JP7442304B2 - Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method - Google Patents

Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method Download PDF

Info

Publication number
JP7442304B2
JP7442304B2 JP2019211947A JP2019211947A JP7442304B2 JP 7442304 B2 JP7442304 B2 JP 7442304B2 JP 2019211947 A JP2019211947 A JP 2019211947A JP 2019211947 A JP2019211947 A JP 2019211947A JP 7442304 B2 JP7442304 B2 JP 7442304B2
Authority
JP
Japan
Prior art keywords
mass
less
aluminum alloy
strength
electrical conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019211947A
Other languages
Japanese (ja)
Other versions
JP2021085040A (en
Inventor
智明 山ノ井
眞二 籠重
Original Assignee
堺アルミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺アルミ株式会社 filed Critical 堺アルミ株式会社
Priority to JP2019211947A priority Critical patent/JP7442304B2/en
Priority to CN202011328946.2A priority patent/CN112831691A/en
Publication of JP2021085040A publication Critical patent/JP2021085040A/en
Application granted granted Critical
Publication of JP7442304B2 publication Critical patent/JP7442304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Description

この発明は、アルミニウム合金圧延材、特に熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材に関する。 The present invention relates to a rolled aluminum alloy material, particularly to a rolled aluminum alloy material having excellent thermal conductivity, electrical conductivity, and strength.

薄型テレビ、パーソナルコンピューター用薄型モニター、ノートパソコン、タブレットパソコン、カーナビゲーションシステム、ポータブルナビゲーションシステム、スマートフォンや携帯電話等の携帯端末等の製品のシャーシ、メタルベースプリント基板、内部カバーのように発熱体を内蔵または装着する部材材料においては、速やかに放熱するための優れた熱伝導性、強度が求められる。 Heat generating elements are used in the chassis, metal-based printed circuit boards, and internal covers of products such as flat-screen televisions, flat-screen monitors for personal computers, notebook computers, tablet computers, car navigation systems, portable navigation systems, and mobile devices such as smartphones and mobile phones. Materials for built-in or attached components are required to have excellent thermal conductivity and strength for rapid heat dissipation.

JIS1100、1050、1070等の純アルミニウム合金は熱伝導性に優れるが、強度が低い。高強度材として用いられるJIS5052等のAl-Mg合金(5000系合金)は、純アルミニウム系合金よりも熱伝導性および導電性が著しく劣る。 Pure aluminum alloys such as JIS 1100, 1050, and 1070 have excellent thermal conductivity but low strength. Al-Mg alloys (5000 series alloys) such as JIS 5052 used as high-strength materials are significantly inferior in thermal conductivity and electrical conductivity to pure aluminum alloys.

これに対しAl-Mg-Si系合金(6000系合金)は、熱伝導性および導電性が良く時効硬化により強度向上を図ることができるため、Al-Mg―Si系合金を用いて強度、熱伝導性、加工性に優れたアルミニウム合金板を得る方法が検討されている。 On the other hand, Al-Mg-Si alloys (6000 series alloys) have good thermal and electrical conductivity and can be improved in strength through age hardening. A method of obtaining an aluminum alloy plate with excellent conductivity and workability is being studied.

例えば、特許文献1には、Mgを0.1~0.34質量%、Siを0.2~0.8質量%、Cuを0.22~1.0質量%含有し、残部がAl及び不可避不純物からなり、Si/Mg含有量比が1.3以上である合金を、半連続鋳造で厚さ250mm以上の鋳塊とし、400~540℃の温度で予備加熱を経て熱間圧延、50~85%の圧下率で冷間圧延を施した後、140~280℃の温度で焼鈍をすることを特徴とするAl-Mg―Si系合金圧延板の製造方法が開示されている。 For example, in Patent Document 1, it contains 0.1 to 0.34% by mass of Mg, 0.2 to 0.8% by mass of Si, 0.22 to 1.0% by mass of Cu, and the balance is Al and An alloy containing unavoidable impurities and a Si/Mg content ratio of 1.3 or more is made into an ingot with a thickness of 250 mm or more by semi-continuous casting, preheated at a temperature of 400 to 540 ° C, and then hot rolled for 50 minutes. A method for producing an Al--Mg--Si alloy rolled sheet is disclosed, which is characterized by cold rolling at a rolling reduction of ~85% and then annealing at a temperature of 140-280°C.

特許文献2には、Si:0.2~1.5質量%、Mg:0.2~1.5質量%、Fe:0.3質量%以下を含有し、さらに、Mn:0.02~0.15質量%、Cr:0.02~0.15%の1種または2種を含有するとともに、残部がAlおよび不可避不純物からなり、該不可避不純物中のTiを0.2%以下に規制し、もしくはこれに更にCu:0.01~1質量%か希土類元素:0.01~0.2質量%の1種または2種を含有する組成を有するアルミニウム合金版を連続鋳造圧延により作製し、その後冷間圧延し、次いで500~570℃の溶体化処理を行い、続いて冷間圧延率5~40%で冷間圧延を行い、冷間圧延後150~190℃未満に加熱する時効処理を行うことを特徴とする熱伝導性、強度および曲げ加工性に優れたアルミニウム合金板の製造方法が記載されている。 Patent Document 2 contains Si: 0.2 to 1.5% by mass, Mg: 0.2 to 1.5% by mass, Fe: 0.3% by mass or less, and further contains Mn: 0.02 to 1.5% by mass. 0.15% by mass, Cr: 0.02 to 0.15%, and the remainder consists of Al and unavoidable impurities, with Ti in the unavoidable impurities being regulated to 0.2% or less. An aluminum alloy plate having a composition containing one or both of Cu: 0.01 to 1% by mass or rare earth elements: 0.01 to 0.2% by mass is produced by continuous casting and rolling. , followed by cold rolling, followed by solution treatment at 500 to 570°C, followed by cold rolling at a cold rolling rate of 5 to 40%, and aging treatment by heating to less than 150 to 190°C after cold rolling. A method for manufacturing an aluminum alloy plate with excellent thermal conductivity, strength, and bending workability is described.

特許文献3には、Si:0.2~1.5質量%、Mg:0.2~1.5質量%、Cr:0.02~0.1質量%、Fe:0.3質量%以下を含有し、残部がAlおよび不可避不純物からなり、該不可避不純物中のTiが0.015質量%以下に規制され、かつ導電率が50%IACS以上、熱伝導率が200W/m・K以上であることを特徴とする熱伝導性と成形性に優れたアルミニウム合金板が開示されている。 Patent Document 3 describes Si: 0.2 to 1.5 mass%, Mg: 0.2 to 1.5 mass%, Cr: 0.02 to 0.1 mass%, Fe: 0.3 mass% or less. , the remainder consists of Al and unavoidable impurities, Ti in the unavoidable impurities is regulated to 0.015% by mass or less, and the electrical conductivity is 50% IACS or higher and the thermal conductivity is 200 W/m K or higher. An aluminum alloy plate with excellent thermal conductivity and formability is disclosed.

特許文献4には、Si:1.1~1.5質量%、Mg:0.3~0.6質量%、Cu:0.6~0.8質量%を含有し、不純物としてFe:0.35質量%以下に規制し、残部がAlおよび不可避不純物よりなり、かつ導電率が55%IACS以上、引張強さを215N/mm以上であることを特徴とする、熱伝導性と強度と曲げ加工性に優れたアルミニウム合金圧延板が開示されている。 Patent Document 4 contains Si: 1.1 to 1.5% by mass, Mg: 0.3 to 0.6% by mass, Cu: 0.6 to 0.8% by mass, and Fe: 0 as impurities. .35% by mass or less, the balance consists of Al and unavoidable impurities, and the electrical conductivity is 55% IACS or more and the tensile strength is 215N/mm 2 or more. An aluminum alloy rolled plate with excellent bending workability is disclosed.

なお、Al-Mg―Si系合金においては、熱伝導率と導電率が良好な相関性を示し、優れた熱伝導性を有するアルミニウム合金板は優れた導電率を有し、放熱部材材料はもちろん導電部材材料として用いることができる。 In addition, in Al-Mg-Si alloys, thermal conductivity and electrical conductivity show a good correlation, and aluminum alloy plates with excellent thermal conductivity have excellent electrical conductivity, and are suitable for use as heat dissipation material as well. It can be used as a conductive member material.

特開2012-62517号公報JP2012-62517A 特開2007-9262号公報Japanese Patent Application Publication No. 2007-9262 特開2005-8926号公報Japanese Patent Application Publication No. 2005-8926 特開2008-248297号公報JP2008-248297A

しかしながら、特許文献1では、工程条件の検討が不十分である。また、特許文献1において、引張強さはSiまたはCuの寄与により改善がなされたものであり、Alの次に多い元素は、SiもしくはCuであり、Mgの含有量が比較的少なく、SiおよびMgをほぼ同じ割合で含有する合金は特許文献1の請求範囲に含まれない。 However, in Patent Document 1, consideration of process conditions is insufficient. Furthermore, in Patent Document 1, the tensile strength was improved due to the contribution of Si or Cu, and the next most abundant element after Al is Si or Cu, the content of Mg is relatively small, and Si and Cu are the most common elements. Alloys containing Mg in approximately the same proportion are not included in the scope of patent document 1.

特許文献2では、比較的高い強度が得られているものの実施例に記載の導電率は54%IACS未満と低い。 Although relatively high strength is obtained in Patent Document 2, the conductivity described in the examples is as low as less than 54% IACS.

特許文献3において、実施例の記載例では導電率が56%IACS以上の材料については引張強度が250MPa以上のものはなく、引張強度が250MPa以上の材料における導電率は51%IACS以下と低い。 In Patent Document 3, in the examples described, there is no material with a tensile strength of 250 MPa or more with an electrical conductivity of 56% IACS or more, and the electrical conductivity of a material with a tensile strength of 250 MPa or more is as low as 51% IACS or less.

特許文献4においても、実施例の記載例では導電率は55%IACS以上と高いものの引張強度が250MPa以上の材料は得られていない。 Also in Patent Document 4, in the examples described in Examples, although the electrical conductivity is as high as 55% IACS or more, a material with a tensile strength of 250 MPa or more is not obtained.

上記のように、高い導電率及び熱伝導性と引張強さの双方の特性を備えるアルミニウム合金板を得ることは非常に困難である。 As mentioned above, it is very difficult to obtain an aluminum alloy plate with both high electrical and thermal conductivity and tensile strength properties.

本発明は、上述した技術背景に鑑み、良好な熱伝導性と高い導電率及び高い強度を有するアルミニウム合金圧延材を提供することを目的とする。 In view of the above-mentioned technical background, an object of the present invention is to provide a rolled aluminum alloy material having good thermal conductivity, high electrical conductivity, and high strength.

上記課題を解決すべく、本願発明者は鋭意研究の結果、アルミニウム圧延材の組成と製造工程を検討することで良好な熱伝導性と高い導電率及び熱伝導性と高い強度を有するアルミニウム合金圧延材が得られることを見出した。すなわち本願発明は以下に関する。
(1)化学組成が、Si:0.20~0.65質量%、Mg:0.35~0.7質量%、Fe:0.05~0.35質量%、Cu:0.01~0.15質量%、Ni:0.02~0.20質量%、Cr:0.05質量%以下、Mn:0.05質量%以下、Zn:0.10質量%以下、Ti:0.10質量%以下、B:0.05質量%以下を含み、残部がAlと不可避不純物からなり、かつ導電率が56%IACS以上、引張強さを250MPa以上であることを特徴とする熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材。
(2)Cu:0.04~0.12質量%、Mn:0.0002~0.04質量%、Cr:0.0002~0.04質量%、Zn:0.0002~0.04質量%、Ti:0.0002~0.04質量%、B:0.0005~0.04質量%を含有することを特徴とする前項1に記載の熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材。
(3)不可避不純物中のVが0.05質量%以下、Gaが0.05質量%以下、Zrが0.05質量%以下、Caが0.01質量%以下、Pbが0.05質量%以下、Biが0.05質量%以下、Snが0.05質量%以下、Inが0.004質量%以下に規制されていることを特徴とする前項1または2に記載の熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材。
(4)前項1~3のいずれかに記載のアルミニウム合金圧延材の組成を有するアルミニウム合金鋳塊に後続して実施される面削の前または後に500℃以上570℃以下の温度で1時間以上20時間以下の時間にて均質化後、480℃以上550℃以下の温度で5分以上10時間保持後に熱間圧延を開始し、複数の圧下パスにより圧下率95%以上99.5%以下の熱間圧延を実施した後、30%以上98.5%以下の冷間圧延を施す工程を含むことを特徴とする熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材の製造方法。
(5)冷間圧延を施す工程の開始から終了のいずれかのパスの前後に少なくとも1回、120℃以上220℃以下、5分以上12時間保持による熱処理工程を含むことを特徴とする前項4に記載の熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材の製造方法。
In order to solve the above-mentioned problems, the inventor of the present application has conducted intensive research, and by examining the composition and manufacturing process of aluminum rolled materials, rolled aluminum alloys with good thermal conductivity, high electrical conductivity, and thermal conductivity and high strength have been developed. It was discovered that wood could be obtained. That is, the present invention relates to the following.
(1) Chemical composition: Si: 0.20-0.65% by mass, Mg: 0.35-0.7% by mass, Fe: 0.05-0.35% by mass, Cu: 0.01-0 .15 mass%, Ni: 0.02 to 0.20 mass%, Cr: 0.05 mass% or less, Mn: 0.05 mass% or less, Zn: 0.10 mass% or less, Ti: 0.10 mass% % or less, B: 0.05% by mass or less, the balance consists of Al and inevitable impurities, and has a conductivity of 56% IACS or more and a tensile strength of 250 MPa or more. Aluminum alloy rolled material with excellent properties and strength.
(2) Cu: 0.04 to 0.12 mass%, Mn: 0.0002 to 0.04 mass%, Cr: 0.0002 to 0.04 mass%, Zn: 0.0002 to 0.04 mass% , Ti: 0.0002 to 0.04% by mass, and B: 0.0005 to 0.04% by mass. Rolled material.
(3) Among the inevitable impurities, V is 0.05% by mass or less, Ga is 0.05% by mass or less, Zr is 0.05% by mass or less, Ca is 0.01% by mass or less, and Pb is 0.05% by mass. Thermal conductivity and electrical conductivity according to item 1 or 2 above, wherein Bi is regulated to 0.05% by mass or less, Sn is regulated to 0.05% by mass or less, and In is regulated to 0.004% by mass or less. Aluminum alloy rolled material with excellent properties and strength.
(4) At a temperature of 500°C or more and 570°C or less for 1 hour or more before or after the subsequent facing of the aluminum alloy ingot having the composition of the aluminum alloy rolled material according to any one of 1 to 3 above. After homogenization for 20 hours or less, hot rolling is started after holding at a temperature of 480°C or more and 550°C or less for 5 minutes or more and 10 hours, and a reduction rate of 95% or more and 99.5% or less is achieved by multiple rolling passes. A method for producing a rolled aluminum alloy material having excellent thermal conductivity, electrical conductivity, and strength, the method comprising the step of performing hot rolling and then cold rolling by 30% or more and 98.5% or less.
(5) Item 4 above, characterized by including a heat treatment step of holding at 120°C or higher and 220°C or lower for 5 minutes or more and 12 hours at least once before or after any one of the passes from the start to the end of the cold rolling process. A method for producing a rolled aluminum alloy material having excellent thermal conductivity, electrical conductivity, and strength as described in .

前項(1)に記載の発明によれば、化学組成が、Si:0.20~0.65質量%、Mg:0.35~0.7質量%、Fe:0.05~0.35質量%、Cu:0.01~0.15質量%、Ni:0.02~0.20質量%、Cr:0.05質量%以下、Mn:0.05質量%以下、Zn:0.10質量%以下、Ti:0.10質量%以下、B:0.05質量%以下を含み、残部がAlと不可避不純物からなり、熱伝導性が良く、導電率が高く、引張強さが強いアルミニウム合金圧延材となしうる。 According to the invention described in the preceding item (1), the chemical composition is Si: 0.20 to 0.65% by mass, Mg: 0.35 to 0.7% by mass, Fe: 0.05 to 0.35% by mass. %, Cu: 0.01 to 0.15 mass%, Ni: 0.02 to 0.20 mass%, Cr: 0.05 mass% or less, Mn: 0.05 mass% or less, Zn: 0.10 mass% % or less, Ti: 0.10% by mass or less, B: 0.05% by mass or less, the remainder consists of Al and inevitable impurities, and has good thermal conductivity, high electrical conductivity, and strong tensile strength. Can be made into rolled material.

前項(2)に記載の発明によれば、Cu:0.04~0.12質量%、Mn:0.0002~0.04質量%、Cr:0.0002~0.04質量%、Zn:0.0002~0.04質量%、Ti:0.0002~0.04質量%、B:0.0005~0.04質量%を含有しており、熱伝導性が良く、導電率が高く、引張強さが強いアルミニウム合金圧延材となしうる。 According to the invention described in the preceding item (2), Cu: 0.04 to 0.12% by mass, Mn: 0.0002 to 0.04% by mass, Cr: 0.0002 to 0.04% by mass, Zn: Contains 0.0002 to 0.04% by mass, Ti: 0.0002 to 0.04% by mass, and B: 0.0005 to 0.04% by mass, and has good thermal conductivity and high electrical conductivity. It can be made into a rolled aluminum alloy material with high tensile strength.

前項(3)に記載の発明によれば、不可避不純物中のVが0.05質量%以下、Gaが0.05質量%以下、Zrが0.05質量%以下、Caが0.01質量%以下、Pbが0.05質量%以下、Biが0.05質量%以下、Snが0.05質量%以下、Inが0.004質量%以下に規制されているから、熱伝導性が良く、導電率が高く、引張強さが強いアルミニウム合金圧延材となしうる。 According to the invention described in the preceding paragraph (3), V in the inevitable impurities is 0.05% by mass or less, Ga is 0.05% by mass or less, Zr is 0.05% by mass or less, and Ca is 0.01% by mass. Since Pb is regulated to 0.05% by mass or less, Bi 0.05% by mass or less, Sn 0.05% by mass or less, and In 0.004% by mass or less, the thermal conductivity is good. It can be made into a rolled aluminum alloy material with high electrical conductivity and strong tensile strength.

前項(4)に記載の発明によれば、熱伝導性が良く、導電率が高く、引張強さが強いアルミニウム合金圧延材を製造できる。 According to the invention described in the preceding item (4), it is possible to produce a rolled aluminum alloy material that has good thermal conductivity, high electrical conductivity, and high tensile strength.

前項(5)に記載の発明によれば、更に熱伝導性が良く、導電率が高く、引張強さが強いアルミニウム合金圧延材を製造できる。 According to the invention described in the preceding item (5), it is possible to produce a rolled aluminum alloy material that has even better thermal conductivity, higher electrical conductivity, and higher tensile strength.

本願発明者は、熱間圧延、冷間圧延を順次施するアルミニウム合金圧延材の製造方法において、熱間圧延上がりの合金材の表面温度を所定の温度以下とするとともに、熱間圧延終了後であって冷間圧延終了前に時効処理としての熱処理を施すことにより、高い導電率を有しつつ高い強度を有するアルミニウム合金圧延材が得られることを見出し本願の発明に至った。 The inventor of the present application has disclosed that in a method for producing a rolled aluminum alloy material in which hot rolling and cold rolling are sequentially performed, the surface temperature of the alloy material after hot rolling is set to a predetermined temperature or less, and after the hot rolling is completed, The inventors have discovered that by applying heat treatment as an aging treatment before the end of cold rolling, a rolled aluminum alloy material having high electrical conductivity and high strength can be obtained, leading to the invention of the present application.

以下に、本願のアルミニウム合金圧延材について詳細に説明する。 Below, the rolled aluminum alloy material of the present application will be explained in detail.

アルミニウム合金圧延材の組成において、各元素の添加目的および含有量の限定理由は下記のとおりである。
(Mg、Si含有量)
MgおよびSiは強度の発現に必要な元素であり、それぞれの含有量はSi:0.20~0.65質量%、Mg:0.35~0.7質量%とする。Si含有量が0.2質量%未満あるいはMg含有量が0.35質量%未満では十分な強度を得ることができない。一方、Si含有量が0.65質量%、Mg含有量が0.7質量%を超えると、熱間圧延での圧延負荷が高くなって生産性が低下し、得られるアルミニウム板の成形加工性も悪くなる。Si含有量は0.25質量%以上0.6質量%以下が好ましく、更に0.30質量%以上0.55質量%以下が好ましい。Mg含有量は0.40質量%以上0.6質量%以下が好ましく、更に0.45質量%以上0.55質量%以下が好ましい。
(Cu含有量)
Cuは強度向上に必要な成分であるが、多量に含有すると耐食性が低下する。0.15質量%を超えると導電率の確保が難しい。一方で、0.01質量%未満では強度の確保が難しい。従ってCu含有量の範囲は0.01~0.15質量%とする。更に0.06質量%以上0.10質量%以下であることが好ましい。
(Fe含有量)
Feは結晶粒の微細化効果が期待でき強度向上に有効な成分であるが、多量に含有すると耐食性が低下する。0.35質量%を超えると耐食性への阻害要因となる。一方で、0.05質量%未満では強度向上が期待できない上にアルミ塊のベース純度が上がり高価となる。従ってFe含有量の範囲は0.05~0.35質量%とする。更に0.08質量%以上0.30質量%以下であることが好ましい。
(Ni含有量)
Niは強度向上に必要な成分であるが、多量に含有すると導電率が低下する。0.20質量%を超えると導電率の確保が難しい。一方で、0.02質量%未満では強度の確保が難しい。従ってNi含有量の範囲は0.02~0.20質量%とする。更に0.06質量%以上0.18質量%以下であることが好ましい。
(Ti、B含有量)
TiおよびBは、合金をスラブに鋳造する際に結晶粒を微細化するとともに凝固割れを防止する効果がある。前記効果はTiまたはBの少なくとも1種の添加により得られ、両方を添加してもよい。しかしながら、多量に含有すると、晶出物がサイズの大きい晶出物が多く生成するため、製品の加工性や熱伝導性および導電率が低下する。Ti含有量は0.10質量%以下が好ましく、更に0.0002質量%以上0.04質量%以下が好ましい。また、B含有量は0.05質量%以下が好ましく、特に0.0005質量%以上0.04質量%以下が好ましい。
(Mn、Cr、Zn含有量)
Mnは再結晶粒の微細化、Crは強度向上、Znは析出促進の効果が期待できる元素であるが、一方で含有量が多くなると、MnおよびCrは伝導性および導電性を低下させ、Znは合金材の耐食性を低下させる。従って、Mn、Crの含有量は0.05質量%以下とし、更に0.0002質量%以上0.04質量%以下が好ましい。Znの含有量は0.10質量%以下とし、更に0.0002質量%以上0.04質量%以下が好ましい。
(In含有量)
Inは耐食性を著しく低下させるため少ないことが好ましい。不純物としてのIn含有量は0.004質量%以下であることが好ましい。
(Ca含有量)
Caは粒界に偏析しやすく、Ca含有量が多くなると延性を低下させるため少ないことが好ましい。不純物としてのCa含有量は0.01質量%以下であることが好ましい。
(その他不純物元素)
上記以外のその他の不純物元素としては、V、Ga、Zr、Pb、Bi、Sn、等が挙げられるが、これらに限定されるものではなく、これらその他の不純物元素は個々の元素の含有量として0.05質量%以下であることが好ましい。
In the composition of the rolled aluminum alloy material, the purpose of adding each element and the reason for limiting the content are as follows.
(Mg, Si content)
Mg and Si are elements necessary for developing strength, and their respective contents are Si: 0.20 to 0.65% by mass, and Mg: 0.35 to 0.7% by mass. If the Si content is less than 0.2% by mass or the Mg content is less than 0.35% by mass, sufficient strength cannot be obtained. On the other hand, if the Si content exceeds 0.65% by mass and the Mg content exceeds 0.7% by mass, the rolling load during hot rolling increases, productivity decreases, and the forming processability of the resulting aluminum plate increases. It also gets worse. The Si content is preferably 0.25% by mass or more and 0.6% by mass or less, and more preferably 0.30% by mass or more and 0.55% by mass or less. The Mg content is preferably 0.40% by mass or more and 0.6% by mass or less, and more preferably 0.45% by mass or more and 0.55% by mass or less.
(Cu content)
Cu is a necessary component for improving strength, but when contained in a large amount, corrosion resistance decreases. If it exceeds 0.15% by mass, it is difficult to ensure electrical conductivity. On the other hand, if it is less than 0.01% by mass, it is difficult to ensure strength. Therefore, the Cu content range is 0.01 to 0.15% by mass. Furthermore, it is preferably 0.06% by mass or more and 0.10% by mass or less.
(Fe content)
Fe is a component that can be expected to have the effect of refining crystal grains and is effective in improving strength, but if it is contained in a large amount, corrosion resistance decreases. If it exceeds 0.35% by mass, it becomes a factor that inhibits corrosion resistance. On the other hand, if it is less than 0.05% by mass, no improvement in strength can be expected, and the base purity of the aluminum ingot increases, making it expensive. Therefore, the Fe content range is 0.05 to 0.35% by mass. Further, it is preferably 0.08% by mass or more and 0.30% by mass or less.
(Ni content)
Ni is a necessary component for improving strength, but if it is contained in a large amount, electrical conductivity decreases. If it exceeds 0.20% by mass, it is difficult to ensure electrical conductivity. On the other hand, if it is less than 0.02% by mass, it is difficult to ensure strength. Therefore, the Ni content range is 0.02 to 0.20% by mass. Furthermore, it is preferably 0.06% by mass or more and 0.18% by mass or less.
(Ti, B content)
Ti and B have the effect of refining crystal grains and preventing solidification cracking when casting the alloy into a slab. The above effect can be obtained by adding at least one of Ti or B, and both may be added. However, when it is contained in a large amount, many large-sized crystallized substances are produced, resulting in a decrease in the processability, thermal conductivity, and electrical conductivity of the product. The Ti content is preferably 0.10% by mass or less, more preferably 0.0002% by mass or more and 0.04% by mass or less. Further, the B content is preferably 0.05% by mass or less, particularly preferably 0.0005% by mass or more and 0.04% by mass or less.
(Mn, Cr, Zn content)
Mn is an element that can be expected to refine recrystallized grains, Cr to improve strength, and Zn to promote precipitation. However, when their contents increase, Mn and Cr decrease conductivity and decreases the corrosion resistance of the alloy material. Therefore, the content of Mn and Cr should be 0.05% by mass or less, and more preferably 0.0002% by mass or more and 0.04% by mass or less. The content of Zn is 0.10% by mass or less, and more preferably 0.0002% by mass or more and 0.04% by mass or less.
(In content)
Since In significantly reduces corrosion resistance, it is preferable that the content is small. The content of In as an impurity is preferably 0.004% by mass or less.
(Ca content)
Ca tends to segregate at grain boundaries, and as the Ca content increases, the ductility decreases, so it is preferable that the Ca content be small. The Ca content as an impurity is preferably 0.01% by mass or less.
(Other impurity elements)
Other impurity elements other than those listed above include, but are not limited to, V, Ga, Zr, Pb, Bi, Sn, etc. These other impurity elements are determined by the content of each individual element. It is preferably 0.05% by mass or less.

次に、本願規定のアルミニウム合金圧延材を得るための処理工程について記述する。 Next, the processing steps for obtaining the aluminum alloy rolled material specified in the present application will be described.

常法にて溶解成分調整し、アルミニウム合金鋳塊を得る。得られた合金鋳塊に熱間圧延前加熱より前の工程として均質化処理を施すことが好ましい。均質化処理は、500℃以上で行うことが好ましい。 The dissolved components are adjusted in a conventional manner to obtain an aluminum alloy ingot. It is preferable to subject the obtained alloy ingot to homogenization treatment as a step prior to heating before hot rolling. The homogenization treatment is preferably performed at 500°C or higher.

前記均質化処理はアルミニウム合金鋳塊中に晶出物およびMg、Siを固溶させ均一な組織とするために実施するが、温度が高すぎると共晶融解が生じるため、500℃以上570℃以下で行うことが好ましく、特に520℃以上560℃以下で行うことが好ましい。時間は1時間以上20時間以下で行うことが好ましく、特に2時間以上18時間以下で行うことが好ましい。 The above-mentioned homogenization treatment is carried out to form a uniform structure by dissolving the crystallized substances, Mg, and Si in the aluminum alloy ingot, but if the temperature is too high, eutectic melting will occur, so the temperature should be 500°C or higher and 570°C. It is preferably carried out at a temperature of 520°C or higher and 560°C or lower. The time is preferably 1 hour or more and 20 hours or less, particularly 2 hours or more and 18 hours or less.

アルミニウム合金鋳塊に均質化処理を行った後、一旦冷却した後、あるいは冷却することなく引き続いて熱間圧延前加熱を行う。熱間圧延前加熱の好ましい温度範囲は480℃以上550℃以下である。時間は5分以上10時間以下が好ましい。更に好ましい範囲は、温度500℃以上540℃以下、時間1時間以上8時間以下である。なお、前記均質化処理および熱間圧延前加熱双方の好ましい温度範囲にて均質化処理と熱間圧延前加熱を兼ねて同じ温度で加熱しても良い。 After homogenizing the aluminum alloy ingot, it is once cooled or subsequently heated before hot rolling without cooling. The preferred temperature range for heating before hot rolling is 480°C or higher and 550°C or lower. The time is preferably 5 minutes or more and 10 hours or less. A more preferable range is a temperature of 500° C. or more and 540° C. or less, and a time of 1 hour or more and 8 hours or less. In addition, within the preferable temperature range for both the homogenization treatment and the heating before hot rolling, heating may be performed at the same temperature for both the homogenization treatment and the heating before hot rolling.

鋳造後熱間圧延前加熱前に鋳塊の表面近傍の不純物層を除去する為に鋳塊に面削を施すことが好ましい。面削は鋳造後均質化処理前であっても良いし、均質化処理後熱間圧延前加熱前であってもよい。 After casting and before heating before hot rolling, the ingot is preferably subjected to surface cutting in order to remove an impurity layer near the surface of the ingot. The facing may be performed after casting and before homogenization treatment, or after homogenization treatment and before hot rolling and before heating.

熱間圧延前加熱後のアルミニウム合金鋳塊に熱間圧延を施す。熱間圧延は粗熱間圧延と仕上げ熱間圧延からなり、粗熱間圧延機を用い複数のパスからなる粗熱間圧延を行った後、粗熱間圧延機とは異なる仕上げ熱間圧延機を用いて仕上げ熱間圧延を行う。なお、本願において、粗熱間圧延機での最終パスを熱間圧延の最終パスとする場合は、仕上げ熱間圧延を省略することができる。 Hot rolling is performed on the aluminum alloy ingot after heating before hot rolling. Hot rolling consists of rough hot rolling and finishing hot rolling, and after performing rough hot rolling consisting of multiple passes using a roughing hot rolling mill, a finishing hot rolling machine different from the roughing hot rolling mill is used. Finish hot rolling is performed using Note that in the present application, when the final pass in the rough hot rolling mill is the final pass of hot rolling, finishing hot rolling can be omitted.

冷間圧延をコイルで実施する場合には、仕上げ熱間圧延後のアルミニウム合金圧延材を巻き取り装置で巻き取って熱延コイルとすればよい。仕上げ熱間圧延を省略し、粗熱間圧延の最終パスを熱間圧延の最終パスとする場合は、粗熱間圧延の後、アルミニウム合金圧延材を巻き取り装置にて巻き取って熱延コイルとしてもよい。 When cold rolling is performed in a coil, the aluminum alloy rolled material after finish hot rolling may be wound up with a winding device to form a hot rolled coil. When finishing hot rolling is omitted and the final pass of rough hot rolling is used as the final pass of hot rolling, after rough hot rolling, the aluminum alloy rolled material is wound up with a winding device to form a hot rolled coil. You can also use it as

粗熱間圧延では、溶体化処理に準じてMgおよびSiが固溶された状態を保持した後、粗熱間圧延のパスによるアルミニウム合金圧延材の冷却、もしくは粗熱間圧延のパス後とパス後の冷却による温度降下により焼き入れの効果を得ることができる。 In rough hot rolling, after maintaining Mg and Si in a solid solution state according to solution treatment, the aluminum alloy rolled material is cooled by a rough hot rolling pass, or after the rough hot rolling pass and after the rough hot rolling pass. The effect of hardening can be obtained by lowering the temperature due to subsequent cooling.

上記粗熱間圧延のパス間の冷却は、アルミニウム合金圧延材を圧延しながら圧延後の部位に対し順次実施してもよいし、アルミニウム合金圧延材全体を圧延した後実施してもよい。冷却の方法は限定されないが、水冷であっても空冷であってもよいし、クーラントを利用してもよい。 The cooling between the passes of the rough hot rolling may be carried out sequentially on the rolled parts while rolling the aluminum alloy rolled material, or may be carried out after the entire aluminum alloy rolled material is rolled. The cooling method is not limited, but may be water cooling, air cooling, or a coolant.

本願において、粗熱間圧延の最終パス後に仕上げ圧延を行わない場合は、熱間圧延の最終パス直後のアルミニウム合金圧延材の表面温度を熱延上り温度とし、粗熱間圧延の最終パス後に仕上げ圧延を行う場合は、仕上げ圧延直前のアルミニウム合金圧延材の表面温度を熱延上り温度とする。 In this application, if finish rolling is not performed after the final pass of rough hot rolling, the surface temperature of the aluminum alloy rolled material immediately after the final pass of hot rolling is taken as the hot rolling finish temperature, and finishing is performed after the final pass of rough hot rolling. When rolling is performed, the surface temperature of the aluminum alloy rolled material immediately before finish rolling is taken as the hot rolling temperature.

上記熱延上り温度は280℃以下とすることが好ましい。熱延上り温度を280℃以下とすることにより有効な焼き入れ効果が得られ、その後の熱処理時により時効硬化するとともに導電率が向上する。熱延上り温度が高すぎると、焼き入れの効果が不足し、熱間圧延終了後冷間圧延終了前に熱処理を実施しても強度の向上が不十分となる。熱延上り温度は260℃以下が更に好ましく、特に250℃以下が好ましい。 It is preferable that the above-mentioned hot rolling finishing temperature is 280°C or less. By setting the hot-rolling temperature to 280° C. or less, an effective hardening effect can be obtained, and during subsequent heat treatment, age hardening occurs and the electrical conductivity improves. If the finishing temperature of hot rolling is too high, the hardening effect will be insufficient, and even if heat treatment is performed after hot rolling and before cold rolling, the strength will not be sufficiently improved. The hot rolling temperature is more preferably 260°C or lower, particularly preferably 250°C or lower.

なお、後工程の冷間圧延をコイルで実施するために熱間圧延後にコイル巻き取りを実施する際、巻き取り後の自然冷却速度が極めて遅くなる場合がある。その時、高温で長時間保持されると粗大な析出物が発生し過時効となるため、後述する熱処理による時効硬化が見込めなくなる。 Note that when coil winding is performed after hot rolling in order to perform post-process cold rolling in a coil, the natural cooling rate after winding may become extremely slow. At that time, if the material is kept at a high temperature for a long time, coarse precipitates are generated and overage occurs, so that age hardening due to the heat treatment described below cannot be expected.

従って、コイル状に巻き取る場合で仕上げ熱間圧延を行わない場合は、粗熱間圧延最終パス上りのアルミニウム合金板の表面温度は180℃以下が好ましい。粗熱間圧延の後仕上げ熱間圧延を行う場合は、仕上げ熱間圧延後のアルミニウム合金板の表面温度は180℃以下であることが好ましい。 Therefore, when winding into a coil and not performing finish hot rolling, the surface temperature of the aluminum alloy plate after the final pass of rough hot rolling is preferably 180° C. or lower. When finishing hot rolling is performed after rough hot rolling, the surface temperature of the aluminum alloy plate after finishing hot rolling is preferably 180° C. or lower.

熱間圧延終了後、冷間圧延前後またはそのパス間においてアルミニウム合金圧延材に熱処理を施し、時効硬化させるとともに導電率を向上させることができる。本願においてアルミニウム合金圧延材への熱処理は時効硬化および導電率向上の効果を得るために120℃以上200℃未満の温度で実施することが好ましい。前記熱処理の温度は130℃以上190℃以下が更に好ましく、特に140℃以上180℃以下が好ましい。 After completion of hot rolling, the aluminum alloy rolled material can be heat treated before and after cold rolling or between passes to age harden and improve electrical conductivity. In the present application, the heat treatment of the aluminum alloy rolled material is preferably carried out at a temperature of 120° C. or higher and lower than 200° C. in order to obtain the effects of age hardening and improving electrical conductivity. The temperature of the heat treatment is more preferably 130°C or more and 190°C or less, particularly preferably 140°C or more and 180°C or less.

前記熱間圧延終了後、冷間圧延前後またはそのパス間において実施するアルミニウム合金圧延材の熱処理の時間は、5分以上12時間以下熱処理を実施することが好ましい。更に1時間以上10時間以下が好ましく、特に2時間以上8時間以下が好ましい。 After the end of the hot rolling, the aluminum alloy rolled material is preferably heat treated for 5 minutes or more and 12 hours or less before or after cold rolling or between passes. Furthermore, the time period is preferably 1 hour or more and 10 hours or less, particularly preferably 2 hours or more and 8 hours or less.

前記熱処理後の冷間圧延により所定の厚さのアルミニウム合金圧延材とする。冷間圧延を実施することにより一般に加工硬化にて強度は向上する。熱間圧延終了後、前記熱処理により時効硬化させたアルミニウム合金圧延材に冷間圧延を実施すると加工硬化による強度向上効果が期待できる。冷間圧延後に前記熱処理を実施すると予備歪により時効硬化能を更に向上させることが出来る。冷間圧延終了後に前記熱処理を実施すると冷間加工歪の回復と時効析出が同時に起こるため、大きな強度向上は期待できないが、延性が大幅に向上し、曲げ加工等の成形性を向上させることができる。 After the heat treatment, a rolled aluminum alloy material having a predetermined thickness is obtained by cold rolling. Cold rolling generally improves strength through work hardening. After hot rolling, if the aluminum alloy rolled material age-hardened by the heat treatment is cold-rolled, an effect of improving strength due to work hardening can be expected. When the heat treatment is performed after cold rolling, the age hardenability can be further improved due to pre-straining. If the above heat treatment is performed after cold rolling, recovery of cold work strain and aging precipitation will occur at the same time, so a large increase in strength cannot be expected, but ductility can be significantly improved and formability such as bending can be improved. can.

このように要求される特性により前記熱処理の位置は、熱間圧延終了後、冷間圧延前後またはそのパス間で使い分けることが望ましい。 Due to the characteristics required in this way, it is desirable that the heat treatment is performed at different positions after the end of hot rolling, before and after cold rolling, or between passes thereof.

熱間圧延終了後、所定の厚さのアルミニウム合金圧延材を得るまでの冷間圧延の総圧下率は強度向上の為30%以上で実施されることが好ましい。冷間圧延によるアルミニウム合金圧延材の総圧延率は更に40%以上が好ましく、特に50%以上が好ましい。総圧下率の上限は、加工硬化による伸びの低下を考慮し、98.5%以下とする。 After completion of hot rolling, the total reduction rate of cold rolling is preferably 30% or more to obtain a rolled aluminum alloy material of a predetermined thickness in order to improve strength. The total rolling rate of the aluminum alloy rolled material by cold rolling is preferably 40% or more, particularly preferably 50% or more. The upper limit of the total rolling reduction is set to 98.5% or less, taking into account the reduction in elongation due to work hardening.

冷間圧延後のアルミニウム合金圧延材に必要に応じて洗浄を実施しても良い。 The aluminum alloy rolled material after cold rolling may be washed if necessary.

なお、本願のアルミニウム合金圧延材の製造はコイルで行ってもよく、単板で行ってもよい。また、冷間圧延より後の任意の工程でアルミニウム合金圧延材を切断し切断後の工程を単板で行ってもよいし、用途に応じスリットして条にしても良い。 Note that the aluminum alloy rolled material of the present application may be manufactured using a coil or a single plate. Further, the rolled aluminum alloy material may be cut at any step after cold rolling, and the step after cutting may be performed as a single sheet, or it may be slit into strips depending on the purpose.

上記の製造方法によれば、高い導電率を得つつ、強度を向上させることができ、優れたアルミニウム合金圧延材が得られる。 According to the above manufacturing method, strength can be improved while obtaining high electrical conductivity, and an excellent aluminum alloy rolled material can be obtained.

本願のアルミニウム合金圧延材の導電率は56%IACS以上、引張強さは250MPa以上と規定する。引張強さは260MPa以上が好ましく、270MPa以上が更に好ましく、特に280MPa以上がよりいっそう好ましい。本願規定の導電率と引張強さを満足することにより優れた熱伝導性を有するアルミニウム合金圧延材となる。 The electrical conductivity of the aluminum alloy rolled material of the present application is specified to be 56% IACS or more, and the tensile strength is specified to be 250 MPa or more. The tensile strength is preferably 260 MPa or more, more preferably 270 MPa or more, and particularly preferably 280 MPa or more. By satisfying the electrical conductivity and tensile strength specified in this application, the aluminum alloy rolled material has excellent thermal conductivity.

以下に、本発明を実施例により説明する。なお、本発明は、ここに記述する実施例に発明の範囲を限定するものではなく、本発明の趣旨に適合しうる範囲で適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術範囲に含まれる。 The present invention will be explained below using examples. It should be noted that the scope of the present invention is not limited to the examples described herein, and it is possible to implement the present invention with appropriate changes within the scope that fits the spirit of the present invention. It is within the technical scope of the present invention.

まず、表1に示す11種類の化学組成のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で表2記載の均質化処理を実施した後、同じ炉中で温度を変化させ表2記載の熱間圧延前加熱を実施した。熱間圧延前加熱後のスラブを加熱炉中から取り出し、粗熱間圧延を実施し、表2記載の合金板とした。 First, aluminum alloy slabs having 11 different chemical compositions shown in Table 1 were subjected to surface cutting. Next, the alloy slabs after facing were subjected to the homogenization treatment described in Table 2 in a heating furnace, and then the pre-hot rolling heating described in Table 2 was performed in the same furnace while changing the temperature. The slabs after heating before hot rolling were taken out of the heating furnace and subjected to rough hot rolling to obtain the alloy plates listed in Table 2.

粗熱間圧延の後、引き続き仕上げ熱間圧延を実施し、表2記載の熱延上り温度、板厚の熱間圧延板を得た。仕上げ熱間圧延後の合金板に表2記載の熱処理、冷間圧延を施し、所定の板厚のアルミニウム合金板を得た。表1の合金スラブと表2の工程の組み合わせは表3の通りとした。 After the rough hot rolling, finish hot rolling was subsequently performed to obtain a hot rolled plate having the hot rolling temperature and plate thickness listed in Table 2. The alloy plates after finish hot rolling were subjected to heat treatment and cold rolling as shown in Table 2 to obtain aluminum alloy plates with a predetermined thickness. The combinations of the alloy slabs in Table 1 and the steps in Table 2 were as shown in Table 3.

Figure 0007442304000001
Figure 0007442304000001

Figure 0007442304000002
Figure 0007442304000002

得られた合金板の引張強さ、0.2%耐力、伸び、導電率、曲げ加工性を以下の方法により評価した。
[引張強さ、耐力、伸び]
引張強さ(σB)、0.2%耐力(σ0.2)および伸び(δ)は、JISZ2201に定めるJIS5号試験片にて、圧延方向に対し平行方向に採取した試料について常温、常法により測定した。
[導電率]
導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10-2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。
[曲げ加工性]
曲げ加工性は、曲げ角度を90°、合金板の厚さが0.4mm以上の場合はそれぞれの合金板の板厚を曲げ内側半径、合金板の厚さが0.4mm未満の場合は曲げ内側半径を0として、JIS Z 2248金属材料曲げ試験方法の「6.3 Vブロック法による曲げ試験」を実施し、割れが発生しなかったものを○、割れが発生したものを×として評価した。
The tensile strength, 0.2% proof stress, elongation, electrical conductivity, and bending workability of the obtained alloy plate were evaluated by the following methods.
[Tensile strength, yield strength, elongation]
Tensile strength (σB), 0.2% yield strength (σ0.2), and elongation (δ) are measured using a JIS No. 5 test piece specified in JIS Z2201, using a sample taken in a direction parallel to the rolling direction at room temperature using an ordinary method. It was measured.
[conductivity]
The electrical conductivity was determined as a relative value (%IACS) when the electrical conductivity of internationally adopted annealed standard annealed copper (volume low efficiency 1.7241×10 −2 μΩm) is taken as 100% IACS.
[Bending workability]
Bending workability is determined by bending at a bending angle of 90°, by bending the inner radius of each alloy plate if the thickness of the alloy plate is 0.4 mm or more, or by bending the inner radius if the thickness of the alloy plate is less than 0.4 mm. With the inner radius set as 0, "6.3 Bending test by V block method" of JIS Z 2248 Metal material bending test method was carried out, and those with no cracks were evaluated as ○, and those with cracks were evaluated as ×. .

引張強さ、0.2%耐力、導電率、および曲げ加工性の評価結果を表3に示す。表3より、本願規定の化学組成、引張強さ、および導電率を満足する実施例記載のアルミニウム合金圧延材が確認できた。 Table 3 shows the evaluation results of tensile strength, 0.2% proof stress, electrical conductivity, and bending workability. From Table 3, it was confirmed that the aluminum alloy rolled material described in the example satisfied the chemical composition, tensile strength, and electrical conductivity specified in the present application.

Figure 0007442304000003
Figure 0007442304000003

本発明に係るアルミニウム合金圧延材においては、熱伝導率と導電率が良好な相関性を示し、優れた熱伝導性を有するアルミニウム合金板は優れた導電率を有し、放熱部材材料はもちろん導電部材材料として用いることができて有用である。 In the aluminum alloy rolled material according to the present invention, thermal conductivity and electrical conductivity show a good correlation, and an aluminum alloy plate with excellent thermal conductivity has excellent electrical conductivity, and can be used as a conductive material as well as a heat dissipating material. It is useful because it can be used as a member material.

Claims (7)

化学組成が、Si:0.20~0.65質量%、Mg:0.35~0.7質量%、Fe:0.05~0.35質量%、Cu:0.01~0.15質量%、Ni:0.06~0.20質量%、Cr:0.05質量%以下、Mn:0.05質量%以下、Zn:0.10質量%以下、Ti:0.10質量%以下、B:0.05質量%以下を含み、残部がAlと不可避不純物からなり、かつ導電率が56%IACS以上、引張強さを250MPa以上であることを特徴とする熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材。 The chemical composition is Si: 0.20 to 0.65 mass%, Mg: 0.35 to 0.7 mass%, Fe: 0.05 to 0.35 mass%, Cu: 0.01 to 0.15 mass%. %, Ni: 0.06 to 0.20 mass%, Cr: 0.05 mass% or less, Mn: 0.05 mass% or less, Zn: 0.10 mass% or less, Ti: 0.10 mass% or less, B: Thermal conductivity, electrical conductivity, and strength containing 0.05% by mass or less, the remainder consisting of Al and unavoidable impurities, and having an electrical conductivity of 56% IACS or more and a tensile strength of 250 MPa or more. Rolled aluminum alloy material with excellent properties. Cu:0.04~0.12質量%、Mn:0.0002~0.04質量%、Cr:0.0002~0.04質量%、Zn:0.0002~0.04質量%、Ti:0.0002~0.04質量%、B:0.0005~0.04質量%を含有することを特徴とする請求項1に記載の熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材。 Cu: 0.04 to 0.12% by mass, Mn: 0.0002 to 0.04% by mass, Cr: 0.0002 to 0.04% by mass, Zn: 0.0002 to 0.04% by mass, Ti: The aluminum alloy rolled material having excellent thermal conductivity, electrical conductivity, and strength according to claim 1, characterized in that it contains 0.0002 to 0.04% by mass and B: 0.0005 to 0.04% by mass. . 不可避不純物中のVが0.05質量%以下、Gaが0.05質量%以下、Zrが0.05質量%以下、Caが0.01質量%以下、Pbが0.05質量%以下、Biが0.05質量%以下、Snが0.05質量%以下、Inが0.004質量%以下に規制されていることを特徴とする請求項1または2に記載の熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材。 In the inevitable impurities, V is 0.05% by mass or less, Ga is 0.05% by mass or less, Zr is 0.05% by mass or less, Ca is 0.01% by mass or less, Pb is 0.05% by mass or less, Bi Thermal conductivity, electrical conductivity and Rolled aluminum alloy material with excellent strength. 化学組成が、Si:0.20~0.65質量%、Mg:0.35~0.7質量%、Fe:0.05~0.35質量%、Cu:0.01~0.15質量%、Ni:0.02~0.20質量%、Cr:0.05質量%以下、Mn:0.05質量%以下、Zn:0.10質量%以下、Ti:0.10質量%以下、B:0.05質量%以下を含み、残部がAlと不可避不純物からなるアルミニウム合金鋳塊に対し、後続して実施される面削の前または後に500℃以上570℃以下の温度で1時間以上20時間以下の時間にて均質化処理を実施後、480℃以上550℃以下の温度で5分以上10時間保持後に熱間圧延を開始し、複数の圧下パスにより圧下率95%以上99.5%以下の熱間圧延を実施した後、圧下率30%以上98.5%以下の冷間圧延を施す工程を含むことを特徴とする熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材の製造方法。 The chemical composition is Si: 0.20 to 0.65 mass%, Mg: 0.35 to 0.7 mass%, Fe: 0.05 to 0.35 mass%, Cu: 0.01 to 0.15 mass%. %, Ni: 0.02 to 0.20 mass%, Cr: 0.05 mass% or less, Mn: 0.05 mass% or less, Zn: 0.10 mass% or less, Ti: 0.10 mass% or less, B: An aluminum alloy ingot containing 0.05% by mass or less and the remainder consisting of Al and unavoidable impurities is heated at a temperature of 500°C or more and 570°C or less for 1 hour or more before or after the subsequent facing. After homogenizing for 20 hours or less, hot rolling is started after holding at a temperature of 480°C or more and 550°C or less for 5 minutes or more and 10 hours, and a reduction rate of 95% or more and 99.5 is achieved by multiple rolling passes. An aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, characterized by including a step of hot rolling with a reduction rate of 30% or more and 98.5% or less after hot rolling with a reduction rate of 30% or more and 98.5% or less. manufacturing method. 前記アルミニウム合金鋳塊は、Cu:0.04~0.12質量%、Mn:0.0002~0.04質量%、Cr:0.0002~0.04質量%、Zn:0.0002~0.04質量%、Ti:0.0002~0.04質量%、B:0.0005~0.04質量%を含有する請求項4に記載の熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材の製造方法。The aluminum alloy ingot contains Cu: 0.04 to 0.12% by mass, Mn: 0.0002 to 0.04% by mass, Cr: 0.0002 to 0.04% by mass, and Zn: 0.0002 to 0. .04% by mass, Ti: 0.0002 to 0.04% by mass, and B: 0.0005 to 0.04% by mass. The aluminum alloy with excellent thermal conductivity, electrical conductivity, and strength according to claim 4. Method of manufacturing rolled material. 前記アルミニウム合金鋳塊は、不可避不純物中のVが0.05質量%以下、Gaが0.05質量%以下、Zrが0.05質量%以下、Caが0.01質量%以下、Pbが0.05質量%以下、Biが0.05質量%以下、Snが0.05質量%以下、Inが0.004質量%以下に規制されている請求項4または5に記載の熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材の製造方法。The aluminum alloy ingot contains unavoidable impurities that include V of 0.05% by mass or less, Ga of 0.05% by mass or less, Zr of 0.05% by mass or less, Ca of 0.01% by mass or less, and Pb of 0. Thermal conductivity and electrical conductivity according to claim 4 or 5, wherein Bi is regulated to 0.05% by mass or less, Sn is regulated to 0.05% by mass or less, and In is regulated to 0.004% by mass or less. A method for producing aluminum alloy rolled material with excellent properties and strength. 冷間圧延を施す工程の開始から終了のいずれかのパスの前後に少なくとも1回、120℃以上220℃以下、5分以上12時間保持による熱処理工程を含むことを特徴とする請求項4~6のいずれかに記載の熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材の製造方法。 Claims 4 to 6 , characterized in that it includes a heat treatment step of holding at 120° C. or higher and 220° C. or lower for 5 minutes or more and 12 hours at least once before or after any one of the passes from the start to the end of the cold rolling step. A method for producing a rolled aluminum alloy material having excellent thermal conductivity, electrical conductivity, and strength according to any one of the above .
JP2019211947A 2019-11-25 2019-11-25 Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method Active JP7442304B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019211947A JP7442304B2 (en) 2019-11-25 2019-11-25 Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
CN202011328946.2A CN112831691A (en) 2019-11-25 2020-11-24 Rolled aluminum alloy material having excellent thermal conductivity, electrical conductivity, and strength, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019211947A JP7442304B2 (en) 2019-11-25 2019-11-25 Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021085040A JP2021085040A (en) 2021-06-03
JP7442304B2 true JP7442304B2 (en) 2024-03-04

Family

ID=75923306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019211947A Active JP7442304B2 (en) 2019-11-25 2019-11-25 Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7442304B2 (en)
CN (1) CN112831691A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114606414B (en) * 2022-03-11 2022-12-02 北京理工大学 High-conductivity regenerated aluminum alloy conductor and preparation method thereof
CN116200633A (en) * 2022-12-16 2023-06-02 平高集团有限公司 High-conductivity cast aluminum alloy material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321755A (en) 2002-03-01 2003-11-14 Showa Denko Kk PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
JP2017179443A (en) 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179449A (en) 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
CN108300879A (en) 2018-01-30 2018-07-20 广西南南铝加工有限公司 Electric vehicle bus-bars conductor Al-Mg-Si alloy thin plate preparation process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321755A (en) 2002-03-01 2003-11-14 Showa Denko Kk PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
JP2017179443A (en) 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179449A (en) 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
CN108300879A (en) 2018-01-30 2018-07-20 广西南南铝加工有限公司 Electric vehicle bus-bars conductor Al-Mg-Si alloy thin plate preparation process

Also Published As

Publication number Publication date
JP2021085040A (en) 2021-06-03
CN112831691A (en) 2021-05-25

Similar Documents

Publication Publication Date Title
JPWO2005056859A1 (en) Method for producing Al-Mg-Si alloy plate excellent in bake hardness and hemmability
WO2017168890A1 (en) Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate
JP6695725B2 (en) Al-Mg-Si alloy plate
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
CN110872664A (en) Al-Mg-Si alloy plate
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JP2017179442A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179454A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6774199B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
JP7422539B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JP2020033604A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP7262947B2 (en) Al-Mg-Si alloy plate
JP6718276B2 (en) Method for manufacturing Al-Mg-Si alloy plate
CN108884542B (en) Method for producing Al-Mg-Si alloy sheet
JP2017179452A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2017179456A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2004076155A (en) Aluminum alloy sheet having excellent seizure softening resistance
JP6774197B2 (en) Al-Mg-Si based alloy material
JP2017179444A (en) Al-Mg-Si-BASED ALLOY SHEET
TW201742931A (en) Method for producing Al-Mg-Si alloy plate
JP2006037139A (en) 6000 series aluminum alloy sheet for superplastic forming having excellent paint baking hardenability and its production method
JP6774200B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP6774198B2 (en) Al-Mg-Si based alloy plate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20211028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240220

R150 Certificate of patent or registration of utility model

Ref document number: 7442304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02