JPS62177143A - Aluminum alloy sheet excellent in formability and baking hardening and its production - Google Patents

Aluminum alloy sheet excellent in formability and baking hardening and its production

Info

Publication number
JPS62177143A
JPS62177143A JP61018860A JP1886086A JPS62177143A JP S62177143 A JPS62177143 A JP S62177143A JP 61018860 A JP61018860 A JP 61018860A JP 1886086 A JP1886086 A JP 1886086A JP S62177143 A JPS62177143 A JP S62177143A
Authority
JP
Japan
Prior art keywords
less
temperature
formability
heating
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61018860A
Other languages
Japanese (ja)
Other versions
JPH0569898B2 (en
Inventor
Yasunori Sasaki
佐々木 靖紀
Tomohiro Nishimura
友宏 西村
Noboru Tanaka
昇 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61018860A priority Critical patent/JPS62177143A/en
Publication of JPS62177143A publication Critical patent/JPS62177143A/en
Publication of JPH0569898B2 publication Critical patent/JPH0569898B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To manufacture an Al alloy sheet excellent in formability and baking hardening, by subjecting an Al-Mg-Si-Cu-base alloy ingot having a specific composition and limited in inevitable impurity content to proper hot and cold rollings and to heat treatment. CONSTITUTION:An Al-Mg-Si-Cu-base alloy has a composition consisting of, by weight, 0.4-1.5% Mg, 0.3-2.3% Si, 0.2-0.8% Cu, one or more kinds among <=0.1% Ti, <=0.06% B, <=0.2% Be, <=0.8% Mn, <=0.4% Cr, <=0.5% Fe, <=0.2% Zr, and <=0.2% V, <=0.2% inevitable impurities, and the balance essentially Al. The Al alloy sheet is obtained by applying, under specific conditions, homogenization, blue annealing after hot rolling, cold rolling, solution heat treatment, and cooling in succession to the alloy ingot having the above composition. Moreover, when the above alloy has particularly high formability, the maximum edge length of a crystalline compound is regulated to <=13mum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は成形性、焼付硬化性に優れたアルミニウム合金
板およびその製造法に関し、さらに詳しくは、強度、成
形性に優れ、成形加工後の塗装焼付は時の加熱による焼
付硬化性に優れたアルミニウム合金板およびその製造法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an aluminum alloy plate with excellent formability and bake hardenability, and a method for manufacturing the same. Paint baking relates to an aluminum alloy plate with excellent baking hardenability due to heating over time, and a method for manufacturing the same.

[従来技術] 従来、自動車用部品等および他の用途に使用されるアル
ミニウム合金材料に塗装した塗膜に強度を保持させるた
めに、塗装後加熱(ベーキング)することが行なわれ、
併せて、この加熱を利用してアルミニウム合金材料の強
度を向上させることが行なわれている。
[Prior Art] Conventionally, in order to maintain the strength of coatings applied to aluminum alloy materials used for automobile parts and other purposes, heating (baking) is performed after coating.
At the same time, this heating is used to improve the strength of aluminum alloy materials.

このアルミニウム合金材料としては、6009.601
0が使用されており、そして、塗膜の焼付は条件は20
0℃の高い温度で60〜90分保持するという高温長時
間処理のため、6009.6010は強度が向上する効
果があった。
As this aluminum alloy material, 6009.601
0 is used, and the conditions for baking the paint film are 20.
6009.6010 had the effect of improving strength due to the high temperature and long time treatment of holding at a high temperature of 0° C. for 60 to 90 minutes.

しかして、最近になって、省エネルギーおよびベーキン
グ次のコストダウンのために、ベーキング温度を下げ、
かつ、加熱時間を短縮する傾向にある。
Recently, however, baking temperatures have been lowered to save energy and reduce baking costs.
Moreover, there is a tendency to shorten the heating time.

例えば、特公昭59−039499号公報および特公昭
50−001910号公報には、Al−Mg−Si−−
Cu基合金において、溶体化処理後室温に放置した後、
200℃の温度で60分保持する高温長時間のベーキン
グを行なって強度を向上させているが、175℃の温度
で30分保持する低温短時間のベーキングでは強度向上
は殆んど期待できず、あったとしても僅かに2 kg/
上昇で効果はない。
For example, in Japanese Patent Publication No. 59-039499 and Japanese Patent Publication No. 50-001910, Al-Mg-Si--
In Cu-based alloys, after being left at room temperature after solution treatment,
The strength is improved by long-term baking at a high temperature of 200°C for 60 minutes, but with low-temperature and short-time baking at 175°C for 30 minutes, almost no improvement in strength can be expected. Even if there is, it is only 2 kg/
The increase has no effect.

また、本発明者も先に出願を完了している“成形性、焼
付硬化性に優れたアルミニウム合金板およびその製造法
においても、200℃の温度において30分保持すると
いう短かい時間に下げることができたが、溶体化処理後
3日以上室温に放置した後、175℃の温度で30分保
持する低温短時間のベーキングにおける強度向上は僅か
であって効果が少ない。
In addition, the present inventor has also previously completed an application for an aluminum alloy plate with excellent formability and bake hardenability, and a method for manufacturing the same, which requires a short holding time of 30 minutes at a temperature of 200°C. However, after being left at room temperature for 3 days or more after solution treatment, the strength was only slightly improved by short-time baking at a low temperature of 175° C. for 30 minutes, and the effect was small.

これの対策として、本発明者は175℃の温度で30分
保持する低温短時間のベーキングでも強度向上に効果の
ある製造法である“焼付硬化性に優れたアルミニウム合
金の製造法”について出願を完了している。
As a countermeasure to this, the present inventor has filed an application for a "method for manufacturing an aluminum alloy with excellent bake hardenability," which is a manufacturing method that is effective in improving strength even with low-temperature, short-time baking held at a temperature of 175°C for 30 minutes. Completed.

しかして、近年、製品の形状が複雑になり、さらに、成
形性に優れ、かつ、焼付硬化性を備えたアルミニウム合
金板が強く要望され、いままでに提案されているアルミ
ニウム合金板およびその製造法ではその対応が困難にな
ってきている。
However, in recent years, the shapes of products have become more complex, and there has been a strong demand for aluminum alloy plates with excellent formability and bake hardenability. It is becoming difficult to deal with this.

[発明が解決しようとする問題点] 本発明は上記に説明したような従来におけるアルミニウ
ム合金およびその製造法における種々の問題点に孟み、
本発明者が鋭意研究を行なった結果、従来において使用
されているAI  Mg  −Si−−Cu基合金板の
成形性を向上させ、かつ、従来における200″Cの温
度で30分または60分のような高温長時間のベーキン
グによると同等の強度向上効果を有しており、さらに、
175℃の温度で30分間のベーキングの低温短時間の
加熱により強度を向上させることができる強度、成形性
、焼付硬化性に優れたアルミニウム合金板およびその製
造法を開発したのである。
[Problems to be Solved by the Invention] The present invention has been made in consideration of various problems in conventional aluminum alloys and methods for producing the same as explained above.
As a result of intensive research by the present inventors, we have improved the formability of the conventionally used AI Mg-Si--Cu base alloy sheet, and improved the formability of the conventionally used AI Mg-Si--Cu based alloy sheet. It has the same strength improvement effect as baking at high temperature and for a long time, and
We have developed an aluminum alloy plate with excellent strength, formability, and bake hardenability, which can improve its strength by short, low-temperature baking at 175°C for 30 minutes, and a method for manufacturing the same.

E問題点を解決するための手段] 本発明に係る焼付硬化性に優れたアルミニウム合金およ
びその製造法は、 (1)Mg0.4〜1.5+ut%、Si0.3〜2.
3IIIt%、Cu 0.2−0,8wt% を含有し、さらに、 Ti 0.1wt%以下、B 0.06u+j%以下、
Be 012wt%以下、Mn 008wt%以下、C
r O14+++t%以下、Fe 065wt%以下、
Zr 0.2wL%以下、V 062wt%以下のうち
から選んだ1種または2種以上を 含有し、かつ、 不可避不純物0.2wt%以下 を含有し、残部が実質的にAIからなるAl−Mg−S
i−  Cu基合金であり、特に高い成形性を有する場
合は晶出化合物の最長辺長さが13μm以下であること
を特徴とする強度、成形性、焼付硬化性に優れたアルミ
ニウム合金板を第1の発明とし、(2)  Mg0.4
〜l、5wt%、S i 0.3〜2.3wt%、Cu
 0.2−2,3wL% を含有し、さらに、 Ti 011wt%以下、B 0.061wt%以下、
Be 0.2wt%以下、Mn 008wt%以下、C
r 0.4wt%以下、Fe005IIlt%以下、Z
r 0.2u+L%以下、V 0.2wt%以下のうち
から選んだ1種または2種以上を 含有し、かつ、 不可避不純物0.2wt%以下を 含有し、残部が実質的にAIからなるAl−Mg−Si
−−Cu基合金i[を、加熱速度300’C/時以下の
速度で450〜580℃の温度に加熱して均質化し、熱
間圧延を行ない、300〜580℃の温度で荒焼鈍およ
び中間焼鈍を行ない、または、行なわず、冷間圧延率5
%以上の冷間圧延を行ない、溶体化処理として加熱速度
100’C/分以上の加熱速度で480〜580℃の温
度に急速加熱し、この温度域に3秒以上保持した後、1
00℃までの冷却速度を200’C/分以上で急速冷却
を行ない、特に高い成形性を有する場合は晶出化合物の
最長辺長さを13μm以下とすることを特徴とする強度
、成形性、焼付硬化性に優れたアルミニウム合金板の製
造法を第2の発明とし、 (3)  Mg 0.4〜1,5IllL%、S i 
0.3〜2,3Iut%、Cu 002−0,8wt% を含有し、さらに、 Ti 0.1wt%以下、B 0.06wt%以下、B
e 0.2+ut%以下、Mn 0.8wt%以下、C
r 0.4wt%以下、Fe0.5wt%以下、Zr 
0.2wt%以下、V 0.2wt%以下のうちから選
んだ1種または2種以上 を含有し、かつ、 不可避不純物0.2田t%以下 を含有し、残部が実質的にAlからなるAl−Mg−S
i−Cu基合金鋳塊を、加熱速度300℃/時以下の速
度で450〜580″Cの温度に加熱して均質化し、熱
間圧延を行ない、300〜580”Cの温度で荒焼鈍お
よび中間焼鈍を行なり・、または、行なわず、冷間圧延
率5%以上の冷間圧延を行ない、溶体化処理として加熱
速度100’C/分以上の加熱速度で480〜580’
Cの温度に急速加熱し、この温度域に3秒以上保持した
後、100℃までの冷却速度を200℃/分以上で急速
冷却を行ない、さらに、72時間以内に40〜120’
Cの温度で8〜36時間の低温加熱処理を行ない、特に
高い成形性を有する場合には晶出化合物の最長辺長さを
13μm以下とすることを特徴とする強度、成形性、焼
付硬化性に優れたアルミニウム合金板の製造法を第3の
発明とする3つの発明よりなるものである。
Means for Solving Problem E] The aluminum alloy with excellent bake hardenability and the manufacturing method thereof according to the present invention are as follows: (1) Mg0.4-1.5+ut%, Si0.3-2.
Contains 3IIIt%, Cu 0.2-0.8wt%, and further contains Ti 0.1wt% or less, B 0.06u+j% or less,
Be 012wt% or less, Mn 008wt% or less, C
r O14+++t% or less, Fe 065wt% or less,
Al-Mg containing one or more selected from Zr 0.2 wL% or less and V 062 wt% or less, and containing 0.2 wt% or less of unavoidable impurities, with the remainder substantially consisting of AI. -S
An aluminum alloy sheet with excellent strength, formability, and bake hardenability, which is an i-Cu-based alloy and has particularly high formability, the longest side length of the crystallized compound is 13 μm or less. (2) Mg0.4
~l, 5wt%, Si 0.3-2.3wt%, Cu
0.2-2.3wL%, furthermore, Ti 011wt% or less, B 0.061wt% or less,
Be 0.2wt% or less, Mn 008wt% or less, C
r 0.4wt% or less, Fe005IIlt% or less, Z
Al containing one or more selected from r 0.2u+L% or less, V 0.2wt% or less, and containing 0.2wt% or less of unavoidable impurities, with the remainder consisting essentially of AI. -Mg-Si
--Cu-based alloy i[ is homogenized by heating to a temperature of 450 to 580°C at a heating rate of 300'C/hour or less, hot rolled, rough annealed and intermediate at a temperature of 300 to 580°C. Cold rolling rate 5 with or without annealing
% or more, rapidly heated to a temperature of 480 to 580°C at a heating rate of 100'C/min or more as a solution treatment, and held in this temperature range for 3 seconds or more, then 1
Strength, formability, characterized by rapid cooling to 00°C at a cooling rate of 200'C/min or more, and in cases where the crystallized compound has particularly high formability, the longest side length of the crystallized compound is 13 μm or less. A second invention provides a method for producing an aluminum alloy plate with excellent bake hardenability, (3) Mg 0.4-1.5IllL%, Si
Contains 0.3 to 2,3 Iut%, Cu 002-0,8 wt%, and further contains Ti 0.1 wt% or less, B 0.06 wt% or less, B
e 0.2+ut% or less, Mn 0.8wt% or less, C
r 0.4 wt% or less, Fe 0.5 wt% or less, Zr
Contains one or more selected from 0.2 wt% or less, V 0.2 wt% or less, and contains 0.2 t% or less of unavoidable impurities, with the remainder substantially consisting of Al. Al-Mg-S
The i-Cu base alloy ingot is homogenized by heating to a temperature of 450 to 580"C at a heating rate of 300C/hour or less, hot rolled, and then rough annealed and rough annealed at a temperature of 300 to 580"C. Perform intermediate annealing or not, perform cold rolling at a cold rolling rate of 5% or more, and as solution treatment, heat at a heating rate of 100'C/min or more to 480-580'
After rapidly heating to a temperature of
Strength, formability, and bake hardenability characterized by performing low-temperature heat treatment at a temperature of C for 8 to 36 hours, and in cases where the crystallized compound has particularly high formability, the longest side length of the crystallized compound is 13 μm or less. This invention consists of three inventions, with the third invention being a method for manufacturing an aluminum alloy plate with excellent properties.

本発明に係る焼付硬化性に優れたアルミニウム合金板お
よびその製造法について以下詳細に説明する。
An aluminum alloy plate with excellent bake hardenability and a method for manufacturing the same according to the present invention will be described in detail below.

先ず、本発明に係る焼付硬化性に優れたアルミニウム合
金板の含有成分および成分割合について説明する。
First, the components and component ratios of the aluminum alloy plate with excellent bake hardenability according to the present invention will be explained.

MgはSiと共同して強化を付与する元素であり、含有
量が0.4wt%未満では強度が低く、また、1.5u
+L%を越えて含有されると成形性が悪くなる。
Mg is an element that imparts reinforcement together with Si, and if the content is less than 0.4 wt%, the strength is low;
If the content exceeds +L%, moldability will deteriorate.

よって、成形性、強度およびベーキングによる強度向上
のバランスを図るために、Mg含有量は0゜4〜1.5
wt%とする。
Therefore, in order to achieve a balance between formability, strength, and strength improvement by baking, the Mg content should be 0°4 to 1.5.
Let it be wt%.

SiはMgと共同して強化を付与する元素であり、含有
量が0.3wt%未満では強度が低(、また、2、:3
ut%を越えて含有されると成形性が悪くなり、さらに
、2.5+uL%になると熱間圧延性が低下し、熱間圧
延中にワニロ等の割れが発生する。よって、成形性、強
度およびベーキングによる強度向上のバランスを図るた
めに、Si含有量は0.3〜2.3wt%とする。
Si is an element that imparts reinforcement in cooperation with Mg, and when the content is less than 0.3 wt%, the strength is low (also 2,:3
When the content exceeds ut%, formability deteriorates, and furthermore, when the content exceeds 2.5+uL%, hot rollability decreases and cracks such as alligator cracks occur during hot rolling. Therefore, in order to achieve a balance between formability, strength, and strength improvement by baking, the Si content is set to 0.3 to 2.3 wt%.

Cuはその含有量に比例して強度およびベーキングによ
る強度向上を大きくするという効果を付与する元素であ
るが、耐蝕性を低下させる元素でもあり、含有量が0.
2iIIt%未満では耐蝕性は良好であるが、強度およ
びベーキングによる強度向上効果は小さく、また、0.
8+ut%を越えて含有されると強度およびベーキング
による強度向上効果は大きいが、耐蝕性および成形性を
低下させる。よって、Cu含有量は0.2〜0.8wt
%とする。
Cu is an element that increases strength and strength improvement by baking in proportion to its content, but it is also an element that reduces corrosion resistance, and when the content is 0.
If it is less than 2iIIIt%, the corrosion resistance is good, but the strength and strength improvement effect by baking are small, and if it is less than 0.
If the content exceeds 8+ut%, the effect of improving the strength and the strength by baking is large, but the corrosion resistance and moldability are reduced. Therefore, the Cu content is 0.2 to 0.8wt
%.

Tiは鋳塊の結晶粒を微細にし、かつ、成形性を向上さ
せる元素であり、含有量が001wt%を越えて含有さ
れると粗大な晶出物を形成し、成形性を低下させる。よ
って、Ti含有量は0.1wt%以下とする。
Ti is an element that makes the crystal grains of the ingot fine and improves the formability, and if the content exceeds 0.01 wt%, coarse crystallized substances are formed and the formability is reduced. Therefore, the Ti content is set to 0.1 wt% or less.

B 1.t T iと同様にaLJtの結晶粒を微細化
し、成形性を向上させる元素であり、含有量が0.06
wt%を越えて含有されるとIII大な晶出物を形成し
、成形性を低下させる。よって、B含有量は0.06w
t%以下とする。
B1. Like t Ti, it is an element that refines the crystal grains of aLJt and improves formability, and the content is 0.06
If the content exceeds wt%, large crystallized substances will be formed and the moldability will be deteriorated. Therefore, the B content is 0.06w
t% or less.

なお、Tiお上びBはAI−Ti−Bの中間合金または
Al−Ti中間合金およびAI−B中間合金によって含
有させることが望ましい。
Note that Ti and B are preferably contained in an AI-Ti-B intermediate alloy or an Al-Ti intermediate alloy and an AI-B intermediate alloy.

Beは熱間圧延性の向上および製品の成形性向上に効果
があり、この効果は含有量が増加するに従って向上する
が、0.2wt%を越えて含有されると効果が飽和する
。よって、Be含有量は0.2wt%以下とする。なお
、Beは成形性を重視する時に用いるが、それ程重視さ
れない時は用いないこともある。
Be is effective in improving hot rolling properties and product formability, and this effect improves as the content increases, but the effect becomes saturated when the content exceeds 0.2 wt%. Therefore, the Be content is set to 0.2 wt% or less. Note that Be is used when moldability is important, but may not be used when it is not so important.

Mn、Cr、Zr、Vは強度を向上させる効果があるが
、含有量が増加すると粗大品出物を生成し成形性を低下
させ、Feは強度向上効果は小さく、粗大な晶出物を生
成し成形性を低下させる。よりて、強度向上と成形性の
バランスからMn含有量は0.8wt%以下、Cr含有
量は0.4wt%以下、Fe含有量は0.511IL%
以下、Zr含有量は0.211IE%以下、■含有量は
0.2wt%以下とし、このうちから選んだ1種または
2種以上を含有させるのがよい。
Mn, Cr, Zr, and V have the effect of improving strength, but when their content increases, they produce coarse crystallized products and reduce formability, while Fe has a small strength-improving effect and produces coarse crystallized products. This reduces moldability. Therefore, from the balance between strength improvement and formability, the Mn content is 0.8 wt% or less, the Cr content is 0.4 wt% or less, and the Fe content is 0.511 IL%.
Hereinafter, the Zr content is 0.211 IE% or less, the (2) content is 0.2 wt% or less, and it is preferable to contain one or more selected from these.

特に、成形性と焼付硬化性を保持させるためには、Mn
、Cr%Zr%V、Feは単独で含有量を0、1ust
%以下とするか、または、Mn+Cr十Zr十■の合計
量を0.2wt%以下に制御するのがよい。
In particular, in order to maintain formability and bake hardenability, Mn
, Cr%Zr%V, Fe alone has a content of 0, 1ust
% or less, or the total amount of Mn + Cr + Zr + × is preferably controlled to 0.2 wt % or less.

不可避不純物は、焼付硬化性および成形性を害とない程
度で単独で0.2wt%までの含有は許容される。
The unavoidable impurities may be contained alone in an amount of up to 0.2 wt% as long as the bake hardenability and moldability are not adversely affected.

なお、本発明に係る焼付硬化性に優れたアルミニウム合
金板の製造法においては、晶出物の大きさが成形性に影
響し、晶出物の最長辺長さが13μmを越えると成形性
が低下し、従って、焼付硬化性および成形性を併せ備え
る場合には、最終熱処理後の晶出物の最長辺長さは13
μm以下に制御する必要がある。
In addition, in the method of manufacturing an aluminum alloy plate with excellent bake hardenability according to the present invention, the size of the crystallized substances affects the formability, and if the longest side length of the crystallized substances exceeds 13 μm, the formability becomes poor. Therefore, if both bake hardenability and formability are desired, the longest side length of the crystallized product after final heat treatment is 13
It is necessary to control the thickness to below μm.

次に、本発明に係る焼付硬化性に優れたアルミニウム合
金板の製造法における熱処理について説明する。
Next, heat treatment in the method for producing an aluminum alloy plate with excellent bake hardenability according to the present invention will be explained.

上記に説明した含有成分および成分割合のアルミニウム
合金′V′!塊の均質化処理は、低温短時間加熱のベー
キングにおいての強度向上に対する効果が小さいが、成
形性向上に対しては効果がある。
Aluminum alloy 'V' with the above-mentioned components and component ratios! Although the homogenization treatment of lumps has a small effect on improving strength during baking at low temperature and short time, it is effective on improving formability.

特に成形性焼付硬化性を有する組成<Mn、 Cr、Z
r、VおよびFeは単独で0.1111L%以下または
Mn十Cr+Zr十Vの合計量を0.2wt%以下に制
御する。)の均質化処理は、均質化処理温度までの加熱
速度が早過ぎると素材の成形性の低下が大きくなるので
、加熱速度は300℃/時以下としなければならず、そ
して、均質化処理温度は450℃未満の温度では素材の
成形性の低下を招来し、また、580℃を越える温度で
はバーニングが生じるようになる。よって、均質化処理
温度は450〜580℃とする。
In particular, compositions with moldability and bake hardenability <Mn, Cr, Z
r, V and Fe are individually controlled to be 0.1111L% or less, or the total amount of Mn+Cr+Zr+V is controlled to be 0.2wt% or less. ) In the homogenization treatment, if the heating rate to the homogenization treatment temperature is too fast, the moldability of the material will decrease significantly, so the heating rate must be 300 ° C / hour or less, and the homogenization treatment temperature At temperatures below 450°C, the moldability of the material decreases, and at temperatures above 580°C, burning occurs. Therefore, the homogenization treatment temperature is set at 450 to 580°C.

また、加熱速度が300℃/時以下で行なえない場合、
加熱速度に関係なく300〜400℃の温度に1時間以
上加熱保持した後、450〜580℃の温度で均質化処
理を行なう2段以上の多段均質仮処理を行なうことによ
り、加熱速度が300℃/時以下の時と同様の成形性を
得ることができる。なお、450〜580℃の温度にお
ける均質化処理時間は1〜10時間程度が望ましい。
In addition, if the heating rate cannot be lowered to 300°C/hour or less,
Regardless of the heating rate, after heating and holding at a temperature of 300 to 400 degrees Celsius for one hour or more, homogenization treatment is performed at a temperature of 450 to 580 degrees Celsius.By performing a two or more stage multi-stage homogenization treatment, the heating rate can be increased to 300 degrees Celsius. /h or less can be obtained. Note that the homogenization treatment time at a temperature of 450 to 580°C is preferably about 1 to 10 hours.

続く熱間圧延は200〜580 ’(:の温度で行ない
、終了板厚は2.0m+o以上、好ましくは、2.5〜
7開の板厚に仕上げるのが生産性に良い。
The subsequent hot rolling is carried out at a temperature of 200 to 580' (:), and the finished plate thickness is 2.0 m+o or more, preferably 2.5 to
Finishing with a thickness of 7 mm is good for productivity.

通常は熱間圧延後、アルミニウム合金が常温になると直
ちに目的の板厚まで冷間圧延を行なう。
Normally, after hot rolling, as soon as the aluminum alloy reaches room temperature, it is cold rolled to the desired thickness.

この方法でも成形性は良いをのの、製品の加工状況によ
ってはさらに高い成形性が要求される。この場合、熱間
圧延後、焼鈍(荒焼鈍という。)を行なうと素材の成形
性が向上する。この荒焼鈍の温度は高い程成形性向上効
果があるが、300℃未満ではこの効果は少なく、また
、580℃を越える温度ではバーニングを起し成形性が
低化する。
Although this method provides good moldability, even higher moldability may be required depending on the processing conditions of the product. In this case, annealing (referred to as rough annealing) after hot rolling improves the formability of the material. The higher the rough annealing temperature is, the more effective it is to improve formability; however, if it is less than 300°C, this effect is small, and if it exceeds 580°C, burning occurs and formability is reduced.

加熱時間は300℃程度の温度では1時間未満では効果
が小さく、長時間保持すれば効果は向上するが、生産性
の面から6時間以内とするのがよく、また、580℃程
度の温度では30分程度で充分に効果が期待できる。よ
って、荒焼鈍は 300〜580℃の温度で30分以上
行なうのがよい。
If the heating time is less than 1 hour at a temperature of about 300°C, the effect will be small; if the heating time is kept for a long time, the effect will improve, but from the viewpoint of productivity it is better to keep it within 6 hours, and at a temperature of about 580°C, You can expect full effects in about 30 minutes. Therefore, rough annealing is preferably performed at a temperature of 300 to 580°C for 30 minutes or more.

冷間圧延は素材の成形性向上に効果があり、冷間圧延率
が大きくなるに従うて成形性の向上が大きくなるが、5
%未満ではその効果が小さい。よって、熱処理前の冷間
圧延率は5%以上とする。
Cold rolling is effective in improving the formability of the material, and as the cold rolling rate increases, the improvement in formability increases, but 5
If it is less than %, the effect is small. Therefore, the cold rolling rate before heat treatment is set to 5% or more.

溶体化処理は、急速加熱で高温短時間の加熱、続いて、
急速冷却を行なうことによって素材強度、高い成形性お
よびベーキング後の強度を向上させる処理であり、即ち
、加熱速度100℃/分以上で480〜580℃の高温
に急速加熱して、この温度に3秒以上保持するのであり
、加熱温度が480℃未満の温度では素材強度およびベ
ーキング後の強度が低く、また、580℃を越える温度
ではバーニングを発生して成形性が低下する。なお、4
80℃未満の加熱温度では加熱時間゛が3秒以下の保持
ではベーキング後の強度向上が少なく、30分の保持を
行なえばベーキング後の強度が向上する。従って、ベー
キング後の強度向上を目的とするには長時間保持すると
よく、成形性とベーキングを併せ備えさせるには、3〜
30秒程度とするのがよい。
Solution treatment is rapid heating at high temperature for a short time, followed by
It is a process that improves material strength, high formability, and strength after baking by performing rapid cooling. In other words, it is rapidly heated to a high temperature of 480 to 580 °C at a heating rate of 100 °C/min or more, and then heated to this temperature for 3 If the heating temperature is less than 480°C, the strength of the material and the strength after baking will be low, and if the heating temperature exceeds 580°C, burning will occur and the moldability will deteriorate. In addition, 4
At a heating temperature of less than 80.degree. C., if the heating time is held for 3 seconds or less, the strength after baking will not improve much, but if the heating time is held for 30 minutes, the strength after baking will improve. Therefore, in order to improve the strength after baking, it is better to hold the product for a long time, and in order to have both moldability and baking properties,
It is best to set it to about 30 seconds.

次いで、100℃までの冷却速度を200”(:7分以
上で急冷するのであるが、100℃までの冷却速度が2
00℃/分未満では成形性が低下し、および、ベーキン
グ後の強度向上が少なく、そして、100℃までの冷却
速度を200℃/分以上とすることにより成形性および
ベーキング後の強度向上が大きくなる。
Next, the cooling rate to 100℃ is 200" (: 7 minutes or more, but the cooling rate to 100℃ is 200").
If the cooling rate to 100°C is less than 200°C/min, the moldability will decrease and the strength after baking will not improve much, and if the cooling rate to 100°C is 200°C/min or more, the moldability and strength after baking will improve greatly. Become.

よって、溶体化処理は、加熱速度100℃/分以上で4
80〜580 ’Cの温度に急速加熱し、保持時間を3
秒以上とし、100℃までの冷却速度を200℃/分以
上で行なうのである。
Therefore, the solution treatment is performed at a heating rate of 100°C/min or more at 4°C.
Rapid heating to a temperature of 80-580'C and holding time for 3
The cooling rate up to 100°C is 200°C/min or more.

この溶体化処理に続いて低温加熱処理を行なうことによ
って、従来の高温長時間のベーキング条件の200℃の
温度に60分の保持による強度向上効果を有し、さらに
、低温短時間のベーキング条件(例えば、175℃×3
0分)でも強度向上効果を有することができるのである
By performing low-temperature heat treatment following this solution treatment, it has the effect of improving strength by holding the temperature at 200°C for 60 minutes compared to the conventional high-temperature and long-time baking conditions. For example, 175℃ x 3
0 minutes) can have the effect of improving strength.

即ち、溶体化処理後、72時間以内に加熱速度および冷
却速度に関係なく、40〜120″Cの温度に加熱し、
この温度に8〜36時間保持するのであるが、40℃未
満の温度では成形性は良く、従来の高温長時間の200
℃の温度で60分保持するベーキングによる強度向上効
果はあるものの従来より低い低温短時間加熱のベーキン
グによる強度向上効果は小さく、また、120℃の温度
を越えると従来の高温長時間と従来よりも低い低温短時
間での強度向上効果は持ち合せているが、成形性を低下
させる。
That is, after solution treatment, heating to a temperature of 40 to 120''C, regardless of the heating rate and cooling rate, within 72 hours,
The temperature is maintained at this temperature for 8 to 36 hours, but moldability is good at temperatures below 40°C, and
Although there is an effect of improving strength by baking at a temperature of 120°C for 60 minutes, the effect of baking at a lower temperature for a short time than before is small; Although it has the effect of improving strength at low temperatures and in a short time, it reduces formability.

この保持時間であるが、4時間未満では高温長時間のベ
ーキングによる強度向上効果はあるものの、低温短時間
のベーキングでの強度向上効果は小さく、48時間を越
えると成形性の低下および低温短時間のベーキングによ
る強度向上効果が小さい。
Regarding this holding time, if the holding time is less than 4 hours, there is an effect of improving the strength by baking at high temperature for a long time, but the effect of improving the strength by baking at low temperature for a short time is small, and if it exceeds 48 hours, the moldability decreases and the short time at low temperature is The strength improvement effect of baking is small.

従って、溶体化処理後の低温加熱処理は、溶体化処理後
72時間以内に40〜120℃の温度で8〜36時間行
なうのである。
Therefore, the low temperature heat treatment after the solution treatment is carried out at a temperature of 40 to 120° C. for 8 to 36 hours within 72 hours after the solution treatment.

以上の処理工程を終了したアルミニウム合金は成形性が
良好で、かつ、200℃の温度で30分および60分保
持するという従来条件におけるベークハード性を保持し
、さらに、175℃の温度で30分保持するという低温
短時間の焼付硬化性を備え、強度、成形性および焼付硬
化性の優れた性質を有するようになる。さらに、高い成
形性を有する場合には素材の晶出化合物の大きさは最長
辺長さを′13μm以下とすればよい。
The aluminum alloy that has undergone the above treatment process has good formability, maintains bake hardness under the conventional conditions of holding at a temperature of 200°C for 30 minutes and 60 minutes, and further maintains bake hardness at a temperature of 175°C for 30 minutes. It has bake hardenability at low temperatures for a short period of time, and has excellent strength, formability, and bake hardenability. Furthermore, if the material has high moldability, the size of the crystallized compound of the material may be such that the longest side length is 13 μm or less.

なお、低温加熱処理後、必要に応じてレベラーまたはス
キンパス等により歪矯正を行なうのがよく、この時の加
工率は1.5%以下とするのが成形性の低下防止という
、くで望ましいものである。
After low-temperature heat treatment, it is best to correct distortion using a leveler or skin pass, if necessary, and it is desirable to keep the processing rate at this time to 1.5% or less to prevent deterioration in formability. It is.

[実 施 例1 本発明に係る焼付硬化性に優れたアルミニウム合金板お
よびそのの製造法の実施例を説明する。
[Example 1] An example of an aluminum alloy plate with excellent bake hardenability and a method for manufacturing the same according to the present invention will be described.

実施例1 第1表に示す含有成分および成分割合のアルミニウム合
金を通常の方法により溶解、鋳造および固剤を行ない、
加熱速度40℃/時の速度で530℃の温度に加熱し、
4時間その温度に保持する均質化処理を行ない、300
〜530 ’Cの温度で板厚5mmまで熱間圧延を行な
い、室温まで下げ、圧延率80%の冷間圧延を行なって
1nto厚のアルミニウム合金板とし、この板を加熱速
度200℃/分で550℃の温度に10秒保持し、80
0℃/分の冷却速度で100’Cまで冷却する溶体化処
理を行ない、次いで、室温に1日放置し、70℃の温度
に24時間保持する低温加熱処理を行ない、室温に30
日放置した後の本発明に係る焼付硬化性に優れたアルミ
ニウム合金板の製造法により製造された合金および比較
合金の緒特性と従来のベーキング条件の200℃の温度
に60分保持および従来の低温短時間のベーキング条件
の175℃の温度に30分保持の耐力をtjIJ2表に
示す。
Example 1 An aluminum alloy having the components and proportions shown in Table 1 was melted, cast, and solidified by a conventional method.
heating to a temperature of 530°C at a heating rate of 40°C/hour;
Homogenization treatment was performed by holding at that temperature for 4 hours, and 300
Hot rolling was performed at a temperature of ~530'C to a thickness of 5 mm, the temperature was lowered to room temperature, and cold rolling was performed at a rolling rate of 80% to obtain a 1nto thick aluminum alloy plate, and this plate was heated at a heating rate of 200°C/min. Hold the temperature at 550℃ for 10 seconds, and
Solution treatment is performed to cool down to 100'C at a cooling rate of 0°C/min, then left at room temperature for 1 day, low-temperature heat treatment is performed by holding at a temperature of 70°C for 24 hours, and the temperature is reduced to room temperature for 30
Characteristics of the alloy produced by the method of producing an aluminum alloy plate with excellent bake hardenability according to the present invention after being left in the sun, and the comparative alloys held at a temperature of 200°C for 60 minutes under conventional baking conditions and at a conventional low temperature. Table tjIJ2 shows the yield strength when kept at a temperature of 175° C. for 30 minutes under short-time baking conditions.

この第2表から明らかなように、本発明に係る焼付硬化
性に優れたアルミニウム合金板の製造法により製造され
た合金のNo、1〜No、11は、比較合金のNo、1
〜No、9に比べて強度、成形性に優れ、さらに、従来
の高温長時間(200℃の温度に60分保持)における
焼付硬化性に加えて175℃の温度に30分保持する低
温短時間の焼付硬化性を兼ね備えたバランスのよい材料
であることがわかる。
As is clear from Table 2, alloys No. 1 to No. 11 manufactured by the method of manufacturing an aluminum alloy plate with excellent bake hardenability according to the present invention are different from comparative alloy No. 1.
- Excellent strength and formability compared to No. 9, and in addition to the conventional bake hardenability at high temperatures for long periods of time (held at a temperature of 200 degrees Celsius for 60 minutes), it has short-time low temperature holdability at a temperature of 175 degrees Celsius for 30 minutes. It can be seen that it is a well-balanced material with bake hardenability.

Mg、Si、Cu含有量の少ない比較合金No、1では
、強度およびベーキングによる強度向上が小さく、また
、Mg、Si、Cuの含有量が多すぎる比較合金N00
2は伸び、エリクセン値が低く、成形性の劣化が大きす
ぎる。
Comparative alloy No. 1, which has a low content of Mg, Si, and Cu, shows little improvement in strength and strength due to baking, and comparative alloy No. 1, which has a high content of Mg, Si, and Cu, has a small improvement in strength and strength due to baking.
Sample No. 2 has elongation, low Erichsen value, and too large deterioration in moldability.

なお、Mn含有量0.911It%、C「含有量0.6
wt%、Zr含有量9.3wt%、■含有量0.3wt
%、Fe含有量0,7wt%を含有すると強度向上の効
果はあるが、伸びお上びエリクセン値の低下が大きく、
成形性の劣化が大きくなることがわかる。
In addition, Mn content is 0.911 It%, C content is 0.6
wt%, Zr content 9.3wt%, ■ content 0.3wt
%, Fe content of 0.7 wt% has the effect of improving strength, but increases elongation and decreases Erichsen value significantly.
It can be seen that the deterioration of moldability increases.

また、Ti含有量が0.2wt%、B含有量が0.1w
L%では、粗大な晶出物が生成し、伸びやエリクセン値
が低下しており、成形性の劣化が大こくなる。さらに、
Beは含有量が増加するに従って成形性は向上するが、
0.1wt%を越えるとその効果が飽和している。
In addition, the Ti content is 0.2wt% and the B content is 0.1w.
At L%, coarse crystallized substances are formed, elongation and Erichsen value are decreased, and moldability is significantly deteriorated. moreover,
As the content of Be increases, the formability improves, but
If it exceeds 0.1 wt%, the effect is saturated.

本発明に係る焼付硬化性に優れたアルミニウム合金板の
製造法により製造されたNo、2.3.10.11は、
晶出物の最長辺長さが13μm以下であり、高成形性と
175℃の温度で30分保持するベーキングによる強度
向上とを併せ有している。
No. 2.3.10.11 manufactured by the method for manufacturing an aluminum alloy plate with excellent bake hardenability according to the present invention,
The longest side length of the crystallized material is 13 μm or less, and it has both high moldability and improved strength by baking at a temperature of 175° C. for 30 minutes.

実施例2 第3表に、実施例1の第1表に示した含有成分および成
分割合のアルミニウム合金No、3およびNo、4の均
質化処理条件および材料の特性を示す。
Example 2 Table 3 shows the homogenization treatment conditions and material properties of aluminum alloys No. 3 and No. 4 having the components and component ratios shown in Table 1 of Example 1.

即ち、上記合金No、3およびNo、4の鋳塊を50〜
b ℃に加熱し、この温度に4時間保持する均質化処理と、
加熱速度に関係なく350℃の温度に1時間保持した後
、500℃の温度に4時間保持する均質化処理を行ない
、250〜590℃の温度の間で板厚3 、OfIIR
Iに熱間圧延し、続いて圧延率66.7%の冷間圧延を
行なってI 111m1!iさのアルミニウム合金板と
した。溶体化処理として、1 +n+nN、さのアルミ
ニウム合金板を実体で加熱速度200’C/分でS 3
 (1”Cの温度に20秒保持し、100℃の温度まで
冷却速度700℃/分で冷却する溶体化処理を行なった
That is, the ingots of alloys No. 3 and No. 4 were
a homogenization treatment of heating to b °C and holding at this temperature for 4 hours;
Regardless of the heating rate, after holding at a temperature of 350°C for 1 hour, a homogenization treatment is performed by holding at a temperature of 500°C for 4 hours, and the plate thickness is 3, OfIIR at a temperature between 250 and 590°C.
After hot rolling to I, followed by cold rolling at a rolling reduction of 66.7%, I was 111 m1! The aluminum alloy plate was made into an i-sized aluminum alloy plate. As a solution treatment, an aluminum alloy plate of 1 + n + nN was heated at a heating rate of 200'C/min in S3.
(A solution treatment was performed by holding the temperature at 1"C for 20 seconds and cooling it at a cooling rate of 700°C/min to a temperature of 100°C.

この溶体化処理を終了したアルミニウム合金板を室温に
30日放置した後の特性値を第3戒に示この第3表から
明らかなように、試料No、3の成形性、焼付硬化性を
有する組成では、加熱速度が大きくなるに従って成形性
が低下しており、400℃/時では成形性の低下が大き
いことがら、加熱速度は200℃/時以下とすることが
よい。
The third precept shows the characteristic values of the aluminum alloy plate after this solution treatment after being left at room temperature for 30 days.As is clear from this Table 3, it has the formability and bake hardenability of sample No. 3. Regarding the composition, as the heating rate increases, the moldability decreases, and since the decrease in moldability is large at 400° C./hour, the heating rate is preferably 200° C./hour or less.

また、均質化処理温度が高くなるに従って成形性は向上
するが、試料No、3およびNo、4も590℃の温度
ではバーニングにより成形性が低下するようになる。
Further, as the homogenization temperature increases, the moldability improves, but the moldability of samples No. 3 and No. 4 also decreases due to burning at a temperature of 590°C.

また、加熱速度を200℃/時以下で行なうことができ
ない場合には、300〜400 ’Cの温度に1時間以
上加熱保持した後、450〜560℃の温度まで昇温保
持することにより、加熱速度200℃/時以下で行なう
場合と同等の成形性が得られる。
In addition, if the heating rate cannot be lowered to 200°C/hour or less, heating can be carried out by heating and holding at a temperature of 300 to 400'C for 1 hour or more, and then raising and holding the temperature to a temperature of 450 to 560'C. Formability equivalent to that obtained when the molding is carried out at a speed of 200° C./hour or less can be obtained.

実施例3 第4表に、実施例1の第1表に示す含有成分および成分
割合のアルミニウム合金NO19の荒焼鈍または中間焼
鈍の処理条件と材料特性を示す。
Example 3 Table 4 shows the processing conditions and material properties of rough annealing or intermediate annealing of aluminum alloy NO19 having the components and component ratios shown in Table 1 of Example 1.

即ち、上記アルミニウム合金の鋳塊を加熱速度100℃
/時で500℃の温度に加熱し、この温度に6時間保持
する均質化処理を行ない、275〜500℃の温度で板
厚3.5mmまで熱間圧延を行ない、続いて、40℃/
時の加熱速度で200〜590℃に30分〜4時間加熱
し、20℃/時の冷却速度で室温まで冷却する焼鈍を行
ない、圧延率83.3%の冷間圧延を行ない、板厚1.
0mmのアルミニウム合金板とした。溶体化処理として
、アルミニウム合金板を実体で加熱速度300 ”(:
’/分で550℃の温度に加熱し、この温度に5秒保持
し、100℃の温度まで冷却速度500℃/分で冷却す
る熱処理を行なった。
That is, the aluminum alloy ingot was heated at a heating rate of 100°C.
Homogenization treatment is carried out by heating to a temperature of 500°C at a temperature of 40°C/hour and maintaining it at this temperature for 6 hours, followed by hot rolling at a temperature of 275 to 500°C to a thickness of 3.5 mm, followed by 40°C/hour.
Annealing was performed by heating to 200 to 590°C for 30 minutes to 4 hours at a heating rate of ..
A 0 mm aluminum alloy plate was used. As a solution treatment, the aluminum alloy plate was heated at a heating rate of 300" (:
A heat treatment was performed in which the sample was heated to a temperature of 550° C./min at a rate of 550° C., maintained at this temperature for 5 seconds, and cooled to a temperature of 100° C. at a cooling rate of 500° C./min.

このような溶体化処理を終了したアルミニウム合金板を
室温に30日放置した後の素材の特性をfjS4表に示
す。
Table fjS4 shows the properties of the aluminum alloy plate that has been subjected to such solution treatment and is left at room temperature for 30 days.

この第4表から明らかなように、加熱温度が300℃未
満では成形性向上効果は小さく、590℃の温度ではバ
ーニングにより成形性が低下する。加熱時間は550℃
の温度では30分、300 ’Cの温度では2時間で成
形性効果のあることがわかる。
As is clear from Table 4, when the heating temperature is less than 300°C, the effect of improving moldability is small, and at a temperature of 590°C, moldability decreases due to burning. Heating time is 550℃
It can be seen that there is a moldability effect in 30 minutes at a temperature of 300'C and in 2 hours at a temperature of 300'C.

第 42I 実施例4 第5表に実施例1の第1表に示した含有成分および成分
割合のアルミニウム合金No、2 、No、 6につい
て冷間圧延率および材料特性を示す。
42I Example 4 Table 5 shows the cold rolling rate and material properties of aluminum alloys No. 2, No. 2, and No. 6 having the components and component ratios shown in Table 1 of Example 1.

即ち、上記アルミニウム合金の鋳塊を加熱速度50℃/
時で550℃の温度に加熱し、4時間その温度に保持し
て均質化処理を行ない、350〜550℃の温度で板厚
5鵠まで熱間圧延を行ない、最終冷間圧延率が2.5〜
80%になるように冷間圧延を行ない、40℃/時の加
熱速度で350℃の温度まで加熱して中間熱処理または
荒熱処理を行ない、この温度に2時間保持した後、40
℃/時の冷却速度で室温まで冷却し、2.5〜80%の
冷間圧延を行ない、板厚1.0mmに仕上げ、溶体化処
理として、500℃/分の加熱速度で530 ’Cの温
度に加熱し、この温度に30秒保持し、1ooo℃/分
の冷却速度で100℃まで冷却する熱処理を行ない、室
温に30日放置した後の特性を第5表に示す。
That is, the aluminum alloy ingot was heated at a heating rate of 50°C/
The plate was heated to a temperature of 550°C for 4 hours and homogenized by holding at that temperature for 4 hours, and then hot rolled at a temperature of 350 to 550°C to a thickness of 5 mm, with a final cold rolling rate of 2. 5~
80%, then heated to a temperature of 350°C at a heating rate of 40°C/hour to perform intermediate heat treatment or rough heat treatment, and after holding at this temperature for 2 hours,
It was cooled to room temperature at a cooling rate of 2.5 to 80%, finished to a thickness of 1.0 mm, and then subjected to solution treatment at 530'C at a heating rate of 500°C/min. Table 5 shows the properties after heating to a temperature, holding at this temperature for 30 seconds, cooling to 100° C. at a cooling rate of 100° C./min, and leaving it at room temperature for 30 days.

この第5表から明らかなように、冷間圧延率が5%未満
では成形性向上効果は小さく、5%、10%、20%と
冷間圧延率が大きくなるに従って成形性が向上している
ことがわかる。
As is clear from Table 5, the effect of improving formability is small when the cold rolling rate is less than 5%, and as the cold rolling rate increases from 5% to 10% to 20%, the formability improves. I understand that.

実施例5 第6表に実施例1の第1表に示した含有成分および成分
割合のアルミニウム合金No、3およびNo、4を、加
熱速度40℃/時で加熱温度500℃とし、二の温度に
6時間保持する均質化処理を行なった後、250〜50
0℃の温度で板厚4、On+n+まで熱間圧延を行ない
、冷間圧延を行なって1.0關厚さの板とし、この板を
加熱速度300℃/分で450℃から590℃の温度に
加熱し、この温度に0〜90秒保持する高温短時間加熱
後、冷却速度100℃/分〜急冷(水中に焼入れ)によ
りi、oo℃まで(急冷の場合は水温まで)冷却の溶体
化処理を行ない、室温に1日放置後100℃の温度に8
時間の低温加熱処理後、室温に30日放置した後の特性
を、比較として従来の低温加熱処理を行なわない場合の
特性と比較して第6表に示す。
Example 5 Aluminum alloys No. 3 and No. 4 having the components and component ratios shown in Table 1 of Example 1 in Table 6 were heated to a heating temperature of 500° C. at a heating rate of 40° C./hour. After homogenization treatment for 6 hours, 250 to 50
Hot rolling was performed at a temperature of 0°C to a plate thickness of 4, On+n+, cold rolling was performed to obtain a plate with a thickness of 1.0°C, and this plate was heated at a heating rate of 300°C/min to a temperature of 450°C to 590°C. After high-temperature short-time heating and holding at this temperature for 0 to 90 seconds, solution cooling at a cooling rate of 100℃/min to i,oo℃ (to water temperature in the case of rapid cooling) by rapid cooling (quenching in water) After treatment, leave it at room temperature for 1 day and then heat it to 100℃ for 8 days.
Table 6 shows the characteristics after being left at room temperature for 30 days after being subjected to low-temperature heat treatment for 3 hours, compared with the characteristics obtained when conventional low-temperature heat treatment was not performed.

この第6表から明らかなように、溶体化処理温度が45
0 ’Cでは従来の200℃×60分のベーキングによ
る耐力の向上があるが、175℃×30分ではその効果
が小さい。また、590℃ではバーニングにより成形性
(伸び、エリクセン値)が低く、保持時間が0秒ではベ
ーキングによる強度向上効果は小さいが、5秒では効果
が認められ、さらに、冷却速度が100”C/分では2
00″C×60分の高温長時間のベーキングによる耐力
の向上はあるが、175℃×30分という低温短時間の
ベーキングでは耐力の向上は小さいことがわかる。
As is clear from this Table 6, the solution treatment temperature is 45
At 0'C, the conventional baking at 200°C for 60 minutes improves the yield strength, but at 175°C for 30 minutes, the effect is small. Furthermore, at 590°C, the moldability (elongation, Erichsen value) is low due to burning, and the strength improvement effect due to baking is small when the holding time is 0 seconds, but the effect is observed when the holding time is 5 seconds, and furthermore, when the cooling rate is 10"C/ 2 minutes
It can be seen that the yield strength is improved by baking at a high temperature for a long time at 175° C. for 60 minutes, but the yield strength is only improved by baking at a low temperature for a short time at 175° C. for 30 minutes.

従って、溶体化処理は加熱温度が480〜580℃で保
持時間は3秒以上とし、冷却速度を200℃/分以上と
する必要がある。
Therefore, in the solution treatment, the heating temperature should be 480 to 580°C, the holding time should be 3 seconds or more, and the cooling rate should be 200°C/min or more.

なお、成形性を重視する場合には、保持時間を3〜12
0秒、強度を重視する場合には30分という長時間加熱
を行なうのがよい。
In addition, if moldability is important, the holding time is 3 to 12
It is preferable to heat for 0 seconds, or for a long time of 30 minutes if strength is important.

実施例6 実施例1のf:!I、1表のN003、No、4の合金
を通常の方法により溶解、鋳造した匍塊を面前し、加熱
速度40℃/時で530℃に加熱し、この温度に6時間
保持する均質化処理後、250〜530℃の温度で3.
5ml11の板厚まで熱間圧延を行ない、この板を45
0℃の温度で3時間の焼鈍を行ない、冷間圧延によQl
、Ommの板厚とし、次いで、加熱速度 200℃/分
で520℃の温度とし、この温度に15秒保持する高温
短時間の溶体化処理を行ない、600℃/分の冷却速度
で室温まで冷却し、室温に0〜96時間放置し、30〜
150℃の温度で4〜48時間の低温加熱処理を行ない
、室温に30日放置後の特性およびベーキング特性を第
7表に示す。
Example 6 f of Example 1:! I. Homogenization treatment in which the alloy of N003, No. 4 in Table 1 is melted and cast in a conventional manner, heated to 530°C at a heating rate of 40°C/hour, and maintained at this temperature for 6 hours. After that, 3. at a temperature of 250 to 530°C.
Hot rolling was carried out to a plate thickness of 5ml11, and this plate was
After annealing for 3 hours at a temperature of 0°C, the Ql
, Omm thick, then heated to a temperature of 520°C at a heating rate of 200°C/min, held at this temperature for 15 seconds for high temperature short-time solution treatment, and then cooled to room temperature at a cooling rate of 600°C/min. and leave it at room temperature for 0 to 96 hours, then leave it at room temperature for 30 to 96 hours.
Table 7 shows the properties and baking properties after performing low temperature heat treatment at a temperature of 150°C for 4 to 48 hours and leaving at room temperature for 30 days.

この第7表から明らかなように、溶体化処理後低温加熱
処理までの室温放置時間は短かい程ベーキング性は良好
で、96時間では200℃×60分の高温長時間のベー
キング性は耐力の向上はあるが、175℃×30分の低
温短時間のベーキングでは耐力の向上は少なく、低温加
熱処理温度は30℃では高温長時間のベーキングで耐力
の向上はあるが、低温短時間のベーキングで耐力の向上
が小さく、150’Cでは伸びが低下するが高温長時間
および低温短時間のベーキングによる向上が認められ、
加熱時間が4時間では高温長時間ベーキングで耐力の向
上はあるが、低温短時間のベーキングで耐力の向上は少
なく、48時間になると伸びが低く、低温短時間ベーキ
ングで耐力の向上がない。また、低温加熱処理を行なわ
ないと高温長時間のベーキングによる耐力の向上はある
が、低温短時間のベーキングによる耐力の向上はない。
As is clear from Table 7, the shorter the time left at room temperature until the low-temperature heat treatment after solution treatment, the better the baking properties. Although there is an improvement, there is little improvement in yield strength when baking at a low temperature for 30 minutes at 175℃ x 30 minutes, and when the low temperature heat treatment temperature is 30℃, there is an improvement in yield strength when baking at a high temperature for a long time, but when baking at a low temperature for a short time. The improvement in yield strength was small and elongation decreased at 150'C, but improvement was observed by baking at high temperature for a long time and at low temperature for a short time.
When the heating time is 4 hours, the yield strength improves with high-temperature, long-time baking, but the yield strength improves little with low-temperature, short-time baking, and when the heating time reaches 48 hours, the elongation is low, and there is no yield strength improvement with low-temperature, short-time baking. Further, if low temperature heat treatment is not performed, the yield strength will be improved by baking at high temperature for a long time, but the yield strength will not be improved by baking at low temperature for a short time.

従って、溶体化処理後の低温加熱処理は、溶体化処理後
72時間以内に40〜120℃の温度で8〜36時間の
加熱を行なうのである。
Therefore, the low-temperature heat treatment after the solution treatment is performed at a temperature of 40 to 120° C. for 8 to 36 hours within 72 hours after the solution treatment.

[発明の効果] 以上説明したように、本発明に係る成形性、焼付硬化性
に優れたアルミニウム合金板およびその製造法は上記の
構成であるから、製造されたアルミニウム合金板は成形
性に優れ、かつ、高温長時間(200℃×60分)およ
び低温短時間(175℃×30分)の何れのベーキング
においても強度向上性を有する焼付硬化性に優れた効果
を奏するものである。
[Effects of the Invention] As explained above, since the aluminum alloy plate with excellent formability and bake hardenability and the manufacturing method thereof according to the present invention have the above configuration, the manufactured aluminum alloy plate has excellent formability. Moreover, it exhibits excellent bake hardenability with improved strength in both high-temperature long-time baking (200° C. x 60 minutes) and low-temperature short-time baking (175° C. x 30 minutes).

Claims (3)

【特許請求の範囲】[Claims] (1)Mg0.4〜1.5wt%、Si0.3〜2.3
wt%、Cu0.2〜0.8wt% を含有し、さらに、 Ti0.1wt%以下、B0.06wt%以下、Be0
.2wt%以下、Mn0.8wt%以下、Cr0.4w
t%以下、Fe0.5wt%以下、Zr0.2wt%以
下、V0.2wt%以下のうちから選んだ1種または2
種以上 を含有し、かつ、 不可避不純物0.2wt%以下 を含有し、残部が実質的にAlからなるAl−Mg−S
i−Cu基合金であり、特に高い成形性を有する場合は
晶出化合物の最長辺長さが13μm以下であることを特
徴とする強度、成形性、焼付硬化性に優れたアルミニウ
ム合金板。
(1) Mg0.4-1.5wt%, Si0.3-2.3
wt%, Cu0.2-0.8wt%, and further contains Ti0.1wt% or less, B0.06wt% or less, Be0
.. 2wt% or less, Mn 0.8wt% or less, Cr0.4w
One or two selected from t% or less, Fe0.5wt% or less, Zr0.2wt% or less, V0.2wt% or less
Al-Mg-S containing 0.2 wt% or less of unavoidable impurities, and the remainder substantially consisting of Al.
An aluminum alloy plate which is an i-Cu based alloy and has excellent strength, formability and bake hardenability, characterized in that when it has particularly high formability, the longest side length of the crystallized compound is 13 μm or less.
(2)Mg0.4〜1.5wt%、Si0.3〜2.3
wt%、Cu0.2〜2.3wt% を含有し、さらに、 Ti0.1wt%以下、B0.06wt%以下、Be0
.2wt%以下、Mn0.8wt%以下、Cr0.4w
t%以下、Fe0.5wt%以下、Zr0.2wt%以
下、V0.2wt%以下のうちから選んだ1種または2
種以上 を含有し、かつ、 不可避不純物0.2wt%以下 を含有し、残部が実質的にAlからなるAl−Mg−S
i−Cu基合金鋳塊を、加熱速度300℃/時以下の速
度で450〜580℃の温度に加熱して均質化し、熱間
圧延を行ない、300〜580℃の温度で荒焼鈍および
中間焼鈍を行ない、または、行なわず、冷間圧延率5%
以上の冷間圧延を行ない、溶体化処理として加熱速度1
00℃/分以上の加熱速度で480〜580℃の温度に
急速加熱し、この温度域に3秒以上保持した後、100
℃までの冷却速度を200℃/分以上で急速冷却を行な
い、特に高い成形性を有する場合は晶出化合物の最長辺
長さを13μm以下とすることを特徴とする強度、成形
性、焼付硬化性に優れたアルミニウム合金板の製造法。
(2) Mg0.4-1.5wt%, Si0.3-2.3
wt%, Cu0.2-2.3wt%, and further contains Ti0.1wt% or less, B0.06wt% or less, Be0
.. 2wt% or less, Mn 0.8wt% or less, Cr0.4w
One or two selected from t% or less, Fe0.5wt% or less, Zr0.2wt% or less, V0.2wt% or less
Al-Mg-S containing 0.2 wt% or less of unavoidable impurities, and the remainder substantially consisting of Al.
The i-Cu base alloy ingot is homogenized by heating it to a temperature of 450 to 580°C at a heating rate of 300°C/hour or less, hot rolling, and rough annealing and intermediate annealing at a temperature of 300 to 580°C. Cold rolling rate 5% with or without
The above cold rolling is carried out, and the heating rate is 1 as solution treatment.
After rapidly heating to a temperature of 480 to 580°C at a heating rate of 00°C/min or more and maintaining this temperature range for 3 seconds or more, 100°C
Strength, formability, and bake hardening characterized by performing rapid cooling at a cooling rate of 200°C/min or more, and in cases where the crystallized compound has particularly high formability, the longest side length of the crystallized compound is 13 μm or less. A manufacturing method for aluminum alloy plates with excellent properties.
(3)Mg0.4〜1.5wt%、Si0.3〜2.3
wt%、Cu0.2〜0.8wt% を含有し、さらに、 Ti0.1wt%以下、B0.06wt%以下、Be0
.2wt%以下、Mn0.8wt%以下、Cr0.4w
t%以下、Fe0.5wt%以下、Zr0.2wt%以
下、V0.2wt%以下のうちから選んだ1種または2
種以上 を含有し、かつ、 不可避不純物0.2wt%以下 を含有し、残部が実質的にAlからなるAl−Mg−S
i−Cu基合金鋳塊を、加熱速度300℃/時以下の速
度で450〜580℃の温度に加熱して均質化し、熱間
圧延を行ない、300〜580℃の温度で荒焼鈍および
中間焼鈍を行ない、または、行なわず、冷間圧延率5%
以上の冷間圧延を行ない、溶体化処理として加熱速度1
00℃/分以上の加熱速度で480〜580℃の温度に
急速加熱し、この温度域に3秒以上保持した後、100
℃までの冷却速度を200℃/分以上で急速冷却を行な
い、さらに、72時間以内に40〜120℃の温度で8
〜36時間の低温加熱処理を行ない、特に高い成形性を
有する場合には晶出化合物の最長辺長さを13μm以下
とすることを特徴とする強度、成形性、焼付硬化性に優
れたアルミニウム合金板の製造法。
(3) Mg0.4-1.5wt%, Si0.3-2.3
wt%, Cu0.2-0.8wt%, and further contains Ti0.1wt% or less, B0.06wt% or less, Be0
.. 2wt% or less, Mn 0.8wt% or less, Cr0.4w
One or two selected from t% or less, Fe0.5wt% or less, Zr0.2wt% or less, V0.2wt% or less
Al-Mg-S containing 0.2 wt% or less of unavoidable impurities, and the remainder substantially consisting of Al.
The i-Cu base alloy ingot is homogenized by heating it to a temperature of 450 to 580°C at a heating rate of 300°C/hour or less, hot rolling, and rough annealing and intermediate annealing at a temperature of 300 to 580°C. Cold rolling rate 5% with or without
The above cold rolling is carried out, and the heating rate is 1 as solution treatment.
After rapidly heating to a temperature of 480 to 580°C at a heating rate of 00°C/min or more and maintaining this temperature range for 3 seconds or more, 100°C
℃ at a cooling rate of 200℃/min or more, and further cooled at a temperature of 40 to 120℃ within 72 hours.
An aluminum alloy with excellent strength, formability, and bake hardenability, characterized by subjecting it to low-temperature heat treatment for ~36 hours, and making the longest side length of the crystallized compound 13 μm or less when it has particularly high formability. Method of manufacturing boards.
JP61018860A 1986-01-30 1986-01-30 Aluminum alloy sheet excellent in formability and baking hardening and its production Granted JPS62177143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61018860A JPS62177143A (en) 1986-01-30 1986-01-30 Aluminum alloy sheet excellent in formability and baking hardening and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61018860A JPS62177143A (en) 1986-01-30 1986-01-30 Aluminum alloy sheet excellent in formability and baking hardening and its production

Publications (2)

Publication Number Publication Date
JPS62177143A true JPS62177143A (en) 1987-08-04
JPH0569898B2 JPH0569898B2 (en) 1993-10-04

Family

ID=11983293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61018860A Granted JPS62177143A (en) 1986-01-30 1986-01-30 Aluminum alloy sheet excellent in formability and baking hardening and its production

Country Status (1)

Country Link
JP (1) JPS62177143A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465243A (en) * 1987-09-03 1989-03-10 Honda Motor Co Ltd Al alloy plate for forming having excellent weldability, string rust resistance, formability and hardenability
JPH01111851A (en) * 1987-10-23 1989-04-28 Kobe Steel Ltd Manufacture of aluminum alloy excellent in baking hardenability and formability
JPH02205660A (en) * 1989-02-06 1990-08-15 Kobe Steel Ltd Manufacture of aluminum alloy sheet having excellent baking hardenability of paint
JPH036348A (en) * 1989-06-03 1991-01-11 Kobe Steel Ltd Aluminum alloy for automobile panel excellent in chemical conversion treating property and its production
JPH0387329A (en) * 1989-08-30 1991-04-12 Sky Alum Co Ltd Aluminum alloy material for baking finish and its manufacture
JPH03247738A (en) * 1990-02-22 1991-11-05 Kobe Steel Ltd Aluminum alloy excellent in bendability
JPH04318144A (en) * 1991-04-17 1992-11-09 Kobe Steel Ltd Al alloy sheet excellent in strength, baking hardening property and molding property, and its manufacture
JPH0565587A (en) * 1991-09-05 1993-03-19 Sky Alum Co Ltd Aluminum alloy rolled sheet for forming and its production
JPH0565586A (en) * 1991-09-05 1993-03-19 Sky Alum Co Ltd Aluminum alloy rooled sheet for forming and its production
JPH05112839A (en) * 1991-10-21 1993-05-07 Kobe Steel Ltd Aluminum alloy sheet for forming excellent in low temperature baking hardenability and its manufacture
JPH06116689A (en) * 1992-10-07 1994-04-26 Kobe Steel Ltd Production of al-mg-si alloy sheet excellent in formability and baking hardenability
JPH06136478A (en) * 1992-10-23 1994-05-17 Kobe Steel Ltd Baking hardening type al alloy sheet excellent in formability and its production
EP0773303A1 (en) 1995-11-10 1997-05-14 Nkk Corporation Aluminium alloy sheet manufacturing method therefor
JPH1133646A (en) * 1997-07-10 1999-02-09 Kobe Steel Ltd Aluminum alloy joined body by mechanical clinch and its manufacture
JP2000144294A (en) * 1998-11-12 2000-05-26 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and hem workability
JP2000273567A (en) * 1999-03-18 2000-10-03 Nippon Steel Corp Aluminum alloy sheet excellent in formability and corrosion resistance and its production
JP2001152302A (en) * 1999-11-29 2001-06-05 Nippon Steel Corp Aluminum alloy sheet excellent in press formability, and its manufacturing method
JP2006307241A (en) * 2005-04-26 2006-11-09 Sumitomo Light Metal Ind Ltd Al-Mg-Si ALLOY SHEET SUPERIOR IN DEEP-DRAWABILITY AND MANUFACTURING METHOD THEREFOR
CN107513649A (en) * 2017-08-15 2017-12-26 江苏常铝铝业股份有限公司 Automobile heat insulation plate aluminum alloy plate materials and its manufacture method
CN108699663A (en) * 2016-03-30 2018-10-23 昭和电工株式会社 The manufacturing method of Al-Mg-Si system alloy plate
PL424248A1 (en) * 2018-01-11 2019-07-15 Albatros Aluminium Spółka Z Ograniczoną Odpowiedzialnością Aluminum composite with high kinetic energy cumulation properties and increased mechanical properties
CN110964955A (en) * 2019-12-19 2020-04-07 广西南南铝加工有限公司 Production method of 5052 aluminum alloy wafer for electric cooker liner
JP2020519772A (en) * 2017-05-26 2020-07-02 ノベリス・インコーポレイテッドNovelis Inc. High-strength corrosion resistance 6xxx series aluminum alloy and manufacturing method thereof
CN112063896A (en) * 2020-09-16 2020-12-11 肇庆新联昌金属实业有限公司 High-performance aluminum alloy and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145144A (en) * 1979-04-24 1980-11-12 Sumitomo Alum Smelt Co Ltd Medium-strength aluminum alloy with superior forming workability
JPS55152160A (en) * 1979-05-02 1980-11-27 Alusuisse Production and use of aluminum strip or sheet
JPS61201748A (en) * 1985-03-05 1986-09-06 Sukai Alum Kk Rolled aluminum alloy sheet for forming and its manufacture
JPS61201749A (en) * 1985-03-05 1986-09-06 Sukai Alum Kk Rolled aluminum alloy sheet for forming and its manufacture
JPS61272342A (en) * 1985-05-27 1986-12-02 Kobe Steel Ltd Aluminum alloy sheet excelling in formability and baking hardening and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145144A (en) * 1979-04-24 1980-11-12 Sumitomo Alum Smelt Co Ltd Medium-strength aluminum alloy with superior forming workability
JPS55152160A (en) * 1979-05-02 1980-11-27 Alusuisse Production and use of aluminum strip or sheet
JPS61201748A (en) * 1985-03-05 1986-09-06 Sukai Alum Kk Rolled aluminum alloy sheet for forming and its manufacture
JPS61201749A (en) * 1985-03-05 1986-09-06 Sukai Alum Kk Rolled aluminum alloy sheet for forming and its manufacture
JPS61272342A (en) * 1985-05-27 1986-12-02 Kobe Steel Ltd Aluminum alloy sheet excelling in formability and baking hardening and its production

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465243A (en) * 1987-09-03 1989-03-10 Honda Motor Co Ltd Al alloy plate for forming having excellent weldability, string rust resistance, formability and hardenability
US4909861A (en) * 1987-09-03 1990-03-20 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy sheet having good weldability, filiform corrosion resistance, formability, and bake-hardenability, and a method for manufacturing the same
JPH01111851A (en) * 1987-10-23 1989-04-28 Kobe Steel Ltd Manufacture of aluminum alloy excellent in baking hardenability and formability
JPH02205660A (en) * 1989-02-06 1990-08-15 Kobe Steel Ltd Manufacture of aluminum alloy sheet having excellent baking hardenability of paint
JPH036348A (en) * 1989-06-03 1991-01-11 Kobe Steel Ltd Aluminum alloy for automobile panel excellent in chemical conversion treating property and its production
JPH0387329A (en) * 1989-08-30 1991-04-12 Sky Alum Co Ltd Aluminum alloy material for baking finish and its manufacture
JPH03247738A (en) * 1990-02-22 1991-11-05 Kobe Steel Ltd Aluminum alloy excellent in bendability
JPH04318144A (en) * 1991-04-17 1992-11-09 Kobe Steel Ltd Al alloy sheet excellent in strength, baking hardening property and molding property, and its manufacture
JPH0565587A (en) * 1991-09-05 1993-03-19 Sky Alum Co Ltd Aluminum alloy rolled sheet for forming and its production
JPH0565586A (en) * 1991-09-05 1993-03-19 Sky Alum Co Ltd Aluminum alloy rooled sheet for forming and its production
JPH05112839A (en) * 1991-10-21 1993-05-07 Kobe Steel Ltd Aluminum alloy sheet for forming excellent in low temperature baking hardenability and its manufacture
JPH06116689A (en) * 1992-10-07 1994-04-26 Kobe Steel Ltd Production of al-mg-si alloy sheet excellent in formability and baking hardenability
JPH06136478A (en) * 1992-10-23 1994-05-17 Kobe Steel Ltd Baking hardening type al alloy sheet excellent in formability and its production
EP0773303A1 (en) 1995-11-10 1997-05-14 Nkk Corporation Aluminium alloy sheet manufacturing method therefor
JPH1133646A (en) * 1997-07-10 1999-02-09 Kobe Steel Ltd Aluminum alloy joined body by mechanical clinch and its manufacture
JP2000144294A (en) * 1998-11-12 2000-05-26 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and hem workability
JP2000273567A (en) * 1999-03-18 2000-10-03 Nippon Steel Corp Aluminum alloy sheet excellent in formability and corrosion resistance and its production
JP2001152302A (en) * 1999-11-29 2001-06-05 Nippon Steel Corp Aluminum alloy sheet excellent in press formability, and its manufacturing method
JP2006307241A (en) * 2005-04-26 2006-11-09 Sumitomo Light Metal Ind Ltd Al-Mg-Si ALLOY SHEET SUPERIOR IN DEEP-DRAWABILITY AND MANUFACTURING METHOD THEREFOR
CN108699663A (en) * 2016-03-30 2018-10-23 昭和电工株式会社 The manufacturing method of Al-Mg-Si system alloy plate
JP2020519772A (en) * 2017-05-26 2020-07-02 ノベリス・インコーポレイテッドNovelis Inc. High-strength corrosion resistance 6xxx series aluminum alloy and manufacturing method thereof
CN107513649A (en) * 2017-08-15 2017-12-26 江苏常铝铝业股份有限公司 Automobile heat insulation plate aluminum alloy plate materials and its manufacture method
PL424248A1 (en) * 2018-01-11 2019-07-15 Albatros Aluminium Spółka Z Ograniczoną Odpowiedzialnością Aluminum composite with high kinetic energy cumulation properties and increased mechanical properties
CN110964955A (en) * 2019-12-19 2020-04-07 广西南南铝加工有限公司 Production method of 5052 aluminum alloy wafer for electric cooker liner
CN110964955B (en) * 2019-12-19 2021-09-07 广西南南铝加工有限公司 Production method of 5052 aluminum alloy wafer for electric cooker liner
CN112063896A (en) * 2020-09-16 2020-12-11 肇庆新联昌金属实业有限公司 High-performance aluminum alloy and preparation method thereof

Also Published As

Publication number Publication date
JPH0569898B2 (en) 1993-10-04

Similar Documents

Publication Publication Date Title
JPS62177143A (en) Aluminum alloy sheet excellent in formability and baking hardening and its production
JPH0127146B2 (en)
US5662750A (en) Method of manufacturing aluminum articles having improved bake hardenability
JPS59159961A (en) Superplastic al alloy
JPH0747808B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPS6289852A (en) Manufacture of aluminum alloy plate having superior burning hardenability
JPS626740B2 (en)
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JPH0635644B2 (en) Manufacturing method of aluminum alloy hard plate for forming
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH03294456A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JP2613466B2 (en) Manufacturing method of aluminum alloy sheet excellent in bake hardenability
JPH06272000A (en) Production of al alloy sheet excellent in formability and baking hardenability
JPS6058299B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with excellent formability
JPS6410584B2 (en)
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JP3218099B2 (en) Method for producing aluminum alloy sheet with low ear ratio and excellent formability
JPH08296011A (en) Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability
JPH01205052A (en) Aluminum alloy material for blind
JPH04318144A (en) Al alloy sheet excellent in strength, baking hardening property and molding property, and its manufacture
JPH10310835A (en) Aluminum alloy sheet excellent in strength, stretcher strain mark resistance and bendability and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees