WO2017154658A1 - 金属材の低温接合方法及び接合構造物 - Google Patents

金属材の低温接合方法及び接合構造物 Download PDF

Info

Publication number
WO2017154658A1
WO2017154658A1 PCT/JP2017/007677 JP2017007677W WO2017154658A1 WO 2017154658 A1 WO2017154658 A1 WO 2017154658A1 JP 2017007677 W JP2017007677 W JP 2017007677W WO 2017154658 A1 WO2017154658 A1 WO 2017154658A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
joining
joint
metal
hardness
Prior art date
Application number
PCT/JP2017/007677
Other languages
English (en)
French (fr)
Inventor
藤井 英俊
林太郎 上路
好昭 森貞
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to KR1020187029004A priority Critical patent/KR102090416B1/ko
Priority to CN201780016606.6A priority patent/CN108778602B/zh
Priority to US16/080,780 priority patent/US11964338B2/en
Priority to JP2018504390A priority patent/JP6579596B2/ja
Publication of WO2017154658A1 publication Critical patent/WO2017154658A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • B23K20/1235Controlling or monitoring the welding process with temperature control during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/1205Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using translation movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/121Control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1225Particular aspects of welding with a non-consumable tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/125Rotary tool drive mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2336Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer both layers being aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the present invention relates to a low-temperature bonding method for directly bonding metal materials to each other and a bonded structure obtained by the low-temperature bonding method. More specifically, the present invention effectively suppresses deterioration of mechanical properties in a bonded portion and a heat-affected zone.
  • the present invention relates to a low-temperature bonding method that can be used and a bonded structure obtained by the low-temperature bonding method.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-131679
  • a heat-treatable aluminum alloy material friction stir welding method is disclosed, characterized in that the heat-treatable aluminum alloy material in a restored state that has undergone the restoration process is subjected to friction stir welding.
  • the joint can be configured so that the hardness of the base material becomes the smallest among the stir welded portion, the heat affected zone, and the base material. It is said that it is possible to advantageously obtain a bonding material excellent in ductility and by extension, press formability by preventing breakage at the affected part.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2015-057292
  • the materials to be joined has a face-centered cubic lattice structure, and the materials to be joined that are metal materials having a recrystallization temperature of 300 ° C. or lower are joined together.
  • a friction stir welding step of joining the materials to be joined together by inserting a rotating rod-shaped tool into the joint, supplying a cooled coolant to the joint, and moving the tool.
  • the friction stir welding method since a stirring portion composed of fine equiaxed grains sufficiently including dislocations can be formed by forced cooling with a refrigerant, the friction stir welding method has a face-centered cubic lattice structure. It is said that even a metal material having a recrystallization temperature of 300 ° C. or lower can obtain joint strength equal to or higher than that of the base material.
  • JP 2005-131679 A Japanese Patent Laying-Open No. 2015-057292
  • Patent Document 1 relatively increases the hardness of the joint by lowering the hardness of the base material serving as a reference by heat treatment.
  • the mechanical properties possessed cannot be utilized.
  • the object of the present invention is to provide a simple low-temperature bonding capable of effectively suppressing the deterioration of mechanical properties in various high-tensile steel and aluminum joints and heat-affected zones. It is providing the joining structure obtained by the method and the said low-temperature joining method.
  • the present inventor has conducted extensive research on a method for achieving recrystallization by forming recrystallized grains at the bonding interface, and as a result, suppressing the temperature rise while introducing strong strain at the bonding interface, etc. Has been found to be extremely effective, and the present invention has been achieved.
  • the present invention In this method, two metal materials are made to face each other at a bonded portion to form a bonded interface, and the two metal materials are bonded by press-fitting a rotating tool rotated at a predetermined rotation speed into the bonded portion. And By setting the peripheral speed of the outermost periphery of the rotating tool to be 51 mm / s or less, a strong strain is introduced into the bonded portion to reduce the recrystallization temperature that the metal material originally has, Generating recrystallized grains at the bonded interface with a bonding temperature lower than the recrystallization temperature that the metal material originally has, A low-temperature bonding method for metal materials characterized by the above.
  • the joining temperature rises to about 70% of the melting point (K) of the materials to be joined.
  • the rotary tool is used in the conventional friction stir welding. By rotating at an unbelievably low rotational speed, suppressing an increase in the bonding temperature and introducing strong strain, the bonding temperature is made lower than the recrystallization temperature originally possessed by the metal material to be bonded. The strength reduction of the part can be suppressed.
  • the peripheral speed of the outermost periphery of the rotary tool by setting the peripheral speed of the outermost periphery of the rotary tool to 51 mm / s or less, it is possible to suppress an increase in bonding temperature due to an increase in the press-fit load of the rotary tool.
  • the “recrystallization temperature inherent to the metal material” varies depending on the metal material, but is generally about 40% of the melting point (K) of the metal material.
  • the joining temperature to be lower than the recrystallization temperature originally possessed by the metal material to be joined, the recrystallized grain size of the stirring portion formed by the press-fitting of the rotary tool can be reduced, and the fine graining can be performed. Can improve the mechanical properties of the stirring section.
  • the bonding temperature is lowered by decreasing the rotation speed and increasing the press-fitting load, and the grain size of the recrystallized grains is 1 ⁇ m or less.
  • the joining temperature in general friction stir welding is closely related to the rotational speed, press-fit load and moving speed of the press-fitting rotary tool. It rises as it falls.
  • the rotational speed is set to be extremely small, the present inventor does not increase the joining temperature greatly even if the press-fitting load is increased. It has been found that the increase increases significantly.
  • the moving speed of the rotary tool may be set as appropriate from the viewpoint of defect formation and bonding speed in the stirrer, etc., in the case of spot welding, the pushing and pulling speed of the rotary tool, in the case of line welding, What is necessary is just to adjust a moving speed.
  • the shape of the rotary tool is not particularly limited as long as the effects of the present invention are not impaired, and various types of conventionally known friction stir welding tools can be used. Generally, a rod-shaped rotating tool is used, but for example, a disk-shaped rotating tool may be used.
  • the low-temperature bonding method of the present invention is different from conventional friction stir welding in terms of bonding conditions, bonding mechanism, etc., and a large strain is introduced near the interface to be bonded at low temperatures, so The temperature at which crystallization occurs is lower than the “recrystallization temperature inherent to the metal material”, and recrystallized grains are generated at the welded interface below the “recrystallization temperature inherent to the metal material”, which suppresses the formation of the heat affected zone. By doing so, good bonding is achieved.
  • the end portions of the metal plates are brought into contact with each other to form a bonded portion, and the rotating tool is rotated along the longitudinal direction of the processed portion to move the metal plates together.
  • the rotating tool is rotated along the longitudinal direction of the processed portion to move the metal plates together.
  • Spot joining where the ends of the metal plates are butted together to make a joint, and the rotary tool is rotated without moving at the joint, and (3) the metal plates are overlapped at the joint Spot welding that inserts a rotating tool into the joint and rotates the rotating tool without moving at that location to join the metal plates together.
  • (4) Superimposes the metal plates on the joint and rotates the rotating tool at the joint.
  • the peripheral speed of the outermost periphery of the rotary tool is preferably 32 mm / s or less, and more preferably 19 mm / s or less.
  • the press-fitting load is set to a value that can be press-fitted into the metal material without rotating the rotary tool.
  • a rotary tool is press-fitted using softening of a material to be joined by frictional heat.
  • an increase in joining temperature is suppressed, so It is necessary to press-fit the rotary tool in such a manner that it is plastically deformed. Further, a large strain can be introduced into the bonded interface by pressing the rotary tool into the bonded material with a large load.
  • the press-fit load is applied to the metal material within a range in which a stress applied from the rotary tool to the metal material is equal to or higher than a yield stress of the metal material at the temperature of the bonded portion. It is preferable that the temperature is lowered as the temperature of the joint increases. Since the yield stress of the metal material decreases as the temperature increases, the minimum load required to press-fit the rotary tool into the metal material also decreases as the temperature increases. That is, as long as the rotary tool can be press-fitted into the metal material, it is possible to perform energy-saving and low-temperature joining by using as small a load as possible.
  • the metal material is preferably aluminum or an aluminum alloy, and the metal material is more preferably a heat treatment type aluminum alloy, a work strengthened aluminum, or a work strengthened aluminum alloy. .
  • aluminum or an aluminum alloy as a material to be bonded, it is possible to suppress a decrease in strength of the bonded portion due to an increase in crystal grain size or recovery.
  • a heat treated aluminum alloy as a material to be bonded, precipitates It is also possible to suppress the strength reduction of the joint due to the coarsening and solid solution of the steel. Furthermore, the strength reduction accompanying recovery or recrystallization can be more effectively suppressed by using the work strengthened aluminum or the work strengthened aluminum alloy as the material to be joined.
  • the low-temperature bonding method of the present invention can also be suitably used for dissimilar material bonding, and in the case of dissimilar material bonding, it is only necessary to have the characteristics of the present invention with respect to at least one material to be bonded.
  • the metal material is preferably an iron-based metal, and more preferably high-tensile steel.
  • high-tensile steel as the material to be joined, it is possible to suppress the formation of the heat-affected zone, which has been a problem with conventional joining techniques, especially for high-tensile steel with a base metal hardness of less than 350 HV.
  • the low-temperature bonding method of the invention it is possible to obtain a bonded portion having a hardness substantially equal to the base material hardness (which hardly causes a decrease in hardness).
  • the above metal material is a material to be bonded using the low temperature bonding method of the present invention, but normal friction stir welding (the bonding temperature is about 70 to 80% of the melting point of the material to be bonded).
  • the friction stir welding it is preferable to use a metal in which the strength of the joints (stirring part, heat-processing affected part, and heat affected part) is less than the base material strength.
  • the low temperature bonding method of the present invention can achieve bonding at an extremely low temperature as compared with conventional bonding methods, it can be suitably used for dissimilar material bonding where formation of intermetallic compounds at the bonding interface is a problem.
  • it can be suitably used for the dissimilar material joining of an aluminum material and a magnesium material and the dissimilar material joining of an aluminum material and a steel material.
  • the rotating tool is made of an iron-based metal.
  • the life of the rotary tool is a big problem.
  • various rotary tools made of refractory metals and ceramics have been studied, but in addition to not having a sufficient life, the tool becomes expensive.
  • the present inventor paid attention to the bonding temperature of the low-temperature bonding method of the present invention, and produced a rotary tool using an iron-based metal having a strength higher than that of the steel to be bonded at the bonding temperature.
  • steel can be joined with a rotating tool.
  • the rotary tool made of iron-based metal it is possible to achieve joining with a very inexpensive rotary tool as compared with a rotary tool conventionally used for friction stir welding of steel.
  • the present invention also provides: Having a high-strength steel joint having a base metal hardness of less than 350 HV, The joint includes fine equiaxed recrystallized grains having an average grain size of 1 ⁇ m or less, The hardness of the joint and the heat-affected zone is approximately equal to or greater than the base material hardness; Also provided is a joint structure characterized by:
  • the joint in the joint structure of the present invention is not mechanically joined but is metallurgically joined.
  • the joint is basically composed of fine equiaxed recrystallized grains having the same composition as the high-tensile steel material to be joined, and the mean grain size of the fine equiaxed recrystallized grains is 1 ⁇ m or less. Therefore, it has mechanical characteristics that are not inferior to the base material.
  • a heat-affected zone is formed at the joint of high-tensile steel, and the hardness of the heat-affected zone is lower than that of the base material.
  • the hardness of the heat-affected zone is the base. It is above the material hardness.
  • the present invention also provides: At least one substrate portion; And having a joint part joining the base parts together,
  • the base portion is a high-tensile steel material or a heat-treatable aluminum alloy material,
  • the joining portion has substantially the same composition as the base material portion,
  • the joint includes fine equiaxed recrystallized grains having an average grain size of 1 ⁇ m or less,
  • the hardness of the joint and heat-affected zone is approximately 80% or more of the base material,
  • a joint structure characterized by:
  • the bonded portion is not mechanically formed, and metallurgical bonding is achieved.
  • a significant decrease in mechanical properties at the joint becomes a serious problem.
  • fine equiaxed recrystallization with an average grain size of 1 ⁇ m or less. The interface to be bonded has disappeared due to the grains, and the hardness of the bonded portion and the heat-affected zone is approximately 80% or more of the base material portion.
  • the recrystallized grain size varies depending on the temperature and strain history, it varies depending on the location to be observed, but it is sufficient if there is a region having an average grain size of 1 ⁇ m or less at and near the bonding interface.
  • the average particle diameter is just to calculate the said average particle diameter by the intercept method with respect to the observation image by an optical microscope or a scanning electron microscope, for example.
  • the base material portion is preferably a high-tensile steel material having a base metal hardness of 350 HV or higher.
  • a significant decrease in hardness is inevitable in the joint portion and the heat-affected zone of the high-strength steel material having a base metal hardness of 350 HV or more, but in the joint structure of the present invention, the high hardness Even if the high-tensile steel material having the above is used for the base part, the hardness reduction of the joint part and the heat-affected part is effectively suppressed.
  • the base material portion is a high-tensile steel material having a base material hardness of less than 350 HV, and the hardness of the joint portion and the heat affected zone is substantially equal to or greater than the base material hardness.
  • a high-tensile steel material having a hardness of less than 350 HV for the base material By using a high-tensile steel material having a hardness of less than 350 HV for the base material, a decrease in the hardness of the joint and the heat-affected zone is almost completely suppressed.
  • the base material portion is a heat-treatable aluminum alloy material
  • the joint and the heat treatment part have a hardness of approximately 90% or more of the base material hardness.
  • Heat treatment type aluminum easily decreases in hardness due to temperature rise during welding, but even when heat treatment type aluminum alloy material is used for the base part, the hardness of the joint and heat treatment part is approximately 9 of the base material hardness. Maintains over 10%.
  • the joining structure of this invention can be suitably manufactured with the low-temperature joining method of the metal material of the above-mentioned this invention.
  • the simple low-temperature joining method which can suppress effectively the fall of the mechanical characteristic in the junction part and heat-affected zone of various high-tensile steel and aluminum, and the joining structure obtained by the said low-temperature joining method Can be provided.
  • Example 4 is a cross-sectional photograph of a joint obtained in Example 3.
  • 6 is a cross-sectional photograph of a joint obtained in Example 4.
  • 6 is a cross-sectional photograph of a joint obtained in Example 5.
  • 6 is a surface photograph of a joint obtained in Examples 6 to 8.
  • 7 is a cross-sectional photograph of a joint obtained in Example 6.
  • 2 is a cross-sectional photograph of a joint obtained in Comparative Example 1. It is the hardness distribution (joint part horizontal direction) of a junction part in case base material hardness is 350HV. It is the hardness distribution (joint part horizontal direction) of a junction part in case base material hardness is 450HV. It is a graph which shows the relationship between the minimum hardness of a junction part, and a rotational speed.
  • FIG. 1 is a graph which shows the relationship between the minimum hardness of a junction part, and base material hardness. It is the hardness distribution (joint part horizontal direction) of the junction part obtained in Example 3.
  • FIG. 2 is the hardness distribution (joint part horizontal direction) of the junction part obtained in Example 4.
  • FIG. It is the hardness distribution (joint part horizontal direction) of the junction part obtained in Example 6.
  • FIG. It is the shear tensile strength of the joint obtained in Example 2 and Comparative Example 2.
  • 2 is an orientation map image in the vicinity of a bonding interface obtained in Example 1.
  • FIG. 6 is an orientation map image in the vicinity of a bonding interface obtained in Example 2.
  • FIG. 6 is an orientation map image in the vicinity of a bonding interface obtained in Comparative Example 3.
  • It is a graph which shows the relationship between joining maximum temperature and tool rotation speed. 10 is a graph showing temperature changes during bonding in Example 3.
  • the low-temperature joining method for metal materials according to the present invention differs in the joining mechanism, but the joining process is similar to friction stir welding.
  • Friction stir welding is referred to as FSW (Friction Stir Welding), where the ends of the materials to be joined made of two metal materials to be joined are brought into contact with each other, and a protrusion (probe) provided at the tip of the rotary tool is used. It is a method of joining two metal members by inserting between both ends and moving the rotating tool along the longitudinal direction of these ends while rotating.
  • the metal material low-temperature bonding method according to the present invention is as follows: (1) The end portions of the metal plates are brought into contact with each other to form a bonded portion, and the rotary tool is moved while rotating along the longitudinal direction of the processed portion.
  • FIG. 1 is a schematic view showing an embodiment of the low-temperature bonding method for metal materials of the present invention.
  • the joined portion 6 is formed by superimposing the joined material 2 and the joined material 2 ′ and press-fitting the rotating tool 4 rotated at a low speed from one of the joined materials with a large load.
  • FIG. 1 shows a case where a rotary tool 4 having a cylindrical projection (probe) 10 on the bottom surface of a cylindrical main body (shoulder) 8 is used.
  • the joint portion 6 is formed below the main body portion (shoulder portion) 8 and around the projection portion (probe portion) 10. .
  • FIG. 2 shows a case where the rotary tool 4 having no projection (probe part) 10 on the bottom surface of the cylindrical main body part (shoulder part) 8 is used. By pressing into 2, the joint 6 is formed.
  • the protrusion (probe part) 10 is not provided, it is preferable that the rolling tool 4 is press-fitted only into the material to be joined 2 arranged on the upper side and the joining part 6 is formed below the bottom surface of the rotating tool 4.
  • the joining temperature is adjusted by using the rotational speed, press-fitting load and moving speed of the rotary tool 4 as control parameters, and the joining temperature is inherently maintained by the material to be joined (2, 2 ′).
  • the “recrystallization temperature inherently possessed by the material to be joined (2, 2 ′)” varies depending on its composition, processing state (degree of processing), etc.
  • the recrystallization temperature of each metal is W: 1200 ° C., Mo: 900 ° C., Fe: 500 ° C., Cu: 200-230 ° C., Al: 150-240 ° C., Mg: 150 ° C.
  • the “recrystallization temperature inherently possessed by the material to be joined (2, 2 ′)” in the present invention may be a value conventionally known for a metal material corresponding to the material to be joined (2, 2 ′). If there is no appropriate report value, the structure of the material to be bonded (2, 2 ′) heat-treated at each temperature may be observed to confirm the presence or absence of recrystallization.
  • the bonding temperature when bonding is achieved by generating recrystallized grains at the bonded interface, the bonding temperature does not normally cause recrystallization “the bonded material (2, 2 ′) The recrystallization temperature is lower than “originally possessed”.
  • a temperature at which recrystallization occurs by introducing strong strain into the bonded portion by press-fitting the rotary tool 4 with the temperature rise suppressed as much as possible (actual recrystallization temperature). Is reduced.
  • the peripheral speed of the outermost periphery of the rotary tool 4 by setting the peripheral speed of the outermost periphery of the rotary tool 4 to 51 mm / s or less, strong strain is introduced into the bonded portion while suppressing an increase in bonding temperature, and the metal material originally has.
  • the recrystallization temperature is lowered.
  • the shoulder diameter of the rotary tool 4 is 12 mm
  • the outermost peripheral speed can be set to 51 mm / s by setting the rotation speed to 80 rpm.
  • the bonding temperature lower than the “recrystallization temperature inherent to the material to be bonded (2, 2 ′)”, the coarsening of the recrystallized grains formed in the bonded portion and the hardness reduction in the heat affected zone are suppressed. be able to.
  • the shape of the rotary tool 4 is not particularly limited as long as the effects of the present invention are not impaired, and various types of conventionally known friction stir welding tools can be used, but the cylindrical body portion (shoulder portion) can be used. It is preferable to use what has a cylindrical projection part (probe part) in the bottom face. By making the bottom surface of the protruding portion (probe portion) substantially flat, strong strain can be efficiently introduced in the vicinity of the bonded interface.
  • the bonding temperature can be lowered by lowering the rotational speed of the rotary tool 4 and increasing the press-fitting load, and by setting an appropriate rotational speed and press-fitting load, the grain size of the bonded portion can be reduced to 1 ⁇ m. It can be as follows.
  • the rotational speed of the rotary tool 4 may be adjusted as appropriate so that the joining temperature is lower than the “recrystallization temperature inherent to the material to be joined (2, 2 ′)”, but the peripheral speed of the outermost periphery is 32 mm / s or less. It is preferable to set it to 19 mm / s or less.
  • the peripheral speed of the outermost periphery of the rotary tool By setting the peripheral speed of the outermost periphery of the rotary tool to 32 mm / s or less, a temperature increase in the vicinity of the bonded interface can be suppressed. Moreover, the raise of joining temperature can be suppressed more reliably by the peripheral speed of the outermost periphery of a rotary tool being 19 mm / s or less.
  • the shoulder diameter of the rotary tool 4 is 12 mm
  • the peripheral speed of the outermost circumference is 32 mm / s when the rotation speed is 50 rpm, and 19 mm / s when the rotation speed is 30
  • the press-fit load of the rotary tool 4 may be adjusted as appropriate so that the joining temperature is lower than the “recrystallization temperature inherent to the material to be joined (2, 2 ′)”, but the material to be joined without rotating the rotary tool 4. It is preferable to set it to a value that can be press-fitted into (2, 2 ′).
  • the rotary tool 4 is press-fitted using softening of the material to be joined (2, 2 ′) due to frictional heat.
  • an increase in the joining temperature is suppressed. Therefore, it is necessary to press-fit the rotary tool 4 in a mode in which the material to be joined (2, 2 ′) is plastically deformed.
  • a large strain can be introduced into the bonded interface by pressing the rotary tool 4 into the bonded material (2, 2 ') with a large load.
  • the material to be joined (2, 2 ′) is preferably aluminum or an aluminum alloy, and the material to be joined (2, 2 ′) is more preferably a heat treated aluminum alloy, a work strengthened aluminum or a work strengthened aluminum alloy. preferable.
  • aluminum or an aluminum alloy as the material to be joined (2, 2 ′)
  • By using a heat-treatable aluminum alloy it is possible to suppress a decrease in strength of the joint due to coarsening and solid solution of precipitates.
  • the work strengthened aluminum or the work strengthened aluminum alloy as the material to be joined (2, 2 '), it is possible to more effectively suppress the strength reduction accompanying recovery and recrystallization.
  • the material to be joined (2, 2 ') is preferably an iron-based metal, and more preferably high-tensile steel.
  • high-tensile steel as the material to be joined (2, 2 ′), it is possible to suppress the formation of the heat affected zone, which has been a problem with conventional joining techniques, and in particular, the base material hardness is less than 350 HV.
  • the low-temperature bonding method of the present invention to a tensile steel material, it is possible to obtain a bonded portion having a hardness substantially equal to the base material hardness (almost no decrease in hardness).
  • the joining portion (stirring portion, thermal processing) It is preferable to use a metal having a strength of the affected zone and the heat affected zone that is less than the strength of the base material.
  • the low-temperature bonding method of the present invention it is possible to effectively suppress the strength reduction for the metal material.
  • the low-temperature bonding method of the present invention achieves bonding at an extremely low temperature compared to conventional bonding methods, it can be suitably used for dissimilar material bonding where formation of intermetallic compounds at the bonding interface is a problem. For example, it can be suitably used for dissimilar material joining between an aluminum material and a magnesium material and dissimilar material joining between an aluminum material and a steel material.
  • Rotating tool 4 is preferably made of iron metal.
  • the life of the rotary tool 4 is a serious problem.
  • various rotary tools 4 made of refractory metals and ceramics have been studied, but in addition to not being able to obtain a sufficient life, they become expensive tools.
  • the bonding temperature is as low as less than the “recrystallization temperature inherent to the material to be bonded (2, 2 ′)”, so that the steel material is removed with the rotating tool 4 made of iron metal. Can be joined.
  • the rotary tool 4 made of an iron-based metal it is possible to achieve joining with the rotary tool 4 that is extremely inexpensive as compared with the rotary tool 4 conventionally used for friction stir welding of steel.
  • the protrusion (probe portion) is cut by a shearing stress applied to the rotation tool 4 during joining, and the workpiece (2 , 2 ′).
  • the protrusion (probe part) is filled in the recess formed in the joint by the press-fitting of the protrusion (probe part), a more preferable joint is formed from the viewpoint of joint strength.
  • the rotary tool 4 and the material to be joined (2, 2 ') are the same type of material, there is no serious problem with respect to environmental resistance such as corrosion.
  • the low-temperature bonding method of the present invention can be applied to general butt bonding, and in this case, the region in which the materials to be bonded (2, 2 ′) are butted in the mode shown in FIG.
  • a good line joint can be obtained by press-fitting the rotary tool 4 and moving it along the butt line.
  • FIG. 4 is a schematic cross-sectional view of the vicinity of the junction in the junction structure of the present invention.
  • the spot junction part is shown as a typical aspect of the junction part in the junction structure of this invention.
  • the joining structure 20 of the present invention has at least one or more base material portions 22 and a joining portion 24 obtained by joining the base material portions 22 to each other.
  • the base material part 22 is a high-strength steel material or a heat-treatable aluminum alloy material, and the joint part 24 has substantially the same composition as the base material part 22. That is, other elements are not positively added with respect to the formation of the junction 24.
  • the joint 24 includes fine equiaxed recrystallized grains having an average grain size of 1 ⁇ m or less, and in particular, the joint interface is formed by the formation of the fine equiaxed recrystallized grains. Further, due to the formation of fine equiaxed recrystallized grains in the joint, the hardness of the joint 24 and the heat affected zone 26 is approximately 80% or more of the base material 22.
  • the joint 24 is not mechanically formed, and metallurgical joining is achieved. Further, with regard to high-tensile steel materials and heat-treatable aluminum alloy materials, a significant decrease in mechanical properties at the joint 24 is a serious problem. However, in the joined structure 20, fine equiaxed recrystallized grains having an average grain size of 1 ⁇ m or less. As a result, the bonded interface disappears, and the hardness of the bonded portion 24 and the heat-affected zone 26 is approximately 80% or more of the base material portion.
  • the base material portion 22 is a high-tensile steel material having a base material hardness of 350 HV or higher.
  • a significant decrease in hardness is inevitable in the joint portion 24 and the heat-affected zone 26 of the high-strength steel material having a base metal hardness of 350 HV or higher. Even if the high-tensile steel material having the above is used for the base material portion 22, the hardness reduction of the joint portion 24 and the heat affected zone 26 is effectively suppressed.
  • the base material part 22 is a high-tensile steel material having a base material hardness of less than 350 HV, and the hardness of the joining part 24 and the heat affected zone 26 is approximately equal to or more than the base material hardness. .
  • the base material portion 22 By using a high-tensile steel material having a hardness of less than 350 HV for the base material portion 22, the hardness reduction of the joint portion 24 and the heat-affected zone 26 is suppressed almost completely.
  • the base material portion 22 is a heat treatment type aluminum alloy material
  • the hardness of the joint portion 24 and the heat treatment portion 26 is approximately 90% or more of the base material hardness.
  • Heat treatment type aluminum easily decreases in hardness due to temperature rise during welding, but even when heat treatment type aluminum alloy material is used for the base material part 22, the hardness of the joint 24 and heat treatment part 26 is the base material hardness. Of over 90%.
  • Example 1 Carbon steel plates (JIS-S45C) were superposed in the arrangement shown in FIG. 5, and a rotary tool was press-fitted from the upper carbon steel plate to perform point bonding.
  • a cylindrical tool ⁇ 12 mm, no probe
  • the thickness of the carbon steel plate was 1.0 mm or 1.5 mm.
  • the rotational speed of the rotary tool was 30 rpm or 50 rpm
  • the load was 12 ton or 15 ton
  • the joining time was 10 seconds or 30 seconds.
  • the recrystallization temperature of Fe is ⁇ 500 ° C.
  • the recrystallization temperature of S45C, which is carbon steel, is about 600 ° C.
  • the carbon steel sheet used as the test material is changed in hardness (strength) by tempering treatment at temperatures of 400 ° C., 500 ° C., and 600 ° C.
  • FIG. 5 shows an SEM photograph and an EBSD grain boundary image of the carbon steel sheet that had been tempered at each temperature.
  • FE-SEM JSM-7001FA manufactured by JEOL Ltd.
  • OSL data Collection ver 5.31 manufactured by TSL were used.
  • Example 2 A cylindrical tool ( ⁇ 12 mm, probe: ⁇ 4 mm, length 1.8 mm) made of tool steel (Hitachi Metals, YXR33) is used as the rotary tool, the rotary tool rotation speed is 50 rpm, the load is 15 ton, and the joining time is 10 seconds. Except that, point bonding was performed in the same manner as in Example 1.
  • Example 3 A cylindrical tool ( ⁇ 12mm, probe: ⁇ 4mm, length 1.8mm) made of tool steel (JIS-SKD61) is used as the rotating tool, and a low carbon steel plate (JIS-SPCC) is used as the material to be joined. Spot joining was performed in the same manner as in Example 1 except that 50 rpm, the load was 6 ton, and the joining time was 60 seconds.
  • JIS-SKD61 tool steel
  • JIS-SPCC low carbon steel plate
  • Example 4 In the arrangement shown in FIG. 5, aluminum alloy plates (JIS-A6061-T6) were superposed on each other, and a rotary tool was press-fitted from the upper aluminum alloy plate to perform point joining.
  • a cylindrical tool ⁇ 12 mm, no probe
  • the rotational speed of the rotary tool was 30 to 50 rpm
  • the load was 3.5 to 8 ton
  • the joining time was 20 seconds or 30 seconds.
  • the recrystallization temperature of Al is 150 to 240 ° C.
  • the recrystallization temperature of A6061, which is an aluminum alloy is 250 to 350 ° C.
  • Example 5 Point bonding was performed in the same manner as in Example 4 except that the shape of the rotating tool was ⁇ 12 mm, the probe was ⁇ 4 mm, and the length was 1 mm.
  • Example 6 A linear processing region was formed by press-fitting a rotary tool into a pure aluminum plate (A1050 H24) having a thickness of 3 mm and moving it.
  • a cylindrical tool ( ⁇ 12 mm, probe: ⁇ 4 mm, length 0.9 mm) made of WC—Ni cemented carbide was used as the rotating tool. Further, the rotational speed of the rotary tool was 50 rpm, the moving speed was 10 mm / min, and the friction stirring process was performed by controlling the position of the rotary tool.
  • Example 7 Friction stirring was performed in the same manner as in Example 6 except that the rotation speed was 10 rpm.
  • Example 8 Friction stirring was performed in the same manner as in Example 6 except that the rotation speed was 5 rpm.
  • FIG. 7 shows a cross-sectional photograph of the joint (30 rpm, 15 ton, 30 s) obtained in Example 1.
  • a concave portion is formed in the upper carbon steel plate by press-fitting the rotary tool, and the upper carbon steel plate and the lower carbon steel plate are joined below the concave portion.
  • no defect or the like is observed in the bonding region, and that a good bonding is achieved.
  • FIG. 1 A cross-sectional photograph of the joint obtained in Example 2 is shown in FIG.
  • a concave portion corresponding to the bottom shape of the rotary tool is formed in the upper carbon steel plate, and the upper carbon steel plate and the lower carbon steel plate are joined below the concave portion. Yes.
  • no defect or the like is observed in the bonding region, and that a good bonding is achieved.
  • FIG. 9 shows a cross-sectional photograph of the joint obtained in Example 3.
  • a rotary tool having a probe By press-fitting a rotary tool having a probe, a concave portion corresponding to the bottom shape of the rotary tool is formed in the upper carbon steel plate, and the probe portion of the broken rotary tool is buried in the concave portion. It can be seen that the upper carbon steel plate and the lower carbon steel plate are bonded to each other below the recess, and no defects or the like are observed in the bonding region, thereby achieving good bonding.
  • FIG. 10 shows a cross-sectional photograph of the joint (40 rpm, 7 ton, 30 s) obtained in Example 4. Similar to the joint obtained in Example 1, a recess is formed in the upper aluminum alloy plate, and the upper aluminum alloy plate and the lower aluminum alloy plate are joined below the recess. Here, no defect or the like is observed in the bonding region.
  • FIG. 11 shows a cross-sectional photograph of the joint (40 rpm, 6 tons, 20 s) obtained in Example 5. Similar to the joint obtained in Example 2, by pressing the rotary tool having a probe, a concave portion corresponding to the shape of the bottom surface of the rotary tool is formed on the upper aluminum alloy plate, and below the concave portion, The upper aluminum alloy plate and the lower aluminum alloy plate are joined. Here, it can be seen that no defect or the like is observed in the bonding region, and that a good bonding is achieved.
  • FIG. 12 shows a surface photograph of the stirring section obtained in Examples 6-8. It can be seen that a linear stirring region is formed under any conditions. Moreover, the friction stir is achieved satisfactorily and no groove-like defects are confirmed.
  • Fig. 13 shows a cross-sectional photograph of the joint obtained in Example 6. Even in the cross-sectional photograph, no defect is confirmed, and it can be seen that a good stirring portion is formed even when the rotational speed of the rotary tool is set extremely low.
  • FIG. 14 shows a cross-sectional photograph of the joint (400 rpm, 4.5 ton, 10 s) obtained in Comparative Example 1. Similar to the joint obtained in Example 1, a recess is formed in the upper carbon steel plate, and the upper carbon steel plate and the lower carbon steel plate are joined below the recess. Here, no defect or the like is observed in the bonding region.
  • FIG. 17 shows the relationship between the minimum hardness of the joint obtained in Example 1 and Comparative Example 1 and the rotational speed of the rotary tool.
  • the minimum hardness of the joint (200 to 1200 rpm) obtained in Comparative Example 1 is significantly lower than the hardness of the base material regardless of the joining conditions.
  • the minimum hardness shows a high value.
  • FIG. 17 when the rotational speed is set to 80 rpm, a decrease in the hardness of the joint is effectively suppressed. In particular, when the rotational speed is set to 50 rpm, the suppression effect is remarkable. When the rotational speed is set to 30 rpm, almost no decrease in hardness from the base material is observed.
  • FIG. 18 shows the relationship between the minimum hardness of the joint obtained in Example 1 and Comparative Example 1 and the base material hardness.
  • the hardness reduction from the base material hardness is remarkable, but for the joint obtained in Example 1, the hardness reduction is clearly reduced.
  • the rotation speed is 30 rpm, the hardness does not decrease until the base material hardness is 350 HV.
  • FIG. 19 and 20 show the hardness distribution (horizontal direction of the joint) of the joint obtained in Example 3 and Example 4.
  • FIG. Even when friction stir welding, which is solid phase bonding, is used, in the conventional aluminum alloy plate (JIS-A6061-T6) joint, it was inevitable to form a softened region (heat affected zone). No softened region (heat affected zone) less than the base metal hardness is observed in the joints obtained in 3 and Example 4.
  • FIG. 21 shows the hardness distribution (horizontal direction of the joint) of the joint obtained in Example 6. In addition, it measured in the upper part of the stirring part, the middle part, and the lower part, respectively.
  • the pure aluminum used as the test material is not an O material but an H24 material, but the hardness of the stirring portion shows a significantly higher value than that of the base material.
  • a softened region (heat affected zone) having a hardness lower than the base material hardness is not recognized at the joint.
  • FIG. 22 shows the shear tensile strength of the joints obtained in Example 2 and Comparative Example 2. Since the joint obtained in Comparative Example 2 breaks from the softened region (heat-affected zone), the shear tensile strength remains at about 8 kN. On the other hand, the joint obtained in Example 2 in which the softened region (heat affected zone) is not formed has a shear tensile strength of about 12 kN.
  • the shear tensile strength is 5.5 kN when the joining condition is 6 tons, 50 rpm, and 30 seconds, and the shear tensile strength when the joining conditions are 7 tons, 40 rpm, and 30 seconds is 4. It was 8 kN.
  • the joint obtained in Comparative Example 3 has a shear tensile strength of 2.7 kN. In Example 3, a joint having a significantly higher shear tensile strength than that of the conventional friction stir spot joining is obtained. I understand that.
  • FIG. 23 and FIG. 24 show orientation map images in the vicinity of the joint interface for the joints obtained in Example 1 and Example 2, respectively. Near both joint interfaces, fine equiaxed grains are generated by recrystallization, and the average crystal grain system is significantly lower than 1 ⁇ m (Example 1: 0.25 ⁇ m, Example 2: 0.33 ⁇ m).
  • FIG. 25 shows an orientation map image in the vicinity of the bonding interface with respect to the bonding portion obtained in Comparative Example 3. While the average crystal grain size of the base material is 20 ⁇ m, the average crystal grain size of the fine equiaxed grains generated in the vicinity of the bonding interface is 0.24 ⁇ m.
  • FIG. 26 shows the relationship between the maximum joining temperature and the tool rotation speed in Example 1 and Comparative Example 1.
  • the maximum joining temperature in Example 1 is dramatically lower than that in Comparative Example 1, and it can be seen that joining of carbon steel sheets is achieved at a low temperature around 300 ° C. Moreover, the said result has shown that joining temperature less than the recrystallization temperature (about 600 degreeC) which a carbon steel plate (S45C) originally has was implement
  • FIG. 27 shows the temperature change during joining in Example 3. It can be seen that the bonding temperature rose from the start of bonding and reached the highest temperature at the end of the bonding time, but remained at an extremely low temperature of 92.1 ° C. at 40 rpm and 69.9 ° C. at 30 rpm. . The results also show that a bonding temperature lower than the recrystallization temperature (250 to 350 ° C.) inherent to the aluminum alloy plate (A6061) has been realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

【課題】各種高張力鋼やアルミニウムの接合部及び熱影響部における機械的特性の低下を効果的に抑制することができる簡便な低温接合方法及び当該低温接合方法によって得られる接合構造物を提供する。 【解決手段】2つの金属材を被接合部において対向させて被接合界面を形成し、被接合部に所定の回転速度で回転させた回転ツールを圧入することで2つの金属材を接合する方法であって、回転ツールの最外周の周速を51mm/s以下とすることにより、被接合部に強ひずみを導入して金属材が本来有する再結晶温度を低下させ、接合温度を金属材が本来有する再結晶温度未満として被接合界面に再結晶粒を生成させること、を特徴とする金属材の低温接合方法。

Description

金属材の低温接合方法及び接合構造物
 本発明は金属材同士を直接接合する低温接合方法及び当該低温接合方法によって得られる接合構造物に関し、より具体的には、接合部及び熱影響部における機械的特性の低下を効果的に抑制することができる低温接合方法及び当該低温接合方法によって得られる接合構造物に関する。
 鋼やアルミニウム合金等の金属材料の高強度化に伴い、接合構造物の機械的特性を律速する接合部での強度低下が深刻な問題となっている。これに対し、近年、接合中の最高到達温度が被接合材の融点に達せず、接合部における強度低下が従来の溶融溶接と比較して小さい摩擦攪拌接合が注目され、急速に実用化が進んでいる。
 しかしながら、固相接合である摩擦攪拌接合を用いた場合であっても、高張力鋼や熱処理型アルミニウム合金に関しては接合部での強度低下を抑制することが困難であり、接合構造物においてこれらの金属材料が本来有する機械的特性が十分に活用されていない。
 ここで、例えば、特許文献1(特開2005-131679号公報)では、熱処理型アルミニウム合金材を摩擦攪拌接合する方法であって、かかる熱処理型アルミニウム合金材にT4調質を施した後、更に復元処理を行ない、そしてその復元処理の施された、復元状態にある熱処理型アルミニウム合金材を、摩擦攪拌接合することを特徴とする熱処理型アルミニウム合金材の摩擦攪拌接合方法、が開示されている。
 上記特許文献1記載の摩擦攪拌接合方法においては、攪拌接合部、熱影響部及び母材のうち、母材の硬さが最も小さくなるように継手を構成することができ、攪拌接合部や熱影響部での破断を防止して、延性、ひいてはプレス成形性に優れた接合材を有利に得ることができる、としている。
 また、特許文献2(特開2015-057292号公報)では、少なくとも一方の被接合材が面心立方格子構造を有し再結晶温度が300℃以下の金属材である被接合材同士を接合部において当接させ、前記接合部に回転する棒状のツールを挿入し、前記接合部に冷却した冷媒を供給するとともに、前記ツールを移動させることにより、前記被接合材同士を接合する摩擦攪拌接合工程を有すること、を特徴とする金属材の摩擦攪拌接合方法、が開示されている。
 上記特許文献2に記載の摩擦攪拌接合方法においては、冷媒による強制冷却によって、十分に転位を含んだ微細等軸粒からなる攪拌部を形成することができることから、面心立方格子構造を有し再結晶温度が300℃以下の金属材であっても母材と同等以上の継手強度を得ることができる、としている。
特開2005-131679号公報 特開2015-057292号公報
 しかしながら、上記特許文献1に開示されている摩擦攪拌接合方法は、熱処理によって基準となる母材の硬度を低下させることで、相対的に接合部の硬度を上昇させるものであり、アルミニウム合金が本来有する機械的特性を活用することができない。
また、上記特許文献2に開示されている摩擦攪拌接合方法を用いても、高張力鋼の接合部における強度低下を完全に抑制することはできないことに加え、冷媒及び冷媒供給機構を準備する必要がある。
以上のような従来技術における問題点に鑑み、本発明の目的は、各種高張力鋼やアルミニウムの接合部及び熱影響部における機械的特性の低下を効果的に抑制することができる簡便な低温接合方法及び当該低温接合方法によって得られる接合構造物を提供することにある。
 本発明者は上記目的を達成すべく、接合界面に再結晶粒を形成させて接合を達成する方法について鋭意研究を重ねた結果、接合界面に強ひずみを導入しつつ昇温を抑制すること等が極めて有効であることを見出し、本発明に到達した。
 即ち、本発明は、
2つの金属材を被接合部において対向させて被接合界面を形成し、前記被接合部に所定の回転速度で回転させた回転ツールを圧入することで前記2つの金属材を接合する方法であって、
 前記回転ツールの最外周の周速を51mm/s以下とすることにより、前記被接合部に強ひずみを導入して前記金属材が本来有する再結晶温度を低下させ、
 接合温度を前記金属材が本来有する再結晶温度未満として前記被接合界面に再結晶粒を生成させること、
 を特徴とする金属材の低温接合方法、を提供する。
 熱影響部の強度低下を抑制するためには、接合温度を低下させることが好ましい。ここで、従来の摩擦攪拌接合においては、接合温度が被接合材の融点(K)の約7割程度まで上昇するが、本発明の低温接合方法においては、回転ツールを従来の摩擦攪拌接合では考えられない程度に低い回転速度で回転させ、接合温度の上昇を抑制すると共に強ひずみを導入し、接合温度を被接合材である金属材が本来有する再結晶温度未満とすることで、熱影響部の強度低下を抑制することができる。ここで、回転ツールの最外周の周速を51mm/s以下とすることで、回転ツールの圧入荷重増加による接合温度の上昇を抑制することができる。なお、「金属材が本来有する再結晶温度」は金属材によって異なるが、一般的には金属材の融点(K)の約4割程度である。
 また、接合温度を被接合材である金属材が本来有する再結晶温度未満とすることで、回転ツールの圧入によって形成される攪拌部の再結晶粒径を低減することができ、当該微細粒化によって攪拌部の機械的特性を向上させることができる。
 本発明の金属材の低温接合方法においては、前記回転速度の低下及び前記圧入荷重の増加により前記接合温度を低下させ、前記再結晶粒の粒径を1μm以下とすること、が好ましい。
 一般的な摩擦攪拌接合における接合温度は、圧入する回転ツールの回転速度、圧入荷重及び移動速度と密接に関係していることが知られており、回転速度及び圧入荷重の増加、及び移動速度の低下に伴って上昇する。これに対して本発明者は、回転速度を極めて小さく設定した場合は圧入荷重を増加させても接合温度が大きく上昇することがなく、一方で、接合界面近傍に導入されるひずみは圧入荷重の増加によって顕著に上昇することを見出した。
 なお、回転ツールの移動速度は攪拌部における欠陥形成及び接合速度等の観点から適宜設定すればよく、スポット接合の場合は回転ツールの押込及び引抜速度、線接合の場合は被接合界面上での移動速度を調節すればよい。また、回転ツールの形状は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の摩擦攪拌接合用ツールの形状を用いることができる。一般的には棒状の回転ツールを用いるが、例えば、円盤状の回転ツールを用いてもよい。
 本発明の低温接合方法は、接合条件及び接合メカニズム等の観点で従来の摩擦攪拌接合と一線を画すものであり、低温下で被接合界面近傍に大きなひずみが導入されることで、実際に再結晶が生じる温度が「金属材が本来有する再結晶温度」よりも低下し、熱影響部の形成が抑制される「金属材が本来有する再結晶温度」未満で被接合界面に再結晶粒を生成させることで、良好な接合が達成される。
 なお、本発明の低温接合方法においては、(1)金属板の端部同士を突き合わせて接合部とし、回転ツールをその加工部の長手方向に沿って回転させつつ移動させて金属板同士を接合する接合、(2)金属板の端部同士を突き合わせて接合部とし、回転ツールをその接合部で移動させずに回転させて接合するスポット接合、(3)金属板同士を接合部において重ね合わせ、接合部に回転ツールを挿入し、回転ツールをその箇所で移動させずに回転させて金属板同士を接合するスポット接合、(4)金属板同士を接合部において重ね合わせ、接合部に回転ツールを挿入し、回転ツールをその接合部の長手方向に沿って回転させつつ移動させて金属板同士を接合する接合の(1)~(4)の4つの態様およびこれらの組み合わせを含む。
 また、本発明の低温接合方法においては、前記回転ツールの最外周の周速を32mm/s以下とすることが好ましく、19mm/s以下とすることがより好ましい。回転ツールの最外周の周速を32mm/s以下とすることで、被接合界面近傍における温度上昇を抑制することができ、接合温度を金属材が本来有する再結晶温度未満とすることができる。また、回転ツールの最外周の周速を19mm/s以下とすることで、より確実に接合温度の上昇を抑制することができる。
 また、本発明の低温接合方法においては、前記圧入荷重を、前記回転ツールを回転させない状態で前記金属材に圧入できる値以上とすること、が好ましい。一般的な摩擦攪拌接合においては、摩擦熱による被接合材の軟化を利用して回転ツールを圧入するが、本発明の低温接合方法においては接合温度の上昇が抑制されているため、被接合材を塑性変形させる態様で回転ツールを圧入する必要がある。また、大荷重で回転ツールを被接合材に圧入することで、大きなひずみを被接合界面に導入することができる。
 また、本発明の低温接合方法においては、前記回転ツールから前記金属材に印加される応力が、前記被接合部の温度における前記金属材の降伏応力以上となる範囲において、前記圧入荷重を前記被接合部の温度上昇に伴って低下させること、が好ましい。金属材の降伏応力は温度の上昇に伴って低下することから、回転ツールを金属材に圧入するために最低限必要な荷重も温度の上昇に伴って低下する。つまり、回転ツールを金属材に圧入できる限りにおいて、できるだけ小さな荷重を用いることで、省エネルギーかつ低温での接合が可能となる。
 また、本発明の低温接合方法においては、前記金属材がアルミニウム又はアルミニウム合金であることが好ましく、前記金属材が熱処理型アルミニウム合金、加工強化型アルミニウム又は加工強化型アルミニウム合金であることがより好ましい。被接合材をアルミニウム又はアルミニウム合金とすることで、結晶粒径の増加や回復に起因する接合部の強度低下を抑制することができ、被接合材を熱処理型アルミニウム合金とすることで、析出物の粗大化や固溶に起因する接合部の強度低下についても抑制することができる。更に、被接合材を加工強化型アルミニウム又は加工強化型アルミニウム合金とすることで、回復や再結晶に伴う強度低下をより効果的に抑制することができる。なお、本発明の低温接合方法は異材接合にも好適に用いることができ、異材接合の場合は少なくとも一方の被接合材に関して本発明の特徴を有していればよい。
 また、本発明の低温接合方法においては、前記金属材が鉄系金属であることが好ましく、高張力鋼であることがより好ましい。被接合材を高張力鋼とすることで、従来の接合技術で問題となっていた熱影響部の形成を抑制することができ、特に、母材硬度が350HV未満の高張力鋼材に対して本発明の低温接合方法を適用することで、母材硬度と略同等の硬度を有する(殆ど硬度低下を生じない)接合部を得ることができる。
 なお、本発明の低温接合方法を用いる被接合材には、上記の金属材を用いることが好ましいが、通常の摩擦攪拌接合(接合温度が被接合材の融点の7~8割程度のとなる摩擦攪拌接合)において、接合部(攪拌部、熱加工影響部及び熱影響部)の強度が母材強度未満となる金属を用いることが好ましい。本発明の低温接合方法を用いることで、当該金属材に関しても強度低下を効果的に抑制することができる。
 また、本発明の低温接合方法は従来の接合方法と比較して極めて低温で接合が達成されることから、接合界面における金属間化合物の形成が問題となる異材接合にも好適に用いることができ、例えば、アルミニウム材とマグネシウム材との異材接合やアルミニウム材と鋼材との異材接合に好適に用いることができる。
 更に、本発明の低温接合方法においては、前記回転ツールが鉄系金属製であること、が好ましい。従来の摩擦攪拌接合に関し、被接合材を鋼とする場合は回転ツールの寿命が大きな問題となっている。これに対し、高融点金属やセラミックス製の種々の回転ツールが検討されているが、十分な寿命が得られていないことに加えて高価なツールとなってしまう。
 本発明者は本発明の低温接合方法の接合温度に着目し、当該接合温度において被接合材である鋼よりも高強度な鉄系金属を用いて回転ツールを作製したところ、鉄系金属製の回転ツールで鋼材を接合できることを見出した。回転ツールを鉄系金属製とすることで、鋼の摩擦攪拌接合に従来使用されてきた回転ツールと比較して、極めて安価な回転ツールで接合を達成することができる。
 また、本発明は、
 350HV未満の母材硬度を有する高張力鋼材の接合部を有し、
 前記接合部には平均粒径が1μm以下の微細等軸再結晶粒を含み、
 前記接合部及び熱影響部の硬度が略前記母材硬度以上であること、
 を特徴とする接合構造物も提供する。
 本発明の接合構造物における接合部は機械的に接合されたものではなく、冶金的に接合されている。また、基本的に、接合部は被接合材である高張力鋼材と略同一の組成を有する微細等軸再結晶粒で構成されており、当該微細等軸再結晶粒の平均粒径が1μm以下となっていることから、母材に劣らない機械的特性を有している。
 また、一般的に高張力鋼材の接合部には熱影響部が形成され、当該熱影響部の硬度は母材よりも低くなるが、本発明の接合構造物においては熱影響部の硬度が母材硬度以上となっている。その結果、接合構造物の強度及び信頼性等が接合部に律速されず、高張力鋼材の機械的特性を十分に利用することができる。
 また、本発明は、
 少なくとも1つ以上の基材部と、
 前記基材部同士を接合した接合部と、を有し、
 前記基材部は高張力鋼材又は熱処理型アルミニウム合金材であり、
 前記接合部は前記基材部と略同一の組成を有し、
 前記接合部は平均粒径が1μm以下の微細等軸再結晶粒を含み、
 前記接合部及び熱影響部の硬度が前記基材部の略8割以上であること、
 を特徴とする接合構造物も提供する。
 本発明の接合構造物において、接合部は機械的に形成されたものではなく、冶金的な接合が達成されている。また、高張力鋼材や熱処理型アルミニウム合金材に関しては接合部における大幅な機械的特性の低下が深刻な問題となるが、本発明の接合構造物では平均粒径が1μm以下の微細等軸再結晶粒によって被接合界面が消失しており、接合部及び熱影響部の硬度が基材部の略8割以上となっている。
 ここで、再結晶粒径は温度やひずみの履歴によって変化するため、観察する場所によって異なるが、接合界面及びその近傍に平均粒径が1μm以下の領域があればよい。なお、当該平均粒径は、例えば、光学顕微鏡又は走査電子顕微鏡による観察画像に対して切片法で算出すればよい。
 本発明の接合構造物においては、前記基材部が350HV以上の母材硬度を有する高張力鋼材であること、が好ましい。従来の溶接技術を用いた場合、350HV以上の母材硬度を有する高張力鋼材の接合部及び熱影響部では大幅な硬度低下が不可避であったが、本発明の接合構造物においては当該高硬度を有する高張力鋼材を基材部に使用しても接合部及び熱影響部の硬度低下が効果的に抑制されている。
 また、本発明の接合構造物においては、前記基材部が350HV未満の母材硬度を有する高張力鋼材であり、前記接合部及び前記熱影響部の硬度が略前記母材硬度以上であること、が好ましい。基材部に350HV未満の硬度を有する高張力鋼材を用いることで、接合部及び熱影響部の硬度低下が略完全に抑制されている。
 更に、本発明の接合構造物においては、前記基材部が熱処理型アルミニウム合金材であり、
 前記接合部及び前記熱処理部の硬度が前記母材硬度の略9割以上であること、が好ましい。熱処理型アルミニウムは溶接時の温度上昇によって容易に硬度低下が生じるが、基材部に熱処理型アルミニウム合金材を用いた場合であっても、接合部及び熱処理部の硬度が母材硬度の略9割以上を維持している。
 なお、本発明の接合構造物は、上述の本発明の金属材の低温接合方法によって好適に製造することができる。
 本発明によれば、各種高張力鋼やアルミニウムの接合部及び熱影響部における機械的特性の低下を効果的に抑制することができる簡便な低温接合方法及び当該低温接合方法によって得られる接合構造物を提供することができる。
本発明の金属材の低温接合方法の一態様を示す模式図である。 本発明の金属材の低温接合方法のその他の態様を示す模式図である。 突合せ接合(線接合)時の状況を示す概略図である。 本発明の接合構造物における接合部近傍の概略断面図である。 点接合時の被接合材配置を示す模式図である。 各温度で焼き戻し処理を行った炭素鋼板のSEM写真及びEBSD結晶粒界像である。 実施例1で得られた接合部の断面写真である。 実施例2で得られた接合部の断面写真である。 実施例3で得られた接合部の断面写真である。 実施例4で得られた接合部の断面写真である。 実施例5で得られた接合部の断面写真である。 実施例6~8で得られた接合部の表面写真である。 実施例6で得られた接合部の断面写真である。 比較例1で得られた接合部の断面写真である。 母材硬度が350HVの場合の接合部の硬度分布(接合部水平方向)である。 母材硬度が450HVの場合の接合部の硬度分布(接合部水平方向)である。 接合部の最低硬さと回転速度との関係を示すグラフである。 接合部の最低硬さと母材硬さとの関係を示すグラフである。 実施例3で得られた接合部の硬度分布(接合部水平方向)である。 実施例4で得られた接合部の硬度分布(接合部水平方向)である。 実施例6で得られた接合部の硬度分布(接合部水平方向)である。 実施例2及び比較例2で得られた継手のせん断引張強度である。 実施例1で得られた接合界面近傍の方位マップ像である。 実施例2で得られた接合界面近傍の方位マップ像である。 比較例3で得られた接合界面近傍の方位マップ像である。 接合最高温度とツール回転速度の関係を示すグラフである。 実施例3における接合中の温度変化を示すグラフである。
 以下、図面を参照しながら本発明の金属材の低温接合方法及び接合構造物の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。
(1)金属材の低温接合方法
 本発明の金属材の低温接合方法は、その接合メカニズムは異なるが、接合プロセスは摩擦攪拌接合に類似している。摩擦攪拌接合とは、FSW(Friction Stir Welding)と称され、接合しようとする二つの金属材からなる被接合材それぞれの端部を突き合わせ、回転ツールの先端に設けられた突起部(プローブ)を両者の端部の間に挿入し、これら端部の長手方向に沿って回転ツールを回転させつつ移動させることによって、二つの金属部材を接合する方法である。
 本発明における金属材の低温接合方法は、上述のとおり、(1)金属板の端部同士を突き合わせて接合部とし、回転ツールをその加工部の長手方向に沿って回転させつつ移動させて金属板同士を接合する接合、(2)金属板の端部同士を突き合わせて接合部とし、回転ツールをその接合部で移動させずに回転させて接合するスポット接合、(3)金属板同士を接合部において重ね合わせ、接合部に回転ツールを挿入し、回転ツールをその箇所で移動させずに回転させて金属板同士を接合するスポット接合、(4)金属板同士を接合部において重ね合わせ、接合部に回転ツールを挿入し、回転ツールをその接合部の長手方向に沿って回転させつつ移動させて金属板同士を接合する接合の(1)~(4)の4つの態様およびこれらの組み合わせを含むが、以下、代表的な態様として、「(3)金属板同士を接合部において重ね合わせ、接合部に回転ツールを挿入し、回転ツールをその箇所で移動させずに回転させて金属板同士を接合するスポット接合」について詳細に説明する。
 図1は、本発明の金属材の低温接合方法の一態様を示す模式図である。被接合材2及び被接合材2’を重ね合わせ、低速で回転させた回転ツール4を大荷重で一方の被接合材から圧入することにより、接合部6が形成される。
 図1に示すのは、円柱状の本体部(ショルダ部)8の底面に円柱状の突起部(プローブ部)10を有する回転ツール4を用いた場合であり、突起部(プローブ部)10が下側に配置した被接合材2’を突き抜けない程度に圧入することにより、本体部(ショルダ部)8の下方であって突起部(プローブ部)10の周囲に、接合部6が形成される。
 また、図2に示すのは、円柱状の本体部(ショルダ部)8の底面に突起部(プローブ部)10を有さない回転ツール4を用いた場合であり、回転ツール4を被接合材2に圧入することにより、接合部6が形成される。ここで、突起部(プローブ部)10を有さない場合は転ツール4を上側に配置した被接合材2のみに圧入し、回転ツール4の底面下方に接合部6を形成させることが好ましい。
 本発明の金属材の低温接合方法においては、回転ツール4の回転速度、圧入荷重及び移動速度を制御パラメータとして接合温度を調節し、接合温度を被接合材(2,2’)が本来有する再結晶温度未満とする。ここで、「被接合材(2,2’)が本来有する再結晶温度」はその組成や加工状態(加工度)等によって変化するが、例えば、各金属の再結晶温度はW:1200℃,Mo:900℃,Fe:500℃,Cu:200~230℃,Al:150~240℃,Mg:150℃である(須藤一ら,「金属組織学」,丸善(1972))。なお、本発明における「被接合材(2,2’)が本来有する再結晶温度」は、被接合材(2,2’)に対応する金属材で従来公知となっている値を用いれよいが、適当な報告値がない場合は、各温度で熱処理した被接合材(2,2’)の組織観察を行い、再結晶の有無を確認すればよい。
 また、本発明の低温接合方法においては、被接合界面に再結晶粒を生成させることで接合を達成するところ、接合温度を通常は再結晶が生じない「被接合材(2,2’)が本来有する再結晶温度」未満としている。ここで、本発明の低温接合方法においては、温度上昇を極力抑えた状態で回転ツール4の圧入によって被接合部に強ひずみを導入することで、再結晶が生じる温度(実際の再結晶温度)を低下させている。具体的には、回転ツール4の最外周の周速を51mm/s以下とすることにより、接合温度の上昇を抑制しつつ前記被接合部に強ひずみを導入して、前記金属材が本来有する再結晶温度を低下させている。なお、回転ツール4のショルダ径が12mmの場合、回転速度を80rpmとすることで最外周の周速を51mm/sとすることができる。また、接合温度を「被接合材(2,2’)が本来有する再結晶温度」未満とすることで、接合部に形成される再結晶粒の粗大化及び熱影響部における硬度低下を抑制することができる。
 回転ツール4の形状は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の摩擦攪拌接合用ツールの形状を用いることができるが、円柱状の本体部(ショルダ部)の底面に円柱状の突起部(プローブ部)を有するものを用いることが好ましい。突起部(プローブ部)の底面を略平面とすることで、被接合界面近傍に効率的に強ひずみを導入することができる。
 ここで、回転ツール4の回転速度の低下及び圧入荷重の増加により接合温度を低下させることができ、適当な回転速度及び圧入荷重を設定することにより、被接合部の結晶粒の粒径を1μm以下とすることができる。
 回転ツール4の回転速度は接合温度が「被接合材(2,2’)が本来有する再結晶温度」未満となるように適宜調節すればよいが、最外周の周速を32mm/s以下とすることが好ましく、19mm/s以下とすることがより好ましい。回転ツールの最外周の周速を32mm/s以下とすることで、被接合界面近傍における温度上昇を抑制することができる。また、回転ツールの最外周の周速を19mm/s以下とすることで、より確実に接合温度の上昇を抑制することができる。なお、回転ツール4のショルダ径が12mmの場合、最外周の周速は回転速度を50rpmとすることで32mm/sとなり、30rpmとすることで19mm/sとなる。
 回転ツール4の圧入荷重も接合温度が「被接合材(2,2’)が本来有する再結晶温度」未満となるように適宜調節すればよいが、回転ツール4を回転させない状態で被接合材(2,2’)に圧入できる値以上とすること、が好ましい。一般的な摩擦攪拌接合においては、摩擦熱による被接合材(2,2’)の軟化を利用して回転ツール4を圧入するが、本発明の低温接合方法においては接合温度の上昇が抑制されているため、被接合材(2,2’)を塑性変形させる態様で回転ツール4を圧入する必要がある。また、大荷重で回転ツール4を被接合材(2,2’)に圧入することで、大きなひずみを被接合界面に導入することができる。
 被接合材(2,2’)はアルミニウム又はアルミニウム合金であることが好ましく、被接合材(2,2’)が熱処理型アルミニウム合金、加工強化型アルミニウム又は加工強化型アルミニウム合金であることがより好ましい。被接合材(2,2’)をアルミニウム又はアルミニウム合金とすることで、結晶粒径の増加や回復に起因する接合部の強度低下を抑制することができ、被接合材(2,2’)を熱処理型アルミニウム合金とすることで、析出物の粗大化や固溶に起因する接合部の強度低下についても抑制することができる。更に、被接合材(2,2’)を加工強化型アルミニウム又は加工強化型アルミニウム合金とすることで、回復や再結晶に伴う強度低下をより効果的に抑制することができる。
 また、被接合材(2,2’)は鉄系金属であることが好ましく、高張力鋼であることがより好ましい。被接合材(2,2’)を高張力鋼とすることで、従来の接合技術で問題となっていた熱影響部の形成を抑制することができ、特に、母材硬度が350HV未満の高張力鋼材に対して本発明の低温接合方法を適用することで、母材硬度と略同等の硬度を有する(殆ど硬度低下を生じない)接合部を得ることができる。
 また、被接合材(2,2’)には通常の摩擦攪拌接合(接合温度が被接合材の融点の7~8割程度のとなる摩擦攪拌接合)において、接合部(攪拌部、熱加工影響部及び熱影響部)の強度が母材強度未満となる金属を用いることが好ましい。本発明の低温接合方法を用いることで、当該金属材に関しても強度低下を効果的に抑制することができる。加えて、本発明の低温接合方法は従来の接合方法と比較して極めて低温で接合が達成されることから、接合界面における金属間化合物の形成が問題となる異材接合にも好適に用いることができ、例えば、アルミニウム材とマグネシウム材との異材接合やアルミニウム材と鋼材との異材接合に好適に用いることができる。
 回転ツール4は、鉄系金属製であることが好ましい。従来の摩擦攪拌接合に関し、被接合材(2,2’)を鋼とする場合は回転ツール4の寿命が大きな問題となっている。これに対し、高融点金属やセラミックス製の種々の回転ツール4が検討されているが、十分な寿命が得られていないことに加えて高価なツールとなってしまう。
 これに対し、本発明の低温接合方法では接合温度が「被接合材(2,2’)が本来有する再結晶温度」未満と低温であることから、鉄系金属製の回転ツール4で鋼材を接合できる。回転ツール4を鉄系金属製とすることで、鋼の摩擦攪拌接合に従来使用されてきた回転ツール4と比較して、極めて安価な回転ツール4で接合を達成することができる。
 ここで、鉄系金属製の回転ツール4を用いて高張力鋼材を接合する場合、接合中に回転ツール4に印加されるせん断応力によって突起部(プローブ部)を切断し、被接合材(2,2’)の接合部に埋没させてもよい。この場合、突起部(プローブ部)の圧入によって接合部に形成される凹部に突起部(プローブ部)が充填されるため、継手強度の観点からはより好ましい接合部が形成される。また、回転ツール4と被接合材(2,2’)が同種の材料であることから、腐食等の耐環境性に関しても深刻な問題とならない。
 なお、上述のとおり、本発明の低温接合方法は一般的な突合せ接合に適用することができ、この場合は図3に示すような態様で、被接合材(2,2’)を突き合わせた領域に回転ツール4を圧入し、突合せ線に沿って移動させることで、良好な線接合部を得ることができる。
(2)接合構造物
 図4に、本発明の接合構造物における接合部近傍の概略断面図を示す。なお、本発明の接合構造物における接合部の代表的な態様として、図4ではスポット接合部を示している。
 本発明の接合構造物20は、少なくとも1つ以上の基材部22と、基材部22同士を接合した接合部24と、を有している。基材部22は高張力鋼材又は熱処理型アルミニウム合金材であり、接合部24は基材部22と略同一の組成を有している。つまり、接合部24の形成に関して他元素の積極的な添加等はなされていない。
 接合部24は平均粒径が1μm以下の微細等軸再結晶粒を含んでおり、特に接合界面は当該微細等軸再結晶粒の形成によって形成されている。また、接合部における微細等軸再結晶粒の形成により、接合部24及び熱影響部26の硬度は基材部22の略8割以上となっている。
 また、接合部24は機械的に形成されたものではなく、冶金的な接合が達成されている。また、高張力鋼材や熱処理型アルミニウム合金材に関しては接合部24における大幅な機械的特性の低下が深刻な問題となるが、接合構造物20では平均粒径が1μm以下の微細等軸再結晶粒によって被接合界面が消失しており、接合部24及び熱影響部26の硬度が基材部の略8割以上となっている。
 また、接合構造物20においては、基材部22が350HV以上の母材硬度を有する高張力鋼材であること、が好ましい。従来の溶接技術を用いた場合、350HV以上の母材硬度を有する高張力鋼材の接合部24及び熱影響部26では大幅な硬度低下が不可避であったが、接合構造物20においては当該高硬度を有する高張力鋼材を基材部22に使用しても接合部24及び熱影響部26の硬度低下が効果的に抑制されている。
 また、接合構造物20においては、基材部22が350HV未満の母材硬度を有する高張力鋼材であり、接合部24及び熱影響部26の硬度が略母材硬度以上であること、が好ましい。基材部22に350HV未満の硬度を有する高張力鋼材を用いることで、接合部24及び熱影響部26の硬度低下が略完全に抑制されている。
 更に、接合構造物20においては、基材部22が熱処理型アルミニウム合金材であり、接合部24及び熱処理部26の硬度が母材硬度の略9割以上であること、が好ましい。熱処理型アルミニウムは溶接時の温度上昇によって容易に硬度低下が生じるが、基材部22に熱処理型アルミニウム合金材を用いた場合であっても、接合部24及び熱処理部26の硬度が母材硬度の略9割以上を維持している。
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。
≪実施例1≫
 図5に示す配置で炭素鋼板(JIS-S45C)同士を重ね合わせ、上側の炭素鋼板から回転ツールを圧入して点接合を施した。ここで、回転ツールにはWC-Ni超硬合金製の円柱状ツール(φ12mm,プローブなし)を用い、炭素鋼板の板厚は1.0mm又は1.5mmとした。回転ツールの回転速度は30rpm又は50rpm、荷重は12ton又は15ton、接合時間は10秒又は30秒とした。なお、上述のとおりFeの再結晶温度は~500℃であり、炭素鋼であるS45Cの再結晶温度は約600℃である。
 供試材として用いた炭素鋼板は、400℃、500℃、600℃の各温度における焼き戻し処理で硬度(強度)を変化させている。図5に各温度で焼き戻し処理を行った炭素鋼板のSEM写真及びEBSD結晶粒界像を示す。なお、SEM観察及びEBSD測定にはFE-SEM(日本電子株式会社製JSM-7001FA)及びTSL社製のOIM data Collection ver5.31を用いた。
 図6において、焼き戻し温度の上昇に伴う小角粒界及び炭化物の減少が認められ、400℃の場合は450HV、500℃の場合は350HV、600℃の場合は300HVとなっていた。なお、一般的にビッカース硬度の約3倍が引張強度(MPa)となることから、400℃の場合は1350MPa、500℃の場合は1050MPa、600℃の場合は900MPaの引張強度を有する高張力鋼に相当する。
≪実施例2≫
 回転ツールに工具鋼製(日立金属,YXR33)の円柱状ツール(φ12mm,プローブ:φ4mm,長さ1.8mm)を使用し、回転ツールの回転速度を50rpm、荷重を15ton、接合時間を10秒としたこと以外は実施例1と同様にして、点接合を施した。
≪実施例3≫
 回転ツールに工具鋼製(JIS-SKD61)の円柱状ツール(φ12mm,プローブ:φ4mm,長さ1.8mm)、被接合材に低炭素鋼板(JIS-SPCC)を用い、回転ツールの回転速度を50rpm、荷重を6ton、接合時間を60秒としたこと以外は実施例1と同様にして、点接合を施した。
≪実施例4≫
 図5に示す配置で、アルミニウム合金板(JIS-A6061-T6)同士を重ね合わせ、上側のアルミニウム合金板から回転ツールを圧入して点接合を施した。ここで、回転ツールにはWC-Ni超硬合金製の円柱状ツール(φ12mm,プローブなし)を用い、アルミニウム合金板の板厚は1.0mmとした。回転ツールの回転速度は30~50rpm、荷重は3.5~8ton、接合時間は20秒又は30秒とした。なお、上述のとおりAlの再結晶温度は150~240℃であり、アルミニウム合金であるA6061の再結晶温度は250~350℃である。
≪実施例5≫
 回転ツールの形状をφ12mm,プローブ:φ4mm,長さ1mmとした以外は実施例4と同様にして、点接合を施した。
≪実施例6≫
 板厚3mmの純アルミニウム板(A1050 H24)に回転ツールを圧入して移動させることで、線状の処理領域を形成させた。回転ツールにはWC-Ni超硬合金製の円柱状ツール(φ12mm,プローブ:φ4mm,長さ0.9mm)を用いた。また、回転ツールの回転速度は50rpm、移動速度は10mm/minとし、回転ツールの位置制御にて摩擦攪拌処理を施した。
≪実施例7≫
 回転速度を10rpmとした以外は実施例6と同様にして、摩擦攪拌処理を施した。
≪実施例8≫
 回転速度を5rpmとした以外は実施例6と同様にして、摩擦攪拌処理を施した。
≪比較例1≫
回転速度を200~1200rpm、荷重を4.5ton、接合時間を10秒とした以外は実施例1と同様にして、点接合を施した。
≪比較例2≫
 回転ツールにWC-Ni超硬合金製の円柱状ツール(φ12mm,プローブ:φ4mm,長さ1.8mm)を用いた以外は比較例1と同様にして、点接合を施した。
≪比較例3≫
 回転速度を2500rpm、荷重を0.4ton、接合時間を1.2秒とした以外は実施例4と同様にして、点接合を施した。
[接合部の断面観察]
 接合部における欠陥形成の有無及び接合界面の状況等を確認するため、接合部の断面を光学顕微鏡によって観察した。
 実施例1で得られた接合部(30rpm,15ton,30s)の断面写真を図7に示す。回転ツールの圧入によって上側の炭素鋼板に凹部が形成されており、当該凹部の下方において、上側の炭素鋼板と下側の炭素鋼板が接合されている。ここで、当該接合領域に欠陥等は認められず、良好な接合が達成されていることが分かる。
 実施例2で得られた接合部の断面写真を図8に示す。プローブを有する回転ツールの圧入によって、上側の炭素鋼板に当該回転ツールの底面形状に対応した凹部が形成されており、当該凹部の下方において、上側の炭素鋼板と下側の炭素鋼板が接合されている。ここで、当該接合領域に欠陥等は認められず、良好な接合が達成されていることが分かる。
 実施例3で得られた接合部の断面写真を図9に示す。プローブを有する回転ツールの圧入によって、上側の炭素鋼板に当該回転ツールの底面形状に対応した凹部が形成されており、当該凹部に破断した回転ツールのプローブ部が埋没している。当該凹部の下方において、上側の炭素鋼板と下側の炭素鋼板が接合され、当該接合領域に欠陥等は認められず、良好な接合が達成されていることが分かる。
 実施例4で得られた接合部(40rpm,7ton,30s)の断面写真を図10に示す。実施例1で得られた接合部と同様に、上側のアルミニウム合金板に凹部が形成されており、当該凹部の下方において、上側のアルミニウム合金板と下側のアルミニウム合金板が接合されている。ここで、当該接合領域に欠陥等は認められない。
 実施例5で得られた接合部(40rpm,6ton,20s)の断面写真を図11に示す。実施例2で得られた接合部と同様に、プローブを有する回転ツールの圧入によって、上側のアルミニウム合金板に当該回転ツールの底面形状に対応した凹部が形成されており、当該凹部の下方において、上側のアルミニウム合金板と下側のアルミニウム合金板が接合されている。ここで、当該接合領域に欠陥等は認められず、良好な接合が達成されていることが分かる。
 実施例6~8で得られた攪拌部の表面写真を図12に示す。何れの条件においても線状の攪拌領域が形成されていることが分かる。また、摩擦攪拌は良好に達成されており、溝状欠陥等は確認されない。
 実施例6で得られた接合部の断面写真を図13に示す。断面写真においても欠陥は確認されず、回転ツールの回転速度を極めて遅く設定した場合であっても、良好な攪拌部が形成されることが分かる。
 比較例1で得られた接合部(400rpm,4.5ton,10s)の断面写真を図14に示す。実施例1で得られた接合部と同様に、上側の炭素鋼板に凹部が形成されており、当該凹部の下方において、上側の炭素鋼板と下側の炭素鋼板が接合されている。ここで、当該接合領域に欠陥等は認められない。
[硬度測定]
 上記実施例及び比較例で得られた接合部の断面について、ビッカース硬度試験を行った。なお、ビッカース硬度測定は荷重:0.1kgf、荷重負荷時間:15sの条件で行った。
 図15及び図16に、炭素鋼板の母材硬度を350HV及び450HVとした場合の硬度分布(接合部水平方向)を示す。炭素鋼板の母材硬度が350HVの場合、実施例1で得られた接合部においては母材硬度未満の軟化領域(熱影響部)が存在しない。また、炭素鋼板の母材硬度が450HVの場合は僅かに軟化した領域が存在するものの、比較例1で得られた接合部と比較すると硬度低下が明確に低減されている。
 実施例1及び比較例1で得られた接合部の最低硬さについて、回転ツールの回転速度との関係を図17に示す。比較例1で得られた接合部(200~1200rpm)の最低硬さは接合条件に依らず母材の硬さよりも大幅に低い値となっているが、実施例1で得られた接合部の最低硬さは高い値を示している。図17において、回転速度を80rpmとした場合は接合部の硬度低下が効果的に抑制されている。特に、回転速度を50rpmとすると当該抑制効果が顕著であり、更に、回転速度を30rpmとした場合は母材からの硬度低下が殆ど認められない。
 実施例1及び比較例1で得られた接合部の最低硬さについて、母材硬さとの関係を図18に示す。比較例1で得られた接合部については母材硬さからの硬度低下が顕著であるが、実施例1で得られた接合部に関しては硬度低下が明確に低減されている。特に、回転速度を30rpmとした場合は、母材硬さが350HVまでは硬度低下が生じていない。
 図19及び図20に、実施例3及び実施例4で得られた接合部の硬度分布(接合部水平方向)を示す。固相接合である摩擦攪拌接合を用いた場合であっても、従来のアルミニウム合金板(JIS-A6061-T6)接合部では軟化領域(熱影響部)の形成が不可避であったが、実施例3及び実施例4で得られた接合部には母材硬度未満の軟化領域(熱影響部)が認められない。
 図21に、実施例6で得られた接合部の硬度分布(接合部水平方向)を示す。なお、攪拌部の上部、中部、下部においてそれぞれ測定している。供試材として用いた純アルミニウムはO材ではなくH24材であるが、攪拌部の硬度は母材と比較して大幅に高い値を示している。加えて、接合部に母材硬度未満の軟化領域(熱影響部)は認められない。
[引張試験]
 上記実施例及び比較例で得られた継手に関して、せん断引張強度を測定した。測定には引張試験機(SHIMADZU Autograph AGS-X 10kN)を用い、クロスヘッド速度1mm/minで継手のせん断引張強度を測定した。
 実施例2及び比較例2で得られた継手のせん断引張強度を図22に示す。比較例2で得られた継手は軟化領域(熱影響部)から破断することから、せん断引張強度は約8kNに留まっている。これに対し、軟化領域(熱影響部)が形成されない実施例2で得られた継手は、約12kNのせん断引張強度を有している。
 実施例3で得られた継手に関し、接合条件を6ton、50rpm、30秒とした場合のせん断引張強度は5.5kN、接合条件を7ton、40rpm、30秒とした場合のせん断引張強度は4.8kNであった。これに対し、比較例3で得られた継手のせん断引張強度は2.7kNであり、実施例3では従来の摩擦攪拌点接合と比較して大幅に高いせん断引張強度を有する継手が得られていることが分かる。
[接合部の微細組織観察]
 接合部における結晶粒の粒径及び形状を確認するため、接合部の断面のEBSD測定を行った。なお、EBSD測定にはFE-SEM(日本電子株式会社製JSM-7001FA)及びTSL社製のOIM data Collection ver5.31を用いた。
 実施例1及び実施例2で得られた接合部に関し、接合界面近傍の方位マップ像を図23及び図24にそれぞれ示す。どちらの接合界面近傍においても再結晶によって微細等軸粒が生成しており、平均結晶粒系は1μmを大幅に下回っている(実施例1:0.25μm,実施例2:0.33μm)。
 比較例3で得られた接合部に関し、接合界面近傍の方位マップ像を図25に示す。母材の平均結晶粒径が20μmであるのに対し、接合界面近傍に生成した微細等軸粒の平均結晶粒径は0.24μmとなっている。
[接合温度測定]
 熱画像カメラ(CINO社製 CPA-T640)を用い、上記実施例及び比較例における接合温度の測定を行った。
 実施例1及び比較例1における接合最高温度とツール回転速度の関係を図26に示す。実施例1における接合最高温度は比較例1の場合と比較して劇的に低下しており、300℃近傍の低温で炭素鋼板の接合が達成されていることが分かる。また、当該結果は、炭素鋼板(S45C)が本来有する再結晶温度(約600℃)未満の接合温度が実現されていることを示している。
 実施例3における接合中の温度変化を図27に示す。接合開始から接合温度は上昇し、接合時間終了時に最高温度となっているが、40rpmの場合は92.1℃、30rpmの場合は69.9℃と、極めて低い温度に留まっていることが分かる。また、当該結果は、アルミニウム合金板(A6061)が本来有する再結晶温度(250~350℃)未満の接合温度が実現されていることを示している。
2,2’・・・被接合材、
4・・・回転ツール、
6・・・接合部、
8・・・本体部(ショルダ部)、
10・・・突起部(プローブ部)、
20・・・接合構造物、
22・・・基材部、
24・・・接合部、
26・・・熱影響部。
 

Claims (14)

  1.  2つの金属材を被接合部において対向させて被接合界面を形成し、前記被接合部に所定の回転速度で回転させた回転ツールを圧入することで前記2つの金属材を接合する方法であって、
     前記回転ツールの最外周の周速を51mm/s以下とすることにより、前記被接合部に強ひずみを導入して前記金属材が本来有する再結晶温度を低下させ、
     接合温度を前記金属材が本来有する再結晶温度未満として前記被接合界面に再結晶粒を生成させること、
     を特徴とする金属材の低温接合方法。
  2.  前記再結晶粒の粒径を1μm以下とすること、
     を特徴とする請求項1に記載の金属材の低温接合方法。
  3.  前記回転ツールの最外周の周速を32mm/s以下とすること、
     を特徴とする請求項1及び2に記載の金属材の低温接合方法。
  4.  前記回転ツールの最外周の周速を19mm/s以下とすること、
     を特徴とする請求項1~3のうちのいずれかに記載の金属材の低温接合方法。
  5.  前記回転ツールの圧入荷重を、前記回転ツールを回転させない状態で前記金属材に圧入できる値以上とすること、
     を特徴とする請求項1~4のうちのいずれかに記載の金属材の低温接合方法。
  6.  前記回転ツールから前記金属材に印加される応力が、前記被接合部の温度における前記金属材の降伏応力以上となる範囲において、
     前記圧入荷重を前記被接合部の温度上昇に伴って低下させること、
     を特徴とする請求項1~5のうちのいずれかに記載の金属材の低温接合方法。
  7.  前記金属材がアルミニウム又はアルミニウム合金であること、
     を特徴とする請求項1~6のうちのいずれかに記載の金属材の低温接合方法。
  8.  前記金属材が熱処理型アルミニウム合金、加工強化型アルミニウム又は加工強化型アルミニウム合金であること、
     を特徴とする請求項1~7のうちのいずれかに記載の金属材の低温接合方法。
  9.  前記金属材が鉄系金属であること、
     を特徴とする請求項1~6のうちのいずれかに記載の金属材の低温接合方法。
  10.  前記回転ツールが鉄系金属製であること、
     を特徴とする請求項1~9のうちのいずれかに記載の金属材の低温接合方法。
  11.  少なくとも1つ以上の基材部と、
     前記基材部同士を接合した接合部と、を有し、
     前記基材部は高張力鋼材又は熱処理型アルミニウム合金材であり、
     前記接合部は前記基材部と略同一の組成を有し、
     前記接合部は平均粒径が1μm以下の微細等軸再結晶粒を含み、
     前記接合部及び熱影響部の硬度が前記基材部の略8割以上であること、
     を特徴とする接合構造物。
  12.  前記基材部が350HV以上の母材硬度を有する高張力鋼材であること、
     を特徴とする請求項11に記載の接合構造物。
  13.  前記基材部が350HV未満の母材硬度を有する高張力鋼材であり、
     前記接合部及び前記熱影響部の硬度が略前記母材硬度以上であること、
     を特徴とする請求項11に記載の接合構造物。
  14.  前記基材部が熱処理型アルミニウム合金材であり、
     前記接合部及び前記熱処理部の硬度が前記母材硬度の略9割以上であること、
     を特徴とする請求項11に記載の接合構造物。
PCT/JP2017/007677 2016-03-11 2017-02-28 金属材の低温接合方法及び接合構造物 WO2017154658A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187029004A KR102090416B1 (ko) 2016-03-11 2017-02-28 금속재의 저온 접합 방법 및 접합 구조물
CN201780016606.6A CN108778602B (zh) 2016-03-11 2017-02-28 金属材料的低温接合方法和接合构造物
US16/080,780 US11964338B2 (en) 2016-03-11 2017-02-28 Method for low-temperature joining of metal materials, and joint structure
JP2018504390A JP6579596B2 (ja) 2016-03-11 2017-02-28 金属材の低温接合方法及び接合構造物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016047806 2016-03-11
JP2016-047806 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017154658A1 true WO2017154658A1 (ja) 2017-09-14

Family

ID=59789304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007677 WO2017154658A1 (ja) 2016-03-11 2017-02-28 金属材の低温接合方法及び接合構造物

Country Status (5)

Country Link
US (1) US11964338B2 (ja)
JP (1) JP6579596B2 (ja)
KR (1) KR102090416B1 (ja)
CN (1) CN108778602B (ja)
WO (1) WO2017154658A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142293A (ja) * 2019-03-08 2020-09-10 国立大学法人大阪大学 摩擦攪拌接合用ツール及び摩擦攪拌接合方法
WO2023012906A1 (ja) * 2021-08-03 2023-02-09 日本製鉄株式会社 冷間圧延用鍛鋼ロール

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11045851B2 (en) 2013-03-22 2021-06-29 Battelle Memorial Institute Method for Forming Hollow Profile Non-Circular Extrusions Using Shear Assisted Processing and Extrusion (ShAPE)
US10695811B2 (en) 2013-03-22 2020-06-30 Battelle Memorial Institute Functionally graded coatings and claddings
US11383280B2 (en) 2013-03-22 2022-07-12 Battelle Memorial Institute Devices and methods for performing shear-assisted extrusion, extrusion feedstocks, extrusion processes, and methods for preparing metal sheets
JP7231798B1 (ja) 2021-08-31 2023-03-01 Jfeスチール株式会社 摩擦攪拌点接合継手およびその製造方法、ならびに、摩擦攪拌点接合方法
WO2023032514A1 (ja) 2021-08-31 2023-03-09 Jfeスチール株式会社 摩擦攪拌点接合継手およびその製造方法、ならびに、摩擦攪拌点接合方法
WO2023043839A1 (en) 2021-09-15 2023-03-23 Battelle Memorial Institute Shear-assisted extrusion assemblies and methods
JP7425781B2 (ja) * 2021-12-16 2024-01-31 株式会社東芝 異種金属の接合方法、および接合装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040584A (ja) * 2010-08-17 2012-03-01 Osaka Univ 鉄系材料の接合方法
JP5255781B2 (ja) * 2007-04-17 2013-08-07 英俊 藤井 ステンレス鋼材の接合方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4351024B2 (ja) 2003-10-30 2009-10-28 住友軽金属工業株式会社 熱処理型アルミニウム合金材の摩擦攪拌接合方法
JP4599608B2 (ja) * 2006-05-02 2010-12-15 財団法人大阪産業振興機構 摩擦攪拌加工方法および摩擦攪拌加工用裏当て治具
US20100178526A1 (en) * 2006-08-21 2010-07-15 Osaka University Process for working metal members and structures
US8469256B2 (en) * 2008-08-11 2013-06-25 Megastir Technologies Llc Method for using a non-linear control parameter ramp profile to approach a temperature set point of a tool or weld that prevents temperature overshoot during friction stir welding
FR2943566A1 (fr) * 2009-03-26 2010-10-01 Eurocopter France Methode de soudage par friction entre des pieces metalliques, procurant un controle de la temperature de soudage a partir d'elements thermiquement conducteurs
JP5767080B2 (ja) * 2011-06-21 2015-08-19 三菱日立パワーシステムズ株式会社 耐熱合金部材及びその製造方法、耐熱合金部材の補修方法
CN102284787A (zh) * 2011-07-11 2011-12-21 重庆大学 电加热摩擦点焊搅拌头及其焊接方法
US9095927B2 (en) * 2011-08-19 2015-08-04 Nippon Light Metal Company, Ltd. Friction stir welding method
CN103170725A (zh) * 2013-04-09 2013-06-26 上海电机学院 电磁搅拌摩擦点焊装置及其方法
JP6435533B2 (ja) 2013-08-09 2018-12-12 国立大学法人大阪大学 金属材の摩擦攪拌接合方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5255781B2 (ja) * 2007-04-17 2013-08-07 英俊 藤井 ステンレス鋼材の接合方法
JP2012040584A (ja) * 2010-08-17 2012-03-01 Osaka Univ 鉄系材料の接合方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142293A (ja) * 2019-03-08 2020-09-10 国立大学法人大阪大学 摩擦攪拌接合用ツール及び摩擦攪拌接合方法
WO2020184483A1 (ja) * 2019-03-08 2020-09-17 日本特殊陶業株式会社 摩擦攪拌接合用ツール及び摩擦攪拌接合方法
US11986901B2 (en) 2019-03-08 2024-05-21 Ntk Cutting Tools Co., Ltd. Friction stir welding tool and friction stir welding method
WO2023012906A1 (ja) * 2021-08-03 2023-02-09 日本製鉄株式会社 冷間圧延用鍛鋼ロール
JPWO2023012906A1 (ja) * 2021-08-03 2023-02-09
JP7328606B2 (ja) 2021-08-03 2023-08-17 日本製鉄株式会社 冷間圧延用鍛鋼ロール

Also Published As

Publication number Publication date
US20210205918A1 (en) 2021-07-08
JP6579596B2 (ja) 2019-09-25
KR102090416B1 (ko) 2020-03-17
CN108778602A (zh) 2018-11-09
KR20180122668A (ko) 2018-11-13
US11964338B2 (en) 2024-04-23
CN108778602B (zh) 2020-09-29
JPWO2017154658A1 (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
JP6579596B2 (ja) 金属材の低温接合方法及び接合構造物
CN107848065B (zh) 摩擦焊接方法
Ilangovan et al. Microstructure and tensile properties of friction stir welded dissimilar AA6061–AA5086 aluminium alloy joints
Ramesh et al. Microstructure and mechanical characterization of friction-stir-welded dual-phase brass
US20070119908A1 (en) Titanium-Aluminide Turbine Wheel and Shaft Assembly
JP6739854B2 (ja) 摩擦圧接方法
Avula et al. Tensile properties of friction stir welded joints of AA 2024-T6 alloy at different welding speeds
JP2002346770A (ja) アルミニウム基接合構造物
EP4011540B1 (en) Dissimilar material solid phase bonding method
JPWO2019181360A1 (ja) 金属材の固相接合方法及び固相接合装置
Zhang et al. Cladding thick Al plate onto strong steel substrate using a novel process of multilayer-friction stir brazing (ML-FSB)
Chu et al. Structure-Property correlation in weld metals and interface regions of titanium/steel dissimilar joints
Yeni et al. Comparison of mechanical and microstructural behaviour of TIG, MIG and friction stir welded 7075 aluminium alloy
Manjunath et al. Investigation of effect of process parameters on friction stir welded dissimilar AA6061 T6 and AA7075 T651
JP2021164943A (ja) アルミニウム合金板と鋼板の摩擦撹拌接合方法
WO2022064980A1 (ja) 摩擦圧接方法
WO2018070316A1 (ja) 摩擦撹拌接合方法および装置
Deepankumar Experimental Investigation of Mechanical and Corrosion Characteristics of Friction Stir Welded Aluminum Alloy 7075-T6
JP2005271016A (ja) 鋼管とアルミニウム合金中空部材の摩擦圧接方法
WO2024034268A1 (ja) 摩擦攪拌接合方法及び摩擦攪拌接合用ツール
US11772186B2 (en) Spot welding method
Ahmed et al. Optimization of Maximum Tool Travel Speed for Friction Stir Welded AA-2014-T6 without Compromising the Mechanical Properties
Mbana Mechanical properties of friction stir welded dissimilar aluminium alloys (1050 and 5083 aluminium alloy plates)
JP2021164942A (ja) アルミニウム合金板と鋼板の摩擦撹拌接合方法
Dwivedi Dissimilar Metal Joining by Solid-State Joining Technologies

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504390

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187029004

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762998

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762998

Country of ref document: EP

Kind code of ref document: A1