • the obtained alloy ingot is preferably subjected to a homogenization treatment as a step prior to heating before hot rolling.
  • the homogenization treatment is preferably performed at 500 ° C. or higher.
  • the heating before hot rolling is carried out in order to solidify the crystallized substance and Mg, Si in the Al—Mg—Si alloy ingot to form a uniform structure. Therefore, it is preferable to carry out at 450 ° C. or higher and 580 ° C. or lower, particularly preferably at 500 ° C. or higher and 580 ° C. or lower.
  • the Al-Mg-Si alloy ingot is cooled after being homogenized, and may be heated before hot rolling, or the homogenization and heating before hot rolling may be performed continuously, In the preferable temperature range of the homogenization treatment and heating before hot rolling, the homogenization treatment and the heating before hot rolling may be combined and heated at the same temperature.
  • the chamfering may be performed after casting and before homogenization treatment, or after homogenization treatment and before heating before hot rolling.
  • Hot rolling is performed on the Al-Mg-Si alloy ingot after heating before hot rolling.
  • Hot rolling consists of rough hot rolling and finishing hot rolling, and after performing rough hot rolling consisting of multiple passes using a rough hot rolling mill, a finishing hot rolling mill different from the rough hot rolling mill is used. Finish hot rolling using.
  • the finish hot rolling can be omitted.
  • the finish hot rolling is performed once by introducing an Al—Mg—Si based alloy plate from one direction using a rolling mill in which a pair of upper and lower work rolls or two or more work rolls are continuously installed. It is carried out in the pass.
  • an Al—Mg—Si alloy plate after finish hot rolling may be wound with a winding device to form a hot rolled coil.
  • finishing hot rolling is omitted and the final pass of rough hot rolling is used as the final pass of hot rolling
  • the Al-Mg-Si alloy plate is taken up by a winder after the rough hot rolling. It may be a hot rolled coil.
  • the surface temperature of the Al—Mg—Si alloy plate immediately before the pass is 350 ° C. or more and 470 ° C. or less, and the Al—Mg—Si alloy plate is cooled by the pass, or A pass having an average cooling rate of 50 ° C./min or more by the pass and forced cooling after the pass is called a control pass.
  • the reason why the surface temperature of the Al—Mg—Si alloy plate immediately before the control pass is set to 350 ° C. or more and 470 ° C. or less is that if it is less than 350 ° C., the effect of quenching in the rapid hot rolling is small and the temperature is higher than 470 ° C. This is because it is difficult to rapidly cool the Al-Mg-Si based alloy plate having a rising path.
  • the average cooling rate is an Al—Mg—Si alloy from the start to the end of the control pass when forced cooling is not performed in the control pass, and from the start of the control pass to the end of forced cooling when forced cooling is performed after the control pass.
  • Forced cooling after the control pass may be performed sequentially on the rolled part while rolling the Al—Mg—Si alloy plate, or after rolling the entire Al—Mg—Si alloy plate. Also good.
  • the method of forced cooling is not limited, but water cooling, air cooling, or coolant may be used.
  • the control pass is preferably performed at least once, and may be performed a plurality of times. When performing the control pass a plurality of times, it is possible to select whether to perform forced cooling after each pass for each control pass. If the surface temperature of the Al—Mg—Si based alloy plate immediately before the pass is 470 to 350 ° C. and the cooling rate is 50 ° C./min or more, the control pass can be performed multiple times. By reducing the temperature of the Al—Mg—Si based alloy plate to below 350 ° C., quenching can be performed efficiently and effectively.
  • the surface temperature of the Al—Mg—Si based alloy sheet immediately after the final pass of the hot rolling is set as the temperature after the rough hot rolling
  • the surface temperature of the Al—Mg—Si alloy sheet immediately after the end of forced cooling is set as the temperature after rough hot rolling.
  • finishing hot rolling ends when finishing hot rolling is performed, finishing hot rolling ends.
  • hot rolling ends When finishing hot rolling is not performed, hot rolling ends with the end of the final pass of rough hot rolling, and immediately after the hot rolling ends.
  • the surface temperature of the Al—Mg—Si based alloy plate is 230 ° C. or less. An effective quenching effect can be obtained by setting the temperature of the alloy sheet immediately after the hot rolling to 230 ° C. or less.
  • the surface temperature of the Al—Mg—Si based alloy sheet immediately after the hot rolling is preferably 200 ° C. or less, more preferably 150 ° C. or less, and particularly preferably 130 ° C. or less.
  • the surface temperature of the Al-Mg-Si alloy plate immediately before finish hot rolling is It is preferable that it is 270 degrees C or less.
  • the surface temperature of the Al—Mg—Si alloy plate immediately before the final hot hot rolling is 270 ° C. or less. preferable.
  • the control pass is the final pass of hot rolling, so the Al—Mg—Si system immediately before the final pass of hot rolling.
  • Control pass so that the surface temperature of the alloy plate is 470 to 350 ° C., and the surface temperature of the alloy plate is 230 ° C. or less at a cooling rate of 50 ° C./min or more by rolling or forced cooling after rolling and rolling.
  • the Al—Mg—Si based alloy sheet is cold rolled to obtain an Al—Mg—Si based alloy sheet having a predetermined thickness.
  • Cold rolling is preferably performed at a rolling rate of 20% or more in order to improve strength.
  • the rolling rate of the Al—Mg—Si based alloy sheet by cold rolling is preferably 30% or more, particularly preferably 60% or more.
  • the Al—Mg—Si alloy plate after cold rolling may be cleaned as necessary.
  • the strength and / or conductivity of the Al—Mg—Si based alloy sheet it is preferable to perform final annealing after cold rolling.
  • the strength can be further increased by age hardening of the Al—Mg—Si based alloy plate, and the electrical conductivity can be improved.
  • the conditions for final annealing can be selected depending on whether both strength and conductivity are improved or whether strength or conductivity is emphasized, but the annealing temperature becomes too high, and the strength of the Al-Mg-Si based alloy sheet is reduced. In order not to decrease, it is preferably carried out at 200 ° C. or lower, more preferably 110 ° C. or higher and 180 ° C. or lower, particularly preferably 120 ° C. or higher and 170 ° C. or lower.
  • the final annealing time of the Al—Mg—Si based alloy plate may be adjusted so as to obtain necessary strength and electrical conductivity, and may be selected depending on the final annealing temperature in the range of 1 to 10 hours, for example.
  • the production of the Al—Mg—Si based alloy plate of the present application may be performed by a coil or a single plate. Further, the alloy plate may be cut in an arbitrary step after the cold rolling, and the step after the cutting may be performed with a single plate, or may be slit and formed depending on the application.
  • Aluminum alloy slabs having different chemical compositions shown in Table 1 were obtained by the DC casting method.
  • Example 1 The aluminum alloy slab having the chemical composition number 1 in Table 1 was chamfered. Next, the homogenized treatment at 560 ° C. for 6 hours was performed on the alloy slab after chamfering in a heating furnace, and then the pre-hot rolling at 540 ° C. for 4 hours was performed by changing the temperature in the same furnace. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./min from the alloy plate temperature 461 ° C. immediately before the pass, An alloy plate having a hot rolling temperature of 243 ° C. and a thickness of 12 mm was obtained. In the final pass of the rough hot rolling, the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.
  • the alloy plate was subjected to finish hot rolling from a temperature immediately before finishing hot rolling of 241 ° C. to obtain an alloy plate having a thickness of 7.0 mm.
  • the temperature of the alloy sheet immediately after the finish hot rolling was 131 ° C.
  • the alloy sheet after the finish hot rolling was cold-rolled at a rolling rate of 91% and subjected to final annealing at 160 ° C. for 2 hours to obtain an aluminum alloy sheet having a product sheet thickness of 0.6 mm.
  • Example 2 to 33 Comparative Examples 1 to 5
  • the aluminum alloy slab shown in Table 1 was chamfered and then treated under the conditions shown in Tables 2 to 5 to obtain an aluminum alloy plate.
  • homogenization treatment and heating before hot rolling are continuously performed in the same furnace, and forced cooling after the final pass of rough hot rolling is performed while rolling. It was selected from water cooling in which the alloy plate was moved and water was sprayed on the alloy plate sequentially from the upper and lower sides with respect to the part of the rolled alloy plate, air cooling to be blown and cooled after completion of the final hot hot rolling pass, and no forced cooling.
  • final annealing was performed after cold rolling.
  • Example 9 the final pass of rough hot rolling was used as the final pass of hot rolling, and the finish hot rolling was not performed.
  • the evaluation was carried out by the method below the tensile strength and conductivity of the obtained alloy plate.
  • Tensile strength was measured for JIS No. 5 specimens at room temperature by a conventional method.
  • the electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 ⁇ 10 ⁇ 2 ⁇ m) adopted internationally was 100% IACS.
  • Tables 2 to 5 show the evaluation results of tensile strength and electrical conductivity.
  • the tensile strength and conductivity are high values, whereas the chemical composition, hot
  • the comparative example in which one of the surface temperatures of the alloy sheet immediately after the end of rolling does not satisfy the specified range of the present invention is inferior to the example in either tensile strength or electrical conductivity.
  • This embodiment is an embodiment of the invention according to claims 9 to 18.
  • Aluminum alloy slabs having different chemical compositions shown in Table 6 were obtained by the DC casting method.
  • the ingot of the chemical composition number 120 containing rare earth used the raw material containing misch metal for casting.
  • Example 101 The aluminum alloy slab having the chemical composition number 101 in Table 6 was chamfered. Next, the homogenized treatment at 570 ° C. for 5 hours was performed on the alloy slab after chamfering in a heating furnace, and then the pre-hot rolling at 540 ° C. for 4 hours was performed by changing the temperature in the same furnace. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./min from the alloy plate temperature immediately before the pass of 460 ° C. An alloy plate having a hot rolling temperature of 242 ° C. and a thickness of 12 mm was obtained. In the final pass of the rough hot rolling, the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.
  • the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 240 ° C. to obtain an alloy plate having a thickness of 7.0 mm.
  • the temperature of the alloy sheet immediately after the finish hot rolling was 130 ° C.
  • the alloy sheet after the finish hot rolling was cold-rolled at a rolling rate of 91% and subjected to final annealing at 160 ° C. for 2 hours to obtain an aluminum alloy sheet having a product sheet thickness of 0.6 mm.
  • Example 102 to 135, Comparative Examples 101 to 105 After chamfering the aluminum alloy slab described in Table 6, the aluminum alloy slab was processed under the conditions described in Tables 7 to 10 to obtain an aluminum alloy sheet.
  • Example 41 homogenization and heating before hot rolling were continuously performed in the same furnace in all Examples and Comparative Examples, and forced cooling after the final rough hot rolling pass was performed while rolling. It was selected from water cooling in which the alloy plate was moved and water was sprayed on the alloy plate sequentially from the upper and lower sides with respect to the part of the rolled alloy plate, air cooling to be blown and cooled after completion of the final hot hot rolling pass, and no forced cooling.
  • final annealing was performed after cold rolling.
  • Example 109 the final pass of rough hot rolling was used as the final pass of hot rolling, and the finish hot rolling was not performed.
  • the evaluation was carried out by the method below the tensile strength and conductivity of the obtained alloy plate.
  • Tensile strength was measured by a conventional method at normal temperature for a JIS No. 5 test piece.
  • the electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 ⁇ 10 ⁇ 2 ⁇ m) adopted internationally was 100% IACS.
  • Tables 7 to 10 show the evaluation results of tensile strength and electrical conductivity.
  • the tensile strength and conductivity are high values, whereas the chemical composition, hot
  • the comparative example in which one of the surface temperatures of the alloy sheet immediately after the end of rolling does not satisfy the specified range of the present invention is inferior to the example in either tensile strength or electrical conductivity.
  • the present invention can be used for manufacturing an Al—Mg—Si alloy plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

Provided is a method for producing an Al-Mg-Si alloy plate that exhibits high conductivity and high strength. Thus, a method for producing an alloy plate by sequentially hot rolling and cold rolling an Al-Mg-Si alloy ingot, wherein the surface temperature of the Al-Mg-Si alloy plate immediately following completion of the hot rolling is 230°C or less.

Description

Al-Mg―Si系合金板の製造方法Method for producing Al-Mg-Si alloy plate
 この発明は、Al-Mg―Si系合金板の製造方法、特に熱伝導性、導電性、および強度に優れたAl-Mg―Si系合金板の製造方法に関する。 The present invention relates to a method for producing an Al—Mg—Si based alloy plate, and more particularly to a method for producing an Al—Mg—Si based alloy plate excellent in thermal conductivity, conductivity and strength.
 薄型テレビ、パーソナルコンピューター用薄型モニター、ノートパソコン、タブレットパソコン、カーナビゲーションシステム、ポータブルナビゲーションシステム、スマートフォンや携帯電話等の携帯端末等の製品のシャーシ、メタルベースプリント基板、内部カバーのように発熱体を内蔵または装着する部材材料においては、速やかに放熱するための優れた熱伝導性および強度が求められる。 Flat panel TVs, thin monitors for personal computers, notebook computers, tablet computers, car navigation systems, portable navigation systems, chassis of products such as mobile terminals such as smartphones and mobile phones, metal base printed boards, and heating elements such as internal covers In a member material to be built in or mounted, excellent thermal conductivity and strength for promptly radiating heat are required.
 JIS1100、1050、1070等の純アルミニウム合金は熱伝導性に優れるが、強度が低い。高強材として用いられるJIS5052に等のAl-Mg合金(5000系合金)は、純アルミニウム系合金よりも熱伝導性および導電性が著しく劣る。 Pure aluminum alloys such as JIS 1100, 1050, and 1070 have excellent thermal conductivity but low strength. An Al—Mg alloy (5000-based alloy) such as JIS 5052 used as a high strength material is significantly inferior in thermal conductivity and conductivity to a pure aluminum-based alloy.
 これに対しAl-Mg-Si系合金(6000系合金)は、熱伝導性および導電性が良く時効硬化により強度向上を図ることができるため、Al-Mg―Si系合金を用いて強度、熱伝導性、導電性に優れたアルミニウム合金板を得る方法が検討されている。 In contrast, an Al—Mg—Si alloy (6000 alloy) has good thermal conductivity and electrical conductivity, and can be improved in strength by age hardening. A method for obtaining an aluminum alloy plate excellent in conductivity and conductivity has been studied.
 例えば、特許文献1には、Si:0.2~1.5質量%、Mg:0.2~1.5質量%、Fe:0.3質量%以下を含有し、さらに、Mn:0.02~0.15質量%、Cr:0.02~0.15%の1種または2種を含有するとともに、残部がAlおよび不可避不純物中のTiが0.2%以下に規制するか、もしくはこれにCu:0.01~1質量%か希土類元素:0.01~0.2質量%の1種または2種を含有する組成を有するアルミニウム合金版を連続鋳造圧延により作製し、その後冷間圧延し、次いで500~570℃の溶体化処理を行い、続いてさらに冷間圧延率5~40%で冷間圧延を行い、冷間圧延後150~190℃未満に加熱する時効処理を行うことを特徴とする熱伝導性、強度および曲げ加工性に優れたアルミニウム合金板の製造方法が記載されている。 For example, Patent Document 1 contains Si: 0.2 to 1.5% by mass, Mg: 0.2 to 1.5% by mass, Fe: 0.3% by mass or less, and Mn: 0. Containing one or two of 02 to 0.15% by mass and Cr: 0.02 to 0.15%, and the balance of Al and Ti in inevitable impurities is regulated to 0.2% or less, or An aluminum alloy plate having a composition containing one or two of Cu: 0.01 to 1% by mass or rare earth element: 0.01 to 0.2% by mass was prepared by continuous casting and rolling, and then cold-worked. Rolling, followed by solution treatment at 500 to 570 ° C., followed by further cold rolling at a cold rolling rate of 5 to 40%, followed by aging treatment after heating to 150 to 190 ° C. Aluminum with excellent thermal conductivity, strength and bending workability Method for producing a gold plate have been described.
 特許文献2には、Mgを0.1~0.34質量%、Siを0.2~0.8質量%、Cuを0.22~1.0質量%含有し、残部がAl及び不可避不純物からなり、Si/Mg含有量比が1.3以上であるAl-Mg―Si系合金を、半連続鋳造で厚さ250mm以上の鋳塊とし、400~540℃の温度で予備加熱を経て熱間圧延、50~85%の圧下率で冷間圧延を施した後、140~280℃の温度で焼鈍をすることを特徴とする、Al-Mg-Si系合金圧延板の製造方法が開示されている。 Patent Document 2 contains 0.1 to 0.34% by mass of Mg, 0.2 to 0.8% by mass of Si, and 0.22 to 1.0% by mass of Cu, with the balance being Al and inevitable impurities. An Al—Mg—Si based alloy having a Si / Mg content ratio of 1.3 or more is made into an ingot having a thickness of 250 mm or more by semi-continuous casting, and is heated through preheating at a temperature of 400 to 540 ° C. Disclosed is a method for producing an Al—Mg—Si alloy rolled sheet, characterized by performing cold rolling at a rolling reduction of 50 to 85% and annealing at a temperature of 140 to 280 ° C. ing.
 特許文献3には、Si:0.2~0.8wt%、Mg:0.3~0.9wt%、Fe:0.35wt%以下、Cu:0.20質量%以下を含有し、残部Alおよび不可避不純物からなるAl-Mg―Si系合金鋳造塊を均質化処理し、熱間圧延および熱間仕上げ圧延した後に冷間圧延する合金の製造方法であって、前記熱間圧延の任意のパス工程において、パス前の材料温度を350~450℃とするとともに、上がり板厚を10mm以下とし、前記冷間圧延の圧下率を30%以上とすることを特徴とするAl-Mg―Si系合金板の製造方法が開示されている。 Patent Document 3 contains Si: 0.2 to 0.8 wt%, Mg: 0.3 to 0.9 wt%, Fe: 0.35 wt% or less, Cu: 0.20 mass% or less, and the balance Al And a method of producing an alloy in which an Al—Mg—Si alloy ingot made of inevitable impurities is homogenized, hot-rolled and hot-finished, and then cold-rolled, and any pass of said hot-rolling In the process, an Al—Mg—Si based alloy is characterized in that the material temperature before the pass is 350 to 450 ° C., the rising plate thickness is 10 mm or less, and the reduction ratio of the cold rolling is 30% or more. A method for manufacturing a plate is disclosed.
 なお、Al-Mg―Si系合金においては、熱伝導率と導電率が良好な相関性を示し、優れた熱伝導性を有するアルミニウム合金板は優れた導電率を有し、放熱部材材料はもちろん導電部材材料として用いることができる。 In the Al—Mg—Si based alloy, the thermal conductivity and the electrical conductivity have a good correlation, and the aluminum alloy plate having an excellent thermal conductivity has an excellent electrical conductivity, not to mention the heat radiating member material. It can be used as a conductive member material.
特開2007-9262号公報JP 2007-9262 A 特開2012-62517号公報JP 2012-62517 A 特開2000-87198号公報JP 2000-87198 A
 特許文献1では、比較的高い強度を有するアルミニウム合金板が得られるものの、冷間圧延の途中のアルミニウム合金板に500℃以上の高温の熱処理とその後の急冷からなる溶体化処理を施した後、冷間圧延を更に実施した後時効処理を行うという複雑な工程が必要であり、製造コストが高くなる。 In Patent Document 1, although an aluminum alloy plate having a relatively high strength is obtained, a solution treatment comprising high-temperature heat treatment at 500 ° C. or higher and subsequent rapid cooling is performed on the aluminum alloy plate in the middle of cold rolling, A complicated process of performing an aging treatment after further cold rolling is required, which increases the manufacturing cost.
 特許文献2記載の製造方法では、熱間圧延より後の工程において溶体化処理を必要としないが、発明例の引張強さの最大値は213N/mm(MPa)に留まる。  In the manufacturing method described in Patent Document 2, no solution treatment is required in the process after hot rolling, but the maximum value of the tensile strength of the invention example remains at 213 N / mm 2 (MPa).
 特許文献3では、特許文献2と同様に熱間圧延より後の工程において溶体化処理が不要であり、  特許文献2より高い引張強さが得られるが、特許文献2の実施例では300N/mm(MPa)を超える引張強度が得られるのは冷間圧延圧下率98%製品板厚0.1mmの実施例に限定されており、強度向上には限界があった。 In Patent Document 3, as in Patent Document 2, no solution treatment is required in the process after hot rolling, and a higher tensile strength than that in Patent Document 2 is obtained. However, in the example of Patent Document 2, 300 N / mm is used. The tensile strength exceeding 2 (MPa) can be obtained only in the examples where the cold rolling reduction rate is 98% and the product sheet thickness is 0.1 mm, and there is a limit to the improvement in strength.
 本発明の目的は、上述した技術背景に鑑み、熱間圧延より後の工程において溶体化処理を適用せずに、高い導電率を有しさらに強度を改善することができるAl-Mg-Si系合金板の製造方法を提供することにある。 In view of the technical background described above, an object of the present invention is an Al—Mg—Si system that has high conductivity and can further improve strength without applying a solution treatment in a process after hot rolling. It is providing the manufacturing method of an alloy plate.
 上記課題は、以下の手段によって解決される。
(1)Al-Mg-Si系合金鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法であって、 熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が230℃以下であるAl-Mg-Si系合金板の製造方法。
(2)Al-Mg-Si系合金鋳塊の化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなる前項1に記載のAl-Mg-Si系合金板の製造方法。
(3)不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されている前項1または前項2に記載のAl-Mg-Si系合金板の製造方法。
(4)熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が200℃以下である前項1ないし前項3の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(5)冷間圧延の圧延率が20%以上である前項1ないし前項4の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(6)冷間圧延後に最終焼鈍を実施する前項1ないし前項5の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(7)最終焼鈍の温度が200℃以下である前項6に記載のAl-Mg-Si系合金板の製造方法。
(8)熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金板の表面温度が470~350℃でありパスによるAl-Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施する前項1ないし前項7の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(9)Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなるAl-Mg-Si系合金鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法であって、 熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が230℃以下であるAl-Mg-Si系合金板の製造方法。
(10)不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている前項9に記載のAl-Mg-Si系合金板の製造方法。
(11)不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている前項9または前項10に記載のAl-Mg-Si系合金板の製造方法。
(12)不純物としてのAgが0.05質量%以下に規制されている前項9ないし前項11の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(13)不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている前項9ないし前項12の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(14)熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が200℃以下である前項9ないし前項13の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(15)冷間圧延の圧延率が20%以上である前項9ないし前項14の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(16)冷間圧延後に最終焼鈍を実施する前項9ないし前項15の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(17)最終焼鈍の温度が200℃以下である前項16に記載のAl-Mg-Si系合金板の製造方法。
(18)熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金板の表面温度が470~350℃でありパスによるAl-Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施する前項9ないし前項17の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
The above problem is solved by the following means.
(1) A method of manufacturing an alloy plate in which hot rolling and cold rolling are sequentially performed on an Al—Mg—Si alloy ingot, and the surface temperature of the Al—Mg—Si alloy plate immediately after the end of hot rolling A method for producing an Al—Mg—Si based alloy sheet having a temperature of 230 ° C. or lower.
(2) The chemical composition of the Al—Mg—Si alloy ingot is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 2. The method for producing an Al—Mg—Si based alloy plate as described in 1 above, comprising 0.5% by mass or less, the balance being Al and inevitable impurities.
(3) The method for producing an Al—Mg—Si-based alloy plate according to item 1 or 2, wherein Mn, Cr, Zn, and Ti as impurities are each regulated to 0.1% by mass or less.
(4) The method for producing an Al—Mg—Si alloy plate according to any one of the preceding items 1 to 3, wherein the surface temperature of the Al—Mg—Si alloy plate immediately after the end of hot rolling is 200 ° C. or less. .
(5) The method for producing an Al—Mg—Si alloy sheet according to any one of items 1 to 4 above, wherein a rolling rate of cold rolling is 20% or more.
(6) The method for producing an Al—Mg—Si alloy sheet according to any one of items 1 to 5 above, wherein final annealing is performed after cold rolling.
(7) The method for producing an Al—Mg—Si alloy plate as described in 6 above, wherein the final annealing temperature is 200 ° C. or less.
(8) Among a plurality of hot rolling passes, the surface temperature of the Al—Mg—Si alloy plate immediately before the pass is 470 to 350 ° C., and the Al—Mg—Si alloy plate is cooled by the pass, or 8. The method for producing an Al—Mg—Si based alloy sheet according to any one of the preceding items 1 to 7, wherein a pass in which an average cooling rate by forced cooling after the pass is 50 ° C./min or more is performed at least once.
(9) Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less and Cu: 0.5 mass% or less, and Ti: 0 .Hot rolling and cold rolling are sequentially performed on an Al—Mg—Si alloy ingot containing at least one type of 1% by mass or less or B: 0.1% by mass or less, the balance being Al and inevitable impurities. A method for producing an alloy plate, wherein the surface temperature of the Al—Mg—Si alloy plate immediately after the end of hot rolling is 230 ° C. or less.
(10) The method for producing an Al—Mg—Si-based alloy plate according to item 9, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1% by mass or less.
(11) The Al—Mg—Si alloy plate according to the preceding item 9 or 10, wherein Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are regulated to 0.05% by mass or less, respectively. Production method.
(12) The method for producing an Al—Mg—Si alloy plate according to any one of items 9 to 11, wherein Ag as an impurity is regulated to 0.05% by mass or less.
(13) The method for producing an Al—Mg—Si alloy plate according to any one of items 9 to 12, wherein the total content of rare earth elements as impurities is regulated to 0.1 mass% or less.
(14) The method for producing an Al—Mg—Si alloy plate according to any one of items 9 to 13, wherein the surface temperature of the Al—Mg—Si alloy plate immediately after the end of hot rolling is 200 ° C. or less. .
(15) The method for producing an Al—Mg—Si based alloy sheet according to any one of items 9 to 14 above, wherein a rolling rate of cold rolling is 20% or more.
(16) The method for producing an Al—Mg—Si based alloy sheet according to any one of items 9 to 15, wherein the final annealing is performed after cold rolling.
(17) The method for producing an Al—Mg—Si alloy plate as described in 16 above, wherein the final annealing temperature is 200 ° C. or less.
(18) Among a plurality of hot rolling passes, the surface temperature of the Al—Mg—Si alloy plate immediately before the pass is 470 to 350 ° C., and the Al—Mg—Si alloy plate is cooled by the pass, or 18. The method for producing an Al—Mg—Si based alloy sheet according to any one of 9 to 17 above, wherein a pass having an average cooling rate of 50 ° C./min or more by forced cooling after the pass is performed at least once.
 前項(1)に記載の発明によれば、熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が230℃以下であるため、熱間圧延による有効な焼き入れ効果が得られ、高い引張強さを有するAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (1), since the surface temperature of the Al—Mg—Si based alloy sheet immediately after the end of hot rolling is 230 ° C. or less, an effective quenching effect by hot rolling can be obtained, An Al—Mg—Si alloy plate having a high tensile strength can be produced.
 前項(2)に記載の発明によれば、Al-Mg-Si系合金鋳塊の化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなるため、高い引張強さを有するAl-Mg-Si系合金板を製造することができる。 According to the invention described in item (2) above, the chemical composition of the Al—Mg—Si alloy ingot is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: Since it contains 0.5% by mass or less and Cu: 0.5% by mass or less, and consists of the balance Al and unavoidable impurities, an Al—Mg—Si based alloy sheet having high tensile strength can be manufactured.
 前項(3)に記載の発明によれば、不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されているため、高い引張強さを有するAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (3), since Mn, Cr, Zn, and Ti as impurities are regulated to 0.1% by mass or less, Al—Mg—Si having high tensile strength. A system alloy plate can be manufactured.
 前項(4)に記載の発明によれば、熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が200℃以下であるため、熱間圧延による焼き入れ効果を高めることができる。    According to the invention described in item (4) above, since the surface temperature of the Al—Mg—Si based alloy sheet immediately after the end of hot rolling is 200 ° C. or less, the quenching effect by hot rolling can be enhanced. *
 前項(5)に記載の発明によれば、熱処理後の冷間圧延の圧延率が20%以上であるため、冷間圧延によりAl-Mg-Si系合金板の強度を向上させることができる。 According to the invention described in item (5) above, since the rolling rate of the cold rolling after the heat treatment is 20% or more, the strength of the Al—Mg—Si based alloy sheet can be improved by cold rolling.
 前項(6)に記載の発明によれば、冷間圧延後に最終焼鈍を実施するため、時効硬化によりAl-Mg-Si系合金板の強度を更に高くすることができ、同時に導電率も向上させることがきる。 According to the invention described in item (6) above, since the final annealing is performed after cold rolling, the strength of the Al—Mg—Si based alloy sheet can be further increased by age hardening, and at the same time, the conductivity is improved. I can do it.
 前項(7)に記載の発明によれば、最終焼鈍の温度が200℃以下であるため、引張強さおよび導電率が高い値を示すAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (7), since the final annealing temperature is 200 ° C. or less, an Al—Mg—Si based alloy sheet showing high values of tensile strength and electrical conductivity can be produced.
 前項(8)に記載の発明によれば、熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金板の表面温度が470~350℃でありパスによるAl-Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施するため、熱間圧延による焼き入れ効果を高めることができる。 According to the invention described in item (8) above, the surface temperature of the Al—Mg—Si based alloy plate immediately before the pass among the plurality of passes of hot rolling is 470 to 350 ° C., and the Al—Mg—Si due to the pass is used. Since the pass in which the average cooling rate by cooling of the alloy plate or the forced cooling after the pass is 50 ° C./min or more is performed at least once, the quenching effect by hot rolling can be enhanced.
 前項(9)に記載の発明によれば、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなるAl-Mg-Si系合金鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法において、 熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が230℃以下であるため、熱間圧延による有効な焼き入れ効果が得られ、高い引張強さを有するAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (9), Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass% In addition, at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less is contained in the Al—Mg—Si alloy ingot consisting of the remainder Al and inevitable impurities. In an alloy sheet manufacturing method in which rolling and cold rolling are performed sequentially, the surface temperature of the Al—Mg—Si alloy sheet immediately after the end of hot rolling is 230 ° C. or less, so that effective quenching effect by hot rolling And an Al—Mg—Si based alloy sheet having a high tensile strength can be produced.
 前項(10)に記載の発明によれば、不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されているため、高い引張強さを有するAl-Mg-Si系合金板を製造することができる。 According to the invention described in the above item (10), since Mn, Cr, and Zn as impurities are respectively regulated to 0.1% by mass or less, an Al—Mg—Si based alloy having high tensile strength A board can be manufactured.
 前項(11)に記載の発明によれば、不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されているため、高い引張強さを有するAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (11), since Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are respectively regulated to 0.05% by mass or less, they have high tensile strength. An Al—Mg—Si based alloy plate can be manufactured.
 前項(12)に記載の発明によれば、不純物としてのAgが0.05質量%以下に規制されているため、高い引張強さを有するAl-Mg-Si系合金板を製造することができる。 According to the invention described in item (12) above, since Ag as an impurity is regulated to 0.05% by mass or less, an Al—Mg—Si based alloy plate having high tensile strength can be manufactured. .
 前項(13)に記載の発明によれば、不純物としての希土類元素の合計含有量が0.1質量%以下に規制されているため、高い引張強さを有するAl-Mg-Si系合金板を製造することができる。 According to the invention described in item (13) above, since the total content of rare earth elements as impurities is regulated to 0.1% by mass or less, an Al—Mg—Si based alloy plate having high tensile strength is obtained. Can be manufactured.
 前項(14)に記載の発明によれば、熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が200℃以下であるため、熱間圧延による焼き入れ効果を高めることができる。  According to the invention described in the preceding item (14), since the surface temperature of the Al—Mg—Si based alloy sheet immediately after the end of hot rolling is 200 ° C. or less, the quenching effect by hot rolling can be enhanced. *
 前項(15)に記載の発明によれば、熱処理後の冷間圧延の圧延率が20%以上であるため、冷間圧延によりAl-Mg-Si系合金板の強度を向上させることができる。 According to the invention described in item (15) above, since the rolling rate of the cold rolling after the heat treatment is 20% or more, the strength of the Al—Mg—Si based alloy sheet can be improved by cold rolling.
 前項(16)に記載の発明によれば、冷間圧延後に最終焼鈍を実施するため、時効硬化によりAl-Mg-Si系合金板の強度を更に高くすることができ、同時に導電率も向上させることがきる。 According to the invention described in item (16) above, since the final annealing is performed after cold rolling, the strength of the Al—Mg—Si based alloy plate can be further increased by age hardening, and at the same time the conductivity is improved. I can do it.
 前項(17)に記載の発明によれば、最終焼鈍の温度が200℃以下であるため、引張強さおよび導電率が高い値を示すAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (17), since the final annealing temperature is 200 ° C. or less, an Al—Mg—Si based alloy sheet exhibiting high values of tensile strength and electrical conductivity can be produced.
 前項(18)に記載の発明によれば、熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金板の表面温度が470~350℃でありパスによるAl-Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施するため、熱間圧延による焼き入れ効果を高めることができる。 According to the invention described in the preceding item (18), the surface temperature of the Al—Mg—Si based alloy plate immediately before the pass among the plurality of passes of hot rolling is 470 to 350 ° C., and the Al—Mg—Si due to the pass is used. Since the pass in which the average cooling rate by cooling of the alloy plate or the forced cooling after the pass is 50 ° C./min or more is performed at least once, the quenching effect by hot rolling can be enhanced.
 本願発明者は、熱間圧延、冷間圧延を順次施するAl-Mg-Si系合金板の製造方法において、熱間圧延上がりの合金板の表面温度を所定の温度以下とするとともに、熱間圧延終了後であって冷間圧延終了前に熱処理を施すことにより、高い導電率と良好な加工性を有しつつ高い強度を有するAl-Mg-Si系合金板が得られることを見出し本願の発明に至った。 The inventor of the present application provides a method for producing an Al—Mg—Si based alloy sheet, which is sequentially subjected to hot rolling and cold rolling, while keeping the surface temperature of the alloy sheet after hot rolling below a predetermined temperature, It has been found that an Al—Mg—Si alloy sheet having high strength while having high conductivity and good workability can be obtained by performing heat treatment after the end of rolling and before the end of cold rolling. Invented.
 以下に、本願のAl-Mg-Si系合金板の製造方法について詳細に説明する。  Hereinafter, a method for producing the Al—Mg—Si alloy plate of the present application will be described in detail. *
 本願のAl-Mg-Si系合金組成において、各元素の添加目的および好ましい含有量を示す。 In the Al—Mg—Si based alloy composition of the present application, the purpose of addition of each element and the preferred content are shown.
 MgおよびSiは強度の発現に必要な元素であり、それぞれの含有量はSi:0.2質量%以上0.8質量%以下、Mg:0.3質量%以上1質量%以下であることが好ましい。Si含有量が0.2質量%未満あるいはMg含有量が0.3質量%未満では強度が低くなる。一方、Si含有量が0.8質量%、Mg含有量が1質量%を超えると、熱間圧延での圧延負荷が高くなって生産性が低下し、得られるアルミニウム合金板の成形加工性も悪くなる。Si含有量は0.2質量%以上0.6質量%以下が更に好ましく、更に0.32質量%以上0.60質量%以下が特に好ましい。Mg含有量は、0.4質量%以上1.0質量%以下が更に好ましく、0.45質量%以上0.9質量%以下がより好ましく、特に0.45質量%以上0.55質量%以下が好ましい。 Mg and Si are elements necessary for the development of strength, and the respective contents thereof are Si: 0.2% by mass or more and 0.8% by mass or less, and Mg: 0.3% by mass or more and 1% by mass or less. preferable. If the Si content is less than 0.2% by mass or the Mg content is less than 0.3% by mass, the strength is lowered. On the other hand, if the Si content exceeds 0.8% by mass and the Mg content exceeds 1% by mass, the rolling load in hot rolling increases and the productivity decreases, and the formability of the resulting aluminum alloy sheet also increases. Deteriorate. The Si content is more preferably 0.2% by mass or more and 0.6% by mass or less, and particularly preferably 0.32% by mass or more and 0.60% by mass or less. The Mg content is more preferably 0.4% by mass or more and 1.0% by mass or less, more preferably 0.45% by mass or more and 0.9% by mass or less, and particularly preferably 0.45% by mass or more and 0.55% by mass or less. Is preferred.
 FeおよびCuは成形加工上必要な成分であるが、多量に含有すると耐食性が低下する。本願においてFe含有量およびCu含有量はそれぞれ0.5質量%以下に規制ことが好ましい。Fe含有量は0.35質量%以下に規制することが更に好ましく、特に0.1質量%以上0.25質量%以下であることが好ましい。Cu含有量は0.2質量%以下であることが更に好ましく、特に0.1質量%以下であることが好ましい。 Fe and Cu are components necessary for molding, but if they are contained in a large amount, the corrosion resistance decreases. In the present application, the Fe content and the Cu content are preferably regulated to 0.5% by mass or less, respectively. The Fe content is more preferably regulated to 0.35% by mass or less, and particularly preferably from 0.1% by mass to 0.25% by mass. The Cu content is more preferably 0.2% by mass or less, and particularly preferably 0.1% by mass or less.
 また、合金元素には種々の不純物元素が不可避的に含有されるが、MnおよびCrは伝導性および導電性を低下させ、Znは含有量が多くなると合金材の耐食性を低下させるため少ないことが好ましい。不純物としてのMn、Cr、およびZnのそれぞれの含有量は0.1質量%以下が好ましく、更に0.05質量%以下が好ましい。 In addition, various impurity elements are unavoidably contained in the alloy element, but Mn and Cr decrease conductivity and conductivity, and Zn increases in content and decreases in corrosion resistance of the alloy material. preferable. The content of each of Mn, Cr, and Zn as impurities is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
 TiおよびBは、合金をスラブに鋳造する際に結晶粒を微細化するとともに凝固割れを防止する効果がある。前記効果はTiまたはBの少なくとも1種の添加により得られ、両方を添加してもよい。しかしながら、多量に含有すると、晶出物がサイズの大きい晶出物が多く生成するため、製品の加工性や熱伝導性および導電率が低下する。Ti含有量は0.1質量以下が好ましく、更に0.005質量%以上0.05質量%以下が好ましい。また、B含有量は0.1質量%以下が好ましく、特に0.06質量%が好ましい。 Ti and B have the effect of refining crystal grains and preventing solidification cracking when casting the alloy into a slab. The effect is obtained by adding at least one of Ti or B, and both may be added. However, if it is contained in a large amount, a large amount of crystallized crystals are generated, and the workability, thermal conductivity, and conductivity of the product are lowered. The Ti content is preferably 0.1% by mass or less, and more preferably 0.005% by mass or more and 0.05% by mass or less. Further, the B content is preferably 0.1% by mass or less, and particularly preferably 0.06% by mass.
 上記以外のその他の不純物元素としては、Ni、V、Ga、Pb、Sn、Bi、Zr、Ag、希土類等が挙げられるが、これらに限定されるものではなく、これらその他の不純物元素のうち希土類以外は個々の元素の含有量として0.05質量%以下であることが好ましい。上記その他の不純物元素のうち希土類は、1種または複数種の元素が含まれていてもよく、ミッシュメタルの状態で含まれている鋳造用原料に由来するものでも良いが、希土類元素の合計含有量は0.1質量%以下であることが好ましく、更に0.05質量%以下であることが好ましい。 Other impurity elements other than the above include Ni, V, Ga, Pb, Sn, Bi, Zr, Ag, rare earth, etc., but are not limited to these, and among these other impurity elements, rare earth Other than the above, the content of each element is preferably 0.05% by mass or less. Among the other impurity elements, the rare earth may contain one or more kinds of elements, and may be derived from a casting raw material contained in the state of misch metal, but the total content of rare earth elements The amount is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
 次に、本願規定のAl-Mg―Si系合金板を得るための処理工程について記述する。 Next, the processing steps for obtaining the Al—Mg—Si based alloy sheet specified in the present application will be described.
 常法にて溶解成分調整し、Al-Mg―Si系合金鋳塊を得る。得られた合金鋳塊に熱間圧延前加熱より前の工程として均質化処理を施すことが好ましい。 The dissolved components are adjusted by a conventional method to obtain an Al—Mg—Si alloy ingot. The obtained alloy ingot is preferably subjected to a homogenization treatment as a step prior to heating before hot rolling.
 前記均質化処理は、500℃以上で行うことが好ましい。 The homogenization treatment is preferably performed at 500 ° C. or higher.
 前記熱間圧延前加熱はAl-Mg―Si系合金鋳塊中に晶出物およびMg、Siを固溶させ均一な組織とするために実施するが、温度が高すぎると鋳塊中で部分的な融解が起こる可能性があるため、450℃以上580℃以下で行うことが好ましく、特に500℃以上580℃以下で行うことが好ましい。 The heating before hot rolling is carried out in order to solidify the crystallized substance and Mg, Si in the Al—Mg—Si alloy ingot to form a uniform structure. Therefore, it is preferable to carry out at 450 ° C. or higher and 580 ° C. or lower, particularly preferably at 500 ° C. or higher and 580 ° C. or lower.
 Al-Mg―Si系合金鋳塊に均質化処理を行った後冷却し、熱間圧延前加熱を行っても良いし、均質化処理と熱間圧延前加熱を連続して行っても良く、前記均質化処理および熱間圧延前加熱の好ましい温度範囲にて均質化処理と熱間圧延前加熱を兼ねて同じ温度で加熱しても良い。 The Al-Mg-Si alloy ingot is cooled after being homogenized, and may be heated before hot rolling, or the homogenization and heating before hot rolling may be performed continuously, In the preferable temperature range of the homogenization treatment and heating before hot rolling, the homogenization treatment and the heating before hot rolling may be combined and heated at the same temperature.
 鋳造後熱間圧延前加熱前に鋳塊の表面近傍の不純物層を除去する為に鋳塊に面削を施すことが好ましい。面削は鋳造後均質化処理前であっても良いし、均質化処理後熱間圧延前加熱前であってもよい。 It is preferable to chamfer the ingot in order to remove an impurity layer near the surface of the ingot before heating after casting and before hot rolling. The chamfering may be performed after casting and before homogenization treatment, or after homogenization treatment and before heating before hot rolling.
 熱間圧延前加熱後のAl-Mg―Si系合金鋳塊に熱間圧延を施す。 Hot rolling is performed on the Al-Mg-Si alloy ingot after heating before hot rolling.
 熱間圧延は粗熱間圧延と仕上げ熱間圧延からなり、粗熱間圧延機を用い複数のパスからなる粗熱間圧延を行った後、粗熱間圧延機とは異なる仕上げ熱間圧延機を用いて仕上げ熱間圧延を行う。なお、本願において、粗熱間圧延機での最終パスを熱間圧延の最終パスとする場合は、仕上げ熱間圧延を省略することができる。 Hot rolling consists of rough hot rolling and finishing hot rolling, and after performing rough hot rolling consisting of multiple passes using a rough hot rolling mill, a finishing hot rolling mill different from the rough hot rolling mill is used. Finish hot rolling using. In the present application, when the final pass in the rough hot rolling mill is the final pass of hot rolling, the finish hot rolling can be omitted.
 本願において、仕上げ熱間圧延は、上下一組のワークロールもしくは二組以上のワークロールが連続して設置された圧延機を用いて1方向からAl-Mg―Si系合金板を導入し1回のパスで実施される。 In the present application, the finish hot rolling is performed once by introducing an Al—Mg—Si based alloy plate from one direction using a rolling mill in which a pair of upper and lower work rolls or two or more work rolls are continuously installed. It is carried out in the pass.
 冷間圧延をコイルで実施する場合には、仕上げ熱間圧延後のAl-Mg―Si系合金板を巻き取り装置で巻き取って熱延コイルとすればよい。仕上げ熱間圧延を省略し、粗熱間圧延の最終パスを熱間圧延の最終パスとする場合は、粗熱間圧延の後、Al-Mg―Si系合金板を巻き取り装置にて巻き取って熱延コイルとしてもよい。 When performing cold rolling with a coil, an Al—Mg—Si alloy plate after finish hot rolling may be wound with a winding device to form a hot rolled coil. When finishing hot rolling is omitted and the final pass of rough hot rolling is used as the final pass of hot rolling, the Al-Mg-Si alloy plate is taken up by a winder after the rough hot rolling. It may be a hot rolled coil.
 粗熱間圧延では、溶体化処理に準じてMgおよびSiが固溶された状態を保持した後、粗熱間圧延のパスによるAl-Mg―Si系合金板の冷却、もしくは粗熱間圧延のパス後とパス後の強制冷却による温度降下により焼き入れの効果を得ことができる。 In rough hot rolling, after maintaining the state in which Mg and Si are dissolved in accordance with the solution treatment, cooling of the Al—Mg—Si alloy plate by a rough hot rolling pass, or rough hot rolling is performed. The quenching effect can be obtained by the temperature drop due to forced cooling after the pass and after the pass.
 本願において粗熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金板の表面温度が350℃以上470℃以下でありパスによるAl-Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを制御パスと呼ぶ。制御パス直前のAl-Mg―Si系合金板の表面温度を350℃以上470℃以下としたのは、350℃未満では粗熱間圧延における急冷による焼き入れの効果が小さく、470℃より高い温度ではパス上がりのAl-Mg―Si系合金板の急冷が困難であるからである。 In the present application, among a plurality of passes of rough hot rolling, the surface temperature of the Al—Mg—Si alloy plate immediately before the pass is 350 ° C. or more and 470 ° C. or less, and the Al—Mg—Si alloy plate is cooled by the pass, or A pass having an average cooling rate of 50 ° C./min or more by the pass and forced cooling after the pass is called a control pass. The reason why the surface temperature of the Al—Mg—Si alloy plate immediately before the control pass is set to 350 ° C. or more and 470 ° C. or less is that if it is less than 350 ° C., the effect of quenching in the rapid hot rolling is small and the temperature is higher than 470 ° C. This is because it is difficult to rapidly cool the Al-Mg-Si based alloy plate having a rising path.
 上記平均冷却速度は制御パスにおいて強制冷却を行わない場合は制御パスの開始から終了まで、制御パス後に強制冷却を行う場合は制御パスの開始から強制冷却の終了までのAl-Mg―Si系合金板の温度降下(℃)を要した時間(分)で除した値とする。 The average cooling rate is an Al—Mg—Si alloy from the start to the end of the control pass when forced cooling is not performed in the control pass, and from the start of the control pass to the end of forced cooling when forced cooling is performed after the control pass. A value obtained by dividing the temperature drop (° C) of the plate by the time (minutes) required.
 制御パス後の強制冷却は、Al-Mg―Si系合金板を圧延しながら圧延後の部位に対し順次実施してもよいし、Al-Mg―Si系合金板全体を圧延した後実施してもよい。強制冷却の方法は限定されないが、水冷であっても空冷であってもよいし、クーラントを利用してもよい。 Forced cooling after the control pass may be performed sequentially on the rolled part while rolling the Al—Mg—Si alloy plate, or after rolling the entire Al—Mg—Si alloy plate. Also good. The method of forced cooling is not limited, but water cooling, air cooling, or coolant may be used.
 前記制御パスは少なくとも1回実施することが好ましく、複数回実施しても良い。制御パスを複数回実施する場合、各々の制御パスについてパス後に強制冷却を行うか否かを選択できる。パス直前Al-Mg―Si系合金板の表面温度が470~350℃であって冷却速度が50℃/分以上であれば制御パスは複数回実施することができるが、1回の制御パスでAl-Mg―Si系合金板の温度を350℃未満に降下させることにより効率よく効果的に焼き入れを行うことができる。 The control pass is preferably performed at least once, and may be performed a plurality of times. When performing the control pass a plurality of times, it is possible to select whether to perform forced cooling after each pass for each control pass. If the surface temperature of the Al—Mg—Si based alloy plate immediately before the pass is 470 to 350 ° C. and the cooling rate is 50 ° C./min or more, the control pass can be performed multiple times. By reducing the temperature of the Al—Mg—Si based alloy plate to below 350 ° C., quenching can be performed efficiently and effectively.
 本願において、粗熱間圧延の最終パス後に強制冷却を行わない場合は、熱間圧延の最終パス直後のAl-Mg―Si系合金板の表面温度を粗熱間圧延上がり温度とし、粗熱間圧延の最終パス後に強制冷却を行う場合は、強制冷却終了直後のAl-Mg―Si系合金板の表面温度を粗熱間圧延上がり温度とする。 In the present application, when forced cooling is not performed after the final pass of the rough hot rolling, the surface temperature of the Al—Mg—Si based alloy sheet immediately after the final pass of the hot rolling is set as the temperature after the rough hot rolling, When forced cooling is performed after the final pass of rolling, the surface temperature of the Al—Mg—Si alloy sheet immediately after the end of forced cooling is set as the temperature after rough hot rolling.
 本願において仕上げ熱間圧延を実施する場合は仕上げ熱間圧延の終了、仕上げ熱間圧延を実施しない場合は粗熱間圧延の最終パスの終了をもって熱間圧延の終了とし、熱間圧延終了直後のAl-Mg―Si系合金板の表面温度は230℃以下とする。熱間圧延終了直後の合金板の温度を230℃以下とすることにより有効な焼き入れ効果が得られる。 In the present application, when finishing hot rolling is performed, finishing hot rolling ends. When finishing hot rolling is not performed, hot rolling ends with the end of the final pass of rough hot rolling, and immediately after the hot rolling ends. The surface temperature of the Al—Mg—Si based alloy plate is 230 ° C. or less. An effective quenching effect can be obtained by setting the temperature of the alloy sheet immediately after the hot rolling to 230 ° C. or less.
 熱間圧延終了直後のAl-Mg―Si系合金板の表面温度が高すぎると、焼き入れの効果が不足し、熱間圧延終了後冷間圧延終了前に熱処理を実施しても強度の向上が不十分となる。熱間圧延終了直後のAl-Mg―Si系合金板の表面温度は200℃以下が好ましく、更に150℃以下が好ましく、特に130℃以下が好ましい。 If the surface temperature of the Al-Mg-Si alloy sheet immediately after the end of hot rolling is too high, the effect of quenching will be insufficient, and the strength will be improved even if heat treatment is performed after the end of hot rolling and before the end of cold rolling. Is insufficient. The surface temperature of the Al—Mg—Si based alloy sheet immediately after the hot rolling is preferably 200 ° C. or less, more preferably 150 ° C. or less, and particularly preferably 130 ° C. or less.
 なお、粗熱間圧延の後仕上げ熱間圧延を行う場合は、仕上げ熱間圧延のパスによる焼き入れ効果を得るために、仕上げ熱間圧延直前のAl-Mg―Si系合金板の表面温度は270℃以下であることが好ましい。 In addition, when performing finish hot rolling after rough hot rolling, the surface temperature of the Al-Mg-Si alloy plate immediately before finish hot rolling is It is preferable that it is 270 degrees C or less.
 また、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスではない場合も同様に、粗熱間圧延最終パス直前のAl-Mg―Si系合金板の表面温度は270℃以下が好ましい。 Similarly, when the final hot rolling is not performed and the final pass of the rough hot rolling is not a control pass, the surface temperature of the Al—Mg—Si alloy plate immediately before the final hot hot rolling is 270 ° C. or less. preferable.
 一方、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスである場合、制御パスが熱間圧延の最終パスとなるので、熱間圧延の最終パス直前のAl-Mg―Si系合金板の表面温度が470~350℃であって圧延もしくは圧延と圧延後の強制冷却により冷却速度が50℃/分以上の冷却速度で合金板の表面温度が230℃以下となるように制御パスを実施する。 On the other hand, if the final pass of rough hot rolling is a control pass without finishing hot rolling, the control pass is the final pass of hot rolling, so the Al—Mg—Si system immediately before the final pass of hot rolling. Control pass so that the surface temperature of the alloy plate is 470 to 350 ° C., and the surface temperature of the alloy plate is 230 ° C. or less at a cooling rate of 50 ° C./min or more by rolling or forced cooling after rolling and rolling. To implement.
 熱間圧延終了後のAl-Mg―Si系合金板に冷間圧延を施し所定の厚さのAl-Mg―Si系合金板とする。冷間圧延は強度向上の為20%以上の圧延率で実施されることが好ましい。冷間圧延によるAl-Mg―Si系合金板の圧延率は更に30%以上が好ましく、特に60%以上が好ましい。 After the hot rolling, the Al—Mg—Si based alloy sheet is cold rolled to obtain an Al—Mg—Si based alloy sheet having a predetermined thickness. Cold rolling is preferably performed at a rolling rate of 20% or more in order to improve strength. The rolling rate of the Al—Mg—Si based alloy sheet by cold rolling is preferably 30% or more, particularly preferably 60% or more.
 Al-Mg―Si系合金に上記製造条件を適用することにより、高い導電率と高い強度を有するAl-Mg-Si系合金板を得ることができる。 By applying the above production conditions to an Al—Mg—Si based alloy, an Al—Mg—Si based alloy plate having high conductivity and high strength can be obtained.
 冷間圧延後のAl-Mg―Si系合金板に必要に応じて洗浄を実施しても良い。 The Al—Mg—Si alloy plate after cold rolling may be cleaned as necessary.
 Al-Mg―Si系合金板の強度および/または導電率をさらに向上させるために、冷間圧延後に最終焼鈍を実施することが好ましい。最終焼鈍を施すとAl-Mg-Si系合金板の時効硬化により強度を更に高くすることができ、導電率を向上させることもきる。 In order to further improve the strength and / or conductivity of the Al—Mg—Si based alloy sheet, it is preferable to perform final annealing after cold rolling. When the final annealing is performed, the strength can be further increased by age hardening of the Al—Mg—Si based alloy plate, and the electrical conductivity can be improved.
 最終焼鈍の条件は強度および導電率の両方を向上させるか、強度または導電率のどちらかを重視するかにより選択できるが、焼鈍温度が高くなりすぎてAl-Mg―Si系合金板の強度が低下しないようにする為に200℃以下で実施することが好ましく、更に110℃以上180℃以下が好ましく、特に120℃以上170℃以下で実施することが好ましい。 The conditions for final annealing can be selected depending on whether both strength and conductivity are improved or whether strength or conductivity is emphasized, but the annealing temperature becomes too high, and the strength of the Al-Mg-Si based alloy sheet is reduced. In order not to decrease, it is preferably carried out at 200 ° C. or lower, more preferably 110 ° C. or higher and 180 ° C. or lower, particularly preferably 120 ° C. or higher and 170 ° C. or lower.
 前記Al-Mg―Si系合金板の最終焼鈍の時間は必要な強度および導電率が得られるよう調節すればよく、例えば、1~10時間の範囲で最終焼鈍の温度により選択すれば良い。 The final annealing time of the Al—Mg—Si based alloy plate may be adjusted so as to obtain necessary strength and electrical conductivity, and may be selected depending on the final annealing temperature in the range of 1 to 10 hours, for example.
 なお、本願のAl-Mg―Si系合金板の製造はコイルで行ってもよく、単板で行ってもよい。また、冷間圧延より後の任意の工程で合金板を切断し切断後の工程を単板で行ってもよいし、用途に応じスリットし条にしても良い。 The production of the Al—Mg—Si based alloy plate of the present application may be performed by a coil or a single plate. Further, the alloy plate may be cut in an arbitrary step after the cold rolling, and the step after the cutting may be performed with a single plate, or may be slit and formed depending on the application.
 以下に本発明の実施例および比較例を示す。 Examples and comparative examples of the present invention are shown below.
 (第1の実施例)
 この実施例は、請求項1~8に係る発明についての実施例である。
(First embodiment)
This embodiment is an embodiment of the invention according to claims 1-8.
 表1に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。  Aluminum alloy slabs having different chemical compositions shown in Table 1 were obtained by the DC casting method.
 [実施例1]
 表1の化学組成番号1のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で560℃6hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃4hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を開始した。粗熱間圧延中の合金板の厚さが25mmとなった後、パス直前の合金板温度461℃から平均冷却速度80℃/分にて、粗熱間圧延の最終パスを実施し、粗熱間圧延上がり温度243℃厚さ12mmの合金板とした。なお、粗熱間圧延の最終パスでは、圧延しながら合金板を移動させ、圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷による強制冷却を実施した。
[Example 1]
The aluminum alloy slab having the chemical composition number 1 in Table 1 was chamfered. Next, the homogenized treatment at 560 ° C. for 6 hours was performed on the alloy slab after chamfering in a heating furnace, and then the pre-hot rolling at 540 ° C. for 4 hours was performed by changing the temperature in the same furnace. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./min from the alloy plate temperature 461 ° C. immediately before the pass, An alloy plate having a hot rolling temperature of 243 ° C. and a thickness of 12 mm was obtained. In the final pass of the rough hot rolling, the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.
 粗熱間圧延の後、合金板に仕上げ熱間圧延直前温度241℃から仕上げ熱間圧延を実施し、厚さ7.0mmの合金板を得た。仕上げ熱間圧延直後の合金板の温度は131℃であった。仕上げ熱間圧延後の合金板に圧延率91%の冷間圧延を実施し、160℃2hの最終焼鈍を施すことにより製品板厚0.6mmのアルミニウム合金板を得た。 After the rough hot rolling, the alloy plate was subjected to finish hot rolling from a temperature immediately before finishing hot rolling of 241 ° C. to obtain an alloy plate having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after the finish hot rolling was 131 ° C. The alloy sheet after the finish hot rolling was cold-rolled at a rolling rate of 91% and subjected to final annealing at 160 ° C. for 2 hours to obtain an aluminum alloy sheet having a product sheet thickness of 0.6 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例2~33、比較例1~5]
 表1に記載のアルミニウム合金スラブに面削を施した後、表2~表5に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例1と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施し、粗熱間圧延最終パス後の強制冷却は、圧延しながら合金板を移動させ圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷、粗熱間圧延最終パス完了後に送風冷却する空冷、および強制冷却無しの中から選択した。また、一部の実施例では冷間圧延後に最終焼鈍を実施した。
[Examples 2 to 33, Comparative Examples 1 to 5]
The aluminum alloy slab shown in Table 1 was chamfered and then treated under the conditions shown in Tables 2 to 5 to obtain an aluminum alloy plate. As in Example 1, in all Examples and Comparative Examples, homogenization treatment and heating before hot rolling are continuously performed in the same furnace, and forced cooling after the final pass of rough hot rolling is performed while rolling. It was selected from water cooling in which the alloy plate was moved and water was sprayed on the alloy plate sequentially from the upper and lower sides with respect to the part of the rolled alloy plate, air cooling to be blown and cooled after completion of the final hot hot rolling pass, and no forced cooling. In some examples, final annealing was performed after cold rolling.
 実施例9では、粗熱間圧延の最終パスを熱間圧延の最終パスとし、仕上げ熱間圧延を実施しなかった。 In Example 9, the final pass of rough hot rolling was used as the final pass of hot rolling, and the finish hot rolling was not performed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 得られた合金板の引張強さおよび導電率以下の方法により評価した。 The evaluation was carried out by the method below the tensile strength and conductivity of the obtained alloy plate.
 引張強さは、JIS5号試験片について、常温で常法により測定した。 Tensile strength was measured for JIS No. 5 specimens at room temperature by a conventional method.
 導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10-2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 × 10 −2 μΩm) adopted internationally was 100% IACS.
 引張強さおよび導電率の評価結果を表2~表5に示す。 Tables 2 to 5 show the evaluation results of tensile strength and electrical conductivity.
 本願規定の化学組成を有し、熱間圧延終了直後の合金板の表面温度が230℃以下である実施例では、引張強さおよび導電率が高い値であるのに対し、化学組成、熱間圧延終了直後の合金板の表面温度のどちらかが本願規定範囲を満足しない比較例は引張強さもしくは導電率の少なくともどちらかが実施例に劣る。 In the example having the chemical composition defined in the present application and the surface temperature of the alloy sheet immediately after the end of hot rolling is 230 ° C. or less, the tensile strength and conductivity are high values, whereas the chemical composition, hot The comparative example in which one of the surface temperatures of the alloy sheet immediately after the end of rolling does not satisfy the specified range of the present invention is inferior to the example in either tensile strength or electrical conductivity.
 (第2の実施例)
 この実施例は、請求項9~18に係る発明についての実施例である。
表6に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。 なお、希土類が含まれる化学組成番号120の鋳塊はミッシュメタルが含まれる原料を鋳造に用いた。
(Second embodiment)
This embodiment is an embodiment of the invention according to claims 9 to 18.
Aluminum alloy slabs having different chemical compositions shown in Table 6 were obtained by the DC casting method. In addition, the ingot of the chemical composition number 120 containing rare earth used the raw material containing misch metal for casting.
 [実施例101]
 表6の化学組成番号101のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で570℃5hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃4hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を開始した。粗熱間圧延中の合金板の厚さが25mmとなった後、パス直前の合金板温度460℃から平均冷却速度80℃/分にて、粗熱間圧延の最終パスを実施し、粗熱間圧延上がり温度242℃厚さ12mmの合金板とした。なお、粗熱間圧延の最終パスでは、圧延しながら合金板を移動させ、圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷による強制冷却を実施した。
[Example 101]
The aluminum alloy slab having the chemical composition number 101 in Table 6 was chamfered. Next, the homogenized treatment at 570 ° C. for 5 hours was performed on the alloy slab after chamfering in a heating furnace, and then the pre-hot rolling at 540 ° C. for 4 hours was performed by changing the temperature in the same furnace. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./min from the alloy plate temperature immediately before the pass of 460 ° C. An alloy plate having a hot rolling temperature of 242 ° C. and a thickness of 12 mm was obtained. In the final pass of the rough hot rolling, the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.
 粗熱間圧延の後、合金板に仕上げ熱間圧延直前温度240℃から仕上げ熱間圧延を実施し、厚さ7.0mmの合金板を得た。仕上げ熱間圧延直後の合金板の温度は130℃であった。仕上げ熱間圧延後の合金板に圧延率91%の冷間圧延を実施し、160℃2hの最終焼鈍を施すことにより製品板厚0.6mmのアルミニウム合金板を得た。 After rough hot rolling, the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 240 ° C. to obtain an alloy plate having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after the finish hot rolling was 130 ° C. The alloy sheet after the finish hot rolling was cold-rolled at a rolling rate of 91% and subjected to final annealing at 160 ° C. for 2 hours to obtain an aluminum alloy sheet having a product sheet thickness of 0.6 mm.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 [実施例102~135、比較例101~105]
 表6に記載のアルミニウム合金スラブに面削を施した後、表7~表10に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例41と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施し、粗熱間圧延最終パス後の強制冷却は、圧延しながら合金板を移動させ圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷、粗熱間圧延最終パス完了後に送風冷却する空冷、および強制冷却無しの中から選択した。また、一部の実施例では冷間圧延後に最終焼鈍を実施した。
[Examples 102 to 135, Comparative Examples 101 to 105]
After chamfering the aluminum alloy slab described in Table 6, the aluminum alloy slab was processed under the conditions described in Tables 7 to 10 to obtain an aluminum alloy sheet. In addition, as in Example 41, homogenization and heating before hot rolling were continuously performed in the same furnace in all Examples and Comparative Examples, and forced cooling after the final rough hot rolling pass was performed while rolling. It was selected from water cooling in which the alloy plate was moved and water was sprayed on the alloy plate sequentially from the upper and lower sides with respect to the part of the rolled alloy plate, air cooling to be blown and cooled after completion of the final hot hot rolling pass, and no forced cooling. In some examples, final annealing was performed after cold rolling.
 実施例109では、粗熱間圧延の最終パスを熱間圧延の最終パスとし、仕上げ熱間圧延を実施しなかった。 In Example 109, the final pass of rough hot rolling was used as the final pass of hot rolling, and the finish hot rolling was not performed.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 得られた合金板の引張強さおよび導電率以下の方法により評価した。 The evaluation was carried out by the method below the tensile strength and conductivity of the obtained alloy plate.
 引張強さは、JIS5号試験片について、常温で常法により測定した。
導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10-2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。
Tensile strength was measured by a conventional method at normal temperature for a JIS No. 5 test piece.
The electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 × 10 −2 μΩm) adopted internationally was 100% IACS.
 引張強さおよび導電率の評価結果を表7~表10に示す。 Tables 7 to 10 show the evaluation results of tensile strength and electrical conductivity.
 本願規定の化学組成を有し、熱間圧延終了直後の合金板の表面温度が230℃以下である実施例では、引張強さおよび導電率が高い値であるのに対し、化学組成、熱間圧延終了直後の合金板の表面温度のどちらかが本願規定範囲を満足しない比較例は引張強さもしくは導電率の少なくともどちらかが実施例に劣る。 In the example having the chemical composition defined in the present application and the surface temperature of the alloy sheet immediately after the end of hot rolling is 230 ° C. or less, the tensile strength and conductivity are high values, whereas the chemical composition, hot The comparative example in which one of the surface temperatures of the alloy sheet immediately after the end of rolling does not satisfy the specified range of the present invention is inferior to the example in either tensile strength or electrical conductivity.
 本願は、いずれも2016年3月30日付で出願された日本国特許出願の特願2016-67355号および特願2016-67356号の優先権主張を伴うものであり、それらの開示内容は、そのまま本願の一部を構成するものである。 This application is accompanied by the priority claims of Japanese Patent Application No. 2016-67355 and Japanese Patent Application No. 2016-67356, both of which were filed on March 30, 2016, and the disclosure content thereof is not changed. It constitutes a part of this application.
 ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。 The terms and expressions used herein are for illustrative purposes and are not to be construed as limiting, but represent any equivalent of the features shown and described herein. It should be recognized that various modifications within the claimed scope of the present invention are permissible.
 本発明は、多くの異なった形態で具現化され得るものであるが、この開示は本発明の原理の実施例を提供するものと見なされるべきであって、それら実施例は、本発明をここに記載しかつ/または図示した好ましい実施形態に限定することを意図するものではないという了解のもとで、多くの図示実施形態がここに記載されている。 While this invention may be embodied in many different forms, this disclosure is to be considered as providing examples of the principles of the invention, which examples are hereby incorporated by reference. Many illustrated embodiments are described herein with the understanding that they are not intended to be limited to the preferred embodiments described and / or illustrated.
 本発明の実施形態を幾つかここに記載したが、本発明は、ここに記載した各種の好ましい実施形態に限定されるものではなく、この開示に基づいていわゆる当業者によって認識され得る、均等な要素、修正、削除、組み合わせ(例えば、各種実施形態に跨る特徴の組み合わせ)、改良及び/又は変更を有するありとあらゆる実施形態をも包含するものである。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施例に限定されるべきではなく、そのような実施例は非排他的であると解釈されるべきである。 Although several embodiments of the present invention have been described herein, the present invention is not limited to the various preferred embodiments described herein, and is equivalent to what may be recognized by those skilled in the art based on this disclosure. It encompasses any and all embodiments that have elements, modifications, deletions, combinations (eg, combinations of features across the various embodiments), improvements, and / or changes. Claim limitations should be construed broadly based on the terms used in the claims, and should not be limited to the embodiments described herein or in the process of this application, as such The examples should be construed as non-exclusive.
 この発明はAl-Mg-Si系合金板の製造に利用することができる。 The present invention can be used for manufacturing an Al—Mg—Si alloy plate.

Claims (18)

  1.  Al-Mg-Si系合金鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法であって、 熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が230℃以下であるAl-Mg-Si系合金板の製造方法。 An alloy plate manufacturing method in which hot rolling and cold rolling are sequentially performed on an Al—Mg—Si alloy ingot, and the surface temperature of the Al—Mg—Si alloy plate immediately after the end of hot rolling is 230 ° C. The method for producing an Al—Mg—Si based alloy plate is as follows.
  2.  Al-Mg-Si系合金鋳塊の化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなる請求項1に記載のAl-Mg-Si系合金板の製造方法。 The chemical composition of the Al—Mg—Si alloy ingot is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 2. The method for producing an Al—Mg—Si based alloy plate according to claim 1, wherein the Al—Mg—Si based alloy plate according to claim 1, wherein the Al—Mg—Si based alloy sheet is contained in an amount of not more than mass% and consists of remaining Al and inevitable impurities.
  3.  不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されている請求項1または請求項2に記載のAl-Mg-Si系合金板の製造方法。 3. The method for producing an Al—Mg—Si alloy plate according to claim 1 or 2, wherein Mn, Cr, Zn, and Ti as impurities are regulated to 0.1% by mass or less.
  4.  熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が200℃以下である請求項1ないし請求項3の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy sheet according to any one of claims 1 to 3, wherein the surface temperature of the Al-Mg-Si alloy sheet immediately after the end of hot rolling is 200 ° C or lower.
  5.  冷間圧延の圧延率が20%以上である請求項1ないし請求項4の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy sheet according to any one of claims 1 to 4, wherein a rolling rate of cold rolling is 20% or more.
  6.  冷間圧延後に最終焼鈍を実施する請求項1ないし請求項5の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy sheet according to any one of claims 1 to 5, wherein final annealing is performed after cold rolling.
  7.  最終焼鈍の温度が200℃以下である請求項6に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to claim 6, wherein the final annealing temperature is 200 ° C or lower.
  8.  熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金板の表面温度が470~350℃でありパスによるAl-Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施する請求項1ないし請求項7の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 Of the multiple passes of hot rolling, the surface temperature of the Al—Mg—Si alloy plate immediately before the pass is 470 to 350 ° C., and the Al—Mg—Si alloy plate is cooled by the pass, or after the pass and the pass The method for producing an Al-Mg-Si alloy plate according to any one of claims 1 to 7, wherein a pass having an average cooling rate by forced cooling of 50 ° C / min or more is performed at least once.
  9.  Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなるAl-Mg-Si系合金鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法であって、 熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が230℃以下であるAl-Mg-Si系合金板の製造方法。 Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less and Cu: 0.5% by mass or less, and Ti: 0.1% by mass % Of alloy plate or B: 0.1% by mass or less of an alloy plate in which hot rolling and cold rolling are sequentially performed on an Al—Mg—Si based alloy ingot consisting of Al and inevitable impurities. A method for producing an Al—Mg—Si alloy plate, wherein the surface temperature of the Al—Mg—Si alloy plate immediately after the end of hot rolling is 230 ° C. or less.
  10.  不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている請求項9に記載のAl-Mg-Si系合金板の製造方法。 10. The method for producing an Al—Mg—Si based alloy plate according to claim 9, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1% by mass or less.
  11.  不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている請求項9または請求項10に記載のAl-Mg-Si系合金板の製造方法。 The production of an Al-Mg-Si alloy plate according to claim 9 or 10, wherein Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are regulated to 0.05 mass% or less, respectively. Method.
  12.  不純物としてのAgが0.05質量%以下に規制されている請求項9ないし請求項11の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to any one of claims 9 to 11, wherein Ag as an impurity is regulated to 0.05 mass% or less.
  13.  不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている請求項9ないし請求項12の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to any one of claims 9 to 12, wherein a total content of rare earth elements as impurities is regulated to 0.1 mass% or less.
  14.  熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が200℃以下である請求項9ないし請求項13の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to any one of claims 9 to 13, wherein the surface temperature of the Al-Mg-Si alloy plate immediately after the end of hot rolling is 200 ° C or less.
  15.  冷間圧延の圧延率が20%以上である請求項9ないし請求項14の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy sheet according to any one of claims 9 to 14, wherein a rolling rate of cold rolling is 20% or more.
  16.  冷間圧延後に最終焼鈍を実施する請求項9ないし請求項15の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si based alloy sheet according to any one of claims 9 to 15, wherein final annealing is performed after cold rolling.
  17.  最終焼鈍の温度が200℃以下である請求項16に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to claim 16, wherein the temperature of the final annealing is 200 ° C or lower.
  18.  熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金板の表面温度が470~350℃でありパスによるAl-Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施する請求項9ないし請求項17の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 Of the multiple passes of hot rolling, the surface temperature of the Al—Mg—Si alloy plate immediately before the pass is 470 to 350 ° C., and the Al—Mg—Si alloy plate is cooled by the pass, or after the pass and the pass The method for producing an Al-Mg-Si alloy plate according to any one of claims 9 to 17, wherein a pass having an average cooling rate by forced cooling of 50 ° C / min or more is performed at least once.
PCT/JP2016/088716 2016-03-30 2016-12-26 Method for producing al-mg-si alloy plate WO2017168891A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680080645.8A CN108699663A (en) 2016-03-30 2016-12-26 The manufacturing method of Al-Mg-Si system alloy plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-067356 2016-03-30
JP2016-067355 2016-03-30
JP2016067355A JP2017179452A (en) 2016-03-30 2016-03-30 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2016067356A JP6774199B2 (en) 2016-03-30 2016-03-30 Manufacturing method of Al-Mg-Si based alloy plate

Publications (1)

Publication Number Publication Date
WO2017168891A1 true WO2017168891A1 (en) 2017-10-05

Family

ID=59963942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088716 WO2017168891A1 (en) 2016-03-30 2016-12-26 Method for producing al-mg-si alloy plate

Country Status (3)

Country Link
CN (1) CN108699663A (en)
TW (1) TW201742931A (en)
WO (1) WO2017168891A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033605A (en) * 2018-08-30 2020-03-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY SHEET
CN111684090A (en) * 2018-03-30 2020-09-18 株式会社神户制钢所 Aluminum alloy sheet for automobile structural member, and method for producing aluminum alloy sheet for automobile structural member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321755A (en) * 2002-03-01 2003-11-14 Showa Denko Kk PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
JP2005298922A (en) * 2004-04-13 2005-10-27 Furukawa Sky Kk Aluminum alloy plate to be formed, and manufacturing method therefor
JP2016160516A (en) * 2015-03-04 2016-09-05 株式会社神戸製鋼所 Aluminum alloy sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177143A (en) * 1986-01-30 1987-08-04 Kobe Steel Ltd Aluminum alloy sheet excellent in formability and baking hardening and its production
WO2003074750A1 (en) * 2002-03-01 2003-09-12 Showa Denko K.K. PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
JP4499369B2 (en) * 2003-03-27 2010-07-07 株式会社神戸製鋼所 Al-Mg-Si-based alloy plate with excellent surface properties with reduced generation of ridging marks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321755A (en) * 2002-03-01 2003-11-14 Showa Denko Kk PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
JP2005298922A (en) * 2004-04-13 2005-10-27 Furukawa Sky Kk Aluminum alloy plate to be formed, and manufacturing method therefor
JP2016160516A (en) * 2015-03-04 2016-09-05 株式会社神戸製鋼所 Aluminum alloy sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684090A (en) * 2018-03-30 2020-09-18 株式会社神户制钢所 Aluminum alloy sheet for automobile structural member, and method for producing aluminum alloy sheet for automobile structural member
JP2020033605A (en) * 2018-08-30 2020-03-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY SHEET
CN110872664A (en) * 2018-08-30 2020-03-10 昭和电工株式会社 Al-Mg-Si alloy plate

Also Published As

Publication number Publication date
TW201742931A (en) 2017-12-16
CN108699663A (en) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2017168890A1 (en) Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP6533402B2 (en) Cu-Ni-Si copper alloy sheet, method for producing the same, and lead frame
JP6695725B2 (en) Al-Mg-Si alloy plate
CN110872664A (en) Al-Mg-Si alloy plate
JP6774196B2 (en) Al-Mg-Si based alloy material
JP2017179454A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179453A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2020033604A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
CN110872665B (en) Al-Mg-Si alloy plate
JP2017179452A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JP6718276B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP2017179456A (en) Al-Mg-Si-BASED ALLOY MATERIAL
WO2017168891A1 (en) Method for producing al-mg-si alloy plate
CN108884542B (en) Method for producing Al-Mg-Si alloy sheet
JP2017179444A (en) Al-Mg-Si-BASED ALLOY SHEET
JP6774197B2 (en) Al-Mg-Si based alloy material
JP2021105198A (en) Rolled aluminum alloy material having excellent thermal conductivity, conductivity and strength and method for producing the same
JP2016180130A (en) Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL AND METHOD FOR PRODUCING THE SAME, AND LEAD FRAME
JP6774198B2 (en) Al-Mg-Si based alloy plate
JP2020033606A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6774200B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP2017179451A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6718275B2 (en) Method for manufacturing Al-Mg-Si alloy plate

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897106

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897106

Country of ref document: EP

Kind code of ref document: A1