WO2017155373A1 - Electrochromic device, electrode structure therefor, and manufacturing method thereof - Google Patents

Electrochromic device, electrode structure therefor, and manufacturing method thereof Download PDF

Info

Publication number
WO2017155373A1
WO2017155373A1 PCT/KR2017/003075 KR2017003075W WO2017155373A1 WO 2017155373 A1 WO2017155373 A1 WO 2017155373A1 KR 2017003075 W KR2017003075 W KR 2017003075W WO 2017155373 A1 WO2017155373 A1 WO 2017155373A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrochromic
layer
bus
electrochromic device
Prior art date
Application number
PCT/KR2017/003075
Other languages
French (fr)
Korean (ko)
Inventor
곽준영
정영희
Original Assignee
애드크로 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 애드크로 주식회사 filed Critical 애드크로 주식회사
Publication of WO2017155373A1 publication Critical patent/WO2017155373A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes

Definitions

  • the present invention relates to the field of electrochromic devices, and more particularly, by forming a bus electrode on the electrochromic layer, the manufacturing process is simple and mass production is possible, and further, even in a large area, the electrochromic property can be exhibited at a uniform and high speed.
  • the present invention relates to an electrochromic device, an electrode structure therefor, and a method of manufacturing the same.
  • the electrochromic device uses a phenomenon in which the electrochromic material is reversibly changed in color due to an oxidation-reduction reaction due to an externally applied voltage. These electrochromic devices not only secure visibility, but also allow the user to actively adjust the transmittance, thereby enabling various color changes to have a wide range of applications such as smart windows, car room mirrors, notebooks, mobile phones, and decorative designs.
  • an electrochromic device is applied on a first electrode and a second electrode between a transparent electroconductive first electrode, a second electrode disposed to face the first electrode, and between the first electrode and the second electrode.
  • the transparent electroconductive electrode mainly uses a plastic or glass substrate coated with indium doped tin oxide (ITO) or fluorine doped tin oxide (FTO).
  • Electrochromic materials that are commonly used to form the electrochromic layer may be divided into an oxidative colored type which changes color by an oxidation reaction and a reduced colored type that changes color by a reduction reaction.
  • Reducing colored materials include inorganic metal oxides such as WO 3 , TiO 2 , Nb 2 O 5 and organic polymer materials such as polyaniline, polythiophene polybiogen, polypyrrole, and the like. PB), IrO 2 , NiO and the like.
  • the uniform color change rate and color change time One of the most important parts of performance evaluation for electrochromic devices is the uniform color change rate and color change time.
  • This electrochromic characteristic depends not only on the method of forming the electrochromic layer, but also, the larger the discoloration area, the faster the discoloration rate near both extremes of applying the applied voltage due to the resistance of the transparent conductive layer, and gradually the further away it is. Since it changes, it cannot have a uniform discoloration speed. In addition, since the discoloration time is also consumed a lot, it is a problem that must be overcome to maintain a uniform discoloration speed and an appropriate response time regardless of the area for the commercialization of the electrochromic device.
  • the method of applying the multilayer thin film structure (Oxide / Metal / Oxide structure) of metal oxide / metal to increase the visible light transmittance through the control of thickness and refractive index when forming the transparent electrode (Korea Patent 10-0939842), a method of reducing sheet resistance by inserting a metal wire of several micrometers level into a transparent electrode (Korean Patent Publication 10-2008-0122062) and a method such as a transparent electrode using silver nanowires (AgNWs) (Korean Patent Registration 10- 1319443), but these methods are not only less durable due to the electrochemical stability of the metal, but also due to the IR drop that occurs when the large-area electrochromic device is manufactured even if the durability is solved. Since area dependence is inevitable, it is not a fundamental alternative.
  • the only way to avoid area dependency is considered to be a method of making a large area electrochromic device into a small device array as shown in FIG. 12.
  • the resulting device will be identical to the characteristics of each of the small-area devices, so the driving characteristics of the entire large-area device are determined by the spacing of the bus bar patterns of the small-area devices in the array.
  • the bus bar 2 directly contacts the transparent electrode 3 as shown in FIG. 12.
  • the electrochromic layer 1 should also be patterned into small unit cells. Patterning of the electrochromic layer 1 is performed by forming the electrochromic layer 1 with respect to the total area and then patterning through etching (Korean Patent Publication 10-2008-0051280, Korean Patent Registration 10-0936121), and patterning by printing method. Although there are methods such as patterning using masking during deposition, all have disadvantages of complicated process and increased cost.
  • the insulating layer 6 for the ideal patterning of the busbars 2 in the narrow gap between the gaps of the electrochromic layer 1 and to prevent contact with the electrolyte 7 can be accurately corrected. It was difficult to pattern the location, which made the actual solution difficult because of increased production costs and difficulty in production.
  • the present invention has been made to solve the problems of the prior art, and the bus electrode is formed on the electrochromic layer or the ion storage layer, and the patterning process of the electrochromic layer is not performed by directly contacting the bus electrode with the transparent conductive electrode.
  • the bus electrode is formed on the electrochromic layer or the ion storage layer, and the patterning process of the electrochromic layer is not performed by directly contacting the bus electrode with the transparent conductive electrode.
  • electrochromic devices having the same electrochromic speed and discoloration time much more easily in large area as well as small area without performing.
  • the present invention provides a method of manufacturing an electrochromic device comprising the improved electrochromic layer described above.
  • the present invention also provides an electrode structure applied to the above-described improved electrochromic device.
  • the present invention provides an electrode structure of the electrochromic device, which comprises: a conductive layer; An electrochromic layer disposed on the conductive layer; A bus electrode having a pattern exposing the electrochromic layer on the electrochromic layer; And an insulating film formed on the surface of the bus electrode.
  • the bus electrode may be the same or similar pattern is repeated on the electrochromic layer.
  • the bus electrode may be a stripe or a grid pattern.
  • the insulating layer may expose an end portion of the bus electrode for external connection of the bus electrode.
  • the present invention also provides an electrochromic device, comprising: an electrolyte layer; And a first electrode portion and a second electrode portion disposed on both sides of the electrolyte layer, wherein at least one of the first electrode portion and the second electrode portion includes an electrochromic layer and the electrochromic layer. And a bus electrode disposed on the surface of the bus electrode, the insulating film formed on a surface of the bus electrode, the insulating film blocking contact between the bus electrode and the electrolyte layer.
  • the insulating layer may expose an end portion of the bus electrode for external connection of the bus electrode.
  • the first electrode part may include an oxidized color electrochromic layer, and the second electrode may include a reduced color electrochromic layer.
  • the first electrode part may include an electrochromic layer, and the second electrode part may include an ion storage layer.
  • the bus electrode may be any one selected from Ir, Ag, Cu, Au, Cr, Al, W, Zn, Ni, Fe, Pt, Pb, and alloys thereof, or carbon black or graphene. It may be any one selected from carbon nanotubes and composites thereof.
  • the bus electrode may be a stripe or grid pattern.
  • the insulating film may be one of a polymer and an inorganic material or a mixture thereof, or an organic-inorganic hybrid.
  • the present invention provides a method for manufacturing an electrochromic device, comprising: (a) forming a first electrode portion and a second electrode portion, respectively; And (b) laminating the first electrode part and the second electrode part via an electrolyte layer, wherein at least one of the first electrode part and the second electrode part is an electrochromic layer and the electrochromic color.
  • a bus electrode having a pattern exposing the electrochromic layer on a layer, and an insulating layer formed on a surface of the bus electrode to block contact between the bus electrode and the electrolyte layer.
  • the electrochromic layer is in contact with the electrolyte layer by an exposure pattern of the bus electrode and the insulating layer.
  • the formation of at least one of the first electrode portion and the second electrode portion may include: (a-1) forming a bus electrode having a pattern exposing the electrochromic layer on the electrochromic layer; And (a-2) forming an insulating film on the surface of the bus electrode.
  • the bus electrode may be formed using one of screen printing, photolithography, imprinting, and inkjet printing.
  • the line width and thickness of the pattern of the bus electrode may be formed to 1 to 500 ⁇ m.
  • the insulating layer may have a thickness of about 2 ⁇ m to about 1000 ⁇ m.
  • the bus electrode may be striped or lattice pattern.
  • the present invention also provides an electrochromic device, comprising: an electrolyte layer; And a first electrode part and a second electrode part laminated on both sides with the center of the electrolyte layer, wherein the first electrode part and the second electrode part have a conductive layer and an electrochromic layer formed on the conductive layer. And a main bus electrode formed on the electrochromic layer, wherein the main bus electrodes of the first and second electrode portions are in a non-contact state with the electrolyte layer.
  • the present invention also provides a method of manufacturing an electrochromic device, comprising the steps of: forming a first electrode part array plate on which a plurality of first electrode parts are arranged and a second electrode part array plate on which a plurality of second electrode parts are arranged; Laminating the first electrode part array plate and the second electrode part plate array via an electrolyte layer array; And cutting the laminated structure into a plurality of individual elements, wherein the first electrode unit array plate and the second electrode unit array plate each include a conductive layer and an electrochromic layer formed on the conductive layer. It includes a main bus electrode formed in an array on the color change layer.
  • the main bus electrodes of the first and second electrode unit array plates are in a non-contact state with the electrolyte layers of the electrolyte layer array.
  • a large-area electrochromic device can be realized by using a structure having an arrangement effect of small devices.
  • a bus electrode in a pattern patterned by micro units on the electrochromic layer to expose the electrochromic layer, a plurality of small devices may be substantially arranged.
  • the structure of the present invention can provide an electrochromic device having the same electrochromic speed and discoloration time in a large area as well as in a small area.
  • This structure of the present invention can also be implemented without the patterning of the electrochromic layer. Furthermore, this structure is applicable to electrochromic layers formed by various methods such as electrochemical deposition, chemical bath deposition, sol-gel method and spattering, and they can all have the same electrochromic effect. Therefore, the size of the device can be variously changed according to a buyer's request, and an electrochromic device having a uniform discoloration speed and a fast response speed can be provided not only in a small area but also in a large area electrochromic device.
  • the bus bar and wiring line for the bus electrode formed on the electrochromic layer or the insulating film formed thereon have a simple film forming process and excellent film stability and durability. The large area of the electrochromic device is very easy to manufacture.
  • the electrochromic device of the present invention can be mass-produced in a very simple manner in both small and large areas.
  • FIG. 1A is a perspective view illustrating an electrochromic device according to a preferred embodiment of the present invention.
  • FIG. 1B and 1C are cross-sectional views of an electrochromic device according to a preferred embodiment of the present invention shown in FIG. 1A.
  • FIGS. 2A and 2B are views illustrating a manufacturing process of the first electrode portion and the second electrode portion, respectively, employed in the electrochromic device according to the preferred embodiment of the present invention.
  • FIG 3 is a view showing a manufacturing process of the electrochromic device according to a preferred embodiment of the present invention.
  • FIG. 4 is a view showing an electrochromic device according to a preferred embodiment of the present invention, which illustrates the formation of a main bus bar.
  • FIG. 5 is a cross-sectional view showing an electrochromic device according to another embodiment of the present invention.
  • 6 to 11 are views for explaining a method of manufacturing an electrochromic device according to another embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of a conventional electrochromic device.
  • the present invention forms a bus electrode on the electrochromic layer to enable mass production in a simple manner in a large area as well as a small area without patterning the electrochromic layer, and even in large areas such as uniform discoloration speed, response speed, and the like.
  • the present invention provides an electrochromic device having a discoloration effect.
  • the electrochromic device includes a bus electrode having a uniform pattern formed on the electrochromic layer. In the case of a small area element, only the main bus electrodes are formed near the corners on the electrochromic layer, and in the large area, the bus electrodes having a uniform pattern on the electrochromic layer, in addition to the main bus electrodes disposed near the corners, or Wiring lines are arranged and an insulating film is formed thereon.
  • the insulating film formed on the surface of the bus electrode or the wiring line blocks the contact between the bus electrode and the wiring line and the electrolyte layer.
  • FIGS. 1A to 1C are diagrams illustrating an electrochromic device according to a preferred embodiment of the present invention.
  • 1A is a perspective view of an electrochromic device of the present invention
  • FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG. 1A
  • FIG. 1C is a cross-sectional view taken along the line BB ′ of FIG. 1A.
  • an electrochromic device includes an electrolyte layer 30 and a first electrode portion 10 laminated on both sides (up and down in the drawing) of the electrolyte layer 30.
  • the second electrode unit 20 is included.
  • the first electrode part 10 and the second electrode part 20 are the electrochromic layers 11 and 21, the bus electrodes 12 and 22 and the bus electrodes disposed on the electrochromic layers 11 and 21, respectively. And insulating films 15 and 25 disposed on the surfaces of 12 and 22.
  • the electrochromic layers 11 and 21 of the electrochromic device may be formed on the substrates 14 and 24 and the conductive layers 13 and 23 formed on the substrates 14 and 24. .
  • the substrates 14 and 24 may be flexible plastic or glass, and the conductive layers 13 and 23 may be transparent.
  • the electrochromic layers 11 and 21 may be applied onto the conductive layers 13 and 23 described above using a coating method such as, for example, a wet coating method.
  • a coating method such as, for example, a wet coating method.
  • the plastic substrate is used as the substrate (14, 24), such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), polycarbonate (PC), etc.
  • low oxygen permeability and drying does not occur during drying Any substrate is possible.
  • Both the indium doped tin oxide (ITO) and the fluorine doped tin oxide (FTO) can be used as the transparent conductive layers 13 and 23, and the electric resistance is
  • the electrochromic layers 11 and 21 are formed using a silicon-based binder sol coating solution in which nanoparticles such as oxidative discoloration material Prussian blue (PB) or reducing discoloration material tungsten oxide (WO 3 ) are uniformly mixed.
  • PB oxidative discoloration material
  • WO 3 reducing discoloration material tungsten oxide
  • Reducing colored materials applicable to the present invention include inorganic metal oxides such as WO 3 , TiO 2 , Nb 2 O 5 , and organic polymer materials such as polyaniline, polythiophene polybiogen, polypyrrole, and the like.
  • Type materials include Prussian blue (PB), IrO 2 , NiO and the like.
  • the bus electrodes 12 and 22 employed in the present invention are formed on the electrochromic layers 11 and 21.
  • the bus electrodes 12 and 22 have a pattern exposing the electrochromic layers 11 and 21.
  • the bus electrodes 12 and 22 may expose the top surfaces of the electrochromic layers 11 and 21 by having a pattern such as a stripe, a cross stripe, or the like.
  • the bus electrodes 12 and 22 may have a configuration in which a uniform pattern is repeated.
  • the bus electrodes 12 and 22 have a stripe pattern, which may be referred to as a bus bar pattern.
  • the electron transfer rate by the redox reaction is increased. Even if a large-area device is manufactured by making it smooth, it can not only have a uniform discoloration speed but also drive a device with little change in response speed compared to the small area.
  • the insulating films 15 and 25 are formed on the surfaces of the bus electrodes 12 and 22 to prevent the bus electrodes 12 and 22 from being exposed to the electrolyte layer 30. Therefore, the insulating films 15 and 25 are disposed to cover both the upper (upper surface) and the side (side) of the bus bars or the wiring lines of the bus electrodes 12 and 22.
  • the insulating layers 15 and 25 are formed on the surfaces of the bus electrodes 12 and 22, and in the illustrated example, on the surfaces (upper and side surfaces) of the respective bus bars to form the electrochromic layers 11 and 21 as the electrolyte layer 30.
  • the bus electrodes 12 and 22 are blocked so as not to be exposed to the electrolyte layer 30 while being exposed to ().
  • the first electrode portion 10 and the second electrode portion 20 is disposed on both sides of the electrolyte layer 30, such as an electrolyte solution or a polymer electrolyte to constitute an electrochromic device. Done.
  • the electrolyte layer 30 such as an electrolyte solution or a polymer electrolyte to constitute an electrochromic device. Done.
  • coloration and decolorization are performed by an oxidation-reduction reaction.
  • the first electrode part 10 may include an electrochromic layer 11, and the second electrode part 20 may include an ion storage layer.
  • an insulating film may not be formed on at least the upper surface portion of the end portions of the bus electrodes 12 and 22.
  • Main busbars 16 and 26 are arranged in this area.
  • the first electrode part 10 and the second electrode part 20 may be laminated so as to be opposite to each other with respect to the electrolyte layer 30.
  • end portions of the bus electrodes on which the insulating film is not formed are exposed to the outside, and main bus bars 16 and 26 are disposed thereon.
  • FIG. 2A a method of manufacturing an electrochromic device according to a preferred embodiment of the present invention will be described in detail with reference to FIGS. 2A, 2B, 3, and 4.
  • FIG. 2A, 2B, 3, and 4 a method of manufacturing an electrochromic device according to a preferred embodiment of the present invention will be described in detail with reference to FIGS. 2A, 2B, 3, and 4.
  • FIG. 2A, 2B, 3, and 4 a method of manufacturing an electrochromic device according to a preferred embodiment of the present invention will be described in detail with reference to FIGS. 2A, 2B, 3, and 4.
  • the first electrode part 10 and the second electrode part 20 are manufactured, respectively, and then laminated on both sides of the prepared electrolyte layer 30.
  • it may be implemented by disposing the electrolyte layer 30 on the first electrode unit 10 and the second electrode unit 20 on the electrolyte layer 30.
  • the first electrode part 10 or the second electrode part 20 forms conductive layers 13 and 23 on the substrates 14 and 24. Thereafter, the electrochromic layers 11 and 21 are formed on the conductive layers 13 and 23.
  • the electrochromic layer 11 of the first electrode part 10 may be formed of an oxidatively colored electrochromic layer, and the second electrode part 20 may be formed of a reduced colored electrochromic layer.
  • the first electrode part 10 may include an electrochromic layer 11, and the second electrode part 20 may include an ion storage layer.
  • an oxidative coloring type such as Prussian blue (PB) may be used.
  • PB Prussian blue
  • a reduced coloring type such as tungsten oxide (WO 3 ) may be used.
  • the coating liquid for forming the electrochromic layers 11 and 21 of the present invention may be prepared by various known techniques.
  • bus electrodes 12 and 22 are formed on the electrochromic layers 11 and 21.
  • the bus electrodes 12 and 22 are formed to have a stripe or grid pattern to expose a portion of the electrochromic layers 11 and 21.
  • the bus electrodes 12 and 22 may be formed using patterning methods such as screen printing, photolithography, imprinting, and inkjet printing.
  • the bus electrodes 12 and 22 formed on the electrochromic layers 11 and 21 may be formed by patterning by a sprin printing method using a screen printing ink containing silver (Ag).
  • the thinner the line width and thickness of the bus electrodes 12, 22 are better.
  • the line widths of the bus electrodes 12 and 22 refer to the line widths of the bus bars in the case of the stripe pattern, and the line widths of the wiring lines forming the lattice pattern in the case of the lattice pattern.
  • the line widths of the bus electrodes 12 and 22 are thick, the pattern may become visible and may not be suitable for use as a window or a mirror. If the thickness of the bus electrodes 12 and 22 is thick, the distance between the two electrochromic electrodes may be increased when the device is formed. It becomes far, which causes the discoloration rate to slow down because the movement distance of electrons by the redox reaction is also long.
  • the line width and thickness of the bus electrode are preferably in the range of 1 to 500 ⁇ m.
  • the conductive ink used for the bus electrodes 12 and 22 should be used within the limit that does not deform the substrate during drying. If the plastic base is used, the conductive ink should have high conductivity even after heat treatment at 150 ° C or lower.
  • silver Ag is used as the conductive filler, but Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Tc, Ru, Oh, Pd, Ag , At least one metal such as Cd, In, Sn, Sb, W, Os, Ir, Pt, Ag, Pb, or alloys or alloy oxides thereof, carbon black, graphite, carbon nanotubes.
  • Any conductive ink capable of low temperature heat treatment or UV curing, such as a hybrid ink including any one or more components selected from conductive carbon and conductive polymer groups such as carbon nanotubes, can be used.
  • insulating films 15 and 25 are formed on the surfaces of the bus electrodes 12 and 22.
  • the insulating layers 15 and 25 may coat an insulating film such as a polyimide film or a polyester film on the bus electrodes 12 and 22, or may be acrylic, silicon, or polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • Polymer solution containing polyester and the like can be formed by screen printing. In addition, it can be formed by a screen printing method using a thermosetting ink that causes thermal curing in the infrared and ultraviolet.
  • the polymer used for the insulating films 15 and 25 should be free of chemical reaction with the electrolyte after drying. If the formed bus electrodes 12 and 22 are stable without chemical reaction with the electrolyte used in the device, the insulating films 15 and 25 can be omitted.
  • the insulating films 15 and 25 may be formed except the corresponding portions, or may be formed on the entire surface of the bus electrodes 12 and 22, and then the insulating layers 15 and 25 of the corresponding portions may be removed.
  • lamination is performed between the first electrode part 10 and the second electrode part 20 with the electrolyte layer 30 interposed therebetween.
  • This may be implemented by applying the electrolyte layer 30 on the first electrode part 10 and then disposing the second electrode part 20 on the electrolyte layer.
  • the portion where the bus electrode is exposed is excluded.
  • the main electrodes 16 and 26 are disposed at the end portions where the bus electrodes 12 and 22 are exposed, as described in detail below.
  • the electrolyte used can be either liquid, gel or solid.
  • a sealant is used to prevent leakage.
  • the thickness of the device may be minimized by allowing the first and second electrodes to face each other with the electrolyte layer formed when the two types of electrodes are laminated into a sandwich type.
  • FIG. 4 is a view showing an electrochromic device according to a preferred embodiment of the present invention, which illustrates the formation of a main bus bar. 4, other elements are omitted for convenience of understanding.
  • the pattern shape or spacing of the bus electrodes 12 and 22 may vary depending on the shape and area of the device. In the case of small area, the stripe pattern alone may have the same discoloration speed in the same area, but in the case of a large area or a rectangular or asymmetric type device, the same pattern of cross stripe The effect can be obtained. In addition, since the pattern spacing of the bus electrodes 12 and 22 is affected by the thickness of the electrochromic layers 11 and 21, the thickness of the electrolyte layer 30, and the thickness of the pattern, an optimization process is required.
  • PB and WO 3 nanoelectrochromic thin films of 3 ⁇ 3 cm 2 (Comparative Example 1) and 100 ⁇ 100 cm 2 (Comparative Example 2) were prepared by the method according to Patent 10-1175607.
  • the screen frame was patterned on the electrochromic layers 11 and 21 by using a screen printing method, and then a silver paste solution was used. After coating, heat treatment was performed at 130 degrees for 30 minutes to form bus electrodes 12 and 22 on the electrochromic layers 11 and 21.
  • the busbar spacing of the stripe pattern was 3 cm (Example 1) and the busbar spacing of the cross stripe pattern was 6 cm (Example 2), and the line width was about 500 ⁇ m.
  • the insulating films 15 and 25 were formed by bonding a polyimide film after leaving portions where the main bus bars 16 and 26 were connected on the bus electrodes 12 and 22.
  • the second electrode portion 20 which is a WO 3 electrode, is faced in a sandwich type. After lamination. At this time, the patterns of the two electrodes were shifted.
  • the main bus bars 16 and 26 were attached to the exposed portions of the bus electrodes 12 and 22, and voltage was applied to the portions to confirm electrochromic characteristics. Comparative Example 1 was applied for 20 seconds at ⁇ 2V, Comparative Example 2 was applied for 30 minutes at ⁇ 2V, and Examples 1 and 2 were applied for 30 seconds at ⁇ 2V.
  • Table 1 below shows the electrochromic properties of the electrochromic devices prepared in Comparative Examples 1 and 2 and Examples 1 and 2 according to the present invention.
  • Comparative Examples 1 and 2 when the device area is 3 x 3 cm 2, the response time is within a few seconds, but when 100 x 100 cm 2, the response time is increased by 20 minutes or more, and the discoloration speed in the device is not constant. However, as shown in Examples 1 and 2, even if the area of the device was increased to 100 x 100 cm 2, the response time did not increase significantly.
  • FIG. 5 is a cross-sectional view schematically showing an electrochromic device according to another embodiment of the present invention.
  • the electrochromic device according to another embodiment of the present invention can be applied to mass production of small area devices in an easy manner.
  • the electrochromic layers 11 and 21 are disposed at corners thereof while the first electrode 10 and the second electrode 20 are disposed to be shifted with respect to the electrolyte layer 30. Expose the upper surface of.
  • First and second main bus electrodes 16 and 26 are disposed on corner portions of the exposed electrochromic layers 11 and 21, respectively.
  • This alternative configuration of the present invention is similar to the large area element of the present invention, in which the bus electrodes are not in direct contact with the conductive layers 13 and 23 but in contact with the electrochromic layers 11 and 21 in the conductive / electrochromic layer structure. It is. Conventionally, the bus electrode and the electrochromic layer are disposed on the conductive layer, but in the present invention, the main bus electrodes 16 and 26 are disposed on the electrochromic layers 11 and 21 and thus the electrochromic layers 11 and 21 and the electrochromic layers 11 and 21. Connected. In the case of small area, there is no difference in the electricity supply capacity even by this structure, and instead, there is an advantage that the mass production can be performed quickly using a roll-to-roll printing process. In FIG. 5, reference numerals 14 and 24 correspond to substrates, respectively.
  • a first electrode unit array plate 100 in which a plurality of first electrode units are arranged, and a second in which a plurality of second electrode units are arranged.
  • the electrode unit array plates 200 are formed, respectively.
  • the substrates 140 and 240 and the conductive layers 130 and 230 formed on the substrates 140 and 240 are illustrated as one layer.
  • conductive layers 130 and 230 are formed on substrates 140 and 240, such as PET, to form the first and second electrode array plates.
  • substrates 140 and 240 such as PET
  • the oxidizing electrochromic layer 110 is formed on the first electrode part 100
  • the reducing electrochromic layer 210 may be formed on the second electrode part 200.
  • the main bus electrodes 16 are disposed on the electrochromic layers 110 and 210 of the first and second electrode array plates 100 and 200, respectively.
  • Arrays 160, 260 are formed. This can be done using a method such as screen printing, and the plurality of main bus electrodes 16 and 26 are formed at the corners of the first electrode portion 10 and the second electrode portion 26 of the cut individual elements. Corresponds to the site.
  • the main bus electrodes 16 of the first electrode unit array plate 100 and the main bus electrodes 26 of the second electrode unit array plate 200 are opposite to each other based on the electrolyte layer 30 formed later. Is placed in position.
  • an electrolyte layer in which a plurality of electrolyte layers 30 are arranged on the electrochromic layers 110 and 210 of the first electrode unit array plate 100 or the second electrode unit array plate 200.
  • the array 300 is formed.
  • the formation of the electrolyte layer array 300 prints and coats the electrolyte layers 30 corresponding to adjacent positions of the main bus electrodes 26 as shown.
  • the first electrode unit array plate 100 and the second electrode unit array plate 200 are laminated.
  • the electrolyte layer 30 formed in the first or second electrode portion in the individual elements is placed inside the main bus electrodes 16, 26 of the first and second electrode portions 10, 20,
  • the main bus electrode 16 of the first electrode unit 10 and the main bus electrode 26 of the second electrode unit 20 are positioned at opposite positions with respect to each electrolyte layer 30.
  • the laminated structure is cut into individual elements. After cutting, it will be shaped like the top view and cross section shown on the right.
  • the corner portions on the opposite sides of the main bus electrodes 16 and 26 are removed in the first and second electrode portions 10 and 20 of the cut individual elements.
  • This part is to remove a part corresponding to the outer side of the electrolyte layer 30, and may be omitted if the two electrodes are treated so as not to contact each other.
  • forming an insulating layer on the main bus electrodes 16 and 26 can avoid contact between the two electrodes.

Abstract

Disclosed is an electrochromic device manufactured by a method for forming a bus electrode on an electrochromic layer. A bus electrode is directly formed on the electrochromic layer by using a printing process. In the case of a small area device, a main bus electrode is formed at an edge portion of a first electrode part and a second electrode part. Furthermore, in the case of a large area device, bus electrode arrays are disposed at a center portion of the electrochromic layer as well as at the edge portions, and an insulating film is formed on the surfaces thereof so as to prevent an electrolyte layer and bus electrodes from directly contacting each other. By forming a bus bar and an insulator layer on the electrochromic layer, an electrochromic device is provided, which has a uniform color change rate not only in a small area electrochromic device, but also in a large area electrochromic device, and which has a response rate, in the large area electrochromic device, on which almost no influence is exerted compared to that in the small area electrochromic device.

Description

전기변색 소자, 그를 위한 전극구조체 및 그 제조 방법Electrochromic device, electrode structure therefor and method for manufacturing same
본 발명은 전기변색 소자 분야에 관한 것으로서, 보다 상세하게는 전기변색 층 위에 버스 전극을 형성하여 제조 과정이 간단하여 대량 생산이 가능하고, 나아가 대면적에서도 균일하고 빠른 속도의 전기변색 특성을 나타낼 수 있는 전기변색 소자, 그를 위한 전극구조체, 및 그 제조방법에 관한 것이다.The present invention relates to the field of electrochromic devices, and more particularly, by forming a bus electrode on the electrochromic layer, the manufacturing process is simple and mass production is possible, and further, even in a large area, the electrochromic property can be exhibited at a uniform and high speed. The present invention relates to an electrochromic device, an electrode structure therefor, and a method of manufacturing the same.
전기변색 소자는 외부에서 인가한 전압에 의한 전기변색 물질이 산화-환원 반응으로 인해 가역적으로 색이 변하는 현상을 이용한 것이다. 이러한 전기변색 소자는 가시성을 확보할 수 있을 뿐만 아니라 사용자가 능동적으로 투과율을 조절할 수 있기 때문에 다양한 채색 변화가 가능하여 스마트 윈도우, 자동차 룸미러, 노트북, 휴대폰, 장식 디자인 등 광범위한 응용 범위를 가진다.The electrochromic device uses a phenomenon in which the electrochromic material is reversibly changed in color due to an oxidation-reduction reaction due to an externally applied voltage. These electrochromic devices not only secure visibility, but also allow the user to actively adjust the transmittance, thereby enabling various color changes to have a wide range of applications such as smart windows, car room mirrors, notebooks, mobile phones, and decorative designs.
통상적으로 전기변색 소자는 투명 전기전도성의 제1전극, 상기 제1전극과 대향하여 배치된 제2전극, 상기 제1전극과 상기 제2전극 사이에 있어서 상기 제1전극 및 제 2전극 상에 도포된 전기변색층 및 상기 제1전극과 상기 제2전극 사이에 배치된 전해질을 포함하게 된다. 투명 전기전도성 전극은 주로 ITO(indium doped tin oxide) 또는 FTO(fluorine doped tin oxide)가 도포되어 있는 플라스틱 또는 유리 기판이 사용된다. 전기변색층을 형성하는데 상용될 수 있는 전기변색 물질은 산화반응에 의해 색이 변하는 산화 착색형과 환원 반응에 의해 색이 변하는 환원 착색형으로 나눌 수 있다. 환원 착색형 물질에는 WO3, TiO2, Nb2O5와 같은 무기금속 산화물 및 폴리아닐린, 폴리사이오펜 폴리비오르겐, 폴리피롤과 같은 유기고분자 물질 등이 있고, 산화 착색형 물질에는 프루시안블루(PB), IrO2, NiO 등이 있다. In general, an electrochromic device is applied on a first electrode and a second electrode between a transparent electroconductive first electrode, a second electrode disposed to face the first electrode, and between the first electrode and the second electrode. The electrochromic layer and an electrolyte disposed between the first electrode and the second electrode. The transparent electroconductive electrode mainly uses a plastic or glass substrate coated with indium doped tin oxide (ITO) or fluorine doped tin oxide (FTO). Electrochromic materials that are commonly used to form the electrochromic layer may be divided into an oxidative colored type which changes color by an oxidation reaction and a reduced colored type that changes color by a reduction reaction. Reducing colored materials include inorganic metal oxides such as WO 3 , TiO 2 , Nb 2 O 5 and organic polymer materials such as polyaniline, polythiophene polybiogen, polypyrrole, and the like. PB), IrO 2 , NiO and the like.
전기변색 소자에 성능 평가에 있어서 가장 중요한 부분 중의 하나는 균일한 변색속도 및 변색 시간이다. 이러한 전기변색 특성은 전기변색층을 형성하는 방법에 따라 달라지게 될 뿐 아니라, 변색 면적이 커지면 투명 전도층의 저항으로 인해 인가 전압을 가하는 양 극단 근처에서의 변색속도가 가장 빠르고, 멀어질수록 서서히 변하기 때문에 균일한 변색속도를 가질 수 없다. 또한, 변색 시간 또한 많이 소비되어 전기변색 소자의 상용화를 위해서는 면적과 상관없이 균일한 변색속도 및 적절한 응답시간을 유지해야하는 것이 꼭 극복해야 하는 과제이다. 종래의 기술에서는 이 문제를 해결하기 위하여 투명전극의 면저항을 낮추는 방법, 전기변색층의 전도도를 향상시키는 방법, 소면적 소자를 여러 개 배열시키는 디자인을 적용시켜 소면적 소자와 동일한 특성을 구현하는 방법 등을 시도하였다. 하지만 이러한 종래의 방법은 각기 극복하지 못하는 기술적 한계를 가지고 있다.One of the most important parts of performance evaluation for electrochromic devices is the uniform color change rate and color change time. This electrochromic characteristic depends not only on the method of forming the electrochromic layer, but also, the larger the discoloration area, the faster the discoloration rate near both extremes of applying the applied voltage due to the resistance of the transparent conductive layer, and gradually the further away it is. Since it changes, it cannot have a uniform discoloration speed. In addition, since the discoloration time is also consumed a lot, it is a problem that must be overcome to maintain a uniform discoloration speed and an appropriate response time regardless of the area for the commercialization of the electrochromic device. In the related art, in order to solve this problem, a method of lowering the sheet resistance of the transparent electrode, improving the conductivity of the electrochromic layer, and applying a design in which several small-area elements are arranged to implement the same characteristics as the small-area element And so forth. However, these conventional methods have technical limitations that cannot be overcome.
먼저 투명전극의 면저항을 낮추는 방법에서는 투명전극을 형성할 때 두께와 굴절률의 제어를 통한 가시광선 투과율의 높이는 금속산화물/금속의 다층박막 구조(Oxide/Metal/Oxide 구조)를 적용하는 방법(한국특허 등록 10-0939842), 수 마이크로미터 수준의 금속선을 투명전극에 넣어 면저항을 줄이는 방법(한국특허 공개 10-2008-0122062) 그리고 은나노와이어(AgNWs)를 이용한 투명전극 등의 방법(한국특허 등록 10-1319443)이 시도되고 있으나 이러한 방법들은 모두 금속의 전기화화학적 안정성 문제로 인해 내구성이 떨어질 뿐만 아니라 만약 내구성문제가 해결된다고 하더라도 대면적 전기변색 소자를 제작했을 때 발생하는 전압강하(IR drop)에 의한 면적의존성을 피할 수 없기 때문에 근본적인 대안이 될 수 없다.First, in the method of lowering the sheet resistance of the transparent electrode, the method of applying the multilayer thin film structure (Oxide / Metal / Oxide structure) of metal oxide / metal to increase the visible light transmittance through the control of thickness and refractive index when forming the transparent electrode (Korea Patent 10-0939842), a method of reducing sheet resistance by inserting a metal wire of several micrometers level into a transparent electrode (Korean Patent Publication 10-2008-0122062) and a method such as a transparent electrode using silver nanowires (AgNWs) (Korean Patent Registration 10- 1319443), but these methods are not only less durable due to the electrochemical stability of the metal, but also due to the IR drop that occurs when the large-area electrochromic device is manufactured even if the durability is solved. Since area dependence is inevitable, it is not a fundamental alternative.
전기변색층의 전도도를 향상시키는 방법(한국특허 공개10-2015-0076780, 한국특허 공개10-2013-0066755) 역시 전압강하에 의한 면적의존성을 피할 수 없기는 마찬가지이다.Method of improving the conductivity of the electrochromic layer (Korean Patent Publication 10-2015-0076780, Korean Patent Publication 10-2013-0066755) is also the same can not be avoided the area dependency due to voltage drop.
기존 기술에서 면적의존성을 피할 수 있는 유일한 방법은 도 12에 보여주는 것과 같이 대면적 전기변색 소자를 작은 소자의 배열로 만드는 방법으로 여겨지고 있다. 그렇게 만들어지는 소자는 소면적 소자 각각의 특성과 동일할 것이므로 전체 대면적 소자의 구동 특성은 배열의 단위를 이루는 소면적 소자의 버스바(Bus bar) 패턴의 간격에 따라 결정된다.In the existing technology, the only way to avoid area dependency is considered to be a method of making a large area electrochromic device into a small device array as shown in FIG. 12. The resulting device will be identical to the characteristics of each of the small-area devices, so the driving characteristics of the entire large-area device are determined by the spacing of the bus bar patterns of the small-area devices in the array.
종래에도 이러한 소면적 소자의 배열 구조를 만들기 위한 시도가 있었으나 투명전극에 도 12에서와 같이 버스바(2)가 직접 투명전극(3)에 접촉하는 구조이다. 도 12에서 알 수 있는 바와 같이, 이러한 종래의 전기변색 소자는 전기변색층(1) 역시 작은 단위 셀로 패터닝 되어야 한다. 전기변색층(1)의 패터닝은 전체면적에 대해 전기변색층(1)을 형성시킨 후 에칭을 통한 패터닝(한국특허 공개10-2008-0051280, 한국특허 등록10-0936121), 인쇄방식을 통한 패터닝, 증착시 마스킹을 사용하는 패터닝 등의 방법이 있지만 모두 공정이 복잡하고 비용이 증가하는 단점을 가진다. 어렵게 전기변색층(1)을 패터닝 하더라도 전기변색층(1) 간격 사이의 좁은 틈에 버스바(2)를 이상적으로 패터닝하고 전해질(7)과의 접촉을 방지하기 위한 절연층(6)을 정확한 위치에 패터닝 하기는 쉽지 않아 제작 단가 상승과 제작의 어려움이 더해지기 때문에 실제적인 해결이 어려웠다.In the past, attempts have been made to make such an arrangement of small area devices, but the bus bar 2 directly contacts the transparent electrode 3 as shown in FIG. 12. As can be seen in FIG. 12, in the conventional electrochromic device, the electrochromic layer 1 should also be patterned into small unit cells. Patterning of the electrochromic layer 1 is performed by forming the electrochromic layer 1 with respect to the total area and then patterning through etching (Korean Patent Publication 10-2008-0051280, Korean Patent Registration 10-0936121), and patterning by printing method. Although there are methods such as patterning using masking during deposition, all have disadvantages of complicated process and increased cost. Even if it is difficult to pattern the electrochromic layer 1, the insulating layer 6 for the ideal patterning of the busbars 2 in the narrow gap between the gaps of the electrochromic layer 1 and to prevent contact with the electrolyte 7 can be accurately corrected. It was difficult to pattern the location, which made the actual solution difficult because of increased production costs and difficulty in production.
본 발명은 종래 기술의 문제점을 해결하기 위해 안출된 것으로, 버스 전극을 투명전도성 전극에 직접 접촉시키는 방식이 아니라, 전기변색층이나 이온저장층 위에 버스 전극을 형성하여, 전기변색층의 패터닝 공정을 수행하지 않으면서도, 소면적에서 뿐 아니라 대면적에서도 훨씬 용이하게 동일한 전기변색속도 및 변색 시간을 가지는 전기변색 소자를 제공한다.The present invention has been made to solve the problems of the prior art, and the bus electrode is formed on the electrochromic layer or the ion storage layer, and the patterning process of the electrochromic layer is not performed by directly contacting the bus electrode with the transparent conductive electrode. Provided are electrochromic devices having the same electrochromic speed and discoloration time much more easily in large area as well as small area without performing.
본 발명은 상술한 개선된 전기변색층을 포함하는 전기변색 소자의 제조방법을 제공한다.The present invention provides a method of manufacturing an electrochromic device comprising the improved electrochromic layer described above.
본 발명은 또한 상술한 개선된 전기변색 소자에 적용되는 전극구조체를 제공한다.The present invention also provides an electrode structure applied to the above-described improved electrochromic device.
본 발명은 전기변색 소자의 전극구조체를 제공하며, 이는: 전도성층; 상기 전도성층 상에 배치된 전기변색층; 상기 전기변색층 상에 상기 전기변색층을 노출하는 패턴을 가지며 배치된 버스 전극; 및 상기 버스 전극의 표면 상에 형성된 절연막;을 포함한다.The present invention provides an electrode structure of the electrochromic device, which comprises: a conductive layer; An electrochromic layer disposed on the conductive layer; A bus electrode having a pattern exposing the electrochromic layer on the electrochromic layer; And an insulating film formed on the surface of the bus electrode.
상기 버스 전극은 상기 전기변색층 상에 동일 또는 유사한 패턴이 반복된 것일 수 있다. 여기서 상기 버스 전극은 줄무늬 또는 격자무늬 패턴일 수 있다.The bus electrode may be the same or similar pattern is repeated on the electrochromic layer. The bus electrode may be a stripe or a grid pattern.
상기 절연막은 상기 버스 전극의 외부 접속을 위하여 상기 버스 전극의 단부를 노출할 수 있다.The insulating layer may expose an end portion of the bus electrode for external connection of the bus electrode.
또한 본 발명은 전기변색 소자를 제공하며, 이는: 전해질층; 및 상기 전해질층의 양측에 각각 배치되는 제1전극부와 제2전극부;를 포함하고, 상기 제1전극부 및 상기 제2전극부 중의 적어도 하나는, 전기변색층과, 상기 전기변색층 상에 상기 전기변색층을 노출하는 패턴을 가지며 배치된 버스 전극과, 상기 버스 전극의 표면 상에 형성된 절연막을 포함하고, 상기 절연막은 상기 버스 전극과 상기 전해질층의 접촉을 차단한다.The present invention also provides an electrochromic device, comprising: an electrolyte layer; And a first electrode portion and a second electrode portion disposed on both sides of the electrolyte layer, wherein at least one of the first electrode portion and the second electrode portion includes an electrochromic layer and the electrochromic layer. And a bus electrode disposed on the surface of the bus electrode, the insulating film formed on a surface of the bus electrode, the insulating film blocking contact between the bus electrode and the electrolyte layer.
상기 절연막은 상기 버스 전극의 외부 접속을 위하여 상기 버스 전극의 단부를 노출할 수 있다.The insulating layer may expose an end portion of the bus electrode for external connection of the bus electrode.
상기 제1전극부는 산화착색형 전기변색층을 포함하고, 상기 제2전극은 환원착색형 전기변색층을 포함하는 것일 수 있다.The first electrode part may include an oxidized color electrochromic layer, and the second electrode may include a reduced color electrochromic layer.
상기 제1전극부는 전기변색층을 포함하고, 상기 제2전극부는 이온저장층을 포함하는 것일 수 있다.The first electrode part may include an electrochromic layer, and the second electrode part may include an ion storage layer.
상기 버스 전극은 Ir, Ag, Cu, Au, Cr, Al, W, Zn, Ni, Fe, Pt, Pb, 및 그들의 합금 중에 선택되는 어느 하나, 또는 카본블랙(Carbon Black), 그래핀(Graphen), 카본나노튜브(Carbon Nanotube) 및 그들의 복합물 중에 선택되는 어느 하나일 수 있다.The bus electrode may be any one selected from Ir, Ag, Cu, Au, Cr, Al, W, Zn, Ni, Fe, Pt, Pb, and alloys thereof, or carbon black or graphene. It may be any one selected from carbon nanotubes and composites thereof.
상기 버스 전극은 줄무늬 또는 격자무늬 패턴일 수 있다.The bus electrode may be a stripe or grid pattern.
상기 절연막은 폴리머 및 무기물의 단독 또는 그들의 혼합물, 또는 유무기 하이브리드 중의 하나일 수 있다.The insulating film may be one of a polymer and an inorganic material or a mixture thereof, or an organic-inorganic hybrid.
또한, 본 발명은 전기변색 소자 제조방법을 제공하며, 이는: (a) 제1전극부와 제2전극부를 각각 형성하는 단계; 및 (b) 전해질층을 개재하여 상기 제1전극부와 상기 제2전극부를 라미네이팅하는 단계;를 포함하고, 상기 제1전극부 및 상기 제2전극부 중의 적어도 하나는 전기변색층, 상기 전기변색층 상에 상기 전기변색층을 노출하는 패턴을 가지며 배치된 버스 전극, 및 상기 버스 전극의 표면에 형성되어 상기 버스 전극과 상기 전해질층의 접촉을 차단하는 절연막을 포함한다.In addition, the present invention provides a method for manufacturing an electrochromic device, comprising: (a) forming a first electrode portion and a second electrode portion, respectively; And (b) laminating the first electrode part and the second electrode part via an electrolyte layer, wherein at least one of the first electrode part and the second electrode part is an electrochromic layer and the electrochromic color. A bus electrode having a pattern exposing the electrochromic layer on a layer, and an insulating layer formed on a surface of the bus electrode to block contact between the bus electrode and the electrolyte layer.
상기 전기변색층은 상기 버스 전극 및 상기 절연막의 노출 패턴에 의해 상기 전해질층과 접촉한다.The electrochromic layer is in contact with the electrolyte layer by an exposure pattern of the bus electrode and the insulating layer.
상기 제1전극부 및 상기 제2전극부 중의 적어도 하나의 형성은: (a-1) 상기 전기변색층 상에 상기 전기변색층을 노출하는 패턴을 가지는 버스 전극을 형성하는 단계; 및 (a-2) 상기 버스 전극의 표면에 절연막을 형성하는 단계;를 포함할 수 있다.The formation of at least one of the first electrode portion and the second electrode portion may include: (a-1) forming a bus electrode having a pattern exposing the electrochromic layer on the electrochromic layer; And (a-2) forming an insulating film on the surface of the bus electrode.
상기 버스 전극은 스크린인쇄, 포토리소그래피, 임프린팅, 및 잉크젯프린팅 중의 하나를 이용하여 형성할 수 있다.The bus electrode may be formed using one of screen printing, photolithography, imprinting, and inkjet printing.
상기 버스 전극의 패턴의 선폭 및 두께는 1 내지 500㎛으로 형성할 수 있다.The line width and thickness of the pattern of the bus electrode may be formed to 1 to 500㎛.
상기 절연막의 두께는 2 내지 1000㎛일 수 있다.The insulating layer may have a thickness of about 2 μm to about 1000 μm.
상기 버스 전극은 줄무늬 또는 격자무늬일 수 있다.The bus electrode may be striped or lattice pattern.
본 발명은 또한 전기변색 소자를 제공하며, 이는: 전해질층; 및 상기 전해질층의 중심으로 양측에 각각 라미네이팅된 제1전극부와 제2전극부;를 포함하고, 상기 제1전극부과 상기 제2전극부는 전도층과 상기 전도층 상에 형성된 전기변색층과 상기 전기변색층 상에 형성된 메인 버스 전극을 포함하고, 상기 제1 및 제2전극부의 상기 메인 버스 전극들은 상기 전해질층과 비접촉 상태이다.The present invention also provides an electrochromic device, comprising: an electrolyte layer; And a first electrode part and a second electrode part laminated on both sides with the center of the electrolyte layer, wherein the first electrode part and the second electrode part have a conductive layer and an electrochromic layer formed on the conductive layer. And a main bus electrode formed on the electrochromic layer, wherein the main bus electrodes of the first and second electrode portions are in a non-contact state with the electrolyte layer.
본 발명은 또한 전기변색 소자 제조방법을 제공하며, 이는: 다수개의 제1전극부가 배열된 제1전극부 어레이판과 다수개의 제2전극부가 배열된 제2전극부 어레이판을 각각 형성하는 단계; 전해질층 어레이를 개재하여 상기 제1전극부 어레이판과 상기 제2전극부판 어레이를 라미네이팅하는 단계; 및 라미네이팅된 구조물을 다수개의 개별 소자로 컷팅하는 단계;를 포함하고, 상기 제1전극부 어레이판과 상기 제2전극부 어레이판은 각각 전도층과 상기 전도층 상에 형성된 전기변색층과 상기 전기변색층 상에 어레이로 형성된 메인 버스 전극을 포함한다.The present invention also provides a method of manufacturing an electrochromic device, comprising the steps of: forming a first electrode part array plate on which a plurality of first electrode parts are arranged and a second electrode part array plate on which a plurality of second electrode parts are arranged; Laminating the first electrode part array plate and the second electrode part plate array via an electrolyte layer array; And cutting the laminated structure into a plurality of individual elements, wherein the first electrode unit array plate and the second electrode unit array plate each include a conductive layer and an electrochromic layer formed on the conductive layer. It includes a main bus electrode formed in an array on the color change layer.
상기 제1 및 제2전극부 어레이판의 상기 메인 버스 전극들은 상기 전해질층 어레이의 전해질층과 비접촉 상태이다.The main bus electrodes of the first and second electrode unit array plates are in a non-contact state with the electrolyte layers of the electrolyte layer array.
본 발명에 따르면, 전기변색층이 올라가는 투명 전극의 면적이 커질수록 투명 전극의 전기 저항 때문에 균일한 변색속도를 갖지 못하며 응답속도 또한 급격히 느려지기 때문에 전기변색 소자의 대면적화가 어려워지는 것을 극복하기 위해, 작은 소자의 배열된 효과를 가지는 구조를 이용하여 대면적 전기변색 소자를 구현할 수 있도록 한다. 본 발명의 전기변색 소자는 전기변색층 위에 마이크로 단위로 패터닝되어 전기변색층을 노출하는 패턴의 버스 전극을 배열함으로써, 실질적으로 다수개의 작은 소자가 배열된 효과를 거둘 수 있다. 이러한 본 발명의 구조는 소면적에서 뿐 아니라 대면적에서도 동일한 전기변색속도 및 변색 시간을 가지는 전기변색 소자를 제공할 수 있다. 또한 본 발명의 이러한 구조는 전기변색층의 패터닝 없이도 구현될 수 있다. 나아가 이러한 구조는 전기화학적 증착법, 화학용액 증착법(chemical bath deposition), 졸-겔법 및 스파터링 등 다양한 방법으로 형성한 전기변색층에 적용 가능하며, 그들은 모두 동일한 전기변색 효과를 가질 수 있다. 따라서, 구매자의 요구에 따라 소자의 크기를 다양하게 변화시킬 수 있고, 소면적 뿐 아니라 대면적 전기변색 소자에서도 균일한 변색속도 및 빠른 응답속도를 가지는 전기변색 소자를 제공할 수 있다. 또한, 전기변색층 위에 형성되는 버스 전극을 위한 버스바 및 배선 라인이나 그 위에 형성되는 절연막은 그 형성 과정이 간단하면서도 막 안정성과 내구성이 뛰어나기 때문에, 생산 단가를 낮출 수 있을 뿐 아니라 여러 가지 종류의 대면적 전기변색 소자의 제작을 매우 용이하게 한다. 이러한 본 발명의 전기변색소자는, 소면적이나 대면적의 경우 모두에서 매우 간단한 방식으로 대량 생산이 가능하다.According to the present invention, as the area of the transparent electrode on which the electrochromic layer rises increases, it does not have a uniform discoloration speed due to the electrical resistance of the transparent electrode, and the response speed also decreases sharply, so as to overcome the difficulty of large area of the electrochromic device. Therefore, a large-area electrochromic device can be realized by using a structure having an arrangement effect of small devices. In the electrochromic device of the present invention, by arranging a bus electrode in a pattern patterned by micro units on the electrochromic layer to expose the electrochromic layer, a plurality of small devices may be substantially arranged. The structure of the present invention can provide an electrochromic device having the same electrochromic speed and discoloration time in a large area as well as in a small area. This structure of the present invention can also be implemented without the patterning of the electrochromic layer. Furthermore, this structure is applicable to electrochromic layers formed by various methods such as electrochemical deposition, chemical bath deposition, sol-gel method and spattering, and they can all have the same electrochromic effect. Therefore, the size of the device can be variously changed according to a buyer's request, and an electrochromic device having a uniform discoloration speed and a fast response speed can be provided not only in a small area but also in a large area electrochromic device. In addition, the bus bar and wiring line for the bus electrode formed on the electrochromic layer or the insulating film formed thereon have a simple film forming process and excellent film stability and durability. The large area of the electrochromic device is very easy to manufacture. The electrochromic device of the present invention can be mass-produced in a very simple manner in both small and large areas.
도 1a는 본 발명의 바람직한 실시예에 따른 전기변색 소자를 도시한 사시도이다.1A is a perspective view illustrating an electrochromic device according to a preferred embodiment of the present invention.
도 1b 및 1c는 도 1a에 도시된 본 발명의 바람직한 실시예에 따른 전기변색 소자의 단면도이다.1B and 1C are cross-sectional views of an electrochromic device according to a preferred embodiment of the present invention shown in FIG. 1A.
도 2a와 도 2b는 각각 본 발명의 바람직한 실시예에 따른 전기변색 소자에 채용되는 제1전극부 및 제2전극부의 제조 과정을 보여주는 도면이다.2A and 2B are views illustrating a manufacturing process of the first electrode portion and the second electrode portion, respectively, employed in the electrochromic device according to the preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 실시예에 따른 전기변색 소자의 제조 과정을 보여주는 도면이다.3 is a view showing a manufacturing process of the electrochromic device according to a preferred embodiment of the present invention.
도 4는 본 발명의 바람직한 실시예에 따른 전기변색 소자를 나타낸 도면으로서, 메인 버스바의 형성을 설명하기 위해 도시한 도면이다.4 is a view showing an electrochromic device according to a preferred embodiment of the present invention, which illustrates the formation of a main bus bar.
도 5는 본 발명의 다른 실시예에 따른 전기변색 소자를 나타낸 단면도이다.5 is a cross-sectional view showing an electrochromic device according to another embodiment of the present invention.
도 6 내지 도 11은 본 발명의 다른 실시예에 따른 전기변색 소자의 제조방법을 설명하기 위해 도시한 도면이다.6 to 11 are views for explaining a method of manufacturing an electrochromic device according to another embodiment of the present invention.
도 12는 종래의 전기변색 소자를 개략적으로 나타낸 단면도이다.12 is a schematic cross-sectional view of a conventional electrochromic device.
이하 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 본 발명의 실시예를 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In describing the embodiments of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
먼저 간략히 설명하면, 본 발명은 전기변색층 위에 버스 전극을 형성함으로써 전기변색층의 패터닝 없이 소면적 뿐만 아니라 대면적에서도 간단한 방식으로 대량 생산이 가능하고 대면적에서도 균일한 변색속도, 응답속도 등과 같은 변색효과가 보장되는 전기변색 소자를 제공한다. 이러한 전기변색 소자는 전기변색층 상에 형성된 균일한 패턴을 가지는 버스 전극을 포함한다. 소면적 소자의 경우에는 전기변색층 상의 모서리 부근에 배치되는 메인 버스 전극만을 형성하고, 대면적으로 경우에는 모서리 부근에 배치되는 메인 버스 전극 외에 전기변색층 상에 균일한 패턴을 가지는 버스 전극들 또는 배선 라인을 배치하고 그 위에 절연막을 형성한다. 이러한 버스 전극 또는 배선 라인의 표면에 형성되는 절연막은 버스 전극 및 배선 라인과 전해질층의 접촉을 차단한다. Briefly, the present invention forms a bus electrode on the electrochromic layer to enable mass production in a simple manner in a large area as well as a small area without patterning the electrochromic layer, and even in large areas such as uniform discoloration speed, response speed, and the like. The present invention provides an electrochromic device having a discoloration effect. The electrochromic device includes a bus electrode having a uniform pattern formed on the electrochromic layer. In the case of a small area element, only the main bus electrodes are formed near the corners on the electrochromic layer, and in the large area, the bus electrodes having a uniform pattern on the electrochromic layer, in addition to the main bus electrodes disposed near the corners, or Wiring lines are arranged and an insulating film is formed thereon. The insulating film formed on the surface of the bus electrode or the wiring line blocks the contact between the bus electrode and the wiring line and the electrolyte layer.
이하, 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
도 1a 내지 도 1c는 본 발명의 바람직한 실시예에 따른 전기변색 소자를 나타내는 도면이다. 도 1a는 본 발명의 전기변색 소자의 사시도이고, 도 1b는 도 1a의 A-A'선에 따른 단면도이고, 도 1c는 도 1a의 B-B'선에 따른 단면도이다.1A to 1C are diagrams illustrating an electrochromic device according to a preferred embodiment of the present invention. 1A is a perspective view of an electrochromic device of the present invention, FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG. 1A, and FIG. 1C is a cross-sectional view taken along the line BB ′ of FIG. 1A.
도 1a 내지 도 1c를 참조하여, 본 발명의 바람직한 실시예에 따른 전기변색 소자는 전해질층(30), 전해질층(30)의 양측(도면에서는 상하)에 라미네이팅된 제1전극부(10)와 제2전극부(20)를 포함한다.1A to 1C, an electrochromic device according to a preferred embodiment of the present invention includes an electrolyte layer 30 and a first electrode portion 10 laminated on both sides (up and down in the drawing) of the electrolyte layer 30. The second electrode unit 20 is included.
제1전극부(10)와 제2전극부(20)는 각각 전기변색층(11, 21), 전기변색층(11, 21) 상에 배치된 버스 전극(12, 22), 및 버스 전극(12, 22)의 표면에 배치된 절연막(15, 25)을 포함한다.The first electrode part 10 and the second electrode part 20 are the electrochromic layers 11 and 21, the bus electrodes 12 and 22 and the bus electrodes disposed on the electrochromic layers 11 and 21, respectively. And insulating films 15 and 25 disposed on the surfaces of 12 and 22.
본 발명의 바람직한 실시예에 따른 전기변색 소자의 전기변색층(11, 21)은 기판(14, 24)과 기판(14, 24) 상에 형성된 전도층(13, 23) 상에 형성될 수 있다. 여기서 기판(14, 24)은 플레서블 플라스틱이나 유리일 수 있고, 전도층(13, 23)은 투명성일 수 있다. 전기변색층(11, 21)은 상술한 전도층(13, 23) 상에 예를 들어 습식 코팅법과 같은 코팅방법을 이용하여 도포될 수 있다. 기판(14, 24)으로 플라스틱 기판을 사용할 경우, Polyethylene terephthalate(PET), polyethylene naphthalate(PEN), polyether sulfone(PES), polycarbonate(PC) 등과 같이 산소 투과율이 낮으면서 건조시 열변형이 일어나지 않는 플라스틱 기판이면 모두 가능하다. 투명성 전도층(13, 23)으로는 indium doped tin oxide(ITO) 및 fluorine doped tin oxide(FTO)를 모두 사용할 수 있으며, 전기 저항의 범위는 5 내지 100Ω/sq가 적당한데, 가능하면 저항이 낮을수록 좋다.The electrochromic layers 11 and 21 of the electrochromic device according to the preferred embodiment of the present invention may be formed on the substrates 14 and 24 and the conductive layers 13 and 23 formed on the substrates 14 and 24. . The substrates 14 and 24 may be flexible plastic or glass, and the conductive layers 13 and 23 may be transparent. The electrochromic layers 11 and 21 may be applied onto the conductive layers 13 and 23 described above using a coating method such as, for example, a wet coating method. When the plastic substrate is used as the substrate (14, 24), such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), polycarbonate (PC), etc., low oxygen permeability and drying does not occur during drying Any substrate is possible. Both the indium doped tin oxide (ITO) and the fluorine doped tin oxide (FTO) can be used as the transparent conductive layers 13 and 23, and the electric resistance is in the range of 5 to 100 Ω / sq. The better.
전기변색층(11, 21)은 산화 변색 물질인 프루시안 블루(Prussian blue, PB) 또는 환원 변색 물질인 텅스텐 옥사이드(WO3) 등과 같은 나노 입자가 균일 혼합된 실리콘계 바인더 졸 코팅용액을 사용하여 형성시킨 층이다. 본 발명에 적용할 수 있는 환원 착색형 물질에는 WO3, TiO2, Nb2O5와 같은 무기금속 산화물 및 폴리아닐린, 폴리사이오펜 폴리비오르겐, 폴리피롤과 같은 유기고분자 물질 등이 있고, 산화 착색형 물질에는 프루시안블루(PB), IrO2, NiO 등이 있다. The electrochromic layers 11 and 21 are formed using a silicon-based binder sol coating solution in which nanoparticles such as oxidative discoloration material Prussian blue (PB) or reducing discoloration material tungsten oxide (WO 3 ) are uniformly mixed. Layer. Reducing colored materials applicable to the present invention include inorganic metal oxides such as WO 3 , TiO 2 , Nb 2 O 5 , and organic polymer materials such as polyaniline, polythiophene polybiogen, polypyrrole, and the like. Type materials include Prussian blue (PB), IrO 2 , NiO and the like.
본 발명에 채용되는 버스 전극(12, 22)은 전기변색층(11, 21) 상에 형성된다. 이러한 버스 전극(12, 22)은 전기변색층(11, 21)을 노출시키는 패턴을 가진다. 버스 전극(12, 22)은 예를 들어 줄무늬(stripe), 격자무늬(cross stripe) 등과 같은 패턴을 가짐으로써 전기변색층(11, 21)의 상면을 노출시킬 수 있다. 바람직하게는 버스 전극(12, 22)이 균일한 패턴이 반복되는 구성을 가질 수 있다.The bus electrodes 12 and 22 employed in the present invention are formed on the electrochromic layers 11 and 21. The bus electrodes 12 and 22 have a pattern exposing the electrochromic layers 11 and 21. The bus electrodes 12 and 22 may expose the top surfaces of the electrochromic layers 11 and 21 by having a pattern such as a stripe, a cross stripe, or the like. Preferably, the bus electrodes 12 and 22 may have a configuration in which a uniform pattern is repeated.
도시한 예에서는 버스 전극(12, 22)이 줄무늬 패턴을 가지는 것이며, 이를 버스바(Bus bar) 패턴이라고 칭할 수도 있다.In the illustrated example, the bus electrodes 12 and 22 have a stripe pattern, which may be referred to as a bus bar pattern.
이와 같이 전기변색층(11, 21)을 노출시키는 줄무늬의 버스바 또는 격자무늬의 배선 라인과 같은 패턴을 전기변색층(11, 21) 상에 형성함으로써, 산화-환원 반응에 의한 전자 이동 속도를 원활하도록 하여 대면적 소자를 제조하여도 균일한 변색속도를 가질 뿐 아니라 소면적 대비 응답 속도에 별다른 변화를 보이지 않는 소자 구동이 가능하다.Thus, by forming a pattern on the electrochromic layers 11 and 21, such as a striped bus bar or a lattice pattern wiring line exposing the electrochromic layers 11 and 21, the electron transfer rate by the redox reaction is increased. Even if a large-area device is manufactured by making it smooth, it can not only have a uniform discoloration speed but also drive a device with little change in response speed compared to the small area.
절연막(15, 25)은 버스 전극(12, 22)의 표면에 형성되어 버스 전극(12, 22)이 전해질층(30)으로 노출되지 않도록 한다. 따라서 절연막(15, 25)은 버스 전극(12, 22)의 버스바 또는 배선 라인의 상부(상면)와 측부(측면)에 모두 배치되어 감싸게 된다.The insulating films 15 and 25 are formed on the surfaces of the bus electrodes 12 and 22 to prevent the bus electrodes 12 and 22 from being exposed to the electrolyte layer 30. Therefore, the insulating films 15 and 25 are disposed to cover both the upper (upper surface) and the side (side) of the bus bars or the wiring lines of the bus electrodes 12 and 22.
이와 같이 절연막(15, 25)이 버스 전극(12, 22)의 표면, 도시한 예에서는 각각의 버스바의 표면(상면과 측면)에 형성됨으로써 전기변색층(11, 21)을 전해질층(30)으로 노출하면서도 버스 전극(12, 22)은 전해질층(30)에 노출되지 않도록 차단하게 된다.As described above, the insulating layers 15 and 25 are formed on the surfaces of the bus electrodes 12 and 22, and in the illustrated example, on the surfaces (upper and side surfaces) of the respective bus bars to form the electrochromic layers 11 and 21 as the electrolyte layer 30. The bus electrodes 12 and 22 are blocked so as not to be exposed to the electrolyte layer 30 while being exposed to ().
도 1a 내지 도 1c에서 알 수 있는 바와 같이, 제1전극부(10)와 제2전극부(20)가 전해질 용액 또는 고분자 전해질과 같은 전해질층(30)의 양측에 배치되어 전기변색 소자를 구성하게 된다. 이러한 본 발명의 바람직한 실시예에 따른 전기변색 소자에 전기를 인가하였을 때 산화-환원 반응에 의해 착색 및 탈색이 이루어진다.As can be seen in Figures 1a to 1c, the first electrode portion 10 and the second electrode portion 20 is disposed on both sides of the electrolyte layer 30, such as an electrolyte solution or a polymer electrolyte to constitute an electrochromic device. Done. When electricity is applied to the electrochromic device according to the preferred embodiment of the present invention, coloration and decolorization are performed by an oxidation-reduction reaction.
본 발명의 다른 예의 전기변색 소자는 제1전극부(10) 전기변색층(11)을 포함하고, 제2전극부(20)는 이온저장층을 포함하는 것일 수 있다.In another example of the electrochromic device, the first electrode part 10 may include an electrochromic layer 11, and the second electrode part 20 may include an ion storage layer.
또한, 본 발명의 전기변색 소자는 버스 전극(12, 22)의 단부 부위의 적어도 상면 부위에는 절연막이 형성되지 않을 수 있다. 이 부위에는 메인 버스바(16, 26)가 배치된다. 아래에서 설명되는 바와 같이, 전해질층(30)을 중심으로 제1전극부(10)와 제2전극부(20)가 서로 반대로 어긋나도록 라미네이팅할 수 있다. 그럼으로써 절연막이 형성되지 않은 버스 전극의 단부가 외부로 노출되고 그 부위에 메인 버스바(16, 26)가 배치된다. 이러한 구성은 본 발명의 전기변색 소자를 프린팅 공정 등으로 용이하고 신속하게 제조할 수 있도록 한다.In the electrochromic device of the present invention, an insulating film may not be formed on at least the upper surface portion of the end portions of the bus electrodes 12 and 22. Main busbars 16 and 26 are arranged in this area. As described below, the first electrode part 10 and the second electrode part 20 may be laminated so as to be opposite to each other with respect to the electrolyte layer 30. As a result, end portions of the bus electrodes on which the insulating film is not formed are exposed to the outside, and main bus bars 16 and 26 are disposed thereon. This configuration allows the electrochromic device of the present invention to be easily and quickly manufactured by a printing process or the like.
이하에서는 도 2a, 2b, 3, 및 4를 참조하여, 본 발명의 바람직한 실시예에 따른 전기변색 소자의 제조방법을 상세하게 설명한다.Hereinafter, a method of manufacturing an electrochromic device according to a preferred embodiment of the present invention will be described in detail with reference to FIGS. 2A, 2B, 3, and 4. FIG.
먼저, 제1전극부(10)와 제2전극부(20)를 각각 제조한 후, 준비된 전해질층(30)의 양측에 라미네이팅한다. 예를 들어, 제1전극부(10) 상에 전해질층(30)을 배치하고 전해질층(30) 상에 제2전극부(20)를 배치함으로써 구현될 수 있다.First, the first electrode part 10 and the second electrode part 20 are manufactured, respectively, and then laminated on both sides of the prepared electrolyte layer 30. For example, it may be implemented by disposing the electrolyte layer 30 on the first electrode unit 10 and the second electrode unit 20 on the electrolyte layer 30.
제1전극부(10) 또는 제2전극부(20)는 기판(14, 24) 상에 전도층(13, 23)을 형성한다. 그 후, 전도층(13, 23) 상에 전기변색층(11, 21)을 형성한다.The first electrode part 10 or the second electrode part 20 forms conductive layers 13 and 23 on the substrates 14 and 24. Thereafter, the electrochromic layers 11 and 21 are formed on the conductive layers 13 and 23.
여기서 제1전극부(10)의 전기변색층(11)은 산화 착색형 전기변색층으로 형성하고, 제2전극부(20)는 환원 착색형 전기변색층으로 형성할 수 있다.The electrochromic layer 11 of the first electrode part 10 may be formed of an oxidatively colored electrochromic layer, and the second electrode part 20 may be formed of a reduced colored electrochromic layer.
본 발명의 다른 예의 전기변색 소자는 제1전극부(10)가 전기변색층(11)을 포함하고, 제2전극부(20)는 이온저장층을 포함할 수 있다.In another example of the electrochromic device of the present invention, the first electrode part 10 may include an electrochromic layer 11, and the second electrode part 20 may include an ion storage layer.
제1전극부(10)의 전기변색층(11)에 산화 착색형 전기변색층이 적용될 경우, 예를 들어 프루시안블루(PB)와 같은 산화 착색형을 이용할 수 있다. 제2전극부(20)의 전기변색층(21)에 산화전기변색층을 적용할 경우, 예를 들어 텅스텐 옥사이드(WO3)와 같은 환원 착색형을 이용할 수 있다.When the oxidative coloring electrochromic layer is applied to the electrochromic layer 11 of the first electrode part 10, an oxidative coloring type such as Prussian blue (PB) may be used. When the electrochromic layer is applied to the electrochromic layer 21 of the second electrode unit 20, for example, a reduced coloring type such as tungsten oxide (WO 3 ) may be used.
참고적으로, 본 발명의 전기변색층(11, 21)을 형성하기 위한 코팅액은 공지된 여러 가지 기술로 제조될 수 있다.For reference, the coating liquid for forming the electrochromic layers 11 and 21 of the present invention may be prepared by various known techniques.
다음에, 도 2a 및 2b에서 우측에 나타낸 바와 같이, 전기변색층(11, 21) 상에 버스 전극(12, 22)을 형성한다. 버스 전극(12, 22)은 전기변색층(11, 21)의 일부를 노출하도록 줄무늬 또는 격자무늬 패턴을 가지도록 형성한다. 이러한 버스 전극(12, 22)은 스크린인쇄, 포토리소그래피, 임프린팅, 및 잉크젯프린팅 등의 패터닝 방법을 이용하여 형성할 수 있다.Next, as shown on the right side in FIGS. 2A and 2B, bus electrodes 12 and 22 are formed on the electrochromic layers 11 and 21. The bus electrodes 12 and 22 are formed to have a stripe or grid pattern to expose a portion of the electrochromic layers 11 and 21. The bus electrodes 12 and 22 may be formed using patterning methods such as screen printing, photolithography, imprinting, and inkjet printing.
예를 들어, 전기변색층(11, 21) 상에 형성되는 버스 전극(12, 22)은 은(Ag)이 함유된 스크린 프린팅용 잉크를 사용하여 스프린 프린트 방법으로 패터닝하여 형성할 수 있다. 도시한 예에서와 같이, 버스 전극(12, 22)의 선폭 및 두께는 얇을수록 좋다. 여기서 버스 전극(12, 22)의 선폭이라 함은 줄무늬 패턴의 경우에는 버스바의 선폭을 말하고, 격자무늬 패턴의 경우에는 격자무늬를 형성하는 배선 라인의 선폭을 말한다.For example, the bus electrodes 12 and 22 formed on the electrochromic layers 11 and 21 may be formed by patterning by a sprin printing method using a screen printing ink containing silver (Ag). As in the illustrated example, the thinner the line width and thickness of the bus electrodes 12, 22 are better. Here, the line widths of the bus electrodes 12 and 22 refer to the line widths of the bus bars in the case of the stripe pattern, and the line widths of the wiring lines forming the lattice pattern in the case of the lattice pattern.
버스 전극(12, 22)의 선폭이 두꺼우면 패턴이 가시화되어 윈도우나 미러로 사용이 부적합 할 수 있으며, 버스 전극(12, 22)의 막 두께가 두꺼우면 소자 형성시 두 전기변색 전극 간의 거리가 멀어지게 되고, 이로 인해 산화-환원 반응에 의한 전자의 이동 거리 또한 길어지므로 변색속도가 느려지는 원인이 된다. 버스 전극의 선폭 및 두께는 1 내지 500μm 범위가 바람직하다.If the line widths of the bus electrodes 12 and 22 are thick, the pattern may become visible and may not be suitable for use as a window or a mirror. If the thickness of the bus electrodes 12 and 22 is thick, the distance between the two electrochromic electrodes may be increased when the device is formed. It becomes far, which causes the discoloration rate to slow down because the movement distance of electrons by the redox reaction is also long. The line width and thickness of the bus electrode are preferably in the range of 1 to 500 µm.
버스 전극(12, 22)에 사용되는 전도성 잉크는 건조시 기제에 변형을 주지 않는 한도 내에서 사용해야 하는데, 플라스틱 기제를 사용할 경우에는 150℃ 이하에서 열처리하여도 높은 전도도를 가져야 한다. 일반적으로는 은(Ag)이 전도성 충전제로 사용되지만 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Tc, Ru, Oh, Pd, Ag, Cd, In, Sn, Sb, W, Os, Ir, Pt, Ag, Pb 등과 같은 1 종 이상의 금속 또는 이들의 합금 또는 합금 산화물, 카본블랙(Carbon black), 그라파이트(Graphite), 탄소나노튜브(Carbon nanotube)와 같은 전도성 탄소 및 전도성 고분자 군에서 선택되는 어느 하나 이상의 성분을 포함하는 혼성 잉크 등 저온 열처리 또는 UV 경화가 가능한 전도성 잉크는 모두 사용이 가능하다. The conductive ink used for the bus electrodes 12 and 22 should be used within the limit that does not deform the substrate during drying. If the plastic base is used, the conductive ink should have high conductivity even after heat treatment at 150 ° C or lower. Generally silver (Ag) is used as the conductive filler, but Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Tc, Ru, Oh, Pd, Ag , At least one metal such as Cd, In, Sn, Sb, W, Os, Ir, Pt, Ag, Pb, or alloys or alloy oxides thereof, carbon black, graphite, carbon nanotubes ( Any conductive ink capable of low temperature heat treatment or UV curing, such as a hybrid ink including any one or more components selected from conductive carbon and conductive polymer groups such as carbon nanotubes, can be used.
다음에, 도 2a 및 2b의 좌측에 나타낸 바와 같이, 버스 전극(12, 22)의 표면에 절연막(15, 25)을 형성한다.Next, as shown on the left side of FIGS. 2A and 2B, insulating films 15 and 25 are formed on the surfaces of the bus electrodes 12 and 22.
절연막(15, 25)은 버스 전극(12, 22) 위에 폴리이미드 필름(Polyimide film) 혹은 폴리에스테르 필름(Polyester film)과 같은 절연성 필름을 코팅하거나, 아크릴계, 실리콘계, 폴리에틸렌 프탈레이트(PET, polyethylene terephthalate), 폴리에스터 등이 함유된 고분자 용액을 스크린 프린팅으로 형성할 수 있다. 또한, 적외선 및 자외선에서 열경화를 일으키는 열경화형 잉크를 이용하여 스크린 프린팅 방법으로 형성할 수 있다. 절연막(15, 25)에 사용되는 고분자는 건조 후 전해질과 화학적 반응이 없어야 한다. 형성된 버스 전극(12, 22)이 소자 내에서 사용되는 전해질과 화학적 반응이 일어나지 않고 안정적이면 절연막(15, 25)은 생략이 가능하다.The insulating layers 15 and 25 may coat an insulating film such as a polyimide film or a polyester film on the bus electrodes 12 and 22, or may be acrylic, silicon, or polyethylene terephthalate (PET). , Polymer solution containing polyester and the like can be formed by screen printing. In addition, it can be formed by a screen printing method using a thermosetting ink that causes thermal curing in the infrared and ultraviolet. The polymer used for the insulating films 15 and 25 should be free of chemical reaction with the electrolyte after drying. If the formed bus electrodes 12 and 22 are stable without chemical reaction with the electrolyte used in the device, the insulating films 15 and 25 can be omitted.
버스 전극(12, 22)의 단부 부위에는 메인 버스바(16, 26)를 연결해야 하므로 그 부위는 노출시킨다. 이를 위해서는 해당 부위를 제외하고 절연막(15, 25)을 형성하거나, 버스 전극(12, 22)의 전체 표면에 형성한 후 해당 부위의 절연막(15, 25)을 제거할 수도 있다.Since the main bus bars 16 and 26 should be connected to the end portions of the bus electrodes 12 and 22, the portions are exposed. To this end, the insulating films 15 and 25 may be formed except the corresponding portions, or may be formed on the entire surface of the bus electrodes 12 and 22, and then the insulating layers 15 and 25 of the corresponding portions may be removed.
이후에, 도 3에 나타낸 바와 같이, 제1전극부(10)와 제2전극부(20) 사이에 전해질층(30)의 개재하여 라미네이팅을 수행한다. 이는 제1전극부(10) 상에 전해질층(30)을 도포한 후, 전해질층 상에 제2전극부(20)를 배치하는 것으로 구현할 수 있다.Thereafter, as shown in FIG. 3, lamination is performed between the first electrode part 10 and the second electrode part 20 with the electrolyte layer 30 interposed therebetween. This may be implemented by applying the electrolyte layer 30 on the first electrode part 10 and then disposing the second electrode part 20 on the electrolyte layer.
예를 들어, 제1전극부(10) 상에 리튬 염이 함유된 젤(gel) 전해질을 도포할 때 버스 전극이 노출된 부분은 제외한다. 여기서 버스 전극(12, 22)이 노출되는 단부 부위에는, 아래에서 상세하게 설명되는 바와 같이, 메인 전극(16, 26)이 배치된다.For example, when the gel electrolyte containing the lithium salt is applied on the first electrode part 10, the portion where the bus electrode is exposed is excluded. Here, the main electrodes 16 and 26 are disposed at the end portions where the bus electrodes 12 and 22 are exposed, as described in detail below.
사용되는 전해질은 액체(liquid), 젤(gel) 또는 고체(solid) 모두 가능한데, 액체 전해질을 사용할 때에는 누액이 생기지 않도록 밀봉제를 사용한다. 두 종류의 전극을 샌드위치 타입(sandwich type)으로 라미네이션(lamination)할 때 형성된 전해질층을 중심으로 제1 및 제2전극이 어긋나게 마주보도록 하여 소자의 두께를 최소화 할 수 있다.The electrolyte used can be either liquid, gel or solid. When using a liquid electrolyte, a sealant is used to prevent leakage. The thickness of the device may be minimized by allowing the first and second electrodes to face each other with the electrolyte layer formed when the two types of electrodes are laminated into a sandwich type.
도 4는 본 발명의 바람직한 실시예에 따른 전기변색 소자를 나타낸 도면으로서, 메인 버스바의 형성을 설명하기 위해 도시한 도면이다. 도 4의 우측에서는 이해의 편의를 위해 다른 요소들이 생략된 상태이다.4 is a view showing an electrochromic device according to a preferred embodiment of the present invention, which illustrates the formation of a main bus bar. 4, other elements are omitted for convenience of understanding.
버스 전극(12, 22)의 패턴 모양이나 간격은 소자의 형태와 면적에 따라 달라질 수 있다. 소면적일 때는 줄무늬(stripe) 형태의 패턴만으로도 동일한 전 구간에서 동일한 변색속도를 가질 수 있지만, 적용 면적이 커지거나, 직사각형 또는 비대칭적인 형태의 소자인 경우에는 격자 무늬(cross stripe)의 패턴으로 동일한 효과를 얻을 수 있다. 또한, 버스 전극(12, 22)의 패턴 간격은 전기변색층(11, 21)의 두께, 전해질층(30)의 두께 및 패턴의 굵기에 영향을 받으므로 최적화 과정이 필요하다. The pattern shape or spacing of the bus electrodes 12 and 22 may vary depending on the shape and area of the device. In the case of small area, the stripe pattern alone may have the same discoloration speed in the same area, but in the case of a large area or a rectangular or asymmetric type device, the same pattern of cross stripe The effect can be obtained. In addition, since the pattern spacing of the bus electrodes 12 and 22 is affected by the thickness of the electrochromic layers 11 and 21, the thickness of the electrolyte layer 30, and the thickness of the pattern, an optimization process is required.
이하에서는 비교예 및 실시예를 상세하게 설명한다.Hereinafter, a comparative example and an Example are explained in full detail.
<비교예 1, 2><Comparative Examples 1 and 2>
등록특허 10-1175607에 의한 방법으로 3×3㎠(비교예 1) 및 100×100㎠(비교예 2) 면적의 PB 및 WO3 나노 전기변색 박막을 제조하였다. PB and WO 3 nanoelectrochromic thin films of 3 × 3 cm 2 (Comparative Example 1) and 100 × 100 cm 2 (Comparative Example 2) were prepared by the method according to Patent 10-1175607.
<실시예 1, 2><Examples 1 and 2>
비교예 2와 동일한 방법으로 나노 전기변색층(11, 21)을 제조한 후, 스크린 프린팅 방법을 이용하여 전기변색층(11, 21) 위에 패터닝된 스크린 프레임을 올리고 실버페이스트(silver paste) 용액으로 코팅한 후, 130도에서 30분간 열처리하여 전기변색층(11, 21) 상에 버스 전극(12, 22)을 형성하였다. 줄무늬 패턴(stripe pattern)의 버스바 간격은 3cm(실시예 1) 및 격자 무늬(cross stripe pattern) 패턴의 버스바 간격은 6cm(실시예 2) 이었으며, 선폭은 500㎛ 정도였다. After the nanoelectrochromic layers 11 and 21 were manufactured in the same manner as in Comparative Example 2, the screen frame was patterned on the electrochromic layers 11 and 21 by using a screen printing method, and then a silver paste solution was used. After coating, heat treatment was performed at 130 degrees for 30 minutes to form bus electrodes 12 and 22 on the electrochromic layers 11 and 21. The busbar spacing of the stripe pattern was 3 cm (Example 1) and the busbar spacing of the cross stripe pattern was 6 cm (Example 2), and the line width was about 500 µm.
절연막(15, 25)은 버스 전극(12, 22) 위에 메인 버스바(16, 26)가 연결되는 부분을 남겨놓은 후 폴리이미드필름을 접착하여 형성하였다. The insulating films 15 and 25 were formed by bonding a polyimide film after leaving portions where the main bus bars 16 and 26 were connected on the bus electrodes 12 and 22.
절연막(15, 25)이 형성된 PB전극인 제1전극부(10)에 고분자 전해질층(30)을 형성시킨 후 WO3전극인 제2전극부(20)를 샌드위치 타입(sandwich type)으로 마주보게 한 후 라미네이션하였다. 이 때 두 전극의 패턴을 어긋나게 하였다.After the polymer electrolyte layer 30 is formed on the first electrode portion 10, which is a PB electrode having the insulating films 15 and 25 formed thereon, the second electrode portion 20, which is a WO 3 electrode, is faced in a sandwich type. After lamination. At this time, the patterns of the two electrodes were shifted.
버스 전극(12, 22)의 노출된 부분에 메인 버스바(16, 26)를 붙이고, 이 부분에 전압을 인가하여 전기변색 특성을 확인하였다. 비교예 1은 ±2V 에서 20초 간 인가하였고, 비교예 2는 ±2V에서 30분 인가하였으며, 실시예 1, 2는 ±2V 에서 30초 간 인가하였다.The main bus bars 16 and 26 were attached to the exposed portions of the bus electrodes 12 and 22, and voltage was applied to the portions to confirm electrochromic characteristics. Comparative Example 1 was applied for 20 seconds at ± 2V, Comparative Example 2 was applied for 30 minutes at ± 2V, and Examples 1 and 2 were applied for 30 seconds at ± 2V.
아래 표 1은 본 발명에 따른 비교예 1, 2 및 실시예 1, 2 로 제조된 전기변색 소자의 전기변색 특성을 나타낸 것이다. 비교예 1과 2를 살펴보면, 소자 면적이 3×3㎠ 일 때에는 응답시간이 수 초 이내이지만, 100×100㎠일 때에는 응답시간이 20분 이상 증가되었을 뿐 아니라 소자 내의 변색속도가 일정하지 않았다. 그러나, 실시예 1, 2에서 나타낸 바와 같이 소자의 면적이 100×100㎠으로 증가하여도 응답시간이 크게 증가하지 않았다.Table 1 below shows the electrochromic properties of the electrochromic devices prepared in Comparative Examples 1 and 2 and Examples 1 and 2 according to the present invention. Referring to Comparative Examples 1 and 2, when the device area is 3 x 3 cm 2, the response time is within a few seconds, but when 100 x 100 cm 2, the response time is increased by 20 minutes or more, and the discoloration speed in the device is not constant. However, as shown in Examples 1 and 2, even if the area of the device was increased to 100 x 100 cm 2, the response time did not increase significantly.
표 1에 나타낸 바와 같이 전기변색층에 버스 전극 패턴을 도입함으로써 착색 및 탈색시 응답시간을 감소시킬 수 있을 뿐 아니라, 색 대조비를 높일 수 있었다.As shown in Table 1, by introducing the bus electrode pattern into the electrochromic layer, not only the response time during coloring and decolorizing but also the color contrast ratio could be increased.
소자 면적(㎠)Element Area (㎠) 전기변색 소자 패터닝Electrochromic Device Patterning 착색시When coloring 탈색시When discoloring
패턴pattern 간격interval 응답시간Response time 투과율(%)Transmittance (%) 응답시간Response time 투과율(%)Transmittance (%)
비교예 1Comparative Example 1 3×33 × 3 -- -- -- 6.0초6.0 seconds 1515 7초7 sec 7070
비교예 2Comparative Example 2 100×100100 × 100 -- -- -- 20분>20 minutes> 1515 25분>25 minutes> 7070
실시예 1Example 1 100×100100 × 100 줄무늬stripe
Figure PCTKR2017003075-appb-I000001
Figure PCTKR2017003075-appb-I000001
3cm3 cm 5초5 sec 1515 6초6 sec 7171
실시예 2Example 2 100×100100 × 100 격자무늬Plaid
Figure PCTKR2017003075-appb-I000002
Figure PCTKR2017003075-appb-I000002
6cm6 cm 4초4 sec 1515 4초4 sec 7171
이하에서는 본 발명의 전기변색소자 제조 방법을 소면적의 소자에 적용한 예를 설명한다.Hereinafter, an example in which the electrochromic device manufacturing method of the present invention is applied to a small area device will be described.
도 5는 본 발명의 다른 실시예에 따른 전기변색소자를 개략적으로 나타낸 단면도이다.5 is a cross-sectional view schematically showing an electrochromic device according to another embodiment of the present invention.
본 발명의 다른 실시예에 따른 전기변색소자는 소면적 소자를 용이한 방식으로 대량 생산하는데에 적용될 수 있다. 이러한 다른 예에 따른 전기변색소자는 제1전극부(10)와 제2전극부(20)가 전해질층(30)을 중심으로 어긋나도록 배치되면서 모서리 부위에 각각의 전기변색층(11, 21)의 상면을 노출시킨다. 노출된 전기변색층(11, 21)의 모서리 부위 상에 제1 및 제2 메인 버스전극(16, 26)이 각각 배치된다.The electrochromic device according to another embodiment of the present invention can be applied to mass production of small area devices in an easy manner. In the electrochromic device according to another example, the electrochromic layers 11 and 21 are disposed at corners thereof while the first electrode 10 and the second electrode 20 are disposed to be shifted with respect to the electrolyte layer 30. Expose the upper surface of. First and second main bus electrodes 16 and 26 are disposed on corner portions of the exposed electrochromic layers 11 and 21, respectively.
본 발명의 이러한 다른예의 구성은 본 발명의 대면적 소자와 마찬가지로, 버스 전극이 전도층(13, 23)에 직접 접촉하지 않고 전도층/전기변색층 구조에서 전기변색층(11, 21)에 접촉하는 것이다. 기존에는 버스 전극과 전기변색층이 각각 전도층 상에 배치되었지만, 본 발명에서는 메인 버스 전극(16, 26)이 전기변색층(11, 21) 상에 배치됨으로써 전기변색층(11, 21)과 접속된다. 소면적의 경우에 이러한 구조에 의해서도 전기공급능력에 차이가 없으며, 대신 롤투롤 프린트 공정을 이용하여 신속하게 대량 생산이 가능하다는 장점이 있다. 도 5에서 미설명 도면부호 14와 24는 각각 기판에 해당한다.This alternative configuration of the present invention is similar to the large area element of the present invention, in which the bus electrodes are not in direct contact with the conductive layers 13 and 23 but in contact with the electrochromic layers 11 and 21 in the conductive / electrochromic layer structure. It is. Conventionally, the bus electrode and the electrochromic layer are disposed on the conductive layer, but in the present invention, the main bus electrodes 16 and 26 are disposed on the electrochromic layers 11 and 21 and thus the electrochromic layers 11 and 21 and the electrochromic layers 11 and 21. Connected. In the case of small area, there is no difference in the electricity supply capacity even by this structure, and instead, there is an advantage that the mass production can be performed quickly using a roll-to-roll printing process. In FIG. 5, reference numerals 14 and 24 correspond to substrates, respectively.
이하에서는 도 6 내지 을 참조하여 본 발명의 다른 실시예에 따른 전기변색소자 제조방법을 설명한다.Hereinafter, a method of manufacturing an electrochromic device according to another exemplary embodiment of the present invention will be described with reference to FIGS. 6 to 6.
먼저, 도 6의 (a) 및 (b)과, 도 7의 (a)와 같이 다수개의 제1전극부가 배열된 제1전극부 어레이판(100)과 다수개의 제2전극부가 배열된 제2전극부 어레이판(200)을 각각 형성한다. 참고적으로 도면에서 기판(140, 240)과 기판(140, 240) 상에 형성된 전도층(130, 230)을 하나의 층으로 도시하기도 하였다.First, as shown in FIGS. 6A and 6B, and as shown in FIG. 7A, a first electrode unit array plate 100 in which a plurality of first electrode units are arranged, and a second in which a plurality of second electrode units are arranged. The electrode unit array plates 200 are formed, respectively. For reference, in the drawings, the substrates 140 and 240 and the conductive layers 130 and 230 formed on the substrates 140 and 240 are illustrated as one layer.
먼저, 도 6의 (a)와 (b)에서는 제1 및 제2전극부 어레이판 각각의 형성을 위해, PET와 같은 기판(140, 240) 상에 ITO와 같은 전도층(130, 230)이 형성된 하부구조 상에 전기변색층(110, 210)을 예를 들어 닥터 블레이드 방식을 이용하여 코팅하는 과정을 보여준다. 여기서, 제1전극부(100)에 산화형 전기변색층(110)을 형성한다면, 제2전극부(200)에는 환원형 전기변색층(210)을 형성할 수 있다.First, in FIGS. 6A and 6B, conductive layers 130 and 230, such as ITO, are formed on substrates 140 and 240, such as PET, to form the first and second electrode array plates. The process of coating the electrochromic layers 110 and 210 on the formed substructure using, for example, a doctor blade method. Here, if the oxidizing electrochromic layer 110 is formed on the first electrode part 100, the reducing electrochromic layer 210 may be formed on the second electrode part 200.
이어, 도 7의 (a)와 (b)와 같이 제1전극부 어레이판(100)과 제2전극부 어레이판(200)의 전기변색층(110, 210) 상에 각각 메인 버스 전극(16, 26)의 어레이(160, 260)를 형성한다. 이는 스크린 인쇄와 같은 방법을 이용하여 수행할 수 있으며, 이들 다수개의 메인 버스 전극들(16, 26)은, 컷팅된 개별 소자의 제1전극부(10)와 제2전극부(26)의 모서리 부위에 해당한다. 제1전극부 어레이판(100)의 메인 버스 전극들(16)과 제2전극부 어레이판(200)의 메인 버스 전극들(26)은 나중에 형성되는 전해질층(30)을 중심으로 서로 반대되는 위치에 배치된다.Subsequently, as shown in FIGS. 7A and 7B, the main bus electrodes 16 are disposed on the electrochromic layers 110 and 210 of the first and second electrode array plates 100 and 200, respectively. Arrays 160, 260 are formed. This can be done using a method such as screen printing, and the plurality of main bus electrodes 16 and 26 are formed at the corners of the first electrode portion 10 and the second electrode portion 26 of the cut individual elements. Corresponds to the site. The main bus electrodes 16 of the first electrode unit array plate 100 and the main bus electrodes 26 of the second electrode unit array plate 200 are opposite to each other based on the electrolyte layer 30 formed later. Is placed in position.
다음에, 도 8과 같이, 제1전극부 어레이판(100) 또는 제2전극부 어레이판(200)의 전기변색층(110, 210) 상에 다수개의 전해질층(30)이 배열된 전해질층 어레이(300)를 형성한다. 전해질층 어레이(300)의 형성은 도시한 바와 같이 메인 버스 전극(26) 마다의 인접한 위치에 대응하여 전해질층(30)들을 인쇄하여 코팅한다.Next, as shown in FIG. 8, an electrolyte layer in which a plurality of electrolyte layers 30 are arranged on the electrochromic layers 110 and 210 of the first electrode unit array plate 100 or the second electrode unit array plate 200. The array 300 is formed. The formation of the electrolyte layer array 300 prints and coats the electrolyte layers 30 corresponding to adjacent positions of the main bus electrodes 26 as shown.
이어서, 도 9와 같이, 제1전극부 어레이판(100)과 제2전극부 어레이판(200)을 라미네이팅한다. 이때, 개별소자들에 있어서 제1 또는 제2전극부에 형성된 전해질층(30)이 제1 및 제2전극부(10, 20)의 메인 버스 전극(16, 26)들의 안쪽에 놓여지도록 하며, 그럼으로써 각 전해질층(30)을 중심으로 제1전극부(10)의 메인 버스 전극(16)과 제2전극부(20)의 메인 버스 전극(26)이 서로 반대의 위치에 놓여진다.Subsequently, as shown in FIG. 9, the first electrode unit array plate 100 and the second electrode unit array plate 200 are laminated. At this time, the electrolyte layer 30 formed in the first or second electrode portion in the individual elements is placed inside the main bus electrodes 16, 26 of the first and second electrode portions 10, 20, As a result, the main bus electrode 16 of the first electrode unit 10 and the main bus electrode 26 of the second electrode unit 20 are positioned at opposite positions with respect to each electrolyte layer 30.
다음에, 도 10과 같이, 라미네이팅된 구조를 개별 소자들로 컷팅한다. 컷팅 후에는 우측에 도시한 평면도와 단면도와 같은 형태가 될 것이다.Next, as shown in Fig. 10, the laminated structure is cut into individual elements. After cutting, it will be shaped like the top view and cross section shown on the right.
계속하여, 도 11과 같이, 컷팅된 개별 소자들의 제1 및 제2전극부(10, 20)에 있어서 메인 버스 전극(16, 26)의 반대측의 모서리 부위를 제거한다. 이 부위는 전해질층(30)의 바깥측에 해당하는 부위를 제거하는 것으로서, 두 개의 전극이 접촉하지 않도록 처리된다면 생략이 가능하다. 예를 들어, 메인 버스 전극(16, 26) 상에 절연층을 형성하면 두 개의 전극의 접촉이 회피될 수 있다.Subsequently, as shown in FIG. 11, the corner portions on the opposite sides of the main bus electrodes 16 and 26 are removed in the first and second electrode portions 10 and 20 of the cut individual elements. This part is to remove a part corresponding to the outer side of the electrolyte layer 30, and may be omitted if the two electrodes are treated so as not to contact each other. For example, forming an insulating layer on the main bus electrodes 16 and 26 can avoid contact between the two electrodes.
이상과 같이, 프린팅 방식을 적용하여 소면적의 전기변색 소자를 용이하게 대량 생산하는 것이 가능하다.As described above, it is possible to easily mass-produce a small area electrochromic device by applying a printing method.
이상, 본 발명의 상세한 설명에서는 구체적인 실시예에 관해서 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 당해 분야에서 통상의 지식을 가진 자에게 있어서 자명하다 할 것이다.In the foregoing detailed description of the present invention, specific embodiments have been described. However, it will be apparent to those skilled in the art that various modifications can be made without departing from the scope of the present invention.

Claims (21)

  1. 전기변색 소자의 전극구조체로서:As the electrode structure of the electrochromic device:
    전도성층;Conductive layer;
    상기 전도성층 상에 배치된 전기변색층;An electrochromic layer disposed on the conductive layer;
    상기 전기변색층 상에 상기 전기변색층을 노출하는 패턴을 가지며 배치된 버스 전극; 및A bus electrode having a pattern exposing the electrochromic layer on the electrochromic layer; And
    상기 버스 전극의 표면 상에 형성된 절연막;을 포함하는, 전극구조체.And an insulating film formed on the surface of the bus electrode.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 버스 전극은 상기 전기변색층 상에 동일 또는 유사한 패턴이 반복된 것인, 전극구조체.The bus electrode is an electrode structure, the same or similar pattern is repeated on the electrochromic layer.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 버스 전극은 줄무늬 또는 격자무늬 패턴인, 전극구조체.The bus electrode is an electrode structure, which is a striped or lattice pattern.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 절연막은 상기 버스 전극의 외부 접속을 위하여 상기 버스 전극의 단부를 노출하는 것인, 전극구조체.And the insulating film exposes an end portion of the bus electrode for external connection of the bus electrode.
  5. 전기변색 소자로서:As electrochromic device:
    전해질층; 및An electrolyte layer; And
    상기 전해질층의 양측에 각각 배치되는 제1전극부와 제2전극부;를 포함하고,And first and second electrode portions disposed on both sides of the electrolyte layer, respectively.
    상기 제1전극부 및 상기 제2전극부 중의 적어도 하나는, 전기변색층과, 상기 전기변색층 상에 상기 전기변색층을 노출하는 패턴을 가지며 배치된 버스 전극과, 상기 버스 전극의 표면 상에 형성된 절연막을 포함하고,At least one of the first electrode portion and the second electrode portion may include an electrochromic layer, a bus electrode disposed on the electrochromic layer to expose the electrochromic layer, and a bus electrode disposed on a surface of the bus electrode. A formed insulating film,
    상기 절연막은 상기 버스 전극과 상기 전해질층의 접촉을 차단하는 것인, 전기변색 소자.The insulating layer is to block the contact between the bus electrode and the electrolyte layer, the electrochromic device.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 절연막은 상기 버스 전극의 외부 접속을 위하여 상기 버스 전극의 단부를 노출하는 것인The insulating film exposes an end portion of the bus electrode for external connection of the bus electrode.
  7. 청구항 5에 있어서,The method according to claim 5,
    상기 제1전극부는 산화착색형 전기변색층을 포함하고, 상기 제2전극은 환원착색형 전기변색층을 포함하는 것인, 전기변색 소자.The first electrode part comprises an oxidatively-colored electrochromic layer, and the second electrode includes a reduction-colored electrochromic layer.
  8. 청구항 5에 있어서,The method according to claim 5,
    상기 제1전극부는 전기변색층을 포함하고, 상기 제2전극부는 이온저장층을 포함하는 것인, 전기변색 소자.The first electrode portion includes an electrochromic layer, and the second electrode portion comprises an ion storage layer, electrochromic device.
  9. 청구항 5에 있어서,The method according to claim 5,
    상기 버스 전극은 Ir, Ag, Cu, Au, Cr, Al, W, Zn, Ni, Fe, Pt, Pb, 및 그들의 합금 중에 선택되는 어느 하나, 또는 카본블랙(Carbon Black), 그래핀(Graphen), 카본나노튜브(Carbon Nanotube) 및 그들의 복합물 중에 선택되는 어느 하나인 것인, 전기변색 소자.The bus electrode may be any one selected from Ir, Ag, Cu, Au, Cr, Al, W, Zn, Ni, Fe, Pt, Pb, and alloys thereof, or carbon black or graphene. , Carbon nanotube (Carbon Nanotube) and any one selected from their composites, electrochromic device.
  10. 청구항 5에 있어서,The method according to claim 5,
    상기 버스 전극은 줄무늬 또는 격자무늬 패턴인, 전기변색 소자.The bus electrode is an electrochromic device, which is a striped or lattice pattern.
  11. 청구항 5에 있어서,The method according to claim 5,
    상기 절연막은 폴리머 및 무기물의 단독 또는 그들의 혼합물, 또는 유무기 하이브리드 중의 하나인 것인, 전기변색 소자.The insulating film is one of a polymer and an inorganic material alone or a mixture thereof, or an organic-inorganic hybrid, electrochromic device.
  12. 전기변색 소자 제조방법으로서:As a method of manufacturing an electrochromic device:
    (a) 제1전극부와 제2전극부를 각각 형성하는 단계; 및(a) forming a first electrode portion and a second electrode portion, respectively; And
    (b) 전해질층을 개재하여 상기 제1전극부와 상기 제2전극부를 라미네이팅하는 단계;를 포함하고,(b) laminating the first electrode portion and the second electrode portion via an electrolyte layer;
    상기 제1전극부 및 상기 제2전극부 중의 적어도 하나는 전기변색층, 상기 전기변색층 상에 상기 전기변색층을 노출하는 패턴을 가지며 배치된 버스 전극, 및 상기 버스 전극의 표면에 형성되어 상기 버스 전극과 상기 전해질층의 접촉을 차단하는 절연막을 포함하는 것인, 전기변색 소자 제조방법At least one of the first electrode portion and the second electrode portion may be formed on an electrochromic layer, a bus electrode having a pattern exposing the electrochromic layer on the electrochromic layer, and formed on a surface of the bus electrode. Electrochromic device manufacturing method comprising an insulating film for blocking the contact between the bus electrode and the electrolyte layer
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 전기변색층은 상기 버스 전극 및 상기 절연막의 노출 패턴에 의해 상기 전해질층과 접촉하는 것인, 전기변색 소자 제조방법.The electrochromic layer is in contact with the electrolyte layer by the exposure pattern of the bus electrode and the insulating film, electrochromic device manufacturing method.
  14. 청구항 12에 있어서, 상기 제1전극부 및 상기 제2전극부 중의 적어도 하나의 형성은:The method of claim 12, wherein at least one of the first electrode portion and the second electrode portion is formed:
    (a-1) 상기 전기변색층 상에 상기 전기변색층을 노출하는 패턴을 가지는 버스 전극을 형성하는 단계; 및(a-1) forming a bus electrode having a pattern exposing the electrochromic layer on the electrochromic layer; And
    (a-2) 상기 버스 전극의 표면에 절연막을 형성하는 단계;를 포함하는 것인, 전기변색 소자 제조방법.(A-2) forming an insulating film on the surface of the bus electrode; electrochromic device manufacturing method comprising a.
  15. 청구항 14에 있어서,The method according to claim 14,
    상기 버스 전극은 스크린인쇄, 포토리소그래피, 임프린팅, 및 잉크젯프린팅 중의 하나를 이용하여 형성하는 것인, 전기변색 소자 제조방법.The bus electrode is formed using one of screen printing, photolithography, imprinting, and inkjet printing, electrochromic device manufacturing method.
  16. 청구항 14에 있어서,The method according to claim 14,
    상기 버스 전극의 패턴의 선폭 및 두께는 1 내지 500㎛으로 형성하는 것인, 전기변색 소자 제조방법. Line width and thickness of the pattern of the bus electrode is to be formed to 1 to 500㎛, electrochromic device manufacturing method.
  17. 청구항 14에 있어서,The method according to claim 14,
    상기 절연막의 두께는 2 내지 1000㎛인, 전기변색 소자 제조방법.The thickness of the insulating film is 2 to 1000㎛, electrochromic device manufacturing method.
  18. 청구항 14에 있어서,The method according to claim 14,
    상기 버스 전극은 줄무늬 또는 격자무늬인 것인, 전기변색 소자 제조방법.The bus electrode is a stripe or lattice pattern, electrochromic device manufacturing method.
  19. 전기변색 소자로서:As electrochromic device:
    전해질층; 및An electrolyte layer; And
    상기 전해질층의 중심으로 양측에 각각 라미네이팅된 제1전극부와 제2전극부;를 포함하고,And a first electrode part and a second electrode part laminated on both sides of the center of the electrolyte layer, respectively.
    상기 제1전극부과 상기 제2전극부는 전도층과 상기 전도층 상에 형성된 전기변색층과 상기 전기변색층 상에 형성된 메인 버스 전극을 포함하고,The first electrode portion and the second electrode portion include a conductive layer, an electrochromic layer formed on the conductive layer, and a main bus electrode formed on the electrochromic layer,
    상기 제1 및 제2전극부의 상기 메인 버스 전극들은 상기 전해질층과 비접촉 상태인 것인, 전기변색 소자.The main bus electrodes of the first and second electrode units are in a non-contact state with the electrolyte layer.
  20. 전기변색 소자 제조방법으로서:As a method of manufacturing an electrochromic device:
    다수개의 제1전극부가 배열된 제1전극부 어레이판과 다수개의 제2전극부가 배열된 제2전극부 어레이판을 각각 형성하는 단계;Forming a first electrode part array plate in which a plurality of first electrode parts are arranged and a second electrode part array plate in which a plurality of second electrode parts are arranged;
    전해질층 어레이를 개재하여 상기 제1전극부 어레이판과 상기 제2전극부판 어레이를 라미네이팅하는 단계; 및Laminating the first electrode part array plate and the second electrode part plate array via an electrolyte layer array; And
    라미네이팅된 구조물을 다수개의 개별 소자로 컷팅하는 단계;를 포함하고,And cutting the laminated structure into a plurality of individual elements.
    상기 제1전극부 어레이판과 상기 제2전극부 어레이판은 각각 전도층과 상기 전도층 상에 형성된 전기변색층과 상기 전기변색층 상에 어레이로 형성된 메인 버스 전극을 포함하는 것인, 전기변색 소자 제조방법.The first electrode part array plate and the second electrode part array plate respectively include an electrochromic layer formed on the conductive layer and the conductive layer and main bus electrodes formed in an array on the electrochromic layer. Device manufacturing method.
  21. 청구항 20에 있어서,The method of claim 20,
    상기 제1 및 제2전극부 어레이판의 상기 메인 버스 전극들은 상기 전해질층 어레이의 전해질층과 비접촉 상태인 것인, 전기변색 소자 제조방법.And the main bus electrodes of the first and second electrode part array plates are in a non-contact state with the electrolyte layer of the electrolyte layer array.
PCT/KR2017/003075 2015-12-11 2017-03-22 Electrochromic device, electrode structure therefor, and manufacturing method thereof WO2017155373A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20150176557 2015-12-11
KR1020160028036A KR101657965B1 (en) 2015-12-11 2016-03-09 Electrochromic device, electrode structure therefor, and manufacturing method thereof
KR10-2016-0028036 2016-03-09

Publications (1)

Publication Number Publication Date
WO2017155373A1 true WO2017155373A1 (en) 2017-09-14

Family

ID=57079637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003075 WO2017155373A1 (en) 2015-12-11 2017-03-22 Electrochromic device, electrode structure therefor, and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR101657965B1 (en)
WO (1) WO2017155373A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3457204A4 (en) * 2016-05-09 2019-03-20 LG Chem, Ltd. Electrochromic element
CN112558370A (en) * 2020-12-22 2021-03-26 北京小米移动软件有限公司 Electrochromic module, shell and electronic equipment

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101801668B1 (en) 2016-05-04 2017-11-28 립하이 주식회사 Electrochromic apparatus
CN108474990B (en) 2016-03-07 2021-05-07 力海科技股份有限公司 Electrochromic device
KR20180067137A (en) * 2016-12-12 2018-06-20 엘지이노텍 주식회사 Electrochromism element
KR102070631B1 (en) * 2017-03-21 2020-01-29 주식회사 엘지화학 An electrochromic device
KR102078402B1 (en) 2017-04-27 2020-02-17 주식회사 엘지화학 An electrochromic device
WO2018199566A1 (en) * 2017-04-27 2018-11-01 주식회사 엘지화학 Electrochromic device
JP7060338B2 (en) * 2017-05-12 2022-04-26 株式会社カネカ Electrochromic element
KR102536742B1 (en) * 2017-11-10 2023-05-26 립하이 주식회사 Electrochromic apparatus
KR102499890B1 (en) * 2020-09-29 2023-02-15 에스케이씨 주식회사 Cell-divided electrochromic device and preparation method thereof
CN116300237A (en) * 2023-02-01 2023-06-23 赵世晴 Large-size electrochromic device based on composite electrode and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316180A (en) * 2004-04-28 2005-11-10 Mitsubishi Heavy Ind Ltd Dimming device and method for manufacturing the same
JP2010014917A (en) * 2008-07-03 2010-01-21 Bridgestone Corp Electrochromic element and method for manufacturing the same
KR20140008426A (en) * 2011-03-04 2014-01-21 튀링기셰스 인슈티투트 퓌르 텍스틸-운트 쿤스트슈토프-포르슝 이.브이. Stable electrochromic module
KR20140039377A (en) * 2012-09-20 2014-04-02 동우 화인켐 주식회사 Electrochromic device and method of preparing the same
KR20150087012A (en) * 2014-01-21 2015-07-29 엘지이노텍 주식회사 Electrochromic Device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127277B1 (en) * 2006-12-05 2012-03-29 주식회사 엘지화학 Electrode for electrochromic device and electrochromic device having the same
KR101175607B1 (en) 2010-06-03 2012-08-21 황태경 Making method of tungsten trioxide nano powder having excellent nano dispersion and electrochromism and nano dispersion sol containing tungsten trioxide manufactured by the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316180A (en) * 2004-04-28 2005-11-10 Mitsubishi Heavy Ind Ltd Dimming device and method for manufacturing the same
JP2010014917A (en) * 2008-07-03 2010-01-21 Bridgestone Corp Electrochromic element and method for manufacturing the same
KR20140008426A (en) * 2011-03-04 2014-01-21 튀링기셰스 인슈티투트 퓌르 텍스틸-운트 쿤스트슈토프-포르슝 이.브이. Stable electrochromic module
KR20140039377A (en) * 2012-09-20 2014-04-02 동우 화인켐 주식회사 Electrochromic device and method of preparing the same
KR20150087012A (en) * 2014-01-21 2015-07-29 엘지이노텍 주식회사 Electrochromic Device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3457204A4 (en) * 2016-05-09 2019-03-20 LG Chem, Ltd. Electrochromic element
US11099450B2 (en) 2016-05-09 2021-08-24 Lg Chem Ltd. Electrochromic device
CN112558370A (en) * 2020-12-22 2021-03-26 北京小米移动软件有限公司 Electrochromic module, shell and electronic equipment

Also Published As

Publication number Publication date
KR101657965B1 (en) 2016-09-30

Similar Documents

Publication Publication Date Title
WO2017155373A1 (en) Electrochromic device, electrode structure therefor, and manufacturing method thereof
JP4589915B2 (en) Electrochromic display device
WO2017196036A1 (en) Electrochromic element
EP3045968A1 (en) Electrochromic apparatus, electrochromic element, and method of manufacturing electrochromic element
EP3288337B1 (en) Electric heating film device and preparation method therefor, and electric heating apparatus
CN104869676A (en) Low-voltage transparent electrothermal film and preparation process thereof
EP2396697A1 (en) Electrochromic device
KR20140041433A (en) Electrochromic multi-layer devices with spatially coordinated switching
KR102141636B1 (en) Electrochromic device
KR101959450B1 (en) Self-powering electrochromic devices containing small molecule organic ligand-metal oxide layer
CN103728741B (en) Thermochromatic element and thermochromatic display device
WO2014153895A1 (en) Capacitive transparent conducting film and manufacturing method therefor
WO2017217710A1 (en) Electrochromic device
CN1990820A (en) Electrochromism film
KR20190037553A (en) Electrochromic Device and manufacturing method thereof
CN112346602A (en) Touch panel and manufacturing method thereof
WO2010062132A2 (en) Partial heat-emitting body
WO2014048259A1 (en) Touch device structure and manufacturing method thereof
KR101642894B1 (en) Embedded electrochromic device and method of manufacturing the same
KR102136286B1 (en) Method of Manufacturing Anodic Electrochromic Ink Layer for Electrochromic Device and Electrochromic Device of the Same
US8642166B2 (en) Transparent conductive thin film
JP2010134015A (en) Dimming element
WO2018199566A1 (en) Electrochromic device
JP2008204303A (en) Transparent touch panel
JPH0438384Y2 (en)

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763633

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763633

Country of ref document: EP

Kind code of ref document: A1